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Profile of bubbling solutions to a Liouville system
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Abstract

In several fields of Physics, Chemistry and Ecology, some models are described by Liouville systems. In this article we first prove
a uniqueness result for a Liouville system in R2. Then we establish a uniform estimate for bubbling solutions of a locally defined
Liouville system near an isolated blowup point. The uniqueness result, as well as the local uniform estimates are crucial ingredients
for obtaining a priori estimate, degree counting formulas and existence results for Liouville systems defined on Riemann surfaces.
Published by Elsevier Masson SAS.

Résumé

En plusieurs champs de Physique, Chimie et Écologie, quelques modèles sont décrits par les systèmes de Liouville. Dans cet
article nous prouvons d’abord un résultat de caractère unique pour un système de Liouville dans R2. Alors nous établissons une
estimation uniforme pour les solutions d’explosion d’un système de Liouville localement défini prés d’un point d’explosion isolé.
Le résultat d’unicité, aussi bien que les estimations uniformes locales sont les ingrédients cruciaux pour obtenir a priori l’estimation,
les formules comptant le degré, et l’existence pour les systèmes de Liouville définis sur des surfaces de Reimann.
Published by Elsevier Masson SAS.
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1. Introduction

In this article we are concerned with the following generalized Liouville system:

�ui +
n∑

j=1

aijhj e
uj = 0, i ∈ I ≡ {1, . . . , n}, Ω ⊂ R2, (1.1)

where Ω is a subset of R2, h1, . . . , hn are positive smooth functions, A = (aij )n×n is an invertible, symmetric and
non-negative matrix.
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(1.1) is an extension of the well-known classical Liouville equation

�u + V eu = 0, Ω ⊂ R2,

which finds applications in many fields in Physics and Mathematics. For example the Liouville equation is related to
finding a metric whose Gauss curvature is a prescribed function [7]. In Physics, the Liouville equation represents the
electric potential induced by the charge carriers in electrolytes theory [25] and the Newtonian potential of a cluster of
self-gravitation mass distribution [1,4,26,27]. Moreover, it is closely related to the abelian model in the Chern–Simons
theories [16–18].

The Liouville systems are natural extensions of the Liouville equation and they also have applications in different
fields of physics, chemistry and ecology. Indeed, various Liouville systems are used to describe models in the theory
of chemotaxis [12,19], in the physics of charged particle beams [2,14,20] and in the theory of semi-conductors [24].
For applications of Liouville systems, see [8,13] and the references therein. Here we also note that another important
extension of the Liouville equation is the Toda system, which is closely related to the non-abelian Chern–Simons
theory [15,28].

Chanillo and Kiessling [8] first studied the type of Liouville systems described by (1.1) with constant coefficients
in R2 and they proved that under certain assumptions on A, all the entire solutions (Ω = R2) are symmetric with
respect to some point. Their result was improved by Chipot, Shafrir and Wolansky [13], who proved among other
things the following symmetry result:

Theorem A (Chipot–Shafrir–Wolansky). Let A = (aij )n×n be an

invertible, symmetric, non-negative and irreducible matrix, (1.2)

u = {u1, . . . , un} be an entire solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ui +
n∑

j=1

aij e
uj = 0, R2,

∫
R2

eui < ∞, i ∈ I ≡ {1, . . . , n}.
(1.3)

Then there exists p ∈ R2 such that all u1, . . . , un are radially symmetric and decreasing about p.

Recall that a matrix A is called non-negative if aij � 0 (i, j ∈ I ), irreducible if there is no partition of I = I1 ∪ I2
(I1 ∩ I2 = ∅) such that aij = 0, ∀i ∈ I1, ∀j ∈ I2.

It turns out that the following quadratic polynomial is important to the study of (1.3):

ΛJ (σ) = 4
∑
i∈J

σi −
∑
i,j∈J

aij σiσj , J ⊂ I ≡ {1, . . . , n}, (1.4)

where σi = 1
2π

∫
R2 eui , σ = {σ1, . . . , σn}.

It was first proved by Chanillo and Kiessling [8] that entire solutions of (1.3) must satisfy a Rellich–Pohozaev
identity:

ΛI (σ ) = 4
∑
i∈I

σi −
∑
i,j∈I

aij σiσj = 0. (1.5)

Later Chipot, Shafrir and Wolansky [13] proved the necessary and sufficient condition for the existence of entire
solutions to (1.3):

Theorem B (Chipot–Shafrir–Wolansky). Let A satisfies (1.2). Then σ = {σ1, . . . , σn} satisfies

ΛI (σ ) = 0 and ΛJ (σ) > 0, ∀∅ � J � I, (1.6)

if and only if there exists a solution {u1, . . . , un} of (1.3) such that 1 ∫
2 eui = σi , i ∈ I .
2π R
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From now on we use Π to represent the hyper-surface that satisfies (1.6). It is immediate to observe that for each
σ = {σ1, . . . , σn} on Π , there is more than one solution corresponding to σ . Indeed, let {u1, . . . , un} be such a solution,
then {v1, . . . , vn} defined by

vi(y) = ui(x0 + δy) + 2 log δ, ∀x0 ∈ R2, ∀δ > 0, i ∈ I,

clearly solves (1.3) and satisfies
∫

R2 evi = ∫
R2 eui (i ∈ I ). A natural question is: are all the solutions corresponding

to σ obtained from {u1, . . . , un} by translations and scalings? Our first result in this paper is to give an affirmative
answer to this question:

Theorem 1.1. Let A satisfies (1.2), u = (u1, . . . , un) and v = (v1, . . . , vn) be two radial solutions of (1.3) such that∫
R2 eui = ∫

R2 evi , i ∈ I , then there exists δ > 0 such that vi(y) = ui(δy) + 2 log δ, i ∈ I .

As is well known, for various equations it is important to have a classification of all the global solutions. The
classification theorems of Caffarelli, Gidas and Spruck [6], Chen and Li [11], Jost and Wang [16] and Lin [22] play a
central role in the blowup analysis for prescribing scalar curvature equations, prescribing Gauss curvature equations,
Toda systems and prescribing Q-curvature equations, respectively. The existence result of Chipot–Shafrir–Wolansky
(Theorem B) and the uniqueness result (Theorem 1.1) can be combined to serve as a classification theorem for the
study of the blowup phenomena of Liouville systems.

In [13] Chipot, Shafrir and Wolansky also studied the Dirichlet problem for the Liouville system (1.1) on bounded
domains. They considered the nonlinear functional F :

F(u) = 1

2

∑
i,j∈I

∫
Ω

aij∇ui∇uj −
∑
j∈I

ρj log

(∫
Ω

hje
uj

)
, u ∈ H 1

0 (Ω),

where aij (i, j ∈ I ) are the entries of A−1, ρi (i ∈ I ) are constants, and hi (i ∈ I ) are positive smooth functions.
Suppose the matrix A = (aij ) is positive definite, it was shown in [13] that F is bounded from below in H 1

0 (Ω) if and
only if ΛI (ρ) � 0 (ρ = (ρ1, . . . , ρn)), and a minimizer of F(u) exists if ΛI (ρ) > 0. Obviously the Euler–Lagrange
equation for the functional F is the following:⎧⎪⎪⎨

⎪⎪⎩
�ui +

n∑
j=1

aijρj

hj e
uj∫

Ω
hje

uj
= 0, Ω ⊂ R2, i ∈ I,

ui = 0 on ∂Ω,

(1.7)

so the existence problem for (1.7) is solved if ΛI (ρ) > 0.
It is also natural to consider Liouville systems on Riemann surfaces. Let (M,g) be a Riemann surface of volume

equal to 1, then the following variational form

Jρ(u) = 1

2

n∑
i,j=1

∫
M

aij∇gui∇guj +
n∑

j=1

∫
M

ρjuj −
n∑

j=1

ρj log
∫
M

hje
uj

corresponds to the system

�gui +
n∑

j=1

ρjaij

(
hj e

uj∫
M

hje
uj dVg

− 1

)
= 0, M, i ∈ I. (1.8)

(1.7) and (1.8) are generalizations of the Liouville equation defined locally or on Riemann surfaces, respectively.
For the single Liouville equation, various results on a priori estimate, degree counting formula and the existence
of solutions have been obtained by Chen and Lin [9,10]. To study (1.7) and (1.8), it is important to understand the
asymptotic behavior of blowup solutions.

In this article, we consider the following local estimate crucial to the study of (1.7) and (1.8): Let uk = {uk
1, . . . , u

k
n}

be a sequence of functions which satisfies



120 C.-S. Lin, L. Zhang / Ann. I. H. Poincaré – AN 27 (2010) 117–143
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�uk
i +

n∑
j=1

aijh
k
j e

uk
j = 0, B1 ⊂ R2, i ∈ I,

∫
B1

hk
i e

uk
i � C, i ∈ I, k = 1,2, . . . ,

(1.9)

where B is the unit ball with center 0, {hk
i }i∈I are positive C1 functions uniformly bounded away from 0:

c−1
1 � hk

i � c1, max
B1

∣∣∇hk
i

∣∣ � c1, i ∈ I, k = 1,2, . . . . (1.10)

Suppose 0 is the only blow-up point for uk and each component of uk has a finite oscillation on ∂B1:

max
Ω

uk
i � C(Ω), ∀Ω � B1 \ {0}, i ∈ I, k = 1,2, . . . , (1.11)∣∣uk

i (x) − uk
i (y)

∣∣ � c0, ∀x, y ∈ ∂B1, i ∈ I. (1.12)

Our main assumption on uk is that uk converges to a Liouville system of n equations after scaling: Let uk
1(x

k
1 ) =

maxB1 uk
i (i ∈ I ), εk = e− 1

2 uk
1(x

k
1 ) and

vk
i (y) = uk

i

(
εky + xk

1

) − uk
1

(
xk

1

)
, y ∈ Ωk, i ∈ I, (1.13)

where Ωk := {y; e− 1
2 uk

1(x
k
1 )y + xk

1 ∈ B1}. Then

vk = (
vk

1, . . . , vk
n

)
converges in C2

loc

(
R2) to v = (v1, . . . , vn), (1.14)

which is a solution of the Liouville system

�vi +
n∑

j=1

aijhj e
vj = 0, R2, hi = lim

k→∞hk
i

(
xk

1

)
, i ∈ I.

Note that v1, . . . , vn are all radial functions because by Theorem A they are all radially symmetric with respect to a
common point and 0 is the maximum of v1. Our major local uniform estimate is:

Theorem 1.2. Let A satisfies (1.2), uk = (uk
1, . . . , u

k
n) be a sequence of solutions to (1.9) such that (1.9)–(1.14) hold.

Then:

(1) there exists a sequence of radial solutions V k = (V k
1 , . . . , V k

n ) of

�V k
i +

n∑
j=1

aijh
k
j (0)e

V k
j = 0, R2,

∫
R2

eV k
i < ∞, i ∈ I,

such that along a subsequence∣∣uk
i (x) − V k

i

(
x − xk

1

)∣∣ � C(A, c0, c1, σ ), i ∈ I, x ∈ B1, (1.15)

where σ = (σ1, . . . , σn), σi = 1
2π

∫
R2 hie

vi , V k is uniquely determined by:
(a) V k

1 (0) = uk
1(x

k
1 );

(b)
∫

R2 hk
j (0)e

V k
j = ∫

B1
hk

j e
uk

j , j = 1, . . . , n − 1.
(2) There exists δ > 0 such that

∑
i,j∈I

aij

∫
B1

hk
i e

uk
i

∫
B1

hk
j e

uk
j = 8π

∑
i∈I

∫
B1

hk
i e

uk
i + O

(
e−δuk

1(x
k
1 )

)
.
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First we note that since every entire solution of the Liouville system satisfies (1.5),
∫

R2 hk
n(0)eV k

n is uniquely
determined by (b) and∑

ij

aij

∫
R2

hk
i (0)eV k

i

∫
R2

hk
j (0)e

V k
j = 8π

∑
i

∫
R2

hk
i (0)eV k

i .

Second, one is tempted to think that (1.15) is equivalent to |vk
i − vi | � C (i ∈ I ) in Ωk . In fact, the function v may not

be V k scaled according to the maximum of uk and the difference between vk and v may not be uniformly bounded
in Ωk . This is a special feature of Liouville systems which can be observed from the entire solutions of (1.3) as
follows: Every point on Π corresponds to an entire solution. Let σk = (σ k

1 , . . . , σ k
n ) be a sequence of points on Π that

tends to σ = (σ1, . . . , σn). Let {wk = (wk
1, . . . ,wk

n)} be a sequence of solutions corresponding to σk which converges
in C2

loc(R
2) to w = (w1, . . . ,wn), a solution corresponding to σ . By standard potential analysis (see [13])

wk
i (x) = −

(∑
j

aij σ
k
j

)
ln|x| + O(1), |x| > 1,

and

wi(x) = −
(∑

j

aij σj

)
ln|x| + O(1), |x| > 1, i ∈ I.

From the above we see that even though σk → σ , the difference between wk and w may not be finite at infinity.
Therefore the choice of V k in the statement of Theorem 1.2 is necessary.

For Liouville equations without singular data, the type of estimate in Theorem 1.2 was first derived by Li [21].
Later Bartolucci, Chen, Lin and Tarantello [3] and Jost, Lin and Wang [18] established the same type of estimates
for Liouville equations with singular data and Toda systems, respectively. The results of Li[21] and Bartolucci, Chen,
Lin, Tarantello [3] have been improved by Chen and Lin [9] and Zhang [29,30] to a sharper form.

The estimates in Theorem 1.2 would be very important when a sequence of solutions {uk} of (1.8) has more than
one blowup point. Suppose uk = (uk

1, . . . , u
k
n) is a sequence of solutions of (1.8) with ρi > 0 (i ∈ I ). Assume that

p1,p2 are two blowup points, and the assumptions of Theorem 1.2 hold in neighborhoods around p1 and p2. By
Theorem 1.2 there exist two entire solutions obtained from the scaling of uk at p1 and p2. The question is whether
these two entire solutions are equal. Indeed, the answer is yes when A is positive definite, which is a consequence
of Theorems 1.1 and 1.2 (see Section 5 for a proof of this fact). The conclusion here is crucial to proving a priori
estimates for (1.7) and (1.8). In a forthcoming paper [23] we shall discuss the a priori estimates, degree counting
formulas and existence results for (1.7) and (1.8).

Our next result concerns the location of blowup points for a sequence of blowup solutions. Let {uk} be a sequence
of solutions of (1.9) that satisfies the assumptions in Theorem 1.2. Let {ψk

i }i∈I be the harmonic functions defined by
the oscillations of uk

i on ∂B1:⎧⎪⎪⎨
⎪⎪⎩

�ψk
i = 0, B1,

ψk
i = uk

i − 1

2π

∫
∂B1

uk
i dS, on ∂B1.

By the mean value property of harmonic functions we have ψk
i (0) = 0. Also, since {uk

i }i∈I have bounded oscillation
on ∂B1, all the derivatives of {ψk

i }i∈I on B1/2 are uniformly bounded.

Theorem 1.3. Let hi , ψi (i ∈ I ) be limits of hk
i and ψk

i , respectively, then under the same assumptions in Theorem 1.2

∑
i∈I

(∇hi(0)

hi(0)
+ ∇ψi(0)

)
σi = 0.

Theorem 1.3 can be used to determine the locations of blowup points for (1.8) in the following typical situation.
Let {uk} be a sequence of blowup solutions to (1.8) with ρi > 0 (i ∈ I ), A satisfies (1.2). In addition we assume
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A to be positive definite for simplicity. We can certainly assume
∫
M

hk
i e

uk
i dVg = 1 (i ∈ I ) because for any solution

u = {u1, . . . , un} to (1.8), adding a constant vector {C1, . . . ,Cn} to u gives another solution. Suppose p1, . . . , pm are
disjoint blowup points of uk such that around each pt (t = 1, . . . ,m), uk converges in C2

loc(R
2) to a Liouville system

of n equations after scaling. Let G be the Green’s function with respect to −�g on M :

−�gG(x,p) = δp − 1,

∫
M

G(x,p)dVg(x) = 0.

Corresponding to G we define

G∗(x,p) = G(x,p) + 1

2π
χ(r) log r

where r = dg(x,p), χ is a cut-off function supported in a small neighborhood of p. Using G∗, the blowup points
p1, . . . , pm are related by the following equation:

∑
i∈I

(
∇ghi(ps)

hi(ps)
+ 1

m

(∑
j∈I

ρj aij

) m∑
t=1

∇1G
∗(ps,pt )

)
= 0, s = 1, . . . ,m, (1.16)

where ∇1G
∗ means the covariant differentiation with respect to the first component.

Even though the results in this paper (Theorems 1.1–1.3) have their counterparts for the Liouville equation, there
are some essential differences between the Liouville equation and the Liouville system that make the analysis for
the latter harder. First, the uniqueness theorem (Theorem 1.1) for the system is generally harder to prove than one
single equation, because of the lack of the Sturm–Liouville comparison theory for the linearized system. New ideas
are needed to handle this difficulty. In this article, we mainly use the method of continuation to prove Theorem 1.1.
Second, for the Liouville equation on R2

�u + eu = 0, R2,

∫
R2

eu < ∞.

All the solutions satisfy
∫

R2 eu = 8π . However, for the Liouville system (1.3), let σ = (σ1, . . . , σn) be the integration
of the entire solutions, which is on Π (see (1.6)). From Theorem B we see that under some conditions we have a
continuum of solutions, as every point on Π corresponds to a family of solutions. This difference on the structure of
entire solutions exists not only between the Liouville equation and the Liouville system, but also between the Liouville
system and Toda systems [18]. Finally, for the Liouville equation, the Pohozaev identity is a very useful tool, which
gives a balancing condition between the interior integration and the boundary integration. However, for the Liouville
system, the information from the Pohozaev identity is limited, as we have more than one equation. In this article, we
use the uniqueness theorem (Theorem 1.1) to remedy what the Pohozaev identity cannot provide.

The organization of the paper is as follows: In Section 2 we prove Theorem 1.1 for two equations. We feel that the
case of two equations is more explicit and represents most of the difficulties of the system. Then in Section 3 we prove
the general case of Theorem 1.1 by mainly stating the difference with the proof in Section 2. In Section 4 we prove
Theorem 1.2 and in Section 5 we prove Theorem 1.3 as well as (1.16). Finally in Appendix A we list a few Pohozaev
identities to be used in different contexts.

2. Proof of Theorem 1.1 for two equations

In this section we prove Theorem 1.1 for two equations. So the system is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�u1 + a11e
u1 + a12e

u2 = 0,

�u2 + a12e
u1 + a22e

u2 = 0, R2,∫
R2

eu1 < ∞,

∫
R2

eu2 < ∞,
(2.1)
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where the assumption on A now becomes aii � 0, i = 1,2, a12 > 0 and a2
12 = a11a22. Let

σi = 1

2π

∫
R2

eui and mi =
∑
j

aij σj , i ∈ I = {1,2}.

By standard potential analysis (see, for example [13]) we have

mi > 2, i ∈ I = {1,2}, (2.2)

and

ui(x) = −mi ln|x| + O(1), |x| > 1, i ∈ I. (2.3)

Let u = {u1, u2} be a radial solution of (2.1) and we consider the linearized equation of (2.1) at u:(
rφ′

i (r)
)′ +

∑
j

aij e
uj φj (r)r = 0, 0 < r < ∞, i ∈ I. (2.4)

Lemma 2.1. Let φ = (φ1, φ2) be a solution of (2.4), then φi(r) = O(ln r) at infinity for i ∈ I .

Proof. Let ψ(t) = (ψ1(t),ψ2(t)) be defined as

ψi(t) = φi

(
et

)
, i ∈ I.

Then ψ satisfies

ψ ′′
i (t) +

∑
j

aij e
uj (et )+2tψj (t) = 0, −∞ < t < ∞, i ∈ I.

Let ψ3 = ψ ′
1, ψ4 = ψ ′

2 and F = (ψ1, . . . ,ψ4)
T , then F satisfies

F′ = MF

where M = ( 0 I
B 0

)
. B is a 2 × 2 matrix with Bij = −aij e

uj (et )+2t . For t > 1, the solution for F is

F(t) = lim
N→∞ eεM(tN ) . . . eεM(t0)F(0), (2.5)

where t0, . . . , tN satisfy tj = j ∗ ε, j = 0, . . . ,N , ε = t/N . Since ui(e
t )+2t ∼ (−mi +2)t when t is large and mi > 2

(see (2.2)), we have ‖B‖ ∼ e−δt for some δ > 0 and t large. With this property we further have

‖M‖k � Ce−kδ1t , k = 2,3, . . . , t > 0, (2.6)

for some δ1 > 0. Using (2.6) in (2.5) we have∥∥F(t)
∥∥ = O(t), t > 1.

Lemma 2.1 is established. �
Lemma 2.2. Let φ = {φ1, φ2} be a bounded solution of (2.4), then φ = C(ru′

1 + 2, ru′
2 + 2) for some constant C.

Proof. Let

φ0 = (
ru′

1 + 2, ru′
2 + 2

)
,

it is easy to verify that φ0 solves (2.4) and φ0 is bounded. We prove Lemma 2.2 by contradiction. Suppose φ̄ = (φ̄1, φ̄2)

is another bounded solution of (2.4) and is not a multiple of φ0, then φ0 and φ̄ form a basis for all the solutions of (2.4).
Since φ̄1(0) and φ̄2(0) cannot both be 2, without loss of generality we assume φ̄1(0) = 0 and φ̄2(0) = 1. We use E to
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denote the set of all solutions. Since every solution is a linear combination of φ0 and φ̄, all the solutions are bounded.
Let

S =
{

α

∣∣∣� (φ1, φ2) ∈ E, φ1(0) = 2, φ2(0) = α � 2, such that

r∫
0

eui φi(s)s ds > 0 for all r > 0, i ∈ I

}
.

We note that if φ2(0) = 2, then φ(r) = (ru′
1(r) + 2, ru′

2(r) + 2). It is easy to see that 2 ∈ S because

r∫
0

eui
(
su′

i + 2
)
s ds = r2eui(r) > 0, i ∈ I.

Next we see that S is a bounded set. Because if α < 0, let φ = {φ1, φ2} be the bounded solution such that φ1(0) = 2,
φ2(0) = α. Then

∫ r

0 eu2(s)φ2(s)s ds < 0 for r small enough. So α /∈ S.
Set α0 = infS α. Then we claim that α0 ∈ S. In fact, let {αk ∈ S} tend to α0 from above as k → ∞, let φk = {φk

1 , φk
2}

correspond to αk . Since αk ∈ S,
∫ r

0 seui φk
i (s) ds > 0, for all r . Moreover, it is easy to see that φk converge to a

solution φ = (φ1, φ2) in E because φk’s are linear combinations of φ0 and φ̄. It is also immediate to observe from the
convergence that

r∫
0

eui φi(s)s ds � 0, for all r > 0, i ∈ I.

Thus,

rφ′
i (r) = −

∑
j

aij

r∫
0

euj φj (s)s ds � 0, i ∈ I.

So both φ1 and φ2 are non-increasing functions. Since they are bounded functions, for each i ∈ I there exist rl → ∞
such that rlφ

′
i (rl) → 0, which leads to

∑
j

aij

∞∫
0

euj φj (s)s ds = 0, i ∈ I.

Then we obtain the following from the invertibility of A:
∞∫

0

eui φi(s)s ds = 0, i ∈ I. (2.7)

Since φ1 and φ2 are non-increasing functions, (2.7) implies that

lim
r→∞φi(r) < 0, i ∈ I.

Indeed, for example for φ1,
∫ ∞

0 eu1φ1(s)s ds = 0 and the monotonicity or φ1 imply either limr→∞ φ1(r) < 0 or
φ1 ≡ 0. Then we see immediately that the latter case does not occur, as φ1(0) = 2. Similarly for φ2, the case that
φ2 ≡ 0 also does not happen because φ1 ≡ 0. Another immediate observation is φ2(0) > 0.

For the above, we have
r∫

0

eui φis ds > 0 if φi(r) � 0, and

r∫
0

eui φis ds >

∞∫
0

eui φis ds = 0, if φi(r) < 0.

Thus α0 ∈ S.
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Now we claim that for ε > 0 small enough, α0 −ε ∈ S. Indeed, consider φ −εφ̄, obviously this is a solution to (2.4)
and satisfies φ1(0) − εφ̄1(0) = 2, ψ(0) − εψ̄(0) = α0 − ε. Since {φ1 − εφ̄1, φ2 − εφ̄2} is a bounded solution of (2.4)
we have

∞∫
0

eui (φi − εφ̄i)s ds = 0, i ∈ I.

For r large and ε small, since φ1(r) and φ2(r) are smaller than a negative number for r large, it is easy to choose ε

small enough so that

∞∫
r

eui (φi − εφ̄i)s ds < 0, i ∈ I,

for all large r large. Consequently

r∫
0

eui (φi − εφ̄i)s ds > 0, i ∈ I, (2.8)

for all large r . Then by possibly choosing ε > 0 smaller, we can make (2.8) hold for all r > 0. α0 − ε ∈ S is proved.
This is a contradiction to the definition of α0. Lemma 2.2 is established. �

Now we are in the position to complete the proof of Theorem 1.1 for two equations. We consider the following
initial-value problem:⎧⎪⎨

⎪⎩
u′′

i + u′
i

r
+

∑
j

aij e
uj = 0, i = 1,2,

u1(0) = α, u2(0) = 0.

(2.9)

Case 1. aii > 0, i = 1,2.

Since aii > 0, by Lemma 3.2 in Section 3, the solution pair ui(r) exists for all r > 0 and i = 1,2, and satisfies

∞∫
0

eui(r)r dr < +∞, i = 1,2.

Set

σi(α) =
∞∫

0

eui(r)r dr, i = 1,2.

Thus σ(α) = (σ1, σ2) is a function of α and lies in Π (defined by (1.6)), which is a curve: ΛI (σ ) = 0 (σ1, σ2 > 0).
We want to prove that

σ : R → Π

is a 1–1 and onto map. Since both R and Π are connected, it suffices to prove σ is an open mapping. In the following,
we want to show the claim

∂σ1

∂α
= 0 and

∂σ2

∂α
= 0 for all α ∈ R2. (2.10)

Then the openness of σ follows immediately.
We prove this claim by contradiction. Suppose there exists α such that, say, ∂ασ1 = 0. This implies immediately

that
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∞∫
0

reu1φ1 = 0, (2.11)

where φ1 = ∂αu1. Correspondingly we set φ2 = ∂αu2. Then {φ1, φ2} satisfies the linearized system (2.4). By
Lemma 2.1 φi(r) = O(ln r) at infinity. The Pohozaev identity for (2.4) is (see Appendix A for the proof)

∑
i

(
r2φi(r)e

ui − 2

r∫
0

seui φi(s) ds

)
= −

∑
ij

aij
(
rφ′

i (r)
)(

ru′
j (r)

)
. (2.12)

The first term on the left-hand side of (2.11) tends to 0 as r → ∞. To deal with the terms on the right-hand side, first
we use the equation for φi to get

−rφ′
i (r) =

∑
l

ail

r∫
0

seulφl(s) ds.

The equation for ui gives limr→∞ ru′
i (r) = −mi . Putting the above information together we obtain the following

from (2.12):

∑
i

(mi − 2)

∞∫
0

seui φi(s) ds = 0.

By (2.11), we have

∞∫
0

eui φir dr = 0, i = 1,2.

Using (2.12) for the equation for φi we have

−rφ′
i (r) =

r∫
0

∑
j

aij e
uj φj s ds = −

∞∫
r

∑
j

aij e
uj φj s ds = O

(
r−δ

)

for some δ > 0. Therefore φi (i ∈ I ) is bounded at infinity. By Lemma 2.2, there is a constant c such that φ1 =
c(ru1

′ + 2), φ2 = c(ru2
′ + 2). But one sees immediately that this is impossible because φ1(0) = 0, φ2(0) = 1. The

claim is proved.
Theorem 1.1 for this case is implied by the claim. In fact, suppose {ū1, ū2} is another pair of radial solutions

of the Liouville system so that
∫

R2 eūi = ∫
R2 eui (i = 1,2). By scaling, we may assume u2(0) = ū2(0) = 0. Since

the mapping σ : Rn−1 → Π is one-to-one and onto, we have u1(0) = ū1(0). Consequently ui ≡ ūi (i ∈ I ), hence
Theorem 1.1 is proved for the case aii > 0, i = 1,2.

Case 2. There exists i such that aii = 0.

Set

Π1 = {
α

∣∣ euj ∈ L1(R2), j = 1,2, u = (u1, u2) is a solution of (2.9)
}
.

Similar to the previous step, the map Π1 → Π is an open mapping. Since a11 = 0 or a22 = 0, Π is non-compact and
connected. Thus σ is 1–1 and onto from each component of Π1 onto Π .

Now suppose Π1 has two component, say Π1
1 and Π2

1 . Choose any σ of Π . Then there exist α1 ∈ Π1
1 , and α2 ∈ Π2

1
such that u1 = (u1

1, u2
1) and u2 = (u1

2, u2
2) are the corresponding solutions of (2.9) and satisfy

∞∫
e
u1

j r dr =
∞∫

e
u2

j r dr = σj , j = 1,2.
0 0
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Clearly, ∃R0 such that for r � R0 and some δ > 0,(
uk

j

)′
(r)r � −(2 + 2δ), j = 1,2, k = 1,2.

Now consider the perturbation of (2.9):⎧⎪⎪⎨
⎪⎪⎩

�ui +
2∑

j=1

(aij + εδij )e
uj = 0, R2, i = 1,2,

u1(0) = α, u2(0) = 0.

(2.13)

Here we require ε ∈ (0, δ0) where δ0 is so small that the matrix (aij + εδij )n×n is non-singular for all ε ∈ (0, δ0). Let
uk,ε = (u

k,ε
1 , u

k,ε
2 ) be the solution of (2.13) with respect to the initial condition (αk,0) (k = 1,2). For δ0 small we

have (
u

k,ε
j (r)

)′
r � −(2 + δ) at r = R0, 0 � ε � δ0.

Then by the super-harmonicity of u
k,ε
j it is easy to show(

u
k,ε
j (r)

)′
r � −(2 + δ) for r � R0.

Thus, ∃C > 0 and R1 � R0 such that

e
u

k,ε
j (r) � Cr−(2+δ) for r � R1. (2.14)

Hence for k = 1,2,

σj
ε(αk) =

∞∫
0

e
u

k,ε
j (r)

r dr =
∞∫

0

e
uk

j (r)
r dr + o(1) = σj + o(1), j = 1,2,

where o(1) → 0 as ε → 0.
Next we claim that

∂σ ε
j

∂α
(αk) = ∂σj

∂α
(αk) + o(1). (2.15)

Indeed,

∂σ ε
j

∂α
(αk) =

∞∫
0

re
u

k,ε
j (r)

∂u
k,ε
j

∂α
(r) dr, j = 1,2, k = 1,2. (2.16)

(
∂u

k,ε
1

∂α
,

∂u
k,ε
2

∂α
) satisfies the following linearized equation:

−�

(
∂u

k,ε
i

∂α

)
=

2∑
j=1

(aij + εδij )e
u

k,ε
j

∂u
k,ε
j

∂α
, i = 1,2.

Using the argument of Lemma 2.1 we have∣∣∣∣∂u
k,ε
i

∂α
(r)

∣∣∣∣ � C ln r, r � 2, i = 1,2, (2.17)

where the constant C is independent of ε ∈ (0, δ0). Moreover, for any fixed R > 0,
∂u

1,ε
i

∂α
(r) converges uniformly to

∂u1
i

∂α
(r) over 0 < r < R with respect to ε. Using the decay estimates (2.14) and (2.17) in (2.16) we obtain (2.15) by

elementary analysis.

Since limε→0
∂σj

ε

∂α
(α1) = ∂σj

∂α
(α1) = 0, there exists α1(ε) = α1 + o(1) such that

σ1
ε
(
α1(ε)

) = σ1
ε(α2). (2.18)
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Both (σ ε
1 (α1(ε)), σ

ε
2 (α1(ε))) and (σ ε

1 (α2), σ
ε
2 (α2)) satisfy ΛI

ε(σ ε) = 0, which reads

2∑
i,j=1

(aij + εδij )σ
ε
i σ ε

j = 4
2∑

i=1

σ ε
i .

Using (2.18) in the above we have

σ2
ε
(
α1(ε)

) = σ2
ε(α2).

Since α1(ε) = α2, it yields a contradiction to the uniqueness property that the system (2.13) satisfies. Hence the
proof of Theorem 1.1 for two equations is complete. �
3. Proof of Theorem 1.1 for the general case

The proof for the general case of Theorem 1.1 is similar to the case of two equations. We mainly focus on the
difference in this section.

First we point out that Lemma 2.1 still holds for the general case with the same proof. The first major result in this
section is the following:

Lemma 3.1. Let φ = (φ1, . . . , φn) be a bounded solution of

(
rφ′

i (r)
)′ +

n∑
j=1

aij e
uj rφj (r) = 0, 0 < r < ∞, i ∈ I = {1, . . . , n}, (3.1)

then φi(r) = ru′
i (r) + 2, i ∈ I = {1, . . . , n}.

Proof. Let φ0 = (ru′
1(r) + 2, . . . , ru′

n(r) + 2), then by direct computation one sees that φ0 is a solution of (3.1).
Suppose there is another bounded solution φ1 = (φ1

1 , . . . , φ1
n) different from φ0, without loss of generality we assume

φ1(0) = 0, as one of φ1
i (0) must be different from 2. To derive a contradiction we define

S =
{

α; � a bounded solution φ such that φ1(0) = 2, φi(0) = αi � 3, i = 2, . . . , n; α = min{α2, . . . , αn}
r∫

0

eui(s)φi(s)s ds > 0, ∀r > 0, i ∈ I

}
.

By direct computation 2 ∈ S, which corresponds to the solution φ0. Since φ0
i (i ∈ I ) is strictly decreasing, we can

choose t small enough to make all components of φ0 + tφ1 strictly decreasing. By choosing t or −t we can make
2 − ε ∈ S for some ε > 0 sufficiently small. Let ᾱ be the infimum of S and let αk = {αk

1, . . . , αk
n} ∈ S be a sequence

in S that tends to ᾱ from above. Suppose φk = {φk
1 , . . . , φk

n} is the solution corresponding to αk , then we claim that
{φk} converges to φ̄ = {φ̄1, . . . , φ̄n}, which is also a bounded solution with strict monotone properties described in S.
Indeed, let ψm = (ψm

1 , . . . ,ψm
n ) be the solution to (3.1) such that ψm

j (0) = δm
j . By Lemma 2.1 ψm

i (r) = O(ln r) at

infinity. φk can be written as

φk =
n∑

m=1

αk
mψm. (3.2)

Since ᾱ � αk
i � 3 (i ∈ I ) for all k, along a subsequence, αk converges to {ᾱ1, . . . , ᾱn}. As a consequence, φk converges

to φ̄ = ∑n
m=1 ᾱmψm uniformly over any compact subsets of R2. The monotone property of φk implies that

r∫
eui φ̄i (s)s ds � 0, i ∈ I, ∀r > 0.
0
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On the other hand, since φk are all bounded functions, for each φk
i we find rl → ∞ such that rl(φ

k
i )′(rl) → 0. This

leads to
∞∫

0

∑
j

aij e
uj (s)φk

i (s)s ds = 0, i ∈ I.

Since A is invertible we have

0 =
∞∫

0

eui φk
i (s)s ds =

n∑
m=1

αk
m

∞∫
0

eui(s)ψm
i (s)s ds, i ∈ I. (3.3)

Since
∫ ∞

0 eui ψm
i (s)s ds is well defined, we let αk → (ᾱ1, . . . , ᾱn) to get

∞∫
0

eui(s)φ̄i (s)s = 0, i ∈ I. (3.4)

Using the argument for the case of two equations as well as the assumption that A is irreducible we know each φ̄i

decreases into a negative constant at infinity and φ̄i (0) > 0. As a consequence,
∫ r

0 eui(s)φ̄i(s)s ds > 0 for each r > 0
and ᾱ > 0. Thus ᾱ ∈ S. Then as in the case for two equations, {φ̄ + tφ1} for t small enough also satisfies the strict
monotone property described in the definition of S. Therefore ᾱ−ε ∈ S for ε > 0 small enough. This is a contradiction
to the definition of ᾱ. Lemma 3.1 is established. �

Now we complete the proof of Theorem 1.1 for n equations. Let u = (u1, . . . , un) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
i (r) + u′

i (r)

r
+

∑
j

aij e
uj = 0, 0 < r < ∞, i ∈ I,

∞∫
0

reui(r) dr < ∞,

u1(0) = β1, . . . , un−1(0) = βn−1, un(0) = 0.

(3.5)

The following lemma is useful for the case aii > 0.

Lemma 3.2. Let aii > 0 (i ∈ I ), then for all β = (β1, . . . , βn−1) ∈ Rn−1, there exists a solution u = (u1, . . . , un)

to (3.5).

Proof. By standard ODE existence theory we see that for β = (β1, . . . , βn−1) ∈ Rn−1, there exists a radial solution
u = (u1, . . . , un) in the neighborhood of 0. Then by writing the system as a first order ODE system we see the right-
hand side always satisfies the Lipschitz property, therefore by Picard’s theorem the solution exists for all r > 0. We
are left to show that

∫ ∞
0 eui(s)s ds < ∞. Let vi(t) = ui(e

t ) + 2t (i ∈ I ), then v = (v1, . . . , vn) satisfies

v′′
i (t) +

∑
j

aij e
vj (t) = 0, −∞ < t < ∞, i ∈ I.

From the equation for ui we have

ru′
i (r) = −

r∫
0

∑
j

aij e
uj (s)s ds < 0, r > 0, i ∈ I.

Consequently v′
i (t) < 2 for t ∈ R. Fix t0 ∈ R we have, for t > t0,

v′
i (t) = v′

i (t0) −
t∫

t0

∑
j

aij e
vj (s) ds, i ∈ I.
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Since aii > 0 and aij � 0, it is easy to see that there exists t > t0 such that v′
i (t) < 0. Choose t1 such that v′

i (t1) =
−δ < 0 for some δ > 0, then we see from the equation for vi that

vi(t) � vi(t1) − δ(t − t1), t > t1,

which is equivalent to ui(r) < (−2 − δ) ln r + C for r > et1 . Therefore
∫ ∞

0 eui(s)s ds < ∞. Lemma 3.2 is estab-
lished. �

Recall that σi = 1
2π

∫
R2 eui = ∫ ∞

0 eui(s)s ds. σ = (σ1, . . . , σn) ∈ Π . Let

Π1 := {
β = (β1, . . . , βn−1); (3.5) has a solution

}
.

Note that by Lemma 3.2, Π1 = Rn−1 if aii > 0 for all i ∈ I . The mapping from Π1 to Π is surjective. Here we claim
that it is locally one-to-one. Indeed, let M be the following matrix:

M =
⎛
⎜⎝

∂β1σ1 . . . ∂βn−1σ1
...

. . .
...

∂β1σn−1 . . . ∂βn−1σn−1

⎞
⎟⎠ .

We claim that M is non-singular for β ∈ Π1 and σ ∈ Π . We prove this claim by contradiction. Suppose there exists
a non-zero vector C = (c1, . . . , cn−1)

T such that MC = 0. Then by setting β = c1β1 + · · · + cn−1βn−1 we have

∂βσ1 = ∂βσ2 = · · · = ∂βσn−1 = 0. (3.6)

On the other hand, Π is defined by ΛI = 0, which reads∑
i,j∈I

aij σiσj = 4
∑
i∈I

σi .

By differentiating both sides with respect to β we have

∑
i

(∑
j

aij σj − 2

)
∂βσi = 0.

Since
∑

j aij σj > 2, (3.6) implies ∂βσn = 0. Set φi = ∂βui (i ∈ I ), then φ = (φ1, . . . , φn) satisfies the linearized
equation (3.1) and φn(0) = 0. From ∂βσi = 0 (i ∈ I ) we have

∞∫
0

eui φi(s)s ds = 0, i ∈ I,

which implies from (3.1) that φ is bounded at infinity. By Lemma 3.1 φi = ru′
i + 2, then we see immediately that this

is not possible as φn(0) = 0. Therefore we have proved that M is non-singular for all β = (β1, . . . , βn−1) ∈ Π1.
We further assert that there is one-to-one correspondence between Π1 and Π . This is proved in two steps as follows.

Case 1. aii > 0, i ∈ I .

In this case, Π1 = Rn−1. The mapping from Π1 to Π is proper and locally one-to-one. Since both Rn−1 and Π

are simply connected, there is a one-to-one correspondence between them. Let u = (u1, . . . , un) and v = (v1, . . . , vn)

be two radial solutions such that un(0) = vn(0) = 0,
∫

R2 eui = ∫
R2 evi (i ∈ I ). Then ui(0) = vi(0) (i = 1, . . . , n − 1).

Consequently ui ≡ vi (i ∈ I ). Theorem 1.1 is proved for this case.

Case 2. There exists i0 ∈ I such that ai0,i0 = 0.

We prove this case by a contradiction. Suppose βk = (βk
1 , . . . , βk

n−1) ∈ Π1 for k = 1,2 and β1 = β2, let uk be the

solution corresponding to βk such that
∫

2 eu1
i = ∫

2 eu2
i = σi (i ∈ I ).
R R
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Just like the case for two equations, we consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
i (r) + u′

i (r)

r
+

∑
j

(aij + εδij )e
uj = 0, 0 < r < ∞, i ∈ I,

∞∫
0

eui(r)r dr < ∞, i ∈ I,

u1(0) = β1, . . . , un−1(0) = βn−1, un(0) = 0.

(3.7)

Let uk,ε be the solution to (3.7) that corresponds to the initial condition βk (k = 1,2). Let σk,ε = (σ
k,ε
1 , . . . , σ

k,ε
n )

be defined as σ
k,ε
i = ∫ ∞

0 reu
k,ε
i (r) dr (i = 1, . . . , n). By the same argument as in the case of two equations, we have

σk,ε = (σ1, . . . , σn) + o(1) (k = 1,2) and

∂σ
k,ε
i

∂βj

= ∂σi

∂βj

+ o(1), i = 1, . . . , n, j = 1, . . . , n − 1, k = 1,2.

Consequently the matrix

⎛
⎜⎝

∂β1σ
k,ε
1 . . . ∂βn−1σ

k,ε
1

...
. . .

...

∂β1σ
k,ε
n−1 . . . ∂βn−1σ

k,ε
n−1

⎞
⎟⎠

is non-singular at β1 or β2 for ε small. On the other hand, σ 1,ε and σ 2,ε both satisfy⎧⎪⎨
⎪⎩

Λε
I

(
σk,ε

) = 4
∑
∈I

σ
k,ε
i −

∑
i,j∈I

(aij + εδij )σ
k,ε
i σ

k,ε
j = 0,

Λε
J > 0, 0 � J � I.

(3.8)

We use Πε to represent the hyper-surface described as above. For σ 2,ε = (σ
2,ε
1 , . . . , σ

2,ε
n ) ∈ Πε , we can find β1,ε =

(β
1,ε
1 , . . . , β

1,ε
n−1) such that

β
1,ε
j = β1

j + o(1), j = 1,2, . . . , n − 1,

and a solution ū1,ε of (3.7) with the initial condition (β
1,ε
1 , . . . , β

1,ε
n−1,0) such that

∞∫
0

re
ū

1,ε
j dr = σ

2,ε
j , j = 1,2, . . . , n − 1.

After using Λε
I = 0 in (3.8) we have

∞∫
0

reū
1,ε
n dr = σ 2,ε

n .

Then the difference between β1 and β2 implies β1,ε = β2 for ε small. A contradiction to the uniqueness property
satisfied by the system (3.7). Theorem 1.1 is proved for all the cases. �
4. Proof of Theorem 1.2

First we state a Brezis–Merle type lemma:



132 C.-S. Lin, L. Zhang / Ann. I. H. Poincaré – AN 27 (2010) 117–143
Lemma 4.1. Let Ω be an open, smooth, bounded subset of R2. If∑
j

∫
Ω

aijh
k
j e

uk
j � 4π − δ, i ∈ I = {1, . . . , n},

for some δ > 0, then for any Ω1 � Ω , there exists C(δ,Ω,Ω1) > 0 such that

uk
i (x) � C, x ∈ Ω1 � Ω, i ∈ I.

Proof. Let f k
i (i ∈ I ) be defined as⎧⎪⎨

⎪⎩
−�f k

i (x) =
∑
j

aijh
k
j e

uk
j , Ω,

f k
i (x) = 0, on ∂Ω.

Then by Theorem 1 of [5], we have∫
Ω

e(1+δ1)f
k
i dx � C,

where δ1 > 0 depends on δ. For any Ω ′ � Ω , let x ∈ Ω ′, suppose B(x, δ2) ⊂ Ω , we have, by the mean value property

uk
i (x) − f k

i (x) = 1

|B(x, δ2)|
∫

B(x,δ2)

(
uk

i (y) − f k
i (y)

)
dy

� C

∫
B(x,δ2)

(
uk

i (y) − f k
i (y)

)+
dy

� C

∫
Ω

(
euk

i + ef k
i
)
� C, i ∈ I.

So by writing uk
i as uk

i − f k
i + f k

i we see that euk
i ∈ L1+δ1(Ω ′), i ∈ I . Let f̄ k

i be defined as⎧⎪⎨
⎪⎩

−�f̄ k
i (x) =

∑
j∈I

aij h
k
j e

uk
j (x)

, Ω ′,

f̄ k
i (x) = 0, on ∂Ω ′, i ∈ I.

Then standard elliptic estimate gives |f̄ k
i | � C in Ω ′ (i ∈ I ). Let Ω ′′ � Ω ′, then for x ∈ Ω ′′, as before we have

uk
i (x) = uk

i (x) − f̄ k
i (x) + f̄ k

i (x) � C

∫
Ω ′

(
euk

i + ef̄ k
i
) + C � C.

Lemma 4.1 is established. �
Recall that σi = 1

2π

∫
R2 hie

vi (i ∈ I ) where hi = limk→∞ hk
i (0). Since v = (v1, . . . , vn) satisfies the Liouville

system in R2, we have∑
j∈I

aij σj > 2, i ∈ I. (4.1)

Let σ̄i = limr→0 limk→∞ 1
2π

∫
Br

hk
i e

uk
i , then the assumption in Theorem 1.2 implies

σ̄i � σi, i ∈ I. (4.2)

So (4.1) also holds for {σ̄i}i∈I .
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Lemma 4.2.∑
i,j∈I

aij σ̄i σ̄j = 4
∑
i∈I

σ̄i . (4.3)

Proof. In the first step we prove that in a small neighborhood of 0, say, B(0, r0), uk
i |∂BR

→ −∞ for i ∈ I and any
fixed 0 < R < r0.

Indeed, since (4.1) holds for σ̄ = (σ̄1, . . . , σ̄n), we have
∑

j∈I aij σ̄j > 2 + 3ε0 (i ∈ I ) for some ε0 > 0. By the

definition of σ̄i , we find r0 small and rk → 0 such that
∫
Br0\Brk

euk
i � ε0 (i ∈ I ). Let

ṽk
i (y) = uk

i (rky) + 2 ln rk, |y| � r−1
k r0, i ∈ I.

Then the equation for ṽk
i is

−�ṽk
i =

∑
j∈I

aij h
k
j (rk·)eṽk

j , |y| � r−1
k r0.

Let

v̄k
i (r) = 1

2πr

∫
∂Br

ṽk
i , 1 � r � r−1

k r0, i ∈ I.

Then (
v̄k
i

)′
(r) = 1

2πr

∫
Br

�ṽk
i = − 1

2πr

∫
Br

∑
j

aijh
k
j (rk·)eṽk

j dy.

For r > 1,∫
Br

∑
j

aijh
k
j (rk·)eṽj > 4π + 2ε0, i ∈ I.

So by the definition of ṽk
i ,

(
v̄k
i

)′
(r) �

(
−2 − ε0

π

)
r−1, r > 1, i ∈ I.

Consequently

v̄k
i

(
r−1
k r0

)
� −

(
2 + ε0

π

)
ln r−1

k + C → −∞, i ∈ I.

For any fixed R ∈ (0, r0), uk
i has bounded oscillation on any ∂BR , then we know uk

i → −∞ uniformly on ∂BR . As
an immediate consequence, uk converges to −∞ on all compact subsets of B1 \ {0} because uk is bounded above in
B1 \ BR and uk has bounded oscillation on ∂B1.

The second step is to use the first step to evaluate all the terms in the Pohozaev identity. Let G(x,y) be the Green’s
function with the Dirichlet condition. By the Green’s representation formula we have:

uk
i (x) =

∫
B1

G(x,y)
∑
j

aij h
k
j e

uk
j −

∫
∂B1

∂G(x, y)

∂ν
uk

i (y) dSy, i ∈ I.

The Pohozaev identity for the system (1.9) defined on Ω is of the following form (see Appendix A for the proof):∑
i∈I

(∫
Ω

(
x · ∇hk

i

)
euk

i + 2hk
i e

uk
i

)

=
∫ (∑

i

(x · ν)hk
i e

uk
i +

∑
i,j

aij ∂νu
k
j

(
x · ∇uk

i

) − 1

2
aij (x · ν)

(∇uk
i · ∇uk

j

))
.

∂Ω
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Let Ω = BR (R ∈ (0,1)) in the Pohozaev identity, using the fact that uk
i → −∞ in C2

loc(B1 \ {0}) we observe that∫
∂BR

∑
i

(x · ν)hk
i e

uk
i → 0 and

∫
BR

(
x · ∇hk

i

)
euk

i → 0, i ∈ I.

Also we have

1

2π

∫
BR

∑
i

2hk
i e

uk
i → 2

∑
i

σ̄i .

For |x| = R,

∇uk
i (x) =

∫
B1

∇xG(x, y)
∑
j

aij h
k
j e

uk
j −

∫
∂B1

∇x

(
∂G(x, y)

∂ν

)
uk

i (y), i ∈ I.

The second term of the above is the gradient of a harmonic function that has bounded oscillation on ∂B1. Let
k → ∞,

∂ru
k
i (x) →

∑
j aij σ̄j

R
+ O(1), ∂θu

k
i (x) → O(1), i ∈ I, |x| = R. (4.4)

Using (4.4) in the Pohozaev identity, we have∑
ij

aij σ̄i σ̄j = 4
∑

i

σ̄i + O(R).

Lemma 4.2 is established by letting R → 0. �
Now we claim

σ̄i = σi, i ∈ I. (4.5)

To see this, let si = σ̄i − σi . We know from (4.2) that si � 0 (i ∈ I ). Since for {σi}i∈I we also have∑
ij

aij σiσj = 4
∑

i

σi

we obtain the following equation for si from Lemma 4.2 and the above:∑
j

(∑
i

aij σ̄i

)
sj +

∑
i

(∑
j

aij σj

)
si = 4

∑
i

si .

Since both
∑

i aij σ̄i and
∑

j aij σj are greater than 2, it is easy to see from the above that si = 0 (i ∈ I ). (4.5) is
proved.

Let εk = e− uk
1(xk

1 )

2 , h̄k
i (y) = hk

i (εky + xk
1 ) (i ∈ I ). Here we recall that uk

1(x
k
1 ) = maxB1 uk

i (i ∈ I ). Then we have

−�vk
i =

∑
j

aij h̄
k
j e

vk
j , Ωk, i ∈ I,

where Ωk := {y; εky + xk
1 ∈ B1}. Let

σk
i = 1

2π

∫
B1

hk
i e

uk
i and mk

i =
∑
j

aij σ
k
j , i ∈ I. (4.6)

We have σk
i → σi and mk

i → mi > 2 (i ∈ I ).

Proposition 4.1. Given δ > 0, there exists R(δ,A, c0, c1, σ ) > 1 such that for all large k,(−mk
i − δ

)
ln|y| � vk

i (y) �
(−mk

i + δ
)

ln|y|, y ∈ Ωk \ B2R, i ∈ I. (4.7)
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Proof. By the convergence of vk
i to vi in C2

loc(R
2) we only need to prove (4.7) for 2R < |y| � ε−1

k where R � 1. By
the Green’s representation formula we have, for x ∈ B1 and i ∈ I ,

uk
i (x) =

∫
B1

G(x, z)

(∑
j

aijh
k
j e

uk
j (z)

)
−

∫
∂B1

∂G(x, z)

∂ν
uk

i (z). (4.8)

Since the major term of the Green’s function is − 1
2π

ln|x − z| and the oscillation of uk
i on ∂B1 is bounded, we have

uk
i (x) − uk

i

(
xk
i

) = 1

2π

∫
B1

ln
|xi − z|
|x − z|

(∑
j

aij h
k
j e

uk
j (z)

)
dz + O(1).

where uk
i (x

k
i ) = maxB1 uk

i . Since our assumption is that uk converges to v = (v1, . . . , vn) after scaling. The radial
symmetry of vi implies∣∣uk

i

(
xk
i

) − uk
j

(
xk
j

)∣∣ � C, e− 1
2 uk

1(x
k
1 )

∣∣xk
i − xk

j

∣∣ → 0, i, j ∈ I.

With this observation and the definition of vk (4.8) can be rewritten as

vk
i (y) = 1

2π

∫
Ωk

ln
|z|

|y − z|
(∑

j

aij h̄
k
j e

vk
j (z)

)
dz + O(1), i ∈ I. (4.9)

The proof of (4.7) can be put into two steps. First we show: For N > 1, there exists R � 1 such that for |y| > 2R and
all large k,

vk
i (y) � −2 ln|y| − N, |y| > 2R, i ∈ I. (4.10)

To this end, we use the argument in Lemma 4.1. Since σk
i → σi , for ε > 0 small to be determined, we choose

R � 1 such that∫
Ωk\BR

evk
i � ε, i ∈ I.

Fix r > 2R and set

v̄i (z) = vk
i (rz) + 2 ln r + 2N,

1

2
< |z| < 2, i ∈ I.

By letting h̄i (z) = h̄k
i (rz) we have

−�v̄i(z) =
∑
j

aij h̄j (z)e
−2Nev̄j (z),

1

2
< |z| < 2, i ∈ I.

Note that for simplicity we omit k in v̄i (z) and h̄i . It is readily verified that∫
1
2 <|z|<2

ev̄i (z) dz � e2N

∫
Ωk\BR

evk
i (y) dy, i ∈ I.

Now we choose ε to be small enough so that

e2N

∫
Ωk\BR

∑
j

aij h̄
k
j e

vk
j � 3π, i ∈ I.

The inequality above implies∫
B2\B 1

ev̄k
i � C, i ∈ I, (4.11)
2
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where C is independent of N . Using (4.11) and the argument in Lemma 4.1 we have

v̄i (z) � c0, |z| = 1, i ∈ I, (4.12)

where c0 is a universal constant. (4.10) follows immediately from (4.12).
In the second step we use (4.10) and (4.9) to prove (4.7). First since |z| ∼ |y − z| for |z| > 2|y|, we have

vk
i (y) = 1

2π

∫
B2|y|

ln
|z|

|y − z|
(∑

j

aij h̄
k
j e

vk
j (z)

)
dz + O(1).

Next we show that

1

2π

∫
B2|y|

∣∣ln|z|∣∣(∑
j

aij h̄
k
j e

vk
j (z)

)
dz � δ

10
ln|y|, |y| > R1, (4.13)

where R1 will be chosen large in terms of δ. Indeed, we can choose R1 so large that

1

2π

∫
B2|y|\BR1

∑
j

aij h̄
k
j e

vk
j (z)

dz < δ/10. (4.14)

Then the integral in (4.13) can be divided into two parts, one part is the integration over BR1 , the other part is the
integration on B2|y| \ BR1 . Since evi decays faster than |y|−2−δ1 for some δ1 > 0, we use the convergence of vk

i to vi

to obtain that the integration over BR1 is O(1). For the other term it is easy to see from (4.14) that the integration over
B2|y| \ BR1 is less than δ

5 ln|y|. The last term to deal with is

− 1

2π

∫
B2|y|

ln|y − z|
(∑

j

aij h̄
k
j e

vk
j (z)

)
dz.

For this we divide B2|y| into two sub-regions:

Ω1 = {
z ∈ Ωk; |z| < |y|/2

}
, Ω2 := B2|y| ∩ Ωk \ Ω1.

Since |y − z| ∼ |y| for z ∈ Ω1 and∣∣∣∣ 1

2π

∫
Ω1

∑
j

aij h̄j e
vk
j − mk

1

∣∣∣∣ � δ

20

for |y| large. We obtain immediately that∣∣∣∣ 1

2π

∫
Ω1

ln|y − z|
(∑

j

aij h̄
k
i e

vk
i (z)

)
dz − mk

i ln|y|
∣∣∣∣ � δ

10
ln|y|, |y| > R1.

To estimate the last term: − 1
2π

∫
Ω2

ln|y − z|(∑j aij h̄
k
j e

vk
j (z)

) dz, we use polar coordinates and (4.10) to obtain∣∣∣∣
∫
Ω2

ln|y − z|
(∑

j

aij h̄
k
j e

vk
j (z)

)
dz

∣∣∣∣ � Ce−N ln|y|

for a universal constant C. Choose N large enough we see this term is less than δ
10 ln|y|. Proposition 4.1 is estab-

lished. �
Since mk

i → mi > 2, evi(y) ∼ O(|y|−2−δ2) for some δ2 > 0. Using this in the proof of Proposition 4.1 again we see
that ∣∣vk

i (y) − mk
i ln

(
1 + |y|)∣∣ � C(A, c0, c1, σ ), y ∈ Ωk, i ∈ I. (4.15)
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Proposition 4.2.∑
ij

aij σ
k
i σ k

j = 4
∑

i

σ k
i + O

(
εc
k

)
(4.16)

where c > 0 is a small number.

Remark 4.1. Proposition 4.2 is equivalent to the second statement of Theorem 1.2.

Proof of Proposition 4.2. Let m > 2 be less than mk
i (i ∈ I ) and Lk = ε−c

k for c > 0 small. We estimate each term of
the Pohozaev identity on Ek := B(0,Lk):∑

i

( ∫
Ek

(
y · ∇h̄k

i

)
evk

i + 2h̄k
i e

vk
i

)
= Lk

∫
∂Ek

(∑
i

h̄k
i e

vk
i +

∑
ij

(
aij ∂νv

k
i ∂νv

k
j − 1

2
aij

(∇vk
i · ∇vk

j

)))
.

By the decay rate of vk
j (j = 1,2), we have∫

Ek

(
y · ∇h̄k

i e
vk
i
) = εk

∫
Ek

y · ∇hk
i

(
εky + xk

1

)
evk

i = O(εk), i ∈ I,

∫
Ek

2h̄k
i e

vk
i = 4πσk

i + O
(
L−m+2

k

)
, i ∈ I.

Similarly∫
∂Ek

Lkh̄
k
i e

vk
i = O

(
L−m+2

k

)
, i ∈ I.

Now we estimate ∇vk
i (i ∈ I ). By the Green’s representation formula:

∇vk
i (y) =

∫
Ωk

∇yG(y,η)

(∑
j

aij h̄
k
j e

vk
j (η)

)
dη −

∫
∂Ωk

∇y

(
∂G(y,η)

∂ν

)
vk
i (η) dSη, i ∈ I. (4.17)

The last term above is the gradient of a harmonic function. We know that if f is a harmonic function on BR , then
|∇f (0)| � C · osc(f )/R. By this reason we know that, since vk

i has bounded oscillation on ∂Ωk and |y| = Lk � ε−1
k ,

the last term of (4.17) is O(εk).
To estimate the first term of (4.17), we use

G(y,η) = − 1

2π
ln|y − η| + Hk(y, η).

For |y| = Lk , Hk(y, η), as a function of η, is a harmonic function of the order O(ln ε−1
k ) on ∂Ωk . So for η ∈ Ek , using

Hk(y, η) = Hk(η, y) and standard gradient estimate for harmonic functions, we have

∣∣∇yHk(y, η)
∣∣ = ∣∣∇ηHk(y, η)

∣∣ � C
max∂Ωk

Hk

ε−1
k

= O
(
εδ
k

)
.

Consequently∫
Ek

∇yHk(y, η)

(∑
j

aij h̄
k
j e

vk
j

)
= O

(
εδ
k

)

for δ ∈ (0,1). We are left with the estimate of the term

− 1

2π

∫
∇y

(
ln|y − η|)∑

j

aij h̄
k
j e

vk
j (η)

dη.
Ek
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For this we use

∂ya

(
− 1

2π
ln|y − η|

)
− ∂a

(
− 1

2π
ln|y|

)

= − 1

2π

−ηa|y|2 − ya|η|2 + 2ya

∑2
t=1 ytηt

|y − η|2|y|2 , a = 1,2,

and elementary estimate to obtain

− 1

2π

∫
Ek

∇y

(
ln|y − η| − ln|y|)(∑

j

aij h̄
k
j e

vk
j (η)

)
dη = O

(
L−m+1

k lnLk

)
.

Consequently

∂av
k
i (y) =

∫
Ωk

∂a

(
− 1

2π
ln|y|

)(∑
j

aij h̄
k
j e

vk
j

)
dη

= −mk
i

ya

|y|2 + O
(
L−m+1

k lnLk

)
, i ∈ I, a = 1,2.

Using this in the computation of the Pohozaev identity we obtain (4.16). Proposition 4.2 is established. �
Now we are in the position to prove (1.15). One can find {σi,k}i∈I that satisfies ΛI (σ·,k) = 0, which is

∑
i,j

aij σikσjk = 4
∑

i

σik

so that

σi,k = σk
i , i = 1, . . . , n − 1, σn,k − σk

n = O
(
εδ
k

)
(4.18)

for some δ > 0. For {σi,k}i∈I we let V̄ k = (V̄ k
1 , . . . , V̄ k

n ) be the unique global solution so that {V̄ k
i }i∈I are radial with

respect to the origin,

1

2π

∫
R2

hk
i (0)eV̄ k

i = σi,k, i ∈ I, V̄ k
1 (0) = 0.

Note that the uniqueness is proved in Theorem 1.1. Using σi,k → σi (i ∈ I ) as k → ∞, we assert that V̄ k
i → vi (i ∈ I )

in C2
loc(R

2) because v = (v1, . . . , vn) is the only radial solution that satisfies 1
2π

∫
R2 hie

vi = σi and v1(0) = 0. On the
other hand, by standard potential analysis

∣∣V̄i(y) + m̄i,k ln|y|∣∣ � C(A,σ), |y| > 2,

where m̄i,k = ∑
j aij σj,k . (4.18) implies |m̄i,k − mk

i | = O(εδ
k). Thus by (4.15) we have

∣∣vk
i (y) − V̄ k

i (y)
∣∣ � C(A, c0, c1, σ ), y ∈ Ωk.

Let V k
i be defined by

V k
i (εky) + 2 log εk = V̄ k

i (y),

then the second statement of Theorem 1.2 is established. �
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5. Proof of Theorem 1.3 and (1.16)

In this section we prove Theorem 1.3 and (1.16). Let

ũk
i = uk

i − ψk
i , h̃k

i = hk
i e

ψk
i , i ∈ I.

Since ψk
i (0) = 0 we have

∇h̃k
i (0)

h̃k
i (0)

= ∇ψk
i (0) + ∇hk

i (0)

hk
i (0)

.

Let |ξ | = 1 be a unit vector, then a Pohozaev identity for ũk = (ũk
1, . . . , ũ

k
n) is of the form (see Appendix A for the

proof)∫
BR

(∑
i

∂ξ h̃
k
i e

ũk
i

)
=

∫
∂BR

(∑
i

eũk
i h̃k

i (ξ · ν) +
∑
ij

aij

(
∂νũ

k
i ∂ξ ũ

k
j − 1

2
(ξ · ν)

(∇ũk
i · ∇ũk

j

)))
.

By choosing 0 < R < 1, it is easy to see from the decay rate of ũk
i that∫

∂BR

∑
i

(
eũk

i h̃k
i (ξ · ν)

) → 0.

Also, since h̃k
i e

ũk
i → 2πσiδ0 in distributional sense, the left-hand side of the Pohozaev identity tends to

2π
∑

i

∂ξ h̃i (0)

h̃i(0)
σi .

To consider the limit of ∇ũk
i (x) for |x| = R, we use the Green’s representation formula:

ũk
i (x) =

∫
B1

G(x,η)

(∑
j

aij h̃
k
j (η)e

ũk
j (η)

)
+ constant.

By taking the derivative on x and letting k → ∞, we have

∇ũk
i (x) → 2πmi∇1G(x,0) = mi

x

|x| , i ∈ I.

Using this in the computation of the Pohozaev identity we see the limit of the right-hand side is 0. Therefore we have
obtained:

∑
i

∂ξ h̃i (0)

h̃i(0)
σi = 0.

Since ξ is arbitrary, Theorem 1.3 is established. �
Proof of (1.16). Since

∫
M

hk
i e

uk
i = 1 (i ∈ I ) the equation for {uk} is (see (1.8))

�gu
k
i +

n∑
j=1

ρjaij

(
hk

j e
uk

j − 1
) = 0, M. (5.1)

Recall that {p1, . . . , pm} are disjoint blowup points for {uk}. Let

σit = lim
r→0

lim
k→∞

1

2π

∫
hk

i e
uk

i dVg. (5.2)
B(pt ,r)
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Our assumption is that around each pt , {uk} converges to a Liouville system of n equations after scaling. Let δ > 0 be
small enough so that B(pt , δ) (t = 1, . . . ,m) are disjoint. For each t , let Mk

t be the maximum of {uk
i }i∈I in B(pt , δ).

In the isothermal coordinates around pt , g = eφδ0 and �g = e−φ� where δ0 is the Euclidean metric. We also have
φ(0) = |∇φ(0)| = 0. With these properties (5.1) in B(pt , δ) becomes

�uk
i +

n∑
j=1

ρjaij e
φhj

(
e
uk

j − 1
) = 0, Bδ, i ∈ I.

Let fi satisfies

�fi =
∑
j

ρj aij e
φhj , Bδ, i ∈ I,

and fi = 0 on ∂Bδ , then the equation for uk
i can further be written as

�
(
uk

i + fi

) +
∑
j

ρjaij e
φ−fi hj e

uk
j +fi = 0, Bδ, i ∈ I. (5.3)

Let

σk
it = 1

2π

∫
Bδ

hk
i e

φeuk
i , mk

it =
∑
j

aij σ
k
jt .

By Theorem 1.2 and φ(0) = 0 the limit of σk
it is σit (defined in (5.2)). Let mit > 2 be the limit of mk

it , then from
Theorem 1.2 we have, for x ∈ ∂B(pt , δ):

uk
i (x) = −mk

it − 2

2
Mk

t + O(1), x ∈ ∂B(pt , δ), i ∈ I, t = 1, . . . ,m. (5.4)

From the Green’s representation of uk
i it is easy to see that the difference between uk

i (x) and uk
i (y) for x, y away from

the blowup set is uniformly bounded. Therefore for fixed t1 and t2, using Mk
t → ∞ we obtain from (5.4) that

mit1 − 2

mit2 − 2
= λt1t2, i ∈ I. (5.5)

We claim that λt1t2 = 1. Indeed, {σit }i∈I satisfies∑
ij

aij σitσjt = 4
∑

i

σit ,

which can be written as∑
ij

aijmitmjt = 4
∑
ij

aijmjt .

The above is equivalent to∑
ij

aij (mit − 2)(mjt − 2) = 4
∑
ij

aij .

Replacing mit by mit1 and mit2 respectively in the above, we have(
1 − λ2

t1t2

)∑
ij

aij = 0.

Recall that A is assumed to be positive definite. So
∑

ij aij > 0, we have λt1t2 = 1 (t1, t2 = 1, . . . ,m).
We can further claim that

σit = 1
, i ∈ I, t = 1, . . . ,m, (5.6)
2πm
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because
∫
M

hk
i e

uk
i ≡ 1 (i ∈ I ), mit1 = mit2 (i ∈ I ) and

∫
M\⋃m

t=1 B(pt ,δ)

euk
i dVg → 0, i ∈ I.

The Green’s representation for uk
i is

uk
i (x) = ūk

i +
∫
M

G(x,η)
∑
j

ρj aijhj e
uk

j dVg. (5.7)

The last term of the above tends to

m∑
t=1

G(x,pt )

(∑
j

ρjaij

)
/m. (5.8)

Recall that

G(x,η) = − 1

2π
χ lnd(x, η) + G∗(x, η). (5.9)

For x ∈ ∂B(ps, δ), by choosing the support of χ possibly smaller, we observe that G(x,pt ) = G∗(x,pt ) for t = s.
Therefore, let φk be the harmonic function on B(ps, δ) defined by the oscillation of uk

i on ∂B(ps, δ), using (5.7)–(5.9)
we have

lim
k→∞∇gφk(ps) =

m∑
t=1

∇1G
∗(ps,pt )

(∑
j

ρjaij

)
/m.

Then (1.16) is a consequence of Theorem 1.3 and the above. �
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Appendix A. The Pohozaev identity for the Liouville system

In this section we derive the Pohozaev identity for the Liouville system

−�ui =
n∑

j=1

aijhj e
uj , Ω � R2, i ∈ I. (A.1)

The Pohozaev identity for (A.1) is

∑
i∈I

(∫
Ω

(x · ∇hi)e
ui + 2hie

ui

)

=
∫

∂Ω

(∑
i

(x · ν)hie
ui +

∑
i,j

aij

(
∂νuj (x · ∇ui) − 1

2
(x · ν)(∇ui · ∇uj )

))
. (A.2)
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Proof of (A.2). We write (A.1) as

−
∑
j

aij�uj = hie
ui , Ω, i ∈ I. (A.3)

By multiplying x · ∇ui to the right-hand side of (A.3) and integration by parts, we obtain the following terms:∫
∂Ω

(x · ν)hie
ui − 2

∫
Ω

hie
ui −

∫
Ω

(x · ∇hi)e
ui .

Multiply x · ∇ui to the left-hand side of (A.3) and use integration by parts, we have, after taking the summation
on i:

−
∑
ij

∫
∂Ω

aij ∂νujx · ∇ui +
∫
Ω

∑
ij

aij∇ui∇uj +
∑
ij

∫
Ω

n∑
a=1

n∑
b=1

aij xb∂auj ∂abui .

Using the symmetry of aij and integration by parts again the left-hand side is equal to

−
∑
ij

∫
∂Ω

aij ∂νujx · ∇ui + 1

2

∑
ij

∫
∂Ω

aij (x · ν)(∇ui · ∇uj ).

Then (A.2) follows. �
A different version of the Pohozaev identity is as follows. Let ξ be a unit vector, then we have

∑
i

∫
Ω

∂ξhie
ui =

∫
∂Ω

∑
i

eui hi(ξ · ν) +
∑
i,j

aij

(
∂νui∂ξuj − 1

2
(ξ · ν)(∇ui · ∇uj )

)
. (A.4)

The third Pohozaev identity is for the linearized system:(
rφ′

i (r)
)′ +

∑
j

aij e
uj rφj (r) = 0, 0 < r < ∞, i ∈ I.

The Pohozaev identity is:

∑
i

(
r2φi(r)e

ui − 2

r∫
0

seui φi ds

)
= −

∑
i,j

aij
(
rφ′

j (r)
)(

ru′
i (r)

)
. (A.5)

To derive (A.5) we just need to write the linear system as

−
∑
j

aij
(
rφ′

j (r)
)′ = eui φi(r)r, i ∈ I.

Multiply ru′
i (r) to both sides of the above and use integration by parts, we obtain (A.5).
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