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Abstract

This is the second part of a work aimed at establishing that for solutions to Cauchy–Dirichlet problems involving general
non-linear systems of parabolic type, almost every parabolic boundary point is a Hölder continuity point for the spatial gradient of
solutions. Here we establish higher fractional differentiability of solutions up to the boundary. Based on the necessary and sufficient
condition for regular boundary points from the first part of Bögelein et al. (in this issue) [7] we achieve dimension estimates for the
boundary singular set and eventually the almost everywhere regularity of solutions at the boundary.

1. Introduction and results

In this paper we continue the study, initiated in [7], of the partial boundary regularity of solutions to the Cauchy–
Dirichlet problems for general non-linear parabolic systems with linear growth. In the first part we gave – see
Theorem 1.2 below – a regularity criterion allowing to establish that a boundary point is regular, that is, the spatial
gradient of the solutions is Hölder continuous in a relative neighborhood of such a point. Such a result is an essential
preliminary step towards the boundary regularity, in that it gives a necessary and sufficient condition for boundary reg-
ularity, but at the same time turns out to be insufficient to prove the existence of even one regular boundary point when
not combined to further qualitative properties of solutions. In this paper we indeed prove certain weak differentiability
boundary properties allowing to conclude that the criterion in question is satisfied almost everywhere at the boundary
completing the proof of the basic result asserting that in the case of Cauchy–Dirichlet problems involving parabolic
systems with linear growth, almost every boundary point, with respect to the usual surface measure of the parabolic
boundary, is regular. It is perhaps worth mentioning that before this result even the existence of one regular boundary
point for solutions was an open issue for the general systems hereby considered. To measure the progress yielded by
this result we recall that the existence of boundary irregular points is already known in the elliptic case [21], even for
smooth boundary data; see [32] for counterexamples in the parabolic case. Full boundary regularity is only known for
parabolic systems having a special structure, like the parabolic p-Laplacean system with zero boundary data [10,11].
Global partial regularity of the solution – not the gradient – of quasilinear systems was shown in [3].
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Specifically, we shall consider Cauchy–Dirichlet problems involving non-linear parabolic systems of the following
type: {

ut − diva(x, t,Du) = 0 in ΩT ,

u = g on ∂P ΩT ,
(1.1)

defined in the cylindrical domain ΩT = Ω × (0, T ) where Ω ⊂ R
n, n � 2, is a bounded domain in R

n and T > 0, and
under natural linear growth and ellipticity assumptions on the vector field a :ΩT × R

Nn → R
Nn, to be specified in a

few lines. The boundary values are assumed – in the sense of traces – on the parabolic boundary which is defined by

∂P ΩT = ∂ΩT \ (Ω × {T }).
According to such assumptions the notion of a weak solution of (1.1) is the following:

Definition 1.1. A map u ∈ L2(0, T ;W 1,2(Ω,R
N)) is called a (weak) solution to (1.1) if and only if∫

ΩT

u · ϕt − 〈
a(x, t,Du),Dϕ

〉
dz = 0

holds for every test-function ϕ ∈ C∞
0 (ΩT ,R

N), and the following boundary conditions hold:

u(·, t) − g(·, t) ∈ W
1,2
0

(
Ω;R

N
)

for a.e. t ∈ (0, T ),

and

lim
h↓0

1

h

h∫
0

∫
Ω

∣∣u(x, t) − g(x,0)
∣∣2 dx dt = 0.

Here we assume that the vector field a :ΩT ×R
Nn → R

Nn fulfills the following growth and ellipticity assumptions:
the mappings (z, u,w) �→ a(z,u,w) and (z, u,w) �→ ∂wa(z,u,w) are continuous in ΩT × R

N × R
Nn and satisfy⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣a(z,w)
∣∣+ (

1 + |w|)∣∣∂wa(z,w)
∣∣� L

(
1 + |w|),〈

∂wa(z,w)w̃, w̃
〉
� ν|w̃|2,∣∣a(x, t,w) − a(x0, t,w)

∣∣� Lθ̃
(|x − x0|

)(
1 + |w|),∣∣a(x, t,w) − a(x, t0,w)

∣∣� Lθ̃
(√|t − t0|

)(
1 + |w|),

(1.2)

for every choice of z, z0 ∈ ΩT , x, x0 ∈ Ω , t, t0 ∈ (0, T ) and w, w̃ ∈ R
Nn, where

θ̃ (s) � min
{
1, sβ

}
, s > 0. (1.3)

The structure constants will satisfy 0 < ν � 1 � L < ∞. Concerning the regularity of the lateral boundary and the
Dirichlet boundary values i.e. of ∂Ω and g, since the point of the paper is to prove the existence of boundary regular
points we may assume that the data ∂Ω,g are smooth; on the other hand we may assume an essentially optimal
regularity for them. Specifically we shall assume that

∂Ω is C1,β , Dg ∈ Cβ,0(Ω × [0, T );R
Nn
)
, ∂tg ∈ L2,2−2β

(
ΩT ;R

Nn
)
. (1.4)

For the definition of parabolic Morrey spaces of the type L2,2−2β used here we refer to [7, Definition 2.1]. In order to
study the boundary regularity of solutions we recall the definition of the set of regular boundary points

RegP u ≡ {
z0 ∈ ∂P ΩT : Du ∈ C0(U ∩ ΩT ;R

Nn
)

for some neighborhood U of z0
}
.

Then, the following result has been proved in [7, Theorem 1.2]:

Theorem 1.2. Let u ∈ L2(0, T ;W 1,2(Ω;R
N)) be a weak solution of the non-linear parabolic system (1.1) in ΩT

under the assumptions (1.2)–(1.4). Then, there holds

∂P ΩT \ RegP u ⊂ Σ1 ∪ Σ2,

where
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Σ1 =
{
z0 ∈ ∂P ΩT : lim inf

	↓0
−
∫

ΩT ∩Q	(z0)

∣∣D(u − g) − (
D(u − g)

)
ΩT ∩Q	(z0)

∣∣2 dz > 0

}

and

Σ2 =
{
z0 ∈ ∂P ΩT : lim sup

	↓0

∣∣(D(u − g)
)
ΩT ∩Q	(z0)

∣∣= ∞
}
.

Furthermore, if z0 ∈ RegP u then Du ∈ Cβ,
β
2 (U ∩ ΩT ;R

Nn) for some neighborhood U of z0.

For related interior parabolic and elliptic results – obtained by a similar method – we refer to [4,16–19,13,30]. The
previous result is the starting point for the almost everywhere boundary regularity result described at the beginning of
this Introduction. Indeed, to prove that a boundary point z0 ∈ ∂P ΩT is regular it suffices to prove that the following
conditions hold:

lim inf
	↓0

−
∫

ΩT ∩Q	(z0)

∣∣D(u − g) − (
D(u − g)

)
ΩT ∩Q	(z0)

∣∣2 dz = 0 (1.5)

and

lim sup
	↓0

∣∣(D(u − g)
)
ΩT ∩Q	(z0)

∣∣< ∞. (1.6)

The strategy of the paper consists of proving an up to the boundary fractional differentiability result for Du which in
turn implies that conditions (1.5) and (1.6) are satisfied at almost every point z0 ∈ ∂P ΩT , where “almost everywhere”
refers to the standard boundary surface measure on ∂P ΩT . We remark that a similar strategy was developed for the
elliptic case to get first singular sets estimates in the interior [28,29], and then at the boundary [15], and [16,18] for
the interior parabolic case; we refer to [25–27] for results concerning the stationary variational case. As usual, when
dealing with parabolic initial boundary value problems we shall distinguish between the lateral boundary situation,
i.e. points lying on the lateral boundary ∂latΩT = ∂Ω × (0, T ) and the initial boundary situation including such points
lying near the initial boundary Ω0 = Ω × {0}. The natural quantity to measure the size of the singular sets

Singlat u = ∂latΩT \ RegP u and Singini u = Ω0 \ RegP u

is the parabolic Hausdorff-dimension, i.e. the Hausdorff-dimension dimP related to the parabolic Hausdorff-measures
which are constructed with respect to the parabolic metric by the usual construction of Carathéodory (see (2.1) below
for the definition). Taking into account that dimP (∂latΩT ) = n + 1, respectively dimP (Ω0) = n we are looking for
conditions ensuring a bound of the form

dimP (Singlat u) < n + 1, respectively dimP (Singini u) < n.

Note that we do not need to take into account edge points, i.e. those lying on ∂Ω × {0} since we already have
dimP (∂Ω × {0}) = n − 1.

Our first main result is concerned with the existence of regular lateral boundary points and is

Theorem 1.3 (Lateral boundary existence). Let u ∈ L2(0, T ;W 1,2(Ω;R
N)) be a weak solution of the non-linear

parabolic system (1.1) in ΩT under the assumptions (1.2), (1.3), (1.4)1 and (1.4)3. Moreover, assume that Dg ∈
Cβ,

β
2 (ΩT ;R

Nn) and gt ∈ N 0,ξ ;2(ΩT ;R
N) for some ξ ∈ (0,1). If

β >
1

2

then Hn+1
P -almost every lateral boundary point is a regular point of Du. Moreover, if additionally gt ∈

N 0,ξ ;σ (ΩT ;R
N) for some ξ ∈ (0,1) and σ > 2, then there exists δ = δ(n,L/ν,‖g‖C1;β,β/2 , ‖gt‖N 0,ξ ;σ , ∂Ω) > 0

such that if

β >
1

2
− δ (1.7)

then Hn+1-almost every lateral boundary point is a regular point of Du.
P
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For the definition of the Nikolskii space N 0,ξ ;σ (ΩT ;R
Nn) we refer to Definition 2.1. We emphasize here that the

crucial point is not the a priori regularity assumed on the boundary datum g – that for simplicity could be assumed
smooth as well – but rather the almost everywhere regularity at the boundary; anyway we here tried to minimize the
assumptions on g. The reinforcement of our assumption on the boundary data, in the sense that Dg is also Hölder
continuous with respect to time, is needed in order to transform the Hölder continuity assumption (1.2)4 with respect to
time to a model situation with homogeneous boundary data (see Section 2.1). The δ-improvement in (1.7) is achieved
by the use of an up to the boundary version of Gehring’s lemma. Since the dependencies of the up to the boundary
higher integrability on the structure parameters can be given explicitly [9,33], we have that δ → 0 when L/ν → ∞.
The same applies with respect to the dependency of the constants on ‖g‖C1;β,β/2 , ‖gt‖N 0,ξ ;σ or ∂Ω ; this means that
δ → 0 when g, respectively ∂Ω degenerate in the C1;β,β/2- respectively C1,β -sense (see Section 2.1).

Remark 1.4. It is worth mentioning that the Morrey-condition imposed on the time derivative gt of g in Theorem 1.3
is only needed to ensure that the characterization of regular points at the lateral boundary from Theorem 1.2 is in
force. For the estimate of the singular set, i.e. the dimension reduction argument, it would be sufficient to assume
that gt ∈ N 0,ξ ;2(ΩT ;R

N), respectively gt ∈ N 0,ξ ;σ (ΩT ;R
N).

The proof of Theorem 1.3 is based on several steps, culminating in an up to the lateral boundary fractional
differentiability estimate for the spatial gradient Du. In order to prove such a fractional differentiability we use
an analog of the comparison technique introduced for the treatment of the boundary regularity problem in the time
independent elliptic setting from [15], but, we have to remark, the adaptation of such a technique to the parabolic case
is far from being straightforward, and involves highly non-trivial additional difficulties. A crucial idea in the argument
is that space–time estimates for finite differences of Du are turned, via a delicate comparison argument, into the same
kind of estimates for more regular solutions uh of an associated regularized problem

∂tuh − divah(x, t,Duh) = ∂tg(x, t) in Q. (1.8)

Here the vector field ah is Lipschitz continuous with respect to the coefficients (x, t), and h > 0 is a parameter to
be fixed and to which the size of the Lipschitz seminorm of the partial map (x, t) �→ ah(x, t, ·) is linked; in other
words, the regularity of ah degenerates when h converges to zero. The derivation of these estimates, i.e. the higher
differentiability for Duh, is definitely not straightforward. These results, especially in the peculiar form needed here,
are not present in the literature, and their proof is rather delicate: when turning to the boundary estimates for the
parabolic case one has to retrieve regularity information on “two missing directions”, namely the normal – with re-
spect to the boundary of the base space domain ∂Ω – and the time direction. The strategy is, in the rough description
we are giving in the following lines, to treat first the tangential directions – here tangential means with respect to
the tangential directions to ∂Ω – by standard difference quotient techniques. Unfortunately, these are insufficient for
the use of the system itself in order to obtain estimates for the normal component of the derivative of the weak so-
lution, as for instance happens in the elliptic case – see for instance [26, Section 4.3] or [15] – since now there is an
additional missing direction – the time one – on whose behavior nothing is a priori known. This delicate step will
be achieved exploiting certain reiteration/semigroup properties of finite difference operators, and this will lead to a
delicate interplay between space and time difference quotients using both intrinsic properties of fractional Sobolev
spaces and tools from Harmonic Analysis as a properly localized version of the Fefferman–Stein theorem on sharp
maximal operators. The final outcome is the existence of the weak time-derivative of uh in L2. Subsequently, we
are in the position to exploit the parabolic system in order to obtain suitable estimates for the normal derivatives.
The technical details can be found in Section 4. The main results are the up to the lateral boundary existence of
second-order spatial derivatives D2uh and of the time-derivative ∂tuh in L2 in Theorem 4.2 – and furthermore in Lσ

for some σ > 2 in Proposition 4.15. After this preliminary step we can start the real regularization of our original
solution u to (1.1). The idea is to make a comparison between Du and the gradient Duh of the regularized problems,
where the parameter h is chosen accordingly to the rate of the finite difference considered Du(x + h, t) − Du(x, t)

and to make such a finite difference inherit the decay properties of Duh(x + h, t) − Duh(x, t). At this stage we
have to exploit a delicate balance between the decay properties of Duh(x + h, t) − Duh(x, t) due to D2uh ∈ L2 and
the fact that in general ‖D2uh‖L2 → ∞ as h → ∞; the final result is the fractional differentiability of the spatial
gradient of the original solution Du. A similar argument is then applied to get the fractional time differentiabil-
ity.
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Our second main result concerns the existence of regular initial boundary points. As mentioned before, the initial
boundary Ω0 only has parabolic Hausdorff dimension equal to n. Therefore, contrary to the lateral boundary situation
we now have to reduce the dimension of the singular set below n. This yields a positive result only when β is close
to 1. To be precise, at the initial boundary we can show the following:

Theorem 1.5 (Initial time existence). Let u ∈ L2(0, T ;W 1,2(Ω;R
N)) be a weak solution of the non-linear

parabolic system (1.1) in ΩT under the assumptions (1.2)1–(1.2)3, (1.3) and (1.4)2. Then there exists δ =
δ(n,L/ν,‖g‖C1;β,0) > 0 such that if

β > 1 − δ (1.9)

then Hn
P -almost every initial boundary point is a regular point of Du.

The proof for the initial boundary situation is in a certain sense easier than the one for the lateral boundary. As we
did there we again compare the solution u to solutions uh of a regularized problem of the type (1.8). But now we can
apply the difference quotient method with respect to all space directions in order to infer the existence of the second
space derivative D2uh in L2. Then, the existence of the time derivative ∂tuh in L2 easily follows from the parabolic
system. At this stage it is worth mentioning that this procedure does not involve a difference quotient method with
respect to time. For this reason hypothesis (1.2)4 is not needed in Theorem 1.5.

2. Notation and preliminary material

In this paper we will follow the definitions and the notation established in the first part [7]; we shall only repeat here
the very basic notation concerning balls and cylinders. In general we shall write x = (x1, . . . , xn) for a point in R

n

and z = (x, t) = (x1, . . . , xn, t) for a point in R
n+1. By B	(x0) ≡ {x ∈ R

n: |x − x0| < 	}, respectively B+
	 (x0) ≡

B	(x0)∩{x ∈ R
n: xn > 0} we denote the open ball, respectively half-ball in R

n with center x0 ∈ R
n and radius 	 > 0.

When considering B+
	 (x0), unless otherwise specified, we shall always have x0 with (x0)n = 0. Moreover, we write

Λ	2(t0) = (t0 −	2, t0 +	2) for the open interval around t0 ∈ R of length 2	2 and Λ0
	2(t0) = Λ	2(t0)∩ {t ∈ R: t > 0}.

As before, we always have t0 = 0 when writing Λ0
	2(t0), unless otherwise stated. The (half-)cylinders are denoted

by Q	(z0) ≡ B	(x0) × Λ	2(t0) and Q+
	 (z0) ≡ B+

	 (x0) × Λ	2(t0) and Q0
	(z0) ≡ B	(x0) × Λ0

	2(t0), where z0 =
(x0, t0) ∈ R

n+1, 	 > 0. Moreover, we write Γ	(z0) ≡ Q	(z0) ∩ {(x1, . . . , xn, t) ∈ R
n+1: xn = 0} for the lateral part of

the boundary of Q+
	 (z0) and for the initial boundary of Q0

	(z0) we write D	(z0) = Q	(z0) ∩ {(x, t) ∈ R
n+1: t = 0}.

If z0 = 0, a typical situation occurring when treating the regularity of lateral boundary points after “flattening the
boundary”, we abbreviate B	 = B	(0), Λ	2 = Λ	2(0), Q	 = Q	(0), Γ	 = Γ	(0) and D	 = D	(0).

For an integrable map v :A → R
k , k ∈ N, we write

(v)A ≡ −
∫
A

v dz = 1

|A|
∫
A

v dz

for its mean value on A, provided |A| > 0. If A = Q	(z0) then we write (v)z0,	 for the mean value of v on the
parabolic cylinder Q	(z0) and (v)+z0,	

for the mean value on the parabolic half-cylinder Q+
	 (z0) and (v)0

z0,	
for the

mean value on Q0
	(z0). Finally, we write ∂latΩT = ∂Ω × (0, T ) for the lateral boundary of ΩT and Ω0 = Ω × {0} for

its initial boundary.

Definition 2.1. With q � 1, ϑ ∈ (0,1) and Q = Ω × (t1, t2) ⊂ R
n+1 being a parabolic cylinder, a measurable

map v :Q → R
k , k � 1, belongs to the (parabolic) Nikolskii space N 0,ϑ;q(Q;R

k) if and only if with Qη =
Ω × (t1 + η, t2 − η) it holds that

‖v‖q

N 0,ϑ;q (Q;Rk)
:= ‖v‖q

Lq(Q;Rk)
+ sup

η>0,0<|h|�η

∫
Qη

|v(x, t + h) − v(x, t)|q
|h|ϑq

d(x, t) < ∞.
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Finally, the parabolic Hausdorff-dimension related to the parabolic metric is defined by

dimP (F ) ≡ inf
{
s > 0: Hs

P (F ) = 0
}= sup

{
s > 0: Hs

P (F ) = ∞}
, (2.1)

where F ⊂ R
n+1 and

Hs
P (F ) ≡ lim

	↓0
inf

{ ∞∑
i=1

	s
i : F ⊂

∞⋃
i=1

Q	i
(zi), 0 � 	i < 	

}

denotes the parabolic s-dimensional Hausdorff-measure, s ∈ [0, n + 2], of F .

2.1. Transformation to the model situation

Since our results are of local nature we are allowed to consider the lateral and the initial boundary situation sepa-
rately, i.e. to prove regularity for a point z0 = (x0,0) ∈ Ω0 lying on the initial boundary then it is enough to consider
parabolic cylinders Q0

	(z0) with B	(x0) � Ω and the same for points lying on the lateral boundary. When considering

the lateral boundary we will prove our results in a model situation on the half-cylinder Q+
1 and for boundary values

u ≡ 0 on the lateral boundary Γ1. Therefore, we will always refer to a Cauchy–Dirichlet problem of the following
type: {

ut − diva(z,u,Du) = gt in Q+
1 ,

u = 0 on Γ1,
(2.2)

where ∂tg ∈ L2,2−2β(Q+
1 ;R

n). For the precise transformation leading to this model situation we refer to [7, Sec-
tion 2.1]. In the initial boundary situation the proceeding is simpler. Here, we shall transform the problem to the
model situation where the initial values are equal to zero, i.e. we consider{

ut − diva(z,u,Du) = 0 in ΩT ,

u(·,0) = 0 on Ω,
(2.3)

which is achieved by a transformation v(x, t) = u(x, t)−g(x,0). Note that this is not exactly the same model situation
that we had chosen in [7]. Indeed, there we considered the transformation v(x, t) = u(x, t)− g(x, t) leading to a non-
homogeneous model problem; the reason was that we wanted to have the same model problem in every possible case,
in order to join them at the edge: as a matter of fact Theorem 1.2 work for the edge points too; in the present situation
we do not need to consider edge points since the edge has already properly low parabolic Hausdorff dimension. As
mentioned in [7, Section 2.1], the final characterization of the singular set is the same for both transformations.

Let us now comment on the regularity assumed for Dg. In the setting of Theorem 1.3 – i.e. when dealing with
the lateral boundary – where the vector-field a is assumed to be Hölder continuous with respect to x and t we need

to assume a certain continuity of Dg with respect to t , i.e. Dg ∈ Cβ,
β
2 (ΩT ;R

Nn) in order to have the transformed
vector field to be Hölder continuous with respect to x and t . On the other hand, in the setting of Theorem 1.5 – i.e.
when dealing with the initial boundary – we can renounce on the Hölder continuity assumption (1.2)4 of the vector
field a with respect to time. Therefore, also the Hölder continuity of Dg with respect to time is not needed such that
the weaker assumption Dg ∈ Cβ,0(ΩT ;R

Nn) is enough.
Finally, we want to comment on the change of the structure constants when passing to the model situation. The new

growth constant L̃ then is of the form L · c(p,‖g‖C1;β,β/2, ∂Ω) in Theorem 1.3, respectively L · c(p,‖g‖C1;β , ∂Ω)

in Theorem 1.5, while the new ellipticity constant ν̃ is of the form L/c(p,‖g‖C1;β,β/2, ∂Ω) in Theorem 1.3, re-
spectively L · c(p,‖g‖C1;β , ∂Ω) in Theorem 1.5, where the constant c(· · ·) is strictly larger then 0. Therefore, in
the estimates for the original problem (1.1) the constants will depend on L/ν · c(p,‖g‖C1;β,β/2, ∂Ω)2, respectively
L/ν · c(p,‖g‖C1;β , ∂Ω)2.

2.2. Steklov averages

Let us recall from [7] the definition of the so-called Steklov-means. Given a function f ∈ L1(Ω × (t1, t2)) and
0 < |h| � 1 (t2 − t1), we define its Steklov-mean by
2
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[f ]h(x, t) ≡
{

1
|h|
∫ t+h

t
f (x, s) ds, t ∈ [t1 + |h|, t2 − |h|],

0, t ∈ (t1, t1 + |h|) ∪ (t2 − |h|, t2).
(2.4)

The previous definition should be used when dealing with symmetric parabolic cylinders which are far from the
initial boundary. When dealing with the initial boundary problem we shall adopt the following one, valid in the case
0 < h � t2 − t1:

[f ]h(x, t) ≡
{

1
h

∫ t+h

t
f (x, s) ds, t ∈ (t1, t2 − h],

0, t ∈ (t2 − h, t2).
(2.5)

2.3. Preliminary lemmas

Contrary to the interior parabolic case, in the lateral boundary situation we have an automatic Poincaré inequality
for those functions

u ∈ Lp
(
Λ	2(t0);W 1,p

(
B	(x0)

+;R
k
))

satisfying u ≡ 0 on the lateral boundary Γ	(z0). This inequality can be obtained applying the standard Poincaré
inequality to the functions u(·, t) ∈ W 1,p(B+

	 (x0);R
k) for a.e. t ∈ Λ	2(t0) and then integrating with respect to t .

Lemma 2.2. Let z0 = (x0, t0) ∈ R
n+1 with x0 ∈ R

n−1 × {0}. Then for any function u ∈ Lp(Λ	2(t0);
W 1,p(B	(x0)

+;R
k)), k � 1, satisfying u ≡ 0 on Γ	(z0) there holds

−
∫

Q+
	 (z0)

|u|p dz � 	p

p
−
∫

Q+
	 (z0)

|Dnu|p dz.

The next lemma is a boundary version of the Sobolev-embedding theorem.

Lemma 2.3. Let v ∈ W 1, 2n
n+2 (B+

	 ,R
k) with 0 < 	 � 1, k ∈ N, satisfying v = 0 on ∂B	 ∩ {x ∈ R

n: xn > 0}. Then

v ∈ L2(B+
	 ,R

k) and there holds

−
∫
B+

	

|v|2 dx � c(n)	2
(

−
∫
B+

	

|Dv| 2n
n+2 dx

) n+2
n

.

Proof. First, we extend v from B+
	 to B	 by an even reflection, i.e. we define

ṽ(x′, xn) ≡
{

v(x′, xn) if xn � 0,

v(x′,−xn) if xn < 0.

Then, from the reflection principle we know that ṽ ∈ W 1, n
n+2 (B	;R

k). Therefore we can apply the Sobolev–Poincaré
inequality to ṽ on B	 to infer that

∫
B	

|ṽ|dx � c(n)

( ∫
B+

	

|Dṽ| n
n+2 dx

) n+2
n

.

Since ṽ(x′, xn) = v(x′,−xn) on B	 \ B+
	 , this estimate yields the desired boundary version of the Sobolev–Poincaré

inequality. �
Next, we recall some basic facts about finite differences. Let f : Rn+1 ⊃ Ω × (t1, t2) → R

k , k ∈ N. We define the
finite differences in space direction τα

h (f ) by(
τα
h f

)
(x, t) ≡ f (x + heα, t) − f (x, t),
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whenever x ∈ Ω and x + heα ∈ Ω and t ∈ (t1, t2), where |h| > 0, 1 � α � n, and {eα}1�α�n is the standard basis
of R

n. Similarly the finite difference in time direction τh(f ) is defined by

(τhf )(x, t) ≡ f (x, t + h) − f (x, t), (2.6)

whenever x ∈ Ω , t, t + h ∈ (t1, t2) and |h| > 0. For finite differences in space direction we have the follow-
ing standard estimate, which is in turn a consequence of basic facts from the theory of Sobolev functions: Let
f,Dαf ∈ Lp(B+

R+|h|(x0) × (t1, t2)) where α ∈ {1, . . . , n}, |h| > 0, and h > 0 when dealing with the case α = n.
Then we have

t2∫
t1

∫
B+

R (x0)

∣∣τα
h f

∣∣p dx dt � |h|p
t2∫

t1

∫
B+

R+|h|(x0)

|Dαf |p dx dt. (2.7)

Moreover, we can bound second differences in terms of first differences as follows∣∣τ−hτhf (t)
∣∣= ∣∣2f (t) − f (t + h) − f (t − h)

∣∣� ∣∣τhf (t)
∣∣+ ∣∣τ−hf (t)

∣∣. (2.8)

The following lemma can be obtained by a slight modification of the proof of [12, Theorem 1.1], and its proof can
be obtained from the proof of this last result. The result basically deals with a semigroup property of finite difference
operators, see also [34].

Lemma 2.4. Let B be a Banach space, T > 0, 0 < h0 < T/2, f ∈ Lσ (−T ,T + 2h0;B), σ � 1 and α > 0. Suppose
that there exists M > 0 such that∥∥τh(τhf )

∥∥
Lσ (−T ,T ;B)

� M|h|α whenever 0 < h � h0. (2.9)

Then

‖τhf ‖Lσ (−T ,T ;B) � c
(
h

α−β

0 M + h
−β

0 ‖f ‖Lσ (−T ,T +2h0;B)

)|h|β

holds whenever 0 < h � h0/4, with c = c(α,β) and β = min{1, α} for α �= 1, and for any β ∈ (0,1) for α = 1.
The same holds by taking h non-positive i.e. assuming 0 < −h � h0, and replacing norms in Lσ (−T ,T + 2h0;B)

with norms in Lσ (−T − 2h0, T ;B). Finally, the same result holds for functions defined in Lσ (0, T ;B), replacing
everywhere −T by 0.

2.4. Fractional Sobolev spaces

The proof of our dimension reduction result is based on the idea to establish additional fractional differentiability
properties of the spatial derivative Du of our weak solution u and then to exploit this by using a certain fractional
Poincaré inequality in order to show that the criterion ensuring regularity is fulfilled on a large set. For convenience
of the reader we recall the definition of fractional Sobolev spaces which are suited for the treatment of parabolic
problems. Let 1 � p < ∞, k ∈ N, and α,γ ∈ (0,1). Then, we say that a function v ∈ Lp(ΩT ;R

k) belongs to the
parabolic fractional Sobolev space Wα,γ ;p(ΩT ;R

k), if

[v]p
α,γ ;p;ΩT

:=
T∫

0

∫
Ω

∫
Ω

|v(x, t) − v(y, t)|p
|x − y|n+αp

dx dy dt +
∫
Ω

T∫
0

T∫
0

|v(x, t) − v(x, τ )|p
|t − τ |1+γp

dt dτ dx < ∞.

The local variant, i.e. the space W
α,γ ;p
loc (ΩT ;R

k) is defined as usual. This means that v ∈ W
α,γ ;p
loc (ΩT ;R

k), if v ∈
Wα,γ ;p(Q̃;R

k) for all sub-cylinders Q̃ � ΩT .
We will need the following parabolic boundary version of the well-known relation between fractional Sobolev

spaces and Nikolskii spaces. The proof can be adapted from the standard proof in the interior case, presented for
instance in [25, Lemma 2.5].
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Lemma 2.5. Let v ∈ Lp(Q+
2R;R

k), 1 � p < ∞, k ∈ N, R > 0. Then the following assertions hold:

(i) Suppose that

∫
B+

R

R2∫
−R2

|τhv|p dt dx � c1‖v‖p

Lp(Q+
2R)

|h|pγ , γ ∈ (0,1),

for every h ∈ R such that 0 < |h| � min{R2,A1} where A1, c1 > 0 are positive constants. Then for every γ̃ ∈
(0, γ ) there exists c̃1 = c̃1(n,p, γ, γ̃ ,A1, c1,R

2), such that

∫
B+

R

R2∫
−R2

R2∫
−R2

|v(x, t) − v(x, τ )|p
|t − τ |1+γ̃ p

dτ dt dx � c̃1.

(ii) Suppose that

R2∫
−R2

∫
B+

R

∣∣τα
h v
∣∣p dx dt � c2‖v‖p

Lp(Q+
2R)

|h|pγ for some γ ∈ (0,1),

whenever h ∈ R such that 0 < |h| � R
A2

and α ∈ {1, . . . , n} where A2 � 1 and c2 > 0. In the case α = n we impose
the preceding estimate for h > 0 only. Then, for any γ̃ ∈ (0, γ ) there exists c̃2 = c̃2(n,p,R,γ, γ̃ ,A2, c2), such
that

R2∫
−R2

∫
B+

R/2

∫
B+

R/2

|v(x, t) − v(y, t)|p
|x − y|n+γ̃ p

dx dy dt � c̃2.

To conclude estimates for the Hausdorff-dimension of the singular set we will use the boundary version of [16,
Proposition 3.3].

Lemma 2.6. Let u ∈ Wβ,β/2;2(Q+
R ;R

k) with β ∈ (0,1) and let

A :=
{
z0 ∈ ΓR: lim inf

	↓0
−
∫

Q+
	 (z0)

∣∣u − (u)z0,	

∣∣2 dz > 0

}
,

B :=
{
z0 ∈ ΓR: lim sup

	↓0

∣∣(u)+z0,	

∣∣= ∞
}
.

Then

dimP (A) � n + 2 − 2β and dimP (B) � n + 2 − 2β.

3. Higher integrability up to the boundary

In this section we are concerned with the higher integrability properties up to the lateral boundary of weak solutions
to certain non-linear parabolic systems with p-growth. Such a higher integrability is needed in order to obtain the δ-
improvement in (1.7) in Theorem 1.3 when establishing an improvement of the estimate for the dimension of the
singular set at the lateral boundary. The main outcome with this respect is the following up to the lateral boundary
higher integrability result. For related higher integrability results see [1,31].
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Lemma 3.1. Suppose that f ∈ Lσ1(Q+
R ;R

N) and b ∈ Lσ1(Q+
R ;R

Nn) for some σ1 > 2, R > 0 and that v ∈
L2(ΛR2;W 1,2(B+

R ;R
N)) is a weak solution of the following non-linear inhomogeneous parabolic system

vt − diva(x, t,Dv) = divb(x, t) + f (x, t) in Q+
R,

satisfying v = 0 on the lateral boundary ΓR where the vector field a :Q+
R ×R

Nn → R
Nn fulfills the following ellipticity

and growth conditions:〈
a(x, t,w) · w〉� ν|w|2, ∣∣a(x, t,w)

∣∣� L|w|,
for all (x, t) ∈ Q+

R and w ∈ R
Nn, with 0 < ν � 1 � L. Then there exists σ2 = σ2(n,L/ν) ∈ (2, σ1] such that Dv ∈

Lσ2(Q+
R/2;R

Nn). Moreover, for any σ ∈ (2, σ2] and 0 < 	 � R and for a constant c = c(n,N,L/ν), we have

−
∫

Q+
	/2

|Dv|σ dz � c

(
−
∫
Q+

	

|Dv|2 dz

) σ
2 + c −

∫
Q+

	

|b|σ + 	σ |f |σ dz.

Proof. First, we will show a reverse-Hölder-type inequality on parabolic cylinders, respectively half-cylinders. We
distinguish the following different cases.

Case z0 = (x0, t0) ∈ ΓR , Q2�(z0) ��� QR . We choose cut-off functions η ∈ C∞
0 (B	(x0)) with η = 1 on B	/2(x0),

0 � η � 1 and |Dη| � c/	 and ζ ∈ C1
0(Λ	2(t0)) with 0 � ζ � 1, ζ = 1 on Λ(	/2)2(t0) and |ζt | � 2/	2. Moreover, for

t ∈ Λ	2(t0), θ > 0 we define χθ ∈ W 1,∞(R) as follows: χθ ≡ 1 on (−∞, t], and χθ (τ ) = 1− 1
θ
(τ − t) on (t, t +θ) and

χθ ≡ 0 on [t + θ,∞). We now proceed formally by testing the parabolic system with ϕ(x, t) = χθ (t)η
2(x)ζ(t)v(x, t)

and then letting θ ↓ 0. The argument can be justified by use of Steklov averages (see Section 2.2). Testing our parabolic
system in its weak formulation we obtain for a.e. t ∈ Λ	2(t0)

1

2

∫
B+

	 (x0)

η2ζ
∣∣v(·, t)∣∣2 dx +

t∫
t0−	2

∫
B+

	 (x0)

η2ζ
〈
a(·,Dv),Dv

〉
dx dτ

=
t∫

t0−	2

∫
B+

	 (x0)

η2ζt |v|2 − 2ηζ
〈
a(·,Dv),Dη ⊗ v

〉− ζ
〈
b,D

(
η2v

)〉− η2ζ 〈f, v〉dx dτ

=: I + II + III + IV, (3.1)

with the obvious meaning of I–IV . In the sequel we shall estimate the integrals I–IV . Since |ζt | � 2/	2 we have

|I | � 2
∫

Q+
	 (z0)

∣∣∣∣v	
∣∣∣∣
2

dz.

Using |Dη| � c/	, the growth (1.2)1 of a and Young’s inequality with ε > 0 (to be chosen later) we find

|II| � ε

t∫
t0−	2

∫
B+

	 (x0)

η2ζ |Dv|2 dx dτ + cL2

ε

∫
Q+

	 (z0)

∣∣∣∣v	
∣∣∣∣
2

dz.

Once again by Young’s inequality and the fact that |Dη| � c/	 we obtain

|III| �
t∫

t0−	2

∫
B+

	 (x0)

|b|(η2ζ |Dv| + 2ηζ |Dη||v|)dx dτ

� ε

t∫
t0−	2

∫
B+(x )

η2ζ |Dv|2 dx dτ + ε

∫
Q+(z )

∣∣∣∣v	
∣∣∣∣
2

dz + c

ε

∫
Q+(z )

|b|2 dz,
	 0 	 0 	 0
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and similarly

|IV| �
∫

Q+
	 (z0)

|f ||v|dz �
∫

Q+
	 (z0)

∣∣∣∣v	
∣∣∣∣
2

dz + 	2
∫

Q+
	 (z0)

|f |2 dz.

Moreover, with the help of the ellipticity assumption on the vector field a we can bound the second integral on the
left-hand side of (3.1) from above by

ν

t∫
t0−	2

∫
B+

	 (x0)

η2ζ |Dv|2 dx dτ.

Choosing ε small enough (i.e. ε = ν/4) in order to absorb the terms involving Dv on the left-hand side we get

∫
B+

	 (x0)

η2ζ
∣∣v(·, t)∣∣2 dx +

t∫
t0−	2

∫
B+

	 (x0)

η2ζ |Dv|2 dx dτ � c

∫
Q+

	 (z0)

∣∣∣∣v	
∣∣∣∣
2

+ |b|2 + 	2|f |2 dz,

for a.e. t ∈ Λ	2(t0) where c = c(L/ν) (note that we have assumed ν � 1 � L). Taking the supremum over t ∈ Λ	2(t0)

in the first term of the left-hand side as well as letting t = t0 + 	2 in the second one, noting that η ≡ 1 on B+
	/2(x0)

and ζ ≡ 1 on Λ(	/2)2(t0) and taking mean values we finally arrive at the following Caccioppoli inequality

sup
t∈Λ

(	/2)2 (t0)

−
∫

B+
	/2(x0)

∣∣∣∣v(·, t)
	

∣∣∣∣
2

dx + −
∫

Q+
	/2(x0)

|Dv|2 dz � c −
∫

Q+
	 (z0)

∣∣∣∣v	
∣∣∣∣
2

+ |b|2 + 	2|f |2 dz.

We note that this inequality holds for any parabolic cylinder with z0 ∈ ΓR and Q	(z0) ⊂ QR . Therefore, starting with
a cylinder Q	(z0) such that Q2	(z0) � QR we can apply the preceding inequality with Q+

	 (z0) replaced by Q+
2	(z0).

Moreover, since v = 0 on Γ	(z0) we can apply the Sobolev–Poincaré inequality slice wise on B+
	 (x0) × {t}. Proceed-

ing this way leads us to

−
∫

Q+
	 (z0)

∣∣∣∣v	
∣∣∣∣
2

dz �
[

sup
t∈Λ

	2 (t0)

−
∫

B+
	 (x0)

∣∣∣∣v(·, t)
	

∣∣∣∣
2

dx

] 2
n+2 −

∫
Λ

	2 (t0)

[
−
∫

B+
	 (x0)

∣∣∣∣v	
∣∣∣∣
2

dx

] n
n+2

dτ

� c

[
−
∫

Q+
2	(z0)

∣∣∣∣v	
∣∣∣∣
2

+ |b|2 + 	2|f |2 dz

] 2
n+2 −

∫
Q+

	 (z0)

|Dv| 2n
n+2 dz.

We further estimate the right-hand side by Young’s inequality with ε > 0 (to be chosen later) and Poincaré’s inequality
(which can be applied slice wise to |v(·, t)|2 for a.e. t ∈ Λ	2(t0) since v = 0 on Γ	(z0)) to obtain

−
∫

Q+
	 (z0)

∣∣∣∣v	
∣∣∣∣
2

dz � +	2|f |2 dz + c

ε

[
−
∫

Q+
	 (z0)

|Dv| 2n
n+2 dz

] n+2
n

,

where c = c(n,L/ν). Using this estimate to bound the term involving | v
	
|2 in the above Caccioppoli inequality and

choosing ε > 0 suitably small (i.e. ε = 1/(2c)) we arrive at the following reverse-Hölder-type inequality:

−
∫

Q+
	/2(x0)

|Dv|2 dz � 1

2
−
∫

Q+
2	(z0)

|Dv|2 dz + c

[
−
∫

Q+
	 (z0)

|Dv| 2n
n+2 dz

] n+2
n + c −

∫
Q+

2	(z0)

|b|2 + 	2|f |2 dz,

where c = c(n,L/ν).
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Case Q2�(z0) ⊂ Q+
R . Here, we test the weak formulation of the parabolic system with the test-function ϕ(x, t) =

χθ (t)η
2(x)ζ(t)(v(x, t) − (v)η(t)) where

(v)η(t) =
( ∫

B	(x0)

η2(x) dx

)−1 ∫
B	(x0)

v(x, t)η2(x) dx.

The definition of (v)η easily yields

t∫
t0−	2

∫
B	(x0)

∂t (v)ηζη2(v − (v)η
)
dx dτ = 0.

Therefore, with the arguments from the first case we can deduce the following reverse-Hölder inequality for interior
cylinders:

−
∫

Q	/2(x0)

|Dv|2 dz � 1

2
−
∫

Q2	(z0)

|Dv|2 dz + c

[
−
∫

Q	(z0)

|Dv| 2n
n+2 dz

] n+2
n + c −

∫
Q2	(z0)

|b|2 + 	2|f |2 dz,

where c = c(n,L/ν). We note that by a different choice of the cut-off functions we can attain on the right-hand side
of the reverse-Hölder inequalities above integrals involving only Q+

	 (z0), respectively Q	(z0) instead of Q+
2	(z0), re-

spectively Q2	(z0)
+. Hence, we are exactly in a position to apply the up to the boundary version of Gehring’s theorem

from [14, Theorem 2.4] which extends verbatim to the case when we are considering parabolic cylinders (with slight
modifications allowing for the presence of the first integral on the right-hand side of the reverse-Hölder inequality,
see for instance [22, Chapter V] or [23, Proposition 1.1, Theorem 6.6]). The application of Gehring’s theorem then
yields the existence of a higher integrability exponent σ2 = σ2(n,L/ν) ∈ (2, σ1] such that Dv ∈ Lσ2(Q+

R/2;R
Nn).

Moreover, for any 0 < 	 � R and σ ∈ (2, σ2] we have

−
∫

Q+
	/2

|Dv|σ dz � c

(
−
∫
Q+

	

|Dv|2 dz

) σ
2 + c −

∫
Q+

	

|b|σ + 	σ |f |σ dz,

where c = c(n,N,L/ν). �
4. Differentiable parabolic systems

In this section we are concerned with the up to the boundary higher differentiability properties of weak solutions
of certain non-linear parabolic systems with Lipschitz continuous coefficients of linear growth. To be precise, on the
half-cylinder Q+

R , respectively on Q0
R , R > 0, we consider a weak solution u of the following parabolic system

ut − diva(x, t,Du) = G(x, t) in Q, (4.1)

where either Q = Q+
R or Q = Q0

R . In the lateral boundary situation we consider weak solutions u ∈ L2(ΛR2;
W 1,2(B+

R ;R
N)), satisfying u = 0 on ΓR , whereas in the initial boundary situation we consider u ∈ L2(Λ0

R2;
W 1,2(BR;R

N)), satisfying u(·,0) = 0 on BR and, moreover G = 0. For the vector field a :Q+
R × R

Nn → R
Nn,

respectively a :Q0
R × R

Nn → R
Nn we assume that a is differentiable with respect to w, Lipschitz continuous with

respect to x, Hölder continuous with respect to t and (x, t,w) �→ a(x, t,w), ∂wa(x, t,w) are Carathéodory functions.
Moreover, we shall assume the following ellipticity and growth conditions on a:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣a(x, t,w)
∣∣+ (

1 + |w|)∣∣∂wa(x, t,w)
∣∣� L

(
1 + |w|),〈

∂wa(x, t,w)w̃, w̃
〉
� ν|w̃|2,∣∣a(x, t,w) − a(x̃, t,w)

∣∣� Lγ |x − x̃|(1 + |w|),∣∣a(x, t,w) − a(x, τ,w)
∣∣� Lγ |t − τ | 1+ϑ

2
(
1 + |w|),

(4.2)

for all x, x̃ ∈ B+
R , respectively BR and t, τ ∈ ΛR2 , respectively Λ0

R2 and w, w̃ ∈ R
Nn, where 0 < ν � 1 � L < ∞,

γ � 1 and ϑ ∈ (0,1).
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4.1. The lateral boundary

We first consider the lateral boundary situation, where Q = Q+
R in (4.1). Throughout the whole section we shall

consider weak solutions under the following general assumptions:

Definition 4.1. By a weak solution of the parabolic system (4.1) on Q+
R we mean a function u ∈ L2(ΛR2;

W 1,2(B+
R ;R

N)) with u = 0 on the lateral boundary ΓR which satisfies (4.1) in the weak sense. Moreover, the structure
conditions (4.2) are in force.

As usual, we can rewrite the weak formulation of the parabolic system equivalently using the Steklov-means
defined in (2.4) – see also [7, Section 2.2] – i.e. for a.e. t ∈ ΛR2 and 0 < |h| � T/2 there holds∫

B+
R

∂tuh(·, t) · ϕ + 〈[
a
(·, t,Du(·, t))]

h
,Dϕ

〉
dx =

∫
B+

R

〈
Gh(·, t), ϕ

〉
dx, (4.3)

for all ϕ ∈ C∞
0 (B+

R ;R
N). See [7, Section 2.2] for related definitions and notations.

4.1.1. Higher differentiability
Let us recall the interior higher differentiability result from [18, Lemmas 5.1 and 5.2] stating that u admits a second

spatial derivative D2u ∈ L2
loc and a first time-derivative ∂tu ∈ L2

loc in the interior. Our aim here is to extend these higher
differentiability properties up to the lateral boundary Γ . Let us mention that neither the proof for the parabolic interior
situation nor the one for the elliptic boundary situation does directly apply here. The basic difficulty is the following,
and it has been already mentioned in the Introduction: As usual we start proving that the second tangential derivatives
DαDβu, α + β < 2n exist in L2. But then we are left with two missing derivatives to estimate, namely the first time
derivatives, and the second normal derivatives, but for no more than one of them we can exploit the parabolic system.
In the elliptic situation this difficulty does not arise – see for instance [26, Section 4] and the references therein – in
fact the only missing direction is the normal one and estimates for it can be obtained starting from the estimates for the
tangential direction and the fact that the normal direction solves a differentiated form of the systems in the interior of
the domain. To overcome this difficulty we shall use an iterated finite difference method which employs estimates for
fractional second finite differences in time to finally achieve a full first derivative in time of the solution. The iteration
scheme can be roughly illustrated as follows:

�
1
2
h u ⇒ �

1
2
h Du ⇒ �

1
2
h �

1
2
h u ⇒ �

1− ϑ
4

h u ⇒ �
1
2 + ϑ

4
h Du ⇒ �

1
2
h �

1
2 + ϑ

4
h u ⇒ �1

hu.

The preceding inclusions have to be understood as follows: all the implications mean that the quantities considered are
uniformly bounded – with respect to the difference parameter h > 0 – in the L2-norm, while �α

h = h−ατh, see (2.6);
recall also from (4.2)4 that t �→ a(x, t,w) ∈ C0,(1+ϑ)/2, with ϑ ∈ (0,1). The L2-estimate for �1

hu then yields a time
derivative ∂tu ∈ L2. This iteration will be performed through Lemma 4.4 – Proposition 4.8. Then, having proved
the existence of the first time derivative in L2 we can finally exploit the system for the second normal derivative,
yielding that we also have DnDnu ∈ L2. Since the result seems to be interesting in its own we shall summarize it in
the following theorem which is a consequence of Propositions 4.3, 4.8 and 4.10 below.

Theorem 4.2. Suppose that u ∈ L2(ΛR2;W 1,2(B+
R ;R

N)) with u = 0 on the lateral boundary ΓR is a weak solution
of the parabolic system (4.1) where the structure conditions (4.2) are in force. Moreover, let G ∈ N 0,ϑ;2(Q+

R ;R
N),

where ϑ has been defined in (4.2)4. Then, D2u ∈ L2(Q+
r ,R

n2N) and ∂tu ∈ L2(Q+
r ,R

N) for all 0 < r < R. Moreover,
for any 0 < 	 � R there holds∫

Q+
	/2

∣∣D2u
∣∣2 + |∂tu|2 dz � c

[(
γ 2 + 	−2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

where c = c(n,N,L/ν,ϑ) and c → ∞ when ϑ ↓ 0.
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As mentioned above we first consider the derivatives DαDu with respect to the tangential directions α =
1, . . . , n − 1. We start with a Caccioppoli-type inequality for the tangential derivatives.

Proposition 4.3. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1. Then, Du is weakly differentiable

with respect to xα for any α = 1, . . . , n − 1 and DαDu ∈ L2(Q+
r ,R

Nn) for all 0 < r < R. Moreover, there exists a
constant c = c(n,N,L/ν) such that for any 0 < 	 � R we have

sup
t∈Λ

(	/2)2

∫
B+

	/2

∣∣Dαu(·, t)∣∣2 dx +
∫

Q+
	/2

|DαDu|2 dz � c

[(
γ 2 + 	−2) ∫

Q+
	

(
1 + |Du|2)dz +

∫
Q+

	

|G|2 dz

]
.

Proof. We consider a fixed tangential direction xα , α = 1, . . . , n − 1. For |h| sufficiently small we replace in (4.3)
(after replacing h by λ) the test-function ϕ by τα−hϕ, perform an integration by parts for finite differences and then
integrate for t ∈ Λ	2 over (−	2, t). This leads us to

t∫
−	2

∫
B+

R

∂t τ
α
h [uλ] · ϕ + 〈

τα
h

[
a(·,Du)

]
λ
,Dϕ

〉
dx dτ =

t∫
−	2

∫
B+

R

〈
Gλ, τ

α−hϕ
〉
dx dτ.

Now, we choose cut-off functions η ∈ C∞
0 (B3	/4) with 0 � η � 1, η ≡ 1 on B	/2, |Dη| � c/	 and ζ ∈ C1(R) with

0 � ζ � 1, ζ ≡ 0 on (−∞,−	2), ζ ≡ 1 on (−(	/2)2,∞) and |ζ ′| � 2/	2. Choosing in the preceding identity the
test-function ϕ(x, t) = η2(x)ζ(t)τα

h [uλ](x, t) with 0 < |h| � 	/8 the first term on the right-hand side can be rewritten
in the form

t∫
−	2

∫
B+

R

∂t τ
α
h [uλ] · ϕ dx dτ = 1

2

∫
B+

	

∣∣τα
h uλ(·, t)

∣∣2η2ζ(t) dx − 1

2

t∫
−	2

∫
B+

	

∣∣τα
h uλ

∣∣2η2ζt dx dτ. (4.4)

Passing to the limit λ ↓ 0 we therefore obtain

1

2

∫
B+

	

∣∣τα
h u(·, t)∣∣2η2ζ(t) dx +

t∫
−	2

∫
B+

	

〈
τα
h

[
a(·,Du)

]
,Dτα

h u
〉
η2ζ dx dτ

=
t∫

−	2

∫
B+

	

1

2

∣∣τα
h u
∣∣2η2ζt − 2

〈
τα
h

[
a(·,Du)

]
,Dη ⊗ τα

h u
〉
ηζ + 〈

G,τα−h

(
η2τα

h u
)〉
ζ dx dτ,

for a.e. t ∈ Λ	2 . We now decompose

τα
h

[
a
(·, ·,Du(·,·))](x, t) = A(h)(x, t) + B(h)(x, t), (4.5)

where

A(h)(x, t) := a
(
x + heα, t,Du(x + heα, t)

)− a
(
x + heα, t,Du(x, t)

)

=
1∫

0

∂wa
(
x + heα, t,Du(x, t) + sτα

h [Du](x, t)
)
ds τα

h [Du](x, t)

and B(h)(x, t) := a(x +heα, t,Du(x, t))− a(x, t,Du(x, t)). Then the preceding integral identity can be rewritten as
follows:

1

2

∫
B+

∣∣τα
h u(·, t)∣∣2η2ζ(t) dx +

t∫
−	2

∫
B+

〈
A(h) + B(h),Dτα

h u
〉
η2ζ dx dτ
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= −2

t∫
−	2

∫
B+

	

〈
A(h) + B(h),Dη ⊗ τα

h u
〉
ηζ dx dτ +

t∫
−	2

∫
B+

	

1

2

∣∣τα
h u
∣∣2η2ζt + 〈

G,τα−h

(
η2τα

h u
)〉
ζ dx dτ. (4.6)

From the ellipticity condition (4.2)2 we infer that〈
A(h)(x, t),Dτα

h u(x, t)
〉
� ν

∣∣τα
h [Du](x, t)

∣∣2.
This implies for the integral involving A(h) on the left-hand side of (4.6) that

t∫
−	2

∫
B+

	

〈
A(h),Dτα

h u
〉
η2ζ dx dτ � ν

t∫
−	2

∫
B+

	

∣∣τα
h [Du]∣∣2η2ζ dx dτ.

On the other hand, from the upper bound (4.2)1 we have |A(h)(x, t)| � L|τα
h [Du](x, t)|. Hence, the integral involving

A(h) on the right-hand side of (4.6) can be estimated using Young’s inequality with ε > 0 (to be chosen later) by

2

∣∣∣∣∣
t∫

−	2

∫
B+

	

〈
A(h),Dη ⊗ τα

h u
〉
ηζ dx dτ

∣∣∣∣∣� 2L

t∫
−	2

∫
B+

	

∣∣τα
h [Du]∣∣|Dη|∣∣τα

h u
∣∣ηζ dx dτ

� ε

t∫
−	2

∫
B+

	

∣∣τα
h [Du]∣∣2η2ζ dx dτ + L2

ε

t∫
−	2

∫
B+

	

|Dη|2∣∣τα
h u
∣∣2ζ dx dτ.

To estimate the integrals involving B(h) in (4.6) we exploit the Lipschitz continuity of the vector field a(x, t,w)

with respect to x from (4.2)3 in the form of the inequality |B(h)(x, t)| � Lγ |h|(1 + |Du(x, t)|). Subsequently using
Young’s inequality we obtain∣∣∣∣∣

t∫
−	2

∫
B+

	

〈
B(h),Dτα

h u
〉
η2ζ dx dτ

∣∣∣∣∣� ε

t∫
−	2

∫
B+

	

∣∣τα
h [Du]∣∣2η2ζ dx dτ + L2γ 2|h|2

ε

t∫
−	2

∫
B+

	

(
1 + |Du|)2

η2ζ dx dτ

and similarly

2

∣∣∣∣∣
t∫

−	2

∫
B+

	

〈
B(h),Dη ⊗ τα

h u
〉
ηζ dx dτ

∣∣∣∣∣

� ε

t∫
−	2

∫
B+

	

|Dη|2∣∣τα
h u
∣∣2ζ dx dτ + L2γ 2|h|2

ε

t∫
−	2

∫
B+

	

(
1 + |Du|)2

η2ζ dx dτ.

We now turn our attention to the estimate of the integral containing the inhomogeneity G. First, we write

t∫
−	2

∫
B+

	

〈
G,τα−h

(
η2τα

h u
)〉
ζ dx dτ =

t∫
−	2

∫
B+

	

〈
G,η(x − heα)τα−h

(
ητα

h u
)〉
ζ + 〈

G,
(
τα−hη

)(
ητα

h u
)〉
ζ dx dτ

=: I + II,

with the obvious meaning of I and II. In turn we estimate I with Young’s inequality and (2.7) by

|I | �
t∫

−	2

∫
B+

|G|∣∣τα−h

(
ητα

h u
)∣∣ζ dx dτ
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� ε

h2

t∫
−	2

∫
B+

	

∣∣τα−h

(
ητα

h u
)∣∣2ζ dx dτ + h2

ε

∫
Q+

	

|G|2 dz

� ε

t∫
−	2

∫
B+

	

∣∣Dα

(
ητα

h u
)∣∣2ζ dx dτ + h2

ε

∫
Q+

	

|G|2 dz

� cε

t∫
−	2

∫
B+

	

∣∣τα
h Du

∣∣2η2ζ + |Dη|2∣∣τα
h u
∣∣2ζ dx dτ + h2

ε

∫
Q+

	

|G|2 dz.

Using again Young’s inequality and the fact that |Dη| � c/	 we get

|II| �
∫

Q+
	

|G|∣∣τα−hη
∣∣∣∣τα

h u
∣∣ηζ dz

� 	−2
∫

Q+
	

∣∣τα
h u
∣∣2η2ζ dz + 	2

∫
Q+

	

|G|2∣∣τα−hη
∣∣2 dz

� 	−2
∫

Q+
	

∣∣τα
h u
∣∣2η2ζ dz + 	2h2

∫
Q+

	

∣∣G(x, t)
∣∣2 1∫

0

∣∣Dη(x − sheα)
∣∣2ds dz

� 	−2
∫

Q+
	

∣∣τα
h u
∣∣2η2ζ dz + ch2

∫
Q+

	

|G|2 dz.

Joining the preceding estimates with (4.6), noting that |ζt | � 2/	2, |Dη| � c/	, sptη ⊂ B3	/4 and choosing ε suffi-
ciently small in order to re-absorb the integrals involving |τα

h [Du]| we arrive at

∫
B+

	

∣∣τα
h u(·, t)∣∣2η2ζ(t) dx +

t∫
−	2

∫
B+

	

∣∣τα
h [Du]∣∣2η2ζ dx dτ

� c	−2
∫

Q+
3	/4

∣∣τα
h u
∣∣2 dz + ch2

∫
Q+

	

(
γ 2(1 + |Du|)2 + |G|2)dz,

where c = c(n,L/ν). Passing in the first term on the left-hand side to the supremum over t ∈ Λ	2 , taking t = 	2 in
the second one, noting that η = 1 on B	/2 and ζ = 1 on Λ(	/2)2 and finally using Young’s inequality, (2.7) and the fact
that 0 < |h| � 	/8 leads us to

sup
t∈Λ

(	/2)2

∫
B+

	/2

∣∣τα
h u(·, t)∣∣2 dx +

∫
Q+

	/2

∣∣τα
h [Du]∣∣2 dz � ch2

[(
γ 2 + 	−2) ∫

Q+
	

(
1 + |Du|2)dz +

∫
Q+

	

|G|2 dz

]
.

Since 0 < |h| � 	/8 was arbitrary this proves that Du is weakly differentiable with respect to xα . Moreover, the
desired Caccioppoli-type estimate holds. Note that by a different choice of the involved radii and cylinder we can
infer that DαDu ∈ L2(Q+

r ,R
Nn) for any 0 < r < R. This finishes the proof of the lemma. �

Our next aim is to show that u is weakly differentiable with respect to time. In the interior this can be achieved by
using the system and the weak differentiability of Du with respect to x (see for instance [2,6,18]). In order to exploit
the system we have to control either the time derivative ∂tu or DnDu up to the boundary ΓR . As described at the
beginning of the section we shall derive an L2-estimate for ∂tu up to the boundary by a reiteration technique for finite
differences and then exploit the parabolic system in order to control DnDu. We start with the following
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Lemma 4.4. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1. Then, for all 0 < r < 	 � R and

0 < |h| � min{(	 − r)2,R2 − 	2} there holds∫
Q+

r

|τhu|2
|h| dz � c(L)

∫
Q+

	

(
1 + |Du|2 + 	2|G|2)dz.

Proof. We choose a cut-off function η ∈ C∞
0 (B	) with 0 � η � 1, η ≡ 1 on Br and |Dη| � 2/(	 − r). Taking

ϕ(x, t) = η2(x)τhu(x, t) as test-function in the Steklov-formulation (4.3) of the parabolic system, integrating with
respect to t over Λr2 and recalling the identity τhu = |h|∂tuh we find∫

Λ
r2

∫
B+

	

|τhu|2
|h| η2 dx dt =

∫
Λ

r2

∫
B+

	

∂tuh · η2τhudx dt

= −
∫

Λ
r2

∫
B+

	

(〈[
a(·,Du)

]
h
,D

(
η2τhu

)〉− 〈
Gh,η

2τhu
〉)

dx dt.

Using the bound from (4.2)1 on the coefficients a, the facts that |Dη| � 2/(	 − r) � 2/
√|h|, |h| � 	2 and Young’s

inequality we obtain∫
Λ

r2

∫
B+

	

|τhu|2
|h| η2 dx dt �

∫
Λ

r2

∫
B+

	

L
(
1 + |Du|h

)(|Dτhu|η2 + |τhu|∣∣Dη2
∣∣)+ |Gh||τhu|η2 dx dt

� 1

2

∫
Λ

r2

∫
B+

	

|τhu|2
|h| η2 dx dt + c

∫
Λ

r2

∫
B+

	

1 + |τhDu|2 + |Du|2h + 	2|Gh|2 dx dt,

where c = c(L). Now, we can absorb the first term of the right-hand side into the left. Using η ≡ 1 on Br and
0 < |h| � (	 − r)2 � 	2 − r2 the preceding inequality leads us to

∫
Q+

r

|τhu|2
|h| dz � c

r2∫
−r2

∫
B+

	

(
1 + |τhDu|2 + |Du|2h + 	2|Gh|2

)
dx dt � c

∫
Q+

	

(
1 + |Du|2 + 	2|G|2)dz,

where c depends on L only. This proves the desired estimate. �
Lemma 4.5. Let u be a weak solution of (4.1) on Q+

R according to Definition 4.1. Then, for all 0 < r < 	 � R and
0 < |h| � (R2 − 	2)/2 and ε ∈ (0,1] there holds

sup
t∈Λ

r2

∫
B+

r

∣∣τhu(·, t)∣∣2 dx +
∫

Q+
r

|τhDu|2 dz

� ε

∫
Q+

	

|τ−hτhu|2
|h| dz + c

(	 − r)2

∫
Q+

	

|τhu|2 dz + c|h|
[
|h|ϑγ 2

∫
Q+

	

(
1 + |Du|2)dz + 1

ε

∫
Q+

	

|G|2 dz

]
,

where c = c(L/ν) and G(x, t) := |G(x, t)| + |τhG(x, t)|.

Proof. Taking the difference of the Steklov-formulation (4.3) of the parabolic system (with h replaced by λ) at level
s + h and s we obtain for a.e. s ∈ ΛR2 that∫

B+
∂t (τhuλ)(·, s) · ϕ + 〈

τh

[
a(·, s,Du)

]
λ
,Dϕ

〉
dx =

∫
B+

〈
τhGλ(·, s), ϕ

〉
dx.
R R
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In this equation we choose the test-function ϕ(x, t) = η2(x)ζ(t)τh[uλ](x, t), where η ∈ C∞
0 (B	), ζ ∈ C1

0(Λ	2) are

cut-off functions with 0 � η � 1, η ≡ 1 on Br , |Dη| � 2/(	 − r), 0 � ζ � 1, ζ ≡ 1 on Λr2 and |ζ ′| � 2/(	 − r)2, and
then integrate with respect to time (the variable will be denoted by s) over (−	2, t), with t ∈ Λ	2 . Proceeding in this
way and noting that

t∫
−	2

∫
B+

	

∂t (τhuλ) · (τhuλ)η
2ζ dx ds = 1

2

t∫
−	2

∫
B+

	

∂t |τhuλ|2ζη2 dx ds

= 1

2

∫
B+

	

∣∣τhuλ(·, t)
∣∣2η2ζ(t) dx − 1

2

t∫
−	2

∫
B+

	

|τhuλ|2η2ζ ′ dx ds

we infer that

1

2

∫
B+

	

∣∣τhuλ(·, t)
∣∣2η2ζ(t) dx +

t∫
−	2

∫
B+

	

〈
τh

[
a(·,Du)

]
λ
,D

(
η2τhuλ

)〉
ζ dx ds

=
t∫

−	2

∫
B+

	

1

2
|τhuλ|2η2ζ ′ − 〈τhGλ, τhu〉η2ζ dx ds.

Passing to the limit λ ↓ 0 and rearranging terms we find that for a.e. t ∈ Λ	2 there holds

1

2

∫
B+

	

∣∣τhu(·, t)∣∣2η2ζ(t) dx +
t∫

−	2

∫
B+

	

〈
A(h) + B(h), τhDu

〉
η2ζ dx ds

= −2

t∫
−	2

∫
B+

	

〈
A(h) + B(h),Dη ⊗ τhu

〉
ηζ dx ds +

t∫
−	2

∫
B+

	

1

2
|τhu|2η2ζ ′ − 〈τhG, τhu〉η2ζ dx ds, (4.7)

where we have used the abbreviation

τh

[
a
(·, ·,Du(·,·))](x, s) = A(h)(x, s) + B(h)(x, s) (4.8)

with

A(h)(x, s) := a
(
x, s + h,Du(x, s + h)

)− a
(
x, s + h,Du(x, s)

)

=
1∫

0

∂wa
(
x, s + h,Du(x, s) + στh[Du](x, s)

)
dσ τh[Du](x, s)

and B(h)(x, s) := a(x, s + h,Du(x, s)) − a(x, s,Du(x, s)). From the ellipticity condition (4.2)2 we infer for the
integral involving A(h) on the left-hand side of (4.7) that

t∫
−	2

∫
B+

	

〈
A(h), τhDu

〉
η2ζ dx ds � ν

t∫
−	2

∫
B+

	

∣∣τh[Du]∣∣2η2ζ dx ds.

On the other hand, using the upper bound (4.2)1 and Young’s inequality with μ1 > 0 (to be chosen later) we obtain
for the integral involving A(h) on the right-hand side of (4.7) that



V. Bögelein et al. / Ann. I. H. Poincaré – AN 27 (2010) 145–200 163
2

∣∣∣∣∣
t∫

−	2

∫
B+

	

〈
A(h),Dη ⊗ τhu

〉
ηζ dx ds

∣∣∣∣∣� 2L

t∫
−	2

∫
B+

	

∣∣τh[Du]∣∣|Dη||τhu|ηζ dx ds

� μ1

t∫
−	2

∫
B+

	

∣∣τh[Du]∣∣2η2ζ dx ds + L2

μ1

∫
Q+

	

|Dη|2|τhu|2 dz.

To estimate the integrals involving B(h) in (4.7) we exploit the Lipschitz continuity of the vector field a(x, t,w) with
respect to t from (4.2)4 in the form

∣∣B(h)(x, s)
∣∣� Lγ |h| 1+ϑ

2
(
1 + ∣∣Du(x, s)

∣∣).
Using Young’s inequality again we find

∣∣∣∣∣
t∫

−	2

∫
B+

	

〈
B(h),Dτhu

〉
η2ζ dx ds

∣∣∣∣∣� μ1

t∫
−	2

∫
B+

	

∣∣τh[Du]∣∣2η2ζ dx ds + cμ1

∫
Q+

	

(
1 + |Du|)2

dz

and similarly

2

∣∣∣∣∣
t∫

−	2

∫
B+

	

〈
B(h),Dη ⊗ τhu

〉
ηζ dx ds

∣∣∣∣∣� μ1

∫
Q+

	

|Dη|2|τhu|2 dz + cμ1

∫
Q+

	

(
1 + |Du|)2

dz,

where cμ1 = L2γ 2|h|1+ϑμ−1
1 . Finally, we estimate the term in (4.7) involving the right side G. In the case

(	 − r)2 � |h| we use Young’s inequality to obtain

t∫
−	2

∫
B+

	

〈τhG, τhu〉η2ζ dx ds � |h|
∫

Q+
	

|τhG|2 dz + 1

|h|
∫

Q+
	

|τhu|2 dz � |h|
∫

Q+
	

|τhG|2 dz + 1

(	 − r)2

∫
Q+

	

|τhu|2 dz,

while in the case (	 − r)2 > |h| integration by parts for finite differences yields

t∫
−	2

∫
B+

	

〈τhG, ζτhu〉η2 dx ds =
t∫

−	2

∫
B+

	

〈
G,τ−h(ζ τhu)

〉
η2 dx ds

+
t+h∫
t

∫
B+

	

〈
G(·, s), ζ(s − h)τhu(·, s − h)

〉
η2 dx ds

−
−	2+h∫
−	2

∫
B+

	

〈
G(·, s), ζ(s − h)τhu(·, s − h)

〉
η2 dx ds

=: I + II + III, (4.9)

with the obvious meaning of I–III. Note that the previous formula holds for positive as well as for negative parame-
ters h; but for h > 0 we already have III = 0 since spt ζ ⊂ Λ	2 . To estimate I we use the identity

τ−h(ζ τhu)(s) = ζ(s − h)τ−hτhu(s) + τ−hζ(s)τhu(s)

as well as ζ � 1 and |τ−hζ | � 2|h|(	 − r)−2, t � 	2 and Young’s inequality with ε ∈ (0,1] to deduce
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I =
t∫

−	2

∫
B+

	

〈
G(·, s), ζ(s − h)τ−hτhu(·, s) + τ−hζ(s)τhu(·, s)〉η2 dx ds

�
∫

Q+
	

|G||τ−hτhu|dz + 2|h|
(	 − r)2

∫
Q+

	

|G||τhu|dz

� ε

∫
Q+

	

|τ−hτhu|2
|h| dz + 2|h|

ε

∫
Q+

	

|G|2 dz + ε|h|
(	 − r)4

∫
Q+

	

|τhu|2 dz

� ε

∫
Q+

	

|τ−hτhu|2
|h| dz + 2|h|

ε

∫
Q+

	

|G|2 dz + ε

(	 − r)2

∫
Q+

	

|τhu|2 dz,

where in the last line we have taken into account that |h| < (	−r)2. To estimate II we in turn perform a transformation,
apply Young’s inequality (with μ2 > 0 to be chosen later; note also that spt ζ ⊂ Λ	2 ) and estimate |G(·, s + h)|2 by

2|G(·, s)|2 + 2|τhG(·, s)|2. This leads us in the case h > 0 to

II =
t∫

t−h

∫
B+

	

〈
G(·, s + h), ζ(s)τhu(·, s)〉η2 dx ds

� |h|
2μ2

t∫
t−h

∫
B+

	

∣∣G(·, s + h)
∣∣2η2ζ(s) dx ds + μ2

2|h|
t∫

t−h

∫
B+

	

|τhu|2η2ζ dx ds

= |h|
μ2

∫
Q+

	

|G|2 + |τhG|2 dz + μ2

2|h|
∫

(t−h,t)∩Λ
	2

∫
B+

	

|τhu|2η2ζ dx ds

� |h|
μ2

∫
Q+

	

|G|2 + |τhG|2 dz + μ2 sup
s∈Λ

	2

∫
B+

	

∣∣τhu(·, s)∣∣2η2ζ(s) dx.

In the case h < 0 we obtain completely the same estimate when replacing the interval (t − h, t) by (t, t − h). In
completely the same way we achieve the estimate for III, which reads as follows:

III � |h|
μ2

∫
Q+

	

|G|2 + |τhG|2 dz + μ2 sup
s∈Λ

	2

∫
B+

	

∣∣τhu(·, s)∣∣2η2ζ(s) dx.

Combining the preceding estimates for I–III with (4.9) we deduce a bound for the integral involving the inhomo-
geneity also in the second case |h| < (	 − r)2. Subsequently, joining the preceding estimates for the terms appearing
in (4.7) and choosing μ1 as usual small enough (note that we can also switch to smaller values of ε and μ2 if necessary)
we finally arrive at

∫
B+

	

∣∣τhu(·, t)∣∣2η2ζ(t) dx +
t∫

−	2

∫
B+

	

|τhDu|2η2ζ dx ds

� 2μ2 sup
s∈Λ

	2

∫
B+

	

∣∣τhu(·, s)∣∣2η2ζ(s) dx + ε

∫
Q+

	

|τ−hτhu|2
|h| dz + c

(	 − r)2

∫
Q+

	

|τhu|2 dz

+ c|h|1+ϑγ 2
∫

Q+

(
1 + |Du|2)dz + |h|(ε−1 + μ−1

2

) ∫
Q+

|G|2 + |τhG|2 dz. (4.10)
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At this stage we note that sups∈Λ
	2

∫
B+

	
|τhu(·, s)|2η2ζ(s) dx <∞, and here we are using that sups∈Λ

	2

∫
B+

	
|u(·, s)|2 dx

is finite. Indeed, in the parabolic setting this expression appears on the left-hand side of the Caccioppoli inequality
(see for instance the proof of Lemma 3.1). Since (4.10) holds for a.e. t ∈ Λ	2 we can take the supremum over t ∈ Λ	2

in the first term on the left-hand side and let t ↑ 	2 in the second one. Choosing μ2 small enough, absorbing the
sup-term of the right-hand side on the left and recalling that η2ζ ≡ 1 on Q+

r the preceding estimate yields the desired
estimate for positive finite differences, i.e. for τhu, respectively τhDu. This proves the assertion of the lemma with a
constant c = c(L/ν). �
Corollary 4.6. Let u be a weak solution of (4.1) on Q+

R according to Definition 4.1. Then, for all 0 < r < 	 � R and
0 < |h| � (R2 − 	2)/2 and ε > 0 there holds, with c = c(L/ν)

sup
t∈Λ

r2

∫
B+

r

∣∣τhu(·, t)∣∣2 dx +
∫

Q+
r

|τhDu|2 dz

� c

(
1

(	 − r)2
+ 1

ε

) ∫
Q+

	

|τhu|2 dz + c|h|1+ϑγ 2
∫

Q+
	

(
1 + |Du|2)dz + ε

∫
Q+

	

|τhG|2 dz.

Proof. We proceed completely similar to the proof of Lemma 4.5 except for the term in (4.7) involving the right
side G. Here we now apply Young’s inequality to obtain

t∫
−	2

∫
B+

	

〈τhG, τhu〉η2ζ dx ds � ε

∫
Q+

	

|τhG|2 dz + 1

ε

∫
Q+

	

|τhu|2 dz.

Inserting this in (4.7) and replacing ε by a smaller value if necessary, this leads us to the desired estimate. �
Lemma 4.7. Let u be a weak solution of (4.1) on Q+

R according to Definition 4.1. Then, for all z0 = (x0, t0) ∈ Q+
R ∪ΓR

and 0 < r < 	 � R and 0 < |h| � 	2 such that Q+
2	(z0) ⊂ Q+

R there holds∫
Q+

r (z0)

|τ−hτhu|2
|h| dz � c

(
1 + |h|

(	 − r)2

) ∫
Q+

	 (z0)

|τhDu|2 + |τ−hDu|2 dz

+ c|h|1+ϑγ 2
(

1 + |h|
(	 − r)2

) ∫
Q+

	+√|h|(z0)

(
1 + |Du|2)dz

+ c|h|
∫

Q+
	 (z0)

|τhG|2 + |τ−hG|2 dz,

where c = c(L). (Note that Q+
r (z0), Q+

	 (z0) are not necessarily half-cylinders.)

Proof. For convenience in notation we omit the reference to the point z0 in the following and without loss of generality
we assume that t0 = 0. Moreover, since τ−hτhu = τhτ−hu we can assume without loss of generality that h > 0. We
start with the Steklov-formulation (4.3) of the system and take its difference at level t −h and t . Then, for a.e. t ∈ ΛR2

we have∫
B+

R

τ−h∂tuh(·, t) · ϕ + 〈
τ−h

[
a(·, t,Du)

]
h
,Dϕ

〉
dx =

∫
B+

R

〈
τ−hGh(·, t), ϕ

〉
dx.

In this equation we choose the test-function ϕ(x, t) = η2(x)τ−hτhu(x, t), where η ∈ C∞
0 (B	) is a cut-off function

with 0 � η � 1, η ≡ 1 on Br , |Dη| � 2/(	 − r). Integrating the resulting equation with respect to t over Λ	2 and
using also ∂tuh = τhu/h we obtain
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∫
Q+

	

|τ−hτhu|2
h

η2 dz =
∫

Q+
	

τ−h(∂tuh) · η2τ−hτhudz

=
∫

Q+
	

〈
τ−hGh,η

2τ−hτhu
〉+ 〈

τ−h

[
a(·,Du)

]
h
,D

(
η2τ−hτhu

)〉
dz.

With the notation introduced in (4.8) we decompose

τ−h

[
a(·,Du)

]
h

= [
τ−ha(·,Du)

]
h

=: [A(−h)
]
h

+ [
B(−h)

]
h
.

Using this and Young’s inequality we obtain from the second last equation for ε1, ε2 > 0 (to be chosen later) that

∫
Q+

	

|τ−hτhu|2
h

η2 dz �
∫

Q+
	

∣∣D(τ−hτhu)
∣∣2η2 + ε1

∣∣Dη2
∣∣2|τ−hτhu|2 + ε2|τ−hτhu|2η2 dz

+
∫

Q+
	

(
1 + ε−1

1

)(∣∣[A(−h)
]
h

∣∣2 + ∣∣[B(−h)
]
h

∣∣2)+ ε−1
2 |τ−hGh|2 dz

=: I1 + ε1I2 + ε2I3 + (
1 + ε−1

1

)
(I4 + I5) + ε−1

2 I6, (4.11)

with the obvious meaning of I1–I6. In turn we will estimate these terms. We start with the estimate for I1. Using (2.8)
we find

I1 � 2
∫

Q+
	

|τhDu|2 + |τ−hDu|2 dz.

The estimate for I2 is achieved by the use of |Dη| � 2/(	 − r) as follows:

I2 � 8

(	 − r)2

∫
Q+

	

|τ−hτhu|2η2 dz.

In order to get an estimate for I4 we use in turn (4.2)1 and the fact that |h| � 	2 to find

I4 �
	2+h∫
−	2

∫
B+

	

∣∣A(−h)
∣∣2 dx dt � L2

	2+h∫
−	2

∫
B+

	

|τ−hDu|2 dx dt � L2
∫

Q+
	

|τhDu|2 + |τ−hDu|2 dz.

For the estimate for I5 we use (4.2)3 and 	2 + |h| � (	 + √|h|)2 to infer

I5 �
	2+h∫
−	2

∫
B+

	

∣∣B(−h)
∣∣2 dx dt � L2γ 2|h|1+ϑ

	2+h∫
−	2

∫
B+

	

(
1 + |Du|)2

dx dt � L2γ 2|h|1+ϑ

∫
Q+

	+√|h|

(
1 + |Du|)2

dz.

Finally, for the estimate for I6 we decompose and enlarge the domain of integration in order to obtain

I6 �
	2+h∫
−	2

∫
B+

	

|τ−hG|2 dx dt =
	2∫

−	2

∫
B+

	

|τ−hG|2 dx dt +
	2∫

	2−h

∫
B+

	

|τhG|2 dx dt �
∫

Q+
	

|τhG|2 + |τ−hG|2 dz.

Combining the previous estimates with (4.11), choosing ε1 = (	−r)2
, ε2 = 1 and absorbing terms we arrive at
8|h| 4|h|
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∫
Q+

	

|τ−hτhu|2
h

η2 dz � c

(
1 + |h|

(	 − r)2

) ∫
Q+

	

|τhDu|2 + |τ−hDu|2 dz

+ c|h|1+ϑγ 2
(

1 + |h|
(	 − r)2

) ∫
Q+

	+√|h|

(
1 + |Du|2)dz + c|h|

∫
Q+

	

|τhG|2 + |τ−hG|2 dz,

where c = 100L2 for example. Together with η ≡ 1 on Br this yields the desired estimate. �
Having arrived at this stage we can join the preceding results to achieve the weak differentiability of u with respect

to the time variable t . To be precise

Proposition 4.8. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1 and let G ∈ N 0,ϑ;2(Q+

R ;R
N).

Then, ∂tu ∈ L2(Q+
r ;R

N) for any 0 < r < R and for all 0 < 	 � R there holds∫
Q+

	/2

|∂tu|2 dz � c

[(
γ 2 + 	−2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

where c = c(L/ν,ϑ) and c → ∞ when ϑ ↓ 0.

Proof. We consider 0 < |h| � (	/4)2 and 	/4 � r < s � 	/2. In the sequel we use the notions Zh(s, r) := 1 +
|h|(s − r)−2 and Zh(	) := 1 + |h|	−2. Applying in turn Lemma 4.7 (with radii r and (s + r)/2) and Lemma 4.5 (for
h and −h and with radii (s + r)/2, s and ε = [2cZh(s, r)]−1) and noting that (s + r)/2 + √|h| < 	/2 + 	/4 < 	 as
well as [(s + r)/2]2 + |h| < (	/2)2 + (	/4)2 < 	2 and |h|ϑ � 1 we obtain∫

Q+
r

|τ−hτhu|2
|h| dz � cZh(s, r)

∫
Q+

(s+r)/2

|τhDu|2 + |τ−hDu|2 dz

+ c|h|
[
γ 2 Zh(s, r)

∫
Q+

	

(
1 + |Du|2)dz +

∫
Q+

	

|G|2 dz

]

� 1

2

∫
Q+

s

|τ−hτhu|2
|h| dz + c

Zh(s, r)

(s − r)2

∫
Q+

	/2

|τhu|2 + |τ−hu|2 dz

+ c|h|Zh(s, r)

[
γ 2

∫
Q+

	

(
1 + |Du|2)dz +

∫
Q+

	

|G|2 dz

]
,

where c = c(L/ν). Applying the iteration lemma [7, Lemma 2.4] we can absorb the first integral on the right-hand
side in the preceding estimate on the left to infer∫

Q+
	/4

|τ−hτhu|2
|h| dz � c

Zh(	)

	2

∫
Q+

	/2

|τhu|2 + |τ−hu|2 dz

+ c|h|Zh(	)

[
γ 2

∫
Q+

	

(
1 + |Du|2)dz +

∫
Q+

	

|G|2 dz

]
. (4.12)

Since |h| � (	/4)2 we have Zh(	) � 2. On the other hand, applying Lemma 4.4 with h and −h we see that∫
Q+

|τhu|2 + |τ−hu|2 dz � c|h|
∫

Q+
	

(
1 + |Du|2 + 	2|G|2)dz.
	/2
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Inserting this in the second last estimate we arrive at∫
Q+

	/4

|τ−hτhu|2 dz � ch2M2, (4.13)

where we have set

M2 := (
γ 2 + 	−2) ∫

Q+
	

(
1 + |Du|2)dz +

∫
Q+

	

|G|2 dz.

Since τ−hτhu(t) = τhτhu(t − h) this implies∫
Q+

	/8

|τhτhu|2 dz �
∫

Q+
	/4

|τ−hτhu|2 dz � ch2M2,

for any choice of 0 < |h| � (	/8)2, and c = c(L/ν). At this stage we are in a position to apply Lemma 2.4 with
(1,1 − ϑ/4, cM, (	/8)2,2) instead of (α,β,M,h0, σ ) yielding

∫
Q+

	/8

|τhu|2 dz � c|h|2− ϑ
2

[
	ϑM2 + 	ϑ−4

∫
Q+

	

|u|2 dz

]
� c|h|2− ϑ

2 	ϑM2, (4.14)

for all 0 < |h| � (	/16)2. Here we have also used the Poincaré inequality from Lemma 2.2 to estimate
∫
Q+

	
|u|2 dz.

Moreover, the constant c depends on L/ν and ϑ and we have c → ∞ when ϑ ↓ 0. Now, we want to improve this

estimate in the sense that we attain h2 instead of |h|2− ϑ
2 on the right-hand side. For this we apply in turn Lemma 4.7

(with radii 	/32, 	/16) and Corollary 4.6 (for h and −h and with radii 	/16, 	/8 and ε = |h|1−ϑ	2ϑ ). Taking also
into account that 	−2 � |h|ϑ−1	−2ϑ and |h|−ϑ	2ϑ � 1 this yields∫

Q+
	/32

|τ−hτhu|2
|h| dz � c

∫
Q+

	/16

|τhDu|2 + |τ−hDu|2 dz

+ c|h|
[
|h|ϑγ 2

∫
Q+

	/8

(
1 + |Du|2)dz +

∫
Q+

	/16

|τhG|2 + |τ−hG|2 dz

]

� c|h|ϑ−1	−2ϑ

∫
Q+

	/8

|τhu|2 + |τ−hu|2 dz

+ c|h|
[
|h|ϑγ 2

∫
Q+

	/8

(
1 + |Du|2)dz + |h|−ϑ	2ϑ

∫
Q+

	/8

|τhG|2 + |τ−hG|2 dz

]
. (4.15)

Now, recalling the definition of M , using (4.14) for h and −h as well as the assumption G ∈ N 0,ϑ;2(Q+
R ;R

N) leads
us to ∫

Q+
	/32

|τ−hτhu|2
|h| dz � c|h|[(|h| ϑ

2 	−ϑ + |h|ϑ)M2 + c|h|ϑ	2ϑ‖G‖2
N 0,ϑ;2(Q+

	 )

]

� c|h|1+ ϑ
2 	−ϑ

[
M2 + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

for any 0 < |h| � (	/16)2 and with a constant c = c(L/ν,ϑ). Using once again the fact that τ−hτhu(t) = τhτhu(t −h)

we therefore arrive at
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∫
Q+

	/64

|τhτhu|2 dz �
∫

Q+
	/32

|τ−hτhu|2 dz � c|h|2+ ϑ
2 	−ϑ

[
M2 + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

valid for any 0 < |h| � (	/64)2. At this stage we can apply Lemma 2.4 a second time, but now with the choice
(1 + ϑ

4 ,1, c(	−ϑM2 + ‖G‖2
N 0,ϑ;2(Q+

	 )
), (	/128)2) for (α,β,M,h0). This yields

∫
Q+

	/64

|τhu|2 dz � ch2
[
M2 + ‖G‖2

N 0,ϑ;2(Q+
	 )

+ 	−4
∫

Q+
	

|u|2 dz

]

� ch2[M2 + ‖G‖2
N 0,ϑ;2(Q+

	 )

]
,

for any 0 < |h| � (	/128)2 and where c = c(L/ν). Note that we have used the Poincaré inequality from Lemma 2.2
in the last line. The preceding estimate implies ∂tu ∈ L2(Q+

R/64;R
N). Moreover, there holds∫

Q+
	/64

|∂tu|2 dz � c
[
M2 + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
.

Finally, we note that by a different choice of the radii we can also attain Q+
	/2 instead of Q+

	/64 as domain of integration
in the integral on the left-hand side. Recalling the definition of M then proves the desired estimate. Further, let us
note that again by a different choice of the involved radii and cylinder we also find that ∂tu ∈ L2(Q+

r ,R
N) for any

0 < r < R. This finishes the proof of the lemma. �
Later, in the proof of the dimension reduction we will need an estimate for finite differences in time of the gradients

of solutions of certain comparison systems. The following corollary will provide this estimate. It is an immediate
consequence of the results we have obtained so far.

Corollary 4.9. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1 and let G ∈ N 0,ϑ;2(Q+

R). Then
for all 0 < 	 � R and 0 < |h| � (	/4)2 there holds∫

Q+
	/2

|τhDu|2 dz � c(L/ν,ϑ)|h|
[(

γ 2 + 	−2) ∫
Q+

	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

where c(L/ν,ϑ) → ∞ when ϑ ↓ 0.

Proof. Applying Lemma 4.5 with the choice (	/2,3	/4,1) for (r, 	, ε) and noting that |τ−hτhu(t)| � |τhu(t)| +
|τhu(t − h)| we infer for 0 < |h| � (	/4)2 (then (3	/4)2 + |h| � 	2 and (3	/4 − 	/2)−2 = (	/4)−2 � |h|−1) that∫

Q+
	/2

|τhDu|2 dz � c|h|−1
∫

Q+
	

|τhu|2 dz + c|h|
∫

Q+
	

γ 2(1 + |Du|2)+ |G|2 dz.

In the preceding inequality we are going to use the fact that u is weakly differentiable with respect to time by Propo-
sition 4.8 and the L2-estimate for ∂tu. This leads us to∫

Q+
	/2

|τhDu|2 dz � c|h|
[(

γ 2 + 	−2) ∫
Q+

2	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
2	)

]
,

where c = c(L/ν) and by a different choice of radii we infer the asserted estimate. �
At this stage we are already able to control the time derivative ∂tu and all second derivatives DαDβu with α +

β < 2n. Therefore, we can use the parabolic system in order to establish the existence of the second normal derivative
DnDnu together with an estimate for its L2-norm.
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Proposition 4.10. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1 and let G ∈ N 0,ϑ;2(Q+

R ;R
N).

Then, Du is weakly differentiable with respect to xn on Q+
R with DnDu ∈ L2(Q+

r ,R
Nn) for all 0 < r < R. Moreover,

for any 0 < 	 � R we have

sup
t∈Λ

(	/2)2

∫
B+

	/2

∣∣Dnu(·, t)∣∣2 dx +
∫

Q+
	/2

|DnDu|2 dz � c

[(
γ 2 + 	−2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

where c = c(n,N,L/ν,ϑ) and c → ∞ when ϑ ↓ 0.

Proof. Let h ∈ (0, 	/2). Similarly to the estimates for the tangential directions in the proof of Proposition 4.3 we
decompose

τn
h

[
a
(·,Du(·))](x, t) = A(h)(x, t) + B(h)(x, t), (4.16)

where we have set

A(h)(x, t) := a
(
x + hen, t,Du(x + hen, t)

)− a
(
x + hen, t,Du(x, t)

)
=

1∫
0

∂wa
(
x + hen, t,Du(x, t) + sτn

h [Du](x, t)
)
ds τn

h [Du](x, t)

and B(h)(x, t) := a(x + hen, t,Du(x, t)) − a(x, t,Du(x, t)). From the ellipticity assumption (4.2)2 we infer that

ν
∣∣τn

h [Du](x, t)
∣∣2 � A(h)(x, t) · τn

h [Du](x, t)

=
n∑

α=1

τn
h

[
aα(·,Du)

]
(x, t) · τn

h [Dαu](x, t) − B(h)(x, t) · τn
h [Du](x, t).

Using (4.2)1 and (4.2)3 in order to estimate the right-hand side in (4.16) we obtain∣∣τn
h

[
aα(·,Du)

]∣∣� ∣∣A(h)
∣∣+ ∣∣B(h)

∣∣� L
(∣∣τn

h [Du]∣∣+ γ h
(
1 + |Du|)).

Inserting this for α = 1, . . . , n − 1 above, using once again that |B(h)| � γ h(1 + |Du|) and finally applying Young’s
inequality with ε > 0 we deduce

ν
∣∣τn

h [Du]∣∣2 � ε
∣∣τn

h [Du]∣∣2 + cε

[
n−1∑
α=1

∣∣τn
h [Dαu]∣∣2 + ∣∣τn

h

[
an(·,Du)

]∣∣2 + γ 2h2(1 + |Du|)2

]
,

where cε = c(n,L,1/ε). Choosing ε = ν/2 in order to absorb ε|τn
h [Du]|2 on the left side and integrating the resulting

pointwise estimate over Q+
	/2 then yields

∫
Q+

	/2

∣∣τn
h [Du]∣∣2 dz � c

n−1∑
α=1

∫
Q+

	/2

∣∣τn
h [Dαu]∣∣2 dz + c

∫
Q+

	/2

∣∣τn
h

[
an(·,Du)

]∣∣2 dz + cγ 2h2
∫

Q+
	/2

(
1 + |Du|)2

dz, (4.17)

where c = c(n,L/ν). By Proposition 4.3 we already know DnDαu ∈ L2(Q+
3	/4,R

n) for α = 1, . . . , n−1 and therefore

the standard L2-estimate for difference quotients implies∫
Q+

	/2

∣∣τn
h [Dαu]∣∣2 dz � h2

∫
Q+

3	/4

|DnDαu|2 dz, (4.18)

for any h ∈ (0, 	/4). From the facts that u is a solution of our parabolic system (4.1) and that DαDβu, α + β < 2n,
and ∂tu are L2-functions we find that Dnan(·,Du) ∈ L2(Q+

3	/4,R
n). Indeed, rewriting (4.1) as follows

Dnan(·,Du) = −
n−1∑

Dαaα(·,Du) + ut − G,
α=1
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we see that Propositions 4.3 and 4.8 imply that the right-hand side of this identity is in L2(Q+
3	/4;R

N). Therefore, the

standard L2-estimate for difference quotients applied to 1
h
τn
h [an(·,Du)] yields∫

Q+
	/2

∣∣τn
h

[
an(·,Du)

]∣∣2 dz � h2
∫

Q+
3	/4

∣∣Dna(·,Du)
∣∣2 dz

� c(n)h2
∫

Q+
3	/4

[
n−1∑
α=1

∣∣Dαaα(·,Du)
∣∣2 + |ut |2 + |G|2

]
dz. (4.19)

Moreover, using again the bound on ∂wa(x, t,w) from (4.2)1 and the Lipschitz continuity of x �→ a(x, t,w)

from (4.2)3 we obtain for α = 1, . . . , n − 1, |Dαaα(·,Du)| � L(|DαDu| + γ (1 + |Du|)). Now, we insert this into the
sum in (4.19), and then join the result with (4.18) and (4.17). This leads us to

∫
Q+

	/2

∣∣τn
h [Du]∣∣2 dz � ch2

∫
Q+

3	/4

[
n−1∑
α=1

|DαDu|2 + |ut |2 + γ 2(1 + |Du|)2 + |G|2
]

dz

� ch2
[(

	−2 + γ 2) ∫
Q+

	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
.

In the last line we have used Propositions 4.3 and 4.8 (with radii 3	/4, 	 instead of 	/2, 	, which can be achieved as
usual by a different choice of the involved cut-off functions and cylinders). Since this estimate holds for any choice
of h ∈ (0, 	/4) we conclude that DnDu ∈ L2(Q+

	/2;R
N) with the estimate∫

Q+
	/2

|DnDu|2 dz � c

[(
	−2 + γ 2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
.

Once again a different choice of the involved radii yields that DnDu ∈ L2(Q+
r ,R

Nn) for any 0 < r < R. Finally,
we turn our attention to the L2-estimate for Dnu(·, t). For this aim we consider t ∈ Λ(	/2)2 and choose cut-off

functions η ∈ C∞
0 (B3	/4) with 0 � η � 1, η = 1 on B	/2, |Dη| � c/	 and ζ ∈ C1(R) with 0 � ζ � 1, ζ ≡ 0

on (−∞,−(3	/4)2), ζ ≡ 1 on Λ(	/2)2 and |ζ ′| � c/	2. For the Steklov-mean uλ with λ ∈ (0, 	/4) we know that

∂tDnuλ ∈ L2(Q+
3	/4,R

N) and Dnuλ(·, t) ∈ L2(Q+
3	/4,R

N). Therefore, the following computation is justified:

1

2

∫
B+

	

∣∣Dnuλ(·, t)
∣∣2η2 dx = 1

2

t∫
−	2

∫
B+

	

∂τ

(|Dnuλ|2ζ
)
η2 dx dτ

= 1

2

t∫
−	2

∫
B+

	

(
∂τ |Dnuλ|2ζη2 + |Dnuλ|2ζ ′η2)dx dτ

=
t∫

−	2

∫
B+

	

(
Dn(∂τuλ) · Dnuλζη2 + 1

2
|Dnuλ|2ζ ′η2

)
dx dτ.

In the first integral on the right-hand side we integrate by parts, taking into account that ∂τ uλ(·, τ ) · Dnuλ(·, τ )η2 = 0
on ∂B+

	 . Applying also Young’s inequality this yields

t∫
−	2

∫
B+

Dn(∂τuλ) · Dnuλζη2 dx dτ =
t∫

−	2

∫
B+

∂τ uλ · Dn

(
Dnuλη

2)ζ dx dτ
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=
t∫

−	2

∫
B+

	

(
∂τ uλ · DnDnuλη

2ζ + ∂τ uλ · DnuλDnη
2ζ
)
dx dτ

� c

∫
Q+

	

(|∂τ uλ|2 + |DnDnuλ|2 + 	−2|Dnuλ|2
)
ηζ dz.

Inserting this above and recalling that |ζ ′| � c/	2 yields

1

2

∫
B+

	

∣∣Dnuλ(·, t)
∣∣2η2 dx � c

∫
Q+

	

(|∂τ uλ|2 + |DnDnuλ|2 + 	−2|Dnuλ|2
)
ηζ dz.

Passing to the limit λ ↓ 0 and recalling that η ≡ 1 on B	/2 and sptηζ ⊂ Q3	/4, we find that for a.e. t ∈ Λ(	/2)2 there
holds

1

2

∫
B+

	/2

∣∣Dnu(·, t)∣∣2 dx � c

∫
Q+

3	/4

(|∂τ u|2 + |DnDnu|2 + 	−2|Dnu|2)dz

� c

[(
	−2 + γ 2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]
,

where we have used in the last line Proposition 4.8 and the estimate from above for the L2-norm of |DnDnu| (again
with slightly changed radii 3	/4, 	 instead of 	/2, 	). Taking the supremum over t ∈ Λ(	/2)2 we obtain the desired
sup-estimate. This finishes the proof of the lemma. �
Lemma 4.11. Let u be a weak solution of (4.1) on Q+

R according to Definition 4.1 and let G ∈ N 0,ϑ;2(Q+
	 ;R

N).

Then, Du ∈ L2+ 4
n (Q+

r ;R
Nn) for all 0 < r < R. Moreover, for any 0 < 	 � R there holds

∫
Q+

	/2

|Du|2+ 4
n dz � c

[(
	−2 + γ 2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]1+ 2
n

,

where c = c(n,N,L/ν,ϑ) and c → ∞ when ϑ ↓ 0.

Proof. We choose a cut-off function η ∈ C∞
0 (B3	/4) with 0 � η � 1, η ≡ 1 on B	/2 and |Dη| � c/	. From Proposi-

tion 4.10 we know that |D2u| ∈ L2(Q+
3	/4). This allows us to apply the boundary version of the Sobolev-embedding

from Lemma 2.3 slice wise on B+
t = B+

3	/4 × {t} for t ∈ Λ(3	/4)2 , yielding that∫
B+

t

|Du|2+ 4
n η2 dx =

∫
B+

t

(|Du|1+ 2
n η
)2

dx

� c

( ∫
B+

t

∣∣D(|Du|1+ 2
n η
)∣∣ 2n

n+2 dx

) n+2
n

� c

( ∫
B+

t

(∣∣D|Du|1+ 2
n

∣∣η) 2n
n+2 dx

) n+2
n

+ c

( ∫
B+

t

|Du|2|Dη| 2n
n+2 dx

) n+2
n

=: cI (t) + cII(t),

where c = c(n). In the sequel we estimate I (t) and II(t). We start by considering I (t). First, we note that
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∣∣D|Du|1+ 2
n

∣∣= n + 2

n
|Du| 2

n

∣∣D|Du|∣∣� n + 2

n
|Du| 2

n

∣∣D2u
∣∣,

and using Hölder’s inequality we obtain

I (t) � c

( ∫
B+

t

|Du| 4
n+2

∣∣D2u
∣∣ 2n

n+2 dx

) n+2
n

� c

( ∫
B+

t

|Du|2 dx

) 2
n ·
∫

B+
t

∣∣D2u
∣∣2 dx.

We now turn our attention to II(t). Using |Dη| � c/	 we find that

II(t) � c	−2
( ∫

B+
t

|Du|2 dx

) 2
n ·
∫

B+
t

|Du|2 dx.

We now integrate over t ∈ Λ(	/2)2 , note that η ≡ 1 on B	/2 and insert the estimates for I (t) and II(t) above. This leads
us to ∫

Q+
	/2

|Du|2+ 4
n dz � c

(
sup

t∈Λ
(	/2)2

∫
B+

3	/4

∣∣Du(·, t)∣∣2 dx

) 2
n
∫

Q+
3	/4

∣∣D2u
∣∣2 + 	−2|Du|2 dz

� c

[(
	−2 + γ 2) ∫

Q+
	

(
1 + |Du|2)dz + ‖G‖2

N 0,ϑ;2(Q+
	 )

]1+ 2
n

,

where we have applied Propositions 4.3 and 4.10 in the last line (for radii 3	/4, 	 instead of 	/2, 	). Once again we

can also achieve Du ∈ L2+ 4
n (Q+

r ;R
n) for any 0 < r < R by a different choice of radii. �

4.1.2. Higher integrability
Here, we are concerned with the higher integrability properties of the time derivative, respectively second-order

space derivatives up to the lateral boundary of weak solutions of non-linear differentiable systems as considered
in (4.1). For this aim we will have to go through the sequence of the lemmas obtained in Section 4.1 and push them to

a higher exponent. We will start by showing the higher integrability of τhDu. Here, we shall use the fact that h− 1
2 τhDu

solves a linear parabolic system. This procedure results in the following integrability improvement of Lemma 4.5:

Lemma 4.12. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1 and suppose that G ∈ Lσ1(Q+

R,R
N)

for some σ1 > 2. Then there exists σ2 = σ2(n,L/ν) ∈ (2,min{σ1,2 + 4
n
}] such that for all σ ∈ (2, σ2], ε ∈ (0,1],

Q	(z0) ⊂ QR with z0 = (x0, t0) ∈ Q+
R ∪ ΓR and 0 < |h| � (R2 − 	2 − |t0|)/2 there holds

−
∫

Q+
	/2(z0)

|τhDu|σ dz � c

(
−
∫

Q+
	 (z0)

|τhDu|2 dz

) σ
2 + ε

σ
2 −

∫
Q+

	 (z0)

|τ−hτhu|σ
|h| σ

2
dz

+ c|h| σ
2

[
|h| ϑσ

2 γ σ −
∫

Q+
	 (z0)

(
1 + |Du|σ )dz + 1

ε
σ
2

−
∫

Q+
	 (z0)

|G|σ dz

]
,

where G is defined in Lemma 4.5 and c = c(n,N,L/ν).

Proof. We define vh = |h|−1/2τhu. For 0 < 	 � R and 0 < |h| < (R2 − 	2)/2 and ε ∈ (0,1] we obtain from
Lemma 4.5 (with 	/2, 	 instead of r, 	) the following Caccioppoli-type inequality for vh:

sup
t∈Λ

(	/2)2

∫
B+

∣∣vh(·, t)
∣∣2 dx +

∫
Q+

|Dvh|2 dz � c

∫
Q+

	

∣∣∣∣vh

	

∣∣∣∣
2

dz + ε

∫
Q+

	

|τ−hvh|2
|h| dz
	/2 	/2
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+ c

∫
Q+

	

|h|ϑγ 2(1 + |Du|2)+ 1

ε
|G|2 dz,

where c = c(L/ν). Proceeding similarly to the proof of Lemma 3.1 we infer the following reverse-Hölder-type in-
equality

−
∫

Q+
	/2

|Dvh|2 dz � 1

2
−
∫
Q+

2	

|Dvh|2 dz + c

(
−
∫
Q+

	

|Dvh| 2n
n+2 dz

) n+2
n

+ ε −
∫
Q+

2	

|τ−hvh|2
|h| dz + c −

∫
Q+

2	

|h|ϑγ 2(1 + |Du|2)+ 1

ε
|G|2 dz,

where c = c(n,L/ν). Note that in order to have the preceding reverse-Hölder inequality we may have to replace ε by a
smaller value. The derivation of the preceding estimate did by no means utilize the fact that the cylinders are centered
at zero – this was just for convenience in notation. Indeed, the estimate also holds for any parabolic cylinder with
center z1 ⊂ ΓR and radius 	 such that Q+

2	+√|h|(z1) ⊂ Q+
R . Moreover, a similar reverse-Hölder-type inequality holds

for interior cylinders Q	(z1) satisfying Q2	+√|h|(z1) ⊂ Q+
R . Therefore, we are in the position where we can apply an

up to the boundary version of Gehring’s theorem; the argument is quite similar to the proof of Lemma 3.1. We infer
the existence of a higher integrability exponent σ2 = σ2(n,L/ν) ∈ (2,min{σ1,2 + 4

n
}] such that for any σ ∈ (2, σ2]

there holds

−
∫

Q+
	/2(z0)

|Dvh|σ dz � c

(
−
∫

Q+
	 (z0)

|Dvh|2 dz

) σ
2 + ε

σ
2 −

∫
Q+

	 (z0)

|τ−hvh|σ
|h| σ

2
dz

+ c −
∫

Q+
	 (z0)

|h| ϑσ
2 γ σ

(
1 + |Du|σ )+ ε− σ

2 |G|σ dz,

where c depends on n,N,L/ν but is independent of h. Note, that we can always decrease the value of ε if necessary.
Recalling the definition of vh we infer the desired estimate. �
Corollary 4.13. Let u be a weak solution of (4.1) on Q+

R according to Definition 4.1 and suppose that G ∈
Lσ1(Q+

R,R
N) for some σ1 > 2. Then there exists σ2 ∈ (2,min{σ1,2 + 4

n
}] such that for all σ ∈ (2, σ2], ε > 0,

Q	(z0) � QR with z0 = (x0, t0) ∈ Q+
R ∪ ΓR and 0 < |h| � (R2 − 	2 − |t0|)/2 there holds

−
∫

Q+
	/2(z0)

|τhDu|σ dz � c

(
−
∫

Q+
	 (z0)

|τhDu|2 dz

) σ
2 + c

ε
σ
2

−
∫

Q+
	 (z0)

|τhu|σ dz

+ c|h| (1+ϑ)σ
2 γ σ −

∫
Q+

	 (z0)

(
1 + |Du|σ )dz + ε

σ
2 −

∫
Q+

	 (z0)

|τhG|σ dz.

Proof. Starting from Corollary 4.6 instead of Lemma 4.5 the argument from the proof of Lemma 4.12 yields the
asserted estimate. �
Lemma 4.14. Let u be a weak solution of (4.1) on Q+

R according to Definition 4.1 and assume that G ∈ Lσ1(Q+
R,R

N)

for some σ1 > 2. Then for all parabolic cylinders Q+
	 (z0) with 0 < 	 � R, z0 = (x0, t0) ∈ Q+

R ∪ ΓR , σ ∈
(2,min{σ1,2 + 4

n
}] and 0 < |h| � (R2 − 	2 − |t0|)/2 there holds

−
∫

Q+ (z0)

|τ−hτhu|σ
|h| σ

2
dz � c

(
−
∫

Q+ (z0)

|τ−hτhu|2
|h| dz

) σ
2 + c −

∫
Q+

	 (z0)

|τhDu|σ + |τ−hDu|σ dz
	/2 	/2
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+ c|h| σ
2 −

∫
Q+

	 (z0)

|h| ϑσ
2 γ σ

(
1 + |Du|σ )+ |τhG|σ + |τ−hG|σ dz,

where c = c(n,N,L,σ ) and c → ∞ when σ ↓ 2.

Proof. We let σ2 = min{σ1,2 + 4
n
} and consider a fixed parabolic cylinder of the type Qr(z1) ⊂ Q+

	/2(z0) with

z1 = (x1, t1). In the sequel we distinguish the cases 0 < |h| � (r/2)2 and |h| > (r/2)2. In the case |h| � (r/2)2 we
apply Lemma 4.7 with (r,3r/2) instead of (r, 	) to infer that

−
∫

Qr(z1)

|τ−hτhu|2 dz � c|h| −
∫

Q+
2r (z1)

|τhDu|2 + |τ−hDu|2 dz

+ ch2 −
∫

Q+
2r (z1)

|h|ϑγ 2(1 + |Du|2)+ |τhG|2 + |τ−hG|2 dz,

where c = c(n,N,L). Note that we applied Lemma 4.7 in a situation where Q+
r (z1) = Qr(z1) which is possible by

the hypothesis of the lemma. In the case |h| > (r/2)2 we choose a non-negative weight-function η ∈ C∞
0 (Br(x1))

with −
∫

Br(x1)
η dx = 1, 0 � η � c and |Dη| � c/r . Then, the weighted means (τ−hτhu)η(t) of τ−hτhu are defined

via averaging by (τ−hτhu)η(t) := −
∫

Br(x1)
τ−hτhu(·, t)η dx. The mean square deviation of τ−hτhu on Qr(z1) from its

mean value can then be decomposed as follows:

−
∫

Λ
r2 (t1)

−
∫

Br (x1)

∣∣τ−hτhu − (τ−hτhu)z1,r

∣∣2 dx dt � 3

[
−
∫

Λ
r2 (t1)

−
∫

Br(x1)

∣∣τ−hτhu(x, t) − (τ−hτhu)η(t)
∣∣2 dx dt

+ −
∫

Λ
r2 (t1)

∣∣∣∣(τ−hτhu)η(t) − −
∫

Λ
r2 (t1)

(τ−hτhu)η(τ ) dτ

∣∣∣∣
2

dt

+
∣∣∣∣ −
∫

Λ
r2 (t1)

(τ−hτhu)η(τ ) dτ − (τ−hτhu)z1,r

∣∣∣∣
2

dt

]

=: 3(I + II + III), (4.20)

with the obvious meaning of I–III. To estimate I we apply Poincaré’s inequality slice wise for a.e. t ∈ Λr2(t1) and
use the fact that r2 < 4|h| to deduce

I � cr2 −
∫

Λ
r2 (t1)

−
∫

Br(x1)

∣∣D(τ−hτhu)
∣∣2 dx dt � c|h| −

∫
Qr(z1)

|τhDu|2 + |τ−hDu|2 dz,

where c = c(n). Here we have used once again (2.8). Similarly, we obtain for III

III � −
∫

Λ
r2 (t1)

−
∫

Br(x1)

∣∣(τ−hτhu)η(τ ) − τ−hτhu(x, τ )
∣∣2 dx dτ = I � c|h| −

∫
Qr(z1)

|τhDu|2 + |τ−hDu|2 dz,

where c depends only on n. We now consider the integral II whose estimation is more involved. We define for a
fixed i ∈ {1, . . . ,N} the test-function ϕ : Rn+1 → R

N by letting ϕi = η and ϕj = 0 for j �= i. Testing the Steklov
formulation (4.3) (here we first replace the parameter h in the Steklov formulation by λ) at levels s and s + h with the
test-function ϕ and taking the difference of the resulting equations yields after integrating the result with respect to s

over (τ, t) the following identity:

(
τh[ui]λ

)
η
(t) − (

τh[ui]λ
)
η
(τ ) =

t∫
τ

∂s

(
τh[ui]λ

)
η
ds = −

t∫
τ

−
∫ 〈

τh

[
ai(·,Du)

]
λ
,Dη

〉− 〈
τh[Gi]λ, η

〉
dx ds.
Br (x1)
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In the preceding identity we pass to the limit λ ↓ 0. Using the assumptions (1.2)1 and (1.2)3 on the vector field a

(similarly to the proof of Lemma 4.7) we see that∣∣τh

[
ai(·,Du)

]
(x, t)

∣∣� L
∣∣τh[Du](x, t)

∣∣+ Lγ |h| 1+ϑ
2
(
1 + ∣∣Du(x, t)

∣∣).
Inserting this above and summing over i = 1, . . . ,N leads us to∣∣(τhu)η(t) − (τhu)η(τ )

∣∣� cLr −
∫

Qr(z1)

|τhDu| + γ |h| 1+ϑ
2
(
1 + |Du|)dz + cr2 −

∫
Qr(z1)

|τhG|dz,

where c = c(n,N). Note that the preceding estimate also holds for h replaced by −h. Therefore, using the previous

estimate for τhu and τ−hu and taking into account r � 2|h| 1
2 as well as |τhf (t − h)| = |τ−hf (t)| we obtain for a.e.

t, τ ∈ Λr2(t1) that∣∣(τ−hτhu)η(t) − (τ−hτhu)η(τ )
∣∣

�
∣∣(τhu)η(t − h) − (τhu)η(τ − h)

∣∣+ ∣∣(τhu)η(t) − (τhu)η(τ )
∣∣

= ∣∣(τ−hu)η(t) − (τ−hu)η(τ )
∣∣+ ∣∣(τhu)η(t) − (τhu)η(τ )

∣∣
� c|h| 1

2 −
∫

Qr(z1)

|τhDu| + |τ−hDu|dz + c|h| −
∫

Qr(z1)

|h| ϑ
2 γ
(
1 + |Du|)+ |τhG| + |τ−hG|dz.

We integrate this over Λr2(t1) with respect to t and τ and then use Hölder’s inequality to obtain

II � −
∫

Λ
r2 (t1)

−
∫

Λ
r2 (t1)

∣∣(τ−hτhu)η(t) − (τ−hτhu)η(τ )
∣∣2 dτ dt � c −

∫
Qr(z1)

|wh|2 dz,

where c = c(n,N,L) and we have defined

wh := |h| 1
2
(|τhDu| + |τ−hDu|)+ |h|[|h| ϑ

2 γ
(
1 + |Du|)+ |τhG| + |τ−hG|]. (4.21)

Joining the estimates obtained so far for I–III with (4.20) and enlarging the radius from r to 2r we arrive at

−
∫

Qr(z1)

∣∣τ−hτhu − (τ−hτhu)z1,r

∣∣2 dz � c −
∫

Q+
2r (z1)

|wh|2 dz, (4.22)

where wh ∈ Lσ2(Q+
	 (z0)) is defined in (4.21) and c = c(n,N,L). We note that (4.22) also holds in the first case.

Our next goal is to derive an upper bound for the sharp maximal function of τ−hτhu. For this we consider a point
z̄ ∈ Q+

	/2(z0) and an arbitrary parabolic cylinder Qr(z1) ⊂ Q+
	/2(z0) such that z̄ ∈ Qr(z1). With Hölder’s inequality

we obtain from the preceding estimate(
−
∫

Qr(z1)

∣∣τ−hτhu − (τ−hτhu)z1,r

∣∣dz

)2

� −
∫

Qr(z1)

∣∣τ−hτhu − (τ−hτhu)z1,r

∣∣2 dz

� c −
∫

Q+
2r (z1)

|wh|2 dz

� c sup
Q+

r̂
(ẑ)⊂Q+

	 (z0), z̄∈Q+
r̂

(ẑ)

−
∫

Q+
r̂

(ẑ)

|wh|2 dz

� cM
(|wh|2χQ+

	 (z0)

)
(z̄),

where c = c(n,N,L). Here M(f ) denotes for an integrable function f : Rn+1 → R and z̄ ∈ R
n+1 the maximal

function on R
n+1 with respect to the parabolic cylinders, i.e.

M(f )(z̄) := sup
z̄∈Qr̂(ẑ)

−
∫

Q (ẑ)

|f |dz. (4.23)
r̂
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This allows us to bound the sharp function of τ−hτhu at any point z̄ ∈ Q+
	/2(z0) by taking the supremum over all

parabolic cylinders Qr(z1) with z̄ ∈ Qr(z1) ⊂ Q+
	/2(z0) in the last inequality. Here, we use the local sharp maximal

operator relative to the cylinder Q+
	/2(z0). In this way we obtain

[τ−hτhu]#
Q+

	/2(z0)
(z̄) := sup

Qr(z1)⊂Q+
	/2(z0), z̄∈Qr(z1)

−
∫

Qr(z1)

∣∣τ−hτhu − (τ−hτhu)z1,r

∣∣dz � cM
(|wh|2χQ+

	 (z0)

) 1
2 (z̄).

We integrate this over Q+
	/2(z0) and then applying the Hardy–Littlewood maximal theorem to find that for any σ ∈

(2, σ2] there holds∫
Q+

	/2(z0)

∣∣[τ−hτhu]#
Q+

	/2(z0)

∣∣σ dz � c

∫
Q+

	/2(z0)

M
(|wh|2χQ+

	 (z0)

) σ
2 dz � c

∫
Rn+1

|wh|σ χQ+
	 (z0)

dz = c

∫
Q+

	 (z0)

|wh|σ dz,

where c = c(n,N,L,σ ). Using a theorem by C. Fefferman and E.M. Stein [20, Theorem 5] in a localized version
(see [5, Chapter 5, Corollary 7.5], [24, Lemma 4]) we can bound the Lσ -norm of a function in terms of the Lσ -norm
of its sharp function and the L1-norm of the function. Precisely, we arrive at the following estimate:

−
∫

Q+
	/2(z0)

|τ−hτhu|σ dz � c −
∫

Q+
	 (z0)

|wh|σ dz + c

(
−
∫

Q+
	/2(z0)

|τ−hτhu|dz

)σ

, (4.24)

with c = c(n,N,L). Recalling the definition of wh and applying Hölder’s inequality this proves the assertion of the
lemma. �

Now we are in a position to prove a higher integrability result for the second derivatives D2u and the time deriva-
tive ∂tu up to the lateral boundary ΓR .

Proposition 4.15. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1 and assume that G ∈

N 0,ϑ,σ1(Q+
R ;R

N) for some σ1 > 2. Then there exists σ2 = σ2(n,L/ν) ∈ (2,min{σ1,2 + 4
n
}], such that we have

D2u ∈ Lσ2(Q+
r ,R

Nn2
) for all 0 < r < R. Moreover, for any 0 < 	 � R and σ ∈ (2, σ2] there holds∫

Q+
	/2

(|D2u|σ + |ut |σ
)
dz � c

[(
γ σ + 	−σ

) ∫
Q+

	

(
1 + |Du|σ )dz + ‖G‖σ

N 0,ϑ;σ (Q+
	 )

]
,

where c = c(n,N,L/ν,ϑ,σ ) and c → ∞ when ϑ ↓ 0 or σ ↓ 2.

Proof. In order to treat the tangential derivatives DαDu, α = 1, . . . , n− 1, we differentiate the parabolic system (4.1)
with respect to xα which is possible on behalf of Theorem 4.2. Noting that Dαa(x, t,Du(x, t)) = ∂xαa(x, t,Du) +
∂wa(x, t,Du)DαDu we infer that Dαu is a weak solution of the following linear parabolic system∫

Q+
R

Dαu · ϕt − 〈
∂wa(·,Du)DDαu,Dϕ

〉
dz =

∫
Q+

R

〈G,Dαϕ〉 + 〈
∂xαa(·,Du),Dϕ

〉
dz

whenever ϕ ∈ C∞
0 (Q+

R,R
N). Moreover, we have Dαu = 0 on ΓR . From our growth and ellipticity assump-

tions (4.2)1 and (4.2)2 we know that 〈∂wa(x, t,w)w̃, w̃〉 � ν|w̃|2 and |∂wa(x, t,w)| � L for all w, w̃ ∈ R
Nn. More-

over, from (4.2)3 and Lemma 4.11 we infer that ∂xαa(x, t,Du) ∈ L2+ n
4 (Q+

	 ;R
Nn) for any 	 < R (note here that

|∂xαa(x, t,Du)| � Lγ (1 + |Du|)). Therefore, we can apply Lemma 3.1 with a right-hand side

b(x, t) = ∂xαa(x, t,Du) + G(x, t) ⊗ eα ∈ Lσ1
(
Q+

	 ;R
Nn
)

to infer the existence of σ̃2 = σ̃2(n,L/ν) ∈ (2,min{σ1,2 + 4
n
}], such that DDαu ∈ Lσ (Q+

	/2;R
Nn) for all σ ∈ (2, σ̃2].

Moreover, for 0 < 	 � R we have
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−
∫

Q+
	/4

|DαDu|σ dz � c

(
−
∫

Q+
	/2

|DαDu|2 dz

) σ
2 + c −

∫
Q+

	/2

Lσ γ σ
(
1 + |Du|)σ + |G|σ dz

� c(n,N,L/ν)

[(
γ σ + 	−σ

) −
∫
Q+

	

(
1 + |Du|σ )dz + −

∫
Q+

	

|G|σ dz

]
, (4.25)

where we have used Proposition 4.3 and Hölder’s inequality in the last line.
In the next step we shall consider the time direction. In contrast to the argument for the tangential space directions

we cannot differentiate the parabolic system with respect to t . Instead, we will bypass this lack of differentiability
by the use of second-order finite time differences of u. For this we first fix 0 < |h| � 1

162 min{R2 − 	2, 	2} and

σ2 ∈ (2,min{σ1,2 + 4
n
}] to be the higher integrability exponent from Lemma 4.12 (in the case σ̃2 < σ2 we take

the smaller value σ̃2 instead). Then, we consider z0 ∈ Q+
	/2 ∪ Γ	/2. Combining Lemmas 4.14 and 4.12 we infer for

σ ∈ (2, σ2], 0 < s � 	/2 and 0 < ε � 1 that∫
Q+

s/2

|τ−hτhu|σ
|h| σ

2
dz � c

∫
Q+

s

|τhDu|σ + |τ−hDu|σ dz + c
∣∣Q+

s

∣∣1− σ
2

( ∫
Q+

s

|τ−hτhu|2
|h| dz

) σ
2

+ c|h| σ
2

∫
Q+

s

γ σ
(
1 + |Du|σ )+ |G|σ dz

� ε
σ
2

∫
Q+

2s

|τ−hτhu|σ
|h| σ

2
dz + c

∣∣Q+
s

∣∣1− σ
2

( ∫
Q+

2s

|τ−hτhu|2
|h| + |τhDu|2 + |τ−hDu|2 dz

) σ
2

+ c|h| σ
2

∫
Q+

2s

γ σ
(
1 + |Du|σ )+ ε− σ

2 |G|σ dz,

where we have used the abbreviation G(x, t) := |G(x, t)| + |τhG(x, t)| + |τ−hG(x, t)| and c depends on n,N and
L/ν only. Now, we consider two radii r1, r2 such that 	/4 � r1 < r2 � 	/2. Then, we cover Q+

r1
by a finitely many

parabolic cylinders {Q+
s/2(zi)}Bi=1 of radius s = (r2 − r1)/4 intersecting at most c(n) times and such that Q+

2s(zi) ⊂
Q+

r2
for i = 1, . . . ,B. Applying the preceding estimate on each of the cylinders Q+

s/2(zi), summing up the resulting

inequalities over i = 1, . . . ,B, and finally choosing ε small enough (i.e. c(n)ε = 1
2 ) yields

∫
Q+

r1

|τ−hτhu|σ
|h| σ

2
dz � 1

2

∫
Q+

r2

|τ−hτhu|σ
|h| σ

2
dz + c(r2 − r1)

(1− σ
2 )(n+2)

( ∫
Q+

	/2

|τ−hτhu|2
|h| + |τhDu|2 + |τ−hDu|2 dz

) σ
2

+ c|h| σ
2

∫
Q+

	

γ σ
(
1 + |Du|σ )+ |G|σ dz,

where c = c(n,N,L/ν). Here we have also used the fact |h| � (	/16)2 in order to have
∫
Q+

	/2
f (x, t ± h)dz �∫

Q+
	

f dz for an integrable function f � 0. Now, we apply the iteration lemma [7, Lemma 2.4] to absorb the first
integral appearing on the right-hand side on the left one. This yields

−
∫

Q+
	/4(z0)

|τ−hτhu|σ
|h| σ

2
dz � c

(
−
∫

Q+
	/2

|τ−hτhu|2
|h| + |τhDu|2 + |τ−hDu|2 dz

) σ
2

+ c|h| σ
2 −
∫
Q+

γ σ
(
1 + |Du|σ )+ |G|σ dz,
	



V. Bögelein et al. / Ann. I. H. Poincaré – AN 27 (2010) 145–200 179
where c = c(n,N,L/ν). The right-hand side of the preceding inequality, i.e. the first integral, can be further estimated
by (4.13) and Corollary 4.9 (with h and −h) and Hölder’s inequality to yield for any choice of 0 < |h| � (	/16)2 that∫
Q+

	/4
|τ−hτhu|σ dz � c|h|σ Mσ where

Mσ := (
γ σ + 	−σ

) ∫
Q+

	

1 + |Du|σ dz + ‖G‖σ

N 0,ϑ;σ (Q+
	 )

.

Noting that τ−hτhu(t) = τhτhu(t − h) as well as |h| � (	/16)2 the preceding estimate can be turned into∫
Q+

	/8

|τhτhu|σ dz � c|h|σ Mσ .

Therefore we are in a position to apply Lemma 2.4 with (α,β,M,h0) replaced by (1, 1 − ϑ/4,M, (	/16)2) and
Poincaré’s inequality to infer∫

Q+
	/8

|τhu|σ dz � c|h|σ(1− ϑ
4 )

[
	

σϑ
2 Mσ + 	σ( ϑ

2 −2)

∫
Q+

	/4

|u|σ dz

]
� c|h|σ(1− ϑ

4 )	
σϑ
2 Mσ , (4.26)

for any choice of 0 < |h| � (	/32)2. Note that c = c(n,N,L/ν,ϑ,σ ) and c → ∞ when ϑ ↓ 0 or σ ↓ 2.
In the next step we shall improve this estimate in the sense that we enlarge the exponent of |h| on the right-hand

side from σ(1 − ϑ
4 ) to σ . For this we once again apply Lemma 4.14 and obtain

−
∫

Q+
	/32

|τ−hτhu|σ
|h| σ

2
dz � c

(
−
∫

Q+
	/32

|τ−hτhu|2
|h| dz

) σ
2 + c −

∫
Q+

	/16

|τhDu|σ + |τ−hDu|σ dz

+ c|h| σ
2 (1+ϑ) −

∫
Q+

	/16

γ σ
(
1 + |Du|σ )+ |h| −ϑσ

2
(|τhG|σ + |τ−hG|2)dz. (4.27)

To estimate the second integral on the right-hand side we apply in turn Corollaries 4.13 and 4.6 (for h and −h and
with ε = h1−ϑ	2ϑ ), Hölder’s inequality and |h| � 	2 to infer for any σ ∈ (2, σ2] that

−
∫

Q+
	/16

|τ±hDu|σ dz � c

(
−
∫

Q+
	/8(z0)

|τ±hDu|2 dz

) σ
2 + c|h| σ

2 (ϑ−1)	−σϑ −
∫

Q+
	/8

|τ±hu|σ dz

+ c|h| σ
2 (1+ϑ)

[
γ σ −

∫
Q+

	/8

(
1 + |Du|σ )dz + 	σϑ

|h|σϑ
−
∫

Q+
	/8

|τ±hG|σ dz

]

� c|h| σ
2 (ϑ−1)	−σϑ −

∫
Q+

	/8

|τ±hu|σ dz

+ c|h| σ
2 (1+ϑ)

[
γ σ −

∫
Q+

	/8

(
1 + |Du|σ )dz + 	σϑ

|h|σϑ
−
∫

Q+
	/8

|τ±hG|σ dz

]
,

where c = c(n,N,L/ν,ϑ,σ ), and multiplying both sides of the preceding inequality |Q+
	/16| yields the estimate

without mean values. We use this inequality together with (4.26) (for ±h) and the assumption G ∈ N 0,ϑ;σ (Q+
	 ;R

N)

to get ∫
Q+

|τ±hDu|σ dz � c|h| σ
2 + ϑσ

4 	− σϑ
2 Mσ + c|h| σ

2 (1+ϑ)
[
Mσ + 	σϑ‖G‖σ

N 0,ϑ;σ (Q+
	 ;RN )

]
� c|h| σ

2 + ϑσ
4 	− σϑ

2 Mσ .
	/16
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We insert this into (4.27) to bound the second integral on the right-hand side there and then use (4.13) to estimate the
first one. Finally, we use the hypothesis G ∈ N 0,ϑ;σ (Q+

	 ;R
N) to infer∫

Q+
	/32

|τ−hτhu|σ dz � c|h|σ [(|h| ϑσ
2 + h

ϑσ
4 	− σϑ

2
)
Mσ + |h|ϑσ ‖G‖σ

N 0,ϑ;σ (Q+
	 ;RN)

]
� c|h|σ+ ϑσ

4 	− σϑ
2 Mσ ,

where c = c(n,N,L/ν,ϑ,σ ). Using again τ−hτhu(t) = τhτhu(t − h) we arrive at∫
Q+

	/64

|τhτhu|σ dz �
∫

Q+
	/32

|τ−hτhu|σ dz � c|h|σ+ ϑσ
4 	− σϑ

2 Mσ ,

for any 0 < |h| � (	/64)2. Having arrived at this stage we are in the position to apply again Lemma 2.4 now with

(1 + ϑ
4 ,1, c	− ϑ

2 M, 1
2 (	/16)2) instead of (α,β,M,h0) to infer∫

Q+
	/64

|τhu|σ dz � c|h|σ
(

Mσ + 	−2σ

∫
Q+

	

|u|σ dz

)
� c|h|σ Mσ ,

for any 0 < |h| � (	/128)2. Note that we have also applied Poincaré’s inequality slice wise in the last line. We note
that c = c(n,N,L/ν,ϑ,σ ). By the standard estimate for difference quotients this implies ∂tu ∈ Lσ (Q+

R/64;R
N).

Moreover, the following estimate holds∫
Q+

	/64

|∂tu|σ dz � cMσ .

Finally, a different choice of the radii allows us to show that the preceding estimate holds with Q+
	/2 as domain of

integration instead of Q+
	/64. This proves the assertion of the lemma concerning the Lσ -estimate of ∂tu.

To obtain the desired estimate for the normal derivative DnDu, we argue similarly to the proof of Proposition 4.10.
To be precise, we first attain the analogue of (4.17) for the Lσ -norm of τn

h [Du] instead of the L2-norm. Then using
the Lσ -estimate for |DαDu| and |∂tu| from above we arrive at∫

Q+
	/2

∣∣τn
h [Du]∣∣σ dz � chσ

[(
	−σ + γ σ

) ∫
Q+

	

(
1 + |Du|σ )dz + ‖G‖N 0,v;σ (Q+

	 ;RN)

]
,

for any choice of 0 < h � 	/2. Therefore, we conclude that DnDu ∈ Lσ (Q+
R/2;R

N) for any σ ∈ (2, σ2]. Furthermore,
we have∫

Q+
	/2

|DnDu|σ dz � c

[(
	−σ + γ σ

) ∫
Q+

	

(
1 + |Du|σ )dz + ‖G‖N 0,v;σ (Q+

	 ;RN)

]
,

for any 0 < 	 � R/2. This proves the asserted Lσ -estimate for DnDu which together with (4.25) yields the higher
integrability of D2u. This completes the proof of the lemma. �

At the end of this section we provide an improved (compared to Corollary 4.9) estimate for finite differences
in time. It will be applied later in the proof of the dimension reduction for the singular set of solutions of certain
regularized systems.

Corollary 4.16. Let u be a weak solution of (4.1) on Q+
R according to Definition 4.1 and suppose that G ∈

N 0,ϑ,σ1(Q+
R ;R

N) for some σ1 > 2. Then there exists σ2 = σ2(n,L/ν) ∈ (2,min{σ1,2 + 4
n
}] such that for all

σ ∈ (2, σ2], 0 < 	 � R and 0 < |h| � (	/2)2 there holds, for a constant c = c(n,N,L/ν), that

−
∫

Q+
|τhDu|σ dz � c|h| σ

2

[(
γ σ + 	−σ

) ∫
Q+

	

(
1 + |Du|σ )dz + ‖G‖σ

N 0,ξ ;σ (Q+
	 )

]
.

	/2
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Proof. Let σ2 ∈ (2,min{σ1,2 + 4
n
}] be the minimum of the corresponding constants of Lemma 4.12 and Proposi-

tion 4.15. Applying Lemma 4.12 with the choice ε = 1 on the cylinders Q+
	/2, Q+

3	/4 instead of Q+
	/2, Q+

	 and noting

that |τ−hτhu(t)| � |τhu(t)| + |τhu(t − h)| we infer for 0 < |h| � (	/4)2 (then (3	/4)2 + |h| � 	2) that∫
Q+

	/2

|τhDu|σ dz � c

( ∫
Q+

	

|τhDu|2 dz

) σ
2 + c|h|− σ

2

∫
Q+

	

|τhu|σ dz + c|h| σ
2

∫
Q+

	

γ σ
(
1 + |Du|σ )+ |G|σ dz.

In the preceding inequality we use Corollary 4.9 to bound the first integral of the right-hand side, while for the
second one we recall that u is weakly differentiable with respect to time fulfilling the Lσ -estimate for ∂tu from
Proposition 4.15. This leads us to∫

Q+
	/2

|τhDu|σ dz � c|h| σ
2

[(
γ σ + 	−σ

) ∫
Q+

2	

(
1 + |Du|σ )dz + ‖G‖σ

N 0,ξ ;σ (Q+
2	)

]
,

for any σ ∈ (2, σ2]. By a different choice of radii we infer the asserted estimate. �
4.2. The initial boundary

Now, we turn our attention to the initial boundary, where we again consider the parabolic system (4.1), but now
on the cylinder Q = Q0

R . Note that in the situation of initial boundary we can renounce the regularity assumption in
time (4.2)4 on the coefficients a. As in the lateral boundary situation we will prove suitable L2-estimates, respectively
Lσ -estimates, for D2u and τhDu for some σ > 2. We mention that the initial boundary situation is much easier, since
we can treat all second space derivatives in the usual way. Afterwards there is only one derivative missing, namely the
first time derivative for which we can exploit the system. Throughout the section we consider weak solutions under
the following assumptions:

Definition 4.17. By a weak solution of the parabolic initial problem (4.1) on Q0
R we mean a function u ∈

L2(Λ0
R2;W 1,2(BR;R

N)) with u(·,0) = 0 on BR which satisfies (4.1) in the weak sense. Moreover, the structure
conditions (4.2)1–(4.2)3 are in force and G = 0.

For weak solutions in the sense of the preceding definition we shall show the existence of second-order spatial
derivatives and the time derivative together with their higher integrability.

Proposition 4.18. Let u be a weak solution of (4.1) on Q0
R according to Definition 4.17. Then, for any 0 < r < R we

have Du ∈ L2+ 4
n (Q0

r ,R
Nn) and there exists σ1 = σ1(n,N,L/ν) ∈ (2,2 + 4

n
] such that D2u ∈ Lσ1(Q0

r ,R
Nn2

) and
∂tu ∈ Lσ1(Q0

r ,R
N). Moreover, for any 0 < 	 � R and σ ∈ [2, σ1], and for a constant c = c(n,N,L/ν) there holds∫

Q0
	/2

∣∣D2u
∣∣σ + |∂tu|σ dz � c

(
γ σ + 	−σ

) ∫
Q0

	

(
1 + |Du|σ )dz.

Proof. First, we show that the second space derivatives D2u exist in L2 up to the initial boundary. Here, we proceed
along the lines of the lateral boundary situation when treating the tangential derivatives in Proposition 4.3 apart from
the difference that we can take any spatial direction α = 1, . . . , n. Since the proof is very much similar to the one
of Proposition 4.3 we only outline the adjustments to be made in the initial boundary situation. As in the proof
of Proposition 4.3 we start with the Steklov-formulation of the system, now on B	 × (0, t) for some t ∈ (0, 	2).
Then, we choose the test-function ϕε = η2ζετ

α
h uλ, where the cut-off function η ∈ C∞

0 (B	) is chosen as in the proof of
Proposition 4.3, and ζε ∈ W 1,∞(R) is defined to be ζε = 0 on (−∞,0], ζε ≡ 1 on [ε,∞) and ζε(s) = s/ε on (0, ε) with
ε ∈ (0, 	2). When testing the parabolic system with ϕε , the interesting term is the one involving the time derivative
(i.e. the analog to (4.4)) since this is the only one where the initial condition comes into the play. Similarly to (4.4) we
first rewrite
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t∫
0

∫
BR

∂t τ
α
h [uλ] · ϕε dx dτ = 1

2

∫
B	

∣∣τα
h uλ(·, t)

∣∣2η2ζε(t) dx − 1

2

t∫
0

∫
B	

∣∣τα
h uλ

∣∣2η2∂t ζε dx dτ

and then estimate the second term on the right-hand side by

1

2

t∫
0

∫
B	

∣∣τα
h uλ

∣∣2η2∂t ζε dx dτ � 1

2ε

ε∫
0

∫
B	

∣∣τα
h uλ

∣∣2η2 dx dτ.

Then, passing to the limits λ ↓ 0 and ε ↓ 0 we find, due to our initial condition imposed on u, that the right-hand
side converges to zero. Therefore, starting from the Steklov-formulation as mentioned above, passing limits λ ↓ 0 and
ε ↓ 0 we arrive at

1

2

∫
B	

∣∣τα
h u(·, t)∣∣2η2 dx +

t∫
0

∫
B	

〈
τα
h

[
a(·,Du)

]
,Dτα

h u
〉
η2 dx dτ

=
t∫

0

∫
B	

2
〈
τα
h

[
a(·,Du)

]
,Dη ⊗ τα

h u
〉
η dx dτ, (4.28)

for a.e. t ∈ (0, 	2). At this stage we can proceed completely similar to the proof of Proposition 4.3. This leads us to
the following Caccioppoli-type estimate:

sup
t∈(0,	2)

∫
B	/2

∣∣Dαu(·, t)∣∣2 dx +
∫

Q0
	/2

|DαDu|2 dz � c
(
γ 2 + 	−2) ∫

Q0
	

(
1 + |Du|2)dz,

valid for any α = 1, . . . , n and for a constant c = c(n,N,L/ν). With the arguments of the proof of Lemma 4.11

this immediately implies the first assertion of the lemma, i.e. that Du ∈ L2+ 4
n (Q0

	/4,R
Nn) (note that we always can

replace the radius 	/4 by some arbitrary radius < R) together with the estimate

∫
Q0

	/4

|Du|2+ 4
n dz � c

[(
γ 2 + 	−2) ∫

Q0
	

(
1 + |Du|2)dz

]1+ 2
n

,

where c = c(n,N,L/ν).
Now, it remains to prove the higher integrability of D2u up to the initial boundary. For this we exploit the fact

that Dαu, α = 1, . . . , n, is a weak solution of the following linear parabolic system (see the proof of Proposition 4.15)∫
Q0

R

Dαu · ϕt − 〈
∂wa(·,Du)DDαu,Dϕ

〉
dz =

∫
Q0

R

〈
∂xαa(·,Du),Dϕ

〉
dz, (4.29)

for all ϕ ∈ C∞
0 (Q0

R,R
N). Moreover, we have Dαu(·,0) = 0. This can for instance be seen as a consequence of the

Caccioppoli inequality for u on cylinders of the type Br × (0, λ) with λ ∈ (0,R2). For the sake of brevity we only
sketch the argument. To achieve such a Caccioppoli inequality we proceed as in the proof of the Caccioppoli inequality
for τα

h u from above – but without taking the finite differences. After testing the system with ϕε = η2ζεuλ (with a cut-
off function η ∈ C∞

0 (BR) and ζε as above) and performing the standard computations we arrive at the following
analogue of (4.28):

1

2

∫ ∣∣u(·, t)∣∣2η2 dx +
λ∫ ∫ 〈

a(·,Du),Du
〉
η2 dx dτ =

λ∫ ∫
2
〈
a(·,Du),Dη ⊗ u

〉
η dxdτ.
BR 0 BR 0 BR
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The first integral on the left-hand side is non-negative, while for the second one we can use the ellipticity (1.2)2 of the
vector field a, and for the right-hand side we can use the growth assumption (1.2)1. This leads us to

ν

λ∫
0

∫
BR

|Du|2η2 dx dτ � 2L

λ∫
0

∫
BR

(
1 + |Du|)η|u||Dη|dx dτ.

Now, we choose η such that η ≡ 1 on Br , 0 < r < R, 0 � η � 1 and |Dη| � c/(R − r). Then, applying Young’s
inequality and absorbing |Du|2 in the standard way we arrive at

λ∫
0

∫
Br

|Du|2 dx dτ � c(L/ν)

λ∫
0

∫
BR

|u|2
(R − r)2

+ |u|
(R − r)

dx dτ.

This implies by Hölder’s inequality and due to our initial condition on u that

lim
λ↓0

1

λ

λ∫
0

∫
Br

|Du|2 dz � c

(R − r)2
lim
λ↓0

1

λ

λ∫
0

∫
BR

|u|2 dz + c

(R − r)
lim
λ↓0

(
1

λ

λ∫
0

∫
BR

|u|2 dz

) 1
2

= 0,

proving the assertion Du(·,0) = 0 on Br for any 0 < r < R.
Now, we come back to the proof of the higher integrability of DαDu. From our growth and ellipticity as-

sumptions (4.2)1 and (4.2)2 we know that 〈∂wa(x, t,w)w̃, w̃〉 � ν|w̃|2 and |∂wa(x, t,w)| � L for all w, w̃ ∈ R
Nn.

Moreover, from (4.2)3 and the preceding estimate we infer that ∂xαa(x, t,Du) ∈ L2+ n
4 (Q0

	;R
Nn) (note here that

|∂xαa(x, t,Du)| � Lγ (1 + |Du|)). Therefore, recalling that Dαu is a solution of (4.29) we can apply an up to the ini-
tial boundary higher integrability result (see for instance [31]) to infer the existence of σ1 = σ1(n,N,L/ν) ∈ (2,2+ 4

n
]

such that DDαu ∈ Lσ1(Q0
	/2;R

Nn) and, moreover, for any 0 < 	 � R and σ ∈ [2, σ1] we have

−
∫

Q0
	/4

|DαDu|σ dz � c

(
−
∫

Q0
	/2

|DαDu|2 dz

) σ
2 + cLσ γ σ −

∫
Q0

	/2

(
1 + |Du|)σ dz

� c(n,N,L/ν)
(
γ σ + 	−σ

) −
∫
Q+

	

(
1 + |Du|σ )dz.

Summing up over α = 1, . . . , n leads to the result with radii 	/4, 	 instead of 	/2, 	. However, by a different choice
of the radii we obtain the estimate for D2u. Now, we can utilize the parabolic system in the usual way to infer the
existence of ∂tu in Lσ1 together with the asserted estimate. Since this is standard we omit the details and finish the
proof of the lemma. �

In the next two lemmas we are going to prove estimates for the finite differences in time of Du. Roughly speaking,
this means that Du admits a half time-derivative in L2, respectively in Lσ for some σ > 2.

Lemma 4.19. Let u be a weak solution of (4.1) on Q0
R according to Definition 4.17. Then, for any z0 = (x0, t0) ∈

Q0
R ∪ DR and 0 < 	 � R and 0 < h � (	/2)2 such that Q0

	 ⊂ Q0
R there holds∫

Q0
	/2(z0)

|τhDu|2 dz � c(L)h

∫
Q0

	(z0)

γ 2(1 + |Du|2)+ |D2u|2 dz.

Proof. Without loss of generality we assume that x0 = 0. We recall from the proof of Proposition 4.18 that Dαu,
α = 1, . . . , n, is a weak solution of the linear parabolic system (4.29) with Dαu(·,0) = 0 on Br for any 0 < r < R.
We choose a cut-off function η ∈ C∞

0 (B	) with 0 � η � 1, η = 1 on B	/2 and |Dη| � c/	. Taking the test-function
ϕ(x, t) = η(x)2τhDαu(x, t) in the Steklov-formulation of (4.29), integrating with respect to t over Λ0

(	/2)2(t0) and
recalling the identity τhDαu = h∂t [Dαu]h we find
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∫
Λ0

(	/2)2
(t0)

∫
B	

|τhDαu|2
h

η2 dx dt =
∫

Λ0
(	/2)2

(t0)

∫
B	

∂t [Dαu]h · η2τhDαudx dt

=
∫

Λ0
(	/2)2

(t0)

∫
B	

〈−[∂wa(·,Du)DDαu
]
h

+ [
∂xαa(·,Du)

]
h
,D

(
η2τhDαu

)〉
dx dt.

By our assumptions (4.2)1 and (4.2)3 we have |∂wa(·,Du)| � L and |∂xαa(·,Du)| � Lγ (1 + |Du|). Together with
Young’s inequality, standard estimates for Steklov averages and the facts that h � (	/2)2 and |Dη| � c/	 we therefore
get ∫

Λ0
(	/2)2

(t0)

∫
B	

|τhDαu|2
h

η2 dx dt � 1

2

∫
Λ0

(	/2)2
(t0)

∫
B	

	−2η2|τhDαu|2 + |τhDDαu|2 dx dt

+ cL2
∫

Q0
	(t0)

γ 2(1 + |Du|2)+ |DDαu|2 dz.

Since 	−2 < h−1 by assumption we can absorb the first term of the right-hand side on the left. Moreover, we estimate
|τhDDαu(x, t)| � |DDαu(x, t)| + |DDαu(x, t + h)| and utilize that h < (	/2)2. Proceeding this way and summing
up over α = 1, . . . , n we infer the asserted estimate. �

Our next aim is to enlarge the exponents on both sides of the estimate for τhDu from the last lemma. The main
strategy of the proof is quite similar to the one of Lemma 4.14 using the maximal and the sharp function.

Proposition 4.20. Let u be a weak solution of (4.1) on Q0
R according to Definition 4.17 and σ1 = σ1(n,N,L/ν) ∈

(2,2 + 4
n
] the constant from Proposition 4.18. Then, for any σ ∈ [2, σ1], 0 < 	 � R and 0 < h � (	/2)2 there holds∫

Q0
	/2

|τhDu|σ dz � c(n,N,L/ν)h
σ
2
(
γ σ + 	−σ

) ∫
Q0

	

(
1 + |Du|σ )dz.

Proof. We consider a fixed parabolic cylinder of the type Qr(z1) ⊂ Q0
	/2, z1 = (x1, t1). In the sequel we distinguish

the cases 0 < h � (r/2)2 and h > (r/2)2. In the case h � (r/2)2 we apply Lemma 4.19 to infer∫
Qr(z1)

|τhDu|2 dz � c(L)h

∫
Q0

2r (z1)

γ 2(1 + |Du|2)+ |D2u|2 dz.

Note that we applied here Lemma 4.19 in a situation where Q0
r (z1) = Qr(z1). In the case h > (r/2)2 we choose a

non-negative weight-function η ∈ C∞
0 (Br(x1)) with −

∫
Br(x1)

η dx = 1, 0 � η � c and |Dη| � c/r . Then, the weighted
means (τhDu)η(t) of τhDu are defined by

(τhDu)η(t) = −
∫

Br (x1)

τhDu(·, t)η dx.

The mean square deviation of τhDu on Qr(z1) from its mean value can then be decomposed as follows:

−
∫

Λ
r2 (t1)

−
∫

Br (x1)

∣∣τhDu − (τhDu)z1,r

∣∣2 dx dt � 3

[
−
∫

Λ
r2 (t1)

−
∫

Br (x1)

∣∣τhDu(x, t) − (τhDu)η(t)
∣∣2 dx dt

+ −
∫

Λ 2 (t1)

∣∣∣∣(τhDu)η(t) − −
∫

Λ 2 (t1)

(τhDu)η(τ ) dτ

∣∣∣∣
2

dt
r r



V. Bögelein et al. / Ann. I. H. Poincaré – AN 27 (2010) 145–200 185
+
∣∣∣∣ −
∫

Λ
r2 (t1)

(τhDu)η(τ ) dτ − (τhDu)z1,r

∣∣∣∣
2

dt

]

=: 3(I + II + III), (4.30)

with the obvious meaning of I–III. To estimate I we apply Poincaré’s inequality slice wise for a.e. t ∈ Λr2(t1) and
use the fact that r2 � 4h to deduce

I � cr2 −
∫

Λ
r2 (t1)

−
∫

Br(x1)

∣∣D(τhDu)
∣∣2 dx dt � ch −

∫
Qr(z1)

∣∣τhD
2u
∣∣2 dz,

where c = c(n). Here we have used once again (2.8). Similarly we obtain for III

III � −
∫

Λ
r2 (t1)

−
∫

Br(x1)

∣∣(τhDu)η(τ ) − τhDu(x, τ )
∣∣2 dx dτ = I � c(n)h −

∫
Qr(z1)

∣∣τhD
2u
∣∣2 dz.

We now consider the integral II whose estimation is more involved. Here, for a fixed i ∈ {1, . . . ,N} we define the
test-function ϕ : Rn+1 → R

N where ϕi = η and ϕj = 0 for j �= i. We recall that Dαu, α = 1, . . . , n, is a weak solution
of the linear parabolic system (4.29). Testing the Steklov formulation of (4.29) at levels s and s + h with the test-
function ϕ and then taking the difference of the resulting equations yields, after integrating the difference with respect
to s over (τ, t), the following identity:

([Dαui]λ
)
η
(t) − ([Dαui]λ

)
η
(τ ) =

t∫
τ

∂s

([Dαui]λ
)
η
ds

=
t∫

τ

−
∫

Br (x1)

〈−[(∂wa(·,Du)DDαu
)
i

]
λ
+ [

∂xαai(·,Du)
]
λ
,Dη

〉
dx ds.

We pass to the limit λ ↓ 0 and recall that |∂wa(·,Du)| � L, |∂xαa(·,Du)| � Lγ (1 +|Du|) and |Dη| � c/r . Summing
up over i = 1, . . . ,N leads us to∣∣(Dαu)η(t) − (Dαu)η(τ )

∣∣� cLr −
∫

Qr(z1)

∣∣D2u
∣∣+ γ

(
1 + |Du|)dz.

Using the preceding estimate with (t, τ ), respectively (t + h, τ + h) and taking into account r � 2
√

h as well as
|f (t + h)| � |τhf (t)| + |f (t)| we obtain for a.e. t, τ ∈ Λr2(t1) that∣∣(τhDu)η(t) − (τhDu)η(τ )

∣∣� ∣∣(Du)η(t + h) − (Du)η(τ + h)
∣∣+ ∣∣(Du)η(t) − (Du)η(τ )

∣∣
� c

√
h −

∫
Qr(z1)

∣∣D2u
∣∣+ ∣∣τhD

2u
∣∣+ γ

(
1 + |Du| + |τhDu|2)dz.

We integrate this with respect to t and τ over Λr2(t1) and use Hölder’s inequality to obtain

II � −
∫

Λ
r2 (t1)

−
∫

Λ
r2 (t1)

∣∣(τhDu)η(t) − (τhDu)η(τ )
∣∣2 dτ dt � c −

∫
Qr(z1)

|wh|2 dz,

where c = c(n,N,L) and

wh = √
h
(∣∣D2u

∣∣+ ∣∣τhD
2u
∣∣+ γ

(
1 + |Du| + |τhDu|2)). (4.31)

Joining the estimates obtained so far for I–III with (4.30) and enlarging the radius from r to 2r we arrive at

−
∫ ∣∣τhDu − (τhDu)z1,r

∣∣2 dz � c −
∫

|wh|2 dz, (4.32)
Qr(z1) Q2r (z1)
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where wh ∈ Lσ1(Q+
	 (z0)) is defined in (4.31) and σ1 = σ1(n,N,L/ν) ∈ [2,2 + 4

n
] is the higher integrability exponent

of D2u from Proposition 4.18 and c = c(n,N,L). Note that (4.32) continues to hold in the case when h � (r/2)2;
therefore (4.32) holds in any case, and we are in a situation similarly to the proof of Lemma 4.14, where we have the
estimate (4.22). This allows us to repeat the proof from there line by line (i.e. we derive a bound for the sharp maximal
function of τhDu in terms of the maximal function of wh and then apply the Hardy–Littlewood maximal theorem and
the Fefferman–Stein theorem) to arrive at the following analogue of (4.24):

−
∫

Q0
	/2(z0)

|τhDu|σ dz � c

∫
Q0

	(z0)

|wh|σ dz + c

(
−
∫

Q0
	/2(z0)

|τhDu|dz

)σ

,

where c = c(n,N,L) and σ ∈ [2, σ1]. Recalling the definition of wh and applying Hölder’s inequality and Lem-
ma 4.19 to estimate the second integral appearing on the right-hand side we find∫

Q0
	/2

|τhDu|σ dz � c(n,N,L/ν)h
σ
2

∫
Q0

	

γ σ
(
1 + |Du|σ )+ ∣∣D2u

∣∣σ dz.

Now we apply Proposition 4.18 (note that σ � σ1) to estimate the integral involving D2u. This leads us to the assertion
with Q0

2	 instead of Q0
	 . By a different choice of radii we can achieve the desired estimate on Q0

	 . �
5. Singular set-dimension estimates

In this section we shall prove Theorems 1.3 and 1.5. The basic strategy is the same in both cases. We shall construct
solutions of certain regularized parabolic systems satisfying the assumptions of Section 4.1, respectively Section 4.2.
This will be done by mollifying the original vector field a. Note that the mollifying procedure will be different in
both configurations, since we need to assume some regularity in time (see (4.2)4) in the lateral boundary situation,
while in the initial boundary situation such a regularity assumption is unnecessary. The results achieved in Section 4
guarantee that the solutions of the regularized systems achieve higher differentiability and integrability properties.
These estimates carry over, to a certain extend, to the original solution by a comparison and energy estimate. This
procedure will lead us to a fractional differentiability result for Du in space and time which immediately implies – with
a refined version of Giusti’s lemma – an estimate for the Hausdorff-dimension of the singular set; see Theorem 1.2.
We start by considering

5.1. The lateral boundary: Proof of Theorem 1.3

In the following we shall concentrate our attention to a weak solution u ∈ L2(Λ1; W 1,2(B+
1 ,R

N)) of the following
non-linear parabolic system

ut − diva(z,Du) = gt on Q+
1 , (5.1)

where u = 0 on Γ1. Here the vector field a :Q+
1 × R

Nn → R
Nn satisfies the assumptions (1.2) and (1.3) with ΩT

replaced by Q+
1 . Note that the boundary values are only prescribed on Γ1. Concerning the right-hand side g we

assume that

Dg ∈ Cβ,0(Q+
1 ;R

Nn
)

and ∂tg ∈ L2,2−2β
(
Q+

1 ;R
Nn
)
.

5.1.1. Smoothing
The purpose of this section is to build up a family of regularized vector fields

ah :Q+
1/2 × R

Nn → R
Nn, |h| ∈ (0,1/2], (5.2)

starting from the one in (5.1). The construction of the vector fields ah is as follows. We first note that without loss of
generality we can assume that the vector field a is defined on

a :B+ × Λ1 × R
Nn → R

Nn,
1
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fulfilling the same assumptions (1.2) and (1.3) as a. Next, we extend a to a vector field defined on Q1 × R
Nn – still

denoted by a – by an even reflection at the hyperplane xn = 0 as follows:

a(x′, xn, t,w) ≡
{

a(x′, xn, t,w) if xn � 0,

a(x′,−xn, t,w) if xn < 0.

It is easy to check that the extended vector field fulfills the assumptions (1.2) and (1.3) on Q1 (with a possibly larger
constant 2L instead of L).

Now, having done the extension of the vector field a, we can explain the smoothing procedure. We fix a smooth,
radially symmetric convolution kernel φ ∈ C∞

0 (B1) satisfying
∫
B1

φ dx = 1 and a smooth, even convolution kernel
ψ ∈ C∞

0 (Λ1) with
∫
Λ1

ψ dt = 1. For 0 < |h| � 1/2 we then define the smooth vector field ah by

ah(x, t,w) ≡
∫
Λ1

∫
B1

a
(
x + |h|y, t + |h|2τ,w)φ(y)ψ(τ) dy dτ

= 1

|h|n+2

∫
Λ|h|2 (t)

∫
B|h|(x)

a(y, τ,w)φ

(
y − x

|h|
)

ψ

(
τ − t

|h|2
)

dy dτ, (5.3)

where z = (x, t) ∈ Q1−|h| and w ∈ R
Nn. Similarly to (3.16) in [15] we infer the following properties of the vector

field ah:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣ah(z,w)
∣∣+ (

1 + |w|)∣∣∂wah(z,w)
∣∣� L

(
1 + |w|),〈

∂wah(z,w)w̃, w̃
〉
� ν|w̃|2,

ν|w − w̃|2 �
〈
ah(z, w̃) − ah(z,w), w̃ − w

〉
,

ν

2
|w|2 − L2/ν �

〈
ah(z,w),w

〉
,∣∣ah(z,w) − a(z,w)

∣∣� Lθ̃
(|h|)(1 + |w|),

∣∣ah(x, t,w) − ah(x0, t,w)
∣∣� cL

θ̃(|h|)
|h| |x − x0|

(
1 + |w|),

∣∣ah(x, t,w) − ah(x, t0,w)
∣∣� cL

(
θ̃ (|h|2)
|h|2

) 1+ϑ
2 |t − t0| 1+ϑ

2
(
1 + |w|),

(5.4)

for any z, z̃, (x0, t), (x, t0) ∈ Q1−|h|, w, w̃ ∈ R
Nn and ϑ ∈ (0,1), where the c = c(n) is independent of h. The proof

follows along the lines of [15]. The only difference occurs in the proof of (5.4)7 where we argue as follows: We first
compute∣∣∂tah(x, t,w)

∣∣= ∣∣∣∣− 1

|h|n+4

∫
Λ|h|2 (t)

∫
B|h|(x)

a(y, τ,w)φ

(
y − x

|h|
)

ψ ′
(

τ − t

|h|2
)

dy dτ

∣∣∣∣
=
∣∣∣∣ 1

|h|2
∫
Λ1

∫
B1

a
(
x + |h|y, t + |h|2τ,w)φ(y)ψ ′(τ ) dy dτ

∣∣∣∣
=
∣∣∣∣ 1

|h|2
∫
Λ1

∫
B1

(
a
(
x + |h|y, t + |h|2τ,w)− a(x + |h|y, t,w)

)
φ(y)ψ ′(τ ) dy dτ

∣∣∣∣

� L

|h|2 sup
Λ1

|ψ ′|
1∫

−1

∫
B1

θ̃
(|h|2τ)φ(y)

(
1 + |w|)dy dτ � cL

θ̃(|h|2)
|h|2

(
1 + |w|),

where we have used (1.2)4. This implies in particular that

∣∣ah(x, t,w) − ah(x, t0,w)
∣∣� sup

∣∣∂tah

(
x, t + s(t0 − t),w

)∣∣|t − t0| � cL
θ̃(|h|2)
|h|2 |t − t0|

(
1 + |w|).
s∈[0,1]
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The case |h|−2θ̃ (|h|2)|t − t0| � 1 leads us to (note that 1+ϑ
2 < 1)

∣∣ah(x, t,w) − ah(x, t0,w)
∣∣� cL

(
θ̃ (|h|2)
|h|2 |t − t0|

) 1+ϑ
2 (

1 + |w|),
while in the other case |h|−2θ̃ (|h|2)|t − t0| � 1 we obtain

∣∣ah(x, t,w) − ah(x, t0,w)
∣∣� 2L

(
1 + |w|)� 2L

(
θ̃ (|h|2)
|h|2 |t − t0|

) 1+ϑ
2 (

1 + |w|).
All together this proves (5.4)7.

5.1.2. A comparison estimate
Here we shall derive an energy and a comparison estimate that will be crucial in the proof of the singular set

estimate. By u ∈ L2(Λ1;W 1,2(B+
1 ;R

N)) we denote a fixed solution of the non-linear parabolic system (5.1) satisfying
u = 0 on Γ1. We shall keep on assuming that the vector field a fulfills the assumptions (1.2) and (1.3).

For 0 < R � 1/2 we define uh ∈ L2(ΛR2;W 1,2(B+
R ;R

N)) to be the unique solution of the following Cauchy-
Dirichlet problem{

∂tuh − divah(x, t,Duh) = gt in Q+
R,

uh = u on ∂P Q+
R,

(5.5)

where {ah}, 0 < |h| � 1/2, denotes the family of vector fields constructed in (5.3). Then the following energy estimate
holds ∫

Q+
R

|Duh|2 dz � c(L/ν)

∫
Q+

R

(
1 + |Du|2)dz. (5.6)

Moreover, we have the following comparison estimate

sup
t∈Λ

R2

∫
B+

R

∣∣(uh − u)(·, t)∣∣2 dx +
∫

Q+
R

|Duh − Du|2 dz � c(L/ν)θ̃2(|h|) ∫
Q+

R

(
1 + |Du|2)dz. (5.7)

In order to prove (5.6) and (5.7) we define χε ∈ W 1,∞(R) for t ∈ ΛR2 and ε > 0 as follows: χε ≡ 1 on (−∞, t],
χε ≡ 0 on [t + ε,∞) and χε(τ ) = 1 − (τ − t)/ε on (t, t + ε). Now we proceed formally by testing the parabolic
systems for u, respectively uh with ϕ(x, t) = χε(t)(uh(x, t) − u(x, t)) and then letting ε ↓ 0. The argument can be
justified by the use of Steklov averages. Note that the test-function ϕ is admissible in (5.1) and (5.5) since uh and u

agree on the parabolic boundary ∂P Q+
R . Now, testing (5.1) and (5.5) as described before and then taking the difference

we obtain for a.e. t ∈ ΛR2

1

2

∫
B+

R

∣∣(uh − u)(·, t)∣∣2 dx +
t∫

−R2

∫
B+

R

〈
ah(·,Duh) − a(·,Du),Duh − Du

〉
dx dτ = 0. (5.8)

To prove the energy estimate we let t ↑ R2. Noting that the first term on the left-hand side is non-negative and also
using (5.4)4, we find that∫

Q+
R

(
1

2
ν|Duh|2 − L2/ν

)
dz �

∫
Q+

R

〈
ah(·,Duh),Duh

〉
dz

�
∫

Q+

〈
ah(·,Duh),Du

〉
dz +

∫
Q+

〈
ah(·,Du),Duh − Du

〉
dz =: I + II,
R R
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with the obvious meaning of I and II. Using the growth (5.4)1 of ah and Young’s inequality (with ε > 0 to be chosen
later) we find

|I | � L

∫
Q+

R

(
1 + |Duh|

)|Du|dz � ε

∫
Q+

R

|Duh|2 dz + (
L + L2ε−1) ∫

Q+
R

(
1 + |Du|2)dz

as well as

|II| � L

∫
Q+

R

(
1 + |Du|)(|Duh| + |Du|)dz � ε

∫
Q+

R

|Duh|2 dz + 2
(
L + L2ε−1) ∫

Q+
R

(
1 + |Du|2)dz.

Inserting the preceding estimates for I and II above and choosing ε > 0 small enough, we obtain the desired energy
estimate (5.6) with a constant c = c(L/ν). To prove the comparison estimate we first use (5.4)3 to obtain

I (t) =
t∫

−R2

∫
B+

R

|Du − Duh|2 dx dτ � 1

ν

t∫
−R2

∫
B+

R

〈
ah(·,Duh) − ah(·,Du),Duh − Du

〉
dx dτ,

for a.e. t ∈ ΛR2 . Combining this with (5.8), using (5.4)5 and Young’s inequality, we find

1

2

∫
B+

R

∣∣(uh − u)(·, t)∣∣2dx + νI (t) �
t∫

−R2

∫
B+

R

〈
a(·,Du) − ah(·,Du),Duh − Du

〉
dxdτ

� Lθ̃
(|h|)

t∫
−R2

∫
B+

R

(
1 + |Du|)|Duh − Du|dx dτ

� ν

2
I (t) + L2ν−1θ̃2(|h|) ∫

Q+
R

(
1 + |Du|2)dz.

We absorb ν
2 I (t) on the left-hand side, then take the supremum over t ∈ ΛR2 in the first term and finally let t ↑ R2 in

the second one. This procedure gives the desired comparison estimate (5.7).

5.1.3. Fractional estimates
In this section we will establish higher fractional differentiability of Du with respect to the spatial directions and

the time direction up to the lateral boundary. This will be achieved by a comparison argument, which utilizes the up
to the boundary higher differentiability of the associated regularized problem.

Lemma 5.1. Let u ∈ L2(Λ1;W 1,2(B+
1 ;R

N)) be a weak solution of the non-linear parabolic system (5.1) in Q+
1 with

u = 0 on Γ1 where the vector field a satisfies the hypotheses (1.2) and gt ∈ N 0,ξ ;2(Q+
1 ;R

N) for some ξ ∈ (0,1). Then
for any 0 < r � 1/16 there holds∫

Λ
r2

∫
B+

r

∫
B+

r

|Du(x, t) − Du(y, t)|2
|x − y|n+2s

dx dy dt < ∞, ∀s ∈ (0, β).

Proof. First, we will derive an estimate for the integral of the finite differences τα
h [Du], α = 1, . . . , n, in terms of the

increment |h|. For this we fix h ∈ R such that 0 < |h| � r where we take h > 0 when dealing with the case α = n. By

uh ∈ L2(Λ(1/2)2;W 1,2(B+
1/2;R

N
))

we denote the unique solution of the Cauchy–Dirichlet problem (5.5) in Q+
1/2. Moreover, for s ∈ (0, β) we fix 0 < ϑ <

min{ β−s
, ξ}. We note that due to (5.4)1, (5.4)2, (5.4)6, (5.4)7 and the assumption θ̃ (|h|) � |h|β , the vector fields ah
1−β
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are of the type of the vector fields considered in (4.1). In particular, the assumptions (4.2)3 and (4.2)4 are satisfied
with

γ = γ (h) = c(n)

[
θ̃ (|h|)
|h| +

(
θ̃ (|h|2)
|h|2

) 1+ϑ
2
]

� c(n)|h|(β−1)(1+ϑ). (5.9)

Therefore, the a priori estimate from Theorem 4.2 applies to uh such that we have D2uh ∈ L2(Q+
4r ;R

Nn2
) with the

estimate∫
Q+

4r

∣∣D2uh

∣∣2 dz � c
(
r−2 + γ 2) ∫

Q+
8r

(
1 + |Duh|2

)
dz + c‖gt‖2

N 0,ξ ;2(Q+
8r )

� c
(
r−2 + |h|2(β−1)(1+ϑ)

) ∫
Q+

8r

(
1 + |Du|2)dz + c‖gt‖2

N 0,ξ ;2(Q+
8r )

,

where in the last line we have used the energy estimate (5.6) and (5.9). Note that c = c(n,N,L/ν,ϑ) and c → ∞
when ϑ ↓ 0. With the help of (2.7), this estimate yields for the finite differences τα

h [Du], α = 1, . . . , n, that∫
Q+

2r

∣∣τα
h [Duh]

∣∣2 dz � c(n)|h|2
∫

Q+
4r

∣∣D2uh

∣∣2 dz � c|h|2β−2ϑ(1−β)

[
r−2

∫
Q+

8r

(
1 + |Du|2)dz + ‖gt‖2

N 0,ξ ;2(Q+
8r )

]
.

In order to derive a similar estimate for τα
h [Du] we use the following comparison argument:∫

Q+
2r

∣∣τα
h [Du]∣∣2 dz � 3

∫
Q+

2r

∣∣τα
h [Duh]

∣∣2 dz + 3
∫

Q+
2r

∣∣Duh(x + heα, t) − Du(x + heα, t)
∣∣2 dz

+ 3
∫

Q+
2r

∣∣Duh(x, t) − Du(x, t)
∣∣2 dz.

Taking into account that |h| � r and using the comparison estimate (5.7) we can control the last two integrals by∫
Q+

4r

|Duh − Du|2 dz � c(n,L/ν)|h|2β

∫
Q+

8r

(
1 + |Du|2)dz.

Combining this with the preceding estimate for τα
h [Duh] we finally arrive at∫

Q+
2r

∣∣τα
h [Du]∣∣2 dz � c|h|2β−2ϑ(1−β)

[
r−2

∫
Q+

8r

(
1 + |Du|2)dz + ‖gt‖2

N 0,ξ ;2(Q+
8r )

]
,

where c = c(n,N,L/ν,ϑ). It is worth mentioning that c → ∞ when ϑ ↓ 0, i.e. when ξ ↓ 0 or s ↑ β . Note that we
have taken h > 0 in the case α = n. Since β − ϑ(1 − β) > s by our choice of ϑ the application of Lemma 2.5(ii) now
yields Du ∈ Ws,0,2(Q+

r ;R
Nn). Recalling that s ∈ (0, β) was arbitrary this proves the assertion of the lemma. �

Similarly we can show fractional differentiability of Du with respect to time.

Lemma 5.2. Let u ∈ L2(Λ1;W 1,2(B+
1 ;R

N)) be a weak solution of the non-linear parabolic system (5.1) in Q+
1 with

u = 0 on Γ1 where the vector field a satisfies the hypotheses (1.2) and gt ∈ N 0,ξ ;2(Q+
1 ;R

N) for some ξ ∈ (0,1). Then
for any 0 < r � 1/8 we have∫

Λ
r2

∫
Λ

r2

∫
B+

r

|Du(x, t) − Du(x, τ )|2
|t − τ |1+2s

dt dτ dx < ∞, ∀s ∈
(

0,
β

2

)
.
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Proof. We fix λ ∈ R such that 0 < |λ| � r2 and define h = |λ| 1
2 . Again we denote by

uh ∈ L2(Λ(1/2)2;W 1,2(B+
1/2;R

N
))

the unique solution of the Cauchy–Dirichlet problem (5.5) on Q+
1/2 and for s ∈ (0, β) we fix 0 < ϑ < min{ β−s

1−β
, ξ}.

From the proof of Lemma 5.1 we recall that the vector fields {ah} are of the type of the vector fields considered in (4.1)

with γ = γ (h) � c(n)h(β−1)(1+ϑ) = c(n)|λ| β−1
2 (1+ϑ) (see (5.9)). Therefore, we can apply Corollary 4.9 to uh to infer∫

Q+
2r

∣∣τλ[Duh]
∣∣2 dz � c|λ|

[(
r−2 + γ 2) ∫

Q+
4r

(
1 + |Duh|2

)
dz + ‖gt‖2

N 0,ξ ;2(Q+
4r )

]

� c|λ|β−ϑ(1−β)

[
r−2

∫
Q+

4r

(
1 + |Du|2)dz + ‖gt‖2

N 0,ξ ;2(Q+
4r )

]
,

where we have used again in the last line the energy estimate (5.6) and c = c(n,N,L/ν,ϑ) with c → ∞ when ϑ ↓ 0.
In order to derive a similar estimate for τλ[Du] we once again use a comparison argument:∫

Q+
r

∣∣τλ[Du]∣∣2 dz � 3
∫

Q+
r

∣∣τλ[Duh]
∣∣2 dz + 3

∫
Q+

r

∣∣Duh(x, t + λ) − Du(x, t + λ)
∣∣2 dz

+ 3
∫

Q+
r

∣∣Duh(x, t) − Du(x, t)
∣∣2 dz.

Taking into account that |λ| � r2 and using again the comparison estimate (5.7) we can control the last two integrals
by ∫

Q+
2r

|Duh − Du|2 dz � c(n,N,L/ν)|λ|β
∫

Q+
4r

(
1 + |Du|2)dz.

Combining this with the estimate for τλ[Duh] we finally arrive at∫
Q+

r

∣∣τλ[Du]∣∣2 dz � c|λ|β−ϑ(1−β)

[
r−2

∫
Q+

4r

(
1 + |Du|2)dz + ‖gt‖2

N 0,ξ ;2(Q+
4r )

]
,

where c = c(n,N,L/ν,ϑ). As before, we mention that c → ∞ when ϑ ↓ 0, i.e. when ξ ↓ 0 or s ↑ β . By our choice
of ϑ the application of Lemma 2.5(i) is possible and yields Du ∈ W 0,s,2(Q+

r ;R
Nn), proving the assertion of the

lemma. �
At the end of this section we briefly summarize on the achievements so far. Combining Lemmas 5.1 and 5.2 with

their interior analogue (see [16, Lemmas 9.4 and 9.5]) via the flattening of the boundary procedure described in
Section 2.1, we arrive at the following global differentiability result:

Theorem 5.3. Let u ∈ L2(0, T ;W 1,2(Ω;R
N)) be a weak solution of the non-linear parabolic system (1.1) under the

assumptions (1.2) where u = g on the lateral part ∂latΩT of the parabolic boundary and gt ∈ N 0,ξ ;2(Q+
1 ;R

N) for
some ξ ∈ (0,1). Then for any d ∈ (0, T /2) and any s ∈ (0, β) there holds

Du ∈ Ws, s
2 ,2(Ω × (d, T − d);R

Nn
)
, ∀s < β.

5.1.4. Proof of Theorem 1.3
Now, we are in the position to prove the existence of regular points on the lateral boundary. The first assertion

of Theorem 1.3 is an immediate consequence of Theorem 5.3, i.e. the fact that Du ∈ Ws,s/2,2 for any s ∈ (0, β).
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The gain of the δ-improvement in (1.7) will be slightly more involved. Here we will use a higher integrability argu-
ment to replace in several estimates the L2-norm by an Lσ -norm for some σ > 2, such that we will come up with
Du ∈ Ws,s/2,σ .

Proof of Theorem 1.3. Here, we will show that

dimP (∂latΩT \ RegP u) < n + 1

which implies that Hn+1
P -almost every lateral boundary point is a regular point of Du. By the flattening of the bound-

ary procedure introduced in Section 2.1 we can cover ∂latΩT by a finite number of cylinders Q	(zi), i = 1, . . . , M,
such that it suffices to consider the model problem (2.2) on Q+

1 and to establish the estimate for the dimension of
the singular set Γ1/2 \ RegP u; to be more precise that dimP (Γ1/2 \ RegP u) < n + 1. From the characterization
of regular points in Theorem 1.2 (transformed to the model situation (2.2)) we already know that Γ1/2 \ RegP u ⊂
Γ1/2 ∩ (Σ1 ∪ Σ2). We now apply Theorem 5.3 to infer that Du ∈ Ws,s/2,2(Q+

1/2;R
Nn) for any s ∈ (0, β). Therefore,

Lemma 2.6 yields

dimP
(
Γ1/2 ∩ (

Σ1 ∪ Σ2))� n + 2 − 2β < n + 1,

whenever β > 1
2 . This proves the first assertion of Theorem 1.3.

In the following we shall improve this bound. The strategy here is to improve the comparison estimate (5.7) and the
fractional differentiability properties from Theorem 5.3, in the sense that in the L2-norm is replaced by the Lσ -norm
for some small values of σ > 2. With this respect we can assume that gt ∈ N 0,ξ ;σ1(Q+

1 ;R
N) for some ξ ∈ (0,1) and

some σ1 > 2. Our aim now is to determine δ > 0 such that β > 1/2 − δ implies that

dimP
(
Γr ∩ (

Σ1 ∪ Σ2))< n + 1,

for some r > 0 to be determined later but such that the pull back of the Qr ’s via the flattening of procedure
covers ∂latΩT . From the up to the lateral boundary higher integrability in Lemma 3.1 we infer that there exists
σ2 = σ2(n,L/ν) ∈ (2, σ1] such that

Du ∈ Lσ2
(
Q+

1/2;R
Nn
)
. (5.10)

Now, we let {ah} be the vector fields defined in Section 5.1.1 and uh ∈ L2(Λ(1/2)2; W 1,2(B+
1/2;R

N)) the unique

solution of the initial Cauchy–Dirichlet problem (5.5) in Q+
1/2. Taking the difference of systems (5.1) and (5.5) we

infer

∂t (uh − u) − div
(
ah(z,Duh) − ah(z,Du)

)= div
(
ah(z,Du) − a(z,Du)

)
on Q+

1/2. We now set

Ã(h)(z) :=
1∫

0

∂wah

(
z,Du + s(Duh − Du)

)
ds, (5.11)

and observe that ah(z,Duh) − ah(z,Du) = Ã(h)(Duh − Du). Therefore, we find that uh − u is a weak solution of
the following linear initial Cauchy–Dirichlet problem:{

∂t (uh − u) − div
(

Ã(h)D(uh − u)
)= div

(
ah(·,Du) − a(·,Du)

)
in Q+

1/2,

uh − u = 0 on ∂P Q+
1/2.

From our assumptions (5.4)1 and (5.4)2 we know that 〈Ã(h)(z)w,w〉 � ν|w|2 and also |Ã(h)(z)| � L for any choice
of w ∈ R

Nn and z ∈ Q+
1/2. Therefore, we can apply Lemma 3.1 with the right-hand side b(z) = ah(z,Du)−a(z,Du) ∈

Lσ2(Q+
1/2;R

Nn) (see (5.4)1, (1.2)1 and (5.10)) to infer the existence of σ3 = σ3(n,L/ν) ∈ (2, σ2] such that Duh −
Du ∈ Lσ3(Q+ ;R

Nn). Moreover, for any choice of σ ∈ (2, σ3] holds
1/4
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∫
Q+

1/4

|Duh − Du|σ dz � c

( ∫
Q+

1/2

|Duh − Du|2 dz

) σ
2 + c

∫
Q+

1/2

∣∣ah(z,Du) − a(z,Du)
∣∣σ dz,

where c = c(n,N,L/ν). In the following we shall estimate the integrals appearing on the right-hand side of the
preceding inequality. For the first we use the comparison estimate (5.7) and Hölder’s inequality to infer( ∫

Q+
1/2

|Duh − Du|2 dz

) σ
2

� c(n,L/ν)|h|βσ −
∫

Q+
1/2

(
1 + |Du|σ )dz.

The second integral can be treated using the pointwise estimate (5.4)5 to obtain∫
Q+

1/2

∣∣ah(·,Du) − a(·,Du)
∣∣σ dz � c(n,L/ν)|h|βσ

∫
Q+

1/2

(
1 + |Du|σ )dz.

Inserting this above we arrive at∫
Q+

1/4

|Duh − Du|σ dz � c(n,L/ν)|h|βσ

∫
Q+

1/2

(
1 + |Du|σ )dz, (5.12)

which is the desired improvement of the comparison estimate (5.7) we were looking for. At this stage we also note
that the last inequality implies the energy bound:∫

Q+
1/4

|Duh|σ dz � c(n,L/ν)

∫
Q+

1/2

(
1 + |Du|σ )dz. (5.13)

Next, we are going to improve the Ws, s
2 ,2-estimate from Theorem 5.3, exploiting the higher integrability of D2uh. We

first fix s ∈ (0, β) and 0 < ϑ < min{ β−s
1−β

, ξ}. Applying Proposition 4.15, we infer the existence of σ4 = σ4(n,L/ν) ∈
(2, σ3], such that |D2uh| ∈ Lσ4(Q+

1/4). Moreover, for any choice of σ ∈ (2, σ4] we have∫
Q+

1/8

∣∣D2uh

∣∣σ dz � c
(
1 + γ σ

) ∫
Q+

1/4

(
1 + |Duh|σ

)
dz + c‖gt‖σ

N 0,ξ ;σ (Q+
1/4)

� c|h|σ(β−1)(1+ϑ)

∫
Q+

1/2

(
1 + |Du|σ )dz + c‖gt‖σ

N 0,ξ ;σ (Q+
1/2)

, (5.14)

where we have used in the last line the energy bound (5.13) and γ � c(n)|h|(β−1)(1+ϑ) from (5.9). Note that c =
c(n,N,L/ν,ϑ) with c → ∞ when ϑ ↓ 0. This yields for α = 1, . . . , n and |h| � 1/16 with h > 0 when α = n that∫

Q+
1/16

∣∣τα
h [Duh]

∣∣σ dz � c|h|σ [β−ϑ(1−β)]
[ ∫
Q+

1/2

(
1 + |Du|σ )dz + ‖gt‖σ

N 0,ξ ;σ (Q+
1/2)

]
.

This estimate can now be carried over to Du by the comparison argument we used in the proof of Lemma 5.1. Indeed,
combining (5.12) and the preceding estimate we obtain∫

Q+
1/16

∣∣τα
h [Du]∣∣σ dz � 3σ−1

[ ∫
Q+

1/16

∣∣τα
h [Duh]

∣∣σ dz +
∫

Q+
1/16

|Duh − Du|σ dz

+
∫

Q+

∣∣Duh(x + heα, t) − Du(x + heα, t)
∣∣σ dz

]

1/16
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� c|h|σ [β−ϑ(1−β)]
[ ∫
Q+

1/2

(
1 + |Du|σ )dz + ‖gt‖σ

N 0,ξ ;σ (Q+
1/2)

]
. (5.15)

Finally, we consider the time-direction. We will attain an estimate for the Lσ -norm of |τλ[Du]| for 0 < |λ| � (1/8)2

with the help of the comparison map uh with the choice h = |λ| 1
2 . From Corollary 4.16 and Hölder’s inequality we

infer the existence of σ5 = σ5(n,L/ν) ∈ (2, σ4] such that for any σ ∈ (2, σ5] there holds∫
Q+

1/8

∣∣τλ[Duh]
∣∣σ dz � c|λ| σ

2

[(
1 + γ σ

) ∫
Q+

1/4

(
1 + |Duh|σ

)
dz + ‖gt‖σ

N 0,ξ ;σ (Q+
1/4)

]

� c|λ| σ
2 (β−ϑ(1−β))

[ ∫
Q+

1/2

(
1 + |Du|σ )dz + ‖gt‖σ

N 0,ξ ;σ (Q+
1/2)

]
,

where in the last line we have used again the energy bound (5.13) and (5.9) in the form γ � c(n)h(β−1)(1+ϑ) =
c(n)|λ| β−1

2 (1+ϑ).
Joining the comparison estimate (5.12) with the preceding estimate we obtain, completely similar to the proof

of (5.15), that∫
Q+

1/16

∣∣τλ[Du]∣∣σ dz � 3σ−1
[ ∫
Q+

1/16

∣∣τλ[Duh]
∣∣σ dz +

∫
Q+

1/16

|Duh − Du|σ dz

+
∫

Q+
1/16

∣∣Duh(x, t + λ) − Du(x, t + λ)
∣∣σ dz

]

� c|λ| σ
2 (β−ϑ(1−β))

[ ∫
Q+

1/2

(
1 + |Du|σ )dz + ‖gt‖σ

N 0,ξ ;σ (Q+
1/2)

]
, (5.16)

where c = c(n,N,L/ν,ϑ). Combining (5.15) and (5.16) and recalling that ϑ <
β−s
1−β

, we infer from Lemma 2.5 that

Du ∈ Ws,s/2,σ (Q+
1/32;R

Nn). Since s ∈ (0, β) was arbitrary we conclude that Du ∈ Ws,s/2,σ (Q+
1/32;R

Nn) for any
s ∈ (0, β) and σ ∈ (2, σ5].

At this stage we perform the choice of the constants. We first choose σ = σ5 = σ5(n,L/ν). Next, we choose δ

in (1.7) such that

δ ≡ 1

4
− 1

2σ
> 0.

Note that the dependencies of δ from the structural parameters are the same as for σ . Since β > 1/2−δ we now choose
s ∈ (1/2 − δ,β). Applying Lemma 2.6(i) we infer that dimP (Γ1/32 ∩ (Σ1 ∪ Σ2)) < n + 2 − sσ < n + 1. The last
inequality follows from the fact that sσ > (1/2 − δ)σ = σ/4 + 1/2 > 1. This finishes the proof of Theorem 1.3. �

With the proof of Theorem 1.3 we have completed our considerations concerning the regularity properties of weak
solutions to non-linear parabolic systems and their corresponding singular sets at the lateral boundary. Therefore we
finally turn our attention to the dimension estimate for the singular set at

5.2. The initial boundary: Proof of Theorem 1.5

In the following we shall consider a weak solution u ∈ L2(0, T ; W 1,2(Ω,R
N)) of the following non-linear

parabolic system

ut − diva(z,Du) = 0 on ΩT , (5.17)

where u(·,0) = 0 on Ω and the vector field a :ΩT × R
Nn → R

Nn satisfies the assumptions (1.2)1–(1.2)3 and (1.3).
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5.2.1. Smoothing
As in the lateral boundary situation we build up a family of regularized vector fields. In contrast to Section 5.1.1 the

smoothing will now be performed only with respect to the space variable x. The precise construction is as follows: We
fix a point z0 ∈ Ω0, a parabolic cylinder Q0

2	(z0) ⊂ ΩT and a smooth, radially symmetric, non-negative convolution

kernel φ ∈ C∞
0 (B1) satisfying

∫
B1

φ dx = 1. For 0 < |h| � min{	,1} we then define the regularized vector field ah by

ah(x, t,w) ≡
∫
B1

a
(
x + |h|y, t,w

)
φ(y)dy = 1

|h|n
∫

B|h|(x)

a(y, τ,w)φ

(
y − x

|h|
)

dy, (5.18)

where z = (x, t) ∈ Q0
2	−|h| and w ∈ R

Nn. Then, the vector field ah satisfies the properties (4.2)1–(4.2)6.

5.2.2. A comparison estimate
Here we shall state the energy and comparison estimate for the initial boundary situation. We still let u, z0 = (x0,0)

and Q0
	(z0) be as above and define uh ∈ L2(Λ0

	2;W 1,2(B	(x0);R
N)) to be the unique solution of the following

Cauchy–Dirichlet problem{
∂tuh − divah(x, t,Duh) = 0 in Q0

	(z0),

uh = u on ∂P Q0
	(z0),

(5.19)

where {ah}, 0 < |h| � min{	,1}, denotes the family of vector fields constructed in (5.18). Then, the following energy
estimate holds∫

Q0
	(z0)

|Duh|2 dz � c(n,L/ν)

∫
Q0

	(z0)

(
1 + |Du|2)dz. (5.20)

Moreover, we have the following comparison estimate∫
Q0

	(z0)

|Duh − Du|2 dz � c(n,L/ν)θ̃2(|h|) ∫
Q0

	(z0)

(
1 + |Du|2)dz. (5.21)

The proof is exactly the same as the one for the lateral boundary situation provided in Section 5.1.2 and therefore we
shall not repeat it. We only have to replace Q+

R by Q0
	(z0). Note also that we did not use the assumption (5.4)7 in

Section 5.1.2 which is not available now.

5.2.3. Fractional estimates
The next lemma provides the higher fractional differentiability of Du up to the initial boundary with respect to the

spatial directions and the time direction.

Lemma 5.4. Suppose that u ∈ L2(0, T ;W 1,2(Ω;R
N)) with u(·,0) = 0 on Ω is a weak solution of (2.3) where the

structure conditions (1.2)1–(1.2)3 are in force and let t1 ∈ (0, T ) and Ω̃ � Ω . Then, we have

t1∫
0

∫
Ω̃

∫
Ω̃

|Du(x, t) − Du(y, t)|2
|x − y|n+2s

dx dy dt < ∞, ∀s ∈ (0, β),

and

∫
Ω̃

t1∫
0

t1∫
0

|Du(x, τ ) − Du(x, τ̃ )|2
|τ̃ − τ̃ |1+2s

dτ dτ̃ dx < ∞, ∀s ∈
(

0,
β

2

)
.

Proof. As in the proofs of Lemmas 5.1 and 5.2 we will derive an estimate for the integral of the finite differences
τα
h [Du], α = 1, . . . , n and τh[Du], in terms of the increment |h|. For this we fix z0 ∈ Ω0 and Q0

2	(z0) ⊂ ΩT with
	 � 1 and 0 < |h| � 	/4, where we take h > 0 when considering finite differences in time. By
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uh ∈ L2(Λ0
	2;W 1,2(B	(x0);R

N
))

we denote the unique solution of the Cauchy–Dirichlet problem (5.19) in Q0
	(z0). We note that due to (5.4)1,

(5.4)2, (5.4)6 and the assumption θ̃ (|h|) � |h|β , the vector fields ah are of the type of the vector fields considered
in (4.1) of Section 4.2 (note that we did not assume (4.2)4 there). In particular, the assumption (4.2)3 is satisfied with

γ = γ (h) = c(n)
θ̃(|h|)
|h| � c(n)|h|β−1. (5.22)

Therefore, the a priori estimate from Proposition 4.18 with σ = 2 applies to uh such that we have D2uh ∈
L2(Q0

	/2(z0);R
Nn2

) with the estimate

∫
Q0

	/2(z0)

∣∣D2uh

∣∣2 dz � c
(
	−2 + γ 2) ∫

Q0
	(z0)

(
1 + |Duh|2

)
dz � c

(
	−2 + |h|2β−2) ∫

Q0
	(z0)

(
1 + |Du|2)dz.

In the last line we have used the energy estimate (5.20). Note that c = c(n,N,L/ν). With the help of (2.7), this
estimate yields for the finite differences τα

h [Du], α = 1, . . . , n, that∫
Q0

	/4(z0)

∣∣τα
h [Duh]

∣∣2 dz � c(n)|h|2
∫

Q0
	/2(z0)

∣∣D2uh

∣∣2 dz � c|h|2β	−2
∫

Q0
	(z0)

(
1 + |Du|2)dz.

Now, we employ the comparison estimate (5.21) in completely the same way as we did in the proof of Lemma 5.1
(with ϑ = 0) in order to derive a similar estimate for τα

h [Du]. Proceeding this way we end up with∫
Q0

	/4(z0)

∣∣τα
h [Du]∣∣2 dz � c|h|2β	−2

∫
Q0

	(z0)

(
1 + |Du|2)dz, (5.23)

where c = c(n,N,L/ν). At this stage we note that the preceding estimate holds true for interior cylinders as well
(see [16, Lemma 9.4]). An application of Lemma 2.5(ii) now yields the assertion concerning the spatial fractional
differentiability.

We now come to the time-direction. We let z0, 	,h, ah, γ and uh still be as above. We consider 0 < λ � (	/2)2 and

set h = λ
1
2 . Applying Proposition 4.20 to uh we infer∫

Q0
	/2

∣∣τλ[Duh]
∣∣2 dz � cλ

(
	−2 + γ 2) ∫

Q0
	

(
1 + |Duh|2

)
dz � cλβ	−2

∫
Q0

	

(
1 + |Du|2)dz,

where we have also used the energy estimate (5.20) and c = c(n,N,L/ν). To derive a similar estimate for τλ[Du] we
proceed as in the proof of Lemma 5.2, i.e. we use the comparison estimate (5.21) in order to pass over the preceding
estimate to τλ[Du]. This leads us to∫

Q0
	/2(z0)

∣∣τλ[Du]∣∣2 dz � cλβ	−2
∫

Q0
	(z0)

(
1 + |Du|2)dz,

where c = c(n,N,L/ν). We note that the preceding estimate also holds in the interior situation (see [16, Lemma 9.5]).
Lemma 2.5(i) now yields the fractional differentiability of Du with respect to time and this finishes the proof of the
lemma. �

Finally, we briefly summarize, what we have achieved up to now. Combining the fractional differentiability with
respect to space and time from Lemma 5.4, we arrive at the following fractional differentiability result:
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Theorem 5.5. Let u ∈ L2(0, T ;W 1,2(Ω;R
N)) be a weak solution of the non-linear parabolic system (1.1) under the

assumptions (1.2)1–(1.2)3 and (1.4)2 where u = g on the initial boundary Ω0. Then for any Ω̃ ⊂ Ω , t1 ∈ (0, T ) and
s ∈ (0, β) there holds

Du ∈ Ws, s
2 ,2(Ω̃ × (0, t1);R

Nn
)
, ∀s < β.

5.2.4. Proof of Theorem 1.5
At this stage, we mention that – contrary to the lateral boundary situation – Theorem 5.5, stating that Du ∈ Ws,s/2,2

for any s ∈ (0, β), does not immediately imply the existence of at least one regular initial boundary point. Indeed, the
application of Lemma 2.6 yields dimP (Ω0 ∩ Σ) < n + 2 − 2β . Since β ∈ (0,1) this quantity is still larger than n;
note that the parabolic Hausdorff-dimension of the initial boundary Ω0 is n. Hence, in order to prove the existence
of regular initial boundary points we need to establish a higher integrability improvement of Theorem 5.5, i.e. that
Du ∈ Ws,s/2,σ for some σ > 2 independent of β . This will be the main effort in the

Proof of Theorem 1.5. Our aim is to show that

dimP (Ω0 \ RegP u) < n

which implies that Hn
P -almost every initial boundary point is a regular point of Du. By the transformation explained in

Section 2.1 we can assume that we have zero initial boundary values. Now, we consider a fixed cylinder Q0
	(z0) ⊂ ΩT

with z0 ∈ Ω0. From the characterization of regular boundary points in Theorem 1.2 we already know that D	(z0) \
RegP u ⊂ D	(z0) ∩ (Σ1 ∪ Σ2). In the following we will show that Du ∈ Ws,s/2,σ (Q0

	/16;R
Nn) for some σ > 2 by

improving the comparison estimate (5.21) and the fractional differentiability properties of the comparison function uh

(from the proof of Lemma 5.4).
Hence, our aim is to determine δ > 0 such that β > 1 − δ implies that

dimP
(
D	/16(z0) ∩ Σ

)
< n.

By an up to the initial boundary higher integrability result as for instance provided by [8,31] we infer the existence
of σ1 = σ1(n,N,L/ν) > 2 such that

Du ∈ Lσ1
(
Q0

	(z0);R
Nn
)
. (5.24)

Now, we denote by {ah} the vector fields constructed in Section 5.2.1 and let uh ∈ L2(Λ0
	2; W 1,2(B	(x0);R

N)) be

the unique solution of the initial Cauchy–Dirichlet problem (5.19) in Q0
	(z0). Taking the difference of the systems

(5.17) and (5.19) we see (as in the proof of Theorem 1.3) that uh − u is a weak solution of the following linear initial
Cauchy–Dirichlet problem:{

∂t (uh − u) − div
(

Ã(h)D(uh − u)
)= div

(
ah(·,Du) − a(·,Du)

)
in Q0

	(z0),

uh − u = 0 on ∂P Q0
	(z0),

where Ã(h)(z) = ∫ 1
0 ∂wah(z,Du + s(Duh − Du))ds are the coefficients defined in (5.11). From our assump-

tions (5.4)1 and (5.4)2 we know that 〈Ã(h)(z)w,w〉 � ν|w|2 and also |Ã(h)(z)| � L for any choice of w ∈ R
Nn

and z ∈ Q0
	(z0). Therefore, we can once again use the up to the initial boundary higher integrability from [8,31] (note

that the right-hand side is b(z) ≡ ah(z,Du) − a(z,Du) ∈ Lσ1(Q0
	(z0);R

Nn); see (5.4)1, (1.2)1 and (5.24)) to infer

the existence of σ2 = σ2(n,N,L/ν) ∈ (2, σ1] such that Duh − Du ∈ Lσ2(Q0
	/2(z0);R

Nn). Moreover, for any choice
of σ ∈ (2, σ2] holds∫

Q0
	/2(z0)

|Duh − Du|σ dz � c

( ∫
Q0

	(z0)

|Duh − Du|2 dz

) σ
2 + c

∫
Q0

	(z0)

∣∣ah(z,Du) − a(z,Du)
∣∣σ dz,

where c = c(n,N,L/ν). In the following we shall estimate the integrals appearing on the right-hand side of the
preceding inequality. For the first one we use the comparison estimate (5.21) and Hölder’s inequality to infer
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( ∫
Q0

	(z0)

|Duh − Du|2 dz

) σ
2

� c(n,L/ν)|h|βσ −
∫

Q0
	(z0)

(
1 + |Du|σ )dz.

The second integral can be treated using the pointwise estimate (5.4)5 to obtain∫
Q0

	(z0)

∣∣ah(·,Du) − a(·,Du)
∣∣σ dz � c(n,L/ν)|h|βσ

∫
Q0

	(z0)

(
1 + |Du|σ )dz.

Inserting this above we arrive at∫
Q0

	/2(z0)

|Duh − Du|σ dz � c(n,N,L/ν)|h|βσ

∫
Q0

	(z0)

(
1 + |Du|σ )dz, (5.25)

which is the desired improvement of the comparison estimate (5.21) we were looking for. We note that the last
inequality implies the energy bound:∫

Q0
	/2(z0)

|Duh|σ dz � c(n,L/ν)

∫
Q0

	(z0)

(
1 + |Du|σ )dz. (5.26)

Next, we are going to improve the Ws, s
2 ,2-estimate from Theorem 5.5, utilizing the higher integrability of D2uh.

We first fix s ∈ (0, β). Applying Proposition 4.18, we infer the existence of σ3 = σ3(n,N,L/ν) ∈ (2, σ2], such that
|D2uh| ∈ Lσ3(Q0

	/2(z0)). Moreover, for any choice of σ ∈ (2, σ3] we have∫
Q0

	/4(z0)

∣∣D2uh

∣∣σ dz � c
(
	−σ + γ σ

) ∫
Q0

	/2(z0)

(
1 + |Duh|σ

)
dz � c|h|σ(β−1)	−σ

∫
Q0

	(z0)

(
1 + |Du|σ )dz, (5.27)

where we have used in the last line (5.26) and γ = c(n)|h|1−β from (5.22). Note that c = c(n,N,L/ν). This yields
for α = 1, . . . , n and |h| � 	/8 that∫

Q0
	/8(z0)

∣∣τα
h [Duh]

∣∣σ dz � c|h|σβ	−σ

∫
Q0

	(z0)

(
1 + |Du|σ )dz.

This estimate can now be carried over to Du via (5.25) by the comparison argument we used several times before (see
for instance the proof of Theorem 1.3). This leads us to the following improvement of (5.23):∫

Q0
	/8(z0)

∣∣τα
h [Du]∣∣σ dz � c|h|σβ	−σ

∫
Q0

	(z0)

(
1 + |Du|σ )dz. (5.28)

Finally, we consider the time-direction. We will attain an estimate for the Lσ -norm of |τλ[Du]| with the help of

the comparison map uh with the choice h = λ
1
2 and 0 < λ � (	/4)2. From Proposition 4.20 and Hölder’s inequality

we infer the existence of σ4 = σ4(n,N,L/ν) ∈ (2, σ3] such that for any σ ∈ (2, σ4] there holds∫
Q0

	/4(z0)

∣∣τλ[Duh]
∣∣σ dz � cλ

σ
2
(
	−σ + γ σ

) ∫
Q0

	/2(z0)

(
1 + |Duh|σ

)
dz � cλ

σ
2 β	−σ

∫
Q0

	(z0)

(
1 + |Du|σ )dz,

where in the last line we have used (5.26) and γ = c(n)hβ−1 = c(n)λ
β−1

2 . This estimate is carried over to Du by
joining (5.25) with the preceding estimate (see for instance the proof of Theorem 1.3). We obtain∫

Q0 (z0)

∣∣τλ[Du]∣∣σ dz � c|λ| σ
2 β	−σ

∫
Q0

	(z0)

(
1 + |Du|σ )dz, (5.29)
	/8
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where c= c(n,N,L/ν). Combining (5.28) and (5.29), we infer from Lemma 2.5 that Du ∈ Ws,s/2,σ (Q0
	/16(z0);R

Nn).

Since s ∈ (0, β) was arbitrary we conclude that Du ∈ Ws,s/2,σ (Q0
	/16(z0);R

Nn) for any s ∈ (0, β) and σ ∈ (2, σ4]. At
this stage we perform the choice of the constants. We first choose σ = σ4 = σ4(n,N,L/ν). Then, σ = σ(n,N,L/ν)

does not depend on β . Next, we choose δ in (1.9) such that

δ ≡ 1

2
− 1

σ
> 0.

Note here that the dependencies of δ from the structural parameters are the same as for σ . Since β > 1 − δ we
can choose s ∈ (1 − δ,β). Applying Lemma 2.6(i) we infer that dimP (D	/16(z0)) ∩ Σ < n + 2 − sσ < n. The last
inequality follows from the fact that sσ > (1 − δ)σ = σ/2 + 1 > 2. Since z0 was an arbitrary point on the initial
boundary Ω0 the assertion of Theorem 1.5 follows by a standard covering argument. �
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