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Abstract

In this paper we study the limiting behavior of the value-function for one-dimensional second order variational problems arising
in continuum mechanics. The study of this behavior is based on the relation between variational problems on bounded large
intervals and a limiting problem on [0, 00).
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1. Introduction

The study of properties of solutions of optimal control problems and variational problems defined on infinite
domains and on sufficiently large domains has recently been a rapidly growing area of research. See, for example,
[3,5,6,15-19,21-24] and the references mentioned therein. These problems arise in engineering [8], in models of
economic growth [10,25], in infinite discrete models of solid-state physics related to dislocations in one-dimensional
crystals [2,20] and in the theory of thermodynamical equilibrium for materials [7,9,11-14]. In this paper we study
the limiting behavior of the value-function for variational problems arising in continuum mechanics which were
considered in [7,9,11-14,21-24]. The study of this behavior is based on the relation between variational problems on
bounded large intervals and a limiting problem on [0, 00).

In this paper we consider the variational problems

T

/f(w(t), w'(1), w” (1)) dt — min, we W>'([0, T1),

0

(w(©0),w'(0))=x and (w(T),w'(T))=y, (P)
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where T >0, x,y € R%Z, w2L([0, T]) c C([0, T]) is the Sobolev space of functions possessing an integrable second
derivative [1] and f belongs to a space of functions to be described below. The interest in variational problems of the
form (P) and the related problem on the half line:

T—o0

T
liminfT_I/f(w(t), w'(1), w” (1)) dt — min, w e W2 ([0, 00)) (Pso)
0

stems from the theory of thermodynamical equilibrium for second-order materials developed in [7,9,11-14]. Here

Wli’cl ([0, 00)) C C1(]0, 00)) denotes the Sobolev space of functions possessing a locally integrable second derivative

[1] and f belongs to a space of functions to be described below.
We are interested in properties of the valued-function for the problem (P) which are independent of the length of
the interval, for all sufficiently large intervals.
Leta = (ay,az,a3,a4) € R4, ai >0,i=1,2,3,4and let «, B, y be positive numbers such that | < <«a, B <y,
y > 1. Denote by M(«, B, y, a) the set of all functions f : R? — R! such that:
fw, p,r)=>a|w|® — ag|p|'3 +az|r|Y —ay4 forall (w, p,r) € R3; (1.1)
f,0f/dp € C?, af/or € C°, 2 f/or’(w, p,r)>0 forall (w, p,r) € R>; (1.2)
there is a monotone increasing function M : [0, 00) — [0, 00) such that for every (w, p,r) € R3
max{f(w, p.r), |of/ow(w, p,r)|, |df/dp(w, p,r)|, |daf/dr(w, p,r)|}
<My (Jwl+|pl)(1+171"). (1.3)

Let f € M(«, B, y, a). Of special interest is the minimal long-run average cost growth rate

’ 3

T
u(f)=inf{liTminfT_1/f(w(t),w’(t),w”(t))dt: w eAx}, (1.4)
0

where
Ay ={ve W21 (10,00): (v(0),v'(0)) = x}.

It was shown in [9] that u(f) € R' is well defined and is independent of the initial vector x. A function w €
W1 ([0, 00)) is called an (f)-good function if the function

T
ol T — /[f(w(t), w'(t), w”’ (1)) — u(f)]dt, T € (0,00)
0

is bounded. For every w € Wli’cl ([0, 00)) the function ¢>£ is either bounded or diverges to oo as T — 0o and moreover,
if qb£ is a bounded function, then

sup{|(w(®), w'())]: 1 €[0, 00)} < o0

[22, Proposition 3.5]. Leizarowitz and Mizel [9] established that for every f € 9M(«, B, y, a) satisfying u(f) <
inf{ f (w, 0, 5): (w,s) € Rz} there exists a periodic ( f)-good function. In [21] it was shown that a periodic ( f)-good
function exists for every f € M(«, B, Y, a).

Let f € M(«a, B, v, a). For each T > 0 define a function U{ :R?x R> - R' by

T
U{f(x,y)zinf{ /f(w(t),w’(z),w”(t))dr: w e W21([0, T1),
0

(w(0), w'(0)) =x and (w(T), w'(T)) =y . (1.5)
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In [9], analyzing problem (Ps) Leizarowitz and Mizel studied the function UTf “R2x R*—> R, T >0and
established the following representation formula

Ul o =Tu() +7f @) =7/ () +6{(x.y), x.yeR? T>0, (1.6)

where 7/ : R - R'and (T, x, y) — Qf(x, y)and (T, x,y) — U{(x, y),x,y € R%, T > 0 are continuous functions,

T

ml(x) = inf{ liTminf/[f(w(t), w' (1), w" (1)) — u(f)]dr:
0
w e W2 ([0, 00)) and (w(0), w'(0)) = x}, xeR?, (1.7)

Of(x, y) >0 foreach T > 0, and each x,y € R2, and for every T > 0, and every x € R? there is y € R? satisfying
01 (x,y) =0.
Denote by | - | the Euclidean norm in R”. For every x € R" and every nonempty set £2 C R" set

d(x, 2) :inf{|x —yl:ye .Q}
For each function g : X — R' U {oo}, where the set X is nonempty, put
inf(g) =inf{g(2): z € X}.
Let f € M(a, B, v, a). Itis easy to see that
n(f) <inf{f(t,0,0): t € R'}.

If u(f) =inf{f(,0,0): t € Rl}, then there is an (f)-good function which is a constant function. If pu(f) <
inf{ f(¢,0,0): t € R'}, then there exists a periodic (f)-good function which is not a constant function. It was shown
in [14] that in this case the extremals of (P,) have interesting asymptotic properties. In [26] we equipped the space
M(w, B, ¥, a) with a natural topology and showed that there exists an open everywhere dense subset F of this topo-
logical space such that for every f € F,

i(f) <inf{f(z,0,0): r € R'}.

In other words, the inequality above holds for a typical integrand f € M(«, B, v, a).
In the present paper for an integrand f € 9(«, B, y, a) satisfying

1(f) <inf{f(,0,0): r € R'}

we study the limiting behavior of the value-function U Tf as T — oo and establish the following two results.

Theorem 1.1. Let f € M(«, B, y, a) satisfy w(f) < inf{ f(¢,0,0): t € R'}. Then for each x, y € R? there exists

UL(x,y):= lim (UL (x,y) — Tu(f)).

lim
T—o00
Moreover, U{f x,y)—Tu(f)— Ué;(x, y) as T — 00 uniformly on bounded subsets of R*> x R>.

Theorem 1.2. Let f € M(w, B, v, a) satisfy u(f) <inf{ f(¢,0,0): t € R! }. Then there exists a nonempty compact set

Eso C R% x R? such that

Eoo={(x,y) € R? x R%: UL (x, y) = inf(UL)}.
Moreover, for any € > O there exist § >0 and T > 0 such that if T > T and if x,y € R? satisfy U{(x,y) <
inf(U) + 8, then d((x, y), Eso) < €.

The paper is organized as follows. Section 2 contains preliminaries. In Section 3 we prove several auxiliary results.
Theorems 1.1 and 1.2 are proved in Sections 4 and 5 respectively.
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2. Preliminaries

Fort>0andv e Wz’l([O, 7]) we define X, : [0, 7] — R? as follows:
Xy (1) = (v(0),v' (1), tel0,7]

We also use this definition for v € Wzi’cl ([0,00)) and v € Wli’cl (RY.
Put

M =M, B, y,a).

We consider functionals of the form

T

If(Tl,Tz,v)=ff(v(t),v’(t),v”(t))dt, 2.1
T

ri(1, 1,v) = 1/(T1, T, v) — (T = THR(f) — 7/ (Xo(T) + 7/ (X (T2)), (2.2)

where —0o < T} < Th < 400, v € W2I([T}, T»]) and fem.
If v e W21 ([0, 00)) satisfies

loc

sup{|XU(t)|: t €10, oo)} < 00,

then the set of limiting points of X, (¢) as t — oo is denoted by £2 (v).
For each f € 91 denote by A(f) the set of all w € Wli’cl ([0, c0)) which have the following property:
There is T,, > 0 such that

w(t + Ty)=w() forallt€[0,00) and If(O, Ty, w) =u(f)Ty.
In other words A(f) is the set of all periodic (f)-good functions. By a result of [21], A(f) # @ for all f € 9.
The following result established in [13, Lemma 3.1] describes the structure of periodic ( f)-good functions.
Proposition 2.1. Let f € 9. Assume that w € A(f),
w(0) = inf{w(t): t €10, oo)}

and w'(t) # 0 for some t € [0, 00). Then there exist T1(w) > 0 and t(w) > t1(w) such that the function w is strictly
increasing on [0, T (w)], w is strictly decreasing on [t](w), T(w)],

w(ti(w)) =sup{w(): t €[0,00)} and w(r+t(w))=w() foralltel0,o0).
In [24, Theorem 3.15] we established the following result.

Proposition 2.2. Let | € M. Assume that w € A(f) and w'(t) # 0 for some 1 € [0, 00). Then there exists T > 0 such
that

w(it+1)=w(), tel0,00) and X, (T1)# Xy (T2)
for each T € [0, 00) and each T» € (T1, T1 + 7).

In the sequel we use the following result of [23, Proposition 5.1].

Proposition 2.3. Let f € 9. Then there exists a number S > O such that for every ( f)-good function v,

’Xv(t)’ < S foralllarge enought.

The following result was proved in [13, Lemma 3.2].
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Proposition 2.4. Let f € 9N satisfy

1(f) <inf{f(t,0,0): r € R'}.
Then no element of A(f) is a constant and sup{t (w): w € A(f)} < oc.

Proposition 2.5. Let f € 9 and let M|, M3, ¢ be positive numbers. Then there exists S > 0 such that the following
assertion holds:
IfT1 20, T, 2Ty +candifv e Wz’l([Tl, T»)) satisfies

X (T))|. [ Xo(T)| <My and 17 (T1, Ta,v) SUJ_p, (Xo(T1). Xo(T2)) + Mo,

’

then
|X, ()| <S8 forallt €Ty, T2].
For this result we refer the reader to [9] (see the proof of Proposition 4.4).
The following result was established in [14, Theorem 1.2].
Proposition 2.6. Let f € 9 satisfy
1(f) <inf{f(,0,0): r € R'}
and let v € Wli’cl ([0, 00)) be such that
sup{|X,(1)|: 1 €10,00)} <00, 170, T,v) = UL (X,(0), X,(T)) forall T >0.

Then there exists a periodic (f)-good function w such that §2(v) = §2(w) and the following assertion holds:
Let T > 0 be a period of w. Then for every € > 0 there exists T(€) > 0 such that for every T > t(€) there exists
s € [0, T) such that

e+ V0 +1) = (ws+0),w'(s+0)|<e, 1€[0,T].

The next useful result was proved in [13, Lemma 2.6].

Proposition 2.7. Let f € 9. Then for every compact set E C R? there exists a constant M > 0 such that for every
T>1
UL, y) <STu(f)+M forallx,yeE.

The next important ingredient of our proofs is established in [13, Lemma BS5] which is an extension of
[23, Lemma 3.7].

Proposition 2.8. Let f € M, w € A(f) and € > 0. Then there exist §,q > 0 such that for each T > q and each
X,y € R? satisfying d(x, 2(w)) <6, d(y, 2(w)) < 6, there exists v € W2L([0, t]) which satisfies
X,0=x, X,()=y, T70,7v)<e

We also need the following auxiliary result of [21, Proposition 2.3].

Proposition 2.9. Let f € 9. Then for every T >0
U%'(x,y) — 00 as|x|+|y| — oo.
Proposition 2.10. (See [12, Lemma 3.1].) Let f € 9 and 8, t are positive numbers. Then there exists M > O such
that for every T > T and every v € W>1([0, T]) satisfying
170, T, v) <inf{U} (x,y): x,y € R¥} +35
the following inequality holds:
| Xy ()| <M forallt€]0,T].
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3. Auxiliary results

Let f € 901. By Proposition 2.2 for each w € A(f) which is not a constant there exists (w) > 0 such that

w(t + r(w)) =w(t), te€][0,00), Xw(T) # X (T) foreach Ty € [0, 00)
and each T € (Ty, T1 + T(w)). (3.1)

By Proposition 2.3 there exists a number M > 0 such that

sup{|X,(0)|: 1 €[0,00)} <M forall v e A(f). (3.2)

Proposition 3.1. Suppose that u(f) < inf{ f(¢,0,0): t € R'}. Then
inf{z(w): we A(f)} > 0.

Proof. Let us assume the contrary. Then there exists a sequence {w,}>>; C A(f) such that lim,_ o T(w,) = 0. It
follows from (3.2), the definition of 7(w), w € A(f) and the equality above that forn =1,2, ...,

sup{|wn (1) — wy(s)|: 2,5 €[0,00)} < Mt(w,) >0 asn— oo. (3.3)

Since {w,}°2, C A(f) it follows from (3.2) and the continuity of the functions U{ , T > 0 that for any natural
number k the sequence {/ f, k, wn)}f;‘; | is bounded. Combined with (3.2) and the growth condition (1.1) this implies
that for any integer k > 1 the sequence { fé{ lwi ()" d t}32, is bounded. Since this fact holds for any natural number k
it follows from (3.2) that the sequence {wn}f"’: | is bounded in w27 ([0, k]) for any natural number k and it possesses
a weakly convergent subsequence in this space. By using a diagonal process we obtain that there exist a subsequence

{wn; 172, of {wy,}72 ; and wy € Wli’cl([O, 00)) such that for each natural number &

(wni, w,’h_) — (w*, w;) as i — oo uniformly on [0, k], (3.4)
w, — w, asi— oo weakly in L”[0, k]. (3.5)

By (3.4), (3.5) and the lower semicontinuity of integral functionals [4] for each natural number &,

170, k, wy) <liminf I7(0, k, wy,).
1—> 00

Combined with (3.4) and (2.2), the continuity of 7/ and the inclusion w,, € A(f),n =1, 2, ..., this inequality implies
that for any natural number k

(0, k, wy) <liminf '’ (0, k, wy,) = 0.
1—>00

In view of (3.3) and (3.4), w, is a constant function. Together with the relation above and (2.2) this implies that

1(f) = f(u4(0),0,0) =inf{ f(,0,0): r € R'}.

The contradiction we have reached proves Proposition 3.1. O

Proposition 3.2. Suppose that
1(f) <inf{f(t,0,0): r € R'}. (3.6)
Let M, 1, € > 0. Then there exist § > 0 and L > [ such that for each T > L and each v € w21 ([0, T')) satisfying

)

| X,(0)

X, <M,  T70,T,v)<s, 3.7)
there exist s € [0, T — 1] and w € A(f) such that
[ Xo(s +0) = Xu ()] <e, 1€[0,1].
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Proof. Assume the contrary. Then there exists a sequence v; € w210, T;1),i = 1,2, ..., such that
>l i=1,2,...,
T; > 00 asi— oo, Ff(O,T,-,v,-)—>O asi — oo, (3.8)

| X0, O], | Xo (TH| <M, i=12,..., (3.9)

)

and that for each natural number i the following property holds:
sup{| Xy, (s +1) — Xu(®)|: 1 €[0,1]} > € foreachs €[0,T — ] and each w € A(f). (3.10)
We may assume without loss of generality that
rfo,n,w<lt, i=12,.... (3.11)
It follows from (2.2), (3.11), (1.6) and (1.5) that for each integer i > 1
10, Ti v) = w7 (X, () =7/ (X0, (T) + i (f) + T (0, i, i)
<17/ (X, (0) = 77 (X (1) + Tii(f)
<1+ Uf (X4,(0), X, (). (3.12)
By (3.12), (3.9), (3.8) and Proposition 2.5 there exists a constant M > 0 such that
| Xy, )| <My, tel0,T;], i=12,... (3.13)

By (3.13), (3.12) and the continuity of Uf, T > 0, for each natural number n, the sequence {If(O, n, v,-)}f?ii(n) is
bounded, where i (n) is a natural number such that 7; > n for all integers i > i (n) (see (3.8)). Together with (3.13) and
(1.1) this implies that for any natural number n the sequence { f(;l |vlf/ (1L dt}?ii(n) is bounded. Since this fact holds

for any natural number 7 it follows from (3.13) that the sequence {v; fil. ) is bounded in W2 ([0, n]) for any natural
number n and it possesses a weakly convergent subsequence in this space. By using a diagonal process we obtain that

there exist a subsequence {v;, },fi 1 of {v; fi pandu € Wli’cl ([0, 00)) such that for each natural number n
(vig» vj,) = (u,u) as k — oo uniformly on [0, ], (3.14)
v;, = u” as k — oo weakly in L [0, k]. (3.15)
In view of (3.14) and (3.13),
| X, ()| <M forallr >0. (3.16)

It follows from (3.14), (3.15), (3.13) and the lower semicontinuity of integral functionals [4] for each natural number n
170, n, u) <liminf17(0, n, v;,).
k—o00
Combined with (3.14), (3.13), (2.2), (1.6), the continuity of 7/ and (3.8) the inequality above implies that for any
natural number n
r/(0,n,u) <liminf ' (0, n, v;,) = 0.
k—o00
Thus
rf,T,uy=0 forall T >0. (3.17)
By (3.16), (3.17) and Proposition 2.6 there exists w € A(f) such that £2(w) = §2(«) and the following assertion
holds:
(A1) Let Ty, be a period of w (not necessarily minimal). Then for each y > 0 there exists t(y) > 0 such that for each
T > t(y) there is s € [0, Ty,) such that
|Xu(t+1) = Xu(s+0D| <y, 1€[0,Tyl
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We may assume without loss of generality that a period Ty, of w satisfies T,, > [. Assumption (A1) implies that
there exist T > 0 and w € A(f) such that

|Xu(t+1)— Xp(0)| <e/d, t€[0,1].
Combined with (3.14) this implies that for all sufficiently large natural numbers &
| Xy, (t+0) = Xg(0)| <e/2, 1€[0,1].
This contradicts (3.10). The contradiction we have reached proves Proposition 3.2. O
Proposition 3.3. Let M > 0 and 6 > 0. Then there exists a natural number n such that for each number T > 1 and
each v e W>1([0, T)) satisfying
1X,0)], | Xo(T)| <M,  17(0,T,v) <UL(X,(0), X,(T)) + 1 (3.18)

the following property holds:
There exists a sequence {t; };”:0 with m < n such that

3

O=ty<tfi<--<ti<tipi<--<ty=T,

Ff(ti, tiy1,v) =38 for any integeri satisfying 0 <i <m — 1, Ff(tm_l,tm, v) < 4. 3.19)

Proof. By Proposition 2.7 there exists a constant M > 0 such that

U{(x,y) <Tu(f)+M; foreachT >1 andeach x,yeR2 satisfying |x/[, |y| < M. (3.20)
Together with (2.2) and (3.20) this implies that if 7 > 1 and if v € W21 ([0, T)) satisfies (3.18), then

rf,T,v) <UL (X,(0), X, (T)) + 1 = Tu(f), 2/ (Xp(0)) + 7/ (Xo(T)) < My + 1 +2Ma,  (3.21)
where

M, =sup{|n/ (2)|: z€ R? and |z| < M}. (3.22)
Choose a natural number n > 4 such that

(n—2)8 >2(M>+ M + 1). (3.23)
Assume now that 7 > 1 and that v € W21 ([0, T']) satisfies (3.18). Then by (3.21) and (3.22),

rf,7,v) <My +1+2M,. (3.24)

Clearly for each 7 € [0, T), limy_, .+ I” f (t, s, v) = 0 and one of the following cases holds:

Ff(r, T, v) < 6, there exists T € (t, T) such that Ff(t, T,v) =4.

This implies that there exist a natural number m and a sequence {#;}"_ such that (3.19) is true. In order to complete
the proof of the proposition it is sufficient to show that m < n. By (3.24), (3.19) and (3.23),

DMy + 14+ M =T, T,v) > (m—1)8
and
m<1+67'QMy+ 1+ M) <n.

Proposition 3.3 is proved. O
The following proposition is a result on the uniform equicontinuity of the family (U 7{ )7 >+ on bounded sets.

Proposition 3.4. Let M > 0 and © > 0. Then for each € > 0 there exists § > 0 such that for each T > t and each
X,y, %,y € R? satisfying

x|, Iyl XL Iyl < M, X — X[, [y —yI<$ (3.25)
the following inequality holds:

UL (x,y) = UL E,5)| <e. (3.26)
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Proof. Let € > 0. By Proposition 2.5 there exists a constant M; > M such that for each 7 > 7 and each v €
wLlqo, D satisfying

X, O [Xo (D<M, 10,7, ) UL (X,(0), Xo(T) + 1 (3.27)
the following inequality holds:

|X, ()| <My, tel0,T]. (3.28)

Since the function U f /48 continuous, it is uniformly continuous on compact subsets of R x R? and there exists § > 0
such that

ULy ) = UL 4@ )| < /4 (3.29)
for each x, y, X, ¥ € R? satisfying
x|, [yl, 1xX], yI < My, lx — x|, [y — y[ <é. (3.30)
Assume that x, y, X, y € R? satisfy (3.25) and that T > 7. In order to prove the proposition it is sufficient to show that
US(3.5) <UL (x.y) +e.
There exists v € Wz’l([O, T1]) such that
X,0)=x, X,T)=y, 70T, v)=Ul@x,y). (3.31)
By (3.31), (3.25) and the choice of My, (3.28) is valid. There exists u € W21 ([0, T']) such that
X 0=  X@/H=Xo@/d, 0. t/4u)=UL,E X (1/9),
u(t)=v(), telr/4,T—1/4],
Xu(T —t/8) =Xo(T —t/4),  Xu(T)=7,
1I(T =14, T, u) = U{M(XU(T —1/4), 7). (3.32)
It follows from (3.25) and (3.28) and the choice of § (see (3.29) and (3.30)) that
U] (% X0 (/8) — UL, (x. Xo(r/4)| < e/4,
UL (X (T = 2/4),5) = UL, (Xo(T = 7/4), y)| < €/4.
It follows from the inequalities above, (3.32) and (3.31) that
UL, 5) <150, T, u) =170, /4, u) + 17 (t/4, T —t/4,u) + 1 (T — /4, T, u)
= U], (%. Xo(r/8) + 17 (/4. T — t/4,u) + U], (Xo(T = 7/4). 5)
<UL (. Xo(0/) +e/4+ 17 (/4. T — 1/4,u) + UL, (Xo(T — 1/4),y) +¢/4
=170, T,v) +€¢/2=UL(x,y) +¢/2.

Proposition 3.4 is proved. O

Proposition 3.5. Suppose that

1(f) <inf{f(t,0,0): r € R'}.

Let € > 0. Then there exist g > 0 and 6 > 0 such that the following assertion holds:
Let T > q, we A(f),

x,yeRz, d(x,.Q(w)),d(y,.Q(w)) <4, (3.33)
Then there exists v € Wz'l([O, T1) which satisfies

X,(0) = x, Xo(7) =y, r’,t,v) <e. (3.34)
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Proof. By Proposition 2.8 for each w € A(f) there exist §(w), g (w) > 0 such that the following property holds:

P1) T >q(w)andifx,ye R? satisfy d(x, 2(w)), d(y, £2(w)) < §(w), then there exists v € W21([0, T1) which
satisfies (3.34).

By Propositions 2.4 and 3.1,

T :=sup{r(w): w e A(f)} < o0, (3.35)

inf{z(w): we A(f)} > 0. (3.36)
Define

E=|J{2w) x 2w): weAf)}. 3.37)
We will show that E is compact. In view of (3.2) it is sufficient to show that E is closed.

Let
{(i y)}o) CE, lim (x;, y) = (x, y). (3.38)
11— 00

We show that (x, y) € E. For each natural number i there exist w; € A(f), s;, 1 € [0, 00) such that

xi = (wi (1), w (1)), yi = (wi(si), wj(s)). (3.39)
In view of (3.35) we may assume that

ti,si€l0,T], i=12,.... (3.40)

By (3.2) and the continuity of UY{ , the sequence {//(0, T, w;)}:2, is bounded. Combined with (3.2) and (1.1) this

implies that the sequence { fOT lw}(1)|” dt}?2, is bounded. Extracting a subsequence and re-indexing if necessary we
may assume without loss of generality that there exist

ty = lim #;, sy = lim s, T = lim T(w;) (341
i—00 i—00 i—00

and there exists u € W27 ([0, T) such that

w; — u asi— oo weakly in W>7 ([0, T),

(wi, w}) = (u,u’) asi— oo uniformly on [0, T]. (3.42)
By (3.42), (3.2), the continuity of 7/, and the lower semicontinuity of integral functionals [4],

rfo,7,u) < 1iggfrf(o, T,w;)=0

and I'7(0, T, u) = 0.
It follows from (3.38), (3.39), (3.40), (3.42) and (3.41) that

x= lim x; = lim (w;(6), w)(6)) = lim (u(), u' (1)) = (u(t). 1 1)), (3.43)
y=lim y; = lim (w;(s;), w;(s;)) = lim (u(s;), u'(50)) = (u(s), 1 (54)). (3.44)

By (3.42), the inclusion w; € A(f),i=1,2,...,(3.35) and (3.41),
Xu(0) = lim Xy, (0) = lim X, (v () = lim X, (v(w) = Xu(z.).
In view of (3.41), (3.40) and (3.36),
0<1, < T.
We have shown that

X, (0)=X,(t), 0< T 0,7,u) <70, T,u)=0.
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This implies that u can be extended on the infinite interval [0, co) as a periodic ( f)-good function with the period .
Thus we have that u € A(f) and in view of (3.43), (3.44) and (3.37)

(x,y)ef2u) x 2u)CE.
Therefore E is compact. For each w € A(f) define an open set U (w) C R* by

U(w) = {(x, y) € R*: d(x, .Q(w)) < d(w)/4, d(y, Q(w)) < 8(w)/4}. (3.45)
Then U(w), w € A(f) is an open covering of the compact E and there exists a finite set {wy, ..., w,} € A(f) such
that

n
Ec|Juw. (3.46)
i=1
Set
g=max{q(w;): i=1,...,n}, §=min{8(w;)/4: i=1,...,n}. (3.47)
LetT >¢q,we A(f) andletx, y € R? satisfy (3.33). There exist

X,y € 2(w) (3.48)
such that

lx — x|, [y =y <é. (3.49)
In view of (3.37), (3.46) and (3.48), (x, y¥) € E and there is j € {1, ..., n} such that

(x,y) eU(wj). (3.50)
Relations (3.50) and (3.45) imply that there exist

X,y e 2(wj) (3.51)
such that

X — x|, [y =yl <é(w;)/4. (3.52)

By (3.49), (3.52) and (3.47)
x —x|, Iy =yl <d+8w;)/4<8(w;)/2.
It follows from this inequalities, (3.51), property (P1) with w = w}, (3.47) and the inequality T > ¢q that there exists
ve W=Lo, TD satisfying (3.34). Proposition 3.5 is proved. O
4. Proof of Theorem 1.1

By Proposition 3.4 in order to prove the theorem it is sufficient to show that for each x, y € R? there exists

[U](x,y) = Tu(h)].

lim
T—00
Let x, y € R? and fix € > 0. We will show that there exist 7 > 0 and ¢ > 0 such that
U{ (x,y) = Su(f) SUF (e, ) = Tu(f) +e (“.1)
foreachT > T andeach S > T +q.
By Proposition 3.5 there exist ¢ > 0, o > 0 such that for the following property holds:
(P2) Foreach T > ¢, each w € A(f) and each x, y € R? satisfying
d(x, 2w)),d(y. 2(w)) < 4.2)
there exists v € W21([0, T]) such that
Xy =x, X, (T)=y, I'70,T,v<e 4.3)
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In view of Proposition 2.4 there exists a real number

l>sup{r(w): wE.A(f)}. 4.4)
Choose
Mo > x|+ |y| + 2. 4.5)

By Proposition 2.5 there exists M| > My such that foreach T > 1 and each v € w210, T satisfying

| X, (0)], | Xo(T)| < Mo, 17,7, v)gU{(xv(O),XU(T))H (4.6)

the following inequality holds:
| X, ()| <My, t€]0,T] 4.7)

By Proposition 3.2 there exist §; > 0, L; > [ such that foreach T > L and each v € w21 ([0, T']) satisfying

X0, | Xo(D)| <M1, 70, T,v) <8 (4.8)
there exist o € [0, T — [] and w € A(f) such that
| Xu(o +1) — Xyu ()] <8, 1€[0,1]. (4.9)

By Proposition 3.3 there exists a natural number 7 such that for each T > 1 and each v € W21 ([0, T']) satisfying

| X,(0)], |X,(T)| < My, 170, T, v) UL (X, (0), Xy (T)) + 1 (4.10)

3

there exists a sequence {t; }j." o C [0, T] with m < n such that

O=t<---<ti<tipi<---<ty=T, “4.11)

Ff(ti, ti+1,v) =41 for all integers i satisfying 0 <i <m — 1,

Ity tm, v) < 8. (4.12)
Choose a number

T>14nL. (4.13)
Let

T>T, S>T+gq. (4.14)
There exists v € W21([0, T']) such that

X»(0) =x, X (T) =y, 170, T, v):U{(x,y). (4.15)

By (4.5), (4.13), (4.14), the choice of M and (4.15), the inequality (4.7) holds. In view of (4.15), the choice of n (see
(4.10)—(4.12)), (4.14), (4.13) and (4.5) there exists a sequence {#;}/*, C [0, T] with m < n such that (4.11) and (4.12)
hold. It follows from (4.14), (4.13) and (4.11) that

max{ti+1—t,~: i:O,...,m—l}}T/m}T/n>L1.

Thus there exists j € {0, ..., m — 1} such that

tiy1 —t;j> L. (4.16)
By (4.16), (4.7), (4.12) and the choice of &1, L (see (4.8), (4.9)) there exist

oeltj,tiy1 =1, weA(f) 4.17)
such that (4.9) holds.

In particular

d(X,(0), 2(w)) < . (4.18)
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It follows from (4.14), (4.17), the property (P2) and (4.18) that there exists

hew*!(lo,0 +S—T])
such that

Xn(o) = Xy(0), Xpn(o+S85—-T)=X,(0),

r’(o,0+S—T,h)<e. (4.19)
It is easy to see that there exist u € W21([0, S1) such that

u(t) =v(), tel0,0], u(t)=nh(t), telo,o+S5-T],

u(c+S—-T+1t)=v(e+1t), tel0,T—o]. (4.20)
By (4.20) and (4.15),
X, (0) =x, X, (S)=y. “4.21)

By (4.21), (2.2), (4.15), (4.20) and (4.19),
UL (x,y) = Su(f) <170, S, u) — Su(f)
=1/ (Xu(0) — 2/ (Xu($) + 7 (0, S, u)
=7/ (Xu(0) = 77 (Xu($)) + T 0, 0,u) + T (0,0 + S =T, u) + ' (0 + 5~ T, S,u)
=7/ (X,(0) — 7/ (Xo (D)) + I (0, 0,0) + € + T (0, T, v)
=e+170.T,v) = Tp(f) = Uf (v, y) = Ti(f) +e.
Thus we have shown that (4.1) holds for each T > T and each S > T + ¢. By Proposition 2.7
sup{U{(x, y) = Tu(f): Te[l,00)} < oo.
On the other hand by (1.6) foreach 7" > 1
Uf (. y) = Tu(f) = nf (o) — 7 ().
Hence the set {U{(x, y): T €[1,00)} is bounded. Put
dy = Tlim inf{U‘Sf(x, y) = Su(f): S €[T,00)}. (4.22)
—00

We show that

d. = lim [U](x,y) = Tu(h)].

lim
T—o00
Let € > 0. We have shown that there exist T >0, g > 0 such that (4.1) holds for each T > T and each S > T +¢.
By (4.22) there exists Ty > T such that

di > inf{U{ (x, y) = Sp(f): S €T, 00)} > di — €. (4.23)
There exists 77 > Ty such that
|U7Jf; (x,y) = Tin(f) —inf{UL (x, y) = Su(f): S € [T, 00)}| <e. (4.24)

Let T > T1 + q. Then in view of (4.23)
UL (x,y) = Tu(f) = inf{UL (x, y) = Sp(f): S €Ty, 00)} > di —e.

On the other hand by the relation T > T1 +¢q > To +q > T + q, (4.1) (which holds with T =T, S =T), (4.24)
and (4.23)

US (x,y) = Tu(f) <UJ (e, ) = Tin(f) +e
<inf{U{ (x, y) = Su(f): S € [T, 00)} + 2¢ < ds + 2.
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Therefore
|U‘Tf(x, y)—=Tu(f) —d*| <2 forallT>T)+q.
Since € is an arbitrary positive number we conclude that

d.= lim [U](x,y) = Tu(f)].

lim
T—o00

Theorem 1.1 is proved.
5. Proof of Theorem 1.2

Consider the function UZ : R? x R2 — R defined in Theorem 1.1:

UL (x,y) = lim [Uf (x,y) = Tu(f)]. x.yeR> (5.1)

lim
T— 00
By Proposition 2.10 there exists M > 0 such that for each T > 1 and each v € W1 ([0, T']) satisfying

17(0,T,v) <inf{U] (x,y): x,y e R¥} + 1 (5.2)
the following inequality holds:

|X,()| <M, te]0,T] (5.3)
Let x, y € R? satisfy max{|x|, ||} > T > 1. Then by the choice of M,

Ul (x.y) > inf{U{(m,zz)I Z. 2 €RM A+ L

This implies that for each 7 > 1

inf{U] (x,y): x,y € R? and max{|x|, |y|} > M} > inf{U] (x,y): x,y € R?} + 1. (5.4)
Put

Ey={(x,y) € R* x R*: max{|x|, [yl} > M}, E> = (R* x R*) \ Ey. (5.5)
In view of (5.5) and (5.4) forany T > 1

inf{Uf (x, ) = Ti(f): (x,y) € Er} = inf{Uf (x, y) = Tu(f): (x,y) € E2} + 1. (5.6)

By Theorem 1.1
Uf(x.y) = Tu(f) > Udk(x.y) asT — oo (5.7)

uniformly on E». This implies that
Tli_)mooinf{UTf(x, Y) = Tu(f): x,y € E2) =inf{UL(x, y): (x,y) € Ea}. (5.8)
Let (z,z) € E;. Then by (5.1), (5.6) and (5.8)

UL(z.7) = Tli_)moo[U;(zl,Z) —Tu(f)]

> Tlimoo[inf{U;f(x, y) = Tu(f): (x,y) € E2} +1]
—inf{UL (x,y): (x,y) € E2} + 1. (5.9)
Since the function Ugo is continuous the set
Eoo:={(x,y) € E2: UL(x,y) =inf{UL(2): z € E2}} (5.10)

is nonempty and compact. In view of (5.9) and (5.10)

Ug;(z) > Ugg(y) 4+ 1 foreachze Ejandeach y € E. (5.11)
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Let € > 0. Using standard arguments and compactness of E> we can show that there exists § € (0, 8~1) such that

ifze R* satisfies UL (z) <inf{UL(y): y € R*} +45, thend(z, Exo) <e. (5.12)
By Theorem 1.1 there exists 7 > 1 such that
|U7]f(x, y) — Tu(f) — UL (x, y)| <8 forany T >T and any (x, y) € Es. (5.13)
Assume that
T>T, (x,y)eR*xR%  Ul(x,y) <inf{U](2): z€ R*} +34. (5.14)
In view of (5.14), (5.5) and (5.6),
(x,y) € Ea. (5.15)
By (5.15), (5.14) and (5.13),
U (6, 9) = (T = UL, )| < 6. (5.16)

By (5.14), (5.6), (5.9) and (5.13),
linf{U] (2) = Ti(f): z € R*} —inf{UL(2): z € R}
= |inf{U] (z) = Tu(f): z € E2} —inf{UL (2): z € E2}| <.
Combined with (5.16) and (5.14) this implies that

UL (x, y) SUL G, y) = ()T +68 <inf{UJ (2) = Tu(f): z€ R} +28
<inf{UL(2): z € R*} +35.
By the relation above and (5.12), d((x, ¥), Ex) < €. Theorem 1.2 is proved.
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