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Abstract

In this paper we study the limiting behavior of the value-function for one-dimensional second order variational problems arising
in continuum mechanics. The study of this behavior is based on the relation between variational problems on bounded large
intervals and a limiting problem on [0,∞).
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1. Introduction

The study of properties of solutions of optimal control problems and variational problems defined on infinite
domains and on sufficiently large domains has recently been a rapidly growing area of research. See, for example,
[3,5,6,15–19,21–24] and the references mentioned therein. These problems arise in engineering [8], in models of
economic growth [10,25], in infinite discrete models of solid-state physics related to dislocations in one-dimensional
crystals [2,20] and in the theory of thermodynamical equilibrium for materials [7,9,11–14]. In this paper we study
the limiting behavior of the value-function for variational problems arising in continuum mechanics which were
considered in [7,9,11–14,21–24]. The study of this behavior is based on the relation between variational problems on
bounded large intervals and a limiting problem on [0,∞).

In this paper we consider the variational problems

T∫
0

f
(
w(t),w′(t),w′′(t)

)
dt → min, w ∈ W 2,1([0, T ]),

(
w(0),w′(0)

) = x and
(
w(T ),w′(T )

) = y, (P )
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where T > 0, x, y ∈ R2, W 2,1([0, T ]) ⊂ C1([0, T ]) is the Sobolev space of functions possessing an integrable second
derivative [1] and f belongs to a space of functions to be described below. The interest in variational problems of the
form (P ) and the related problem on the half line:

lim inf
T →∞ T −1

T∫
0

f
(
w(t),w′(t),w′′(t)

)
dt → min, w ∈ W

2,1
loc

([0,∞)
)

(P∞)

stems from the theory of thermodynamical equilibrium for second-order materials developed in [7,9,11–14]. Here
W

2,1
loc ([0,∞)) ⊂ C1([0,∞)) denotes the Sobolev space of functions possessing a locally integrable second derivative

[1] and f belongs to a space of functions to be described below.
We are interested in properties of the valued-function for the problem (P ) which are independent of the length of

the interval, for all sufficiently large intervals.
Let a = (a1, a2, a3, a4) ∈ R4, ai > 0, i = 1,2,3,4 and let α, β , γ be positive numbers such that 1 � β < α, β � γ ,

γ > 1. Denote by M(α,β, γ, a) the set of all functions f : R3 → R1 such that:

f (w,p, r) � a1|w|α − a2|p|β + a3|r|γ − a4 for all (w,p, r) ∈ R3; (1.1)

f, ∂f/∂p ∈ C2, ∂f/∂r ∈ C3, ∂2f/∂r2(w,p, r) > 0 for all (w,p, r) ∈ R3; (1.2)

there is a monotone increasing function Mf : [0,∞) → [0,∞) such that for every (w,p, r) ∈ R3

max
{
f (w,p, r),

∣∣∂f/∂w(w,p, r)
∣∣, ∣∣∂f/∂p(w,p, r)

∣∣, ∣∣∂f/∂r(w,p, r)
∣∣}

� Mf

(|w| + |p|)(1 + |r|γ )
. (1.3)

Let f ∈ M(α,β, γ, a). Of special interest is the minimal long-run average cost growth rate

μ(f ) = inf

{
lim inf
T →∞ T −1

T∫
0

f
(
w(t),w′(t),w′′(t)

)
dt : w ∈ Ax

}
, (1.4)

where

Ax = {
v ∈ W

2,1
loc

([0,∞)
)
:

(
v(0), v′(0)

) = x
}
.

It was shown in [9] that μ(f ) ∈ R1 is well defined and is independent of the initial vector x. A function w ∈
W

2,1
loc ([0,∞)) is called an (f )-good function if the function

φf
w : T →

T∫
0

[
f

(
w(t),w′(t),w′′(t)

) − μ(f )
]
dt, T ∈ (0,∞)

is bounded. For every w ∈ W
2,1
loc ([0,∞)) the function φ

f
w is either bounded or diverges to ∞ as T → ∞ and moreover,

if φ
f
w is a bounded function, then

sup
{∣∣(w(t),w′(t)

)∣∣: t ∈ [0,∞)
}

< ∞
[22, Proposition 3.5]. Leizarowitz and Mizel [9] established that for every f ∈ M(α,β, γ, a) satisfying μ(f ) <

inf{f (w,0, s): (w, s) ∈ R2} there exists a periodic (f )-good function. In [21] it was shown that a periodic (f )-good
function exists for every f ∈ M(α,β, γ, a).

Let f ∈ M(α,β, γ, a). For each T > 0 define a function U
f
T : R2 × R2 → R1 by

U
f
T (x, y) = inf

{ T∫
0

f
(
w(t),w′(t),w′′(t)

)
dt : w ∈ W 2,1([0, T ]),

(
w(0),w′(0)

) = x and
(
w(T ),w′(T )

) = y

}
. (1.5)
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In [9], analyzing problem (P∞) Leizarowitz and Mizel studied the function U
f
T : R2 × R2 → R1, T > 0 and

established the following representation formula

U
f
T (x, y) = T μ(f ) + πf (x) − πf (y) + θ

f
T (x, y), x, y ∈ R2, T > 0, (1.6)

where πf : R2 → R1 and (T , x, y) → θ
f
T (x, y) and (T , x, y) → U

f
T (x, y), x, y ∈ R2, T > 0 are continuous functions,

πf (x) = inf

{
lim inf
T →∞

T∫
0

[
f

(
w(t),w′(t),w′′(t)

) − μ(f )
]
dt :

w ∈ W
2,1
loc

([0,∞)
)

and
(
w(0),w′(0)

) = x

}
, x ∈ R2, (1.7)

θ
f
T (x, y) � 0 for each T > 0, and each x, y ∈ R2, and for every T > 0, and every x ∈ R2 there is y ∈ R2 satisfying

θ
f
T (x, y) = 0.

Denote by | · | the Euclidean norm in Rn. For every x ∈ Rn and every nonempty set Ω ⊂ Rn set

d(x,Ω) = inf
{|x − y|: y ∈ Ω

}
.

For each function g : X → R1 ∪ {∞}, where the set X is nonempty, put

inf(g) = inf
{
g(z): z ∈ X

}
.

Let f ∈ M(α,β, γ, a). It is easy to see that

μ(f ) � inf
{
f (t,0,0): t ∈ R1}.

If μ(f ) = inf{f (t,0,0): t ∈ R1}, then there is an (f )-good function which is a constant function. If μ(f ) <

inf{f (t,0,0): t ∈ R1}, then there exists a periodic (f )-good function which is not a constant function. It was shown
in [14] that in this case the extremals of (P∞) have interesting asymptotic properties. In [26] we equipped the space
M(α,β, γ, a) with a natural topology and showed that there exists an open everywhere dense subset F of this topo-
logical space such that for every f ∈ F ,

μ(f ) < inf
{
f (t,0,0): t ∈ R1}.

In other words, the inequality above holds for a typical integrand f ∈ M(α,β, γ, a).
In the present paper for an integrand f ∈ M(α,β, γ, a) satisfying

μ(f ) < inf
{
f (t,0,0): t ∈ R1}

we study the limiting behavior of the value-function U
f
T as T → ∞ and establish the following two results.

Theorem 1.1. Let f ∈ M(α,β, γ, a) satisfy μ(f ) < inf{f (t,0,0): t ∈ R1}. Then for each x, y ∈ R2 there exists

U
f∞(x, y) := lim

T →∞
(
U

f
T (x, y) − T μ(f )

)
.

Moreover, U
f
T (x, y) − T μ(f ) → U

f∞(x, y) as T → ∞ uniformly on bounded subsets of R2 × R2.

Theorem 1.2. Let f ∈ M(α,β, γ, a) satisfy μ(f ) < inf{f (t,0,0): t ∈ R1}. Then there exists a nonempty compact set
E∞ ⊂ R2 × R2 such that

E∞ = {
(x, y) ∈ R2 × R2: U

f∞(x, y) = inf
(
U

f∞
)}

.

Moreover, for any ε > 0 there exist δ > 0 and T̄ > 0 such that if T � T̄ and if x, y ∈ R2 satisfy U
f
T (x, y) �

inf(Uf
T ) + δ, then d((x, y),E∞) � ε.

The paper is organized as follows. Section 2 contains preliminaries. In Section 3 we prove several auxiliary results.
Theorems 1.1 and 1.2 are proved in Sections 4 and 5 respectively.



60 A.J. Zaslavski / Ann. I. H. Poincaré – AN 27 (2010) 57–72
2. Preliminaries

For τ > 0 and v ∈ W 2,1([0, τ ]) we define Xv : [0, τ ] → R2 as follows:

Xv(t) = (
v(t), v′(t)

)
, t ∈ [0, τ ].

We also use this definition for v ∈ W
2,1
loc ([0,∞)) and v ∈ W

2,1
loc (R1).

Put

M = M(α,β, γ, a).

We consider functionals of the form

If (T1, T2, v) =
T2∫

T1

f
(
v(t), v′(t), v′′(t)

)
dt, (2.1)

Γ f (T1, T2, v) = If (T1, T2, v) − (T2 − T1)μ(f ) − πf
(
Xv(T1)

) + πf
(
Xv(T2)

)
, (2.2)

where −∞ < T1 < T2 < +∞, v ∈ W 2,1([T1, T2]) and f ∈ M.

If v ∈ W
2,1
loc ([0,∞)) satisfies

sup
{∣∣Xv(t)

∣∣: t ∈ [0,∞)
}

< ∞,

then the set of limiting points of Xv(t) as t → ∞ is denoted by Ω(v).
For each f ∈ M denote by A(f ) the set of all w ∈ W

2,1
loc ([0,∞)) which have the following property:

There is Tw > 0 such that

w(t + Tw) = w(t) for all t ∈ [0,∞) and If (0, Tw,w) = μ(f )Tw.

In other words A(f ) is the set of all periodic (f )-good functions. By a result of [21], A(f ) �= ∅ for all f ∈ M.
The following result established in [13, Lemma 3.1] describes the structure of periodic (f )-good functions.

Proposition 2.1. Let f ∈ M. Assume that w ∈ A(f ),

w(0) = inf
{
w(t): t ∈ [0,∞)

}
and w′(t) �= 0 for some t ∈ [0,∞). Then there exist τ1(w) > 0 and τ(w) > τ1(w) such that the function w is strictly
increasing on [0, τ1(w)], w is strictly decreasing on [τ1(w), τ (w)],

w
(
τ1(w)

) = sup
{
w(t): t ∈ [0,∞)

}
and w

(
t + τ(w)

) = w(t) for all t ∈ [0,∞).

In [24, Theorem 3.15] we established the following result.

Proposition 2.2. Let f ∈ M. Assume that w ∈ A(f ) and w′(t) �= 0 for some t ∈ [0,∞). Then there exists τ > 0 such
that

w(t + τ) = w(t), t ∈ [0,∞) and Xw(T1) �= Xw(T2)

for each T1 ∈ [0,∞) and each T2 ∈ (T1, T1 + τ).

In the sequel we use the following result of [23, Proposition 5.1].

Proposition 2.3. Let f ∈ M. Then there exists a number S > 0 such that for every (f )-good function v,∣∣Xv(t)
∣∣ � S for all large enough t.

The following result was proved in [13, Lemma 3.2].
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Proposition 2.4. Let f ∈ M satisfy

μ(f ) < inf
{
f (t,0,0): t ∈ R1}.

Then no element of A(f ) is a constant and sup{τ(w): w ∈ A(f )} < ∞.

Proposition 2.5. Let f ∈ M and let M1,M2, c be positive numbers. Then there exists S > 0 such that the following
assertion holds:

If T1 � 0, T2 � T1 + c and if v ∈ W 2,1([T1, T2]) satisfies∣∣Xv(T1)
∣∣, ∣∣Xv(T2)

∣∣ � M1 and If (T1, T2, v) � U
f
T2−T1

(
Xv(T1),Xv(T2)

) + M2,

then ∣∣Xv(t)
∣∣ � S for all t ∈ [T1, T2].

For this result we refer the reader to [9] (see the proof of Proposition 4.4).
The following result was established in [14, Theorem 1.2].

Proposition 2.6. Let f ∈ M satisfy

μ(f ) < inf
{
f (t,0,0): t ∈ R1}

and let v ∈ W
2,1
loc ([0,∞)) be such that

sup
{∣∣Xv(t)

∣∣: t ∈ [0,∞)
}

< ∞, I f (0, T , v) = U
f
T

(
Xv(0),Xv(T )

)
for all T > 0.

Then there exists a periodic (f )-good function w such that Ω(v) = Ω(w) and the following assertion holds:
Let T > 0 be a period of w. Then for every ε > 0 there exists τ(ε) > 0 such that for every τ � τ(ε) there exists

s ∈ [0, T ) such that∣∣(v(t + τ), v′(t + τ)
) − (

w(s + t),w′(s + t)
)∣∣ � ε, t ∈ [0, T ].

The next useful result was proved in [13, Lemma 2.6].

Proposition 2.7. Let f ∈ M. Then for every compact set E ⊂ R2 there exists a constant M > 0 such that for every
T � 1

U
f
T (x, y) � T μ(f ) + M for all x, y ∈ E.

The next important ingredient of our proofs is established in [13, Lemma B5] which is an extension of
[23, Lemma 3.7].

Proposition 2.8. Let f ∈ M, w ∈ A(f ) and ε > 0. Then there exist δ, q > 0 such that for each T � q and each
x, y ∈ R2 satisfying d(x,Ω(w)) � δ, d(y,Ω(w)) � δ, there exists v ∈ W 2,1([0, τ ]) which satisfies

Xv(0) = x, Xv(τ) = y, Γ f (0, τ, v) � ε.

We also need the following auxiliary result of [21, Proposition 2.3].

Proposition 2.9. Let f ∈ M. Then for every T > 0

U
f
T (x, y) → ∞ as |x| + |y| → ∞.

Proposition 2.10. (See [12, Lemma 3.1].) Let f ∈ M and δ, τ are positive numbers. Then there exists M > 0 such
that for every T � τ and every v ∈ W 2,1([0, T ]) satisfying

If (0, T , v) � inf
{
U

f
T (x, y): x, y ∈ R2} + δ

the following inequality holds:∣∣Xv(t)
∣∣ � M for all t ∈ [0, T ].
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3. Auxiliary results

Let f ∈ M. By Proposition 2.2 for each w ∈ A(f ) which is not a constant there exists τ(w) > 0 such that

w
(
t + τ(w)

) = w(t), t ∈ [0,∞), Xw(T1) �= Xw(T2) for each T1 ∈ [0,∞)

and each T2 ∈ (
T1, T1 + τ(w)

)
. (3.1)

By Proposition 2.3 there exists a number M̄ > 0 such that

sup
{∣∣Xv(t)

∣∣: t ∈ [0,∞)
}

< M̄ for all v ∈ A(f ). (3.2)

Proposition 3.1. Suppose that μ(f ) < inf{f (t,0,0): t ∈ R1}. Then

inf
{
τ(w): w ∈ A(f )

}
> 0.

Proof. Let us assume the contrary. Then there exists a sequence {wn}∞n=1 ⊂ A(f ) such that limn→∞ τ(wn) = 0. It
follows from (3.2), the definition of τ(w), w ∈ A(f ) and the equality above that for n = 1,2, . . . ,

sup
{∣∣wn(t) − wn(s)

∣∣: t, s ∈ [0,∞)
}

� M̄τ(wn) → 0 as n → ∞. (3.3)

Since {wn}∞n=1 ⊂ A(f ) it follows from (3.2) and the continuity of the functions U
f
T , T > 0 that for any natural

number k the sequence {If (0, k,wn)}∞n=1 is bounded. Combined with (3.2) and the growth condition (1.1) this implies

that for any integer k � 1 the sequence {∫ k

0 |w′′
n(t)|γ dt}∞k=1 is bounded. Since this fact holds for any natural number k

it follows from (3.2) that the sequence {wn}∞n=1 is bounded in W 2,γ ([0, k]) for any natural number k and it possesses
a weakly convergent subsequence in this space. By using a diagonal process we obtain that there exist a subsequence
{wni

}∞i=1 of {wn}∞n=1 and w∗ ∈ W
2,1
loc ([0,∞)) such that for each natural number k(

wni
,w′

ni

) → (
w∗,w′∗

)
as i → ∞ uniformly on [0, k], (3.4)

w′′
ni

→ w′′∗ as i → ∞ weakly in Lγ [0, k]. (3.5)

By (3.4), (3.5) and the lower semicontinuity of integral functionals [4] for each natural number k,

If (0, k,w∗) � lim inf
i→∞ If (0, k,wni

).

Combined with (3.4) and (2.2), the continuity of πf and the inclusion wn ∈ A(f ), n = 1,2, . . . , this inequality implies
that for any natural number k

Γ f (0, k,w∗) � lim inf
i→∞ Γ f (0, k,wni

) = 0.

In view of (3.3) and (3.4), w∗ is a constant function. Together with the relation above and (2.2) this implies that

μ(f ) = f
(
u∗(0),0,0

) = inf
{
f (t,0,0): t ∈ R1}.

The contradiction we have reached proves Proposition 3.1. �
Proposition 3.2. Suppose that

μ(f ) < inf
{
f (t,0,0): t ∈ R1}. (3.6)

Let M, l, ε > 0. Then there exist δ > 0 and L > l such that for each T � L and each v ∈ W 2,1([0, T ]) satisfying∣∣Xv(0)
∣∣, ∣∣Xv(T )

∣∣ � M, Γ f (0, T , v) � δ, (3.7)

there exist s ∈ [0, T − l] and w ∈ A(f ) such that∣∣Xv(s + t) − Xw(t)
∣∣ � ε, t ∈ [0, l].
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Proof. Assume the contrary. Then there exists a sequence vi ∈ W 2,1([0, Ti]), i = 1,2, . . . , such that

Ti � l, i = 1,2, . . . ,

Ti → ∞ as i → ∞, Γ f (0, Ti, vi) → 0 as i → ∞, (3.8)∣∣Xvi
(0)

∣∣, ∣∣Xvi
(Ti)

∣∣ � M, i = 1,2, . . . , (3.9)

and that for each natural number i the following property holds:

sup
{∣∣Xvi

(s + t) − Xw(t)
∣∣: t ∈ [0, l]} > ε for each s ∈ [0, T − l] and each w ∈ A(f ). (3.10)

We may assume without loss of generality that

Γ f (0, Ti, vi) � 1, i = 1,2, . . . . (3.11)

It follows from (2.2), (3.11), (1.6) and (1.5) that for each integer i � 1

If (0, Ti, vi) = πf
(
Xvi

(0)
) − πf

(
Xvi

(Ti)
) + Tiμ(f ) + Γ f (0, Ti, vi)

� 1 + πf
(
Xvi

(0)
) − πf

(
Xvi

(Ti)
) + Tiμ(f )

� 1 + U
f
Ti

(
Xvi

(0),Xvi
(Ti)

)
. (3.12)

By (3.12), (3.9), (3.8) and Proposition 2.5 there exists a constant M1 > 0 such that∣∣Xvi
(t)

∣∣ � M1, t ∈ [0, Ti], i = 1,2, . . . (3.13)

By (3.13), (3.12) and the continuity of U
f
T , T > 0, for each natural number n, the sequence {If (0, n, vi)}∞i=i(n) is

bounded, where i(n) is a natural number such that Ti > n for all integers i � i(n) (see (3.8)). Together with (3.13) and
(1.1) this implies that for any natural number n the sequence {∫ n

0 |v′′
i (t)|γ dt}∞i=i(n) is bounded. Since this fact holds

for any natural number n it follows from (3.13) that the sequence {vi}∞i=i(n) is bounded in W 2,γ ([0, n]) for any natural
number n and it possesses a weakly convergent subsequence in this space. By using a diagonal process we obtain that
there exist a subsequence {vik }∞k=1 of {vi}∞i=1 and u ∈ W

2,1
loc ([0,∞)) such that for each natural number n(

vik , v
′
ik

) → (u,u′) as k → ∞ uniformly on [0, n], (3.14)

v′′
ik

→ u′′ as k → ∞ weakly in Lγ [0, k]. (3.15)

In view of (3.14) and (3.13),∣∣Xu(t)
∣∣ � M1 for all t � 0. (3.16)

It follows from (3.14), (3.15), (3.13) and the lower semicontinuity of integral functionals [4] for each natural number n

If (0, n,u) � lim inf
k→∞ If (0, n, vik ).

Combined with (3.14), (3.13), (2.2), (1.6), the continuity of πf and (3.8) the inequality above implies that for any
natural number n

Γ f (0, n,u) � lim inf
k→∞ Γ f (0, n, vik ) = 0.

Thus

Γ f (0, T ,u) = 0 for all T > 0. (3.17)

By (3.16), (3.17) and Proposition 2.6 there exists w ∈ A(f ) such that Ω(w) = Ω(u) and the following assertion
holds:

(A1) Let Tw be a period of w (not necessarily minimal). Then for each γ > 0 there exists τ(γ ) > 0 such that for each
τ � τ(γ ) there is s ∈ [0, Tw) such that∣∣Xu(t + τ) − Xw(s + t)

∣∣ � γ, t ∈ [0, Tw].
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We may assume without loss of generality that a period Tw of w satisfies Tw > l. Assumption (A1) implies that
there exist τ > 0 and w̃ ∈ A(f ) such that∣∣Xu(τ + t) − Xw̃(t)

∣∣ � ε/4, t ∈ [0, l].
Combined with (3.14) this implies that for all sufficiently large natural numbers k∣∣Xvik

(τ + t) − Xw̃(t)
∣∣ � ε/2, t ∈ [0, l].

This contradicts (3.10). The contradiction we have reached proves Proposition 3.2. �
Proposition 3.3. Let M > 0 and δ > 0. Then there exists a natural number n such that for each number T � 1 and
each v ∈ W 2,1([0, T ]) satisfying∣∣Xv(0)

∣∣, ∣∣Xv(T )
∣∣ � M, If (0, T , v) � U

f
T

(
Xv(0),Xv(T )

) + 1 (3.18)

the following property holds:
There exists a sequence {ti}mi=0 with m � n such that

0 = t0 < t1 < · · · < ti < ti+1 < · · · < tm = T ,

Γ f (ti , ti+1, v) = δ for any integer i satisfying 0 � i < m − 1, Γ f (tm−1, tm, v) � δ. (3.19)

Proof. By Proposition 2.7 there exists a constant M1 > 0 such that

U
f
T (x, y) � T μ(f ) + M1 for each T � 1 and each x, y ∈ R2 satisfying |x|, |y| � M. (3.20)

Together with (2.2) and (3.20) this implies that if T � 1 and if v ∈ W 2,1([0, T ]) satisfies (3.18), then

Γ f (0, T , v) � U
f
T

(
Xv(0),Xv(T )

) + 1 − T μ(f ), −πf
(
Xv(0)

) + πf
(
Xv(T )

)
� M1 + 1 + 2M2, (3.21)

where

M2 = sup
{∣∣πf (z)

∣∣: z ∈ R2 and |z| � M
}
. (3.22)

Choose a natural number n > 4 such that

(n − 2)δ > 2(M2 + M1 + 1). (3.23)

Assume now that T � 1 and that v ∈ W 2,1([0, T ]) satisfies (3.18). Then by (3.21) and (3.22),

Γ f (0, T , v) � M1 + 1 + 2M2. (3.24)

Clearly for each τ ∈ [0, T ), lims→τ+ Γ f (τ, s, v) = 0 and one of the following cases holds:
Γ f (τ,T , v) � δ; there exists τ̄ ∈ (τ, T ) such that Γ f (τ, τ̄ , v) = δ.
This implies that there exist a natural number m and a sequence {ti}mi=0 such that (3.19) is true. In order to complete

the proof of the proposition it is sufficient to show that m � n. By (3.24), (3.19) and (3.23),

2M2 + 1 + M1 � Γ f (0, T , v) � (m − 1)δ

and

m � 1 + δ−1(2M2 + 1 + M1) < n.

Proposition 3.3 is proved. �
The following proposition is a result on the uniform equicontinuity of the family (U

f
T )T �τ on bounded sets.

Proposition 3.4. Let M > 0 and τ > 0. Then for each ε > 0 there exists δ > 0 such that for each T � τ and each
x, y, x̄, ȳ ∈ R2 satisfying

|x|, |y|, |x̄|, |ȳ| � M, |x − x̄|, |y − ȳ| � δ (3.25)

the following inequality holds:∣∣Uf
T (x, y) − U

f
T (x̄, ȳ)

∣∣ � ε. (3.26)
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Proof. Let ε > 0. By Proposition 2.5 there exists a constant M1 > M such that for each T � τ and each v ∈
W 2,1([0, T ]) satisfying∣∣Xv(0)

∣∣, ∣∣Xv(T )
∣∣ � M, If (0, T , v) � U

f
T

(
Xv(0),Xv(T )

) + 1 (3.27)

the following inequality holds:∣∣Xv(t)
∣∣ � M1, t ∈ [0, T ]. (3.28)

Since the function U
f

τ/4 s continuous, it is uniformly continuous on compact subsets of R2 ×R2 and there exists δ > 0
such that∣∣Uf

τ/4(x, y) − U
f

τ/4(x̄, ȳ)
∣∣ � ε/4 (3.29)

for each x, y, x̄, ȳ ∈ R2 satisfying

|x|, |y|, |x̄|, ȳ| � M1, |x − x̄|, |y − ȳ| � δ. (3.30)

Assume that x, y, x̄, ȳ ∈ R2 satisfy (3.25) and that T � τ . In order to prove the proposition it is sufficient to show that

U
f
T (x̄, ȳ) � U

f
T (x, y) + ε.

There exists v ∈ W 2,1([0, T ]) such that

Xv(0) = x, Xv(T ) = y, If (0, T , v) = U
f
T (x, y). (3.31)

By (3.31), (3.25) and the choice of M1, (3.28) is valid. There exists u ∈ W 2,1([0, T ]) such that

Xu(0) = x̄, Xu(τ/4) = Xv(τ/4), I f (0, τ/4, u) = U
f

τ/4

(
x̄,Xv(τ/4)

)
,

u(t) = v(t), t ∈ [τ/4, T − τ/4],
Xu(T − τ/4) = Xv(T − τ/4), Xu(T ) = ȳ,

I f (T − τ/4, T ,u) = U
f

τ/4

(
Xv(T − τ/4), ȳ

)
. (3.32)

It follows from (3.25) and (3.28) and the choice of δ (see (3.29) and (3.30)) that∣∣Uf

τ/4

(
x̄,Xv(τ/4)

) − U
f

τ/4

(
x,Xv(τ/4)

)∣∣ � ε/4,∣∣Uf

τ/4

(
Xv(T − τ/4), ȳ

) − U
f

τ/4

(
Xv(T − τ/4), y

)∣∣ � ε/4.

It follows from the inequalities above, (3.32) and (3.31) that

U
f
T (x̄, ȳ) � If (0, T ,u) = If (0, τ/4, u) + If (τ/4, T − τ/4, u) + If (T − τ/4, T ,u)

= U
f

τ/4

(
x̄,Xv(τ/4)

) + If (τ/4, T − τ/4, u) + U
f

τ/4

(
Xv(T − τ/4), ȳ

)
� U

f

τ/4

(
x,Xv(τ/4)

) + ε/4 + If (τ/4, T − τ/4, u) + U
f

τ/4

(
Xv(T − τ/4), y

) + ε/4

= If (0, T , v) + ε/2 = U
f
T (x, y) + ε/2.

Proposition 3.4 is proved. �
Proposition 3.5. Suppose that

μ(f ) < inf
{
f (t,0,0): t ∈ R1}.

Let ε > 0. Then there exist q > 0 and δ > 0 such that the following assertion holds:
Let T � q , w ∈ A(f ),

x, y ∈ R2, d
(
x,Ω(w)

)
, d

(
y,Ω(w)

)
� δ. (3.33)

Then there exists v ∈ W 2,1([0, T ]) which satisfies

Xv(0) = x, Xv(τ) = y, Γ f (0, τ, v) � ε. (3.34)
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Proof. By Proposition 2.8 for each w ∈ A(f ) there exist δ(w), q(w) > 0 such that the following property holds:

(P1) If T � q(w) and if x, y ∈ R2 satisfy d(x,Ω(w)), d(y,Ω(w)) � δ(w), then there exists v ∈ W 2,1([0, T ]) which
satisfies (3.34).

By Propositions 2.4 and 3.1,

T̄ := sup
{
τ(w): w ∈ A(f )

}
< ∞, (3.35)

inf
{
τ(w): w ∈ A(f )

}
> 0. (3.36)

Define

E =
⋃{

Ω(w) × Ω(w): w ∈ A(f )
}
. (3.37)

We will show that E is compact. In view of (3.2) it is sufficient to show that E is closed.
Let{

(xi, yi)
}∞
i=1 ⊂ E, lim

i→∞(xi, yi) = (x, y). (3.38)

We show that (x, y) ∈ E. For each natural number i there exist wi ∈ A(f ), si , ti ∈ [0,∞) such that

xi = (
wi(ti),w

′
i (ti )

)
, yi = (

wi(si),w
′
i (si)

)
. (3.39)

In view of (3.35) we may assume that

ti , si ∈ [0, T̄ ], i = 1,2, . . . . (3.40)

By (3.2) and the continuity of U
f

T̄
, the sequence {If (0, T̄ ,wi)}∞i=1 is bounded. Combined with (3.2) and (1.1) this

implies that the sequence {∫ T̄

0 |w′′
i (t)|γ dt}∞i=1 is bounded. Extracting a subsequence and re-indexing if necessary we

may assume without loss of generality that there exist

t∗ = lim
i→∞ ti , s∗ = lim

i→∞ si, τ∗ = lim
i→∞ τ(wi) (3.41)

and there exists u ∈ W 2,γ ([0, T̄ ]) such that

wi → u as i → ∞ weakly in W 2,γ
([0, T̄ ]),(

wi,w
′
i

) → (u,u′) as i → ∞ uniformly on [0, T̄ ]. (3.42)

By (3.42), (3.2), the continuity of πf , and the lower semicontinuity of integral functionals [4],

Γ f (0, T̄ , u) � lim inf
i→∞ Γ f (0, T̄ ,wi) = 0

and Γ f (0, T̄ , u) = 0.
It follows from (3.38), (3.39), (3.40), (3.42) and (3.41) that

x = lim
i→∞xi = lim

i→∞
(
wi(ti),w

′
i (ti)

) = lim
i→∞

(
u(ti), u

′(ti)
) = (

u(t∗), u′(t∗)
)
, (3.43)

y = lim
i→∞yi = lim

i→∞
(
wi(si),w

′
i (si)

) = lim
i→∞

(
u(si), u

′(si)
) = (

u(s∗), u′(s∗)
)
. (3.44)

By (3.42), the inclusion wi ∈ A(f ), i = 1,2, . . . , (3.35) and (3.41),

Xu(0) = lim
i→∞Xwi

(0) = lim
i→∞Xwi

(
τ(wi)

) = lim
i→∞Xu

(
τ(wi)

) = Xu(τ∗).

In view of (3.41), (3.40) and (3.36),

0 < τ∗ � T̄ .

We have shown that

Xu(0) = Xu(τ∗), 0 � Γ f (0, τ∗, u) � Γ f (0, T̄ , u) = 0.
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This implies that u can be extended on the infinite interval [0,∞) as a periodic (f )-good function with the period τ∗.
Thus we have that u ∈ A(f ) and in view of (3.43), (3.44) and (3.37)

(x, y) ∈ Ω(u) × Ω(u) ⊂ E.

Therefore E is compact. For each w ∈ A(f ) define an open set U (w) ⊂ R4 by

U (w) = {
(x, y) ∈ R4: d

(
x,Ω(w)

)
< δ(w)/4, d

(
y,Ω(w)

)
< δ(w)/4

}
. (3.45)

Then U (w), w ∈ A(f ) is an open covering of the compact E and there exists a finite set {w1, . . . ,wn} ∈ A(f ) such
that

E ⊂
n⋃

i=1

U (wi). (3.46)

Set

q = max
{
q(wi): i = 1, . . . , n

}
, δ = min

{
δ(wi)/4: i = 1, . . . , n

}
. (3.47)

Let T � q , w ∈ A(f ) and let x, y ∈ R2 satisfy (3.33). There exist

x̃, ỹ ∈ Ω(w) (3.48)

such that

|x − x̃|, |y − ỹ| � δ. (3.49)

In view of (3.37), (3.46) and (3.48), (x̃, ỹ) ∈ E and there is j ∈ {1, . . . , n} such that

(x̃, ỹ) ∈ U (wj ). (3.50)

Relations (3.50) and (3.45) imply that there exist

x̄, ȳ ∈ Ω(wj ) (3.51)

such that

|x̃ − x̄|, |ỹ − ȳ| < δ(wj )/4. (3.52)

By (3.49), (3.52) and (3.47)

|x − x̄|, |y − ȳ| < δ + δ(wj )/4 � δ(wj )/2.

It follows from this inequalities, (3.51), property (P1) with w = wj , (3.47) and the inequality T � q that there exists
v ∈ W 2,1([0, T ]) satisfying (3.34). Proposition 3.5 is proved. �
4. Proof of Theorem 1.1

By Proposition 3.4 in order to prove the theorem it is sufficient to show that for each x, y ∈ R2 there exists

lim
T →∞

[
U

f
T (x, y) − T μ(f )

]
.

Let x, y ∈ R2 and fix ε > 0. We will show that there exist T̄ > 0 and q > 0 such that

U
f
S (x, y) − Sμ(f ) � U

f
T (x, y) − T μ(f ) + ε (4.1)

for each T � T̄ and each S � T + q .
By Proposition 3.5 there exist q > 0, δ0 > 0 such that for the following property holds:

(P2) For each T � q , each w ∈ A(f ) and each x, y ∈ R2 satisfying

d
(
x,Ω(w)

)
, d

(
y,Ω(w)

)
� δ0 (4.2)

there exists v ∈ W 2,1([0, T ]) such that

Xv(0) = x, Xv(T ) = y, Γ f (0, T , v) � ε. (4.3)
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In view of Proposition 2.4 there exists a real number

l > sup
{
τ(w): w ∈ A(f )

}
. (4.4)

Choose

M0 > |x| + |y| + 2. (4.5)

By Proposition 2.5 there exists M1 > M0 such that for each T � 1 and each v ∈ W 2,1([0, T ]) satisfying∣∣Xv(0)
∣∣, ∣∣Xv(T )

∣∣ � M0, I f (0, T , v) � U
f
T

(
Xv(0),Xv(T )

) + 1 (4.6)

the following inequality holds:∣∣Xv(T )
∣∣ � M1, t ∈ [0, T ]. (4.7)

By Proposition 3.2 there exist δ1 > 0, L1 > l such that for each T � L1 and each v ∈ W 2,1([0, T ]) satisfying∣∣Xv(0)
∣∣, ∣∣Xv(T )

∣∣ � M1, Γ f (0, T , v) � δ1 (4.8)

there exist σ ∈ [0, T − l] and w ∈ A(f ) such that∣∣Xv(σ + t) − Xw(t)
∣∣ � δ0, t ∈ [0, l]. (4.9)

By Proposition 3.3 there exists a natural number n such that for each T � 1 and each v ∈ W 2,1([0, T ]) satisfying∣∣Xv(0)
∣∣, ∣∣Xv(T )

∣∣ � M1, I f (0, T , v) � U
f
T

(
Xv(0),Xv(T )

) + 1 (4.10)

there exists a sequence {ti}mi=0 ⊂ [0, T ] with m � n such that

0 = t0 < · · · < ti < ti+1 < · · · < tm = T , (4.11)

Γ f (ti , ti+1, v) = δ1 for all integers i satisfying 0 � i < m − 1,

Γ f (tm−1, tm, v) � δ1. (4.12)

Choose a number

T̄ > 1 + nL1. (4.13)

Let

T � T̄ , S � T + q. (4.14)

There exists v ∈ W 2,1([0, T ]) such that

Xv(0) = x, Xv(T ) = y, If (0, T , v) = U
f
T (x, y). (4.15)

By (4.5), (4.13), (4.14), the choice of M1 and (4.15), the inequality (4.7) holds. In view of (4.15), the choice of n (see
(4.10)–(4.12)), (4.14), (4.13) and (4.5) there exists a sequence {ti}mi=0 ⊂ [0, T ] with m � n such that (4.11) and (4.12)
hold. It follows from (4.14), (4.13) and (4.11) that

max
{
ti+1 − ti : i = 0, . . . ,m − 1

}
� T/m � T̄ /n > L1.

Thus there exists j ∈ {0, . . . ,m − 1} such that

tj+1 − tj > L1. (4.16)

By (4.16), (4.7), (4.12) and the choice of δ1,L1 (see (4.8), (4.9)) there exist

σ ∈ [tj , tj+1 − l], w ∈ A(f ) (4.17)

such that (4.9) holds.
In particular

d
(
Xv(σ ),Ω(w)

)
� δ0. (4.18)
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It follows from (4.14), (4.17), the property (P2) and (4.18) that there exists

h ∈ W 2,1([σ,σ + S − T ])
such that

Xh(σ) = Xv(σ ), Xh(σ + S − T ) = Xv(σ ),

Γ f (σ,σ + S − T ,h) � ε. (4.19)

It is easy to see that there exist u ∈ W 2,1([0, S]) such that

u(t) = v(t), t ∈ [0, σ ], u(t) = h(t), t ∈ [σ,σ + S − T ],
u(σ + S − T + t) = v(σ + t), t ∈ [0, T − σ ]. (4.20)

By (4.20) and (4.15),

Xu(0) = x, Xu(S) = y. (4.21)

By (4.21), (2.2), (4.15), (4.20) and (4.19),

U
f
S (x, y) − Sμ(f ) � If (0, S,u) − Sμ(f )

= πf
(
Xu(0)

) − πf
(
Xu(S)

) + Γ f (0, S,u)

= πf
(
Xu(0)

) − πf
(
Xu(S)

) + Γ f (0, σ,u) + Γ f (σ,σ + S − T ,u) + Γ f (σ + S − T ,S,u)

= πf
(
Xv(0)

) − πf
(
Xv(T )

) + Γ f (0, σ, v) + ε + Γ f (σ,T , v)

= ε + If (0, T , v) − T μ(f ) = U
f
T (x, y) − T μ(f ) + ε.

Thus we have shown that (4.1) holds for each T � T̄ and each S � T + q . By Proposition 2.7

sup
{
U

f
T (x, y) − T μ(f ): T ∈ [1,∞)

}
< ∞.

On the other hand by (1.6) for each T � 1

U
f
T (x, y) − T μ(f ) � πf (x) − πf (y).

Hence the set {Uf
T (x, y): T ∈ [1,∞)} is bounded. Put

d∗ = lim
T →∞ inf

{
U

f
S (x, y) − Sμ(f ): S ∈ [T ,∞)

}
. (4.22)

We show that

d∗ = lim
T →∞

[
U

f
T (x, y) − T μ(f )

]
.

Let ε > 0. We have shown that there exist T̄ > 0, q > 0 such that (4.1) holds for each T � T̄ and each S � T + q .
By (4.22) there exists T0 � T̄ such that

d∗ � inf
{
U

f
S (x, y) − Sμ(f ): S ∈ [T0,∞)

}
� d∗ − ε. (4.23)

There exists T1 � T0 such that∣∣Uf
T1

(x, y) − T1μ(f ) − inf
{
U

f
S (x, y) − Sμ(f ): S ∈ [T0,∞)

}∣∣ � ε. (4.24)

Let T � T1 + q . Then in view of (4.23)

U
f
T (x, y) − T μ(f ) � inf

{
U

f
S (x, y) − Sμ(f ): S ∈ [T0,∞)

}
� d∗ − ε.

On the other hand by the relation T � T1 + q � T0 + q � T̄ + q , (4.1) (which holds with T = T1, S = T ), (4.24)
and (4.23)

U
f
T (x, y) − T μ(f ) � U

f
T1

(x, y) − T1μ(f ) + ε

� inf
{
U

f
(x, y) − Sμ(f ): S ∈ [T0,∞)

} + 2ε � d∗ + 2ε.
S
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Therefore∣∣Uf
T (x, y) − T μ(f ) − d∗

∣∣ � 2ε for all T � T1 + q.

Since ε is an arbitrary positive number we conclude that

d∗ = lim
T →∞

[
U

f
T (x, y) − T μ(f )

]
.

Theorem 1.1 is proved.

5. Proof of Theorem 1.2

Consider the function U
f∞ : R2 × R2 → R1 defined in Theorem 1.1:

U
f∞(x, y) = lim

T →∞
[
U

f
T (x, y) − T μ(f )

]
, x, y ∈ R2. (5.1)

By Proposition 2.10 there exists M > 0 such that for each T � 1 and each v ∈ W 2,1([0, T ]) satisfying

If (0, T , v) � inf
{
U

f
T (x, y): x, y ∈ R2} + 1 (5.2)

the following inequality holds:∣∣Xv(t)
∣∣ � M, t ∈ [0, T ]. (5.3)

Let x, y ∈ R2 satisfy max{|x|, |y|} > T � 1. Then by the choice of M ,

U
f
T (x, y) > inf

{
U

f
T (z1, z2): z1, z2 ∈ R2} + 1.

This implies that for each T � 1

inf
{
U

f
T (x, y): x, y ∈ R2 and max

{|x|, |y|} > M
}

� inf
{
U

f
T (x, y): x, y ∈ R2} + 1. (5.4)

Put

E1 = {
(x, y) ∈ R2 × R2: max

{|x|, |y|} > M
}
, E2 = (

R2 × R2) \ E1. (5.5)

In view of (5.5) and (5.4) for any T � 1

inf
{
U

f
T (x, y) − T μ(f ): (x, y) ∈ E1

}
� inf

{
U

f
T (x, y) − T μ(f ): (x, y) ∈ E2

} + 1. (5.6)

By Theorem 1.1

U
f
T (x, y) − T μ(f ) → U

f∞(x, y) as T → ∞ (5.7)

uniformly on E2. This implies that

lim
T →∞ inf

{
U

f
T (x, y) − T μ(f ): x, y ∈ E2

} = inf
{
U

f∞(x, y): (x, y) ∈ E2
}
. (5.8)

Let (z, z̄) ∈ E1. Then by (5.1), (5.6) and (5.8)

U
f∞(z, z̄) = lim

T →∞
[
U

f
T (z1, z̄) − T μ(f )

]
� lim

T →∞
[
inf

{
U

f
T (x, y) − T μ(f ): (x, y) ∈ E2

} + 1
]

= inf
{
U

f∞(x, y): (x, y) ∈ E2
} + 1. (5.9)

Since the function U
f∞ is continuous the set

E∞ := {
(x, y) ∈ E2: U

f∞(x, y) = inf
{
U

f∞(z): z ∈ E2
}}

(5.10)

is nonempty and compact. In view of (5.9) and (5.10)

U
f∞(z) � U

f∞(y) + 1 for each z ∈ E1 and each y ∈ E∞. (5.11)
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Let ε > 0. Using standard arguments and compactness of E2 we can show that there exists δ ∈ (0,8−1) such that

if z ∈ R4 satisfies U
f∞(z) � inf

{
U

f∞(y): y ∈ R4} + 4δ, then d(z,E∞) � ε. (5.12)

By Theorem 1.1 there exists T̄ > 1 such that∣∣Uf
T (x, y) − T μ(f ) − U

f∞(x, y)
∣∣ � δ for any T � T̄ and any (x, y) ∈ E2. (5.13)

Assume that

T � T̄ , (x, y) ∈ R2 × R2, U
f
T (x, y) � inf

{
U

f
T (z): z ∈ R4} + δ. (5.14)

In view of (5.14), (5.5) and (5.6),

(x, y) ∈ E2. (5.15)

By (5.15), (5.14) and (5.13),∣∣Uf
T (x, y) − μ(f )T − U

f∞(x, y)
∣∣ � δ. (5.16)

By (5.14), (5.6), (5.9) and (5.13),∣∣inf
{
U

f
T (z) − T μ(f ): z ∈ R4} − inf

{
U

f∞(z): z ∈ R4}∣∣
= ∣∣inf

{
U

f
T (z) − T μ(f ): z ∈ E2

} − inf
{
U

f∞(z): z ∈ E2
}∣∣ � δ.

Combined with (5.16) and (5.14) this implies that

U
f∞(x, y) � U

f
T (x, y) − μ(f )T + δ � inf

{
U

f
T (z) − T μ(f ): z ∈ R4} + 2δ

� inf
{
U

f∞(z): z ∈ R4} + 3δ.

By the relation above and (5.12), d((x, y),E∞) � ε. Theorem 1.2 is proved.
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