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Abstract

This is the first part of a work aimed at establishing that for solutions to Cauchy–Dirichlet problems involving general non-linear
systems of parabolic type, almost every parabolic boundary point is a Hölder continuity point for the spatial gradient of solutions.
Here we develop the basic necessary and sufficient condition for establishing the regular nature of a boundary point.
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1. Introduction and results

This is the first of a series of papers devoted to study in a complete and systematic way the up to the boundary
regularity of general non-linear parabolic systems. In this part we shall provide a regularity condition ensuring that
a boundary point is regular, that is, the spatial gradient of the solutions is Hölder continuous in a relative neighbor-
hood of such a point. In the next part [6] we shall derive further global regularity properties of the gradient ensuring
that such a regularity condition is satisfied at almost every boundary point with respect to the usual boundary surface
measure. As a consequence, we obtain the basic result asserting that in the case of Cauchy–Dirichlet problems involv-
ing parabolic systems with linear growth, almost every boundary point is regular, with respect to the usual surface
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measure of the parabolic boundary, that is, the interior partial regularity extends up to the boundary. To measure
the progress yielded by this result we recall that while the existence of boundary irregular points is known already in
the elliptic case [22], and assuming smooth boundary data, the existence of even one regular boundary point was an
open problem when considering general non-linear parabolic systems. We recall that the corresponding interior partial
regularity statement has been obtained in [20], while the C0,α full boundary regularity has been obtained for systems
with special, almost diagonal structure, i.e. p-Laplacian type systems [11].

In this first paper we study the regularity properties at the parabolic boundary of weak solutions to a non-linear
parabolic system with polynomial p-growth, p � 2; the case of linear growth systems p = 2 appears therefore as a
particular case. To be more precise we are dealing with systems of the following type{

ut − diva(z,u,Du)= 0 in ΩT ,

u= g on ∂PΩT ,
(1.1)

under natural p-growth and ellipticity assumptions on the vector field a :ΩT × R
N × R

Nn → R
Nn. The parabolic

system will be considered in a cylindrical domain

ΩT =Ω × (0, T ),
where Ω ⊂ R

n, n� 2 is a bounded domain in R
n and T > 0 whose parabolic boundary consisting of the lateral and

initial boundary and the edge-points will be denoted by

∂PΩT = (
∂Ω × (0, T ))∪ (

Ω × {0})∪ (
∂Ω × {0}).

In the sequel we will specify our assumptions imposed on the vector field a, the continuous boundary datum g and
the boundary ∂Ω of the domain Ω when presenting the various results. The notion of a weak solution of (1.1) is

Definition 1.1. A map u ∈ Lp(0, T ;W 1,p(Ω,RN)) is called a (weak) solution to (1.1) if and only if∫
ΩT

u · ϕt −
〈
a(z,u,Du),Dϕ

〉
dz= 0

holds for every test-function ϕ ∈ C∞
0 (ΩT ,R

N), and the following boundary conditions holds:

u(·, t)− g(·, t) ∈W 1,p
0

(
Ω;R

N
)

for a.e. t ∈ (0, T )
and

lim
h↓0

1

h

h∫
0

∫
Ω

∣∣u(x, t)− g(x,0)∣∣2 dx dt = 0. (1.2)

Here we assume that the vector field a : ΩT × R
N × R

Nn → R
Nn fulfills the standard p-growth and ellipticity

conditions; i.e. we shall assume that (z, u,w) 	→ a(z,u,w) and (z, u,w) 	→ ∂wa(z,u,w) are continuous in ΩT ×
R
N × R

Nn and that∣∣a(z,u,w)∣∣� L(1 + |w|p−1), (1.3)〈
∂wa(z,u,w)w̃, w̃

〉
� ν

(
1 + |w|p−2)|w̃|2, (1.4)

for every choice of z = (x, t) ∈ΩT , u ∈ R
N and w, w̃ ∈ R

Nn. The structure constants will satisfy (unless otherwise
stated)

p � 2, 0< ν � 1 � L<∞.
Furthermore, we shall assume that ∂wa is – not necessarily uniformly – bounded. More precisely, we assume that for
given M > 0 there exists κM , such that∣∣∂wa(z,u,w)∣∣� LκM, (1.5)
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for all z ∈ΩT , u ∈ R
N and w ∈ R

Nn such that |u| + |w| �M . With respect to the variables (x,u) we will impose a
Hölder continuity assumption on the vector field a. To be precise, we assume that

(x,u) 	→ a(x, t, u,w)

1 + |w|p−1

is Hölder continuous with Hölder exponent β ∈ (0,1), that is we assume∣∣a(x, t, u,w)− a(x0, t, u0,w)
∣∣� Lθ(|u| + |u0|, |x−x0| + |u−u0|

)(
1 + |w|p−1), (1.6)

for every choice of x, x0 ∈Ω , t ∈ (0, T ), u,u0 ∈ R
N and w ∈ R

Nn, where

θ(y, s)= min
{
1,K(y)sβ

}
,

and K : [0,∞)→ [1,∞) is a given non-decreasing function. Concerning the regularity of the lateral boundary and
the Dirichlet boundary values, i.e. of ∂Ω and g, we shall assume that g :ΩT → R

N is a continuous function such that

∂Ω is C1,β , Dg ∈ Cβ,0(Ω × [0, T );R
Nn

)
, ∂tg ∈L2,2−2β(ΩT ;R

N
)
. (1.7)

The definition of Morrey spaces of the type L2,2−2β is given in Definition 2.1 below.
Concerning the interior situation there are very recent results providing a good understanding of the regularity

properties of weak solutions to non-linear parabolic systems of the type considered in (1.1). Under the assumptions
explained before it is known that the space derivative Du of a weak solution u is Hölder continuous with respect to
the parabolic metric with Hölder exponent β in a set of full Lebesgue measure [2,5,8,18,20]. Moreover, the size of
the so-called singular set, i.e. the set on which Du is not Hölder continuous, can be further estimated in terms of the
parabolic Hausdorff dimension. On the other hand, several counter-examples [10,22,36] illustrate that singularities
might occur and therefore everywhere regularity cannot be achieved for non-linear parabolic systems. For results of
partial regularity in the elliptic case we refer to the classical book [23] and the more recent survey paper [33]; for
singular sets estimates we refer also to [31,33] as far as systems are concerned, and to [27] for the variational case.

In spite of such a more or less complete picture in the interior, for general non-linear parabolic systems the reg-
ularity theory at the parabolic boundary is widely open. Only a few results for special types of parabolic systems
are known. In [12] DiBenedetto proved for p-Laplacian type systems global Hölder continuity of u. Moreover, for
homogeneous Dirichlet data, i.e. g = 0, the Hölder continuity of Du up to the boundary was shown. For general
Dirichlet data partial Hölder continuity of u up to the boundary was established for quasilinear parabolic systems
by Arkhipova, [3]. In contrary to the parabolic case, the boundary regularity for general elliptic systems was treated
recently in [15,16,25,26,28,29].

The main result of this paper gives a precise extension of the interior regularity criterion for weak solutions of
non-linear parabolic systems with p-growth proved in [20] to the boundary case. For the sake of simplicity we shall
restrict our attention to the case of homogeneous systems of the type (1.1). The non-homogeneous case is treatable
with a few extensions of the techniques hereby introduced. Our result provides a characterization of regular boundary
points, i.e. the set of boundary points where Du is continuous. For its formulation it is convenient to introduce the set
of regular boundary points

RegP u≡ {
z0 ∈ ∂PΩT : Du ∈C0(U ∩ΩT ;R

Nn
)

for some neighborhood U of z0
}
.

Theorem 1.2. Let u ∈ Lp(0, T ;W 1,p(Ω;R
N)) be a weak solution of the non-linear parabolic system (1.1) in ΩT

under the assumptions (1.4)–(1.7). Then, there holds

∂PΩT \ RegP u⊂Σ :=Σ1 ∪Σ2

where

Σ1 =
{
z0 ∈ ∂PΩT : lim inf

�↓0
−
∫

ΩT ∩Q�(z0)

∣∣D(u−g)− (
D(u−g))

ΩT ∩Q�(z0)

∣∣p dz > 0

}
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and

Σ2 =
{
z0 ∈ ∂PΩT : lim sup

�↓0

∣∣(D(u−g))
ΩT ∩Q�(z0)

∣∣= ∞
}
.

Furthermore, if z0 ∈ RegP u then Du ∈ Cβ, β2 (U ∩ΩT ;R
Nn) for some neighborhood U of z0.

Let us mention that near the initial boundary it would be enough to assume (1.7)2 rather than (1.7)1–(1.7)3, as
explained in Section 2.1. Moreover, taking into account the assumption (1.7)2 it is clear that we could also have
omited the presence of g in the definition of the singular sets Σ1 and Σ2 without changing them.

The previous result means in particular that in a neighborhood of a point z0 ∈ RegP u the spatial derivative Du is
Hölder continuous up to the parabolic boundary with respect to the standard parabolic metric given by

dP (z, z0)≡ max
{|x − x0|,

√|t − t0|
}

≈

√
|x − x0|2 + |t − t0|, (1.8)

z= (x, t), z0 = (x0, t0) ∈ R
n+1. For the proof of Theorem 1.2 we will separately treat the lateral boundary ∂latΩT =

∂Ω× (0, T ) (see Section 4.1), the initial boundaryΩ0 =Ω×{0} (see Section 4.2) and the edge-points ∂Ω×{0} (see
Section 4.3). Thereby we shall carry out much more detailed the proof for the lateral boundary situation since this is
the most interesting and also most difficult one. Note that the set of edge-points already has the parabolic Hausdorff
dimension n − 1 and therefore does not play any role in our dimension reduction results presented in [6], and in
particular in the proof of the almost everywhere boundary regularity of solutions: the parabolic Hausdorff dimension
of ∂Ω × {0} is already strictly smaller than the one of the parabolic boundary ∂PΩT . Nevertheless, in order to give a
complete characterization of regular boundary points, we included also the treatment of edge-points.

One of the ingredients of the proof of Theorem 1.2 is a suitable boundary version of the method of A-caloric
approximation which was introduced in [18] to treat the interior regularity problem for non-linear parabolic systems
with quadratic growth, i.e. the case p = 2, and later extended to the case of systems with polynomial growth p � 2
[20,19,18,17]. Originally, this technique was used in the setting of geometric measure theory in order to prove regu-
larity result for almost minimizing currents of elliptic integrands in the interior and at the boundary; see [21]. Later it
was adapted to treat regularity issues for weak solutions of non-linear elliptic systems; first for the interior situation
[13,14] and later on for the boundary situation [26,25,4]. For elliptic problems the technique goes back to the classical
harmonic approximation lemma of De Giorgi (see [9,35]) and we refer to the recent survey paper [19] for a systematic
presentation of such techniques. In the parabolic setting the method of A-caloric approximation allows us to approx-
imate a weak solutions of the original problem with solutions of a linear parabolic system with constant coefficients,
which are therefore used as comparison maps. This leads us to exploit good a priori estimates for solutions of linear
systems, see Section 3. We just mention that such a method avoids the use of so-called higher integrability results
[1,23].

As stated at the beginning Theorem 1.2 is the first step in the proof of the almost everywhere boundary regularity;
it basically asserts that a boundary point z0 ∈ ∂PΩT is regular if the boundary excess functional

−
∫

ΩT ∩Q�(z0)

∣∣D(u− g)− (
D(u− g))

ΩT ∩Q�(z0)

∣∣p dz
is small and |(D(u − g))ΩT ∩Q�(z0)| stays bounded as � ↓ 0. In the interior situation by Lebesgue’s theorem such
a result already guarantees that the set of interior regular points has full Ln+1-measure. However, in the boundary
situation Theorem 1.2 does not guarantee the existence of even one regular boundary point. The principal difficulty
concerning partial regularity at the boundary originates from the fact that ∂PΩT is a set of Ln+1-measure zero – in fact
it is of dimension n with respect to the Euclidean metric in R

n+1, and therefore Lebesgue’s theorem does not provide
the existence of regular boundary points. Therefore, in order to ensure the existence of at least one regular boundary
point we have to show that the regularity criterion form Theorem 1.2 is fulfilled on a larger set, or vice versa that the
complement of the regular set – the so-called singular set – is small in a certain sense. This kind of problems – that
is the singular set dimension reduction – will be treated in the subsequent paper [6], where we shall give conditions
under which the main boundary criterium Theorem 1.2 will provide the almost everywhere regularity at the boundary.
Results of this type have been obtained in the stationary case both for systems [16,31–33] and variational integrals
[27–29] but are still missing in the parabolic case.



V. Bögelein et al. / Ann. I. H. Poincaré – AN 27 (2010) 201–255 205
2. Notation and preliminary material

In this paper we will generally write x = (x1, . . . , xn) for a point in R
n and z= (x, t)= (x1, . . . , xn, t) for a point

in R
n+1. By B�(x0)≡ {x ∈ R

n: |x − x0|< �}, respectively B+
� (x0)≡ B�(x0)∩ {x ∈ R

n: xn > 0} we denote the open
ball, respectively half-ball in R

n with center x0 ∈ R
n and radius � > 0. When considering B+

� (x0), unless otherwise
specified, we shall always have x0 with (x0)n = 0. Moreover, we write

Λ�2(t0)=
(
t0 − �2, t0 + �2)

for the open interval around t0 ∈ R of length 2�2 and

Λ0
�2(t0)=Λ�2(t0)∩ {t ∈ R: t > 0}.

As before, we always have t0 = 0 when writing Λ0
�2(t0), unless otherwise stated. As basic sets for our estimates we

usually take parabolic cylinders – these are essentially the balls with respect to the parabolic metric in (1.8), also
called “heat balls” – respectively half-cylinders. These are denoted by Q�(z0) ≡ B�(x0) × Λ�2(t0) and Q+

� (z0) ≡
B+
� (x0) × Λ�2(t0) and Q0

�(z0) ≡ B�(x0) × Λ0
�2(t0) and Q∗

�(z0) ≡ Q0
�(z0) ∩Q+

� (z0), where z0 = (x0, t0) ∈ R
n+1,

� > 0. Moreover, we write

Γ�(z0)≡Q�(z0)∩
{
(x1, . . . , xn, t) ∈ R

n+1: xn = 0
}

for the lateral part of the boundary of Q+
� (z0) and

Γ 0
� (z0)≡Q0

�(z0)∩
{
(x1, . . . , xn, t) ∈ R

n+1: xn = 0
}

for the one of Q∗
�(z0). For the initial boundary of Q0

�(z0) we write

D�(z0)=Q�(z0)∩
{
(x, t) ∈ R

n+1: t = 0
}

and

D+
� (z0)=Q+

� (z0)∩
{
(x, t) ∈ R

n+1: t = 0
}

for the one of Q∗
�(z0).

If z0 = 0, a typical situation occurring when treating the regularity of lateral boundary points after “flattening the
boundary”, we abbreviate B� = B�(0), Λ�2 =Λ�2(0), Q� =Q�(0) Γ� = Γ�(0) and D� =D�(0).

For an integrable map v :A→ R
k , k ∈ N, we write

(v)A ≡ −
∫
A

v dz= 1

|A|
∫
A

v dz

for its mean-value on A, provided |A| > 0. If A = Q�(z0) then we write (v)z0,� for the mean-value of v on the
parabolic cylinder Q�(z0) and (v)+z0,�

for the mean-value on the parabolic half-cylinder Q+
� (z0) and (v)0z0,�

for the

mean-value on Q0
�(z0) and (v)∗z0,�

for the mean-value on Q∗
�(z0). Finally, we write ∂latΩT = ∂Ω × (0, T ) for the

lateral boundary of ΩT and Ω0 =Ω × {0} for its initial boundary.

Definition 2.1. With q � 1, θ ∈ [0, n + 2] and Q ⊂ R
n+1 being a cylinder, a measurable map v : Q→ R

k , k � 1
belongs to the (parabolic) Morrey space Lq,θ (Q;R

k) if and only if

‖v‖q
Lq,θ (Q;Rk) := sup

z0∈ΩT ,0<�<diam(ΩT )
�θ−(n+2)

∫
ΩT ∩Q�(z0)

|v|q dz <∞.

The local variant is defined by saying that v ∈ Lq,θloc (Q;R
k) if and only if v ∈ Lq,θ (Q′;R

k) for every sub-cylinder
Q′ �Q.
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We now summarize some easy consequences of our assumptions on the vector field a which will be used frequently
in the sequel. From the ellipticity (1.4) of ∂wa we infer that a is monotone with respect to its last variable w, i.e. for
all z ∈ΩT , u ∈ R

N and w, w̃ ∈ R
Nn there holds〈

a(z,u,w)− a(z,u, w̃),w− w̃〉� ν

c(p)

(
1 + |w− w̃|p−2)|w− w̃|2. (2.1)

This can be seen as follows:

〈
a(z,u,w)− a(z,u, w̃),w− w̃〉= 1∫

0

〈
∂wa

(
z,u, w̃+ s(w−w̃))(w−w̃), (w−w̃)〉ds

� ν
1∫

0

(
1 + ∣∣w̃+ s(w− w̃)∣∣p−2)|w− w̃|2 ds

� ν

c(p)

(
1 + |w− w̃|p−2)|w− w̃|2,

where in the last line we have used
1∫

0

|a + sb|p−2 ds � c(p)−1(|a|p−2 + |b|p−2).
Moreover, we will use that θ from (1.6) is a concave function with respect to s and

θ
(|u| + |u0|, |x − x0| + |u− u0|

)
�K

(
2|u0| + 1

)(|x − x0| + |u− u0|
)β
. (2.2)

This can be seen by distinguishing the cases |u−u0| � 1 (then |u| + |u0| � 2|u0| + 1) and |u−u0|> 1 (then the term
on the right-hand side is > 1; the one on the left-hand side is always � 1). We further set

H(s)≡K(2s + 1)
(
1 + sp−1).

Combining (1.6) and (2.2) we then have∣∣a(x, t, u,w)− a(x0, t, u0,w)
∣∣� LH(M)(|x − x0| + |u− u0|

)β
, (2.3)

provided we assume |u0| �M and |w| �M . By virtue of the continuity of ∂wa there exists for eachM > 0 a modulus
of continuity ωM : [0,∞)→ [0,1] with lims↓0ωM(s)= 0 for all M > 0, such that M 	→ ωM(s) is non-deceasing for
fixed s � 0 and s 	→ ωM(s)

2 is concave and non-decreasing for fixed M > 0, and such that∣∣∂wa(z,u,w)− ∂wa(z0, u0,w0)
∣∣� 2LκMωM

(
dP (z, z0)

p + |u− u0|p + |w−w0|p
)

(2.4)

for all z, z0 ∈ΩT , u,u0 ∈ R
N and w,w0 ∈ R

Nn with |u| + |w| �M and |u0| + |w0| �M .

2.1. Transformation to the model situation

Since our results are of local nature we are allowed to consider the lateral and the initial boundary situation sepa-
rately, i.e to prove regularity for a point z0 = (x0,0) ∈Ω0 lying on the initial boundary it is enough to take into account
parabolic cylindersQ0

�(z0) with B�(x0)�Ω and the same for points lying on the lateral boundary. When considering

the lateral boundary we will prove our results in a model situation on the half-cylinder Q+
1 and for boundary values

u ≡ 0 on the lateral boundary Γ1. Therefore, we will always refer to a Cauchy–Dirichlet problem of the following
type: {

ut − diva(z,u,Du)= gt inQ+
1 ,

u= 0 on Γ1,
(2.5)

where ∂tg ∈ L2,2−2β(Q+
1 ;R

N). We briefly describe how to transform the Dirichlet problem (1.1) to this model sit-
uation. Let z0 ∈ ∂Ω × (0, T ). Without loss of generality we can assume that z0 = (x0, t0) = 0 and that the inward
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pointing unit normal to ∂Ω in x0 is ν∂Ω(x0) = en. Then, for � > 0 sufficiently small, we can flatten the boundary
B� ∩ ∂Ω by a C1,β -function Ψ , such that Ψ (B� ∩ ∂Ω) ⊂ B� ∩ {x ∈ R

n: xn = 0}. Then it is easy to verify that the
transformed map

ṽ(y, t)≡ u(Ψ−1(y), t
)− g(Ψ−1(y), t

)
, (y, t) ∈Q+

�

is a weak solution of the following Cauchy–Dirichlet problem{
ṽt − div ã(z, ṽ,Dṽ)= g̃t inQ+

� ,

ṽ = 0 on Γ�,

where the vector field ã is defined by

ã(y, t, ṽ,w)≡ a(Ψ−1(y), t, ṽ+g̃(y, t), (w+Dg̃(y, t))DΨ (Ψ−1(y)
))
DΨ t

(
Ψ−1(y)

)
and

g̃(y, t)≡ g(Ψ−1(y), t
)
.

From our assumptions (1.3)–(1.6) on the vector field a, we infer that ã fulfills similar hypotheses after changing the
appearing structure constants suitably. It is worth to mention that we do not have to impose any further regularity
of Dg with respect to t in Theorem 1.2 since we only use – and assume – the fact that the vector field a is Hölder
continuous with respect to the space variable x. However, when proving estimates for the singular set [6] we shall
need to assume a certain continuity of Dg with respect to t in order to have the newly defined vector field ã to be
Hölder continuous with respect to x and t .

Now, it is easy to verify the standard fact asserting that y ∈ Γ� is a regular point of Dṽ if and only if Ψ−1(y) ∈
∂Ω × (0, T ) is a regular point of Du. Therefore, it suffices to prove Theorem 1.2 in the model situation (2.5) (see
Proposition 4.7).

Finally, we want to comment on the change of the structure constants when passing to the model situation. The
new growth constant L̃ then is of the form L · c(p,‖g‖C1,β , ∂Ω), while the new ellipticity constant ν̃ is of the form
L/c(p,‖g‖C1,β , ∂Ω), where the constant c(p,‖g‖C1,β , ∂Ω) is strictly larger then 0. Therefore, in the estimates for
the original problem (1.1) the constants will depend on L/ν · c(p,‖g‖C1,β , ∂Ω)2.

In the initial boundary situation the procedure is simpler. Here, we shall transform the problem to the model
situation where the initial values are equal to zero, i.e. we consider{

ut − diva(z,u,Du)= gt inΩT ,

u(·,0)= 0 onΩ,
(2.6)

where ∂tg ∈ L2,2−2β(ΩT ;R
N). This is achieved by subtracting the initial values, i.e. we consider the map v(x, t)=

u(x, t)− g(x, t). Then v is a solution to{
vt − div ã(z, v,Dv)= gt in ΩT ,

v(·,0)= 0 on Ω,

where ã is defined by

ã(x, t, v,w) := a(x, t, v + g(x, t),w+Dg(x, t)).
As before, from our assumptions (1.3)–(1.6) on the vector field a and the fact that Dg(·, t) ∈ C0,β(Ω;R

Nn), for any
t ∈ [0, T ] we find that ã satisfies similar conditions after changing the appearing structure constants suitably. We also
mention that at the initial boundary it would be possible to consider u(x, t) − g(x,0) rather than u(x, t) − g(x, t)
which would lead us to a homogeneous model problem. Then the proof would be slightly easier and not require any
regularity assumption on ∂Ω and gt , i.e. it would be enough to assume (1.7)2 rather than (1.7)1–(1.7)3. But for the
sake of consistency we shall not follow this strategy. Indeed, when proving the characterization of regular edge-points
we need to combine all possible configurations, i.e. the lateral and initial boundary situation, the interior and the
edge-situation. Therefore we shall consider the same type of model problem in any case. The final outcome, i.e. the
characterization of regular points given in Theorem 1.2 is the same with both strategies, since by the continuity of Dg
the functions Dg(x,0) and Dg(x, t) have the same trace at zero.
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Finally, in a situation where we are near the edge ∂Ω×{0} we will prove our result on the setQ∗
1 and for boundary

values u= 0 on Γ 0
1 ∪D+

1 . Therefore, we consider the following Cauchy–Dirichlet problem as a model problem{
ut − diva(z,u,Du)= gt inQ∗

1,

u= 0 on Γ 0
1 ∪D+

1 ,
(2.7)

where ∂tg ∈ L2,2−2β(Q∗
1;R

N). The transformation made in the present situation is the same as the one for the lateral
boundary situation.

2.2. Steklov averages

Since weak solutions u of parabolic systems possess only weak regularity properties with respect to the time
variable t , i.e. they are not assumed to be weakly differentiable, in principle it is not possible to use the solution u
itself (also disregarding boundary values) as a test-functions in the weak formulation of the parabolic system. In order
to be nevertheless able to test the system properly, we smooth the solution u with respect to the time direction t using
the so-called Steklov means. This also enables us to work on the time-slices R

n × {t}, even if u is only an L2-map
with respect to t .

Given a function f ∈ L1(Ω × (t1, t2)) and 0< |h| � 1
2 (t2 − t1), we define its Steklov mean by

[f ]h(x, t)≡
{

1
|h|

∫ t+h
t

f (x, s) ds, t ∈ [t1 + |h|, t2 − |h|],
0, t ∈ (t1, t1 + |h|)∪ (t2 − |h|, t2).

(2.8)

The previous definition should be used when dealing with symmetric parabolic cylinders which are far from the
initial boundary. When dealing with the initial boundary problem we shall adopt the following one, valid in the case
0< h� t2 − t1,

[f ]h(x, t)≡
{

1
h

∫ t+h
t

f (x, s) ds, t ∈ (t1, t2 − h],
0, t ∈ (t2 − h, t2).

(2.9)

Rewriting system (1.1) with Steklov-means [u]h of u, we obtain the following system on the time-slices Ω × {t},∫
Ω

∂t [u]h(·, t) · ϕ + 〈[
a
(·, t, u(·, t),Du(·, t))]

h
,Dϕ

〉
dx = 0 (2.10)

for all ϕ ∈W 1,p
0 (Ω;R

N) and for a.e. t ∈ (0, T ). Note that in the model situations (2.5)–(2.7) introduced in Section 2.1
we can similarly pass to the related Steklov formulations. We only have to take into account that an additional integral
of the form

∫
Ω[gt ]h(·, t) · ϕ dx then appears on the right-hand side.

2.3. Preliminary lemmas

In order to show partial regularity we will have to control the oscillation of the solution in a certain sense. To this
aim we will approximate the solution by an affine map � : R

n+1 → R
N of the form �(x, t) = �(xn) = ξxn, where

ξ ∈ R
N , so that �≡ 0 on the lateral boundary Γ . The next lemma provides properties of vectors minimizing certain

functionals.

Lemma 2.2. Let u ∈L2(Q+
� ;R

N) and ξ� ∈ R
N the unique vector minimizing ξ 	→ −∫

Q+
�

|u− ξxn|2 dz. Then

ξ� = n+ 2

�2
−
∫
Q+
�

uxn dz. (2.11)

Moreover, if u ∈ Lp(Q+
� ;R

N), p � 2, then for any ξ ∈ R
N and p � 2 there holds

|ξ� − ξ |p �
(
n+ 2

�2

) p
2 −
∫
Q+
�

|u− ξxn|p dz.
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Proof. First, we shall verify (2.11). Since

−
∫
Q+
�

|u− ξxn|2 dz= −
∫
Q+
�

|u|2 dz− 2ξ · −
∫
Q+
�

uxn dz+ |ξ |2 −
∫
Q+
�

x2
n dz

is a quadratic polynomial there exists a unique minimizing ξ� ∈ R
N which satisfies

d

dt
−
∫
Q+
�

|u− ξ�xn + tξxn|2 dz
∣∣∣
t=0

= 2 −
∫
Q+
�

(u− ξ�xn) · ξxn dz= 0,

so that(
−
∫
Q+
�

uxn dz− ξ� −
∫
Q+
�

x2
n dz

)
· ξ = 0 for all ξ ∈ R

N.

Taking into account the equality

−
∫
Q+
�

x2
n dz= �2

n+ 2
, (2.12)

we obtain the desired formula for ξ� . To prove the second assertion of the lemma we consider ξ ∈ R
N . From (2.12),

the Cauchy–Schwarz inequality and Hölder’s inequality we obtain

|ξ� − ξ |p =
∣∣∣∣n+ 2

�2
−
∫
Q+
�

uxn dz− n+ 2

�2
ξ −
∫
Q+
�

x2
n dz

∣∣∣∣p

�
(
n+ 2

�2
−
∫
Q+
�

|u− ξxn|xn dz
)p

�
(
n+ 2

�2

)p(
−
∫
Q+
�

x2
n dz

) p
2
(

−
∫
Q+
�

|u− ξxn|2 dz
) p

2

�
(
n+ 2

�2

) p
2 −
∫
Q+
�

|u− ξxn|p dz,

which is the desired estimate. �
In contrast to the interior parabolic case we have when considering the lateral boundary situation a Poincaré

inequality for maps u ∈ Lp(Λ�2(t0);W 1,p(B�(x0)
+;R

k)) satisfying u ≡ 0 on the lateral boundary Γ�(z0). This in-

equality can be obtained applying the standard Poincaré inequality to the functions u(·, t) ∈W 1,p(B+
� (x0);R

k) for
a.e. t ∈Λ�2(t0) and then integrating with respect to t .

Lemma 2.3. Let z0 = (x0, t0) ∈ R
n+1 with x0 ∈ R

n−1 ×{0}. Then for any map u ∈ Lp(Λ�2(t0);W 1,p(B�(x0)
+;R

k)),
k � 1 satisfying u≡ 0 on Γ�(z0) there holds

−
∫

Q+
� (z0)

|u|p dz� �p

p
−
∫

Q+
� (z0)

|Dnu|p dz.

We shall also need the following standard iteration lemma, which can be found for instance in [30, Lemma 2].



210 V. Bögelein et al. / Ann. I. H. Poincaré – AN 27 (2010) 201–255
Lemma 2.4. Let ϕ : [R0,2R0] → [0,∞) be a function such that

ϕ(t)� 1

2
ϕ(�)+

k∑
i=1

Bi (�− t)−βi + K for every R0 < t < � < 2R0,

with Bi ,K � 0 and βi > 0 for i = 1, . . . , k. Then there exists a constant c= c(β1, . . . , βk) such that

ϕ(R0)� c
k∑
i=1

BiR−βi
0 + cK.

3. Linear parabolic systems

From the theory for linear parabolic systems it is known that weak solutions are smooth in the interior and also
up to the boundary. In order to prove our characterization for regular boundary points we shall exploit good excess-
decay estimates for linear parabolic systems with constant coefficients. Since we are dealing with three different
configurations, namely the lateral and initial boundary situation and the case of edge-points i.e. lying simultaneously
on the lateral boundary and at the initial time-sliceΩ0, we will need a suitable excess-decay estimate for any of them.
Our aim in this section is to provide such estimates. The precise form of the estimates found plays a crucial role in
the study of partial regularity since it allows to a proper comparison argument after linearization. We consider the
following linear parabolic system with constant coefficients∫

Q

(
u · ϕt − 〈ADu,Dϕ〉)dz= 0 for every ϕ ∈ C∞

0

(
Q;R

N
)
, (3.1)

where either Q = Q+
� (z0) or Q = Q0

�(z0) or Q = Q+
� (z0) ∩ Q0

�(z0). Thereby the coefficients A are supposed to
satisfy the following ellipticity and boundedness conditions:

〈Aw,w〉 � ν|w|2, ∣∣〈Aw, w̃〉∣∣� L|w||w̃|, (3.2)

whenever w, w̃ ∈ R
Nn where 0< ν � L<∞.

3.1. Regularity up to the lateral boundary

First we turn our attention to the lateral boundary situation, where we consider the linear parabolic system (3.1) on
Q=Q+

� (z0)= B+
� (x0)×Λ�2(t0). By slight modifications of the proof of [24, Theorem 2.2], we obtain the following

result for solutions of linear parabolic systems near the lateral boundary. Although the above mentioned theorem is
proved under Neumann boundary conditions and on non-symmetric cylinders, the same methods also apply in our
situation. Moreover, a proper investigation of the arguments also yield the asserted dependence of the constant. Then,
recalling the notation fixed at the beginning of Section 2, we can show

Theorem 3.1. Suppose that u ∈ L2(Λ1;W 1,2(B+
1 ,R

N)) is a weak solution inQ+
1 of the linear parabolic system (3.1)

with u= 0 on the lateral boundary Γ1 under the assumption (3.2). Then u is smooth up to the lateral boundary Γ1.
Moreover, for every z0 = (x0, t0) ∈ Γ1 and �,R such that 0< � <R <min{1 − |x0|,√1 − |t0|} we have∫

Q+
� (z0)

|Du|2 dz� c
(
�

R

)n+2 ∫
Q+
R(z0)

|Du|2 dz

and ∫
Q+
� (z0)

∣∣Du− (Du)+z0,�

∣∣2 dz� c
(
�

R

)n+4 ∫
Q+
R(z0)

∣∣Du− (Du)+z0,R

∣∣2 dz,
where in both estimates the constant c depends on n and L/ν only.
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In our application we will need the excess-decay estimates near the lateral boundary in a slightly different form
which is provided in Corollary 3.4. The following is devoted to the proof of the corollary.

Remark 3.2. Under the assumptions of Theorem 3.1 there also holds the following estimate for the weak derivatives
∂
j
t D

ku of u, for all k, j ∈ N0:∫
Q+
� (z0)

∣∣∂jt Dku∣∣2 dz� c

(R − �)4j+2k

∫
Q+
R(z0)

|u|2 dz,

where c= c(n,L/ν, j, k).
The previous estimate for the case � = R/2 can be found in the proof of [24, Theorem 2.2, estimate (2.20)]. The

general case follows by the same arguments, but a different choice of the involved cylinders and cut-off functions.
Although the precise dependence on the factor R − ρ is not mentioned in [24], it can be inferred by tracing back the
estimates.

Lemma 3.3. Under the assumptions of Theorem 3.1, for any � ∈ N0 and s > 0 there holds

sup
Q+
R/2(z0)

∣∣D�u∣∣s � c(n, �,L/ν, s) −
∫

Q+
R(z0)

|u|s dz.

Proof. We first infer from Theorem 3.1 that u is smooth in Q+
1 and therefore D�u exists on Q+

R(z0). Due to the
Sobolev embedding theorem and Remark 3.2 we have for R/2 � � < r �R that

sup
Q+
�

|u| + sup
Q+
�

∣∣D�u∣∣� c‖u‖Wk,2(Q+
� )

� c(n, �,L/ν,R)

(r − �)2k ‖u‖L2(Q+
r )
,

where we have chosen k ∈ N large enough (i.e. k > �+ n+1
2 ). In the case s � 2 we apply the preceding inequality with

�=R/2 and r =R and then use Hölder’s inequality to deduce

sup
Q+
R/2

|u| + sup
Q+
R/2

∣∣D�u∣∣� c(n, �,L/ν,R)‖u‖Ls(Q+
R)
.

In the case 0< s < 2 we use Young’s inequality in order to derive

sup
Q+
�

|u| + sup
Q+
�

∣∣D�u∣∣� c

(r − �)2k ‖u‖L2(Q+
r )

� c

(r − �)2k sup
Q+
r

|u|1− s
2 ‖u‖

s
2

Ls(Q+
r )

� 1

2

(
sup
Q+
r

|u| + sup
Q+
r

∣∣D�u∣∣)+ c

(r − �) 4k
s

‖u‖Ls(Q+
r )
, (3.3)

where c= c(n, �,L/ν,R). Using Lemma 2.4 with the choice

ϕ(t) := sup
Q+
t

|u| + sup
Q+
t

|D�u|

we can absorb the first term of the right-hand side in (3.3) on the left and infer that

sup
Q+
R/2

∣∣D�u∣∣s � c(n, �,L/ν, s,R)‖u‖s
Ls(Q+

R)
.

The dependence of the constant in front of
∫
Q+
R

|u|s dz on the radius R can be easily determined by considering the

scaled map v(x, t)= R−1u(Rx,R2t) on Q+
1 , applying the preceding estimate on Q+

1 and then scaling back to Q+
R .

In this way we find the following dependence: c(n, �,L/ν, s,R)=R−(n+2)c(n, �,L/ν, s). �
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Now, we are in a position to prove the excess-decay estimate for weak solutions of homogeneous linear parabolic
systems with constant coefficients near the lateral boundary we are looking for:

Corollary 3.4. Suppose that u ∈ L2(Λ�2(t0); W 1,2(B+
� (x0),R

N)) is a weak solution in Q+
� (z0), with z0 ∈ Γ of the

linear parabolic system (3.1) with u= 0 on the lateral boundary Γ�(z0) under the assumption (3.2). Then u is smooth
up to the lateral boundary Γ�(z0). Moreover, the estimate

−
∫

Q+
θ�(z0)

∣∣∣∣u− (Dnu)+z0,θ�
xn

θ�

∣∣∣∣s dz� cLiθs −
∫

Q+
� (z0)

∣∣∣∣u− (Dnu)+z0,�
xn

�

∣∣∣∣s dz
holds for any θ ∈ (0,1/2) and s � 1, where cLi = cLi(n,L/ν, s) and∣∣(Dnu)+z0,θ�

∣∣2 � c(n,L/ν) −
∫

Q+
� (z0)

|Dnu|2 dz.

Proof. Without loss of generality we can assume that z0 = 0 and � = 1 (the general case can then be obtained by a
standard translation/scaling argument). The first assertion of the corollary concerning the smoothness up to the lateral
boundary of a weak solution to a linear parabolic system with constant coefficients follows from Theorem 3.1. To
prove the excess-decay estimate we in turn apply the Poincaré inequality from Lemma 2.3 (which can be used here
since u− (Dnu)+θ xn ≡ 0 on Γθ ), the Poincaré inequality applied with respect to both the variables x and t , we note
that Q+

θ ⊂Q+
1/2 and finally apply the standard Sobolev embedding theorem to infer

−
∫
Q+
θ

∣∣∣∣u− (Dnu)+θ xn
θ

∣∣∣∣s dz� 1

s
−
∫
Q+
θ

∣∣Dnu− (Dnu)+θ
∣∣s dz

� c(n, s) −
∫
Q+
θ

(
θs |DDnu|s + θ2s |∂tDnu|s

)
dz

� c(n, s)
(
θs sup
Q+

1/2

∣∣D2u
∣∣s + θ2s sup

Q+
1/2

|∂tDu|s
)

� c(n, s)θs
∥∥u− (Dnu)+1 xn

∥∥s
Wk,2(Q+

1/2)
,

where we have chosen k ∈ N large enough (i.e. k > 2 + n+1
2 ). The map u − (Dnu)

+
1 xn fulfills the assumptions

of Theorem 3.1 (and therefore also those of Remark 3.2), since it satisfies on the one hand the linear parabolic
system (3.1) and on the other hand also u− (Dnu)+1 xn ≡ 0 on the lateral boundary Γ1. Therefore, the estimate from
Remark 3.2 is applicable and yields

−
∫
Q+
θ

∣∣∣∣u− (Dnu)+θ xn
θ

∣∣∣∣s dz� cθs
(

−
∫
Q+

3/4

∣∣u− (Dnu)+1 xn
∣∣2 dz) s

2

.

In the case s � 2 the assertion now follows from Hölder’s inequality and by enlarging the domain of integration. In
the case 1 � s < 2 we use Lemma 3.3 and obtain

−
∫
Q+
θ

∣∣∣∣u− (Dnu)+θ xn
θ

∣∣∣∣s dz� cθs sup
Q+

3/4

∣∣u− (Dnu)+1 xn
∣∣ s2 (2−s)

(
−
∫
Q+

3/4

∣∣u− (Dnu)+1 xn
∣∣s dz) s

2

� cθs −
∫
Q+

∣∣u− (Dnu)+1 xn
∣∣s dz.
1
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This proves the first estimate in Theorem 3.1. The second one follows by a similar reasoning. Once again using the
Sobolev embedding, Remark 3.2 and the Poincaré inequality from Lemma 2.3 we infer that∣∣(Dnu)+θ ∣∣2 � sup

Q+
1/2

|Dnu|2 � c‖Du‖2
Wk,2(Q+

1/2)
� c −

∫
Q+

1

|u|2 dz� c(n,L/ν) −
∫
Q+

1

|Dnu|2 dz.

This finishes the proof of the corollary. �
3.2. Regularity up to the initial boundary

Here we consider the linear parabolic system (3.1) with Q=Q0
�(z0)= B�(x0)×Λ0

�2 near the initial boundary. In
this situation the excess-decay estimate essentially follows from the one in the interior case since we can extend the
solution u by zero on B�(x0)× (−∞,0), as it is done in [7, Lemma 5.III]. More precisely, we define

U(x, t)=
{
u(x, t) if (x, t) ∈ B�(x0)× [0, �2),

0 if (x, t) ∈ B�(x0)× (−∞,0).
Since u(·,0)= 0 on B�(x0) in the usual L2-sense, the extension U is a solution of the linear parabolic system (3.1) on
Q= B�(x0)× (−∞, �2). Therefore the interior excess-decay estimate from [20, Lemma 4.6] is applicable to U on the
cylinder Q�(z0)⊂ B�(x0)× (−∞, �2). When applying the lemma in our situation there is one difference compared
to [20], namely we are dealing with symmetric cylinders of the type Q0

�(z0)= B�(x0)× (−�2, �2), whereas in [20]

one-sided cylinders of the form B�(x0)× (t0 − �2, t0) are considered. As already mentioned in the lateral boundary
situation this is not a problem since the excess-decay estimate holds true on both types of cylinders. Having the
preceding explanatory notes in mind, the application of [20, Lemma 4.6] in the case � = 0 gives for the original
solution u the following

Lemma 3.5. Suppose that u ∈ L2(Λ0
�2;W 1,2(B�(x0);R

N)) is a weak solution in Q0
�(z0), with z0 = (x0,0) of the

linear parabolic system (3.1) with u(·,0)= 0 on B�(x0) under the assumption (3.2). Then u is smooth up to the initial
boundary D�(z0). Moreover, for any θ ∈ (0,1) and s � 1 there holds the following estimate

−
∫

Q0
θ�(z0)

∣∣∣∣ uθ�
∣∣∣∣s dz� cLiθs −

∫
Q0
�(z0)

∣∣∣∣u�
∣∣∣∣s dz, (3.4)

where cLi = cLi(n,N,L/ν, s).

3.3. Regularity up to the edge

Here we consider the linear parabolic system (3.1) with Q = Q∗
�(z0) = Q0

�(z0) ∩ Q+
� (z0) near the edge

Γ ∩ (Rn × {0}). As in the initial boundary situation we can extend the solution u by zero on B+
� (x0) × (−∞,0)

to obtain the analogue of Corollary 3.4 for the edge-situation. This was also done in [24, Theorem 2.3] to prove that
the statement of Theorem 3.1 still holds in the edge-situation. Since we already prescribed the extension procedure in
the last section we now only state the result.

Lemma 3.6. Suppose that u ∈ L2(Λ0
�2(t0); W 1,2(B+

� (x0),R
N)) is a weak solution in Q∗

�(z0), with z0 = (x0,0) ∈ Γ
of the linear parabolic system (3.1) with u= 0 on Γ 0

� (z0)∪D+
� (z0) under the assumption (3.2). Then u is smooth up

to Γ 0
� (z0)∪D+

� (z0). Moreover, the estimate

−
∫

Q∗ (z0)

∣∣∣∣u− (Dnu)∗z0,θ�
xn

θ�

∣∣∣∣s dz� cLiθs −
∫

Q∗
�(z0)

∣∣∣∣u− (Dnu)∗z0,�
xn

�

∣∣∣∣s dz

θ�
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holds for any θ ∈ (0,1/2) and s � 1, where cLi = cLi(n,L/ν, s) and∣∣(Dnu)∗z0,θ�

∣∣2 � c(n,L/ν) −
∫

Q∗
�(z0)

|Dnu|2 dz.

4. Characterization of regular boundary points

The aim of this chapter is to prove the characterization of regular boundary points stated in Theorem 1.2. Since the
arguments are different for the lateral and the initial-boundary and also for the edge-situation we separately treat the
three cases. We first shall consider points z0 ∈ ∂latΩT lying on the lateral boundary and subsequently, in Sections 4.2
and 4.3 we deal with points z0 ∈Ω0 on the initial boundary, respectively z0 ∈ ∂Ω × {0} on the edge.

4.1. Regular points on the lateral boundary

We will prove the characterization of regular lateral boundary points in the model situation (2.5) onQ+
1 which was

explained in Section 2.1. Therefore, the statement of Theorem 1.2 concerning lateral boundary points is equivalent
with Proposition 4.7.

4.1.1. A-caloric approximation
The main tool in proving partial regularity is the lemma of A-caloric approximation which states that whenever a

map u is approximately a solution of a linear parabolic system with constant coefficients, then there exists a solution h
of this linear system which is in some sense close to u. The following is a version of the A-caloric approximation
lemma for the model situation at the lateral boundary.

Lemma 4.1. Given ε > 0, 0< ν � L and p � 2 there exists a positive function δ = δ(n,p, ν,L, ε) ∈ (0,1] with the
following property: Whenever A is a bilinear form on R

Nn which is strongly elliptic with ellipticity constant ν > 0
and upper bound L, i.e.

ν|w|2 � 〈Aw,w〉 and 〈Aw, w̃〉 � L|w||w̃|
holds whenever w, w̃ ∈ R

Nn and u ∈ Lp(Λ�2(t0);W 1,p(B+
� (x0),R

N)) with u ≡ 0 on the lateral boundary Γ�(z0)

with z0 ∈ Γ and

−
∫

Q+
� (z0)

|Du|2 + γ p−2|Du|p dz� 1,

where 0< γ � 1, is approximately A-caloric in the sense that∣∣∣∣ −
∫

Q+
� (z0)

u · ϕt − 〈ADu,Dϕ〉dz
∣∣∣∣� δ sup

Q+
� (z0)

|Dϕ|, for every ϕ ∈ C∞
0

(
Q+
� (z0);R

N
)
,

then there exists an A-caloric map h ∈Lp(Λ(�/2)2(t0);W 1,p(B+
�/2(x0);R

N)), i.e.∫
Q+
�/2(z0)

h · ϕt − 〈ADh,Dϕ〉dz= 0 for every ϕ ∈C∞
0

(
Q+
�/2(z0);R

N
)
,

with h≡ 0 on Γ�/2(z0) satisfying

−
∫

Q+ (z0)

|Dh|2 + γ p−2|Dh|p dz� 2 · 2n+2
�/2
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and

−
∫

Q+
�/2(z0)

∣∣∣∣u− h
�/2

∣∣∣∣2 + γ p−2
∣∣∣∣u− h
�/2

∣∣∣∣p dz� ε.

Proof. Without loss of generality we can assume that z0 = 0 and �= 1. Otherwise we rescale u toQ+
1 viaW(x, t)≡

�−1u(x0 + �x, t0 + �2t) to obtain the existence of an A-caloric map H on Q+
1/2 with H ≡ 0 on Γ1/2. Rescaling back

via h(z)= �H(x−x0
�
,
t−t0
�2 ) to Q+

�/2(z0) then yields the result.

Were the lemma false, there would exist ε > 0 and sequences (Aj )j∈N of bilinear forms on R
Nn with uniform

ellipticity constant ν > 0 and upper bound L, (vj )j∈N with vj ∈ Lp(Λ1;W 1,p(B+
1 ;R

N)) satisfying vj ≡ 0 on Γ1 and
γj ∈ (0,1] such that

−
∫
Q+

1

|Dvj |2 + γ p−2
j |Dvj |p dz� 1 (4.1)

and ∣∣∣∣−∫
Q+

1

vj · ϕt − 〈AjDvj ,Dϕ〉dz
∣∣∣∣� 1

j
sup
Q+

1

|Dϕ|, for every ϕ ∈ C∞
0

(
Q+

1 ;R
N
)
, (4.2)

but

−
∫
Q+

1/2

4|vj − h|2 + 2pγ p−2
j |vj − h|p dz > ε (4.3)

for all Aj -caloric maps h on Q+
1/2 with h≡ 0 on Γ1/2 and

−
∫
Q+

1/2

|Dh|2 + γ p−2|Dh|p dz� 2 · 2n+2. (4.4)

We let

ṽj = γ
p−2
p

j vj . (4.5)

Then, from (4.1) and Poincaré’s inequality, i.e. Lemma 2.3, we obtain that

−
∫
Q+

1

|vj |2 dz� −
∫
Q+

1

|Dvj |2 dz� 1 and −
∫
Q+

1

|ṽj |p + |Dṽj |p dz� 2. (4.6)

Passing to a subsequence (again labeled with j ), we infer the existence of maps

v ∈ L2(Λ1;W 1,2(B+
1 ;R

N
))

and ṽ ∈Lp(Λ1;W 1,p(B+
1 ;R

N
))
,

of a bilinear form A on R
Nn, and γ ∈ [0,1], such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vj ⇀ v weakly in L2(Q+
1 ;R

N
)
,

Dvj ⇀Dv weakly in L2(Q+
1 ;R

Nn
)
,

ṽj ⇀ ṽ weakly in Lp
(
Q+

1 ;R
N
)
,

Dṽj ⇀Dṽ weakly in Lp
(
Q+

1 ;R
Nn

)
,

Aj →A as bilinear forms on R
Nn,

γ → γ in [0,1].

(4.7)
j
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Moreover, the trace theorem yields v ≡ 0 ≡ ṽ on Γ1. Next, we will identify the weak limit ṽ. To be more precise, we
will show

ṽ = γ p−2
p v, (4.8)

where we define γ
p−2
p = 1 when p = 2 and γ = 0. From (4.7)1, (4.7)2 and (4.7)6 we deduce ṽj = γ (p−2)/p

j vj ⇀

γ (p−2)/pv weakly in L2(Λ1;W 1,2(B+
1 ;R

N)). Since ṽj ⇀ ṽ weakly in Lp(Λ1;W 1,p(B+
1 ;R

N)) by (4.7)3 and (4.7)4,
we conclude (4.8).

Since f 	→ −∫
Q+

1
|f |2 dz is weakly lower semicontinuous with respect to weak convergence in L2 and f 	→

−∫
Q+

1
|f |p dz is weakly lower semicontinuous with respect to weak convergence in Lp we obtain from (4.1) and

(4.8) that

−
∫
Q+

1

|Dv|2 + γ p−2|Dv|p dz� 1.

Our next aim is to show that v is A-caloric on Q+
1 . To this end we observe, for ϕ ∈C∞

0 (Q
+
1 ,R

N), it holds

−
∫
Q+

1

v · ϕt − 〈ADv,Dϕ〉dz= −
∫
Q+

1

(v − vj ) · ϕt −
〈
A(Dv −Dvj ),Dϕ

〉
dz− −

∫
Q+

1

〈
(A−Aj)Dvj ,Dϕ

〉
dz

+ −
∫
Q+

1

vj · ϕt − 〈AjDvj ,Dϕ〉dz.

The first term on the right-hand side vanishes as j → ∞ due to the weak convergence of vj to v in L2(Q+
1 ;R

N)

and Dvj to Dv in L2(Q+
1 ;R

Nn). The same holds for the second term appearing in the right-hand side in view of
the convergence Aj → A and the uniform bound of Dvj in L2(Q+

1 ;R
Nn). The third term vanishes as j → ∞ due

to (4.2), i.e. the fact that vj is approximately Aj -caloric. This proves that v is an A-caloric map on Q+
1 , i.e.∫

Q+
1

v · ϕt − 〈ADv,Dϕ〉dz= 0 for every ϕ ∈C∞
0

(
Q+

1 ;R
N
)
, (4.9)

satisfying v = 0 on the lateral boundary Γ1. From the regularity theory for linear parabolic systems with constant
coefficients developed in Section 3, i.e. from Theorem 3.1, we infer that v is smooth on any smaller half-cylinder, in
particular that v ∈ C∞(Q+

1 ∪ Γ1;R
N).

We next turn our attention to the compactness properties of (vj )j∈N respectively (ṽj )j∈N with respect to L2 re-
spectively Lp convergence on Q+

1 . Since vj is possibly not differentiable with respect to t the usual compactness
argument which is based on an application of Poincaré’s inequality cannot be used at this stage. Instead we apply a
compactness argument of J. Simon in [34]. For that purpose we have to ensure that for s = 2 and s = p,

lim
h↓0

1−h∫
−1

γ s−2
j

∥∥vj (·, t + h)− vj (·, t)∥∥sLs(B+
1 )
dt = 0 (4.10)

uniformly with respect to j . To this end we estimate the first term appearing on the left-hand side of (4.2) by the
remaining terms, using Hölder’s inequality, (4.1), s � 2 and the fact that γj � 1,∣∣∣∣γ s−2

s

j −
∫
Q+
vj · ϕt dz

∣∣∣∣� |Aj | −
∫
Q+
γ
s−2
s

j |Dvj ||Dϕ|dz+ 1

j
sup
t∈Λ1

∥∥Dϕ(·, t)∥∥
L∞(B+

1 )
1 1
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� |Aj |
(

−
∫
Q+

1

γ s−2
j |Dvj |s dz

) 1
s
(

−
∫
Q+

1

|Dϕ|s′dz
) 1
s′ + 1

j
sup
t∈Λ1

∥∥Dϕ(·, t)∥∥
L∞(B+

1 )

� |Aj |
(∫
Λ1

‖Dϕ‖s′
Ls

′
(B+

1 )
dt

) 1
s′ + 1

j
sup
t∈Λ1

∥∥Dϕ(·, t)∥∥
L∞(B+

1 )
,

where ϕ ∈ C∞
0 (Q

+
1 ;R

N) and s′ = s−1
s

is the Hölder conjugate to s. Given −1 < τ1 < τ2 < 1 and θ > 0 with θ �
min{1 + τ1,1 − τ2} we define

ζθ (t)≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, for − 1 � t � τ1 − θ,
1
θ
(t − τ1 + θ), for τ1 − θ � t � τ1,

1, for τ1 � t � τ2,

− 1
θ
(t − τ2 − θ), for τ2 � t � τ2 + θ,

0, for τ2 + θ � t � 1.

Then, in the preceding estimate we choose the test-function ϕ(x, t)≡ψ(x)ζθ (t) with ψ ∈C∞
0 (B

+
1 ;R

N) and obtain

∣∣∣∣∣γ s−2
s

j −
∫
B+

1

1

θ

( τ1∫
τ1−θ

vj (x, t) dt −
τ2+θ∫
τ2

vj (x, t) dt

)
·ψ(x)dx

∣∣∣∣∣
� |Aj |

(∫
Λ1

ζθ (t)
s′ dt

) 1
s′ ‖Dψ‖

Ls
′
(B+

1 )
+ 1

j
‖Dψ‖L∞(B+

1 )
sup
t∈Λ1

ζθ (t)

� |Aj |(τ2 − τ1 + 2θ)
1
s′ ‖Dψ‖

Ls
′
(B+

1 )
+ 1

j
‖Dψ‖L∞(B+

1 )
.

Passing to the limit θ ↓ 0 yields∣∣∣∣γ s−2
s

j

∫
B+

1

(
vj (·, τ2)− vj (·, τ1)

) ·ψ dx
∣∣∣∣� |Aj |(τ2 − τ1)

1
s′ ‖Dψ‖

Ls
′ + 1

j
‖Dψ‖L∞ (4.11)

for all ψ ∈ C∞
0 (B

+
1 ;R

N) and for a.e. −1< τ1 < τ2 < 1. This estimate would already imply (4.10), if on the right-hand
side we would have ‖Dψ‖

Ls
′ instead of ‖Dψ‖L∞ . In order to derive (4.10) from the weaker estimate (4.11) we use

an interpolation argument. The Sobolev embedding W�,s′
0 (B+

1 ) ↪→W 1,∞(B+
1 ) for � > n

s′ + 1 yields ‖Dψ‖L∞(B+
1 )

�
c(n, �,p)‖ψ‖

W
�,s′
0 (B+

1 )
, and therefore (4.11) implies∣∣∣∣γ s−2

s

j

∫
B+

1

(
vj (·, τ2)− vj (·, τ1)

) ·ψ dx
∣∣∣∣� c̃(|Aj |(τ2 − τ1)

1
s′ + 1

j

)
‖ψ‖

W
�,s′
0 (B+

1 )

for a.e τ1, τ2 ∈ Λ1 with a constant c̃ = c̃(n, �,p). Since C∞
0 (B

+
1 ;R

N) is dense in W�,s′
0 (B+

1 ;R
N), the preceding

estimate also holds for all ψ ∈W�,s′
0 (B+

1 ;R
N) and implies an estimate of the W−�,s -norm of vj (·, τ2)− vj (·, τ1) of

the form

γ
s−2
s

j

∥∥vj (·, τ2)− vj (·, τ1)
∥∥
W−�,s (B+

1 ,R
N)

= sup
‖ψ‖

W
�,s′
0 (B

+
1 ,R

N )
�1

∣∣∣∣γ s−2
s

j

∫
B+

1

(
vj (·, τ2)− vj (·, τ1)

) ·ψ dx
∣∣∣∣

� c̃
(

|Aj |(τ2 − τ1)
1
s′ + 1

)
.

j
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Having arrived at this stage we interpolate between the spaces W 1,s and W−�,s . For μ> 0 we obtain

γ s−2
j

1−h∫
−1

∥∥vj (·, t + h)− vj (·, t)∥∥sLs(B+
1 )
dt

� μγ s−2
j

1−h∫
−1

∥∥vj (·, t + h)− vj (·, t)∥∥sW 1,s (B+
1 )
dt + c

(
1

μ

)
γ s−2
j

1−h∫
−1

∥∥vj (·, t + h)− vj (·, t)∥∥sW−�,s (B+
1 )
dt

� 2s−1μ

1∫
−1

γ s−2
j

∥∥vj (·, t)∥∥sW 1,s (B+
1 )
dt + c

(
1

μ

)
c̃s
(

|Aj |h
1
s′ + 1

j

)s

� 2s−1
[
μ+ c

(
1

μ

)
c̃s
(

|Aj |shs−1 + 1

j s

)]
.

Here we have also used (4.6). Now we show that the integral appearing on the left-hand side of the preceding in-
equality converges uniformly (with respect to j ) to zero as h ↓ 0. From the convergence of (Aj )j∈N we infer a bound
|Aj | � a <∞ for all j ∈ N. Now, given θ > 0 we first choose μ = θ

3·2s−1 and then j0 ∈ N large enough to satisfy
2s−1c(μ)c̃s

j s
< θ

3 for all j � j0. Furthermore, we choose h1 > 0 such that 2s−1c(μ)c̃sashs−1 < θ
3 for all 0 < h < h1.

Finally, we choose h2 > 0 in such a way that

1−h∫
−1

γ s−2
j

∥∥vj (·, t + h)− vj (·, t)∥∥sLs(B+
1 )
dt < θ

holds for all 0< h < h2, j = 1, . . . , j0 − 1. With these choices we infer for all j ∈ N and 0< h < h0 ≡ min{h1, h2}
that there holds

1−h∫
−1

γ s−2
j

∥∥vj (·, t + h)− vj (·, t)∥∥sLs(B+
1 )
dt < θ,

yielding (4.10). Since we also know that the sequence (γ
(s−2)/s
j vj )j∈N is uniformly bounded in

L1
loc(Λ1;W 1,p(B+

1 ,R
N)), Theorem 3 from [34] applied to X = W 1,p(B+

1 ;R
N), B = Ls(B+

1 ;R
N) and F =

(γ
(s−2)/s
j vj )j∈N ensures the existence of a subsequence (γ (s−2)/s

j vj )j∈N (also labeled with j ), converging strongly in

Ls(B+
1 ;R

N) for s = 2 and s = p, i.e.{
vj → v strongly in L2(Q+

1 ;R
N
)
,

ṽj → ṽ strongly in Lp
(
Q+

1 ;R
N
)
,

(4.12)

where we have recalled the definition of ṽj , i.e. ṽj = γ (p−2)/p
j vj .

From (4.9) we already know that v is an A-caloric map which by Theorem 3.1 is smooth on Q+
1 ∪ Γ1. In the fol-

lowing we will derive the contradiction by constructing appropriate Aj -caloric maps from v. This is done as follows:
by wj ∈ L2(Λ(3/4)2;W 1,2(B+

3/4,R
N)) we denote the unique solution of the following Cauchy–Dirichlet problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Q+

3/4

wj · ϕt − 〈AjDwj ,Dϕ〉dz= 0 for every ϕ ∈C∞
0

(
Q+

3/4,R
N
)
,

wj = v on ∂PQ
+
3/4.

Since wj is a solution of a linear parabolic system with wj = v = 0 on Γ3/4 we infer from Corollary 3.4 that wj ∈
C∞(Q+

3/4 ∪ Γ3/4,R
N). Our next aim is to prove that

Dwj →Dv strongly in L2(Q+ ,RNn
)
. (4.13)
3/4
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For this we shall exploit that the difference wj − v is a weak solution of the following inhomogeneous parabolic
system∫

Q+
3/4

(wj − v) · ϕt −
〈
Aj(Dwj −Dv),Dϕ〉dz=

∫
Q+

3/4

〈
(Aj −A)Dv,Dϕ〉dz,

for all ϕ ∈ C∞
0 (Q

+
3/4,R

N). Since wj and v agree on the parabolic boundary of Q+
3/4 we can formally test the last

relation by ϕ =wj − v. Note that this procedure can be made rigorous by the use of Steklov averages. Exploiting the
ellipticity of Aj we infer from the preceding equality in a standard way that

ν

∫
Q+

3/4

|Dwj −Dv|2 dz� |Aj −A|
∫
Q+

3/4

|Dv||Dwj −Dv|dz

� |Aj −A|
( ∫
Q+

3/4

|Dv|2 dz
) 1

2
( ∫
Q+

3/4

|Dwj −Dv|2 dz
) 1

2

from which (4.13) immediately follows since Aj → A. Since wj and v agree on the parabolic boundary of Q+
3/4 we

can apply Poincaré’s inequality slicewise to find that also

wj → v strongly in L2(Q+
3/4,R

N
)
. (4.14)

Next we show that

Dwj →Dv and wj → v strongly in Lp
(
Q+

1/2

)
. (4.15)

This is a consequence of the a priori estimates up to the lateral boundary for linear parabolic systems from Remark 3.2
which gives together with the Sobolev embedding (with k ∈ N such that k > n+1

2 )

sup
Q+

1/2

(|wj | + |Dwj |
)
� c

(‖wj‖Wk,2(Q+
1/2)

+ ‖Dwj‖Wk,2(Q+
1/2)

)
� c‖wj‖L2(Q+

3/4)

� c
(‖v‖L2(Q+

3/4)
, n,N,p, ν,L

)
.

Now, (4.15) is a consequence of (4.13) and (4.14), interpolating Lp between L2 and Lq for some q > p.
At this stage it is worth mentioning that the convergence D�wj → D�v indeed is uniform for any � ∈ N0. This

could be inferred by the use of a finer estimate for the non-homogeneous linear parabolic system for wj − v from
above. More precisely, by an L∞ estimate for non-homogeneous linear parabolic systems (instead of the one for
homogeneous systems form Remark 3.2) we could estimate the supremum of |D�wj − D�v| on Q+

1/2 in terms of
‖wj − v‖L2(Q+

3/4)
and the right-hand side both vanishing in the limit j → ∞. But, since we do need the uniform

convergence in the following we shall not accomplish the argument in detail here.
We now have

−
∫
Q+

1/2

|vj −wj |2 dz� 2

[
−
∫
Q+

1/2

|vj − v|2 dz+ −
∫
Q+

1/2

|v −wj |2 dz
]

→ 0.

Moreover, due to the definition of ṽj , (4.8), the strong convergence ṽj → ṽ from (4.12) and the convergence

γ
p−2

2 wj → γ
p−2

2 v in Lp(Q+ ,RN) we obtain
j 1/2
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−
∫
Q+

1/2

γ
p−2
j |vj −wj |p dz= −

∫
Q+

1/2

∣∣ṽj − γ
p−2

2
j wj

∣∣p dz
� 2p−1

[
−
∫
Q+

1/2

|ṽj − ṽ|p dz+ −
∫
Q+

1/2

∣∣γ p−2
2

j v − γ
p−2

2
j wj

∣∣p dz]→ 0

in the limit j → ∞, which in combination yields

lim
j→∞ −

∫
Q+

1/2

4|vj −wj |2 + 2pγ p−2
j |vj −wj |p dz= 0. (4.16)

Finally, we have

lim
j→∞ −

∫
Q+

1/2

|Dwj |2 + γ p−2
j |Dwj |p dz= −

∫
Q+

1/2

|Dv|2 + γ p−2|Dv|p dz

� 2n+2 −
∫
Q+

1

|Dv|2 + γ p−2|Dv|p dz

� 2n+2,

and therefore for j � 1 large enough there holds

−
∫
Q+

1/2

|Dwj |2 + γ p−2
j |Dwj |p dz� 2 · 2n+2.

Hence, for j large enough wj is an Aj -caloric map on Q+
1/2 with wj = 0 on the lateral boundary Γ1/2 satisfying

(4.4) and (4.16). Since (4.16) contradicts (4.3) for large j , we have constructed the desired contradiction, proving the
assertion of the lemma. �
4.1.2. Caccioppoli inequality

As usual we need a suitable Caccioppoli inequality. In the lateral boundary situation it is convenient to approximate
u by a linear map which is zero on Γ1 and therefore of the form ξxn with ξ ∈ R

N .

Lemma 4.2. Suppose that u ∈ Lp(Λ1;W 1,p(B+
1 ;R

N)) is a weak solution of the non-linear parabolic system (2.5)
with u= 0 on the lateral boundary Γ1, where the structure conditions (1.4)–(1.6) are in force. Moreover let M > 0.
Then, for any ξ ∈ R

N with |ξ | �M , z0 ∈ Γ1 and � ∈ (0,1) such that Q�(z0)⊂Q1 there holds

−
∫

Q+
�/2(z0)

|Du− ξ ⊗ en|2 + |Du− ξ ⊗ en|p dz� cCac

(
−
∫

Q+
� (z0)

∣∣∣∣u− ξxn
�

∣∣∣∣2 +
∣∣∣∣u− ξxn

�

∣∣∣∣p dz+ �2β
)
,

where cCac = (1 + ‖gt‖2
L2,2−2β(Q+

1 )
)c(n,p,L/ν,M,H(M),κM+1).

Proof. The following calculations will be somehow formal; they can be made rigorous using a mollifying procedure
in time, e.g. via Steklov averages. Since this is a standard procedure and for the sake of brevity we will proceed
formally. Without loss of generality we can assume that z0 = 0. We choose two cut-off functions η ∈ C∞

0 (B�) and
ζ ∈ C1

0(Λ�2) such that η≡ 1 on B�/2, 0 � η� 1, |Dη| � c/�, ζ ≡ 1 on Λ(�/2)2 , 0 � ζ � 1 and |ζt | � 2/�2. Choosing

the test-function ϕ(x, t)= ηp(x)ζ 2(t)(u(x, t)− ξxn) in (2.5) we obtain
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∫
Q+
�

〈
a(z,u,Du), (Du− X)

〉
ηpζ 2 dz

= −p
∫
Q+
�

〈
a(z,u,Du), ηp−1Dη⊗ (u− ξxn)

〉
ζ 2 dz+

∫
Q+
�

(u · ϕt − gt · ϕ)dz,

where we have abbreviated X =D(ξxn)= ξ ⊗ en. Moreover, we have∫
Q+
�

〈
a(z,u,X),Du− X

〉
ηpζ 2 dz=

∫
Q+
�

〈
a(z,u,X),Dϕ

〉
dz− p

∫
Q+
�

〈
a(z,u,X), ηp−1Dη⊗ (u− ξxn)

〉
ζ 2 dz

and
∫
Q+
�
〈a((0, t),0,X),Dϕ〉dz= 0 for all t ∈Λ�2 . Adding the preceding identities and using also that∫

Q+
�

ξxn∂tϕ dz= 0,

we deduce∫
Q+
�

〈
a(z,u,Du)− a(z,u,X),Du− X

〉
ηpζ 2 dz

= −p
∫
Q+
�

〈
a(z,u,Du)− a(z,u,X), ηp−1Dη(u− ξxn)

〉
ζ 2 dz

−
∫
Q+
�

〈
a
(
(x, t), u,X

)− a((0, t),0,X),Dϕ〉d(x, t)+ ∫
Q+
�

gt · ϕ dz+
∫
Q+
�

(u− ξxn)∂tϕ dz

=: I + II + III + IV, (4.17)

with the obvious meaning of I–IV and z= (x, t). In the sequel we shall derive estimates for I–IV . Thereby we take
μ ∈ (0,1].

Estimate for I : We first rewrite I = I1 + I2 + I3 with

I1 := −p
∫
Q+
�

〈
a(z,u,Du)− a(z, ξxn,Du), ηp−1Dη⊗ (u− ξxn)

〉
ζ 2 dz,

I2 := −p
∫
Q+
�

〈
a(z, ξxn,Du)− a(z, ξxn,X), ηp−1Dη⊗ (u− ξxn)

〉
ζ 2 dz,

I3 := −p
∫
Q+
�

〈
a(z, ξxn,X)− a(z,u, ξ ⊗ en), ηp−1Dη⊗ (u− ξxn)

〉
ζ 2 dz.

Estimate for I1: To estimate I1 we use (1.6), |X| �M and |Dη| � c/� to obtain

|I1| � cL
∫
Q+
�

θ
(|u|+|ξxn|, |u−ξxn|

)(
1+Mp−1+|Du−X|p−1)ηp−1

∣∣∣∣u− ξxn
�

∣∣∣∣ζ 2 dz

=: I1,1 + I1,2,
where c = c(p) and I1,1 respectively I1,2 is the integral obtained by replacing |Du− X|p−1 respectively 1 +Mp−1

by zero. To estimate I1,1 we use (2.2), |ξxn| � |ξ | �M on B� (note that �� 1 by assumption) and Young’s inequality
to obtain
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I1,1 � cL
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣1+β
�βηp−1ζ 2 dz� cL

( ∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz+ � 2β
1−β

∣∣Q+
�

∣∣),
where c= c(p)K(2M+1)(1+Mp−1)= c(p)H(M). The estimate for I1,2 is achieved by using θ � 1 instead of (2.2)
and Young’s inequality: for c= c(p) we have

I1,2 � cL
∫
Q+
�

|Du− X|p−1
∣∣∣∣u− ξxn

�

∣∣∣∣ηp−1ζ 2 dz

� μ
∫
Q+
�

|Du− X|pηpζ 2 dz+ cLpμ1−p
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣p dz.
Estimate for I2: Here we decompose Q+

� = S1 ∪ S2 where

S1 ≡ {
z ∈Q+

� :
∣∣Du(z)− X

∣∣� 1
}
, S2 ≡ {

z ∈Q+
� :

∣∣Du(z)− X
∣∣> 1

}
and rewrite I2 as follows:

I2 � p
∫
Q+
�

∣∣a(z, ξxn,Du)− a(z, ξxn,X)∣∣ηp−1|Dη||u− ξxn|ζ 2 dz

= p
∫
S1

(. . .) dz+ p
∫
S2

(. . .) dz

=: I2,1 + I2,2.
For the estimate of I2,1 we use (1.5), Young’s inequality, |ξxn| �M for x ∈ B+

� and |X+ s(Du(z)− X)| �M + 1 for
z ∈ S1 and 0 � s � 1 in order to obtain

I2,1 � p
∫
S1

∣∣∣∣∣
1∫

0

∂wa
(
z, ξxn,X + s(Du− X)

)
(Du− X) ds

∣∣∣∣∣ηp−1|Dη||u− ξxn|ζ 2 dz

� cLκM+1

∫
S1

|Du− X|ηp−1
∣∣∣∣u− ξxn

�

∣∣∣∣ζ 2 dz

� μ
∫
Q+
�

|Du− X|2ηpζ 2 dz+ c(p)μ−1L2κ2
M+1

∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz.
To derive the estimate for I2,2 we use the growth condition (1.3) instead of (1.5), the assumption |ξ | �M , the fact that
|Du− X|> 1 on S2 and Young’s inequality; for a constant c= c(p)(1 +Mp−1)p we have

I2,2 � pL
∫
S2

(
2 +Mp−1 + |Du|p−1)ηp−1

∣∣∣∣u− ξxn
�

∣∣∣∣ζ 2 dz

� c(p)L
(
1 +Mp−1)∫

S2

|Du− X|p−1ηp−1
∣∣∣∣u− ξxn

�

∣∣∣∣ζ 2 dz

� μ
∫
Q+
�

|Du− X|pηpζ 2 dz+ cμ1−pL
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣p dz.
Estimate for I3: Here we use (2.3) (note that |ξxn| �M and |X| �M by assumption) and Young’s inequality, to

get, for a constant c≡ c(p)H(M),
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I3 � pL
∫
Q+
�

θ
(|u| + |ξxn|, |u− ξxn|

)(
1 + |X|p−1)ηp−1|Dη||u− ξxn|ζ 2 dz

� cL
( ∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz+ � 2β
1−β

∣∣Q+
�

∣∣).
Combining the previous estimates we arrive at the final estimate for I

I � 2μ
∫
Q+
�

(|Du− X|2 + |Du− X|p)ηpζ 2 dz

+ c(L+μ−1L2 +μ1−pLp
)( ∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 +
∣∣∣∣u− ξxn

�

∣∣∣∣p dz+ � 2β
1−β

∣∣Q+
�

∣∣),
where c depends on p,H(M) and κM+1.

Estimate for II: Using the assumptions (1.6), (2.3) (note that |ξxn| �M for x ∈ B+
� and |X| �M), |Dη| � c/�,

Young’s inequality and �� 1 we deduce

|II| � L(1 +Mp−1) ∫
Q+
�

θ
(|u|, �+ |u|)|Dϕ|dz

� cLK(1)
∫
Q+
�

(|u− ξxn|β + (
1+Mβ

)
�β

)(|Du− X|ηp +
∣∣∣∣u− ξxn

�

∣∣∣∣ηp−1
)
ζ 2 dz

� μ
∫
Q+
�

|Du− X|2ηpζ 2 dz+ c(L+μ−1L2)( ∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz+ �2β
∣∣Q+

�

∣∣),
where the constant c depends on p,M,K(1).

Estimate for III: Using Young’s inequality and taking also the assumption gt ∈ L2,2−2β(Q+
1 ;R

N) into account we
obtain

III �
∫
Q+
�

|gt ||u− ξxn|dz�
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz+ �2
∫
Q+
�

|gt |2 dz

�
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz+ c(n)�2β
∣∣Q+

�

∣∣�2−2β−(n+2)
∫
Q+
�

|gt |2 dz

�
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣p dz+ c(n)‖gt‖2
L2,2−2β(Q+

1 )
�2β

∣∣Q+
�

∣∣.
Estimate for IV: The integral IV can be rewritten as follows:

IV =
∫
Q+
�

|u− ξxn|2ηp∂t ζ 2 dz+ 1

2

∫
Q+
�

∂t |u− ξxn|2ηpζ 2 dz

= 1

2

∫
Q+
�

|u− ξxn|2ηp∂t ζ 2 dz� 2L
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 dz,
where we have used that |∂t ζ 2| = 2ζ |ζt | � 4/�2 and L� 1 in the last line.
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Lower bound for the left-hand side of (4.17): To estimate the left-hand side of (4.17) from below we use the
monotonicity (2.1) of the vector field a. We find

t∫
−�2

∫
B+
�

〈
a(z,u,Du)− a(z,u,X), (Du− X)

〉
ηpζ 2 dx dτ � ν

c(p)

t∫
−�2

∫
B+
�

(|Du− X|2 + |Du− X|p)ηpζ 2 dx dτ.

Using the preceding estimates obtained for I–IV in (4.17) we arrive at(
ν

c(p)
− 3μ

) ∫
Q+
�

(|Du− X|2 + |Du− X|p)ηpζ 2 dz

� c
(
L+ L2

μ
+ Lp

μp−1

)( ∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 +
∣∣∣∣u− ξxn

�

∣∣∣∣p dz+ �2β
∣∣Q+

�

∣∣),
where c = (1+‖gt‖2

L2,2−2β(Q+
1 )
)c(n,p,M,H(M),κM+1). Choosing μ as usual small enough (i.e. μ = ν

6c(p) ) and

recalling the choices of ζ and η respectively, the preceding estimate implies∫
Q+
�/2

(|Du− X|2 + |Du− X|p)dz� c
( ∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣2 +
∣∣∣∣u− ξxn

�

∣∣∣∣p dz+ �2β
∣∣Q+

�

∣∣),
where c= (1+‖gt‖2

L2,2−2β(Q+
1 )
)c(n,p,L/ν,M,H(M),κM+1). Finally, taking mean-values and enlarging the constant

by a factor 2n+2 yields the complete assertion. �
4.1.3. Linearization

Here we prove that every weak solution of the non-linear parabolic system (2.5) with u= 0 on the lateral boundary
Γ1 is an approximate solution of constant coefficient parabolic system, in a certain sense. This property is needed to
apply the A-caloric approximation lemma later. For s � 1, ξ ∈ R

N , z0 ∈ Γ1 and a parabolic cylinderQ�(z0)⊂Q1 we
define the excess functional by

φ+
s (z0, �, ξ) := −

∫
Q+
� (z0)

|Du− ξ ⊗ en|s dz, φ+
s = φ+

s (z0, �, ξ).

Lemma 4.3. Suppose that u ∈ Lp(Λ1;W 1,p(B+
1 ;R

N)) is a weak solution of (2.5) satisfying u = 0 on the lateral
boundary Γ1, where the structure conditions (1.4)–(1.6) are in force and let M > 0. Then we have∣∣∣∣ −

∫
Q+
� (z0)

(u− ξxn) · ϕt −
〈
∂wa(z0,0, ξ ⊗ en)(Du− ξ ⊗ en),Dϕ

〉
dz

∣∣∣∣
� cEu

[
ωM+1

(
φ+
p + �p)√φ+

2 + φ+
p + �β] sup

Q+
� (z0)

|Dϕ|,

for any ϕ ∈ C∞
0 (Q

+
� (z0);R

N), ξ ∈ R
N with |ξ | �M , z0 ∈ Γ1 and Q�(z0) ⊂Q1. The constant cEu is of the form

cEu = L(1 + ‖gt‖L2,2−2β(Q+
1 )
)c(n,p,M,K(1), κM+1).

Proof. Without loss of generality we may assume supQ�(z0)
|Dϕ| � 1 and z0 = 0. Again we abbreviate X =D(ξxn)=

ξ ⊗ en. Using

−
∫
Q+
ξxn · ϕt dz= 0 and −

∫
Q+

〈
a
(
(0, t),0,X

)
,Dϕ

〉
dz= 0,
� �
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we obtain from (2.5)

−
∫
Q+
�

(
(u− ξxn) · ϕt −

〈
∂wa(0,0,X)(Du− X),Dϕ

〉)
dz

= −
∫
Q+
�

〈
a
(
(0, t),0,Du

)− a((0, t),0,X)− ∂wa(0,0,X)(Du− X),Dϕ
〉
dz

+ −
∫
Q+
�

〈
a
(
(x, t), u,Du

)− a((0, t),0,Du),Dϕ〉dz+ −
∫
Q+
�

gt · ϕ dz

=: I + II + III, (4.18)

with the obvious meaning of I–III. In the following we will derive estimates for I–III.

Estimate for I : First, we decompose Q+
� into

S1 ≡ {
z ∈Q+

� :
∣∣Du(z)− X

∣∣� 1
}

and S2 ≡ {
z ∈Q+

� :
∣∣Du(z)− X

∣∣> 1
}

and rewrite I as follows

I = 1

|Q+
� |

∫
S1

(· · ·) dz+ 1

|Q+
� |

∫
S2

(· · ·) dz=: I1 + I2.

For the integrand of I1 we have∣∣a((0, t),0,Du)− a((0, t),0,X)− ∂wa(0,0,X)(Du− X)
∣∣

�
1∫

0

∣∣(∂wa((0, t),0,X + s(Du− X)
)− ∂wa(0,0,X)

) · (Du− X)
∣∣

� 2LκM+1ωM+1
(
�p + |Du− X|p)|Du− X|.

Here we have used (2.4), the fact that |X + s(Du(z)− X)| �M + 1 for z ∈ S1, 0 � s � 1 and |X| �M . Therefore,
using Hölder’s inequality and Jensen’s inequality and taking into account that s 	→ ω

p

M+1(s) is concave and p � 2 we
obtain

|I1| � 2LκM+1

|Q+
� |

∫
S1

ωM+1
(
�p + |Du− X|p)|Du− X|dz

� 2LκM+1

(
−
∫
Q+
�

ω
p

M+1

(
�p + |Du− X|p)dz) 1

p
(

−
∫
Q+
�

|Du− X| p
p−1 dz

) p
p−1

� 2LκM+1ωM+1
(
�p + φ+

p

)√
φ+

2 .

The integrand of I2 is estimated by the use of (1.3) and (1.5), noting once again that |X| � M , as well as
|Du(z)− X|> 1 for z ∈ S2 to obtain∣∣a((0, t),0,Du)− a((0, t),0,X)− ∂wa(0,0,X)(Du− X)

∣∣
� L

(
1 + |Du|p−1)+L(1 + |X|p−1)+LκM+1|Du− X|

� c(p)L
(
1 + κM+1 +Mp−1)|Du− X|p,

which directly implies

|I2| � c(p)L
(
1 + κM+1 +Mp−1)φ+

p .
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Combining this with the estimate for I1 we find

|I | � cL
(
ωM+1

(
�p + φ+

p

)√
φ+

2 + φ+
p

)
,

where c= c(p)(1 + κM+1 +Mp−1).

Estimate for II: To estimate II we use (1.6), (2.2) with u0 = 0 and |ξxn| � �M on B+
� and |X| �M in order to

obtain

|II| � L −
∫
Q+
�

θ
(|u|, �+ |u|)(1 + |Du|p−1)dz

� LK(1) −
∫
Q+
�

(|u|β + �β)(1 + |Du|p−1)dz
� LK(1)�β −

∫
Q+
�

(∣∣∣∣u− ξxn
�

∣∣∣∣β +Mβ + 1

)(
1 +Mp−1 + |Du− X|p−1)dz

� c�β −
∫
Q+
�

(∣∣∣∣u− ξxn
�

∣∣∣∣β +
∣∣∣∣u− ξxn

�

∣∣∣∣β |Du− X|p−1 + |Du− X|p−1
)
dz+ c�β

=: c(II1 + II2 + II3)+ c�β
with the obvious meaning of II1–II3 and c= Lc(p,M,K(1)). We now in turn estimate these terms. For the estimate
of II1 we use Young’s inequality, the fact �� 1 and the Poincaré inequality from Lemma 2.3. This leads us to

|II1| � −
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣p dz+ � pβ
p−β � −

∫
Q+
�

|Dnu− ξ |p dz+ �β � φ+
p + �β.

To get an estimate for II2 we use Hölder’s inequality, Poincaré’s inequality from Lemma 2.3, Young’s inequality and
�� 1 to infer

|II2| � �β
(
φ+
p

)1− 1
p

(
−
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣βp dz) 1
p

� �β
(
φ+
p

)1− 1
p

(
−
∫
Q+
�

∣∣∣∣u− ξxn
�

∣∣∣∣p dz)
β
p

� �β
(
φ+
p

)1− 1
p

(
−
∫
Q+
�

|Dnu− ξ |p dz
) β
p

� �β
(
φ+
p

)1− 1−β
p � φ+

p + � pβ
1−β � φ+

p + �β.

Finally, we estimate II3 with Young’s inequality and recall that �� 1 to deduce

|II3| � −
∫
Q+
�

(|Du− X|p + �pβ)dz� φ+
p + �β.

Estimate for III: Since |Dϕ| � 1 on Q+
� and ϕ ∈ C∞

0 (Q
+
� ;R

N), we have |ϕ(z)| � � for z ∈ Q+
� and therefore

obtain

|III| � −
∫
Q+
�

|gt ||ϕ|dz� � −
∫
Q+
�

|gt |dz� c(n)�β
(
�2−2β−(n+2)

∫
Q+
�

|gt |2 dz
) 1

2

� c(n)�β‖gt‖L2,2−2β(Q+
1 )
.

Now the desired result follows by inserting the estimates for I–III into (4.18). �
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4.1.4. A decay estimate at the lateral boundary
In Lemma 4.5 we will derive an excess-decay estimate valid for boundary points z0 ∈ Γ1, which is proved in

three steps. In the first step we will use the A-caloric approximation lemma to show that – under certain smallness
assumptions – the excess Ẽlat of u fulfills a suitable growth estimate when we enlarge the half-cylinder by a constant
factor. Afterwards we iterate this excess estimate by showing that the smallness assumptions are also fulfilled on the
smaller half-cylinder (under the condition that they are fulfilled on the larger one). From this we finally conclude the
excess-decay estimate for Du, in those points z0, where the smallness assumptions are fulfilled.

Throughout this section we shall consider a weak solution u ∈ Lp(Λ1;W 1,p(B+
1 ;R

N)) of the non-linear parabolic
system (2.5) satisfying u = 0 on the lateral boundary Γ1, where the structure conditions (1.4)–(1.6) are in force.
Moreover, by

ξz0,� = n+ 2

�2
−
∫

Q+
� (z0)

uxn dz, (4.19)

with z0 ∈ Γ1 we denote the vector minimizing the mapping ξ 	→ −∫
Q+
� (z0)

|u− ξxn|2 dz (see Lemma 2.2). For points

lying near the lateral boundary we shall use the following excess functional. For ξ ∈ R
N , z0 ∈ Γ1 ∪Q+

1 ,Q+
� (z0)⊂Q+

1
and s = 2, respectively s = p, we define

ψ+
s ≡ψ+

s (z0, �; ξ) := −
∫

Q+
� (z0)

∣∣∣∣u− ξxn
�

∣∣∣∣s dz,
as well as

Elat ≡Elat(z0, �; ξ) :=ψ+
2 (z0, �; ξ)+ψ+

p (z0, �; ξ),
and finally

Ẽlat ≡ Ẽlat(z0, �; ξ) :=Elat(z0, �; ξ)+ �2β.

Then we have the following excess-decay estimate at the lateral boundary:

Lemma 4.4. Given M > 0 and α ∈ (β,1), there exist ϑ ∈ (0, 1
4 ) and δ ∈ (0,1] and c1 � 1, depending on n, N , p, ν,

L, M , H(M), κM+1, α, β and ‖gt‖L2,2−2β(Q+
1 )

, such that if

ω2
M+1

(
Ẽlat(z0, �; ξ�)

)+ Ẽlat(z0, �; ξ�)� 1

2
δ2, (4.20)

2c1

√
Elat(z0, �; ξ�)+ δ−2�2β � 1 (4.21)

and

|ξ�| �M, (4.22)

on Q+
� (z0) with z0 ∈ Γ1 and Q+

� (z0)⊂Q+
1 . Then with, c2 ≡ 1 + δ−2, there holds

Ẽlat(z0, ϑ�, ξϑ�)� ϑ2αẼlat(z0, �, ξ�)+ c2�
2β.

Proof. Without loss of generality we can assume that z0 = 0. We consider ξ ∈ R
N satisfying |ξ | �M and abbreviate

X ≡D(ξxn)= ξ ⊗ en. From Caccioppoli’s inequality Lemma 4.2 we infer

φ+
2 (0, �/2, ξ)+ φ+

p (0, �/2, ξ)� cCac
(
ψ+

2 (0, �, ξ)+ψ+
p (0, �, ξ)+ �2β)= cCacẼlat(0, �, ξ), (4.23)

where cCac = cCac(n,p,L/ν,M,H(M),κM+1,‖gt‖L2,2−2β(Q+
1 )
)� 1. We now apply Lemma 4.3 to the map v = u−

ξxn. Note that this is possible since |ξ | �M . Using also the fact that ωM+1(cs) � cωM+1(s) for c � 1 (since s 	→
ωM+1(s) is concave and ωM+1(0)= 0) we obtain
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∣∣∣∣ −
∫
Q+
�/2

v · ϕt −
〈
∂wa(0,0,X)Dv,Dϕ

〉
dz

∣∣∣∣� cEu(ωM+1
(
�p + φ+

p

)√
φ+

2 + φ+
p + �β

)
sup
Q+
�/2

|Dϕ|

� c1

(
ωM+1(Ẽlat)

√
Ẽlat + Ẽlat + �β

)
sup
Q+
�/2

|Dϕ|,

for all ϕ ∈ C∞
0 (Q

+
�/2;R

N), where the constant c1 is given by cEucCac. Here we have also used � � 1 and 2β � p in

order to have �p � �2β . Now, we define

〈Aw, w̃〉 ≡ 〈
∂wa(0,0,X)w, w̃

〉
,

whenever w, w̃ ∈ R
Nn. From (1.4) and (1.5) and the assumption |ξ | �M we find that

〈Aw, w̃〉 � LκM+1|w||w̃|, 〈Aw,w〉 � ν|w|2 ∀w, w̃ ∈ R
Nn,

i.e. A fulfills the hypotheses of Lemma 4.1 with ellipticity constant ν and upper bound LκM+1. For given ε > 0
(which will be chosen later) we therefore determine δ = δ(n,N,p, ν,LκM+1, ε) ∈ (0,1], accordingly to Lemma 4.1.
Furthermore, we define

w := γ−1v = γ−1(u− ξxn), where γ := 2c1

√
Elat + δ−2�2β.

Then, for the map w we have (note that Ẽlat =Elat + �2β )∣∣∣∣ −
∫
Q+
�/2

w · ϕt −
〈
∂wa(0,0,X)Dw,Dϕ

〉
dz

∣∣∣∣� [
ω2
M+1(Ẽlat)+ Ẽlat + 1

2
δ2
] 1

2

sup
Q+
�/2

|Dϕ|

for all ϕ ∈ C∞
0 (Q

+
�/2;R

N). Moreover, from (4.23) we infer that

−
∫
Q+
�/2

(|Dw|2 + γ p−2|Dw|p)dz� cCacẼlat

4c2
1(Elat + δ−2�2β)

� cCac

4c2
1

� 1.

Therefore, we are in a position to apply the lemma about A-caloric approximation, i.e. Lemma 4.1, to the map w on
the cylinder Q+

�/2, provided the smallness conditions

ω2
M+1(Ẽlat)+ Ẽlat � 1

2
δ2 (4.24)

is satisfied and

γ = 2c1

√
Elat + δ−2�2β � 1. (4.25)

Lemma 4.1 provides us with an A-caloric map h ∈ Lp(Λ(�/4)2;W 1,p(B+
�/4;R

N)) satisfying h= 0 on Γ�/4 and satis-
fying also

−
∫
Q+
�/4

(|Dh|2 + γ p−2|Dh|p)dz� 2 · 2n+2 (4.26)

and

−
∫
Q+
�/4

∣∣∣∣w− h
�/4

∣∣∣∣2 + γ p−2
∣∣∣∣w− h
�/4

∣∣∣∣p dz� ε. (4.27)

In order to obtain an estimate for the excess Elat of u we exploit the excess-decay estimate from Corollary 3.4 for
the A-caloric map h in the cases s = 2 and s = p. Also using the Poincaré inequality from Lemma 2.3 and (4.26)
we find
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γ s−2
(
θ�

4

)−s
−
∫
Q+
θ�/4

∣∣h− (Dnh)+θ�/4xn
∣∣s dz� cLiθsγ s−2

(
�

4

)−s
−
∫
Q+
�/4

∣∣h− (Dnh)+�/4xn
∣∣s dz

� cLiθsγ s−2s−1 −
∫
Q+
�/4

∣∣Dnh− (Dnh)+�/4
∣∣s dz

� 2s−1cLiθ
sγ s−2 −

∫
Q+
�/4

|Dnh|s dz

� cLi2n+2+sθ s,

where cLi = c(n,N,p,LκM+1/ν). Combining this with (4.27) we obtain the following excess improvement
for w:

γ s−2
(
θ�

4

)−s
−
∫
Q+
θ�/4

∣∣w− (Dnh)+θ�/4xn
∣∣s dz� 2s−1γ s−2

(
θ�

4

)−s
−
∫
Q+
θ�/4

|w− h|s + ∣∣h− (Dnh)+θ�/4xn
∣∣s dz

� 2s−1(θ−n−2−sε+ cLi2n+2+sθ s
)

� cLi2n+1+2s(θ−n−2−sε+ θs).
Rescaling back to u via w := γ−1(u− ξxn) then implies for s = 2 respectively s = p that

(θ�/4)−s −
∫
Q+
θ�/4

|u− ξ̃ xn|s dz� cLi2n+1+2s(θ−n−2−sε+ θs)γ 2, (4.28)

where we have abbreviated ξ̃ ≡ ξ − γ (Dnh)
+
θ�/4. For the case s = 2 we note that (4.28) then holds for

(ξ�−γ (Dh)θ�/4) replaced by ξθ�/4, where ξθ�/4 = n+2
(θ�/4)2

−∫
Q+
θ�/4
u ·xn dz is the vector in R

N minimizing the mapping

ξ 	→ −∫
Q+
θ�/4

|u− ξ |2 dz (see (2.11) from Lemma 2.2). Recalling the definition of γ we therefore infer

ψ+
2 (0, θ�/4, ξθ�/4)= (θ�/4)−2 −

∫
Q+
θ�/4

|u− ξθ�/4xn|2 dz� c
(
θ−n−4ε+ θ2)(Elat(0, �, ξ�)+ δ−2�2β),

where c is of the form Lc(n,N,p,LκM+1/ν,M,H(M),‖gt‖L2,2−2β(Q+
1 )
). Similarly, for s = p we can bound the

integral on the left-hand side of (4.28) from below by the quantity −∫
Q+
θ�/4

|u− ξ (p)θ�/4xn|p dz, where ξ (p)θ�/4 denotes the

unique vector in R
N minimizing the mapping ξ 	→ −∫

Q+
θ�/4

|u− ξ |p dz. Recalling once again the definition of γ we

obtain in this case

(θ�/4)−p −
∫
Q+
θ�/4

∣∣u− ξ (p)θ�/4xn
∣∣p dz� c

(
θ−n−2−pε+ θp)(Elat(0, �, ξ�)+ δ−2�2β).

In the preceding estimate we want to replace ξ (p)θ�/4 by ξθ�/4. To this aim we use Lemma 2.2 to estimate for

x = (x′, xn) ∈ B+
θ�/4,

∣∣ξθ�/4xn − ξ (p)θ�/4xn
∣∣p � (n+ 2)

p
2 −
∫
Q+

∣∣u− ξ (p)θ�/4xn
∣∣p dz.
θ�/4
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Combining this with the second last estimate we deduce

ψ+
p (0, θ�/4, ξθ�/4)=

(
θ�

4

)−p
−
∫
Q+
θ�/4

∣∣u− ξθ�/4xn
∣∣p dz

� 2p(n+ 2)
p
2

(
θ�

4

)−p
−
∫
Q+
θ�/4

∣∣u− ξ (p)θ�/4xn
∣∣p dz

� c3
(
θ−n−2−pε+ θp)(Elat(0, �, ξ�)+ δ−2�2β),

where c3 = 2p(n+2)
p
2 c. Combining the estimates for ψ+

2 and ψ+
p and recalling that θ � 1, p � 2 and E =ψ+

2 +ψ+
p

we arrive at

Elat(0, θ�/4, ξθ�/4)� c3
(
θ−n−2−pε+ θ2)(Elat(0, �, ξ�)+ δ−2�2β).

Choosing ε = θn+4+p we obtain

Elat(0, θ�/4, ξθ�/4)� 2c3θ
2(Elat(0, �, ξ�)+ δ−2�2β). (4.29)

Given α with β < α < 1 we choose 0< θ � 1/2 such that 21+4αc3θ
2 � θ2α, so that

θ = θ(n,N,ν,L,M,H(M),κM+1, α,‖gt‖L2,2−2β(Q+
1 )

)
.

This also fixes ε and δ ∈ (0,1] depending on the same parameters. We now define ϑ := 1
4θ . Then, (4.29) yields the

assertion of the lemma. �
4.1.5. Iteration

Here we want to iterate the excess-decay estimate from Lemma 4.4.

Lemma 4.5. Given M > 1 and α ∈ (β,1), there exist constants ϑ ∈ (0, 1
4 ], Elat ∈ (0,1], �lat > 0 and c4 depending on

n,N,p, ν,L,M,H(M),κM+1, α,β and ‖gt‖L2,2−2β(Q+
1 )

such that the following holds: Suppose that

(i) |ξ�| �M,
(ii) �� �lat,

(iii) Ẽlat(�)� Elat

are fulfilled on some parabolic half-cylinder Q+
� (z0) centered at z0 ∈ Γ1 with Q+

� (z0)⊂Q+
1 . Then for every j ∈ N

we have

(I)j Ẽlat
(
ϑj�

)
� ϑ2αj Ẽlat(�)+ c4(ϑ

j�)2β,

(II)j |ξϑj �| � 2M,

where we have abbreviated Ẽlat(r)= Ẽlat(z0, r, ξr ). Furthermore, the limit

Υz0 := lim
j→∞(Dnu)

+
z0,ϑ

j �

exists and the estimate

−
∫

Q+
r (z0)

|Du−Υz0 ⊗ en|2 + |Du−Υz0 ⊗ en|p dz� clat

[(
r

�/2

)2α

Elat(�)+ r2β
]
,

holds for 0< r � �/2, where the constant clat depends on n,N,p, ν,L,M,H(M),κM+1, α,β and ‖gt‖L2,2−2β(Q+).
1
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Proof. In order to prove the assertions of the lemma we have to show that the smallness conditions (4.20)–(4.22)
are also fulfilled on the cylinders Q+

ϑj �
(z0) provided they are fulfilled on Q+

ϑ��
(z0) for � = 0, . . . , j − 1. Without

loss of generality we once again assume that z0 = 0. Given M > 1 and α with β < α < 1 we determine the constants
ϑ = ϑ(2M), δ = δ(2M) and c2 = c2(2M) from Lemma 4.4, depending also on n,N , p, ν, L,M ,H(M), κM+1 and α,
respectively. Then, there exists Elat = Elat(M) > 0, such that

ω2
2M(2Elat)+ 2Elat � 1

2
δ2 (4.30)

and

Elat � 1

4(n+ 2)
M2ϑn+4(1 − ϑα)2

. (4.31)

Furthermore we choose �lat = �lat(M) ∈ (0,1] such that with

c4 ≡ c4(M)≡ c2

ϑ2β − ϑ2α
(4.32)

we have

c4�
2β
lat � min

{
δ2,Elat,

1

4(n+ 2)
M2ϑn+4(1 − ϑβ)2

}
. (4.33)

Thus, Elat, �lat and c4 depend on n,N,p, ν,L,M,H(M),κM+1, α and ‖gt‖L2,2−2β(Q+
1 )

. We first note that (I)j com-
bined with (ii), (iii) and (4.33) yields

(I′)j Ẽlat
(
ϑj�

)
� 2Elat.

Now, suppose that the conditions (i)–(iii) are fulfilled on Q+
� ⊂Q+. Then, by induction we shall show (I)j and (II)j

hold for j ∈ N. We start with the case j = 1. From (iii), (4.30) and the monotonicity of ωM+1 we infer

ω2
M+1

(
Ẽlat(�)

)+ Ẽlat(�)� ω2
2M(2Elat)+ 2Elat � 1

2
δ2.

Furthermore, (i) and (ii) guarantee that also the assumptions � � �lat � 1 and |ξ�| �M of Lemma 4.4 are fulfilled.
Therefore, the application of the lemma ensures that (I)1 holds. Using (i), Lemma 2.2, (iii) and (4.31) yields

|ξϑ�| � |ξ�| + |ξϑ� − ξ�| �M +
(
n+ 2

(ϑ�)2
−
∫
Q+
ϑ�

|u− ξ�xn|2 dz
) 1

2

�M +
(
n+ 2

ϑn+4
−
∫
Q+
�

∣∣∣∣u− ξ�xn
�

∣∣∣∣2 dz) 1
2

�M +
(
n+ 2

ϑn+4
Ẽlat(�)

) 1
2

�M +
√
n+ 2√
ϑn+4

√
Elat(M)� 2M,

so that (II)1 holds. We now assume that (I)k and (II)k hold for k = 1, . . . , j − 1, and therefore also (I ′)k) for those k.
The validity of (I ′)k , (II)k and (4.30) allows us to apply Lemma 4.4 with ϑk� instead of � and 2M instead of M for
k = 1, . . . , j − 1. This is possible since we have chosen ϑ = ϑ(2M), δ = δ(2M) and c2 = c2(2M). Using Lemma 4.4
for k = 1, . . . , j − 1 and (4.32), we find

Ẽlat
(
ϑj�

)
� ϑ2αj Ẽlat(�)+ c2(2M)

(
ϑj−1�

)2β
j−1∑
i=0

ϑ2(α−β)i

� ϑ2αj Ẽlat(�)+ c3(2M)

ϑ2β − ϑ2α

(
ϑj�

)2β

= ϑ2αj Ẽlat(�)+ c4(M)
(
ϑj�

)2β
,

proving (I)j . To show (II)j we use of Lemma 2.2, (I)k for k = 1, . . . , j − 1, (4.33), (4.31), (ii) and (iii) to obtain
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|ξϑj �| � |ξ�| +
j∑
i=1

|ξϑi� − ξϑi−1�|

�M +
j∑
i=1

(
n+2

(ϑi�)2
−
∫
Q+
ϑi�

|u− ξϑi−1�xn|2 dz
) 1

2

�M +
√
n+2√
ϑn+4

j∑
i=1

Elat
(
ϑi−1�

) 1
2

�M +
√
n+2√
ϑn+4

j−1∑
i=0

(
ϑ2αiẼlat(�)+ c4(M)

(
ϑi�

)2β) 1
2

�M +
√
n+2√
ϑn+4

(√
Ẽlat(�)

1 − ϑα +
√
c4(M)�

β

1 − ϑβ
)

�M + M

2
+ M

2
= 2M.

This proves the second assertion of the lemma. The assertion about the limit Υ is proved by showing that
((Dnu)

+
ϑj �/2

)j∈N is a Cauchy sequence. Since |ξϑj �| � 2M we can apply Caccioppoli’s inequality to infer for s = 2,
respectively s = p,

φ+
s

(
ϑj�/2, (Dnu)

+
ϑj �/2

)
� φ+

s

(
ϑj�/2, ξϑj �

)
� cCac(2M)Ẽlat

(
ϑj�

)
� cCac(2M)

(
ϑ2αj Ẽlat(�)+ c4(M)

(
ϑj�

)2β)
. (4.34)

We also used the minimizing property of (Dnu)
+
ϑj �/2

and (I)j . Now, for k > j we have

∣∣(Dnu)+ϑj �/2 − (Dnu)+ϑk�/2
∣∣� k∑

i=j+1

∣∣(Dnu)+ϑi�/2 − (Dnu)+ϑi−1�/2

∣∣
� ϑ− n+2

s

k∑
i=j+1

(
−
∫

Q+
ϑi�/2

(z0)

∣∣Dnu− (Dnu)+ϑi�/2
∣∣s dz) 1

s

� ϑ− n+2
s

k∑
i=j+1

(
−
∫

Q+
ϑi�/2

(z0)

∣∣Du− (Du)+
ϑi�/2

⊗ en
∣∣s dz) 1

s

�
(
ϑ−(n+2)cCac(2M)

) 1
s

k∑
i=j+1

(
ϑ2αiẼlat(�)+ c4(M)

(
ϑi�

)2β) 1
s

�
(
ϑ−(n+2)cCac(2M)

) 1
s

(
Ẽlat(�)

1
s

1 − ϑα ϑ
2αj + (c4(M)�

2β)
1
s

1 − ϑβ ϑ2βj
)
.

This implies that ((Dnu)
+
ϑj �/2

)j∈N is a Cauchy sequence and therefore the limit Υ := limj→∞(Dnu)+ϑj �/2 exists. In
the limit k→ ∞ we obtain from the preceding estimate∣∣(Dnu)+ϑj �/2 − Υ ∣∣s � c

[
ϑ2αj Ẽlat(�)+

(
ϑj�

)2β]
,

where c depends on n,N,ν,L,M,H(M),κM+1, α,β and ‖gt‖L2,2−2β(Q+). Combining this with (4.34) we get

1
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−
∫

Q+
ϑj �/2

(z0)

|Du−Υ ⊗ en|s dz� 2s−1φ+
s

(
ϑj�/2

)+ 2s−1
∣∣(Dnu)+ϑj �/2 −Υ ∣∣s

� c(M)
[
ϑ2αj Ẽlat(�)+

(
ϑj�

)2β]
,

where c(M)= c(n,N,ν,L,M,H(M),κM+1, α,β,‖gt‖L2,2−2β(Q+
1 )
). We now consider an arbitrary radius 0< r � �

2 .

Then, we find k ∈ N ∪ {0} with ϑk+1�/2< r � ϑk�/2 and obtain from the previous estimate:

−
∫

Q+
r (z0)

|Du−Υ ⊗ en|s dz� ϑ−n−2 −
∫

Q+
ϑk�/2

(z0)

|Du−Υ ⊗ en|s dz

� ϑ−n−2c(M)
[
ϑ2αkẼlat(�)+

(
ϑk�

)2β]
� c(M)

[(
r

�/2

)2α

Elat(�)+ (2r)2β
]
,

which finishes the proof of the lemma. �
In order to provide our characterization for regular boundary points we will have to combine Lemma 4.5 with

an excess-decay estimate for interior points, stated below. In the interior situation we shall use a different excess
functional, namely for z0 ∈Q+

1 , � > 0 such that Q�(z0)⊂Q+
1 we define

Eint(z0, �) := −
∫

Q�(z0)

∣∣∣∣u− �z0,�

�

∣∣∣∣2 +
∣∣∣∣u− �z0,�

�

∣∣∣∣p dz, (4.35)

where �z0,� denotes the unique affine map minimizing � 	→ ∫
Q�(z0)

|u− �|2 dz and

Ẽint(z0, �)=Eint(z0, �)+ �2β.

Then, for interior points z0 ∈Q+
1 we have the following excess-decay estimate form [20, Lemma 4.8]. We here state

it in a form which is convenient for our purpose (note that we can take the symmetric parabolic cylinders instead of
the lower ones considered in [20]). Moreover, to be precise we have to take a non-homogeneous version of the lemma
valid for systems involving a right-hand side gt , since our model problem is of this form. This can be achieved by
minor changes with the methods we have previously used (see for instance the proof of Lemmas 4.2, 4.3).

Proposition 4.6. Given M > 1 and α ∈ (β,1), there exist constants �int = �int(M) ∈ (0,1) with Q�int(z0)�Q1 and
Eint(M) ∈ (0,1) depending on n,N,p, ν,L,M,H(M),κM+1, α,β and ‖gt‖L2,2−2β(Q+

1 )
such that the following holds.

Suppose that∣∣(u)z0;�
∣∣+ |D�z0;�| �M, �� �int, Ẽint(z0, �)� Eint

are fulfilled for some parabolic cylinder Q�(z0)⊂Q+
1 . Then it follows the existence of the limit

Xz0 ≡ lim
j→∞(Du)z0,ϑ

j �,

and moreover, for any 0< r � �/2 there holds the estimate

−
∫

Qr(z0)

|Du− Xz0 |2 dz� cint

[(
r

�/2

)2α

Eint(z0, �)+ r2β
]
,

where cint depends on n,N,p, ν,L,M,H(M),κM+1, α,β and ‖gt‖L2,2−2β(Q+
1 )

.
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4.1.6. Description of regular lateral boundary points
We are now in a position to prove our main result, i.e. the characterization of regular lateral boundary points as

stated in Theorem 1.2 in the model situation ΩT = Q+
1 . Let us note that due to our considerations in Section 2.1,

the assertion of Theorem 1.2 concerning lateral boundary points z0 ∈ ∂latΩT directly follows from Proposition 4.7. In
order to prove the Hölder continuity of Du in the regular set ∂latΩT \Σ we use the integral characterization of Hölder
continuous functions due to Campanato and Da Prato. To this aim we have to combine the excess-decay estimates in
the interior and at the boundary.

Proposition 4.7. Suppose that u ∈ Lp(Λ1;W 1,p(B+;R
N)) with u ≡ 0 on Γ1 is a weak solution of (2.5) where the

structure conditions (1.4)–(1.6) are in force. Then, for any z0 ∈ Γ1 \Σ there exists a neighborhood Uz0 such that

Du ∈ Cβ, β2 (Uz0 ∩ (
Q+

1 ∪ Γ1
);R

Nn
)
,

where Σlat :=Σ1
lat ∪Σ2

lat and

Σ1
lat =

{
z0 ∈ Γ1: lim inf

�↓0
−
∫

Q+
� (z0)

∣∣Dnu− (Dnu)+z0,�

∣∣p dz > 0

}
,

Σ2
lat =

{
z0 ∈ Γ1: lim sup

�↓0

∣∣(Dnu)+z0,�

∣∣= ∞
}
.

Proof. For z ∈Q+
1 ∪ Γ1, � > 0, we define

φ(n)s (z, �) := −
∫
Q+
� (z)

∣∣Dnu− (Dnu)+z,�
∣∣s dz, s = 2,p,

while, for a fixed M0 > 1 we define

M1 := 2(1 +M0)(n+ 2) and M2 := 22n+5(2 +M0)(n+ 3)cCac(0),

where cCac(0) is the constant from Lemma 4.2 for the choice M = 0. Moreover, we recall from Proposition 4.6
respectively Lemma 4.5 the definition of �lat(M1), Elat(M1), clat = clat(M1) respectively �int(M2), Eint(M2). Note that
Elat(M1)� 1 by definition.

Now, for z0 ∈ Γ1 \ (Σ1
lat ∪Σ2

lat) we can find M0 > 1 (depending on z0) and 0< � � min{�lat(M1), �int(M2)} with
Q+

2�(z0)⊂Q+
1 such that |(Dnu)+z0,�

|<M0 and

φ
(n)
2 (z0, �)+ φ(n)p (z0, �)+ �2β <

1

2c

(
c5clat(M1)

)−1 min
{

Elat(M1),Eint(M2)
}

(4.36)

where c= 2p(n+ 2)
p
2 and c5 = 22n32p(n+ 3)p . Using the Poincaré inequality from Lemma 2.3 we see that(

�−p −
∫

Q+
� (z0)

|u|p dz
) 1
p

�
(

−
∫

Q+
� (z0)

|Dnu|p dz
) 1
p

� φ(n)p (z0, �)
1
p + ∣∣(Dnu)+z0,�

∣∣� 1 +M0.

This leads us immediately to (cf. Lemma 2.2 for the definition of ξz0,�)

|ξz0,�| � (n+ 2)�−1 −
∫

Q+
� (z0)

|u|dz� (n+ 2)(1 +M0)�
1

2
M1,

where we have used the definition ofM1. By an application of the Caccioppoli inequality from Lemma 4.2 with ξ = 0
we also have
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−
∫

Q+
� (z0)

|Du|dz�
[
cCac(0) −

∫
Q+
� (z0)

�−2|u|2 + �−p|u|p + �2β dz

] 1
p

�
[

2cCac(0) −
∫

Q+
� (z0)

�−p|u|p + 1dz

] 1
p

� 2cCac(0)(2 +M0)

�
(
22n+4(n+ 3)

)−1
M2. (4.37)

Here we have used in the last line the particular choice of M1. Moreover, from Lemma 2.2, the Poincaré inequality
Lemma 2.3 and (4.36) we deduce

Ẽlat(z0, �, ξz0,�)� 2p(n+ 2)
p
2 Ẽlat

(
z0, �, (Dnu)

+
z0,�

)
� 2p(n+ 2)

p
2
(
φ
(n)
2 (z0, �)+ φ(n)p (z0, �)+ �2β)

<
1

2
min

{
Elat(M1), c

−1
5 , c−1

6 Eint(M1)
}
.

Since Γ1 � z 	→ ξz,� and Γ1 � z 	→ Ẽlat(z, �, ξz,�) are continuous with respect to the center z, there exists a radius
0<R � �/12 such that

|ξz,�|<M1, (4.38)

and

Ẽlat(z, �, ξz,�) <
(
c5clat(M1)

)−1 min
{

Elat(M1),Eint(M2)
}

(4.39)

for all z ∈ ΓR(z0). Moreover, due to the choice R � �/12 and the inclusion Q+
2�(z0) ⊂ Q+

1 we have Q+
� (z) ⊂

Q+
2�(z0)⊂Q+

1 .
Now, given α ∈ (β,1) and M1 from above we choose ϑ in dependence of n,N,p, ν,L, M1,H(M1), κM1, α,β

and ‖gt‖L2,2−2β(Q+
1 )

to be the constant from Lemma 4.5. Without loss of generality we can assume that the constant
ϑ appearing Proposition 4.6 is equal to the one from Lemma 4.5. In the following we will show that for all z ∈
Q+
R(z0)∪ ΓR(z0) the limit

Xz := lim
j→∞(Du)

+
z,ϑj �

(4.40)

exists and that

−
∫
Q+
r (z)

|Du− Xz|2 dz� c
(
r

�

)2β

, (4.41)

for all 0 < r � �/6 and with a constant c depending on n,N,p, ν,L,M1,M2,H(M1),H(M2), κM1+1, κM2+1, α,β

and ‖gt‖L2,2−2β(Q+
1 )

. For this we will distinguish between the cases z ∈ ΓR(z0) and z ∈Q+
R(z0).

In the first case z ∈ ΓR(z0), we see that by (4.38) and (4.39) the hypotheses of Lemma 4.5 are fulfilled so that the
application of the lemma yields the existence of the limit Υz = limj→∞(Dnu)+z,ϑj �. Moreover, for 0 < r � �/2 we
have

−
∫
Q+
r (z)

|Du− Υz ⊗ en|2 + |Du−Υz ⊗ en|p dz� clat

[(
r

�/2

)2α

Elat(z, �, ξz,�)+ r2β
]

� clat

(
r

�/2

)2β

Ẽlat(z, �, ξz,�)

� c
(
r

)2β

, (4.42)

�/2
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where c depends on n,N,p, ν,L,M1,H(M1), κM1+1, α,β and ‖gt‖L2,2−2β(Q+
1 )

. Here we have used in the last line

the bound (4.39) for Ẽlat(z, �, ξz,�). The preceding estimate implies for the tangential directions σ = 1, . . . , n− 1 in
particular that

lim
r↓0

−
∫
Q+
r (z)

|Dσu|2 dz= 0.

Hence, (4.40) and (4.41) are valid with Xz = Υz ⊗ en.
In the second case z ∈Q+

R(z0) we want to apply Proposition 4.6. Therefore we have to ensure that the hypotheses
are fulfilled. From (4.35) we recall that �z,xn denotes the unique affine map minimizing � 	→ ∫

Qxn (z)
|u− �|2 dz and by

z′ = (x1, . . . , xn−1,0, t) we denote the projection of z = (x1, . . . , xn−1, xn, t) onto Γ1. Since z′ ∈ ΓR(z0) we can use the
results from the first case with center z′ obtaining that the limit Υz′ := limj→∞(Dnu)+z′,ϑj � exists and, moreover, that

(4.42) holds with z′ instead of z. At this stage we recall that for z ∈Q+
R(z0) we haveQxn(z)⊂Q+

2xn
(z′). Therefore, by

the use of the minimizing property of �z,xn and Poincaré’s inequality from Lemma 2.3 we find

x−2
n −

∫
Qxn (z)

|u− �z,xn |2 dz� x−2
n −

∫
Qxn (z)

|u− xnΥz′ |2 dz

� 2n+1x−2
n −

∫
Q+

2xn
(z′)

|u− xnΥz′ |2 dz

� 2n+2 −
∫

Q+
2xn
(z′)

|Dnu−Υz′ |2 dz

� 2n+2 −
∫

Q+
2xn
(z′)

|Du−Υz′ ⊗ en|2 dz.

Similarly, replacing in the left-hand side of the preceding inequality the integrand by |u− �(p)z,xn |p , where �(p)z,xn is the
unique affine map minimizing � 	→ ∫

Qxn (z)
|u− �|p dz, we see that

x
−p
n −

∫
Qxn (z)

∣∣u− �(p)z,xn

∣∣p dz� 2n+p −
∫

Q+
2xn
(z′)

|Du−Υz′ ⊗ en|p dz.

In this estimate we want to replace �(p)z,xn by �z,xn , i.e. the affine map minimizing � 	→ ∫
Qxn (z)

|u− �|2 dz. From the
proof of Lemma 5.1 in [20] (i.e. from (4-26)) we know that

x
−p
n −

∫
Qxn (z)

|u− �z,xn |p dz� 3p(n+ 2)px−pn −
∫

Qxn (z)

∣∣u− �(p)z,xn

∣∣p dz. (4.43)

Combining the previous estimates and using (4.42) with (z′,2xn, �) instead of (z, r, �), the fact that 2xn � 2R � �/2
and (4.39) we infer

Ẽint(z, xn)= x−2
n −

∫
Qxn (z)

|u− �z,xn |2 dz+ x
−p
n −

∫
Qxn (z)

|u− �z,xn |p dz+ x2β
n

� c(n,p)
(

−
∫

Q+
2xn
(z′)

|Du− Υz′ ⊗ en|2 + |Du−Υz′ ⊗ en|p dz+ (2xn)
2β
)

� 2c(n,p)clat

(
2xn

)2β

Ẽlat(z
′, �, ξz′,�)�

(
2xn

)2β

Eint(M2), (4.44)

�/2 �/2
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where we have abbreviated c(n,p) = 3p2n+p(n + 2)p and we note that 2c(n,p) � c5 due to the definition of c5
in (4.36). Since 2xn � 2R � �/2 this implies in particular that Ẽint(z, xn)� Eint(M2). Next, we will infer a bound for
the mean-value of u and for |D�z,xn | on the cylinder Qxn(z). From Hölder’s inequality, (4.42) and (4.37) we obtain

|Υz′ | � −
∫

Q+
�/2(z

′)

|Du− Υz′ ⊗ en|dz+ −
∫

Q+
�/2(z

′)

|Du|dz

�
(
clatẼlat(z

′, �, ξz′,�)
) 1

2 + 2n+2 −
∫

Q+
� (z

′)

|Du|dz

�
(
clatẼlat(z

′, �, ξz′,�)
) 1

2 + (
2n+2(n+ 3)

)−1
M2. (4.45)

To proceed further we recall from (2-8) in [20] that

|D�z,xn | =
n+ 2

x2
n

−
∫

Qxn (z)

u⊗ (x − x) dz� n+ 2

xn
−
∫

Qxn (z)

|u|dz.

Using the preceding estimate, Poincaré’s inequality from Lemma 2.3, Hölder’s inequality, (4.39), (4.42) and (4.45)
we infer with c̃= 2n+2(n+ 3) (note also that 2xn � �/2 � 1)∣∣(u)z,xn ∣∣+ |D�z,xn | � 2n+2 n+ 3

2xn
−
∫

Q+
2xn
(z′)

|u|dz� c̃ −
∫

Q+
2xn
(z′)

|Du|dz� c̃ −
∫

Q+
2xn
(z′)

|Du− Υz′ ⊗ en|dz+ c̃|Υz′ |

� c̃
(
clat

(
2xn

�/2

)2β

Ẽlat(z
′, �, ξz′,�)

) 1
2 + c̃(clatẼlat(z

′, �, ξz′,�)
) 1

2 +M2

� 2c̃
(
clatẼlat(z

′, �, ξz′,�)
) 1

2 +M2 � 2c̃c
− 1

2
5 +M2 � 1 +M2. (4.46)

Recall that the constant c5 was defined in (4.36) such that 2 · 22(n+2)(n+ 3)2 � c5 in (4.36). Hence, by (4.44) and
(4.46) the hypotheses of Proposition 4.6 are satisfied. Therefore the Proposition can be applied with (z, r, xn,1 +M2)

instead of (z0, r, �,M) to conclude on the one hand that the limit in (4.40) exists and, on the other hand, that for any
0< r � xn/2 there holds

−
∫
Qr(z)

|Du− Xz|2 dz� cint

[(
r

xn/2

)2α

Eint(z, xn)+ r2β
]

� cint

[(
r

xn/2

)2α( 2xn

�/2

)2β

Eint(M2)+ r2β
]

� c
(
r

�/2

)2β

,

where c depends on n,N,p, ν,L,M2,H(M2), κM2+1, α and β . Here we have also used (4.44) in the second line and
Eint(M2)� 1 in the last line. In the remaining case xn/2< r � �/6 we use (4.41) for z′ as well as the previous estimate
to infer

−
∫
Q+
r (z)

|Du− Xz|2 dz� 2 −
∫
Q+
r (z)

|Du− Xz′ |2 dz+ 4 −
∫

Qxn/2(z)

|Du− Xz′ |2 + |Du− Xz|2 dz

� c −
∫

Q+
3r (z

′)

|Du− Xz′ |2 dz+ c −
∫

Q+
3xn/2

(z′)

|Du− Xz′ |2 dz+ c
(

xn/2

�/2

)2β

� c
(
r

)2β

,

�/2
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where c depends only on n,N,p, ν,L,M1,M2,H(M1),H(M2), κM1+1, κM2+1, α,β and ‖gt‖L2,2−2β(Q+
1 )

. This com-
pletes the proof of (4.40) and (4.41).

Finally, we will prove that the Lebesgue representative z 	→ Xz of Du is Hölder continuous on Q+
R(z0) ∪ ΓR(z0).

Given z1 = (x1, t1), z2 = (x2, t2) ∈Q+
R(z0) ∪ ΓR(z0), we put r = max{|x1 − x2|,√|t1 − t2|} � 2R � �/6 and a ≡

z1+z2
2 . Then there holds

|Xz1 − Xz2 |2 = −
∫

Q+
r/2(a)

|Xz1 − Xz2 |2 dz� 2 −
∫

Q+
r/2(a)

|Du− Xz1 |2 dz+ 2 −
∫

Q+
r/2(a)

|Du− Xz2 |2 dz

� 2n+3
[

−
∫

Q+
r (z1)

|Du− Xz1 |2 dz+ −
∫

Q+
r (z2)

|Du− Xz2 |2 dz
]
.

Using (4.41) for z1 and z2 we therefore infer

|Xz1 − Xz2 |2 � c
(
r

�

)2β

� c
(

dP (z1, z2)

�

)2β

,

proving that the Lebesgue representative z 	→ Xz of Du is Hölder continuous with respect to the parabolic metric
on Q+

R(z0) ∪ ΓR(z0) with Hölder exponent β . Here, the constant c depends only on n,N,p, ν,L,M1,M2,H(M1),

H(M2), κM1+1, κM2+1, α,β and ‖gt‖L2,2−2β(Q+
1 )

. This completes the proof of Proposition 4.7. �
This proves the assertion of Theorem 1.2 concerning the lateral boundary. We now turn our attention to initial

boundary points.

4.2. Regular points on the initial boundary

In this section we prove the characterization of regular points z0 lying on the initial boundary Ω0. We shall always
refer to the model situation (2.6) where the boundary values are equal to zero. The general result then follows by
considering the map v(x, t) = u(x, t) − g(x,0) as described in Section 2.1. Since the arguments are similar to the
interior situation considered in [20], we shall only give an outline of the proof. Thereby we shall concentrate our
attention on those arguments which are peculiar of the initial boundary situation.

4.2.1. A-caloric approximation
Lemma 4.8. Given ε > 0, 0< ν � L and p � 2 there exists a positive function δ = δ(n,p, ν,L, ε) ∈ (0,1] with the
following property. Whenever A is a bilinear form on R

Nn which is strongly elliptic with ellipticity constant ν > 0
and upper bound L, i.e.

ν|w|2 � 〈Aw,w〉 and 〈Aw, w̃〉 � L|w||w̃|
holds whenever w, w̃ ∈ R

Nn and u ∈ Lp(0, �2;W 1,p(B�;R
N)) with u≡ 0 on B� at the initial time t = 0 (in the usual

L2-sense) and

−
∫
Q0
�

∣∣∣∣u�
∣∣∣∣2 + |Du|2 dz+ γ p−2 −

∫
Q0
�

∣∣∣∣u�
∣∣∣∣p + |Du|p dz� 1,

where 0< γ � 1, is approximately A-caloric in the sense that∣∣∣∣−∫
Q0
�

u · ϕt − 〈ADu,Dϕ〉dz
∣∣∣∣� δ sup

Q0
�

|Dϕ|, for every ϕ ∈C∞
0

(
Q0
�;R

N
)
,

then there exists an A-caloric map h ∈Lp(0, (�/2)2;W 1,p(B�/2;R
N)), i.e.∫

Q0

h · ϕt − 〈ADh,Dϕ〉dz= 0 for every ϕ ∈C∞
0

(
Q0
�/2;R

N
)
,

�/2
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with h≡ 0 on B�/2 in the L2-sense satisfying

−
∫
Q0
�

∣∣∣∣h�
∣∣∣∣2 + |Dh|2 dz+ γ p−2 −

∫
Q0
�

∣∣∣∣h�
∣∣∣∣p + |Dh|p dz� 2 · 2n+2+2p

and

−
∫
Q0
�/2

∣∣∣∣u− h
�/2

∣∣∣∣2 + γ p−2
∣∣∣∣u− h
�/2

∣∣∣∣p dz� ε.

Proof. The proof goes as the one for Lemma 4.1, with a few modifications we are going to describe. After reducing
to the case Q0

� ≡Q0
1 via the usual scaling we proceed by contradiction: we get the existence of ε > 0 and sequences

(Aj )j∈N of bilinear forms on R
Nn with uniform ellipticity constant ν > 0 and upper bound L, (vj )j∈N with vj ∈

Lp(0,1;W 1,p(B1;R
N)) satisfying vj (·,0)≡ 0 on B1 and γj ∈ (0,1] such that

−
∫
Q0

1

|vj |2 + |Dvj |2 dz+ γ p−2
j −

∫
Q0

1

|Dvj |p + |Dvj |p dz� 1 (4.47)

and ∣∣∣∣ ∫
Q0

1

vj · ϕt − 〈AjDvj ,Dϕ〉dz
∣∣∣∣� 1

j
sup
Q0

1

|Dϕ| for every ϕ ∈ C∞
0

(
Q0

1;R
N
)
, (4.48)

but

−
∫
Q0

1/2

4|vj − h|2 + 2pγ p−2
j |vj − h|p dz > ε (4.49)

for all Aj -caloric maps h on Q0
1/2 with h(·,0)≡ 0 on B1/2 and

−
∫
Q0

1/2

|h|2 + |Dh|2 dz+ γ p−2 −
∫
Q0

1/2

|h|p + |Dh|p dz� 2 · 2n+2+2p. (4.50)

We define ṽj = γ
p−2
p

j vj as in (4.5), and proceed as thereafter, up to proving the following strong convergence:{
vj → v strongly in L2(Q0

1;R
N
)
,

ṽj → ṽ strongly in Lp
(
Q0

1;R
N
)
.

(4.51)

Note that at this stage, and in contrast the case of a Dirichlet condition at the lateral boundary, we cannot immediately
conclude by a trace theorem that v ≡ 0 on B1. This can be derived after establishing equicontinuity of vj with respect
to t in W−�,2(B1,R

N) for some � ∈ N. More precisely, by the way, we have proved the continuity estimate

γ
s−2
s

j

∥∥vj (·, τ2)− vj (·, τ1)
∥∥
W−�,2(B1,R

N )
� c̃

(
|Aj |(τ2 − τ1)

1
2 + 1

j

)
, (4.52)

which holds whenever τ1, τ2 ∈ (0,1), and j ∈ N. Notice that the previous inequality tells us that the family of Banach
space valued maps vj : (0,1)→W−�,2(B1,R

N) is equi-uniformly continuous in (0,1). Therefore we first observe
that they can be extended, again in an equicontinuous way, as maps defined in [0,1], i.e. they do have an initial trace
vj (·,0) ∈W−�,2(B1,R

N) in the sense that ‖vj (·, τ )− vj (·,0)‖W−�,s (B1,R
N) → 0 when τ → 0; we call this a “weak

trace”. Moreover, the fact that vj → v in L2(Q0
1,R

N) ensures that there exists τ ∈ (0,1) such that vj (·, τ )→ v(·, τ )
in L2(B1,R

N) and therefore also in W−�,2(B1,R
N). Together with the last inequality we deduce that vj is bounded
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in C0([0,1];W−�,2(B1,R
N)). This allows us to apply Ascoli–Arzelá’s theorem to conclude that, up to extracting

a non-relabeled subsequence, we may assume that vj → v in C0([0,1],W−�,s(B1,R
N)). Therefore, by uniform

convergence we have that vj (0)→ v(0) in W−�,s(B1,R
N). On the other hand we have that vj (·,0)≡ 0 in the strong

L2-sense by assumption, and therefore also the weak trace of vj at the initial time is zero, since a strong trace is
also a weak trace – this follows from ‖ · ‖W−�,2(B1,R

N) � ‖ · ‖L2(B1,R
N). We deduce at once that the weak trace of v

is zero. Now we know that v is A-caloric, and therefore it has a strong trace, i.e. ‖v(·, τ )− v(·,0)‖L2(B1)
→ 0; this

follows from the fact that v ∈ C0([0,1];L2(B1)); again, as a strong trace is also a weak trace we finally conclude
with ‖v(·, τ )‖L2(B1,R

N) → 0, that is v has zero trace at the initial time in the sense of (1.2). With this information
we conclude the proof: we can define wj ∈ L2(Λ0

(3/4)2
;W 1,2(B+

3/4,R
N)) as the unique solution of the following

Cauchy–Dirichlet problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
Q0

3/4

wj · ϕt − 〈AjDwj ,Dϕ〉dz= 0 for every ϕ ∈C∞
0

(
Q0

3/4,R
N
)
,

wj = v on ∂PQ
0
3/4.

Since now we have defined the Aj -caloric map wj with wj(·,0)= v(·,0)= 0 on B3/4, the rest of the proof follows
as in the lateral boundary case Lemma 4.8, using the corresponding results from Section 3.2, instead of those from
Section 3.1. �
4.2.2. Caccioppoli inequality

We now state the Caccioppoli inequality on initial cylinders of the form Q0
�(z0) where z0 = (x0,0) touching the

initial boundary Ω0. Since the proof is essentially the same as the one from Lemma 4.2 we shall only outline the
changes that have to be made.

Lemma 4.9. Suppose that u ∈ Lp(0, T ;W 1,p(Ω;R
N)) is a weak solution of the non-linear parabolic system (2.6)

with u(·,0) = 0 on Ω , where the structure conditions (1.4)–(1.6) are in force. Then, for any z0 = (x0,0) ∈Ω0 and
� ∈ (0,1) such that Q0

�(z0)⊂ΩT there holds

−
∫

Q0
�/2(z0)

|Du|2 + |Du|p dz� cCac

(
−
∫

Q0
�(z0)

∣∣∣∣u�
∣∣∣∣2 +

∣∣∣∣u�
∣∣∣∣p dz+ �2β

)
,

where cCac = (1 + ‖gt‖2
L2,2−2β(ΩT )

)c(n,p,L/ν,K(1), κ1).

Sketch of the proof. Here, we let 0 < ε < �2/2 and choose the test-function ϕε(x, t) = η(x)ζε(t)u(x, t), where η
is as in the proof of Lemma 4.2 and ζε ∈W 1,∞

0 ((0, �2)) such that ζε ≡ 1 on [ε,�2 − ε], ζε(t) = t/ε on (0, ε) and
ζε(t) = (�2 − t)/ε on (�2 − ε,�2). Testing the parabolic system (2.6) formally with ϕε we arrive at the analogue
of (4.17) with ξ = 0 and X = 0. Now, the estimates for the terms I and II are similar to the ones in the proof of
Lemma 4.2. Indeed, the only difference is the estimation of the term IV = IVε which now depends on ε. Here, we can
exploit the initial condition on u to show that

IVε =
∫
Q0
�

u · ∂tϕε dz

=
∫
Q0

|u|2η2∂t ζε dz+ 1

2

∫
Q0

∂t |u|2η2ζε dz
� �
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= 1

2

∫
Q0
�

|u|2η2∂t ζε dz

= 1

2ε

ε∫
0

∫
B�

|u|2η2 dx dt − 1

2ε

�2∫
�2−ε

∫
B�

|u|2η2 dx dt.

Due to our initial condition on u we have

lim
ε↓0

1

2ε

ε∫
0

∫
BR

|u|2η2 dx dt = 0.

With this information we can conclude the proof as in Lemma 4.2. �
4.2.3. Linearization

For s � 1, z0 = (x0,0) ∈Ω0 and a parabolic cylinder Q0
�(z0)⊂ΩT we define the excess functionals by

φ0
s (z0, �) := −

∫
Q0
�(z0)

|Du|s dz, ψ0
s (z0, �) := −

∫
Q0
�(z0)

∣∣∣∣u�
∣∣∣∣s dz,

and we shall often abbreviate

φ0
s = φ0

s (z0, �) and ψ0
s =ψ0

s (z0, �).

We now state the linearization lemma for cylinders touching the initial boundary, i.e. the analogue of Lemma 4.3.
Here, we are allowed to apply the linearization lemma for interior cylinders from [20, Lemma 4.4] also on the cylinder
Q0
�(z0) where z0 = (x0, t0), and with the choice � = 0 and M = 0, because the test-function ϕ is assumed to have

compact support in Q0
�(z0). We only have to take into account the fact that we are dealing with inhomogeneous

systems and that we did impose a slightly weaker regularity assumption on the vector field a, compared to [20],
namely we did not assume any regularity in t on the vector field a in (1.6). Therefore we “freeze” the coefficients in
a((0, t),0,0) instead of a((0,0),0,0) as we did in (4.18) in the lateral boundary situation. Taking into account this
slight change in the proof we come up with ω1(φ

0
p + �p) on the right-hand side rather than ω1(φ

0
p). The linearization

lemma at the initial time boundary situation then reads as follows:

Lemma 4.10. Suppose that u ∈ Lp(0, T ;W 1,p(Ω;R
N)) is a weak solution of (2.6) satisfying u(·,0)= 0 onΩ , where

the structure conditions (1.4)–(1.6) are in force. Then we have∣∣∣∣ −
∫

Q0
�(z0)

u · ϕt −
〈
∂wa(z0,0,0)Du,Dϕ

〉
dz

∣∣∣∣
� cEu

[
ω1
(
φ0
p + �p)√φ0

2 + φ0
p +ψ0

2 + �β(φ0
p

)1− 1
p
(
1 + (

ψ0
p

) β
p
)+ �β

]
sup
Q0
�(z0)

|Dϕ|,

for any ϕ ∈ C∞
0 (Q

0
�(z0);R

N), z0 = (x0,0) ∈ Ω0 and Q0
�(z0) ⊂ ΩT . The constant cEu depends on is of the form

cEu = L(1 + ‖gt‖2
L2,2−2β(ΩT )

)c(n,p,K(1), κ1).

4.2.4. A decay estimate at the initial boundary
At the initial boundary we want to approximate our solution u by an affine map constructed from the initial values,

i.e. the affine map � : R
n → R

N minimizing � 	→ ∫
B�(x0)

|g0 − �|2 dx. Since we have transformed the problem to the
model situation where g0 = 0 we shall take �= 0. Therefore, we define the following excess functional

Eini ≡Eini(z0, �) := −
∫

Q0 (z0)

∣∣∣∣u�
∣∣∣∣2 +

∣∣∣∣u�
∣∣∣∣p dz
�
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for z0 = (x0,0) ∈Ω0 and

Ẽini ≡ Ẽini(z0, �) :=Eini(z0, �)+ �2β.

Then, we can show the following excess-decay estimate.

Lemma 4.11. Given α ∈ (β,1), there exist constants ϑ ∈ (0, 1
4 ], Eini ∈ (0,1], �ini > 0 and c4 depending on

n,N,p, ν,L,K(1), κ1, α,β,‖gt‖2
L2,2−2β(ΩT )

such that the following holds. Suppose that u ∈Lp(0, T ;W 1,p(Ω;R
N))

is a weak solution of (2.6) satisfying u(·,0) = 0 on Ω , where the structure conditions (1.4)–(1.6) are in force and
suppose that

(i) �� �ini,

(ii) Ẽini(�)� Eini

are fulfilled on some cylinder Q0
�(z0) with z0 = (x0,0) ∈Ω0 and B�(x0)�Ω . Then for any 0< r � �/2 we have

−
∫

Q0
r (z0)

∣∣∣∣ur
∣∣∣∣2 +

∣∣∣∣ur
∣∣∣∣p dz+ −

∫
Q0
r (z0)

|Du|2 + |Du|p dz� cini

[(
r

�

)2α

Eini(�)+ r2β
]
,

where the constant cini depends on n,N,p, ν,L,K(1), κ1, α,β,‖gt‖2
L2,2−2β(ΩT )

. In particular this estimate implies

Xz0 := lim
j→∞(Du)

0
z0,ϑ

j �
= 0.

Sketch of the proof. Since the proof is very much similar to the one from Lemma 4.5 for the lateral boundary
situation, we shall only give a brief outline here. From the linearization Lemma 4.10 and the Caccioppoli inequality 4.9
we infer that u satisfies approximately a linear system with constant coefficients ∂wa(z0,0,0). This allows us to
apply the A-caloric approximation Lemma 4.8 to find a suitable A-caloric map h on Q0

�/2(z0) which is close to u in

Lp(Q0
�/2(z0),R

N) and with h(·,0)= 0 on B�/2(x0).
Next, we use the excess-decay estimate from Theorem 3.5 for the A-caloric map h and the fact that h is close to u

in Lp to infer an estimate for the excess functional Ẽini(ϑ�, z0) on a smaller cylinder Q0
ϑ�(z0) with some ϑ ∈ (0, 1

4 )

and under certain smallness assumptions. Finally, we iterate this estimate to get an excess-decay estimate for u on
cylinders of the type Q0

ϑj �
(z0), j ∈ N. From this we deduce an excess-decay estimate for u on arbitrary cylinders

Q0
r (z0) with r � �. Finally, with the help of the Caccioppoli inequality from Lemma 4.2 we also infer the asserted

excess-decay estimate for Du which completes the proof of the lemma. �
4.2.5. Description of regular initial boundary points

As usual, we prove the Hölder continuity of Du on the regular set Ω0 \ Σ by the integral characterization of
Hölder continuous functions of Campanato and Da Prato. Therefore we have to combine the excess-decay estimates
for cylinders touching the initial boundary from above with the one for cylinders lying in the interior of ΩT from
Proposition 4.6.

Proposition 4.12. Suppose that u ∈ Lp(0, T ;W 1,p(Ω;R
N)) with u(·,0)= 0 on Ω is a weak solution of (2.6) where

the structure conditions (1.4)–(1.6) are in force. Then, for any z0 = (x0,0) ∈Ω0 \Σini there exists a neighborhood
Uz0 such that

Du ∈ Cβ, β2 (Uz0 ∩ (ΩT ∪Ω0);R
Nn

)
,

where

Σini :=
{
z0 ∈Ω0: lim inf

�↓0
�−p −

∫
Q0
�(z0)

|u|p dz > 0

}
.
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Proof. In the following we denote by where �ini, Eini, cini, �int(1) and Eint(1) are the constants from Lemma 4.11,
respectively Proposition 4.6 for the choiceM = 1 Now, for z0 ∈Ω0 \Σini we can find 0< �� min{�ini, �int(1)} with
Q0

2�(z0)⊂ΩT such that

Ẽini(z0, �) <
1

2
(c5cini)

−1 min
{

Eini,Eint(1)
}
, (4.53)

where we define c5 = 22n32p(n + 3)p . Since Ω0 � z 	→ Ẽini(z, �) is continuous with respect to the center z, there
exists a radius 0<R � �/12 such that

Ẽini(z, �) < (c5cini)
−1 min

{
Eini,Eint(1)

}
(4.54)

for all z= (x,0) ∈DR(z0). Moreover, due to the choice R � �/12 and the inclusionQ0
2�(z0)⊂ΩT we haveQ0

�(z)⊂
Q0

2�(z0)⊂ΩT .
Now, given α ∈ (β,1) we choose ϑ in dependence of n,N,p, ν,L,K(1), κ1, α,β to be the constant from

Lemma 4.11. Without loss of generality we can assume that the constant ϑ appearing in Proposition 4.6 (with the
choice M = 1) is equal to the one from Lemma 4.11. In the following we will show that for all z ∈Q0

R(z0)∪DR(z0)

the limit

Xz := lim
j→∞(Du)

0
z,ϑj �

(4.55)

exists and that

−
∫
Q0
r (z)

|Du− Xz|2 dz� c
(
r

�

)2β

, (4.56)

for all 0 < r � �/6 and with a constant c depending on n,N,p, ν,L,K(1), κ1, α,β . For this we will distinguish
between the cases z ∈ DR(z0) and z ∈Q0

R(z0). In the first case, i.e. the case z ∈ DR(z0), we see that by (4.54) the
hypotheses of Lemma 4.11 are fulfilled (note that c5 � 1) so that the application of the lemma yields that

Xz = lim
j→∞(Du)

0
z,ϑj �

= 0.

Moreover, for 0< r � �/2 we have

−
∫
Q0
r (z)

∣∣∣∣ur
∣∣∣∣2 +

∣∣∣∣ur
∣∣∣∣p + |Du|2 + |Du|p dz� cini

[(
r

�

)2α

Eini(z, �)+ r2β
]

� cini

(
r

�

)2β

Ẽini(z, �)

� c
(
r

�

)2β

, (4.57)

where c depends on n,N,p, ν,L,K(1), κ1, α,β,‖gt‖2
L2,2−2β(ΩT )

. Here we have used in the last line the bound (4.54)

for Ẽini(z, �). Hence, (4.55) and (4.56) are valid with Xz = 0.
In the case z ∈Q0

R(z0) we want to apply Proposition 4.6. Therefore we first have to ensure that the hypotheses are
satisfied. By z′ = (x,0) we denote the projection of z = (x, t) onto Ω0. From (4.35) we recall that �

z,
√

t
denotes the

unique affine map minimizing � 	→ ∫
Q√

t
(z)

|u− �|2 dz. Therefore, by the use of the minimizing property of �
z,

√
t

we

find

−
∫

Q√ (z)

∣∣∣∣u− �
z,

√
t√

t

∣∣∣∣2 dz� −
∫

Q√ (z)

∣∣∣∣ u√
t

∣∣∣∣2 dz.

t t
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Furthermore, we recall that �(p)
z,

√
t

denotes the unique affine map minimizing the functional � 	→ ∫
Q√

t
(z)

|u− �|p dz.
Using (4.43) and the minimizing property of �(p)z,xn we also find

−
∫

Q√
t
(z)

∣∣∣∣u− �
z,

√
t√

t

∣∣∣∣p dz� 3p(n+ 2)p −
∫

Q√
t
(z)

∣∣∣∣ u√
t

∣∣∣∣p dz.
At this stage we recall that Q√

t
(z) ⊂Q0√

2t
(z′) which allows us to enlarge the domain of integration from Q√

t
(z)

to Q0√
2t
(z′). Now, since z′ ∈DR(z0) we can use the results from the first case with center z′ obtaining that the limit

Xz′ := limj→∞(Du)0z′,ϑj � = 0 exists and, moreover, that (4.57) holds with z′ instead of z. Combining the previous

estimates and using (4.57) with (z′,
√

2t, �) instead of (z, r, �), the fact that
√

2t � 2R � �/2 and (4.54) we infer

Ẽint(z,
√

t)� 3p(n+ 2)p −
∫

Q√
t
(z)

∣∣∣∣ u√
t

∣∣∣∣2 +
∣∣∣∣ u√

t

∣∣∣∣p dz+ √
t
2β

� 2n+p3p(n+ 2)p
(

−
∫

Q0√
2t
(z′)

∣∣∣∣ u√2t

∣∣∣∣2 +
∣∣∣∣ u√2t

∣∣∣∣p dz+ √
2t

2β
)

� 2 · 3p2n+p(n+ 2)pcini

(√
2t

�

)2β

Ẽini(z
′, �)

�
(√

2t

�

)2β

Eint(1), (4.58)

where we have abbreviated Ẽint(z,
√

t)= Ẽint(z,
√

t, �
z,

√
t
). Note that the constant c5 was defined in (4.53) such that

2 · 3p2n+p(n+ 2)p � c5. Since
√

2t � 2R � �/2 this implies in particular that Ẽint(z,
√

t) � Eint(1). Next, we will
infer a bound for the mean-value of u and for |D�

z,
√

t
| on the cylinder Q√

t
(z). Starting as in (4.46) and then using

Hölder’s inequality, (4.57) and (4.54) we infer with c̃= 2n+2(n+ 3) (note also that Eini � 1 and
√

2t � 1),

∣∣(u)
z,

√
t

∣∣+ |D�
z,

√
t
| � 2n+1 n+ 3√

2t
−
∫

Q0√
2t
(z′)

|u|dz� c̃
(
cini

(√
2t

�

)2β

Ẽini(z
′, �)

) 1
2

� c̃c−
1
2

5 � 1.

Recall that c5 was defined such that c̃2 � c5 in (4.53). Hence, by the preceding estimate and (4.46) the hypotheses
of Proposition 4.6 are satisfied. Therefore the Proposition can be applied with (z, r,

√
t,1) instead of (z0, r, �,M) to

conclude on the one hand that the limit in (4.55) exists and, on the other hand, that for any 0< r �
√

t/2 there holds

−
∫
Qr(z)

|Du− Xz|2 dz� cint

[(
r√
t/2

)2α

Eint(z,
√

t )+ r2β
]

� cint

[(
r√
t/2

)2α(√
2t

�

)2β

Eint(1)+ r2β
]

� c
(
r

�

)2β

,

where c depends on n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖2
L2,2−2β(ΩT )

. Here we have also used (4.58) in the second

line and Eint(1) � 1 in the last line. In the remaining case
√

t/2 < r � �/6 we use the previous estimate as well as
(4.56) for z′ (note that Xz′ = 0) to infer
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−
∫
Q0
r (z)

|Du− Xz|2 dz� 2 −
∫
Q0
r (z)

|Du|2 dz+ 4 −
∫

Q√
t/2(z)

|Du|2 + |Du− Xz|2 dz

� c −
∫

Q0
3r (z

′)

|Du|2 dz+ c −
∫

Q0
3
√

t/2
(z′)

|Du|2 dz+ c
(√

t/2

�

)2β

� c
(
r

�

)2β

,

where c depends only on n,N,p, ν,L,K(1), κ1, α,β,‖gt‖2
L2,2−2β(ΩT )

. This completes the proof of (4.55) and (4.56).
Now, we can proceed completely similar to the proof of Proposition 4.7 to show that the Lebesgue representative
z 	→ Xz of Du is Hölder continuous on Q0

R(z0)∪DR(z0) which completes the proof of Proposition 4.12. �
4.2.6. Poincaré type inequality, at last

The characterization of regular initial boundary points we have proved so far is not the one stated in Theorem 1.2.
Therefore, we still have to show that Σini ⊂ (Σ1 ∪Σ2) ∩Ω0. This is a consequence of the following Poincaré type
inequality, after which, the proof of Theorem 1.2 concerning the initial boundary is complete.

Lemma 4.13. Let M > 0 and suppose that u ∈ Lp(0, T ;W 1,p(Ω;R
N)) is a weak solution of (2.6) satisfying

u(·,0) = 0 on Ω , and that the structure conditions (1.4)–(1.6) are in force. Moreover, let z0 = (x0,0) ∈ Ω0 and
� � 1 such that B�(x0) ⊂ Ω . If |(Du)0z0,�

| � M then there exists a constant c = c(n,N,L,p,M,K(1), κM+1,

‖gt‖L2,2−2β(Q+
1 )
) such that

−
∫

Q0
�(z0)

|u|p dz� c�p
((

1 +Φp−2
p

)
Φp + �pβ),

holds with Φp ≡ −∫
Q0
�(z0)

|Du− (Du)0z0,�
|p dz.

Proof. For notational convenience we omit the reference point and write B� and Q� rather than B�(x0) and Q�(z0).
As usual when proving a Poincaré type inequality for solutions of parabolic systems we will avoid the use of time
derivatives of u by proving suitable estimates for differences in time of the weighted means introduced below. Let
η ∈ C∞

0 (B�) be a non-negative weight-function satisfying 0 � η� cη, |Dη| � cη/� and −∫
B�
η dx = 1. We define the

weighted mean of u(·, t) on B� for a.e. t ∈ (0, T ) by (u)η(t)= −∫
B�
u(·, t)η dx and prove in

Step 1. For k = 0,1 and a.e. t, τ ∈ (0, �2) there holds∣∣(Dku)
η
(t)− (

Dku
)
η
(τ )

∣∣p � c�(1−k)p
((

1 +Φp−2
p

)
Φp + −

∫
Q0
�

|u|pβ dz+ �pβ
)
, (4.59)

with c= c(N,L,M,K(1), κM+1,‖gt‖L2,2−2β(Q+
1 )
).

For any i ∈ {1, . . . ,N} we take ϕ : R
n+1 → R

N with ϕi = η and ϕj = 0 for j �= i as test-function in the Steklov
formulation (2.10) of the system (2.6) and obtain for the weighted means of [ui]h (note that [u]h = ([u1]h, . . . , [uN ]h))
for a.e. t, τ ∈ (0, �2),

([ui]h)η(t)− ([ui]h)η(τ )=
t∫
τ

∂([ui]h)η
∂s

ds =
t∫
τ

−
∫
B�

〈[
ai(·, u,Du)

]
h
,Dη

〉+ [gt ]hη dx ds.

Passing to the limit h ↓ 0, enlarging the domain of integration if necessary and noting that
t∫
τ

−
∫
B

〈
ai
(
(0, t),0, (Du)0�

)
,Dη

〉
dx ds = 0,
�
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we find∣∣(ui)η(t)− (ui)η(τ )∣∣ � �2‖Dη‖∞ −
∫
Q0
�

∣∣a((x, t), u,Du)− a((0, t),0,Du)∣∣d(x, t)
+ �2‖Dη‖∞ −

∫
Q0
�

∣∣a((0, t),0,Du)− a((0, t),0, (Du)0�)∣∣d(x, t)+ �2‖η‖∞ −
∫
Q0
�

|gt |η dz

=: �2‖Dη‖∞(I1 + I2)+ �2‖η‖∞I3,

with the obvious meaning of I1–I3. We now in turn infer bounds for the terms I1, I2 and I3. To estimate I1 we use
(1.6) and the assumption |(Du)0�| �M . Then, we exploit the properties of θ , namely, for the term involving 1+Mp−1

we use (2.2) with u0 = 0 and for the term involving |Du− (Du)0�| we use that θ � 1. Proceeding this way we infer

|I1| � 2p−2L−
∫
Q0
�

θ
(|u|, �+ |u|)((1 +Mp−1)+ ∣∣Du− (Du)0�

∣∣p−1)
dz

� 2p−2L−
∫
Q0
�

(
1 +Mp−1)K(1)(�β + |u|β)+ ∣∣Du− (Du)0�

∣∣p−1
dz.

To estimate I2 we decompose Q0
� = S1 ∪ S2, where

S1 = {
z ∈Q0

�:
∣∣Du− (Du)0�

∣∣� 1
}
, S2 = {

z ∈Q0
�:

∣∣Du− (Du)0�
∣∣> 1

}
and rewrite I2 as follows

I2 = 1

|Q0
�|
∫
S1

(. . .) dz+ 1

|Q0
�|
∫
S2

(. . .) dz= 1

|Q0
�|
(I2,1 + I2,2),

with the obvious labeling of I2,1 and I2,2. For I2,1 we use (1.5) and note that |(Du)0� + s(Du− (Du)0�)| �M + 1
on S1 to obtain

I2,1 =
∫
S1

∣∣∣∣∣
1∫

0

∂wa
(
(0, t),0, (Du)0� + s(Du− (Du)0�

))(
Du− (Du)0�

)
ds

∣∣∣∣∣dz
� LκM+1

∫
S1

∣∣Du− (Du)0�
∣∣dz.

For I2,2 we use the growth condition (1.3) instead of (1.5), the assumption |(Du)0�| � M and the fact that

|Du− (Du)0�|> 1 on S2 to obtain

I2,2 � L
∫
S2

(
2 +Mp−1 + |Du|p−1)dz� 3L

(
1 +Mp−1)∫

S2

∣∣Du− (Du)0�
∣∣p−1

dz.

Finally, for I3 we obtain

|I3| � c(n)�β−1
(
�2−2β−(n+2)

∫
Q0
�

|gt |2 dz
) 1

2

� c(n)�β−1‖gt‖L2,2−2β(Q0
1)
.

Combining the previous estimates for I1, I2 and I3 and summing over i = 1, . . . ,N and applying Hölder’s inequal-
ity we arrive at
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∣∣(u)η(t)− (u)η(τ )∣∣� c�2‖Dη‖∞
((
Φ

p−2
p
p + 1

)
Φ

1
p
p + −

∫
Q0
�

|u|β dz+ �β
)

+ c�β+1‖η‖∞‖gt‖L2,2−2β(Q0
1)
,

where c = c(N,L,M,K(1), κM+1). Taking this to the power p, applying Hölder’s inequality and noting that
‖η‖∞ � cη and ‖Dη‖∞ � cη/� we infer (4.59) for the case k = 0. We get an analogous estimate for the weighted
means of Du by taking Dαη instead of η as test-function in (2.10), where α = 1, . . . , n. Indeed using integration
by parts we find that (Dαu)η(t) = −(u)Dαη(t). Replacing η with Dαη in the previous estimate and summing over
α = 1, . . . , n we obtain∣∣(Du)η(t)− (Du)η(τ )∣∣� c�2‖D2η‖∞

((
Φ

p−2
p
p + 1

)
Φ

1
p
p + −

∫
Q0
�

|u|β dz+ �β
)

+ c�β+1‖Dη‖∞‖gt‖L2,2−2β(Q0
1)
,

where c = c(n,m,N,L,M,K(1), κM+1). Noting that ‖Dη‖∞ � c/� and ‖D2η‖∞ � c/�2, we infer (4.59) also in
the case k = 1.

Step 2. Proof of the Poincaré type inequality. We fix h ∈ (0, �2). Exploiting the weighted means of uwe decompose

−
∫
Q0
�

|u|p dz� 3p−1

[
−
∫
Q0
�

∣∣u− (u)η
∣∣p dz+

∣∣∣∣∣
�2

−
∫
0

(u)η(t) dt −
h

−
∫
0

(u)η(τ ) dτ

∣∣∣∣∣
p

+
∣∣∣∣∣
h

−
∫
0

(u)η dτ

∣∣∣∣∣
p]

=: 3p−1(I + II(h) + III(h)
)
. (4.60)

For the estimate of II(h) we use (4.59) with k = 0 and Hölder’s inequality to infer

II(h) � sup
t,τ∈(0,�2)

∣∣(u)η(t)− (u)η(τ )∣∣p � c�p
((

1 +Φp−2
p

)
Φp + −

∫
Q0
�

|u|pβ dz+ �pβ
)
.

Note that the previous bound is independent of h. Passing to the limit h ↓ 0 in III(h) and exploiting our initial condition
on u we find that limh↓0 III(h) = 0. Therefore it remains to estimate I . Here, we apply Poincaré’s inequality slicewise
to (u− (u)η)(·, t) and obtain for λ ∈ (0, �2) that

I � c�p −
∫
Q0
�

|Du|p dx

� c�p
[

−
∫
Q0
�

∣∣Du− (Du)0�
∣∣p + ∣∣(Du)0� − (Du)η

∣∣p dz+
∣∣∣∣∣
�2

−
∫
0

(Du)η(t) dt −
λ

−
∫
0

(Du)η(τ ) dτ

∣∣∣∣∣
p

+
∣∣∣∣∣
λ

−
∫
0

(Du)η dτ

∣∣∣∣∣
p]

=: c(n,p)�p(I1 + I2 + I (λ)3 + I (λ)4

)
.

We now in turn infer estimates for the terms I2, I (λ)3 and I (λ)4 . We start with I2. Recalling that −∫
B�
η dx = 1 and

0 � η� cη we rewrite and estimate

I2 =
�2

−
∫
0

∣∣∣∣−∫
B�

(
(Du)0� −Du(y, τ ))η(y)dy∣∣∣∣p dτ � cη −

∫
Q0
�

∣∣Du− (Du)0�
∣∣p dz.

For the estimate of I (λ)3 we use the bound (4.59) with k = 1 and Hölder’s inequality to infer

I
(λ)
3 � sup

t,τ∈(0,�2)

∣∣(Du)η(t)−(Du)η(τ )∣∣p � c
((

1+Φp−2
p

)
Φp + −

∫
Q0

|u|pβ dz+ �pβ
)
.

�
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Note that the preceding bound is independent of λ. In I (λ)4 we want to exploit the initial condition on u. Therefore we
first integrate by parts and then pass to the limit λ ↓ 0

I
(λ)
4 =

∣∣∣∣∣
λ

−
∫
0

−
∫
B�

u(x, τ )⊗Dη(x)dx dτ
∣∣∣∣∣
p

� c�−1

λ

−
∫
0

−
∫
B�

|u|dx dτ � c�−1

(
1

λ

λ∫
0

−
∫
B�

|u|2 dx dτ
) 1

2

→ 0.

Therefore, collecting terms we conclude with the following bound for I :

I � c�p
((

1 +Φp−2
p

)
Φp + −

∫
Q0
�

|u|pβdz+ �pβ
)
.

Combining the previous estimates for I , II(h) and III(h) we obtain from (4.60):

−
∫
Q0
�

|u|p dz� c�p
((

1+Φp−2
p

)
Φp + −

∫
Q0
�

|u|pβ dz+ �pβ
)
,

where c = c(n,N,L,M,K(1), κM+1,‖gt‖L2,2−2β(Q+
1 )
). By Young’s inequality and since � � 1 we have �p|u|pβ �

1
2c |u|p + c� p

1−β � 1
2c |u|p + c�pβ . Therefore, we can absorb the term involving u on the left-hand side in the standard

way and end up the asserted Poincaré type inequality. �
This finishes the proof of the characterization of regular initial boundary points. Finally, we consider the remaining

configuration, namely points lying on the edge ∂Ω × {0}.

4.3. Regular points on the edge

Here we will prove the characterization of regular edge-points in the model situation (2.7) on Q∗
1 which was

explained in Section 2.1. The statement of the main Theorem 1.2 concerning edge-points is therefore equivalent with
Proposition 4.18 which deals with edge-points z0 = (x′

0,0,0) ∈ Γ1 ∩ D1, with x′
0 ∈ R

n−1 of Q∗
1. Note that in the

edge-situation we can decide whether we proceed similar to the lateral or initial boundary. We will choose the second
one, since it seems slightly more convenient.

4.3.1. A-caloric approximation
As in the preceding sections we shall need a version of the lemma ofA-caloric approximation for the edge-situation.

Since the arguments are clear by now, we only state the result. Indeed, the only difference in the present situation is
that we have to identify the zero trace of the limit function v found in (4.51) on both parts of the boundary, i.e. on Γ 0

1
and D+

1 . The first one follows from the trace theorem (as in the proof of Lemma 4.1) whereas the second one follows
by the argument after (4.52) in the proof of Lemma 4.8.

Lemma 4.14. Given ε > 0, 0< ν � L and p � 2 there exists a positive function δ = δ(n,p, ν,L, ε) ∈ (0,1] with the
following property: whenever A is a bilinear form on R

Nn which is strongly elliptic with ellipticity constant ν > 0 and
upper bound L, i.e.

ν|w|2 � 〈Aw,w〉 and 〈Aw, w̃〉 � L|w||w̃|
holds whenever w, w̃ ∈ R

Nn and u ∈ Lp(Λ0
�2(t0);W 1,p(B+

� (x0),R
N)) with u ≡ 0 on Γ 0

� (z0) ∪ D+
� (z0) with z0 ∈

Γ1 ∩D1 and

−
∫

Q∗
�(z0)

|Du|2 + γ p−2|Du|p dz� 1,

where 0< γ � 1, is approximately A-caloric in the sense that
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∣∣∣∣ −
∫

Q∗
�(z0)

u · ϕt − 〈ADu,Dϕ〉dz
∣∣∣∣� δ sup

Q∗
�(z0)

|Dϕ| for every ϕ ∈C∞
0

(
Q∗
�(z0);R

N
)
,

then there exists an A-caloric map h ∈Lp(Λ0
(�/2)2

(t0);W 1,p(B+
�/2(x0);R

N)), i.e.∫
Q∗
�/2(z0)

h · ϕt − 〈ADh,Dϕ〉dz= 0 for every ϕ ∈C∞
0

(
Q∗
�/2(z0);R

N
)
,

with h≡ 0 on Γ 0
�/2(z0)∪D+

�/2(z0) satisfying

−
∫

Q∗
�/2(z0)

|Dh|2 + γ p−2|Dh|p dz� 2 · 2n+2

and

−
∫

Q∗
�/2(z0)

∣∣∣∣u− h
�/2

∣∣∣∣2 + γ p−2
∣∣∣∣u− h
�/2

∣∣∣∣p dz� ε.

4.3.2. Caccioppoli inequality
Since the proof of the Caccioppoli inequality in the edge-situation is performed by a combination of the arguments

for the lateral and the initial boundary situation we shall omit it and only state the result.

Lemma 4.15. Suppose that u ∈ Lp(Λ0
1;W 1,p(B+

1 ;R
N)) is a weak solution of the non-linear parabolic system (2.7)

with u = 0 on Γ 0
1 ∪ D+

1 , where the structure conditions (1.4)–(1.6) are in force. Then, for any z0 ∈ Γ1 ∩ D1 and
� ∈ (0,1) such that Q�(z0)⊂Q1 there holds

−
∫

Q∗
�/2(z0)

|Du|2 + |Du|p dz� cCac

(
−
∫

Q∗
�(z0)

∣∣∣∣u�
∣∣∣∣2 +

∣∣∣∣u�
∣∣∣∣p dz+ �2β

)
,

where cCac = (1 + ‖gt‖2
L2,2−2β(Q∗

1)
)c(n,p,L/ν,M,H(M),κM+1).

4.3.3. Linearization
Here we state a version of the linearization lemma which is applicable in the edge. Since the proof is completely

similar to the one of Lemma 4.3 for the initial boundary situation we shall omit it and only state the result. Indeed,
since the test-function has compact support in the domain of integration we do not reach the boundary and therefore
the proof can be completely adopted.

For s � 1, z0 ∈ Γ1 ∩D1 and a parabolic cylinder Q�(z0)⊂Q1 we define the edge-point excess functionals by

φ∗
s (z0, �) := −

∫
Q∗
�(z0)

|Du|s dz, ψ∗
s (z0, �) := −

∫
Q∗
�(z0)

∣∣∣∣u�
∣∣∣∣s dz,

and we shall often abbreviate

φ∗
s = φ∗

s (z0, �) and ψ∗
s =ψ∗

s (z0, �).

Lemma 4.16. Suppose that u ∈ Lp(Λ0
1;W 1,p(B+

1 ;R
N)) is a weak solution of (2.7) satisfying u = 0 on Γ 0

1 ∪D+
1 ,

where the structure conditions (1.4)–(1.6) are in force. Then we have∣∣∣∣ −
∫

Q∗
�(z0)

u · ϕt −
〈
∂wa(z0,0,0)Du,Dϕ

〉
dz

∣∣∣∣
� cEu

[
ω1
(
φ∗
p + �p)√φ∗

2 + φ∗
p +ψ∗

2 + �β(φ∗
p

)1− 1
p
(
1 + (

ψ∗
p

) β
p
)+ �β] sup

Q∗(z0)

|Dϕ|

�
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for any ϕ ∈ C∞
0 (Q

∗
�(z0);R

N), z0 ∈ Γ1 ∩D1 and Q�(z0)⊂Q1. The constant cEu is of the form

cEu = L(1 + ‖gt‖L2,2−2β(Q∗
1)

)
c
(
n,p,M,K(1), κM+1

)
.

4.3.4. A decay estimate at the edge
Having all the prerequisites at hand, we can now use Lemmas 4.14–4.16 to prove an excess-decay estimate valid

for edge-points z0 ∈ Γ1 ∩D1. Since the first two steps of the proof, i.e. the application of the A-caloric approximation
lemma and the iteration are completely similar to the proof of Lemma 4.11 for the initial boundary situation we shall
omit the proof and only state the result, i.e. the analogue of Lemma 4.11. We first define the following edge-point
excess functional

Eed ≡Eed(z0, �) := −
∫

Q∗
�(z0)

∣∣∣∣u�
∣∣∣∣2 +

∣∣∣∣u�
∣∣∣∣p dz

for z0 ∈ Γ1 ∩D1 and Ẽed = Ẽed(z0, �)=Eed(z0, �)+ �2β.

Lemma 4.17. Given α ∈ (β,1), there exist constants ϑ ∈ (0, 1
4 ], Eed ∈ (0,1], �ed > 0 and c4 depending on

n,N,p, ν,L,K(1), κ1, α,β,‖gt‖L2,2−2β(Q∗
1)

such that the following holds. Suppose that u ∈ Lp(Λ0
1;W 1,p(B+

1 ;R
N))

is a weak solution of (2.7) satisfying u(·,0)= 0 on Γ 0
1 ∪D+

1 , where the structure conditions (1.4)–(1.6) are in force
and suppose that

(i) �� �ed,

(ii) Ẽed(�)� Eed

are fulfilled on some cylinder Q∗
�(z0) with z0 ∈ Γ1 ∩D1 and Q�(z0)⊂Q1. Then for any 0< r � �/2 we have

−
∫

Q∗
r (z0)

∣∣∣∣ur
∣∣∣∣2 +

∣∣∣∣ur
∣∣∣∣p dz+ −

∫
Q∗
r (z0)

|Du|2 + |Du|p dz� ced

[(
r

�

)2α

Eed(�)+ r2β
]
,

where the constant ced depends on n,N,p, ν,L,K(1), κ1, α,β,‖gt‖L2,2−2β(Q∗
1)

. In particular this estimate implies

Xz0 := lim
j→∞(Du)

∗
z0,ϑ

j �
= 0.

4.3.5. Description of regular edge-points
Now we come to the most interesting part concerning the proof of the characterization of regular edge-points.

Indeed, when considering the neighborhood of an edge-point we have to take into account all four possible configu-
rations, namely the edge and interior situation and the lateral and initial boundary situation. This is performed in the
following

Proposition 4.18. Suppose that u ∈Lp(Λ0
1;W 1,p(B+

1 ;R
N)) with u(·,0)= 0 on Γ 0

1 ∪D+
1 is a weak solution of (2.7)

where the structure conditions (1.4)–(1.6) are in force. Then, for any z0 ∈ (Γ1 ∩D1)\Σed there exists a neighborhood
Uz0 such that

Du ∈ Cβ, β2 (Uz0 ∩Q∗
1;R

Nn
)
,

where

Σed :=
{
z0 ∈ Γ1 ∩D1: lim inf

�↓0
�−p −

∫
Q∗
�(z0)

|u|p dz > 0

}
.

Proof. First of all we recall the definition of the constants �ed,Eed, ced, �ini,Eini, cini, �lat = �lat(1), Elat = Elat(1),
clat = clat(1), �int = �int(1), Eint = Eint(1) and cint = cint(1) from Lemmas 4.17, 4.11, 4.5 and 4.6, respectively for the
choice M = 1. For z0 ∈ (Γ1 ∩D1) \Σed we can find 0< �� min{�ed, �ini, �lat, �int} with Q∗ (z0)⊂Q∗ such that
2� 1
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Ẽed(z0, �) <
1

2

(
c5 max{ced, cini, clat, cint}

)−2 min{Eed,Eini,Elat,Eint} (4.61)

where we have defined c5 = 22n32p(n+3)p . Since Γ1 ∩D1 � z 	→ Ẽed(z, �) is continuous with respect to the center z,
there exists a radius 0<R � �/12 such that

Ẽed(z, �) <
(
c5 max{ced, cini, clat, cint}

)−2 min{Eed,Eini,Elat,Eint} (4.62)

for all z ∈ ΓR(z0)∩DR(z0). Moreover, due to the choice R � �/12 and the inclusionQ∗
2�(z0)⊂Q∗

1 we haveQ∗
�(z)⊂

Q∗
2�(z0)⊂Q∗

1.
Now, given α ∈ (β,1) we choose ϑ in dependence of n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖L2,2−2β(Q∗

1)
to be the

constant from Lemma 4.11. Without loss of generality we can assume that the constant ϑ appearing in Proposition 4.6
(with the choice M = 1) is equal to the ones from Lemmas 4.5, 4.11 and 4.17. In the following we will show that for
all z ∈Q∗

R(z0)∪ Γ 0
R(z0)∪D+

R (z0)∪ (ΓR(z0)∩DR(z0)) the limit

Xz := lim
j→∞(Du)

∗
z,ϑj �

(4.63)

exists and that

−
∫
Q∗
r (z)

|Du− Xz|2 dz� c
(
r

�

)2β

, (4.64)

for all 0< r � �/6 and with a constant c depending on n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖L2,2−2β(Q∗
1)

. For this we

will distinguish between the cases z ∈ ΓR(z0)∩DR(z0), z ∈D+
R (z0), z ∈ Γ 0

R(z0) and z ∈Q∗
R(z0).

In the first case, i.e. the case z ∈ ΓR(z0)∩DR(z0), we see that by (4.62) the hypotheses of Lemma 4.17 are fulfilled
so that the application of the lemma yields that

Xz = lim
j→∞(Du)

∗
z,ϑj �

= 0.

Moreover, for 0< r � �/2 we have

−
∫
Q∗
r (z)

∣∣∣∣ur
∣∣∣∣2 +

∣∣∣∣ur
∣∣∣∣p + |Du|2 + |Du|p dz� ced

[(
r

�

)2α

Eed(z, �)+ r2β
]

� ced

(
r

�

)2β

Ẽed(z, �)

� c
(
r

�

)2β

, (4.65)

where c depends on n,N,p, ν,L,K(1), κ1, α,β,‖gt‖L2,2−2β(Q∗
1)

. Here we have used in the last line the bound (4.62)

for Ẽed(z, �). Hence, (4.63) and (4.64) are valid with Xz = 0.
In the second case, i.e. the case z ∈ D+

R (z0), we want to apply Lemma 4.11 and therefore first have to ensure
that the hypothesis are satisfied. By z′ = (x1, . . . , xn−1,0,0) we denote the projection of z = (x1, . . . , xn−1, xn,0) onto
Γ1 ∩D1. At this stage we recall that Qxn(z) ⊂Q∗

2xn
(z′) which allows us to enlarge the domain of integration from

Qxn(z) toQ∗
2xn
(z′). Now, since z′ ∈ ΓR(z0)∩DR(z0) we can use the results from the first case with center z′ obtaining

that the limit Xz′ := limj→∞(Du)∗z′,ϑj � = 0 exists and, moreover, that (4.65) holds with z′ instead of z. Therefore,

using (4.65) with (z′,2xn, �) instead of (z, r, �), the fact that 2xn � 2R � �/2 and (4.62) we infer

Ẽini(z, xn)� 2n+2+p
(

−
∫

Q∗
2xn
(z′)

∣∣∣∣ u2xn

∣∣∣∣2 +
∣∣∣∣ u2xn

∣∣∣∣p dz+ (2xn)
2β
)

� 2n+2+pced

(
2xn

�/2

)2β

Ẽed(z
′, �)

�
(

2xn
)2β

Eini. (4.66)

�/2
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Note that the last inequality holds since 2n+2+p � c5 which was defined in (4.61). Since 2xn � 2R � �/2 this implies
in particular that Ẽini(z, xn) � Eini. Therefore, the hypotheses of Lemma 4.11 are satisfied and the application with
(z, r, xn) instead of (z0, r, �) allows us to conclude on the one hand that the limit in (4.63) exists and, on the other
hand, that for any 0< r � xn/2 there holds

−
∫
Q0
r (z)

|Du− Xz|2 dz� cini

[(
r

xn/2

)2α

Eini(z, xn)+ r2β
]

� cini

[(
r

xn/2

)2α(2xn

�

)2β

Eini + r2β
]

� c
(
r

�

)2β

,

where c depends on n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖L2,2−2β(Q∗
1)

. Here we have also used (4.66) and Eini � 1 in
the last line. In the remaining case xn/2 < r � �/6 we use the previous estimate as well as (4.64) for z′ (note that
Xz′ = 0) to infer

−
∫
Q∗
r (z)

|Du− Xz|2 dz� 2 −
∫
Q∗
r (z)

|Du|2 dz+ 4 −
∫

Q0
xn/2

(z)

|Du|2 + |Du− Xz|2 dz

� c −
∫

Q∗
3r (z

′)

|Du|2 dz+ c −
∫

Q∗
3xn/2

(z′)

|Du|2 dz+ c
(

xn/2

�

)2β

� c
(
r

�

)2β

,

where c depends only on n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖L2,2−2β(Q∗
1)

. This completes the proof of (4.63) and

(4.64) in the case z ∈D+
R (z0).

In the case z ∈ Γ 0
R(z0)we want to apply Lemma 4.5. As in the last case we first will ensure that the hypotheses of the

lemma are satisfied. By z′ = (x1, . . . , xn−1,0,0)we again denote the projection of z = (x1, . . . , xn−1,0, t) onto Γ1 ∩D1.
From (4.19) we recall that ξ

z,
√

t
= n+2

t
−∫
Q+√

t
(z)
uxn dz denotes the vector minimizing ξ 	→ ∫

Q+√
t
(z)

|u− ξxn|2 dz. By

the use of the minimizing property of ξ
z,

√
t

we therefore find

−
∫

Q+√
t
(z)

∣∣∣∣u− ξ
z,

√
t
xn√

t

∣∣∣∣2 dz� −
∫

Q+√
t
(z)

∣∣∣∣ u√
t

∣∣∣∣2 dz.
Furthermore, we recall that ξ (p)

z,
√

t
denotes the vector minimizing ξ 	→ ∫

Q+√
t
(z)

|u− ξxn|p dz. By the use of Lemma 2.2

and the minimizing property of ξ (p)z,xn we therefore find

−
∫

Q+√
t
(z)

∣∣∣∣u− ξ
z,

√
t
xn√

t

∣∣∣∣p dz� 2p−1
(

−
∫

Q+√
t
(z)

∣∣∣∣ u√
t

∣∣∣∣p dz+ ∣∣ξ (p)z,xn − ξ
z,

√
t

∣∣p)� 2p(n+ 2)p −
∫

Q√
t
(z)

∣∣∣∣ u√
t

∣∣∣∣p dz.
At this stage we recall that Q+√

t
(z)⊂Q∗√

2t
(z′) which allows us to enlarge the domain of integration from Q+√

t
(z) to

Q∗√
2t
(z′). Since z′ ∈ ΓR(z0)∩DR(z0) we can use the results from the first case with center z′ obtaining that the limit

Xz′ := limj→∞(Du)∗z′,ϑj � = 0 exists and, moreover, that (4.65) holds with z′ instead of z. Combining the previous

estimates and using (4.65) with (z′,
√

2t, �) instead of (z, r, �), the fact that
√

2t � 2R � �/2 and (4.62) we infer
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Ẽlat(z,
√

t)� 2p(n+ 2)p −
∫

Q+√
t
(z)

∣∣∣∣ u√
t

∣∣∣∣2 +
∣∣∣∣ u√

t

∣∣∣∣p dz+ √
t
2β

� 2n+2p(n+ 2)p
(

−
∫

Q∗√
2t
(z′)

∣∣∣∣ u√2t

∣∣∣∣2 +
∣∣∣∣ u√2t

∣∣∣∣p dz+ √
2t

2β
)

� 2n+2p(n+ 2)pced

(√
2t

�

)2β

Ẽed(z
′, �)

�
(√

2t

�

)2β

Elat, (4.67)

where we have abbreviated Ẽlat(z,
√

t)= Ẽlat(z,
√

t, ξ
z,

√
t
). Note that the last inequality holds since 2n+2p(n+ 2)p �

c5 which was defined in (4.53). Since
√

2t � 2R � �/2 this implies in particular that Ẽlat(z,
√

t)� Elat. Next, we will
infer a bound for |ξ

z,
√

t
|. Enlarging the domain of integration from Q+√

t
(z) to Q∗√

2t
(z′), using Hölder’s inequality,

(4.65) and (4.62) we infer with c̃= 2n+1(n+ 2) (note also that Elat � 1 and
√

2t � 1),

|ξ
z,

√
t
| � 2n+1 n+ 2√

2t
−
∫

Q∗√
2t
(z′)

|u|dz� c̃
(
ced

(√
2t

�

)2β

Ẽed(z
′, �)

) 1
2

� c̃c−
1
2

5 � 1.

Here, in the last line we have also used the fact that c̃2 � c5 by the choice of c5 in (4.61). Hence, by the preceding
estimate and (4.67) the hypotheses of Lemma 4.5 are satisfied. Therefore the lemma can be applied with (z, r,

√
t,1)

instead of (z0, r, �,M) to conclude on the one hand that the limit in (4.63) exists and, on the other hand, that for any
0< r �

√
t/2 there holds

−
∫
Q+
r (z)

|Du− Xz|2 dz� clat

[(
r√
t/2

)2α

Elat(z,
√

t )+ r2β
]

� clat

[(
r√
t/2

)2α(√
2t

�/2

)2β

Elat + r2β
]

� c
(
r

�

)2β

,

where c depends on n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖L2,2−2β(Q∗
1)

. Here we have also used (4.67) and Eed � 1 in

the last line. In the remaining case
√

t/2 < r � �/6 we use the previous estimate as well as (4.64) for z′ (note that
Xz′ = 0) to infer

−
∫
Q∗
r (z)

|Du− Xz|2 dz� 2 −
∫
Q∗
r (z)

|Du|2 dz+ 4 −
∫

Q+√
t/2
(z)

|Du|2 + |Du− Xz|2 dz

� c −
∫

Q∗
3r (z

′)

|Du|2 dz+ c −
∫

Q∗
3
√

t/2
(z′)

|Du|2 dz+ c
(√

t/2

�

)2β

� c
(
r

�

)2β

,

where c depends only on n,N,p, ν,L,K(1), κ1, α,β and ‖gt‖L2,2−2β(Q∗
1)

. This completes the proof of (4.63) and
(4.64) in the case z ∈ ΓR(z0).

Finally, we come to the remaining case z ∈Q∗
R(z0). Here we can revert to the proofs of Proposition 4.7 and 4.12.

To this aim we write z = (x′, xn, t) and distinguish the cases whether
√

t � xn or xn <
√

t. In the first case, i.e. when
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√
t � xn, then we denote by z′ = (x′, xn,0) the projection of z onto D+

1 . Then, we have z ∈Q0√
t
(z′) and z′ ∈D+

R (z0).
Moreover, combining the second last estimate of (4.66) with (4.62) and taking also into account the definition of c5,
we obtain

Ẽini(z
′, xn)� (c5cini)

−1 min{Eini,Eint}.
Therefore, (4.54) from the proof of Lemma 4.11 is satisfied for (z′, xn) instead of (z0, �). This allows us to apply the
arguments from the proof of Lemma 4.11 and conclude (4.63) and (4.64).

In the second case, i.e. when xn <
√

t we denote by z′ = (x′,0, t) the projection of z onto Γ 0
1 . Now, we have

z ∈ Q+
xn
(z′) and z′ ∈ Γ 0

R(z0). As before, we combine the second last estimate of (4.67) and (4.62) and recall the
definition of c5 to find that

Ẽlat(z
′,

√
t )� (c5clat)

−1 min{Elat,Eint}.
Moreover due to (4.68) we also know that |ξ

z′,
√

t
| � 1. Therefore, (4.38) and (4.39) from the proof of Proposition 4.7

are satisfied for (z′,
√

t,1,1) instead of (z0, �,M1,M2). This allows us to apply the arguments from there to deduce
(4.63) and (4.64) also in this case. Since now we have treated all the possible cases, this finally finishes the proof of
the lemma. �

At this stage the same comment we made at the beginning of Section 4.2.6 in the initial boundary situation applies.
More precisely, in Lemma 4.17 we indeed proved that the set of singular edge-points is contained in Σed. But this is
not the characterization we stated in Theorem 1.2. Therefore, it remains to show that Σed ⊂ (Σ1 ∪Σ2) ∩Ω0. But
this follows from a version of the Poincaré type inequality in Proposition 4.12 for the edge-point situation. Indeed,
by a different choice of the weight-function η in the proof of Lemma 4.13 such that sptη is now contained in B+

�

instead of B� the proof can be adopted line by line. Finally, let us note that it could also be slightly simplified in some
points since in the edge-point situation we are allowed to apply the Poincaré inequality from Lemma 2.3. For the sake
of brevity we shall not repeat the proof here. Therefore, using the edge-point version of Lemma 4.13 we now have
completed the proof of Theorem 1.2 concerning the remaining edge-point situation.

As explained above the proof of Theorem 1.2 is now complete; as mentioned at the beginning of the paper, in a
forthcoming sequel [6] we shall provide estimates ensuring that the boundary regularity criterium found applies at
almost every boundary point.

Acknowledgements

This work is supported by the ERC grant 207573 “Vectorial Problems”.

References

[1] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007) 285–320.
[2] E. Acerbi, G. Mingione, G.A. Seregin, Regularity results for parabolic systems related to a class of non-newtonian fluids, Ann. Inst. H.

Poincaré Anal. Non Linéaire 21 (2004) 25–60.
[3] A.A. Arkhipova, On a partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth, Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 249 (5) (1997) 20–39.
[4] L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: The subquadratic case, Manuscripta Math. 123 (4) (2007) 453–491.
[5] V. Bögelein, Partial regularity and singular sets of solutions of higher order parabolic systems, Ann. Mat. Pura Appl. (4) 188 (2009) 61–122.
[6] V. Bögelein, F. Duzaar, G. Mingione, The boundary regularity of non-linear parabolic systems II, Ann. Inst. H. Poincaré Anal. Non

Linéaire 27 (1) (2010) 145–200 (in this issue).
[7] S. Campanato, Equazioni paraboliche del secondo ordine e spazi L2,θ (Ω, δ), Ann. Mat. Pura Appl. (4) 73 (1966) 55–102.
[8] S. Campanato, On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann.

Mat. Pura Appl. (4) 137 (1984) 83–122.
[9] E. De Giorgi, Frontiere orientate di misura minima, Sem. Scuola Normale Superiore, Pisa, 1960–1961.

[10] E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellitico, Boll. Unione Mat. Ital. 4 (1968) 135–137.
[11] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.
[12] Y.Z. Chen, E. DiBenedetto, Boundary estimates for solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 395 (1989)

102–131.
[13] F. Duzaar, A. Gastel, G. Mingione, Elliptic systems, singular sets and Dini continuity, Comm. Partial Differential Equations 29 (2004) 1215–

1240.



V. Bögelein et al. / Ann. I. H. Poincaré – AN 27 (2010) 201–255 255
[14] F. Duzaar, J.F. Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of a-harmonic approximation,
Manuscripta Math. 103 (2000) 267–298.

[15] F. Duzaar, J.F. Grotowski, M. Kronz, Partial and full boundary regularity for minimizers of functionals with nonquadratic growth, J. Convex
Anal. 11 (2004) 437–476.

[16] F. Duzaar, J. Kristensen, G. Mingione, The existence of regular boundary points for non-linear elliptic systems, J. Reine Angew. Math. 602
(2007) 17–58.

[17] F. Duzaar, G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var. Partial Differential Equations 20
(2004) 235–256.

[18] F. Duzaar, G. Mingione, Second order parabolic systems, optimal regularity, and singular sets of solutions, Ann. Inst. H. Poincaré Anal. Non
Linéaire 22 (2005) 705–751.

[19] F. Duzaar, G. Mingione, Harmonic type approximation lemmas, J. Math. Anal. Appl. 352 (2009) 301–335.
[20] F. Duzaar, G. Mingione, K. Steffen, Parabolic systems with polynomial growth and regularity, Mem. Amer. Math. Soc., in press.
[21] F.G. Duzaar, K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew.

Math. 546 (2002).
[22] M. Giaquinta, A counter-example to the boundary regularity of solutions to quasilinear systems, Manuscripta Math. 24 (1978) 217–220.
[23] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ, 1983.
[24] M. Giaquinta, G. Modica, Local existence for quasilinear parabolic systems under nonlinear boundary conditions, Ann. Mat. Pura Appl.

(4) 149 (1987) 41–59.
[25] J. Grotowski, Boundary regularity results for non-linear elliptic systems in divergence form, Habilitationsschrift, 2000.
[26] J. Grotowski, Boundary regularity for nonlinear elliptic systems, Calc. Var. Partial Differential Equations 15 (2002) 353–388.
[27] J. Kristensen, G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal. 180 (2006) 331–398.
[28] J. Kristensen, G. Mingione, Boundary regularity in variational problems, in press.
[29] J. Kristensen, G. Mingione, Boundary regularity of minima, Rend. Lincei Mat. Appl. 19 (2008) 265–277.
[30] M. Kronz, Quasimonotone systems of higher order, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003) 459–480.
[31] G. Mingione, The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal. 166 (2003) 287–301.
[32] G. Mingione, Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differential Equations 18 (2003) 373–

400.
[33] G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006) 355–425.
[34] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4) 146 (1987) 65–96.
[35] L. Simon, Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures Math. ETH Zürich, Birkhäuser, Basel, 1996.
[36] J. Stará, O. John, J. Malý, Counterexamples to the regularity of weak solutions of the quasilinear parabolic system, Comment. Math. Univ.

Carolin. 27 (1986) 123–136.


	The boundary regularity of non-linear parabolic systems I
	Introduction and results
	Notation and preliminary material
	Transformation to the model situation
	Steklov averages
	Preliminary lemmas

	Linear parabolic systems
	Regularity up to the lateral boundary
	Regularity up to the initial boundary
	Regularity up to the edge

	Characterization of regular boundary points
	Regular points on the lateral boundary
	A-caloric approximation
	Caccioppoli inequality
	Linearization
	A decay estimate at the lateral boundary
	Iteration
	Description of regular lateral boundary points

	Regular points on the initial boundary
	A-caloric approximation
	Caccioppoli inequality
	Linearization
	A decay estimate at the initial boundary
	Description of regular initial boundary points
	Poincaré type inequality, at last

	Regular points on the edge
	A-caloric approximation
	Caccioppoli inequality
	Linearization
	A decay estimate at the edge
	Description of regular edge-points


	Acknowledgements
	References


