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Abstract

A well-known consequence of the ergodic decomposition theorem is that the space of invariant probability measures of a topo-
logical dynamical system, endowed with the weak∗ topology, is a non-empty metrizable Choquet simplex. We show that every
non-empty metrizable Choquet simplex arises as the space of invariant probability measures on the post-critical set of a logistic
map. Here, the post-critical set of a logistic map is the ω-limit set of its unique critical point. In fact we show the logistic map f

can be taken in such a way that its post-critical set is a Cantor set where f is minimal, and such that each invariant probability
measure on this set has zero Lyapunov exponent, and is an equilibrium state for the potential − ln |f ′|.

Résumé

Une conséquence bien connue du théorème de décomposition ergodique est que l’espace des mesures de probabilité invariantes
d’un système dynamique topologique est un simplexe de Choquet métrisable et non vide. On montre que tout simplexe de Choquet
métrisable et non vide se réalise comme l’espace des mesures de probabilité invariantes sur l’ensemble post-critique d’une applica-
tion logistique. Ici, l’ensemble post-critique d’une application logistique est l’ensemble ω-limite de son unique point critique. En
effet, on démontre que l’application logistique f peut être choisie de telle façon que son ensemble post-critique soit un ensemble
de Cantor où f est minimal, et tel que chaque mesure de probabilité invariante sur cet ensemble soit d’exposant de Lyapunov null,
et un état d’équilibre pour le potentiel − ln |f ′|.

MSC: 37E05; 37A99; 37B10; 54H20

Keywords: Logistic map; Post-critical set; Invariant measures; Choquet simplices; Minimal Cantor system; Generalized odometer

* Corresponding author.
E-mail addresses: maria.cortez@usach.cl (M.I. Cortez), riveraletelier@mat.puc.cl (J. Rivera-Letelier).

1 Partially supported by Fondecyt de Iniciación 11060002, Nucleus Millenius P04-069-F, and Research Network on Low Dimensional Dynamics,
PBCT ACT-17, CONICYT, Chile.

2 Partially supported by Research Network on Low Dimensional Dynamics, PBCT ACT-17, CONICYT, Chile.

© 2009 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

© 2009 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2009.07.008

© 2009 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.



96 M.I. Cortez, J. Rivera-Letelier / Ann. I. H. Poincaré – AN 27 (2010) 95–115
1. Introduction

A well-known consequence of the ergodic decomposition theorem is that the space of invariant probability mea-
sures of a topological dynamical system, endowed with the weak∗ topology, is a metrizable Choquet simplex.3 The
purpose of this paper is to show that every non-empty metrizable Choquet simplex arises in this way within the logistic
family of maps (fλ)(0,4], where for each parameter λ in (0,4] the logistic map fλ : [0,1] → [0,1] is defined by

fλ(x) = λx(1 − x).

To make a more precise statement note that x = 1
2 is the unique point in [0,1] at which the derivative of fλ vanishes.

We call x = 1
2 the critical point of fλ, and its ω-limit set is called the post-critical set of fλ. It is a compact set that is

forward invariant by fλ.
The following is our main result. Recall that for a compact topological space X a continuous map T : X → X is

minimal, if every forward orbit of T is dense in X.

Main Theorem. For each non-empty metrizable Choquet simplex C there is a parameter λ ∈ (0,4] such that the
post-critical set of the logistic map fλ is a Cantor set, the restriction of fλ to this set is minimal, and such that the
space of invariant probability measures supported by this set, endowed with weak∗ topology, is affine homeomorphic
to C .

The first result of this kind was shown by Downarowicz in [11], who showed that every non-empty metrizable
Choquet simplex arises, up to an affine homeomorphism, as the space of invariant probability measures of a “minimal
Cantor system”; that is, a dynamical system generated by a minimal homeomorphism of a Cantor set. In fact he
showed that the minimal Cantor system can be taken as a “0–1 Toeplitz flow”: A special type of subshift of {0,1}Z.
See also [14,26] for a different approach to this result, and see [8] for an analogous result in the case of actions
of Zd .

The following corollary is a direct consequence of the Main Theorem and of the fact that for each non-empty
Polish space P there is a metrizable Choquet simplex whose set of extreme points is homeomorphic to P , see for
example [19].

Corollary 1. For each non-empty Polish space P there is a parameter λ ∈ (0,4] such that the post-critical set of the
logistic map fλ is a Cantor set, the restriction of fλ to this set is minimal, and such that the space of ergodic and
invariant probability measures supported by this set, endowed with weak∗ topology, is homeomorphic to P .

The special case where the Polish space P is compact and totally disconnected is precisely [9, Main Theorem].
The first result in this direction was shown by Bruin, who gave an example of a parameter λ ∈ (0,4] such that the
post-critical set of fλ is a Cantor set where fλ is minimal, but not uniquely ergodic [7, Theorem 4]. The proof of the
Main Theorem is based on the tools developed by Bruin in [7], and by Bruin, Keller and St. Pierre in [4].

One of the interesting features of the Main Theorem, in contrast with the other realization results mentioned above,
is that the systems we consider have a natural differentiable structure. It turns out that, for the parameters λ ∈ (0,4]
given by (the proof of) the Main Theorem, the invariant measures supported by the post-critical set of fλ correspond
precisely to those invariant measures μ of fλ whose Lyapunov exponent

χ(μ) :=
∫

ln
∣∣f ′

λ

∣∣dμ,

vanishes [9, Lemma 21]. It also turns out that every invariant probability measure supported on the post-critical set
of fλ is an “equilibrium state of fλ for the potential − ln |f ′

λ|”. That is, if for each invariant measure μ we denote
by hμ its measure theoretic entropy, then the supremum

sup
{
hμ − χ(μ)

∣∣ μ invariant probability measure of fλ

}
,

is attained at each invariant probability measure supported by the post-critical set of fλ, see [9, Lemma 21].

3 See for example [15, p. 95]. We recall the definition of Choquet simplex in Section 2.2.
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We thus obtain the following corollary of the Main Theorem.

Corollary 2. For each non-empty metrizable Choquet simplex C there is a parameter λ ∈ (0,4] verifying the con-
clusions of the Main Theorem, and such that in addition the space of invariant probability measures of fλ (resp.
equilibrium states of fλ for the potential − log |f ′

λ|) that are of zero Lyapunov exponent, endowed with the weak∗
topology, is affine homeomorphic to C .

This result is in sharp contrast with the fact that for a logistic map there can be at most one ergodic equilibrium
state whose Lyapunov exponent is strictly positive.4

For future reference we state a holomorphic version of Corollary 2, shown in Appendix A. For a complex parame-
ter λ ∈ C denote by Pλ the quadratic polynomial defined by

Pλ(z) = λz(1 − z),

viewed as a dynamical system acting on C.

Corollary 3. For each non-empty metrizable Choquet simplex C there is a parameter λ ∈ (0,4] verifying the conclu-
sions of the Main Theorem, and such that in addition, if we denote by t0 the Hausdorff dimension of the Julia set of Pλ,
then the space of invariant probability measures of Pλ (resp. equilibrium states of Pλ for the potential −t0 log |P ′

λ|)
that are of zero Lyapunov exponent, endowed with the weak∗ topology, is affine homeomorphic to C .

We end this introduction by stating some questions that arise naturally from the Main Theorem. To do this, for
each λ ∈ (0,4] we will denote by Xλ the post-critical set of fλ. Given a compact metrizable topological space X

and a continuous map T : X → X, the Main Theorem implies that there is a parameter λ ∈ (0,4] and an affine
homeomorphism H between the space of invariant probability measures of fλ supported on Xλ, and the space of
invariant probability measures of T supported on X. It is thus natural to ask whether the parameter λ ∈ (0,4] and H

can be chosen in such a way that H is induced by a continuous map between Xλ and X. More precisely, the question
is if λ ∈ (0,4] and H can be chosen in such a way that there is a continuous map h : Xλ → X such that for each
invariant probability measure μ supported by Xλ we have H(μ) = h∗μ.

This type of problem is very well understood in the setting of minimal Cantor systems: Giordano, Putnam, and
Skau have shown in [18] that for two minimal Cantor systems (X,T ) and (X′, T ′) there exists a homeomorphism
h : X → X′ that induces an affine homeomorphism between the corresponding spaces of invariant probability mea-
sures, if, and only if, (X,T ) and (X′, T ′) are “orbit equivalent”: There is a homeomorphism between X and X′
mapping each orbit of T to an orbit of T ′. Furthermore, to each minimal Cantor system (X,T ) one can associate
a dimension group that is a complete invariant for the orbit equivalence relation [18]: Two minimal Cantor sys-
tems are orbit equivalent if, and only if, the corresponding dimension groups are isomorphic as ordered groups with
unit.5

It is thus natural to look for a special class of minimal Cantor systems realizing all of the orbit equivalent classes.
Since the dimension group associated to each Toeplitz flow contains the dimension group of an odometer as a sub-
group [14, Section 4.1], the class of Toeplitz flows is not sufficient to realize all orbit equivalence classes, in spite
of the fact that this class realizes all the non-empty metrizable Choquet simplices as sets of invariant probability
measures [11].

So the question remains whether minimal post-critical sets of logistic maps realize all orbit equivalence classes.
In order to formulate a precise question we will consider natural extensions to stay in the class of minimal Cantor
systems, and use the generalized odometer associated to a kneading map, see Sections 2.3, 4.1 for definitions.

4 This follows from a result of Ledrappier in [22], that every such equilibrium state is absolutely continuous with respect to the Lebesgue measure,
and from the fact that logistic maps are ergodic with respect to the Lebesgue measure [5].

5 The dimension group is defined as the quotient of the space of continuous functions defined on X and taking values in Z, by the subgroup of
functions whose integral with respect to each invariant measure vanishes; the positive cone is the set of those classes containing a function taking
values in N0, and the unit is the class of the constant function equal to 1. See for example [18, Theorem 1.13].
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Question 4. Does every orbit equivalence class contain the natural extension of a generalized odometer associated to
a kneading map?

Question 5. Does every uniquely ergodic orbit equivalence class contain the natural extension of a generalized odome-
ter associated to a kneading map?

It is well known that every odometer can be realized, up to a homeomorphism, as the post-critical set of an infinitely
renormalizable logistic map, see also [3]. In Section 5.4 we give an example of a uniquely ergodic generalized odome-
ter associated to a kneading map, whose natural extension is not orbit equivalent to an odometer, nor to a Toeplitz flow.

1.1. Notes and references

Although Corollary 1 is stronger than [9, Main Theorem], we use this last result in the proof of the Main Theorem
to deal with case of finite dimensional Choquet simplices.

We have stated the Main Theorem and Corollary 1 for the logistic family for simplicity. We show that an analogous
statement holds for each full family of unimodal maps, as well as for the family of symmetric tent maps. See Sec-
tion 2.3 for definitions. In fact, for each infinitely dimensional metrizable Choquet simplex we construct kneading
map Q such that the conclusions of the Main Theorem hold for each unimodal map whose kneading map is Q, see
Section 3. Furthermore the kneading map satisfies for every k ∈ N0 the inequality Q(k) � max{0, k − 2} (part 1 of
Lemma 11), and therefore every full family of unimodal maps, as well as the family of symmetric tent maps, contains
a unimodal map whose kneading map is Q. For the case of finite dimensional Choquet simplices see [9, Remark 1].

Similarly, it follows from [9, Lemma 21] that Corollary 2 holds for every full family of S-unimodal maps.
See [12, §15] for a survey on realization results concerning Toeplitz flows.
See [17] for the realization of some concrete simplices as the space of invariant measures of minimal Cantor

systems.

1.2. Strategy and organization

In this section we explain the strategy of the proof of the Main Theorem and simultaneously describe the organi-
zation of the paper.

We only deal with infinitely dimensional Choquet simplices, the finite dimensional case being covered by
[9, Main Theorem]. We use a result of Lazar and Lindenstrauss that characterizes infinite dimensional metrizable
Choquet simplices as inverse limits of stochastic matrices, see Theorem 7 in Section 2.2.

We describe the logistic maps in the Main Theorem through their associated “kneading map”, see Section 2.3
for the definition of kneading map and further background on unimodal maps. In fact, the conclusions of the Main
Theorem are valid for each unimodal map having the same kneading map as fλ. To ensure that the post-critical set
is a Cantor set where the unimodal map is minimal, it is enough to require that the kneading map diverges to +∞
(Proposition 10).

In Section 3.1 we introduce a class of kneading maps that diverge to +∞. In Section 3.2 we state a result describing
the space of invariant measures supported on the post-critical set of a unimodal map with a kneading map in this class
(Theorem A). In Section 3.2 we also give a proof of the Main Theorem assuming Theorem A.

In Section 4.1 we recall the definition and some properties of the generalized odometer associated to a kneading
map, that was introduced in [4]. In Section 5.1 we show that for a unimodal map whose kneading map Q is as in
Section 3.1, the space of invariant probability measures supported by the post-critical set is affine homeomorphic to
that of the generalized odometer associated to Q. In turn, this space is affine homeomorphic to the corresponding space
of the Bratteli–Vershik system associated to Q, introduced in [7]; see [7, Proposition 2] or Theorem 14 in Section 4.4.
The advantage of this last space is that it can be described explicitly as an inverse limit of some “transition matrices”,
see Section 4.3. We calculate the transition matrices and some of their products in Section 5.2, and give the proof of
Theorem A in Section 5.3.

In Section 5.4 we give an example of a uniquely ergodic generalized odometer associated to a kneading map whose
natural extension is not orbit equivalent to a Toeplitz flow.

In Appendix A we give the proof of Corollary 3.
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2. Preliminaries

After fixing some notation in Section 2.1, we review some concepts and results about Choquet simplices (Sec-
tion 2.2), and unimodal maps (Section 2.3).

Throughout the rest of this article N denotes the ring of strictly positive integers and N0 := N ∪ {0}. We will use
the interval notation for subsets of N0: For n,n′ ∈ N0 such that n′ � n, we put

[n,n′] := {k ∈ N0 | n � k � n′},
and we put [n,n′] := ∅ when n′ < n.

2.1. Linear algebra

Given a non-empty finite set V , for each v ∈ V we denote by 	ev ∈ RV the vector having all of its coordinates equal
to 0, except for the coordinate corresponding to v that is equal to 1. Notice in particular that {	ev | v ∈ V } is a base
of RV . Furthermore we will denote by �V the unit simplex in RV , which is defined as the (closed) convex hull of
{	ev | v ∈ V } in RV , and by ‖ · ‖1 the norm on RV defined by ‖∑

v∈V αv	ev‖1 = ∑
v∈V |αv|. Observe that ‖ · ‖1 is

constant equal to 1 on �V .
Given non-empty finite sets V,V ′ denote by MV,V ′ the group of matrices whose entries are real and indexed

by V × V ′. For a matrix A ∈ MV,V ′ we denote by At the transpose of A, and for (v, v′) ∈ V × V ′ we denote
by A(v, v′) the corresponding entry of A, and by A(·, v′) the corresponding column vector of A. Given column
vectors {	xv′ | v′ ∈ V ′} in RV we denote by (	xv′)v′∈V ′ the matrix in MV,V ′ whose column vector corresponding to the
coordinate v′ is equal to 	xv′ .

We say that a matrix A is (left) stochastic if all of its entries are non-negative and if the sum of all the entries in
each column is equal to 1. Observe that a stochastic matrix in MV,V ′ maps �V ′ into �V , and that the product of
stochastic matrices is stochastic.

Lemma 6. Let V,V ′ be non-empty finite sets and let A ∈ MV,V ′ be a stochastic matrix. Then for each 	w, 	w′ ∈ �V

we have∥∥A( 	w) − A( 	w′)
∥∥

1 � ‖ 	w − 	w′‖1.

Proof. Putting 	w = (wv)v∈V and 	w′ = (w′
v)v∈V ′ , we have∥∥A( 	w) − A( 	w′)

∥∥
1 �

∑
v∈V

∥∥(
wv − w′

v

)
A(	ev)

∥∥
1 =

∑
v∈V

∣∣wv − w′
v

∣∣ = ‖ 	w − 	w′‖1. �

2.2. Choquet simplices

A compact, convex, and metrizable subset C of a locally convex real vector space is said to be a (metrizable)
Choquet simplex, if for each v ∈ C there is a unique probability measure μ that is supported on the set of extreme
points of C , and such that

∫
x dμ(x) = v. See for example [1, §II.3] for several characterizations of Choquet simplices.

In the proof of the Main Theorem we will make use of the following characterization of infinite dimensional
metrizable Choquet simplices.

Theorem 7. (See [24, Corollary, p. 186].) Given an infinite dimensional Choquet simplex C , for each n ∈ N there is
a surjective affine map An : �[0,n+1] → �[0,n] such that lim←−n

(�[0,n+1],An) is affine homeomorphic to C .

The following lemma is a simple consequence of the previous theorem. We will say that a sequence (An)n∈N as in
the theorem is normalized, if for every n ∈ N and j ∈ [0, n] we have An(	ej ) = 	ej .

Lemma 8. For every infinite dimensional metrizable Choquet simplex C there is a normalized sequence of linear
maps (An)n∈N such that lim (�[0,n+1],An) is affine homeomorphic to C .
←−n
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Proof. Let (Ãn)n∈N be a sequence of affine maps given by Theorem 7.
For each n ∈ N define a permutation σn of [0, n] by induction as follows. Let σ1 be the identity, and suppose that for

some n ∈ N the permutation σn is already defined. Since Ãn maps �[0,n+1] surjectively onto �[0,n], for each j ∈ [0, n]
there is k ∈ [0, n + 1] such that Ãn(	ek) = 	ej . Equivalently, there is a map ιn : [0, n] → [0, n + 1] such that for each
j ∈ [0, n] we have Ãn(	eιn(j)) = 	ej . Let σn+1 be the unique permutation of [0, n + 1] such that for each j ∈ [0, n] we
have σn+1(ιn(j)) = σn(j).

For each n let Hn : R[0,n] → R[0,n] be the linear map so that for each j ∈ [0, n] we have Hn(	ej ) = 	eσn(j). Then, by
the definition of (σn)n∈N it follows that for each n ∈ N the linear map An := Hn ◦Ãn ◦H−1

n+1 maps �[0,n+1] surjectively
onto �[0,n], and that for every j ∈ [0, n] we have An(	ej ) = 	ej . Therefore the sequence of linear maps (An)n∈N is
normalized, and (Hn)n∈N induces a linear homeomorphism between lim←−n

(�[0,n+1], Ãn) and lim←−n
(�[0,n+1],An). �

We end this section with the following general lemma.

Lemma 9. For each n ∈ N let An,Bn : R[0,n+1] → R[0,n] be stochastic matrices such that∑
n∈N

sup
{∥∥An(	v) − Bn(	v)

∥∥
1

∣∣ 	v ∈ �[0,n+1]
}

< +∞.

Then the inverse limits lim←−n
(�[0,n+1],An) and lim←−n

(�[0,n+1],Bn) are affine homeomorphic.
In particular, if both (An)n∈N and (Bn)n∈N are normalized and∑

n∈N

∥∥An(	en+1) − Bn(	en+1)
∥∥

1 < +∞,

then the inverse limits lim←−n
(�[0,n+1],An) and lim←−n

(�[0,n+1],Bn) are affine homeomorphic.

Proof. Let x := (	xn)n∈N ∈ lim←−n
(�[0,n+1],An). For each n,m ∈ N such that m � n define

	xn,m := Bn · · ·Bm 	xm+1 ∈ �[0,n].

In particular we have 	xn,n = 	xn.
When m > 0 we have

‖	xn − 	xn,m‖1 = ‖An · · ·Am	xm+1 − Bn · · ·Bm	xm+1‖1

� ‖An · · ·Am	xm+1 − BnAn+1 · · ·Am	xm+1‖1 + ‖BnAn+1 · · ·Am	xm+1 − Bn · · ·Bm	xm+1‖1.

From Lemma 6 we get

‖BnAn+1 · · ·Am	xm+1 − Bn · · ·Bm 	xm+1‖1 � ‖An+1 · · ·Am	xm+1 − Bn+1 · · ·Bm 	xm+1‖1,

and since

‖An · · ·Am	xm+1 − BnAn+1 · · ·Am	xm+1‖1 � sup
{
v ∈ �[0,n+1]: ‖Anv − Bnv‖1

}
,

we deduce, after an induction argument, that

‖	xn − 	xn,m‖1 �
m∑

k=n

sup
{‖Akv − Bkv‖1

∣∣ v ∈ �[0,k+1]
}
. (2.1)

By hypothesis and from Eq. (2.1), we deduce that for a fixed n ∈ N, the sequence (	xn,m)m�n is a Cauchy sequence
in �[0,n]. We denote by Hn(x) its limit. Observe that for each n ∈ N, the sequence (Bn 	xn+1,m)m�n+1 converges to
both BnHn+1(x) and Hn(x). This implies that (Hn(x))n∈N ∈ lim←−n

(�[0,n+1],Bn). Thus the transformation

H : lim←−
n

(�[0,n+1],An) → lim←−
n

(�[0,n+1],Bn)

given by H(x) = (Hn(x))n∈N is well defined. This map is clearly affine. We will show that H is a homeomorphism.
In order to verify that H is continuous, we just need to show that for each m ∈ N the map Hm is continuous.

As lim (�[0,n+1],An) is metrizable we just need to show that Hm is sequentially continuous. To do this, fix ε > 0
←−n
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and consider a sequence (x(n))n∈N := ((	x(n)
m )m∈N)n∈N in lim←−n

(�[0,n+1],An) that converges to x = (	xn)n∈N. For each
n,m,k ∈ N such that k � m we have∥∥Hm

(
x(n)

) − Hm(x)
∥∥

1 �
∥∥Hm

(
x(n)

) − Bm · · ·Bk 	x(n)
k+1

∥∥
1 + ∥∥Bm · · ·Bk 	x(n)

k+1 − Bm · · ·Bk 	xk+1
∥∥

1

+ ∥∥Bm · · ·Bk 	xk+1 − Hm(x)
∥∥

1

�
∥∥Hm

(
x(n)

) − Bm · · ·Bk 	x(n)
k+1

∥∥
1 + ∥∥	x(n)

k+1 − 	xk+1
∥∥

1

+ ∥∥Bm · · ·Bk 	xk+1 − Hm(	xm)
∥∥

1.

We choose k sufficiently large so that∥∥Hm

(
x(n)

) − Bm · · ·Bk 	x(n)
k+1

∥∥
1,

∥∥Bm · · ·Bk 	xk+1 − Hm(x)
∥∥

1 � ε

3
,

and n such that ‖x(n)
k+1 − 	xk+1‖1 � ε/3. We get∥∥Hm

(
x(n)

) − Hm(x)
∥∥

1 � ε.

This shows the continuity of Hm, and hence that of H .
To show that H is a homeomorphism we define in a similar way,

L : lim←−
n

(�[0,n+1],Bn) → lim←−
n

(�[0,n+1],An).

Observe that by Lemma 6 we get∥∥Ln

(
Hn(x)

) − 	xn

∥∥
1 �

∥∥Ln

(
Hn(x)

) − An · · ·AmHm+1(x)
∥∥

1 + ∥∥An · · ·AmHm+1(x) − An · · ·Am	xm+1
∥∥

1

�
∥∥Ln

(
Hn(x)

) − An · · ·AmHm+1(x)
∥∥

1 + ∥∥Hm+1(x) − 	xm+1
∥∥

1.

By definition of L, we have limm→∞ ‖Ln(Hn(x)) − An · · ·AmHm+1(x)‖1 = 0, and from (2.1) we have
limm→∞ ‖Hm+1(x) − 	xm+1‖1 = 0. Thus we conclude that L and H are inverse of each other. �
2.3. Unimodal maps, cutting times and the kneading map

A continuous map f : [0,1] → [0,1] is unimodal if f (0) = f (1) = 0, and if there exists a point c ∈ [0,1] such
that f is strictly increasing on [0, c], and strictly decreasing on [c,1]. The point c is called the turning or critical point
of f . For each λ ∈ (0,4] the logistic map fλ is a unimodal with critical point x = 1

2 .
Let f be a unimodal map with critical point c. The ω-limit of c will be called the post-critical set of f . When

either f (c) � c or f 2(c) � c, it is easy to see that the post-critical set of f reduces to a single point. We will thus
(implicitly) assume from now on that for each unimodal map f that we consider we have f 2(c) < c < f (c).

To describe the dynamics of a unimodal map f on its post-critical set, we will make the following definitions.
Let c be the critical point of f and for each n � 1 put cn = f n(c). Define the sequence of compact intervals (Dn)n�1
inductively by D1 = [c, c1], and for each n � 2, by

Dn =
{

f (Dn−1) if c /∈ Dn−1,

[cn, c1] otherwise.

An integer n � 1 will be called a cutting time if c ∈ Dn. We will denote by (Sk)k�0 the sequence of all cutting times.
From our assumption that f 2(c) < c < f (c) it follows that S0 = 1 and S1 = 2.

It can be shown that if S and S′ > S are consecutive cutting times, then S′ − S is again a cutting time, and that this
cutting time is less than or equal to S when f has no periodic attractors, see for example [6,20]. That is, if f has no
periodic attractors then for each k � 1 there is a non-negative integer Q(k), such that Q(k) � k − 1, and

Sk − Sk−1 = SQ(k).

Putting Q(0) = 0, the function Q : N0 → N0 so defined is called the kneading map of f . It follows from the recursion
formula above, and from S0 = 1, that the sequence (Sk)k�0 of cutting times is determined by Q.
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We will say that a function Q : N0 → N0 is a kneading map if there is a unimodal map f with critical point c, such
that f 2(c) < c < f (c), such that f has no periodic attractors and such that the kneading map of f is equal to Q. If
we denote by � the lexicographical ordering in N

N0
0 , then a function Q : N0 → N0 is a kneading map if and only if

Q(0) = 0, for each k � 1 we have Q(k) � k − 1, and if for each k � 1 we have{
Q(k + j)

}
j�1 �

{
Q

(
Q

(
Q(k)

) + j
)}

j�1, (2.2)

see [6,20]. Notice in particular that, if Q : N0 → N0 is non-decreasing, Q(0) = 0 and for each k � 1 we have Q(k) �
k − 1, then Q is a kneading map.

We will need the following well-known facts, see for example the proof of [9, Proposition 4] for precise references.

Proposition 10. Let f be a unimodal map whose kneading map diverges to +∞. Then the post-critical set of f is
a Cantor set, and the restriction of f to this set is minimal and has zero topological entropy. Furthermore, if f̂ is a
unimodal map having the same kneading map as f , then the space of invariant probability measures of f̂ supported
on the post-critical set of f̂ is affine homeomorphic to that of f .

3. Reduced statement

The purpose of this section is to prove the Main Theorem assuming a result we state as Theorem A. We start
introducing a class of kneading maps in Section 3.1. In Section 3.2 we state a result describing the space of invariant
probability measures supported on the post-critical set of a unimodal map with a kneading map in this class (Theo-
rem A). In Section 3.2 we also give a proof of the Main Theorem assuming Theorem A.

3.1. Kneading maps

Throughout the rest of this paper we denote by (rn)n∈N0 the sequence of integers defined by rn = (n+1)(n+2)
2 . Note

that for each n ∈ N we have rn = rn−1 + n + 1.
For each n ∈ N let 	an := (an,0, . . . , an,n) ∈ N[0,n] be given and let q := (qr )r�0 be an increasing sequence of

integers such that q0 = 0, and such that for each n ∈ N we have

qrn − qrn−1 = an,0 + · · · + an,n. (3.1)

If we put a := (	an)n∈N, then we will define a kneading map Q(a,q) : N0 → N0 as follows. For each n ∈ N0 put

In = [qrn−1 + 1, qrn] and Jn = [qrn + 1, qrn+1−1],
and note that {In, Jn | n ∈ N} is a partition of N. Furthermore, for each n ∈ N and m ∈ [0, n] define

In,m =
[(

qrn−1 + 1 +
m−1∑
i=0

an,i

)
,

(
qrn−1 +

m∑
i=0

an,i

)]
and

Jn,m = [qrn+m + 1, qrn+m+1].
By (3.1) the collection {In,m | m ∈ [0, n]} is a partition of In. Since for each n ∈ N we have rn+1 = rn + n + 2, the
collection {Jn,m | m ∈ [0, n]} is a partition of Jn.

With these notations we put

Q(a,q) :=
∑
n∈N

n∑
m=0

qrn−1+m(1In,m + 1Jn,m).

Note that Q−1
(a,q)(0) = [0, q2], Q(a,q)(N0) = {qr | r ∈ N0} and that for each n ∈ N we have

Q(a,q)(In) = Q(a,q)(Jn) = {qrn−1, qrn−1+1, . . . , qrn−1+n} ⊂ In−1 ∪ Jn−1.
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Lemma 11. For a := (	an)n∈N, q = (qr )r∈N0 and Q(a,q) as above, the following properties hold.

1. For each k ∈ N0 we have Q(a,q)(k) � max{0, k − 2}.
2. The function Q(a,q) is a kneading map and for every k � q5 + 1 we have

Q(a,q)(k + 1) � Q(a,q)

(
Q(a,q)

(
Q(a,q)(k)

) + 1
) + 2. (3.2)

Proof. Put Q := Q(a,q).

1. For k ∈ [0, q2] we have Q(k) = 0 so the inequality is satisfied in this case. Let k ∈ N be such that k � q2 + 1, so
there is n ∈ N such that k ∈ In ∪ Jn = [qrn−1 + 1, qrn+1−1]. Thus Q(k) � qrn−1+n = qrn−1, so when k �= qrn−1 + 1 we
have Q(k) � k − 2. Finally observe that

Q(qrn−1 + 1) = qrn−1 � qrn−1+n − n � qrn−1 − 1.

2. Let k ∈ N be such that k � q5, so there is n � 2 such that k + 1 ∈ In ∪ Jn. Then Q(k + 1) � qrn−1 , Q(k) � qrn−1+n

and therefore we have Q(Q(k)) � qrn−2+n−1 and

Q
(
Q

(
Q(k)

) + 1
)
� qrn−2 � qrn−1 − (rn−1 − rn−2) � qrn−1 − 2 � Q(k + 1) − 2.

In view of part 1 and the previous inequality, to show that Q is admissible we just need to show that for each
k ∈ [1, q5 − 1] and j ∈ [1, q2 + 1 − k] we have

Q(k + j) � Q
(
Q

(
Q(k)

) + j
)
, (3.3)

with strict inequality when j = q2 + 1 − k. In fact, for each k ∈ [1, q5 − 1] we have Q(Q(k)) = 0, so for each
j ∈ [1, q2 + 1 − k], we have Q(Q(Q(k)) + j) = 0 and (3.3) is satisfied. When j = q2 + 1 − k we have Q(k + j) =
Q(q2 + 1) = q1 > 0, so inequality (3.3) is strict in this case. �
3.2. Reduced statement

The purpose of this section is to give a proof of the Main Theorem assuming the following one.

Theorem A. For each n ∈ N let 	an ∈ N[0,n] be given and put a := (	an)n∈N. Furthermore, let q := (qr )r∈N0 be a strictly
increasing sequence of integers such that q0 = 0 and such that for each n ∈ N we have

qrn − qrn−1 = an,0 + · · · + an,n,

and let Q(a,q) be the corresponding kneading map. Define (Sk)k∈N0 recursively by S0 = 1 and Sk = Sk−1 + SQ(a,q)(k),
and assume that∑

r∈N\{rn|n∈N}

Sqr−1

Sqr

< +∞. (3.4)

Moreover, for each n ∈ N let Ξn : R[0,n+1] → R[0,n] be the stochastic matrix such that for each m ∈ [0, n] we have
Ξn(	em) = 	em and such that

Ξn(0, n + 1) := Sqrn−1

Sqrn

(1 + an,n)	e0 +
n∑

m=1

Sqrn−1+n−m

Sqrn

an,n−m	em.

Then for each unimodal map f whose kneading map is equal to Q(a,q), the post-critical set of f is a Cantor
set, f is minimal on this set, and the space of invariant probability measures of f supported on this set is affine
homeomorphic to lim←−n

(�[0,n+1],Ξn).

To prove the Main Theorem, we first remark that the case where the metrizable Choquet simplex C is finite
dimensional is given by [9, Main Theorem]. So from now on we assume that C is infinite dimensional. Then by
Lemma 8 there is a sequence of normalized affine maps (An)n∈N such that lim←−n

(�[0,n+1],An) is affine homeomorphic
to C . In view of Lemma 9, we just need to find a and q as in the statement of Theorem A, for which (3.4) is satisfied
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and such that∑
n∈N

∥∥Ξn(0, n + 1) − An(0, n + 1)
∥∥

1 < +∞.

This is shown in the following lemma, thus completing the proof of the Main Theorem.

Lemma 12. For each n ∈ N let 	yn ∈ �[0,n] be given. Then there are a and q as in the statement of Theorem A for
which (3.4) is satisfied, and such that∑

n∈N

∥∥Ξn(0, n + 1) − 	yn

∥∥
1 < +∞. (3.5)

Proof. Given n ∈ N and a non-zero vector 	a ∈ R[0,n] with non-negative coordinates, we will denote by [[	a]] the unique
vector in �[0,n] proportional to 	a.

We will define a := (	an)n∈N and q := (qr )r∈N0 by induction as follows. Put q0 = 0, fix q1 � 1, and assume that for
some n ∈ N the numbers q2, . . . , qrn−1 and the vectors 	a1, . . . , 	an−1 are already defined, in such a way that for each
m ∈ [0, n − 1] we have

qrm − qrm−1 = am,0 + · · · + am,m.

For each r ∈ [rn−1 + 1, rn−1 + n] let qr be defined in such a way that

qr � qr−1 + r2
r−2∏
s=0

(1 + qs+1 + qs).

Note that these choices determine S0, . . . , Sqrn−1+n .

1. We will show now that for each r ∈ [rn−1 + 1, rn−1 + n] we have

Sqr−1

Sqr

� r−2. (3.6)

Using the recursion formula Sl = Sl−1 +SQ(l) and Q(l) � l − 1, we get by induction that for every k, k′ ∈ [1, qrn−1+n]
such that k′ < k, we have Sk � Sk′(1 + k − k′). In particular for every r ∈ [1, rn−1 + n] we have

Sqr � Sqr−1(1 + qr − qr−1).

Since Sqr0
= S1 = S0(1 + q1 − q0) = 1 + q1 − q0, it follows by induction that for every r ∈ [1, rn−1 + n] we have

Sqr �
r−1∏
s=0

(1 + qs+1 − qs).

Hence for each r ∈ [rn−1 + 1, rn−1 + n] we have

Sqr � Sqr−1(1 + qr − qr−1) � qr − qr−1 � r2
r−2∏
s=0

(1 + qs+1 + qs) � r2Sqr−1,

as wanted.

2. We will show that we can choose 	an := (an,0, . . . , an,n) ∈ N[0,n] is such a way that∥∥∥∥∥
[[

Sqrn−1(1 + an,n)	e0 +
n∑

m=1

Sqrn−1+n−man,n−m	em

]]
− 	yn

∥∥∥∥∥
1

� n−2. (3.7)

For x ∈ R we denote by [x] integer part of x. Put 	yn = (y0, . . . , yn), N = ∏n
j=0 Sqrn−1+j

, k = (n + 2)4, for each
j ∈ [0, n] put

ζj = N
([kyj ] + 1

)
, and put ζ = ζ1 + · · · + ζn.
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Since for each j ∈ [0, n] we have Nkyj � ζj � Nkyj + N , we obtain kN � ζ � (k + n + 1)N . So for each j ∈ [0,1]
we have∣∣∣∣yj − ζj

ζ

∣∣∣∣ �
∣∣∣∣yj − kNyj

ζ

∣∣∣∣ + N

ζ
� (n + 1)N

ζ
+ N

ζ
� n + 2

k
= 1

(n + 2)3
.

This shows that the vector 	ζ := (ζ0, . . . , ζn) ∈ N[0,n] satisfies ‖[[	ζ ]] − 	yn‖1 � n−2. Thus, if for each j ∈ [0, n − 1] we
put an,j = ζn−j

Sqrn−1+j
, and if we put an,n := ζ0

Sqrn−1
− 1, then (3.7) is satisfies for this choice of 	an. It remains to show

that each of the coordinates of 	an belongs to N. By definition for each j ∈ [0, n] the integer ζj is a strictly positive
multiple of N , so the coordinates of 	an are integers and for each j ∈ [0, n − 1] we have an,j � 1. Finally observe that
by (3.6) with r = rn−1 + 1 we have

an,n � N

Sqrn−1

− 1 � Sqrn−1+1 − 1 � (rn−1 + 1)2 − 1 � 1.

3. Let 	an be given by part 2 and put qrn := qrn−1+n + an,0 + · · · + an,n. This completes the inductive definition of q

and a.
To finish the proof of the lemma just observe that the inequalities (3.6) imply (3.4), and the inequalities (3.7)

imply (3.5). �
4. The generalized odometer and Bratteli–Vershik system associated to a kneading map

The purpose of this section is to recall the definition of the generalized odometer and the Bratteli–Vershik system
associated to a kneading map, that were introduced in [4] and [7], respectively. We start recalling the definition of the
generalized odometer in Section 4.1. After briefly recalling the concepts of Bratteli diagram (Section 4.2) and Bratteli–
Vershik system (Section 4.3), we define the Bratteli–Vershik system associated to a kneading map in Section 4.4. See
for example [2,16] for background on generalized odometers, and [10,21] and references therein for background and
further properties of Bratteli–Vershik systems.

4.1. The generalized odometer associated to a kneading map

Let Q : N0 → N0 be a kneading map and put

ΩQ := {
(xk)k�0 ∈ {0,1}N0

∣∣ xk = 1 implies that for each j = Q(k + 1), . . . , k − 1 we have xj = 0
}
.

If we denote by (Sk)k�0 the strictly increasing sequence of positive integers defined recursively by S0 = 1 and Sk =
Sk−1 + SQ(k), it can be shown that for each non-negative integer n there is a unique sequence 〈n〉 := (xk)k�0 in ΩQ,
that has at most finitely many 1’s, and such that

∑
k�0 xkSk = n. The sequence 〈n〉 is also characterized as the unique

sequence in {0,1}N0 with finitely many 1’s such that
∑

k�0 xkSk = n, and that it is minimal with this property with

respect to the lexicographical order in {0,1}N0 .
When Q diverges to +∞ the map defined on the subset {〈n〉 | n ∈ N0} of ΩQ by 〈n〉 �→ 〈n + 1〉, extends con-

tinuously to a map TQ : ΩQ → ΩQ which is onto, minimal, and such that T −1
Q is well defined on ΩQ \ 〈0〉; see

[4, Lemma 2]. We call (ΩQ,TQ) the generalized odometer6 associated to Q. Given x = (xk)k�0 ∈ ΩQ and an integer
n � 0, put σ(x|n) = ∑n

k=0 xkSk . Observe that σ(x|n) is non-decreasing with n, and when x has infinitely many 1’s,
σ(x|n) → +∞ as n → +∞. On the other hand, if x has at most a finite number of 1’s, then σ(x) := limn→+∞ σ(x|n)

is finite and x = 〈σ(x)〉.
For x = (xk)k�0 different from 〈0〉 we denote by q(x) � 0 the least integer such that xq(x) �= 0. In [4, Theorem 1]

it is shown that if λ ∈ (0,4] is a parameter such that the kneading map of the logistic map fλ is equal to Q, then for
each x ∈ ΩQ with infinitely many 1’s the sequence of intervals (Dσ(x|n))n�q(x) is nested and that

⋂
n�q(x) Dσ(x|n) is

reduced to a point belonging to the post-critical set Xfλ of fλ. Furthermore, if we denote this point by π(x) and for

6 An odometer is a topological dynamical system defined in a similar way, in the case where the sequence of integers (Sk)k∈N0 is such that for
each k ∈ N0 we have Sk |Sk+1.
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n � 0 we put π(〈n〉) = f n
λ (c), then the map π : ΩQ → Xfλ so defined is continuous and conjugates the action of TQ

on ΩQ, to the action of fλ on Xfλ .

4.2. Bratteli diagrams

A Bratteli diagram is an infinite directed graph (V ,E), such that the vertex set V and the edge set E can be
partitioned into finite sets

V = V0 ∪ V1 ∪ · · · and E = E1 ∪ E2 ∪ · · ·
with the following properties:

• V0 = {v0} is a singleton.
• For every j � 1, each edge in Ej starts in a vertex in Vj−1 and arrives to a vertex in Vj .
• All vertices in V have at least one edge starting from it, and all vertices except v0 have at least one edge arriving

to it.

For a vertex e ∈ E we will denote by s(e) the vertex where e starts and by r(e) the vertex to which e arrives. A path in
(V ,E) is by definition a finite (resp. infinite) sequence e1e2 · · · ej (resp. e1e2 · · ·) such that for each � = 1, . . . , j − 1
(resp. � = 1, . . .) we have r(e�) = s(e�+1). Note that for each vertex v distinct from v0 there is at least one path starting
at v0 and arriving to v.

An ordered Bratteli diagram (V ,E,�) is a Bratteli diagram (V ,E) together with a partial order � on E, so that
two edges are comparable if and only if they arrive at the same vertex. For each j � 1 and v ∈ Vj the partial order �
induces an order on the set of paths from v0 to V as follows:

e1 · · · ej > f1 · · ·fj

if and only there exists j0 ∈ {1, . . . , j} such that ej0 > fj0 and such that for each � ∈ {j0 + 1, . . . , j} we have e� = f�.
We will say that an edge e is maximal (resp. minimal) if it is maximal (resp. minimal) with respect to the order �

on the set of all edges in E arriving at r(e). Note that for each vertex v distinct from v0 there is precisely one path
starting at v0 and arriving to v that is maximal (resp. minimal) with respect to the order �. It is characterized as the
unique path starting at v0 and arriving at v consisting of maximal (resp. minimal) edges.

4.3. Bratteli–Vershik system

Fix an ordered Bratteli diagram B := (V ,E,�). We denote by XB the set of all infinite paths in B starting at v0.
For a finite path e1 · · · ej starting at v0 we denote by U(e1 · · · ej ) the subset of XB of all infinite paths e′

1e
′
2 · · · such

that for all � = 1, . . . , j we have e′
� = e�. We endow XB with the topology generated by the sets U(e1 · · · ej ). Then

each of this sets is clopen, so XB becomes a compact Hausdorff space with a countable basis of clopen sets.
We will denote by Xmax

B (resp. Xmin
B ) the set of all elements (ej )j�1 of XB so that for each j � 1 the edge ej is a

maximal (resp. minimal). It is easy to see that each of these sets is non-empty.
From now on we assume that the set Xmin

B is reduced to a unique point, that we will denote by xmin. We will then
define the transformation VB : XB → XB as follows:

• V −1
B (xmin) = Xmax.

• Given x ∈ XB \ Xmax, let j � 1 be the smallest integer such that ej is not maximal. Then we denote by fj the
successor of ej and by f1 · · ·fj−1 the unique minimal path starting at v0 and arriving to s(fj ). Then we put

VB(x) = f1 · · ·fj−1fj ej+1ej+2 · · · .

The map VB is continuous, onto and invertible except at xmin.
For j � 1 and v ∈ Vj we denote by sj (v) > 0 the number of paths starting at v0 and arriving to v, and put 	sj :=

(sj (v))v∈Vj
∈ RVj . Let Nj ∈ MVj−1,Vj

be the matrix such that for each v ∈ Vj−1 and v′ ∈ Vj the entry Nj(v, v′) is
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equal to the number of edges starting at v and arriving to v′. Observe that Nt
j 	sj−1 = 	sj , so if we put B0 = {1} ∈ MV0,V0

and for each j � 1 we denote by Bj ∈ MVj ,Vj
the diagonal matrix defined by Bj (v, v) = sj (v), then the matrix

Mj := Bj−1NjB
−1
j ∈ MVj−1,Vj

is stochastic.
The following result is well known, see [9, Lemma 14] for a proof in the precise setting considered here. Recall

that for a finite set V we denote by �V the unit simplex in RV .

Lemma 13. The space of probability measures on XB that are invariant by VB , endowed with the weak∗ topology, is
affine homeomorphic to lim←−j

(�Vj
,Mj ).

4.4. The Bratteli–Vershik system associated to a kneading map

Given a kneading map Q we will now define an ordered Bratteli diagram BQ := (V ,E,�) that was introduced by
Bruin in [7, §4].

We start defining the Bratteli diagram (V ,E):

• V0 = {0}, V1 = {k ∈ N | Q(k) = 0} and for j � 2,

Vj := {
k ∈ N

∣∣ k � j, Q(k − 1) � j − 2
}
.

• For j � 1,

Ej = {j − 1 → j} ∪ {j − 1 → k | k ∈ Vj \ Vj−1} ∪ {k → k | k ∈ Vj ∩ Vj−1}.

Note that for every j � 2, each vertex in Vj different from j has at most one edge arriving at it. Besides
{j − 1 → j} ∈ Ej , the only edge that can arrive to j ∈ Vj is {j → j} ∈ Ej , that only exists when j ∈ Vj−1.

So to define the partial order �, we just have to define it, for each j � 2, between {j − 1 → j} ∈ Ej−1 and
{j → j} ∈ Ej−1 when both exist: we put {j − 1 → j} < {j → j}. The rest of the edges are maximal and minimal at
the same time.

Note that for k � 1 the set Vk is reduced to a point if and only if Q(k) = k − 1. So, if for each large k � 1 we have
Q(k) = k − 1, then the set XBQ

is finite. Otherwise, it follows that the set XBQ
is a Cantor set.

It is straight forward to check that the infinite path 0 → 1 → 2 → ·· · is the unique minimal path in BQ. Therefore
there is a well-defined map VBQ

: XBQ
→ XBQ

, see Section 4.3. The following is [7, Proposition 2], and the last
statement follows from [4, Lemma 2].

Theorem 14. (See [7, Proposition 2].) Let Q be a kneading map that diverges to +∞, and consider the corre-
sponding Bratteli–Vershik system (XBQ

,VBQ
) and generalized odometer (ΩQ,TQ). Then there is a homeomorphism

between XBQ
and ΩQ that conjugates the action of VBQ

on XBQ
to the action of TQ on ΩQ. In particular (XBQ

,VBQ
)

is minimal.

We will also need the following lemma.

Lemma 15. Let Q be a kneading map such that for every k ∈ N0 we have Q(k) � max{0, k − 2}, and such that
Q(k) → +∞ as k → +∞. Let (Sk)k�1 be the sequence defined recursively by S0 = 1 and Sk = Sk−1 + SQ(k). Then
for every j ∈ N we have j + 1 ∈ Vj , sj (j) = Sj−1, and for every k ∈ Vj \ {j} we have sj (k) = SQ(k−1).

Proof. That j + 1 is a direct consequence of the definition of Vj and the hypothesis that Q(j) � max{0, j − 2}.
When j = 1, we have Q(1) = 0 and for all k ∈ V1 we have s1(k) = S0 = 1. So the assertions are satisfied in this case.
Suppose by induction that the assertions of the lemma hold for some j � 1. Then we have

sj+1(j + 1) = sj (j) + sj (j + 1) = Sj−1 + SQ(j) = Sj .
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On the other hand, for each k ∈ Vj+1 \ {j + 1} contained in Vj we have sj−1(k) = sj (k) = SQ(k−1). Finally, for each
k ∈ Vj+1 \ {j + 1} not in Vj we have Q(k − 1) = j − 1 and

sj+1(k) = sj (j) = Sj−1 = SQ(k−1). �
5. Computing the space of invariant measures

This section is devoted to the proof of Theorem A. We start by showing that for each unimodal map whose knead-
ing map is as in Section 3.1, the space of invariant probability measures supported on its post-critical set is affine
homeomorphic to the space of invariant probability measures of the corresponding generalized odometer. In order to
describe this space we calculate the transition matrices associated to the corresponding Bratteli–Vershik system. The
key calculation of a suitable product of these transition matrices is stated as Proposition 18 in Section 5.2. The proof
of Theorem A is given in Section 5.3.

5.1. From the generalized odometer to the post-critical set

The purpose of this section is to prove the following proposition, whose proof is similar to that of [9, Theorem B].

Proposition 16. Let Q(a,q) be a kneading map defined as in Section 3.1, and let (ΩQ(a,q)
, TQ(a,q)

) be the corresponding
generalized odometer. Let f be a unimodal map whose kneading map is equal to Q(a,q), and denote by Xf its
post-critical set. Then the space of invariant probability measures of (Xf ,f |Xf

) is affine homeomorphic to that
of (ΩQ(a,q)

, TQ(a,q)
).

The following lemma is similar to [9, Lemma 11]. Observe that, since T −1
Q is well defined on ΩQ \ {〈0〉}, if we

denote by O(〈0〉) the grand orbit of 〈0〉, then

T −1(ΩQ \ O
(〈0〉)) = ΩQ \ O

(〈0〉),
and all negative iterates of TQ are well defined on ΩQ \ O(〈0〉).

Lemma 17. Let Q = Q(a,q) be a kneading map as in Section 3.1. Let (ΩQ,TQ) be the corresponding generalized
odometer. Then for each constant K > 0, and for every pair of distinct points x, x′ in ΩQ that are not in the grand
orbit of 〈0〉, there is an integer m satisfying

max
{
q
(
T m

Q (x)
)
, q

(
T m

Q (x′)
)}

� K and Q
(
q
(
T m

Q (x)
) + 1

) �= Q
(
q
(
T m

Q (x′)
) + 1

)
.

Proof. Let K � q2.

1. As in the proof of [9, Lemma 10], it can be shown that there is an integer m′ such that

max
{
q
(
T m′

Q (x)
)
, q

(
T m′

Q (x′)
)}

� K and q
(
T m′

Q (x)
) �= q

(
T m′

Q (x′)
)
.

2. Let m′ be the integer given by part 1, and put y = (yk)k∈N0 := T m′
Q (x) and y′ = (y′

k)k∈N0 := T m′
Q (x′). Assume

without loss of generality that q(y) < q(y′), so that q(y′) � K � q2. If Q(q(y) + 1) �= Q(q(y′) + 1) then take
m = m′. So we assume that Q(q(y)+ 1) = Q(q(y′)+ 1). Since q(y) � q2 we have Q(q(y)+ 1) = Q(q(y′)+ 1) � 1,
so there is n ∈ N such that q(y) + 1 and q(y ′) + 1 belong to In ∪ Jn. The definition of Q and of ΩQ imply that for
each k ∈ [q(y) + 1, qrn+1−1 − 1] we have yk = 0. Indeed, suppose by contradiction that for such a k we have yk = 1.
Then the definition of ΩQ implies that for every j ∈ [Q(k + 1), k − 1] we have yj = 0. Since k + 1 ∈ In ∪ Jn, we get
Q(k + 1) � qrn−1 � q(y), which is a contradiction.

Therefore (ŷk)k�0 := T
−Sq(y)

Q (y) is such that for all k ∈ [0, qrn+1−1 − 1] we have ŷk = 0. Since y is not in the grand

orbit of 〈0〉 this implies that q(T
−Sq(y)

Q (y)) � qrn+1−1 � q(y′) � K . Thus, from the definition of Q we have

Q
(
q
(
T

−Sq(y)
(y)

) + 1
)
� qrn .
Q
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On the other hand, since q(y) < q(y′), we have q(T
−Sq(y)

Q (y′)) � q(y′) − 1 � qrn+1−1 − 2, so

Q
(
q
(
T

−Sq(y)

Q (y′)
) + 1

)
� qrn−1.

This shows that the integer m = m′ − Sq(y) satisfies the desired properties. �
Proof of Proposition 16. Since the logistic family is full there is a parameter λ ∈ (0,4] such that the kneading map
of the logistic map fλ is Q(a,q). Denote by Xfλ the post-critical set of fλ. By Proposition 10 the spaces of invariant
measures of (f,Xf ) and (fλ,Xfλ) are affine homeomorphic. So, without loss of generality we assume that f is a
logistic map. This ensures the existence of the factor map π : ΩQ(a,q)

→ Xf defined above. Since for every sufficiently
large integer k inequality (3.2) is satisfied, [9, Lemma 11] implies there is a constant K > 0 such that for every pair
of distinct points x, x′ in ΩQ(a,q)

that are not in the grand orbit of 〈0〉 and that satisfy

max
{
q(x), q(x′)

}
� K and Q(a,q)

(
q(x) + 1

) �= Q(a,q)

(
q(x′) + 1

)
,

we have π(x) �= π(x′). Thus, from Lemma 17 we deduce that π is injective on ΩQ(a,q)
\ O(〈0〉). The rest of the proof

follows as the proof of [9, Proposition 9]. �
5.2. Transition matrices

For each n ∈ N let 	an ∈ N[0,n] be given, and put a := (	an)n∈N. Furthermore, let q := (qr )r∈N0 be a strictly increasing
sequence of integers such that q0 = 0 and such that for each n ∈ N we have

qrn − qrn−1 = an,0 + · · · + an,n,

and let Q := Q(a,q) be the corresponding kneading map defined in Section 3.1.
Let BQ = (V ,E,�) be the ordered Bratteli–Vershik diagram associated to the kneading map Q. From the defini-

tion of BQ it follows that V1 = Q−1(0) \ {0} = [1, q2], and that for each j ∈ [2, q1 + 1] we have Vj = [j, q2 + 1].
Furthermore, for each n ∈ N0, m ∈ [0, n], and j ∈ [qrn+m + 2, qrn+m+1 + 1] we have

Vj = [j, qrn+1−1 + 1] ∪
(

1 +
m⋃

i=0

(In+1,i ∪ Jn+1,i )

)
, (5.1)

and that when m = n + 1 we have rn + n + 1 = rn+1 − 1, and for j ∈ [qrn+1−1 + 2, qrn+1 + 1] we have

Vj = [j, qrn+2−1 + 1]. (5.2)

Note in particular that for every n ∈ N we have

Vqrn−1+1 = [qrn−1 + 1, qrn+1−1 + 1] \ (
1 + (In,n ∪ Jn,n)

)
, (5.3)

Vqrn+1 = [qrn + 1, qrn+1−1 + 1]. (5.4)

Proposition 18. Given n ∈ N, for each k ∈ [qrn, qrn+1−1] put

	v(k) := Sqrn

Sk

	eqrn+1 +
k∑

i=qrn+1

SQ(i)

Sk

	ei+1 ∈ RVqrn+1 .

Then the columns of the matrix

Mqrn+2 · · ·Mqrn+1+1 ∈ M
([qrn + 1, qrn+1−1 + 1], [qrn+1 + 1, qrn+2−1 + 1]),

are given by

Mqrn+2 · · ·Mqrn+1+1(·, qrn+1 + 1) = Sqrn+1−1

Sqr

	v(qrn+1−1) +
n+1∑ Sqrn+m

Sqr

an+1,m	v(qrn+m),
n+1 m=0 n+1
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and for every m ∈ [0, n + 1] and � ∈ Vqrn+1+1 such that � − 1 ∈ Jn+1,m, by

Mqrn+2 · · ·Mqrn+1+1(·, �) = 	v(qrn+m).

In particular the rank of the matrix Mqrn+2 · · ·Mqrn+1+1 is equal to n + 2.

The proof of this proposition depends on the following lemma.

Lemma 19. Fix n ∈ N and let m ∈ [0, n + 1]. If m ∈ [0, n] then the set Vqrn+m+1+1 is equal to the disjoint union of
Vqrn+m+1 \ [qrn+m + 1, qrn+m+1] and of 1 + Q−1(qrn+m), and we have

Nqrn+m+2 · · ·Nqrn+m+1+1(·, �) =

⎧⎪⎨⎪⎩
∑qrn+m+1

k=qrn+m
	ek+1 if � = qrn+m+1 + 1;

	e� if � ∈ Vqrn+m+1 \ [qrn+m + 1, qrn+m+1 + 1];
	eqrn+m+1 if � − 1 ∈ Q−1(qrn+m).

(5.5)

When m = n + 1 we have rn + m = rn+1 − 1, Vqrn+1+1 = [qrn+1 + 1, qrn+1−1 + 1], and

Nqrn+1−1+2 · · ·Nqrn+1+1(·, �) =

⎧⎪⎨⎪⎩
an+1,n+1	eqrn+1−1+1 + ∑qrn+1−an+1,n+1

k=qrn+1−1
	ek+1 if � = qrn+1 + 1;

	e� if � − 1 ∈ Jn+1 \ Jn+1,n+1;
	eqrn+1−1+1 if � − 1 ∈ Jn+1,n+1.

(5.6)

Proof. It follows from the definition of BQ that for each r ∈ N the set Vqr+2 is equal to the disjoint union of Vqr+1 \
{qr + 1} and 1 + Q−1(qr ), and that

Nqr+2(·, �) =
⎧⎨⎩

	eqr+1 + 	eqr+2 if � = qr + 2;
	e� if � ∈ Vqr+1 \ {qr + 1, qr + 2};
	eqr+1 if � − 1 ∈ Q−1(qr ).

On the other hand, for each j ∈ [qr + 3, qr+1 + 1] we have Vj−1 = Vj ∪ {j − 1} and

Nj(·, �) =
{ 	ej−1 + 	ej if � = j ;

	e� if � ∈ Vj \ {j}.
A direct computation using the fact that for every j ∈ [qr + 2, qr+1] the set Vj is the disjoint union of Vqr+1+1 and
[j, qr+1], shows that

Nqr+2 · · ·Nqr+1+1(·, �) =
{∑qr+1+1

j=qr+2 Nqr+2(·, j) if � = qr+1 + 1;
Nqr+2(·, �) if � ∈ Vqr+2 \ [qr + 2, qr+1 + 1]. (5.7)

Fix n ∈ N and let m ∈ [0, n + 1].
When m ∈ [0, n] the assertion of the lemma about Vqrn+m+1+1 follows from (5.1). On the other hand, by (5.2) if

m = 0 and by (5.1) if m ∈ [1, n], we have

[qrn+m + 2, qrn+m+1 + 1] ⊂ Vqrn+m+1.

Then in this case the assertion of the lemma follows easily from (5.7) with r = rn + m.
Suppose now that m = n + 1. By the definition of the sequence (rn′)n′∈N0 we have rn + n + 1 = rn+1 − 1. The

assertion about Vqrn+1+1 is given by (5.4) with n replaced by n + 1. Since by (5.3) we have

[qrn+1−1 + 2, qrn+1 + 1] ∩ Vqrn+1−1+1 = 1 + (In+1 \ In+1,n+1) = [qrn+1−1 + 2, qrn+1 + 1 − an+1,n+1]
and since In+1,n+1 ⊂ Q−1(qrn+1−1), we conclude from (5.7) with r = rn+1 − 1, that

Nqrn+1−1+2 · · ·Nqrn+1+1(·, qrn+1 + 1) = an+1,n+1	eqrn+1−1+1 +
qrn+1−an+1,n+1∑

k=qr −1

	ek+1.
n+1
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On the other hand, for

� ∈ [qrn+1 + 2, qrn+2−1 + 1] ∩ Vqrn+1−1+1 = 1 + (Jn+1 \ Jn+1,n+1),

we have

Nqrn+1−1+2 · · ·Nqrn+1+1(·, �) = 	e�,

and that for

� ∈ [qrn+1 + 2, qrn+2−1 + 1] ∩ (
1 + Q−1(qrn+1−1)

) = 1 + Jn+1,n+1,

we have

Nqrn+1−1+2 · · ·Nqrn+1+1(·, �) = 	eqrn+1−1+1.

This completes the proof of the lemma. �
Proof of Proposition 18. Fix n ∈ N.

1. We will show by induction that for each m0 ∈ [1, n + 1] we have

Nqrn+2 · · ·Nqrn+m0+1(·, �) =

⎧⎪⎨⎪⎩
∑qrn+m0

k=qrn
	ek+1 if � = qrn+m0 + 1;

	e� if � ∈ [qrn+m0 + 2, qrn+1−1 + 1];∑qrn+m

k=qrn
	ek+1 if � − 1 ∈ In+1,m ∪ Jn+1,m and m ∈ [0,m0 − 1].

(5.8)

The case m0 = 1 is given by (5.5) with m = 0. Suppose that this holds for some m0 ∈ [1, n]. Observe that by (5.1) the
set Vqrn+m0+1+1 is the disjoint union of

Vqrn+m0 +1 \ [qrn+m0 + 1, qrn+m0+1]
and

1 + Q−1(qrn+m0+1) = 1 + In+1,m0+1 ∪ Jn+1,m0+1.

In view of (5.5) with m = m0 we obtain

Nqrn+2 · · ·Nqrn+m0+1+1(·, qrn+m0+1 + 1) =
qrn+m0+1∑
k=qrn+m0

Nqrn+2 · · ·Nqrn+m0 +1(·, k + 1) =
qrn+m0+1∑

k=qrn

	ek+1,

for each � ∈ Vqrn+m0 +1 \ [qrn+m0 + 1, qrn+m0+1 + 1] we have

Nqrn+2 · · ·Nqrn+m0+1+1(·, �) = Nqrn+2 · · ·Nqrn+m0 +1(·, �)

=
{ 	e� if � ∈ [qrn+m0+1 + 2, qrn+1−1 + 1];∑qrn+m

k=qrn
	ek+1 if � − 1 ∈ In+1,m ∪ Jn+1,m and m ∈ [0,m0 − 1].

Finally, for each � ∈ Vqrn+m0+1+1 such that � − 1 ∈ In+1,m0+1 ∪ Jn+1,m0+1 we have

Nqrn+2 · · ·Nqrn+m0+1(·, �) = Nqrn+2 · · ·Nqrn+m0
(·, qrn+m0 + 1) =

qrn+m0∑
k=qrn

	ek+1.

This completes the proof of the induction step.

2. A direct computation using (5.8) with m0 = n and (5.6), gives

Nqrn+2 · · ·Nqrn+1+1(·, qrn+1 + 1) =
qrn+1−1∑
k=q

	ek+1 +
n+1∑
m=0

an+1,m

qrn+m∑
k=q

	ek+1,
rn rn
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and for every m ∈ [0, n + 1] and � ∈ Vqrn+1+1 such that � − 1 ∈ Jn+1,m,

Nqrn+2 · · ·Nqrn+1+1(·, �) =
qrn+m∑
k=qrn

	ek+1.

The assertion of the proposition is then a direct consequence of the definition of the matrices Mj and Lemma 15. �
5.3. Proof of Theorem A

Let f be a unimodal having Q as kneading map. That the post-critical set of f is a Cantor set and that f is
minimal on this set is given by Proposition 10. In view of Proposition 16 and Theorem 14, it is enough to prove
that the space of invariant probability measures of the Bratteli–Vershik system (XBQ

,VBQ
) is affine homeomorphic

to lim←−r
(�[0,n+1],Ξn).

For each n ∈ N let Πn : RVqrn +1 → R[0,n+1] be the stochastic matrix defined by

Πn(xqrn+1, . . . , xqrn+1−1+1) =
(( qrn+n+1+1∑

k=qrn+n+2

xk

)
, . . . ,

( qrn+1+1∑
k=qrn+2

xk

)
, xqrn+1

)
.

Using the definition of 	v(k) in the statement of Proposition 18, for each m0 ∈ [0, n + 1] we put

	wn(m0) := Πn

(	v(qrn+n+1−m0)
) =

n∑
m=m0

Sqrn+n+1−m
− Sqrn+n−m

Sqrn+n+1−m0

	em + Sqrn

Sqrn+n+1−m0

	en+1.

Furthermore, when n � 2, we denote by An : R[0,n+1] → R[0,n] the stochastic matrix defined for m ∈ [0, n] by
An(·,m) = 	wn−1(m) and by

An(·, n + 1) = Sqrn−1

Sqrn

	wn−1(0) +
n∑

m=0

Sqrn−1+n−m

Sqrn

an,n−m 	wn−1(m).

A direct computation shows that for each n � 2 we have

Πn−1Mqrn−1+2 · · ·Mqrn+1 = AnΠn.

Therefore the sequence of maps (Πn)n�1 defines a continuous linear map

Π : lim←−
j

(
RVj ,Mj

) → lim←−
n

(
R[0,n+1],An

)
,

mapping lim←−j
(RVj ,Mj ) onto lim←−n

(�[0,n+1],An). By Proposition 18 the rank of the matrix Mqrn−1+2 · · ·Mqrn+1 is

equal to n + 1, so Π is a homeomorphism and the inverse limits lim←−j
(RVj ,Mj ) and lim←−n

(�[0,n+1],An) are affine
homeomorphic.

In view of Lemma 9, the following lemma together with the hypothesis∑
r∈N\{rn|n∈N}

Sqr−1

Sqr

< +∞

imply that the inverse limit lim←−n
(�[0,n+1],An) is affine homeomorphic to lim←−n

(�[0,n+1],Ξn). This completes the
proof of Theorem A.

Lemma 20. For each n ∈ N and m0 ∈ [0, n − 1] we have∥∥An(·,m0) − Ξn(·,m0)
∥∥

1 = 2
Sqrn−1+n−m0−1

Sq

.

rn−1+n−m0
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Furthermore An(·, n) = Ξn(·, n), and

∥∥An(·, n + 1) − Ξn(·, n + 1)
∥∥

1 � 2
n∑

m=1

Sqrn−1+m−1

Sqrn−1+m

.

Proof. By definition we have An(·, n) = 	wn−1(n) = 	en = Ξn(·, n), and for each m0 ∈ [0, n − 1] we have∥∥An(·,m0) − Ξn(·,m0)
∥∥

1 = ∥∥ 	wn−1(m0) − 	em0

∥∥
1

=
∣∣∣∣Sqrn−1+n−m0

− Sqrn−1+n−m0−1

Sqrn−1+n−m0

− 1

∣∣∣∣
+

n−1∑
m=m0+1

Sqrn−1+n−m − Sqrn−1+n−m−1

Sqrn−1+n−m0

+ Sqrn−1

Sqrn−1+n−m0

= 2
Sqrn−1+n−m0−1

Sqrn−1+n−m0

. (5.9)

On the other hand,

∥∥An(·, n + 1) − Ξn(·, n + 1)
∥∥

1 �
n∑

m0=1

∥∥ 	wn−1(m0) − 	em0

∥∥
1,

so the final assertion follows from (5.9). �
5.4. Example

Given β ∈ R \ Q put

G(β) := Z + βZ and G+(β) = {m + βn � 0 | m,n ∈ Z}.
For each such β we will construct a kneading map Q such that the dimension group associated to the generalized
odometer (ΩQ,TQ), and hence to its natural extension, is isomorphic to (G(β),G+(β),1). Thus we deduce that every
simple dimension group which is free of rank 2 is isomorphic as ordered group to the dimension group associated
to (the natural extension of) a generalized odometer associated to a kneading map. Since the rational subdimension
group of (G(β),G+(β),1) is (Z,N0,1), it follows from [14, §4.1] that the dimension group (G(β),G+(β),1) is not
isomorphic to the dimension group associated to a Toeplitz flow, nor to that of an odometer.

Before defining the kneading map Q, note that the dimension groups (G(β),G+(β),1), (G(β +1),G+(β +1),1),
and (G(1 −β),G+(1 −β),1) are isomorphic to each other. So we can restrict to the case where β ∈ (0, 1

2 ). Let k � 2
be the integer determined by β ∈ ( 1

k+1 , 1
k
), and let [0, a1, a2, a3, . . .] be the continued fraction expansion of α :=

1
β

− k ∈ [0,1] \ Q. Consider the function Q : N0 → N0 defined by

Q(l) =
⎧⎨⎩

0 if l ∈ [0, k];
k − 1 if l ∈ [k + 1, k + a1];
k − 1 + ∑n

i=1 ai if l ∈ [k + 1 + ∑n
i=1 ai, k + ∑n+1

i=1 ai].
It is non-decreasing and such that for every l � 1 we have Q(l) � l − 1. So Q is a kneading map. If (Mj )j∈N is the
corresponding sequence of transition matrices, then it is easy to see that for each n ∈ N we have

An := Mk+1+a1+···+an−1 · · ·Mk+a1+···+an =
(

an 1
1 0

)
.

By considering a Bratteli diagram isomorphic to BQ, that only differs with it in the first k + 1 levels, we obtain

A0 := M2 · · ·Mk =
(

k − 1 1
1 0

)
,
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so the dimension group associated to (ΩQ,TQ) is isomorphic to direct limit

Z
(1,1)T−→ Z2 A0−→ Z2 A1−→ Z2 A2−→ · · · ,

see for example [18, Theorem 3.7], which by [13, Theorem 4.8] is isomorphic to (G(β),G+(β),1).

Acknowledgements

We are grateful to Christian Skau for his help with dimension groups of Toeplitz flows, and an anonymous referee
for his/her suggestions to improve the presentation of the paper.

Appendix A. Measures of zero Lyapunov exponent of complex maps

The purpose of this appendix is to prove Corollary 3. As the parameters given by (the proof of) the Main Theorem
are such that the kneading map of corresponding logistic map diverges to +∞, this result is a direct consequence of
the following lemma.

Lemma 21. Let λ ∈ (0,4] be a parameter such that the kneading map of fλ diverges to +∞. Consider the corre-
sponding quadratic polynomial Pλ, and denote by t0 the Hausdorff dimension of the Julia set of Pλ. Then, for an
invariant probability measure of Pλ that is supported on the Julia set of Pλ, the following properties are equivalent.

1. It is supported on the post-critical set of fλ.
2. Its Lyapunov exponent is zero.
3. It is an equilibrium state of Pλ for the potential −t0 log |P ′

λ|, whose Lyapunov exponent is zero.

Proof. As the restriction of Pλ to [0,1] is the logistic map fλ, the implication 1 ⇒ 2 is given by [9, Lemma 21]. The
proof of the implication 2 ⇒ 1 is analogous to the corresponding implication of the same lemma.

The implication 3 ⇒ 2 being trivial we just need to prove the implication 2 ⇒ 3 to complete the proof of
the lemma. We will show that for each invariant measure μ that is supported on the Julia set of Pλ, we have
hμ(Pλ) − t0

∫
log |P ′

λ|dμ � 0 with equality when the Lyapunov exponent of μ is zero. For such a measure we have∫
log |P ′

λ|dμ � 0 by [27], so there are two cases. If
∫

log |P ′
λ|dμ = 0, then μ is supported on the post-critical set of Pλ

and therefore we have hμ(Pλ) = 0 by the variational principle and the fact that the topological entropy of Pλ restricted
to its post-critical set is zero (Proposition 10). So we have hμ(Pλ) − t0

∫
log |P ′

λ|dμ = 0 in this case. Suppose now
that

∫
log |P ′

λ|dμ > 0. Then by [23,25] it follows that, if we denote by HD(μ) the Hausdorff dimension of μ, then
hμ(Pλ) = HD(μ)

∫
log |P ′

λ|dμ. As HD(μ) � t0, we obtain hμ(Pλ) − t0
∫

log |P ′
λ|dμ � 0 in this case. �
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