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Abstract

This is the first part of a work aimed at establishing that for solutions to Cauchy-Dirichlet problems involving general non-linear
systems of parabolic type, almost every parabolic boundary point is a Holder continuity point for the spatial gradient of solutions.
Here we develop the basic necessary and sufficient condition for establishing the regular nature of a boundary point.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Contents
1. Introduction and reSUlLS . . . . . . . o 201
2. Notation and preliminary material . . . . . .. ... ... 205
3. Linear paraboliC SYSIEINS . . . . . . ottt et e e e e e e e 210
4.  Characterization of regular boundary points . . . . . ... .. .. 214
Acknowledgements . . . . . . ..o 254
References . . . . .o 254

1. Introduction and results

This is the first of a series of papers devoted to study in a complete and systematic way the up to the boundary
regularity of general non-linear parabolic systems. In this part we shall provide a regularity condition ensuring that
a boundary point is regular, that is, the spatial gradient of the solutions is Holder continuous in a relative neighbor-
hood of such a point. In the next part [6] we shall derive further global regularity properties of the gradient ensuring
that such a regularity condition is satisfied at almost every boundary point with respect to the usual boundary surface
measure. As a consequence, we obtain the basic result asserting that in the case of Cauchy—Dirichlet problems involv-
ing parabolic systems with linear growth, almost every boundary point is regular, with respect to the usual surface
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measure of the parabolic boundary, that is, the interior partial regularity extends up to the boundary. To measure
the progress yielded by this result we recall that while the existence of boundary irregular points is known already in
the elliptic case [22], and assuming smooth boundary data, the existence of even one regular boundary point was an
open problem when considering general non-linear parabolic systems. We recall that the corresponding interior partial
regularity statement has been obtained in [20], while the C%® full boundary regularity has been obtained for systems
with special, almost diagonal structure, i.e. p-Laplacian type systems [11].

In this first paper we study the regularity properties at the parabolic boundary of weak solutions to a non-linear
parabolic system with polynomial p-growth, p > 2; the case of linear growth systems p = 2 appears therefore as a
particular case. To be more precise we are dealing with systems of the following type

{u, —diva(z,u, Du) =0 in 27,

(1.1)
u=g on dpS2r,

under natural p-growth and ellipticity assumptions on the vector field a : 27 x RY x RV — RN", The parabolic
system will be considered in a cylindrical domain

Rr=82x(0,T),

where 2 C R", n > 2 is a bounded domain in R" and T > 0 whose parabolic boundary consisting of the lateral and
initial boundary and the edge-points will be denoted by

opR2r = (8[2 x (0, T)) U (.{2 X {0}) U (8!2 X {O}).
In the sequel we will specify our assumptions imposed on the vector field a, the continuous boundary datum g and
the boundary 9£2 of the domain §2 when presenting the various results. The notion of a weak solution of (1.1) is
Definition 1.1. Amapu € L?(0, T; WP (2, RV)) is called a (weak) solution to (1.1) if and only if

/ u-@r— (a(z, u, Du), D(p)dz =0

Qr

holds for every test-function ¢ € Cgo(.QT, RY), and the following boundary conditions holds:

(1) — g0y e WyP (2;RY) forae.re(0,T)

and

1

h

. 2

}ll?&Z//|u(x,t)—g(x,O)| dxdt=0. (1.2)
0 2

Here we assume that the vector field a : 27 x RY x R¥ — RN fulfills the standard p-growth and ellipticity
conditions; i.e. we shall assume that (z, u, w) — a(z,u, w) and (z, u, w) — dya(z, u, w) are continuous in 27 X
RY x RN and that

|la(z, u, w)| <L(1+ |w|P™"), (1.3)
(Bwa(z, u, w)B, @) > v(1 + [w|?~2)|@]?, (1.4)

for every choice of z = (x,f1) € 27, u € RY and w, @ € RM¥". The structure constants will satisfy (unless otherwise
stated)

p=22, O0<v<<I<KL<oo.

Furthermore, we shall assume that d,,a is — not necessarily uniformly — bounded. More precisely, we assume that for
given M > 0 there exists ks, such that

|dwa(z, u, w)| < Liy, (1.5)



V. Bogelein et al. / Ann. 1. H. Poincaré — AN 27 (2010) 201-255 203

for all z € 27, u € RN and w € RV” such that |u| 4+ |w| < M. With respect to the variables (x, u) we will impose a
Holder continuity assumption on the vector field a. To be precise, we assume that

a(x,t,u,w)

e =

is Holder continuous with Holder exponent g € (0, 1), that is we assume

lax, t,u, w) — a(xo, t, ug, w)| < LO(Jul + |uol, |x—xol + lu—uol) (1 + |w|P~1), (1.6)

for every choice of x, xo € 2,1 € (0, T), u, up € RN and w € RV, where

0(y,s) =min{1, K (y)s”},

and K : [0, 00) — [1, 00) is a given non-decreasing function. Concerning the regularity of the lateral boundary and
the Dirichlet boundary values, i.e. of 052 and g, we shall assume that g : 27 — R is a continuous function such that

a2isCchP, Dg e CPO(2 x [0, T); RM"), dg e L*F (2 RY). (1.7)

The definition of Morrey spaces of the type L>2~2# is given in Definition 2.1 below.

Concerning the interior situation there are very recent results providing a good understanding of the regularity
properties of weak solutions to non-linear parabolic systems of the type considered in (1.1). Under the assumptions
explained before it is known that the space derivative Du of a weak solution u is Holder continuous with respect to
the parabolic metric with Holder exponent 8 in a set of full Lebesgue measure [2,5,8,18,20]. Moreover, the size of
the so-called singular set, i.e. the set on which Du is not Holder continuous, can be further estimated in terms of the
parabolic Hausdorff dimension. On the other hand, several counter-examples [10,22,36] illustrate that singularities
might occur and therefore everywhere regularity cannot be achieved for non-linear parabolic systems. For results of
partial regularity in the elliptic case we refer to the classical book [23] and the more recent survey paper [33]; for
singular sets estimates we refer also to [31,33] as far as systems are concerned, and to [27] for the variational case.

In spite of such a more or less complete picture in the interior, for general non-linear parabolic systems the reg-
ularity theory at the parabolic boundary is widely open. Only a few results for special types of parabolic systems
are known. In [12] DiBenedetto proved for p-Laplacian type systems global Holder continuity of u. Moreover, for
homogeneous Dirichlet data, i.e. g = 0, the Holder continuity of Du up to the boundary was shown. For general
Dirichlet data partial Holder continuity of u# up to the boundary was established for quasilinear parabolic systems
by Arkhipova, [3]. In contrary to the parabolic case, the boundary regularity for general elliptic systems was treated
recently in [15,16,25,26,28,29].

The main result of this paper gives a precise extension of the interior regularity criterion for weak solutions of
non-linear parabolic systems with p-growth proved in [20] to the boundary case. For the sake of simplicity we shall
restrict our attention to the case of homogeneous systems of the type (1.1). The non-homogeneous case is treatable
with a few extensions of the techniques hereby introduced. Our result provides a characterization of regular boundary
points, i.e. the set of boundary points where Du is continuous. For its formulation it is convenient to introduce the set
of regular boundary points

Regpu = {zO € 0pf2r: Du € CO(U N 27; RN") for some neighborhood U of zO}.

Theorem 1.2. Let u € LP(0, T; WHP(82; RN)) be a weak solution of the non-linear parabolic system (1.1) in Q7
under the assumptions (1.4)—(1.7). Then, there holds

27 \Regpu c ¥ :=x'ux?
where

1_ T N _ p
XY = {z() € 0p82r: hglﬁ)nf ][ ‘D(u g) (D(u g))QrﬁQg(zo)‘ dz > O}
27N Q0(20)
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and

= {Zo € dpS27: limsup|(D(u—g))

(000,001 =]

Furthermore, if zo € Regp u then Du € Cﬁ'g(U N 27 RN for some neighborhood U of 7.

Let us mention that near the initial boundary it would be enough to assume (1.7), rather than (1.7);—(1.7)3, as
explained in Section 2.1. Moreover, taking into account the assumption (1.7); it is clear that we could also have
omited the presence of g in the definition of the singular sets X! and X2 without changing them.

The previous result means in particular that in a neighborhood of a point zg € Regp u the spatial derivative Du is
Holder continuous up to the parabolic boundary with respect to the standard parabolic metric given by

dp(z, 20) = max{|x — xol, /It —t0] } = \/Ix —xol? + It —10l, (1.8)

z=(x,1), z0 = (x0, 19) € R"*!. For the proof of Theorem 1.2 we will separately treat the lateral boundary 0427 =
082 x (0, T) (see Section 4.1), the initial boundary £29 = £2 x {0} (see Section 4.2) and the edge-points 92 x {0} (see
Section 4.3). Thereby we shall carry out much more detailed the proof for the lateral boundary situation since this is
the most interesting and also most difficult one. Note that the set of edge-points already has the parabolic Hausdorff
dimension n — 1 and therefore does not play any role in our dimension reduction results presented in [6], and in
particular in the proof of the almost everywhere boundary regularity of solutions: the parabolic Hausdorff dimension
of 082 x {0} is already strictly smaller than the one of the parabolic boundary dp $27. Nevertheless, in order to give a
complete characterization of regular boundary points, we included also the treatment of edge-points.

One of the ingredients of the proof of Theorem 1.2 is a suitable boundary version of the method of A-caloric
approximation which was introduced in [18] to treat the interior regularity problem for non-linear parabolic systems
with quadratic growth, i.e. the case p =2, and later extended to the case of systems with polynomial growth p > 2
[20,19,18,17]. Originally, this technique was used in the setting of geometric measure theory in order to prove regu-
larity result for almost minimizing currents of elliptic integrands in the interior and at the boundary; see [21]. Later it
was adapted to treat regularity issues for weak solutions of non-linear elliptic systems; first for the interior situation
[13,14] and later on for the boundary situation [26,25,4]. For elliptic problems the technique goes back to the classical
harmonic approximation lemma of De Giorgi (see [9,35]) and we refer to the recent survey paper [19] for a systematic
presentation of such techniques. In the parabolic setting the method of A-caloric approximation allows us to approx-
imate a weak solutions of the original problem with solutions of a linear parabolic system with constant coefficients,
which are therefore used as comparison maps. This leads us to exploit good a priori estimates for solutions of linear
systems, see Section 3. We just mention that such a method avoids the use of so-called higher integrability results
[1,23].

As stated at the beginning Theorem 1.2 is the first step in the proof of the almost everywhere boundary regularity;
it basically asserts that a boundary point zg € dp 27 is regular if the boundary excess functional

|D(u—g)— (Du— g))Qng(zo)’de
2700, (z0)

is small and [(D(u — 8))2;nQ, ()| stays bounded as ¢ | 0. In the interior situation by Lebesgue’s theorem such
a result already guarantees that the set of interior regular points has full £"*!-measure. However, in the boundary
situation Theorem 1.2 does not guarantee the existence of even one regular boundary point. The principal difficulty
concerning partial regularity at the boundary originates from the fact that 3p £27 is a set of £"*!-measure zero — in fact
it is of dimension n with respect to the Euclidean metric in R”*!, and therefore Lebesgue’s theorem does not provide
the existence of regular boundary points. Therefore, in order to ensure the existence of at least one regular boundary
point we have to show that the regularity criterion form Theorem 1.2 is fulfilled on a larger set, or vice versa that the
complement of the regular set — the so-called singular set — is small in a certain sense. This kind of problems — that
is the singular set dimension reduction — will be treated in the subsequent paper [6], where we shall give conditions
under which the main boundary criterium Theorem 1.2 will provide the almost everywhere regularity at the boundary.
Results of this type have been obtained in the stationary case both for systems [16,31-33] and variational integrals
[27-29] but are still missing in the parabolic case.
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2. Notation and preliminary material

In this paper we will generally write x = (x1, ..., x,,) for a point in R"” and z = (x,t) = (xy, ..., x,, t) for a point
in R"+1. By By (x0) = {x € R": |x — xq| < o}, respectively B; (x0) = By (x0) N {x € R": x, > 0} we denote the open
ball, respectively half-ball in R" with center xo € R"” and radius o > 0. When considering B; (x0), unless otherwise
specified, we shall always have xo with (xo), = 0. Moreover, we write

Ap(to) = (to — 0% 10+ 0%)
for the open interval around 7y € R of length 20% and

Agz(zo) =Ap () N{reR: >0}

As before, we always have ty = 0 when writing Agz (to), unless otherwise stated. As basic sets for our estimates we

usually take parabolic cylinders — these are essentially the balls with respect to the parabolic metric in (1.8), also
called “heat balls” — respectively half-cylinders. These are denoted by Q,(z0) = B, (x0) x A,2(f) and QZ(ZO) =

BJ (x0) x Ag(to) and Qf(z0) = Bo(x0) x AP, (t0) and Q(z0) = Q7 (z0) N O (20), Where 2o = (xo. 70) € R"*",
o > 0. Moreover, we write

Tp(z0) = Qp(z0) N {(xl,...,x,,, neR™: x, =0}

for the lateral part of the boundary of Qg‘ (zo) and
rY(zo) = 09zo) N{(x1.....x0. 1) eR™: x, =0}
for the one of QZ(ZO). For the initial boundary of Qg(z()) we write

Dy (z0) = Qp(z0) N {(x,t) e R ¢ =O}
and
D} (z0) = O (zo) N {(x, 1) e R"*': 1 =0}

for the one of Q7 (z0).

If zo = 0, a typical situation occurring when treating the regularity of lateral boundary points after “flattening the
boundary”, we abbreviate B, = B, (0), A2 =2Ap2(0), Qg = Q(0) Iy =15,(0) and Dy = Dy (0).

For an integrable map v: A — R¥, k € N, we write

1
(v)a E][Udzzm/vdz
A

A

for its mean-value on A, provided |A| > 0. If A = Q,(z0) then we write (v), , for the mean-value of v on the

parabolic cylinder Q,(zo) and (v)Z)‘ 0 for the mean-value on the parabolic half-cylinder Q;(Zo) and (v)go’ 0 for the
mean-value on Qg (zo) and (v)’;o, 0 for the mean-value on QZ (zo). Finally, we write 05§27 = 082 x (0, T') for the

lateral boundary of £27 and £2¢ = §2 x {0} for its initial boundary.

Definition 2.1. With ¢ > 1, 6 € [0,n + 2] and Q C R"*! being a cylinder, a measurable map v: Q — R, k > 1
belongs to the (parabolic) Morrey space L% (Q; R¥) if and only if

sup 0?2 f [v|?dz < oo.

” v”tzq,é}(Q.Rk) =
’ z20€827, 0<p<diam(§27)
£27NQp(z0)

The local variant is defined by saying that v € Lfo’f (Q; R¥) if and only if v € L9 (Q’; R¥) for every sub-cylinder
Q' €Q.
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We now summarize some easy consequences of our assumptions on the vector field a which will be used frequently
in the sequel. From the ellipticity (1.4) of d,,a we infer that a is monotone with respect to its last variable w, i.e. for
all z € 27, u € RY and w, @ € RV" there holds

la(z,u, w) — a(z, u, B), w — ) > %p)(l +lw — B1P72) w — 2. 2.1)

This can be seen as follows:

1
(a(z, u,w)—alz,u, w), w— @) = /(Bwa(z, u,w +s(w—i5))(w—1§), (w—@))ds
0

1
> v/(l—f- |+ s (w — w)|f’*2)|w —w|%ds
0
> %p)(l +w — @1772) jw — @2,

where in the last line we have used
1
/ la +sb|P~2ds > c(p)~ (lal” =2 + |bIP72).
0

Moreover, we will use that 6 from (1.6) is a concave function with respect to s and

0 (ju| + luo. 1x — xo| + u — wol) < K (2luol + 1) (Ix = xol + |u — uol)”". 22)
This can be seen by distinguishing the cases |u —ug| < 1 (then |u| + |ug| < 2|ug| 4+ 1) and |u — ug| > 1 (then the term
on the right-hand side is > 1; the one on the left-hand side is always < 1). We further set
H(s)=K@s+D(1+s7").
Combining (1.6) and (2.2) we then have

la(x, 1,1, w) — a(xo, £, uo, w)| < LHM)(|x — xol + lu — uol)”, 23)

provided we assume |ug| < M and |w| < M. By virtue of the continuity of d,,a there exists for each M > 0 a modulus
of continuity wyy : [0, 00) — [0, 1] with limg g wp (s) = 0 for all M > 0, such that M > wy (s) is non-deceasing for
fixeds > 0and s — wy (s)2 is concave and non-decreasing for fixed M > 0, and such that

|dwa(z, u, w) — dwa(zo, uo, wo)| < 2Lkywn (dp (2, 20)7 + |u — uol” + |w — wo|?) (2.4)

forall z, zo € 27, u, ug € RN and w, wo € RN with |u| + |w| < M and |ug| + |wo| < M.
2.1. Transformation to the model situation

Since our results are of local nature we are allowed to consider the lateral and the initial boundary situation sepa-
rately, i.e to prove regularity for a point zo = (xg, 0) € £2¢ lying on the initial boundary it is enough to take into account
parabolic cylinders Qg (z0) with B, (xo) € £2 and the same for points lying on the lateral boundary. When considering

the lateral boundary we will prove our results in a model situation on the half-cylinder QT and for boundary values
u = 0 on the lateral boundary I7. Therefore, we will always refer to a Cauchy—Dirichlet problem of the following

type:
{u, —diva(z,u, Du) =g; in QT,

2.5
u=>0 on 7, 2

where 0;g € L?2728 (Qf'; RM). We briefly describe how to transform the Dirichlet problem (1.1) to this model sit-
uation. Let zo € 982 x (0, T'). Without loss of generality we can assume that zg = (xo, fo) = 0 and that the inward
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pointing unit normal to 92 in xg is vy (x0) = e,. Then, for ¢ > 0 sufficiently small, we can flatten the boundary
B, N 02 by a C!#-function ¥, such that W (B, N082) C By N{x € R": x, =0}. Then it is easy to verify that the
transformed map

0y =u(@ ' ().1) =g .1). (. eQ)
is a weak solution of the following Cauchy—Dirichlet problem
Uy —diva(z, v, Dv) =g; in Qz,“,
v=0 on [,

where the vector field a is defined by

a(y,t, 9, w)y=a(@ (), 1, 5+, 1), (w+Dg(y, 1)) D¥ (¥~ () D¥' (¥~ (y))

and

g0,0=g(¥ '), 1).

From our assumptions (1.3)—(1.6) on the vector field a, we infer that a fulfills similar hypotheses after changing the
appearing structure constants suitably. It is worth to mention that we do not have to impose any further regularity
of Dg with respect to ¢ in Theorem 1.2 since we only use — and assume — the fact that the vector field a is Holder
continuous with respect to the space variable x. However, when proving estimates for the singular set [6] we shall
need to assume a certain continuity of Dg with respect to 7 in order to have the newly defined vector field a to be
Holder continuous with respect to x and .

Now, it is easy to verify the standard fact asserting that y € I', is a regular point of Dv if and only if vy e
382 x (0, T) is a regular point of Du. Therefore, it suffices to prove Theorem 1.2 in the model situation (2.5) (see
Proposition 4.7).

Finally, we want to comment on the change of the structure constants when passing to the model situation. The
new growth constant L then is of the form L - c(p, ligllci.e, 082), while the new ellipticity constant ¥ is of the form
L/c(p,lgllci.s, 082), where the constant ¢(p, [gllc1.5, 952) is strictly larger then 0. Therefore, in the estimates for
the original problem (1.1) the constants will depend on L/v - c¢(p, lIgllc1.5, 32)2.

In the initial boundary situation the procedure is simpler. Here, we shall transform the problem to the model
situation where the initial values are equal to zero, i.e. we consider

{u, —diva(z,u, Du) =g, in Qr, 2.6)
u(-,00=0 on 2,
where 8, € L>%728(£27; RN). This is achieved by subtracting the initial values, i.e. we consider the map v(x, ) =
u(x,t) — g(x,t). Then v is a solution to

v, —diva(z,v, Dv) =g, in 27,
v(-,0)=0 on £2,

where a is defined by
a(x,t,v,w):= a(x, t,v+g(x,1),w+ Dg(x, t)).

As before, from our assumptions (1.3)—(1.6) on the vector field a and the fact that Dg(-,¢) € COB(2; RN, for any
t € [0, T] we find that a satisfies similar conditions after changing the appearing structure constants suitably. We also
mention that at the initial boundary it would be possible to consider u(x, t) — g(x, 0) rather than u(x,t) — g(x,t)
which would lead us to a homogeneous model problem. Then the proof would be slightly easier and not require any
regularity assumption on 92 and g, i.e. it would be enough to assume (1.7); rather than (1.7);—(1.7)3. But for the
sake of consistency we shall not follow this strategy. Indeed, when proving the characterization of regular edge-points
we need to combine all possible configurations, i.e. the lateral and initial boundary situation, the interior and the
edge-situation. Therefore we shall consider the same type of model problem in any case. The final outcome, i.e. the
characterization of regular points given in Theorem 1.2 is the same with both strategies, since by the continuity of Dg
the functions Dg(x, 0) and Dg(x, t) have the same trace at zero.
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Finally, in a situation where we are near the edge 92 x {0} we will prove our result on the set Q7 and for boundary
values # =0 on Flo U Dfr. Therefore, we consider the following Cauchy-Dirichlet problem as a model problem

{u, —diva(z,u, Du)y=g; in Q7,

2.7
u=>0 onFIOUDi", 2.7)

where 9;g € L>272P (97 RY). The transformation made in the present situation is the same as the one for the lateral
boundary situation.

2.2. Steklov averages

Since weak solutions u of parabolic systems possess only weak regularity properties with respect to the time
variable ¢, i.e. they are not assumed to be weakly differentiable, in principle it is not possible to use the solution u
itself (also disregarding boundary values) as a test-functions in the weak formulation of the parabolic system. In order
to be nevertheless able to test the system properly, we smooth the solution u with respect to the time direction ¢ using
the so-called Steklov means. This also enables us to work on the time-slices R” x {r}, even if u is only an L?-map
with respect to 7.

Given a function f € L'(£2 x (t1, 1)) and 0 < |h| < %(tz — 11), we define its Steklov mean by

w [ fGsyds, teln + Ikl o — A,

0, te(ty,ty + |h)) U (g — |h], 12).
The previous definition should be used when dealing with symmetric parabolic cylinders which are far from the
initial boundary. When dealing with the initial boundary problem we shall adopt the following one, valid in the case
O<h<tn—1t,

[fIn(x, 1) = { (2.8)

(e r) = { LI p@osyds, re.n —hl,
7 0, te(t,—h,b).

Rewriting system (1.1) with Steklov-means [u];, of u, we obtain the following system on the time-slices £2 x {t},

(2.9)

/ al[u]h('a t) : (p + ([a(" t9 u('a t)’ Du('? t))]h7 D(p>d'x = O (2‘10)
Q
forall p € WO1 P (£2: RV) and for a.e. r € (0, T). Note that in the model situations (2.5)—(2.7) introduced in Section 2.1

we can similarly pass to the related Steklov formulations. We only have to take into account that an additional integral
of the form f 2(g¢1n (-, t) - ¢ dx then appears on the right-hand side.

2.3. Preliminary lemmas

In order to show partial regularity we will have to control the oscillation of the solution in a certain sense. To this
aim we will approximate the solution by an affine map ¢ : R — RN of the form £(x, 1) = £(x,) = &x,, where
£ € RV, so that £ = 0 on the lateral boundary I". The next lemma provides properties of vectors minimizing certain

functionals.

Lemma 2.2. Let u € L>(QF;RY) and €, € RN the unique vector minimizing & > + |u — Exp|*dz. Then
4 Q Qo

n+2
&= 22 ][ux,,dz. (2.11)
oF

Moreover, if u € Lp(Qz; RN), p =2, then for any & € RN and p > 2 there holds

P
2
) ][ = Exyl? dz.
07

n+2
|£sg—slp<< p
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Proof. First, we shall verify (2.11). Since

][|u—“§xn| dz—][|u| dz —2¢& - ][uxndz—i—|é§| ][x dz

QQ QQ QQ

is a quadratic polynomial there exists a unique minimizing &, € RY which satisfies

d
7 ][ lu — &pxn + téxn|2d2‘120 = 2][(14 —&oxp) - Expdz =0,

of o
so that
<][ ux,,dz—ég][x,%dz> £=0 forallé e RV,
of 0;

Taking into account the equality

92
][x,%dzzn+2, (2.12)
oy

we obtain the desired formula for &,. To prove the second assertion of the lemma we consider £ € R . From (2.12),
the Cauchy—Schwarz inequality and Holder’s inequality we obtain

n+2 n+2 P
po ][uxndz— 22 S][x,%dz
05 05

n+2 p
fohs
n+2\?
() ) (f-ent )

P
2\ 2
<("t ) ][m—sxmdz,
0
0

which is the desired estimate. O

5o — &1 =

In contrast to the interior parabolic case we have when considering the lateral boundary situation a Poincaré
inequality for maps u € L? (A 02 (10); whp (Bo (x0)T; R)) satisfying u = 0 on the lateral boundary I,(zo). This in-
equality can be obtained applying the standard Poincaré inequality to the functions u(-, 1) € W7 (Bg' (x0); R¥) for
a.e. t € Ay (fo) and then integrating with respect to 7.

Lemma 2.3. Let zo = (xo, fo) € R*! with xg € R"~! x {0}. Then for any map u € LP (Ag2(10); WI’P(BQ (x0)T; RYY),
k > 1 satisfying u =0 on I'y(z0) there holds

P
][ |u|pdz<% ][ \Dyul” dz.

0¥ (z0) 0% (z0)

We shall also need the following standard iteration lemma, which can be found for instance in [30, Lemma 2].
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Lemma 2.4. Let ¢ : [Rg, 2Ro] — [0, 00) be a function such that

k
1 .
o) < E(p(Q) + E Bi(o—t) % + K forevery Ry <t <o < 2Ry,

i=1

with B;, K > 0and B; > 0 fori =1, ..., k. Then there exists a constant c = c(f1, ..., Bx) such that

k
¢(Ro) < ¢ BiRy™ +ckK.

i=1
3. Linear parabolic systems

From the theory for linear parabolic systems it is known that weak solutions are smooth in the interior and also
up to the boundary. In order to prove our characterization for regular boundary points we shall exploit good excess-
decay estimates for linear parabolic systems with constant coefficients. Since we are dealing with three different
configurations, namely the lateral and initial boundary situation and the case of edge-points i.e. lying simultaneously
on the lateral boundary and at the initial time-slice £2p, we will need a suitable excess-decay estimate for any of them.
Our aim in this section is to provide such estimates. The precise form of the estimates found plays a crucial role in
the study of partial regularity since it allows to a proper comparison argument after linearization. We consider the
following linear parabolic system with constant coefficients

/(u -@; — (ADu, D(p)) dz=0 foreverype cg°(Q; RN), G.D
0

where either Q = QZ{(ZO) or Q= Qg(z()) or Q= Q;(Zo) N Qg(z()). Thereby the coefficients A are supposed to
satisfy the following ellipticity and boundedness conditions:

(Aw,w) > vlwl,  [(Aw, @)| < Llwl|], (3.2)

whenever w, @ € RV where 0 < v < L < 0.
3.1. Regularity up to the lateral boundary

First we turn our attention to the lateral boundary situation, where we consider the linear parabolic system (3.1) on
0= QZ;(ZO) = B;“ (x0) X Ay2(t). By slight modifications of the proof of [24, Theorem 2.2], we obtain the following
result for solutions of linear parabolic systems near the lateral boundary. Although the above mentioned theorem is
proved under Neumann boundary conditions and on non-symmetric cylinders, the same methods also apply in our
situation. Moreover, a proper investigation of the arguments also yield the asserted dependence of the constant. Then,
recalling the notation fixed at the beginning of Section 2, we can show

Theorem 3.1. Suppose that u € L%(Ay: Wl’z(Bf“, RM)Y) is a weak solution in Ql+ of the linear parabolic system (3.1)
with u = 0 on the lateral boundary Iy under the assumption (3.2). Then u is smooth up to the lateral boundary I1.
Moreover, for every zg = (xo, to) € I'1 and o, R such that 0 < ¢ < R < min{l — |xg|, /1 — |to|} we have

5 0 n+2 5
|Dul“dz < c z |Du|“dz

07 (z0) 07} (z0)

and

n+4
2 o 2
[ 1wt faz<e(8) [ Ipu 0w o
07 (20) Q% (20)

where in both estimates the constant ¢ depends on n and L /v only.
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In our application we will need the excess-decay estimates near the lateral boundary in a slightly different form
which is provided in Corollary 3.4. The following is devoted to the proof of the corollary.

Remark 3.2. Under the assumptions of Theorem 3.1 there also holds the following estimate for the weak derivatives
8/ D*u of u, for all k, j € No:

ik |2 ¢ 2
/ iatD u| dzém / lu|”dz,
07 (z0) 0% z0)

where c=c(n, L/v, j, k).

The previous estimate for the case o = R/2 can be found in the proof of [24, Theorem 2.2, estimate (2.20)]. The
general case follows by the same arguments, but a different choice of the involved cylinders and cut-off functions.
Although the precise dependence on the factor R — p is not mentioned in [24], it can be inferred by tracing back the
estimates.

Lemma 3.3. Under the assumptions of Theorem 3.1, for any £ € Ng and s > 0 there holds

sup |Dul’ <c(n, €, L/v,s) ][ lu|® dz.
0%, o)
#7250 0} (z0)

Proof. We first infer from Theorem 3.1 that u is smooth in er and therefore Du exists on Q}F(ZO). Due to the
Sobolev embedding theorem and Remark 3.2 we have for R/2 < o <r < R that
¢ c(n,¢,L/v, R)
sup [u] + sup| D u| < cllullyiagry < — 3 llull 2t
of of r=e)

where we have chosen k € N large enough (i.e. k > £ 4 %). In the case s > 2 we apply the preceding inequality with
o0 = R/2 and r = R and then use Holder’s inequality to deduce

sup [u] + sup |Du| < e &, L/v, Rl pgt).
Q;/z Q;/z

In the case 0 < s < 2 we use Young’s inequality in order to derive

c
sup lu| +sup| D'u| < o o 4l

0F 05
< —suplul" Sl .
(r—o o L(Q))
1 ¢ c
< E(suplul + sup‘D u‘) + ﬁIIuHU(Q;), (3.3)
of of (r—o0)%

where ¢ = c(n, £, L/v, R). Using Lemma 2.4 with the choice

(1) := sup |u| + sup | D‘u|
of oF
we can absorb the first term of the right-hand side in (3.3) on the left and infer that

sup }D€u|f <cn, £, L)v,s, R)||u||‘YLS(Q;).
Q;/z
The dependence of the constant in front of |, 0% |u|® dz on the radius R can be easily determined by considering the

scaled map v(x, 1) = R~'u(Rx, R?*t) on Q7 , applying the preceding estimate on Qf' and then scaling back to Q}f.
In this way we find the following dependence: c(n, £, L/v, s, R) = R_(”+2)c(n, ¢,L/v,s). O
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Now, we are in a position to prove the excess-decay estimate for weak solutions of homogeneous linear parabolic
systems with constant coefficients near the lateral boundary we are looking for:

Corollary 3.4. Suppose that u € L2(Agz (t0); WI'Z(BS' (x0), RM)) is a weak solution in QZ‘(ZO), with zo € I' of the
linear parabolic system (3.1) with u = 0 on the lateral boundary I';(zo) under the assumption (3.2). Then u is smooth
up to the lateral boundary I'y(zg). Moreover, the estimate

20, 9@

][ 50 dz <crif’ ][

04, (@0) 07 (z0)
holds for any 6 € (0,1/2) and s > 1, where cp; =cri(n,L/v,s) and

u— (D)t u— (D)t

ZOQ

0

2
(Do <ctrLpy 1Dl d
07 (z0)

Proof. Without loss of generality we can assume that zo = 0 and ¢ = 1 (the general case can then be obtained by a
standard translation/scaling argument). The first assertion of the corollary concerning the smoothness up to the lateral
boundary of a weak solution to a linear parabolic system with constant coefficients follows from Theorem 3.1. To
prove the excess-decay estimate we in turn apply the Poincaré inequality from Lemma 2.3 (which can be used here
since u — (D,,u);x,, =0 on [I}), the Poincaré inequality applied with respect to both the variables x and ¢, we note
that Q; C QT/Z and finally apply the standard Sobolev embedding theorem to infer

f

o

u— (D, ”)9 X |
0

][yDnu (Dyu)y | dz

<c(n,s) ][ (0°|DDyul® +6%°10; Dyul*) dz

o
<c(n, s)(@s sup|D2u|S +6% sup |8,Du|s)
+ Q+
12 12
: +o 8
<c(n, $)0° |u — (Dpu) xu | WE2(0%,)

where we have chosen k € N large enough (i.e. k > 2 + %). The map u — (Dnu)Txn fulfills the assumptions
of Theorem 3.1 (and therefore also those of Remark 3.2), since it satisfies on the one hand the linear parabolic
system (3.1) and on the other hand also u — (D,,u)fx,, = 0 on the lateral boundary I". Therefore, the estimate from
Remark 3.2 is applicable and yields

u — (Dpu)g xy |

s 3
][ 5 dz < c@s< ][ ‘u - (Dnu)'l"xn‘zdz) .
+

Q;r Q34

In the case s > 2 the assertion now follows from Hoélder’s inequality and by enlarging the domain of integration. In
the case 1 < s <2 we use Lemma 3.3 and obtain

f/

o;

u— (D,,u);'xn §
0

dz<c0‘sup|u (D, 14)+)c,1|2(2 ”( ][ |u—(D u)lxn| dz)

Q3/4
Q3/4

< chf ][ |u - (Dnu)fx,,|sdz.
of
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This proves the first estimate in Theorem 3.1. The second one follows by a similar reasoning. Once again using the
Sobolev embedding, Remark 3.2 and the Poincaré inequality from Lemma 2.3 we infer that

(D [* < sup 1Daul < el Dulua g < c][ jul®dz < c(n, L/v)f | Dt dz.

+
Gin of of
This finishes the proof of the corollary. O

3.2. Regularity up to the initial boundary

Here we consider the linear parabolic system (3.1) with Q = Qg(zo) = B, (xp) X Ag2 near the initial boundary. In

this situation the excess-decay estimate essentially follows from the one in the interior case since we can extend the
solution u by zero on B, (xp) X (—00, 0), as it is done in [7, Lemma 5.1II]. More precisely, we define

u(x,t) if (x,1) € By(xo) x [0, 0%),

U(x,I)Z{O if (x, 1) € By(xp) x (—00,0).

Since u(-, 0) = 0 on B, (xo) in the usual L?-sense, the extension U is a solution of the linear parabolic system (3.1) on
0 = B, (x0) x (—00, Qz). Therefore the interior excess-decay estimate from [20, Lemma 4.6] is applicable to U on the
cylinder Q,(z0) C By(xp) X (—00, Qz). When applying the lemma in our situation there is one difference compared
to [20], namely we are dealing with symmetric cylinders of the type Qg(z()) = B, (xo) x (—QZ, Qz), whereas in [20]
one-sided cylinders of the form B, (xp) x (fo — 02, 19) are considered. As already mentioned in the lateral boundary
situation this is not a problem since the excess-decay estimate holds true on both types of cylinders. Having the
preceding explanatory notes in mind, the application of [20, Lemma 4.6] in the case £ = 0 gives for the original
solution u the following

Lemma 3.5. Suppose that u € L2(A22; Wl’Z(BQ (x0): RM)) is a weak solution in Qg (z0), with zo = (x9, 0) of the
linear parabolic system (3.1) with u(-,0) = 0 on B, (xo) under the assumption (3.2). Then u is smooth up to the initial
boundary D,(z0). Moreover, for any 0 € (0, 1) and s > 1 there holds the following estimate

ul® u
f ‘— dZSCLiOS ][ ’—
bo e

09, 0) 09 (z0)

dz, (3.4)

where cpi =cri(n, N,L/v,s).
3.3. Regularity up to the edge

Here we consider the linear parabolic system (3.1) with Q = QZ(ZO) = Qg(z()) N Q;‘(Zo) near the edge
I' N (R" x {0}). As in the initial boundary situation we can extend the solution u# by zero on B;(xo) X (—00,0)
to obtain the analogue of Corollary 3.4 for the edge-situation. This was also done in [24, Theorem 2.3] to prove that
the statement of Theorem 3.1 still holds in the edge-situation. Since we already prescribed the extension procedure in
the last section we now only state the result.

Lemma 3.6. Suppose that u € Lz(Ag2 (10); Wl'z(B; (x0), RNY) is a weak solution in QZ (z0), with zo = (x0,0) € I”
of the linear parabolic system (3.1) with u =0 on FQO(ZO) U DZJ' (zo) under the assumption (3.2). Then u is smooth up
to I"é?(z()) U D; (z0). Moreover, the estimate

u— (Dnu)z‘oﬂgx,, s

][ 5o dz <cpi6° ][

05, (0) 0} (z0)

N

u— (Dnu)z(o,gxn d
— Z

0
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holds for any 6 € (0,1/2) and s > 1, where cp; =cri(n, L/v,s) and

2
|(Date)?, goF < e, Lv) ][ |Dyul?dz.
05(20)

4. Characterization of regular boundary points

The aim of this chapter is to prove the characterization of regular boundary points stated in Theorem 1.2. Since the
arguments are different for the lateral and the initial-boundary and also for the edge-situation we separately treat the
three cases. We first shall consider points zo € 14§27 lying on the lateral boundary and subsequently, in Sections 4.2
and 4.3 we deal with points zg € £2¢ on the initial boundary, respectively zo € 952 x {0} on the edge.

4.1. Regular points on the lateral boundary

We will prove the characterization of regular lateral boundary points in the model situation (2.5) on QT which was
explained in Section 2.1. Therefore, the statement of Theorem 1.2 concerning lateral boundary points is equivalent
with Proposition 4.7.

4.1.1. A-caloric approximation

The main tool in proving partial regularity is the lemma of A-caloric approximation which states that whenever a
map u is approximately a solution of a linear parabolic system with constant coefficients, then there exists a solution &
of this linear system which is in some sense close to u. The following is a version of the A-caloric approximation
lemma for the model situation at the lateral boundary.

Lemma 4.1. Given ¢ > 0, 0 < v < L and p > 2 there exists a positive function 6 = 8(n, p, v, L, ¢) € (0, 1] with the
following property: Whenever A is a bilinear form on RN" which is strongly elliptic with ellipticity constant v > 0
and upper bound L, i.e.

viwl? < (Aw,w) and (Aw, W) < Llw||®|
holds whenever w, W € RN and u e Lp(AQz (t0); Wl”’(Bg' (x0), RM)) with u = 0 on the lateral boundary I, (z0)
with zo € I' and
][ |Dul? +y? 2| Dul? dz < 1,
07 (z0)
where O <y < 1, is approximately A-caloric in the sense that

’ ][ u-@ —(ADu, Dp)dz| <8 sup |Dgl, forevery ¢ C3(QF (z0); RY),
+
0{ (z0) R

then there exists an A-caloric map h € LP(A(Q/Z)z (t0); WI’P(B;/z(xo); RMY)), ie.
/ h-@,—(ADh, Dg)dz =0 for every ¢ € CSO(Q;'/z(Z()); RN),

05/2(@0)

with h =0 on I'y/2(z0) satisfying

][ DR + yP 2| Dh|P dz < 2 242

Q;r/z (z0)
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and

2 u—nl|?

u—h ‘ dz <
——| dz<e.
0/2

0/2

p—2

/

07/, (z0)

Proof. Without loss of generality we can assume that zo = 0 and ¢ = 1. Otherwise we rescale u to QT via W(x,t) =
Q‘lu(xo +ox,10+ ta) to obtain the existence of an A-caloric map H on er/z with H =0 on I 2. Rescaling back

via h(z) = QH(X*QXO’ ’g_z’O) to QZ;/Z(zo) then yields the result.

Were the lemma false, there would exist ¢ > 0 and sequences (A;) jen of bilinear forms on RN with uniform
ellipticity constant v > 0 and upper bound L, (v;) jeny With v; € LP(Ay; Wl'p(BlJ“; RM)) satisfying v; =0on I and
y; € (0, 1] such that

][ |va|2+yj’"2|va|sz<1 4.1)
or
and
1
‘][ vj - —(AjDv;, Dp)dz| < —sup|Dg|, foreverype C8°(Q+;RN), 4.2)
J ot
of :
but
][ 4)v; —h|2+21’y]f"_2|vj —hPdz>e 4.3)
07,

for all A ;-caloric maps i on QT/2 with h=0on I /7 and

][ |Dh|?> + yP~2|Dh|P dz <2 - 2", (4.4)
07,
We let
p=2
ﬁjzyjp Vj. (4~5)
Then, from (4.1) and Poincaré’s inequality, i.e. Lemma 2.3, we obtain that
][ Ivjlzdz < ][ Ivalzdz <1 and ][ 1017 +|D?;|P dz < 2. (4.6)
of of of

Passing to a subsequence (again labeled with j), we infer the existence of maps
vE Lz(Al; Wl’z(Bf'; RN)) and ve Lp(Al; Wl’p(BfL; ]RN)),

of a bilinear form A on RV", and y € [0, 1], such that

vj = v weakly in L*(Q]; RY),

Dv; — Dv weakly in L2(Q+; RN"),

vj =~ weakly in LP(QT; RN), @7
D%; — D weakly in L?(Q; RM"),

Aj— A as bilinear forms on ]RN",

Yi =V in [0, 1].
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Moreover, the trace theorem yields v =0 = v on I'|. Next, we will identify the weak limit v. To be more precise, we
will show

p—2

v=y » v, (4.8)

p—2

where we define y 7 =1 when p =2 and y = 0. From (4.7);, (4.7); and (4.7)¢ we deduce ¥; = yj(p_z)/pvj —
yP=2/Py weakly in L2(Ay; WI2(B[; RY)). Since §; — © weakly in LP(Ay; WP (B} ; RY)) by (4.7)3 and (4.7)4,
we conclude (4.8).

Since f > f ot | £I>dz is weakly lower semicontinuous with respect to weak convergence in L and f >

7CQT | f1? dz is weakly lower semicontinuous with respect to weak convergence in L” we obtain from (4.1) and
(4.8) that

][|Dv|2+yf’—2|ov|f’dz< L
or

Our next aim is to show that v is A-caloric on QT. To this end we observe, for ¢ € CgO(QT, RM), it holds

][ V@ — (ADv,Dgo)dz:][(v —v;) ¢ — (A(Dv — Dvj), Dg)dz — ][((A — Aj)Dvj, Dy)dz
of of of

=+ f Vi@ — (A./'va, Do) dz.
or

The first term on the right-hand side vanishes as j — oo due to the weak convergence of v; to v in L%2(Q1:RN)
and Dv; to Dv in LZ(QT; RN™). The same holds for the second term appearing in the right-hand side in view of
the convergence A; — A and the uniform bound of Dv; in L?(Q}; RM"). The third term vanishes as j — oo due
to (4.2), i.e. the fact that v; is approximately A j-caloric. This proves that v is an A-caloric map on QT, ie.

/ v-@, — (ADv, Dp)dz =0 for every<p€C6’°(Qf';RN), 4.9)
of
satisfying v = 0 on the lateral boundary I'7. From the regularity theory for linear parabolic systems with constant
coefficients developed in Section 3, i.e. from Theorem 3.1, we infer that v is smooth on any smaller half-cylinder, in
particular that v € C°°(QT U I RM).
We next turn our attention to the compactness properties of (v;) jen respectively (V) jeny with respect to L? re-
spectively L? convergence on QT. Since v; is possibly not differentiable with respect to ¢ the usual compactness

argument which is based on an application of Poincaré’s inequality cannot be used at this stage. Instead we apply a
compactness argument of J. Simon in [34]. For that purpose we have to ensure that for s =2 and s = p,

1—h
lim y]‘?_znvj(.,t-i—h) —v;(, 1)

710
-1

N
Lyt =0 (4.10)

uniformly with respect to j. To this end we estimate the first term appearing on the left-hand side of (4.2) by the
remaining terms, using Holder’s inequality, (4.1), s > 2 and the fact that y; <1,

=2 =2 1
v ][vj-wtdz <|A,»|][y,. " 1Dvjl1Dgldz + - sup [ DeC. O e s
teA
of of
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1 1
B : CNY 1
<|A,»|<][y; 2|Dv,|fdz> (f |D<p|sdz> = s [ D60

+ . teA
Q] Q]
1

’ s 1
< A D S/ - D %y 00 3
< ’|<A/” wllmpdf) % 5up [ DY
1

where ¢ € CSO(Q+; RM) and s’ = S;—l is the Holder conjugate to s. Given —1 < 171 <72 < 1 and 6 > 0 with 6 <
min{l + 71, 1 — 7»} we define

0, for —1<r<n—86,
%(l—l’l—i-@), forty — 60 <t <1,
o) =141, forr; <t < 12,
—2t—1—0), forn<t<n+0,
0, fortp +60 <r<1.

Then, in the preceding estimate we choose the test-function ¢(x, ) = ¥ (x)¢s (t) with ¢ € C3°(B i”; RM) and obtain

1 7 7+6

s=2

VJ'S fg( / vi(x,t)dt — / Uj(x,t)dt>-1ﬂ(x)dx
BI*' T1—6 i

1
1DVl gy + 1DVl sty sP G50
J teA

< |A,-|(f;9<t)“dr)s
Ay

L 1
< |Aj|(f2 —11+20) ”Dw”LV/(BT) + ;”lelLOC(BI")

Passing to the limit 6 | 0 yields

s=2

‘ij /(vj('9‘[2)_vj("‘[1))'wdx

+
B

1 1
<|Ajl(m2 — )Y ||Dl/f||Ls/+;||Dw||L°° (4.11)

forall v € C3°(B T RN)andfora.e. —1 < 7y < 15 < 1. This estimate would already imply (4.10), if on the right-hand
side we would have || Dy ||, instead of || D[ <. In order to derive (4.10) from the weaker estimate (4.11) we use

an interpolation argument. The Sobolev embedding Wé’s,(Bfr) — Whoo(B[") for £ > % + 1 yields IDY N oo ) <
c(n, t, p)lvl W' (B’ and therefore (4.11) implies
0 1

s=2

‘yjs /(vj('9‘[2)_vj("‘[1))'wdx

+
By

- |
<C<|Aj|(72—1'1)-‘ +;>||1/f||wg,s/wl+)

for a.e 71, o € A with a constant ¢ = ¢(n, £, p). Since C(‘)’O(BJ“; RY) is dense in W(f’s/(Bfr; RY), the preceding

estimate also holds for all v € W(f’s/(B+; RM) and implies an estimate of the W45 norm of vi(-, 2) —vj(-, 1) of
the form

s=2
v’ /(Uj(', ) — v, 1)) Ydx

+
B

s=2
ij ||U](, ) _Uj("Tl)”W’ZJ(BT,RN) = sup
W1yt v, <!

~ 11
Sc(lAﬂ(Tz — 1)y + ;)
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Having arrived at this stage we interpolate between the spaces W!* and W—%*_ For 1 > 0 we obtain
1—h
-2
y: /||vj(-,t+h)—vj(~,t)”is(31+)dt
-1
1=h 1—h

s—=2 s 1 s—2 K
éuyl /”v].(.’t_‘_h)_vj("t)||W1vS(Bl+)dt+C(;>yj f”Uj(.’tdl—h)_vj("t)||W’zvS(Bl+)dt

1

o _ 1\ .. 1\
<2 [y a0y <5 ) (17 + )

-1

1 1
o (o)
12 J

Here we have also used (4.6). Now we show that the integral appearing on the left-hand side of the preceding in-
equality converges uniformly (with respect to j) to zero as & | 0. From the convergence of (A ;) jen we infer a bound

|Aj| <a < oo forall j € N. Now, given 6 > 0 we first choose = % and then jp € N large enough to satisfy

Azsfl
s—1 ~s
25.75")6 < % for all j > jo. Furthermore, we choose /1 > 0 such that 2*~le(u)&a*h*~! < % forall 0 < h < hy.

Finally, we choose /7 > 0 in such a way that

1—h

f y;—2]|v,-(~, t+h)—vj(, t)HSLS(BT)dt <0

-1
holds for all 0 < h < hp, j =1, ..., jo — 1. With these choices we infer for all j € N and 0 < & < hg = min{hy, ho}
that there holds

1—h

s—2 K
/ )/, ||vj('vt+h)_Uj('3t)”LS(Bl+)dt<91
-1

yielding (4.10). Since we also know that the sequence (yj(s_2)/ Svj) jeN 1is uniformly bounded in

Ll (A;; WhP (B, RY)), Theorem 3 from [34] applied to X = W'P(B{;RY), B = L*(B{;RY) and F =
(y;‘v_z)/ ‘v i) jeN ensures the existence of a subsequence ()/j(s_z)/ s v;)jen (also labeled with j), converging strongly in

LS(BIJ“; RM) fors =2 and s = p, i.e.

4.12)

vj — v strongly in L*(Q: RY),
ij— ¥ stronglyin L”(Q7; RN),

where we have recalled the definition of ¥, i.e. ¥; = y;p “A/py.

From (4.9) we already know that v is an A-caloric map which by Theorem 3.1 is smooth on QT U I'1. In the fol-
lowing we will derive the contradiction by constructing appropriate A j-caloric maps from v. This is done as follows:
by w; € L2(A(3 /42> W1’2(B3+/ 40 RY)) we denote the unique solution of the following Cauchy—Dirichlet problem

/ wj-¢ —(AjDwj, Dp)dz=0 forevery ¢ € C5°(07,, RY),
03,

wj=v on 873Q§r/4.

Since w; is a solution of a linear parabolic system with w; = v =0 on I3,4 we infer from Corollary 3.4 that w; €
Co"(QgL/4 U I3/4, RY). Our next aim is to prove that

Dw; — Dv strongly in L2(Q§'/4, RN"). (4.13)
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For this we shall exploit that the difference w; — v is a weak solution of the following inhomogeneous parabolic
system

[ (wj—v) ¢ —(Aj(Dwj — Dv), Dp)dz = / ((Aj — A)Dv, Dy)dz,
03, 03,
for all ¢ € Cgo(QgL/4, RY). Since w ; and v agree on the parabolic boundary of Q;r/4 we can formally test the last

relation by ¢ = w; — v. Note that this procedure can be made rigorous by the use of Steklov averages. Exploiting the
ellipticity of A; we infer from the preceding equality in a standard way that

u/|Dw,-—Dv|2dz<|A,-—A| / |Dv||Dw; — Dv|dz

034 014
L L
25\’ 2.\’
<|AJ-—A|< / |Dv| dz) </|ij—Dv| dz)
Qgr/4 Qgr/zt

from which (4.13) immediately follows since A; — A. Since w; and v agree on the parabolic boundary of Q;‘/ 4 WE
can apply Poincaré’s inequality slicewise to find that also

wj — v strongly in LZ(Q;M, RN). 4.14)

Next we show that

Dw;— Dv and wj;— v strongly in L”(Q‘l"/z). (4.15)

This is a consequence of the a priori estimates up to the lateral boundary for linear parabolic systems from Remark 3.2
which gives together with the Sobolev embedding (with k£ € N such that k > %)

Slip(|wj| + |ij|) < C(”wj”Wk,Z(Ql*/Z) + ”ij”Wk,Z(Ql*/z))
()

gC”wj”LZ(Q;M)

< C(”v”LZ(Q;rM)’ n,N,p,v, L).

Now, (4.15) is a consequence of (4.13) and (4.14), interpolating L?” between L? and LY for some q>p.

At this stage it is worth mentioning that the convergence D‘w i D*%v indeed is uniform for any £ € Ny. This
could be inferred by the use of a finer estimate for the non-homogeneous linear parabolic system for w; — v from
above. More precisely, by an L* estimate for non-homogeneous linear parabolic systems (instead of the one for
homogeneous systems form Remark 3.2) we could estimate the supremum of |Dfw i— Dv| on QT/Z in terms of
lw;j — vl 12(0%,) and the right-hand side both vanishing in the limit j — co. But, since we do need the uniform

convergence in the following we shall not accomplish the argument in detail here.
We now have

][ |vj—wj|2dz<2[][ Ivj—v|2dz+][ |v—wj|2dz}—>0.

07, 07, 07,

Moreover, due to the definition of v;, (4.8), the strong convergence v; — v from (4.12) and the convergence
p—2 )
Yj Swj—> ypTv in LP(QT/Z, RY) we obtain
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-2 ~ L2 p
][ y}’ lvj —w;|Pdz= ][ |vj—yj2 wj|”dz
07, 07,
1 p=2 p=2
<2r” [][ |5 — 0P dz + ][ v; 2 v—v;’ wj!”dZ]%O
07y 07,

in the limit j — oo, which in combination yields

lim 4 4jv; —w;)> +27y" v —w;|P dz =0. (4.16)

Jj—>00 J

07,

Finally, we have

lim |ij|2+y{"2|pwj|l’dz= ][ |Dv|? + y?72|Dv|P dz

Jj—o0
+ +
QI/Z QI/Z

<2n+2f |Dv|2+yp—2|Dv|de
of
<2n+2’

and therefore for j >> 1 large enough there holds

][ |Dw;|* + y}"2|Dw,|P dz <2-2"2,
07,

Hence, for j large enough w; is an A j-caloric map on Q1+/2 with w; = 0 on the lateral boundary I/, satisfying
(4.4) and (4.16). Since (4.16) contradicts (4.3) for large j, we have constructed the desired contradiction, proving the
assertion of the lemma. 0O

4.1.2. Caccioppoli inequality
As usual we need a suitable Caccioppoli inequality. In the lateral boundary situation it is convenient to approximate
u by a linear map which is zero on I'i and therefore of the form &x, with £ € RV,

Lemma 4.2. Suppose that u € LP(Ay; Wl’p(B?'; RM)) is a weak solution of the non-linear parabolic system (2.5)
with u = 0 on the lateral boundary I'1, where the structure conditions (1.4)—(1.6) are in force. Moreover let M > Q.
Then, for any & € RN with |§| < M, zo € I't and o € (0, 1) such that Q0(z0) C Q1 there holds

2 r
u — &Xx u — &Xx
][ |Du—s®en|2+|Du—5®en|sz<ca,c<][ j” T 21 dz+gzﬂ>,
07, (z0) 07 (z0)
where ccae = (1 + |18 1% Ye(n, p, L/v, M, H(M), kpr+1).

L2'2_2ﬂ(QT)

Proof. The following calculations will be somehow formal; they can be made rigorous using a mollifying procedure
in time, e.g. via Steklov averages. Since this is a standard procedure and for the sake of brevity we will proceed
formally. Without loss of generality we can assume that zo = 0. We choose two cut-off functions n € C;°(B,) and
e C(])(Agz) suchthat n=1on By, 0<n <1, [Dnl<c/o, i =1on Ay, 0<t <Tand ] < 2/0%. Choosing
the test-function ¢ (x, 1) = n? (x)c2(t)(u(x, 1) — £x,) in (2.5) we obtain
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/(a(z, u, Du), (Du — %))npgzdz
of
=-p /(a(z, u, Du), "' Dy ® (u — £x,))¢c  dz + /(u @ — & - p)dz,
of 05
where we have abbreviated X = D(éx,) = £ ® ¢,. Moreover, we have
/(a(z, u,X), Du — .’f)npgzdz = /(a(z, u, %), Dgo)dz -p /(a(z, u, %), 7" 'Dn® u— Sx,,));zdz
0; 0f o
and ng (a((0,1),0,%), Dp)dz=0forall t € Ag2. Adding the preceding identities and using also that

/ Ex,dipdz =0,
o
we deduce
/(a(z, u,Du) —a(z,u,X), Du— .’f)npgzdz
05

=—p /(a(z, u, Du) —a(z,u, X), 0"~ ' Dn(u — an)>§2dz

fors
—/(a((x,t),u,%)—a((O,t),O,%),Dw)d(x,t)—l-/gz'wdz-Ir/(u—éxn)B,(pdz
0F of 05
T I+ I+ 1V, 4.17)

with the obvious meaning of /-IV and z = (x, t). In the sequel we shall derive estimates for /-IV. Thereby we take
we0,1].

Estimate for I1: We first rewrite I = I + I, 4+ I3 with

Ii:=—p /(a<z, u, Du) — a(z,£x,, Du),n”~' Dy ® (u — £x,))¢° dz,

of

hi=—p / (a(z. £x0. D) — a2 £, %), 07~ D ® (u — £x,)) 2 .,
of

Li=—p /(a(z, Exp, X) —alz,u, £ ®en), 0" "' D ® (u — £x,))0 % dz.
05

Estimate for I,: To estimate I} we use (1.6), |X| < M and |Dn| < ¢/ to obtain

u—&Xx,
11| <cL/8(|u|+|sxn|,|u—.§xn|)(1+M1’”+|Du—3€|f’”)nf’*1 U—5% ¢*dz
o

=L+,

where ¢ = c¢(p) and I} | respectively I > is the integral obtained by replacing |Du — X|7~! respectively 1 + MP~!
by zero. To estimate /1,1 we use (2.2), [§x,| < |§] < M on B, (note that ¢ < 1 by assumption) and Young’s inequality
to obtain
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u—E&xy,

1+8
11,1<cL/ Qﬁnp_lé'de<CL(/
0

o o

2
@z +0"7]0f )

u—£&x,
e

where c =c(p) K(2M + 1)(1+ MP—h = c(p)H (M). The estimate for I > is achieved by using 6 < 1 instead of (2.2)
and Young’s inequality: for ¢ = ¢(p) we have

—cX
I1,2<CL/IDM—3€|‘D_l L QE “nPe?dz
o3
P
u—:cx
<,u/|Du—%|pnp§2dz+chu1*p/ i £} dz.
o 05

Estimate for I: Here we decompose Qz)‘ = S| U S, where
Si={ze Qf: |Du(z) — X| <1}, Sp={zeQf: |Du(z) — X[ > 1}

and rewrite I, as follows:

L<p / |a(z, &xn, Du) — a(z, &xn, X)|n? " | Dllu — £x,1¢% dz

0;
=P/(--.)dz+p/(...)dz
N S2

=D+ bo.

For the estimate of 1> | we use (1.5), Young’s inequality, |§x,| < M forx € B; and [X +s(Du(z) —X)| < M + 1 for
z € S1 and 0 <5 < 1 in order to obtain

hJ<P/

1

[ duale . 2 4 5Du ~ )P - ) ds|n? Dl ~ 3,1 dz

S1 0
<CLKM+1/|DM_:£|77P71 m §.2dz
M
2 2 -172,2 U —8&xp ’
<u [ 1Du—XPpPe2dz 4 c(pyn L2y, dz.

o o
To derive the estimate for /5 » we use the growth condition (1.3) instead of (1.5), the assumption |£| < M, the fact that
|Du — X| > 1 on S, and Young’s inequality; for a constant ¢ = c(p)(1 + MP~1)? we have

12,2<PL/(2+M”_1+|Du|p_1)77p_1 it 71 ¢2dz
$
gc(p)L(l+MP—1)f|Du—3E|P—1nP—1 % 2dz
N
_ p
g,u/|Du—%|pnp§2dz+c,u1*”L/ U= xn dz.

of 0F
Estimate for I3: Here we use (2.3) (note that |£x,| < M and |X| < M by assumption) and Young’s inequality, to
get, for a constant ¢ = c(p)H (M),
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13<pL/9(|u|+|sxn|,|u—sxn|)(1+|3€|”—1)n”—1|Dn||u—éxmzdz
of

ca

of

Combining the previous estimates we arrive at the final estimate for /

2 28
dz+glﬂ|QQ+|>.

u—E&xy,
[

1<2n / (IDu — X + | Du — X|7)nP¢? dz
05

A—
o

u—E&xy,
[

2
+

u—E&xy,
[

4 28
a’z—i—Ql—f"Q;D,

where ¢ depends on p, H(M) and kp41.

Estimate for II: Using the assumptions (1.6), (2.3) (note that |£x,| < M for x € Bg and |X| < M), |Dn| < c/o,
Young’s inequality and o < 1 we deduce

1 < L(1+MmP71) / 0(lul, 0 + ul)| Dl dz

07
B By B po |48 p1) .2
<cLK) [ (lu—&x,P + (1+MP)oP)( | Du — X|n? + Tn c4dz
o
2 p,2 “1,2 u—Ex, |* 28|+
guleu—}CI n’¢ dz+c(L+/L L) / 0 dz+o |QQ| ,
o o

where the constant ¢ depends on p, M, K (1).

Estimate for III: Using Young’s inequality and taking also the assumption g, € L>22f (QT; RY) into account we

obtain

0;

u—E&xy
o

I < / lgellu —&xpldz <
0;

2
< dz-+cg|0f1e* 2 [ lg Pz

ot o

u—Exy|?
</

dz+ el 22 291,07 ||
0f

Estimate for IV: The integral IV can be rewritten as follows:

2
dz + Q2 / |g,|2dz
0s

u— 'g:xn
o

1
IV=f|u—sxn|2npat;2dz+5/az|u—sxn|2n1’czdz
o o4

1
=5[|u—5xn|2npatz;2dz<2L/
ot oF

2

u—E&x, dz

where we have used that |3,¢%| = 2¢|¢;| < 4/0% and L > 1 in the last line.
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Lower bound for the left-hand side of (4.17): To estimate the left-hand side of (4.17) from below we use the
monotonicity (2.1) of the vector field a. We find

t t
/ /<a(z,u,pu>_a(z,u,ae),(Du—x))nvgzdxdr> =) f /(|Du—3€|2+|Du—3€|1’)n";2dxdr.
_QZ Bg' —Q2 Bg—

Using the preceding estimates obtained for /—/V in (4.17) we arrive at

(L _ 3#) /(IDu — XP+ |Du— XP)pPe2dz

c(p)
fops
L? L? u—&xy > |u—¢&x,|?
<C<L+_+ 1></ | dz+92ﬁ|Qg+|),
woopp 0 o
op
where ¢ = (1+]g; ”iM*Zﬂ(QT))C(n’ p,M,H(M),kp+1). Choosing w as usual small enough (i.e. u = ﬁm) and

recalling the choices of ¢ and 7 respectively, the preceding estimate implies
2

u—E&x u—Ex,|?
/ (IDu — %> +|Du — X|”) dz gc(f Q‘S 2+ j . dz+gzﬁ|QQ+|),
Q) 0;
where ¢ = (14| g; ||i2,2*2/3(Q+))C(”’ p,L/v,M, H(M), kp+1). Finally, taking mean-values and enlarging the constant
1

by a factor 2"*2 yields the complete assertion. [J

4.1.3. Linearization

Here we prove that every weak solution of the non-linear parabolic system (2.5) with # = 0 on the lateral boundary
I'1 is an approximate solution of constant coefficient parabolic system, in a certain sense. This property is needed to
apply the A-caloric approximation lemma later. For s > 1, &£ e RV, zg € I'| and a parabolic cylinder Qo(z0) C Q1 we
define the excess functional by

sat)= § Du-soaldn 8 =4l Goed.
07 (z0)
Lemma 4.3. Suppose that u € LP(Ay; Wl"”(Bf'; RM)) is a weak solution of (2.5) satisfying u = 0 on the lateral
boundary I'1, where the structure conditions (1.4)—(1.6) are in force and let M > 0. Then we have

‘ ][ (u—&xp) - — (0a(z0,0,& ® €,)(Du — & ® e), Dp)dz
0{ (z0)

< ceulomi (o) +07)y b5 + o7 + 0] sup | Dgl,
QQ (z0)

for any ¢ € C(‘)’O(Qg(z()); RN), € e RN with || < M, zo € I'| and Qo(z0) C Q1. The constant cg, is of the form
cgu =LA+ 8]l 2228 07))c(n, p, M, K (1), Kr41).

Proof. Without loss of generality we may assume sup 00(z0) |Dg| < 1 and zg = 0. Again we abbreviate X = D(£x,) =
£ ®ey. Using

][ Exp-9rdz=0 and ][<a((0,t),0, K), D(p)dzzO,
o 05
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we obtain from (2.5)
][ ((u—&xp) - ¢ — (90a(0,0, X)(Du — X), Do) dz
o3

= ][(a((O, 1),0, Du) —a((0,1),0, X) — 3,a(0, 0, X)(Du — X), Dy)dz

05
+ ][(a((x, t),u, Du) — a((O, 1),0, Du), Dgo)dz + ][ g -pdz
oy 05
= 1+1+1, (4.18)

with the obvious meaning of /-III. In the following we will derive estimates for /-I11.
Estimate for I: First, we decompose Q; into
S| = {z € Qz)': |Du(z) —.’f| < 1} and S = {z € Q;: |Du(z) —%| > 1}

and rewrite I as follows

1 1
I = ...d+—/(--~)d =L+ DL
|Qg|/( Yt o cTaTR
S1 S

For the integrand of I; we have

|a((0,1),0, Du) —a((0,1),0,X) — 8,a(0, 0, X)(Du — X)|
1
< /\(awa((o, 1,0, X+ s(Du — X)) — 3,a(0,0, X)) - (Du — X)|
0

<2Lkp1om41(0” + 1Du — X|P)|Du — X|.

Here we have used (2.4), the fact that |[X + s(Du(z) — X)| <M + 1 for z € §1, 0 < s < 1 and |X| < M. Therefore,
using Holder’s inequality and Jensen’s inequality and taking into account that s a)f,, 41(s) is concave and p > 2 we
obtain
2Lk
i< S /wM+1 (0" +1Du — XI7)|Du — X|dz
o

1

1

<2L 1 (e? p ’ =

<2Lkp41 a)MH(Q + |Du — X| )dz |Du — X|r-1dz
0} 0F

P
p—1

2Lk 410M+1 (Qp + ¢;)V 4’;'

The integrand of I, is estimated by the use of (1.3) and (1.5), noting once again that |X| < M, as well as
|Du(z) — X| > 1 for z € S, to obtain

|a((0,1),0, Du) —a((0,1),0, X) — 3,,a(0, 0, X)(Du — X)|
SL(1+[DulP~ ")+ L(1 +|X1P7") + Ly | Du — X|
<e(PL(1+kpr1+MP7Y) [ Du— x|,
which directly implies

L < c(P)L(1 + Ky + MP ).
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Combining this with the estimate for /; we find

1] < CL(CUM-H(QP +¢;)\/%+¢;),

where ¢ = c(p)(1 + kp1 + MP™1).

Estimate for II: To estimate II we use (1.6), (2.2) with ug =0 and |£x,| < oM on B;‘ and |X| < M in order to
obtain

1) < L][ 0(lul, 0 + lul) (1 + | DulP~ ") dz
05
<LK(1) ][ (Iul? + ) (1 + | Dul”")

oF
_ B
< LK(])Q’g ][ (‘w
Q

o
o

o
=:c(l; + Il + II3) + co

+MP+ 1)(1 +MP7 4 |Du— X771 dz

B

u—E&xy u—E&xy,

e

B
|Du — %P~ 4+ |Du —3€|p_l>dz-i-cg’6

with the obvious meaning of I11-113 and ¢ = Lc(p, M, K(1)). We now in turn estimate these terms. For the estimate
of I} we use Young’s inequality, the fact o < 1 and the Poincaré inequality from Lemma 2.3. This leads us to

|111|<][‘“_5x”
(Y
oF

To get an estimate for /I, we use Holder’s inequality, Poincaré’s inequality from Lemma 2.3, Young’s inequality and
o < 1 to infer

p B
dz+ 07 < f 1D =61 dz +0P <of + .
oF

Bp L p 4
_1 u—E&ex P _1 u—=&ex P
1) < 0 (87! (][ 8% dz) <of(#7) (][ £ dz>
ot oy
1 £ -8 B
1-1 r 1—-=£ e
<o (6?) p(][wnu—ng) <o(6}) T <ot +o™F <ot + o,

o
Finally, we estimate //3 with Young’s inequality and recall that o < 1 to deduce
\II3] < ][ (IDu — X|P 4+ 0"P)dz < ¢ + 0.
of
Estimate for III: Since |Dg| < 1 on QF and ¢ € C°(QF; RY), we have |¢(z)| < o for z € QF and therefore

obtain

1
2
1| < ][ |g,||«>|dz<g][ |8l dz < c(n)o” (gz‘zﬁ‘<”+2> f |gt|2dz> <cmel lgll 222 gt)-
0} o o

Now the desired result follows by inserting the estimates for /-III into (4.18). O
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4.1.4. A decay estimate at the lateral boundary

In Lemma 4.5 we will derive an excess-decay estimate valid for boundary points zg € I'1, which is proved in
three steps. In the first step we will use the A-caloric approximation lemma to show that — under certain smallness
assumptions — the excess Elat of u fulfills a suitable growth estimate when we enlarge the half-cylinder by a constant
factor. Afterwards we iterate this excess estimate by showing that the smallness assumptions are also fulfilled on the
smaller half-cylinder (under the condition that they are fulfilled on the larger one). From this we finally conclude the
excess-decay estimate for Du, in those points zg, where the smallness assumptions are fulfilled.

Throughout this section we shall consider a weak solution u € LP(A; WP (B i”; R™)) of the non-linear parabolic
system (2.5) satisfying u = 0 on the lateral boundary I'i, where the structure conditions (1.4)—(1.6) are in force.
Moreover, by

n+?2
€0.0= 22 uxp dz, (4.19)
07 z0)

with zo € I'T we denote the vector minimizing the mapping & — 04 z0) |u — &x,|>dz (see Lemma 2.2). For points

lying near the lateral boundary we shall use the following excess functional. For & € RN, zoe MU Q+, QZ{(ZO) C QT
and s = 2, respectively s = p, we define

u— %.x' K
W:_EW:_(ZO,Q;"E) = ][ Tl dz,
0¢ (z0)
as well as
Eta = Ena(20, 0; ) := V5 (20, 0; €) + ¥ (20,0; ),
and finally

Ela = El(20, 0; €) := E1a(20, 0; ) + 0%

Then we have the following excess-decay estimate at the lateral boundary:

Lemma 4.4. Given M > 0 and o € (B, 1), there exist ¥ € (0, %) and § € (0, 1] and ¢y > 1, depending on n, N, p, v,
L, M, HM), ky+1, o, B and ||g,||L2_2,2,3(Q1+), such that if

~ ~ 1
o341 (Ea(20. 05 8)) + Ena(20. 03 &) < 552, (4.20)
2e1y Erlzo. 03 £0) +5-20% < 1 (4.21)
and
&l < M, (4.22)

on Q;(Zo) with zg € I'y and Q;(Zo) C Q'f_ Then with, c» = 1 + 82, there holds
Era(z0, 0. £9) < 9™ Eru(20. 0, &) + c20%P.

Proof. Without loss of generality we can assume that zo = 0. We consider £ € R satisfying |£| < M and abbreviate
X = D(¢x,) =& ® e,. From Caccioppoli’s inequality Lemma 4.2 we infer

¢7(0.0/2.8) + ¢ (0,0/2.8) < ccac(¥5 (0.0, 8) + ¥, (0. 0.6) + 0) = ccac Era(0, 0. £), (4.23)

where ccae = ccac(n, p, L/v, M, H(M), kp141, ”gf”L”*zﬁ(QT)) > 1. We now apply Lemma 4.3 to the map v =u —
£x,. Note that this is possible since |§| < M. Using also the fact that wys4+1(cs) < cop+1(s) for ¢ > 1 (since s —
wpy+1(s) is concave and wps41(0) = 0) we obtain
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f oo (000,000 D] < (o (07 + 07) 5 + 67 +) sup o

+ 0/2
Qo2

< Cl(wMJrl(Elat) Etat + Erae + Qﬁ) sup [ Dy,
0y
for all ¢ € C(‘)’O(Q;L/z; RM), where the constant ¢ is given by cg,ccqc- Here we have also used o < 1 and 28 < p in
order to have p? < Qzﬂ . Now, we define
(Aw, B) = (0,a(0, 0, X)w, I),
whenever w, @ € RV”. From (1.4) and (1.5) and the assumption |£| < M we find that
(Aw, @) < Leyp|wl|@],  (Aw,w) > vlwl> Vw, B eRY",

i.e. A fulfills the hypotheses of Lemma 4.1 with ellipticity constant v and upper bound Lkpsy1. For given ¢ > 0
(which will be chosen later) we therefore determine 6 = 6(n, N, p, v, Lkp+1, €) € (0, 1], accordingly to Lemma 4.1.
Furthermore, we define

w:=y lv=y"lu—£x,), wherey :=2c\/Ep+ 8 20%.

Then, for the map w we have (note that I:flat = Ep + Qzﬂ)
1

~ ~ 1.7z
S I:a’12w+1(Elat) + Elac + 532] sup | Dg|

‘ ][ w - ¢ —(9w,a(0,0, X) Dw, Dyp)dz y
Qo2

Q5

forall ¢ € Cg° (Q;/z; RM). Moreover, from (4.23) we infer that

ccacEnat CCac <1

Dw|? + yP7 2| Dw|P) dz < < <
][(| Syt iDul) 46%(E1at+6‘292ﬂ) 40%

%n
Therefore, we are in a position to apply the lemma about A-caloric approximation, i.e. Lemma 4.1, to the map w on
the cylinder Q;r/z, provided the smallness conditions
2 = = 1o
yr41(Ela) + Elar < 55 (4.24)

is satisfied and

y =2c1y/ Ela + 87202 < 1. (4.25)

Lemma 4.1 provides us with an A-caloric map i € L (A ,/4y2; Wl”’(B;M; RM)) satisfying & =0 on I'y/4 and satis-
fying also

][ (IDh|* +yP~2|Dh|P)dz < 2 - 2"F? (4.26)
04
and
][ woh Wbl 4.27)
_ _ <e. .
o/ | TV e |
Oga

In order to obtain an estimate for the excess Ejy of u we exploit the excess-decay estimate from Corollary 3.4 for
the A-caloric map & in the cases s =2 and s = p. Also using the Poincaré inequality from Lemma 2.3 and (4.26)
we find
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YA ofe\"
" 2<7> ][ |l = (Dah)g, 4% dz < criby* 2(1 ][|h—(Dnh)Q+/4xn|sdz

+ +
Qoo/4 Qo4

< CLiQS)/S_ZS_l f ‘Dnh _ (Dnh)z;m‘v dz
(o8

<270’y ][ | D)’ dz
Qo

< CLi2n+2+S9Sa

where cr; = c¢(n, N, p, Lkp+1/v). Combining this with (4.27) we obtain the following excess improvement
for w:

4

Qo4 Qs
< 2s—1 (9—11—2—58 + CLi2n+2+s95)

< cLi2n+l+23(97n727s8 “r@s)-

-2 (02" Du | dz <2 1y2(22) B+ |h = (D), x| d
14 4 |w_( n )99/4xn| X Y — lw—h| +’ — (Dn )90/4xn| <

Rescaling back to u via w := y~!(u — £x,,) then implies for s = 2 respectively s = p that

(0o/4)~° ][ u —Ex,|* dz < cp 2" (072 e +0%) 2, (4.28)

Qo
where we have abbreviated E =& — y(D,,h);'Q /4 For the case s = 2 we note that (4.28) then holds for
(60— v (Dh)go/4) replaced by &gy /4, where §gp /4 = ﬁ 75 Q;g/ét u-x, dz is the vector in RV minimizing the mapping

&~ 75 04 lu — &|>dz (see (2.11) from Lemma 2.2). Recalling the definition of y we therefore infer

V5 (0.00/4, 600/4) = (00/H) 2 ][ = Eappaxal’dz < c(07" e +6%) (Ew(0, 0, &) + 8 20),
Qg—g/ét
where c is of the form Lc(n, N, p, Lky41/v, M, H(M), ”gt”LM*Zﬂ(QT))' Similarly, for s = p we can bound the
9(53 , denotes the
unique vector in RY minimizing the mapping £ > £ 0 |u — &£|P dz. Recalling once again the definition of y we

integral on the left-hand side of (4.28) from below by the quantity + 0l s lu — 59(5 ; 4Xn|P dz, where &
0,

obtain in this case
(6o/4)™" ][ i = &40 )an| " dz < (07" Pe +67) (Era(0. 0. 5) +57%0).
Qg@/ét
In the preceding estimate we want to replace Eég% by &po/4. To this aim we use Lemma 2.2 to estimate for

! +
x=(x', xp) 6309/4’

)4
uorsxs = &§f)l” <0+ f a8l dz

A
Qo/a
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Combining this with the second last estimate we deduce

+ _ (%)’ P
v, (0,00/4,800/4) = T |u — Eggpaxa|” dz

+
QGQ/4

<2p(n+2)2( ) f |M éeg/4xn|pdz

Qgosa
<e3(07" 7 Pe +07)(Ew(0, 0, &) + 8 20%F),

where c3 =27 (n+2) 5. Combining the estimates for K[fz and w+ and recalling that 6 < >2and E = 11’2 + ¢+
we arrive at

E1at(0,00/4, £95/2) < c3(67" 2P 4 6%) (Era(0, 0, &) + 5 20%F).

Choosing & = 6"t#*P we obtain

E1at(0,00/4, £99/4) < 2¢30% (E1a(0, 0, &) + 6 20%F). (4.29)
Given a with 8 <« < 1 we choose 0 < 6 < 1/2 such that 21+ 292 <920 g0 that

0=0(n.N.v.L. M, H(M). kp1. . 18l 122-28g1))-

This also fixes ¢ and 8 € (0, 1] depending on the same parameters. We now define © := 16. Then, (4.29) yields the
assertion of the lemma. O

4.1.5. Iteration
Here we want to iterate the excess-decay estimate from Lemma 4.4.

Lemma 4.5. Given M > 1 and o € (B, 1), there exist constants ¥ € (0, %], Elat € (0, 1], g1at > 0 and c4 depending on
n,N,p,v,LL M, HM), kp+1,a, B and || g; IILz,zfz,g(QT) such that the following holds: Suppose that

() lEl<M
(i) o < Ont
(i)  Elu(0) < Eiat

are fulfilled on some parabolic half-cylinder Q;(Zo) centered at 7o € '] with Q; (zo) C QT. Then for every j € N
we have

M  Eu(®/0) <9 Ewu(0) + ca(9/ ),
(D; 895l <2M,

where we have abbreviated E]at(r) = E]at(z(), r, &.). Furthermore, the limit

Tz = hm (Dnu)z Do

exists and the estimate
20
2 P r 28
|DM_TZO ® e, +|Du—TZO®en| dz < clat M E\x(0) + 7 s

0/ (z0)
holds for 0 < r < 9/2, where the constant ciat depends onn, N, p,v, L, M, H(M), kp+1, «, B and || g; ||L2,2,25(Q1+).
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Proof. In order to prove the assertions of the lemma we have to show that the smallness conditions (4.20)—(4.22)
are also fulfilled on the cylinders Q;jg(z()) provided they are fulfilled on Q;(Q(z()) for £ =0,...,j — 1. Without
loss of generality we once again assume that zo = 0. Given M > 1 and o with 8 <« < 1 we determine the constants
P =92M),5 =5(2M) and c» = c2(2M) from Lemma 4.4, depending alsoonn, N, p,v, L, M, H(M), k)41 and «,
respectively. Then, there exists Ejy = Elat(M) > 0, such that

1

33 (2E1) + 281 < 582 (4.30)

and
1 2
Elat < ———— M2 (1 —9%)". 431
lat 4n+2) ( ) ( )
Furthermore we choose 015 = 01a:(M) € (0, 1] such that with
c2

cp=cq(M) = 926 _ paa 4.32)
we have

caopy < min{6?, i, M2 (1—9P) L. (4.33)

lat 4(” + 2)

Thus, Elat, 01at and ¢4 depend on n, N, p,v, L, M, H(M), kp1+1, « and ”gf”L”—zﬂ(QT)' We first note that (I); com-
bined with (ii), (iii) and (4.33) yields

@) Ew(9/0) <280
Now, suppose that the conditions (i)—(iii) are fulfilled on Q;” C Q™. Then, by induction we shall show (I) j and (II);
hold for j € N. We start with the case j = 1. From (iii), (4.30) and the monotonicity of wys41 we infer

~ ~ 1
03741 (B () + Erar(0) < @33 2E1a) + 281 < 562.

Furthermore, (i) and (ii) guarantee that also the assumptions ¢ < Q1a¢ < 1 and |§,| < M of Lemma 4.4 are fulfilled.
Therefore, the application of the lemma ensures that (I); holds. Using (i), Lemma 2.2, (iii) and (4.31) yields

n+2 , \? n+2 2 \?
€90 < 6ol + 1890 — 8ol <M + o) lu—&oxn|"dz ) <M+ gnid dz

05, of

1
n+2~ 2 vn+2
<M+ (W lat(Q)) <M+ \/WV (M) <2M,

u—Egxn

e

so that (IT); holds. We now assume that (I); and (I); hold for k =1, ..., j — 1, and therefore also (I");) for those k.
The validity of (I')g, (I); and (4.30) allows us to apply Lemma 4.4 with 9* o instead of ¢ and 2M instead of M for
k=1,...,j— 1. This is possible since we have chosen ¥ = 9 (2M), § =§(2M) and ¢ = c3(2M). Using Lemma 4.4
fork=1,...,j— 1and (4.32), we find

j—1
Er(970) <97 Era(@) + 22M) (97" 0) ™ 3 92eh
i=0

c3(2M) (Wg)zﬂ

192[3 _ 29201
_ 920 T Jj\2B
= 0% Epa(@) + ca(M) (8 )",

<02 Ey(0) +

proving (I) ;. To show (II) ; we use of Lemma 2.2, (I, fork=1, ..., j — 1, (4.33), (4.31), (ii) and (iii) to obtain
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J
1970l < 6ol + Z E9i0 — Eni-1,]

i=1

L nt2
§M ((;l )2 f | %-191 1 xn| dZ)

19’

Vni2 < 0
B S

F"”Z (9% Erl0) + ca(M)(970) )2

<M+

<M+ Vn+2 <\/ Ei(0) «/04( Qﬂ>

,/ﬁn+ 1—19“ 1—19‘9
<M+M+M—2M
= 2 2 T T

This proves the second assertion of the lemma. The assertion about the limit 7" is proved by showing that

((Dy u)ﬁIQ/Z)/GN is a Cauchy sequence. Since |€y;,| < 2M we can apply Caccioppoli’s inequality to infer for s =2,
respectively s = p,

&5 (970/2, (D)5, ,) < o5 (970/2.85i,)
< ccac2M) Ern(970)
< cCac@M) (9% Er(0) + ca(M) (97 0)F). (4.34)

We also used the minimizing property of (D,u)? Sio)2 and (I) ;. Now, for k > j we have

k
|(Dnu)ﬂjg/2 (Dnu)ﬁkg/2| Z |(Dl’lu)1919/2 (Dﬂu)ﬁz 1Q/2|
i=j+1
+2 d
<o Y | (Dutt) i, ] dz)
i=j+1 Q;; 9/2(20)
o & s
<Y Z( ][ | Du — (Du)j, /2®en|“dz)
l:]+l ng/z(zo)
—(142) 1 Qai 5 i \2B\1
< (07" @M))T Y (97 Erle) + caM)(90) )"
l':j—‘,-l
L ( Er(0)s (ca(M)0?) s
~(+2) s £1at@)® o2qj | LCAVICTT)" 00p)
< (v ccac(2M)) <1_Wz? 5 0 )

This implies that ((Dj, )t Iy /2) jeN is a Cauchy sequence and therefore the limit 7 := lim J_mo(Dnu)

exists. In
the limit k — oo we obtain from the preceding estimate

9io)2
(D)}, =TI < [0 i) + (970) ],

where ¢ dependsonn, N,v, L, M, H(M), kp+1,, B and || g; ||L2_2,2ﬁ(Q1+). Combining this with (4.34) we get
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][ |Du—7 ®ey|*dz <2 ' (07 0/2) + 257! |(Dnu);_jg/2 -1l
0,1,
<D [9* Erlo) + (970)*],
where c(M)=c(n, N,v,L, M, HM), kp+1,, B, 8¢ ||Lz,z_25(QT)). We now consider an arbitrary radius 0 < r < %.
Then, we find k € NU {0} with 9%T10p/2 < r < 9¥0/2 and obtain from the previous estimate:

][|Du—r®en|fdz<ﬁ—"—2 ][ |Du—7 ® enl|* dz

0/ (z0) PN C)

<O 2e(M)[92* Era(0) + (9%0) ]
r 20 28

<c<M)[<—> Enu(0) + (2r) }
0/2

which finishes the proof of the lemma. O

In order to provide our characterization for regular boundary points we will have to combine Lemma 4.5 with
an excess-decay estimate for interior points, stated below. In the interior situation we shall use a different excess
functional, namely for zg € Q+, 0 > 0 such that Q,(z0) C QT we define

u— EZ(),Q r
Q

2
u— ZZO»Q
Q

dz, (4.35)

Ew0.0)i= §
QQ(ZO)

where £, , denotes the unique affine map minimizing ¢ > |, 00(z0) lu —£)*>dz and

Ein(z0, 0) = Eint(z0, 0) + 0%.

Then, for interior points zo € QT we have the following excess-decay estimate form [20, Lemma 4.8]. We here state
it in a form which is convenient for our purpose (note that we can take the symmetric parabolic cylinders instead of
the lower ones considered in [20]). Moreover, to be precise we have to take a non-homogeneous version of the lemma
valid for systems involving a right-hand side g;, since our model problem is of this form. This can be achieved by
minor changes with the methods we have previously used (see for instance the proof of Lemmas 4.2, 4.3).

Proposition 4.6. Given M > 1 and a € (B, 1), there exist constants Qint = Qince(M) € (0, 1) with Q,, (z0) € Q1 and
Eint(M) € (0, 1) dependingonn, N, p,v, L, M, HM), kpr+1, @, B and || g; ||L2,z_z,g(Ql+) such that the following holds.
Suppose that
|(”)zo;g| + |D£Z0;Q| <M, 0 < Qints gint(ZOa 0) < Eint
are fulfilled for some parabolic cylinder Q,(zo) C QT. Then it follows the existence of the limit
X, = lim (Du)
Jj—>00

20,07 0>

and moreover, for any 0 <r < o/2 there holds the estimate

r 2
f |Du_%zo|2dzgcint|:(m> Eine(z0, Q)+rzﬂ:|,
0r(z0)

where cin depends onn, N, p,v,L, M, H(M), kp+1, e, B and ||g[||L2,2,2,3(Q1+).
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4.1.6. Description of regular lateral boundary points

We are now in a position to prove our main result, i.e. the characterization of regular lateral boundary points as
stated in Theorem 1.2 in the model situation 27 = QT. Let us note that due to our considerations in Section 2.1,
the assertion of Theorem 1.2 concerning lateral boundary points zg € 94§27 directly follows from Proposition 4.7. In
order to prove the Holder continuity of Du in the regular set d1,§27\ X we use the integral characterization of Holder
continuous functions due to Campanato and Da Prato. To this aim we have to combine the excess-decay estimates in
the interior and at the boundary.

Proposition 4.7. Suppose that u € LP (Ay; wlrpt, RMY) with u =0 on I} is a weak solution of (2.5) where the
structure conditions (1.4)—(1.6) are in force. Then, for any zo € I'1 \ X there exists a neighborhood U, such that
]
DueCPz(U,n(Qfum); R,

L UX2 and

where X i= X, It

20,0

Sh= {Zo € I': liminf ][ |Dyu — (D)}, |7 dz > 0},
Q
05 z0)
20,01 ™

Th= {zo € I: limsup| (D)} | = oo].
010

Proof. For 3 € QT U I, 0 > 0, we define

¢ G 0) = ][ |Dyu — (Dyw)f, [ dz, s=2.p,
Q25 )

while, for a fixed Mg > 1 we define

My :=2(1+Mo)(n+2) and My :=22"52 4 Mo)(n + 3)ccac(0),

where ccue(0) is the constant from Lemma 4.2 for the choice M = 0. Moreover, we recall from Proposition 4.6
respectively Lemma 4.5 the definition of @jat(M1), Eiat(M1), Clat = clat(M1) respectively gint(M2), Eint(M2). Note that
Elat(M1) < 1 by definition.

Now, for zg € I'7 \ (Z‘llat U Z‘lzm) we can find My > 1 (depending on zp) and 0 < ¢ < min{Q1a(M1), Qint(M2)} with

Q;Q(Zo) - Q'l" such that |(Dn”)$,g| < My and

n n 1 - :
95" (20.0) + 8§ 0. 0) + 0™ < - (esera(M1) ™" min{ i (M), Em(M2)) (4.36)

where ¢ =2P(n + 2)% and ¢5 = 221327 (n + 3)P. Using the Poincaré inequality from Lemma 2.3 we see that

1 1
P P 1
(a"’ ][ |u|”dz> <(][ |Dnu|"dz) <99 (z0,0)7 + |(Daw)}, ,| < 14 Mo.
05 (z0) 04 (z0)

This leads us immediately to (cf. Lemma 2.2 for the definition of &, ,)

_ 1
Iézo,g|<(n+2)el ][ Iuldz<(n+2)(1+Mo)<§M1,
0 (z0)

where we have used the definition of M. By an application of the Caccioppoli inequality from Lemma 4.2 with £ =0
we also have
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1
P
7[ |Du|dz<[ccgc(0) 7[ Q_2|u|2+g_p|u|”+gz’3dz]

0 (z0) 0% o)
1
P
< [2CCac(O) ][ o Plul” + 1dz}
0¥ (z0)
< 2ccac(0)(2 4+ M)
< (22 +3) " M. (4.37)

Here we have used in the last line the particular choice of M. Moreover, from Lemma 2.2, the Poincaré inequality
Lemma 2.3 and (4.36) we deduce

~ P~
Elat(ZOa Q? é,-:z(),g) < 2[7(n + 2) 2 Elat(ZOa Q’ (Dnu);’;))g)
p
<27 (n +2)% (95" (20, 0) + ¢ (0. 0) + 0*)
1 . 1 —
< 5 min{&u (M), c5 Lo MM ).

Since N>z &, pand I'1 >z~ Em(z, 0, &z,0) are continuous with respect to the center z, there exists a radius
0 < R < ¢/12 such that

&2,01 < M1, (4.38)

and

~ -1 .
Ena(z, 0. €2,0) < (cscia(M1)) ™ min{Ea(M)), Eini(M2)} (4.39)
for all z € I'r(zp). Moreover, due to the choice R < ¢/12 and the inclusion Q;Q (z0) C QT we have Qz)‘(z) C

07, (z0) C OF.

Now, given « € (8, 1) and M; from above we choose ¢ in dependence of n, N, p,v, L, M1, H(M1),km, ., B
and | g1l 122-25(Q}) to be the constant from Lemma 4.5. Without loss of generality we can assume that the constant
¥+ appearing Proposition 4.6 is equal to the one from Lemma 4.5. In the following we will show that for all 3 €
07} (20) U I'r(z0) the limit

— 1; +
= fim 00, a0

exists and that

2
][ |Du—x3|2dz<c<5> , (4.41)
0

oF )
for all 0 < r < ¢/6 and with a constant ¢ depending on n, N, p, v, L, My, My, H(M1), H(M2), kKp,+1, KMy+1, o, B
and || g; ||Lz,2_2ﬁ(QT). For this we will distinguish between the cases 3 € I'r(z0) and 3 € Q;(Zo).
In the first case 3 € I'r(z0), we see that by (4.38) and (4.39) the hypotheses of Lemma 4.5 are fulfilled so that the
application of the lemma yields the existence of the limit 7 = lim jﬁoo(Dnu);" o Moreover, for 0 < r < 9/2 we

have

2a
r
][ |Du—7; ®ey)* + |Du—71; @ ey|P dz < Clat[(ﬁ) Eiat(3, 0,6;5.0) +r2ﬁ}
oF ;)

r \ -
<ca|l —5 ) EaG o,
Clat<Q/2> 1at(3, © 53,@)

r Zﬂ
< —_ , 4.42
c(@/2> (42
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where ¢ depends on n, N, p,v, L, My, H(M}), kp,+1, o, B and ||gt||L2,2,z,g(Ql+). Here we have used in the last line

the bound (4.39) for Elat(g, 0, &;,0)- The preceding estimate implies for the tangential directions o =1,...,n — 1 in
particular that
lim |Dyul®dz =0.
rl0
0f ()

Hence, (4.40) and (4.41) are valid with X; = T; ® ej,.
In the second case 3 € Q;(Zo) we want to apply Proposition 4.6. Therefore we have to ensure that the hypotheses
are fulfilled. From (4.35) we recall that £; ., denotes the unique affine map minimizing £ - |, 00, (3) lu — €|*>dz and by

3 =(@1,...,t-1,0,t) we denote the projection of 3 = (x1, ..., tn—1, &, t) onto I. Since 3’ € I'r(zo) we can use the
results from the first case with center 3’ obtaining that the limit Ty :=1lim j%oo(Dnu); 2o exists and, moreover, that

(4.42) holds with 3" instead of 3. At this stage we recall that for 3 € Q;(Zo) we have Q;, (3) C Q;;n (3)). Therefore, by
the use of the minimizing property of £; ,, and Poincaré’s inequality from Lemma 2.3 we find

. ][ lu— 5, 1P dz <z,” ][ lu — x, Yy |*dz
O, (3) 01, (3)
<Mt 2 ][ lu — x, Yy |*dz
03,,G")
Viar ][ |Dyu — Tyl dz
05, )
<2 ][ |Du — Ty ® eyl dz.
03,,G)
Similarly, replacing in the left-hand side of the preceding inequality the integrand by |u — K(p ) |P, where E(p ) is the
Yy, rep g p g meq y g y 3.In 3.In
unique affine map minimizing € — fo G) |u — £|P dz, we see that
0,7 ][ | — €7 |7 dz < 2P ][ |Du— Ty ® ey|P dz.
01, (3) Q;;n 3)

In this estimate we want to replace E;{’;ﬂ by ¢; v, i.e. the affine map minimizing £ — th G) lu — €| dz. From the
proof of Lemma 5.1 in [20] (i.e. from (4-26)) we know that ‘

" ][ U — €y 0, 1P dz <3P (n +2)P1, " ][ u — €7 |7 dz. (4.43)
01, (3) O 3)
Combining the previous estimates and using (4.42) with (3, 2r,, 0) instead of (3, r, 0), the fact that 2z, < 2R < ¢/2
and (4.39) we infer
EiniGota) =1, ][ u— €, 12 dz+1," ][ U — €55, 17 dz + 2P
01, (3) Or, (3)

<c(n, p)( ][ |Du— Ty ® enl* + |Du — Ty ® en)” dz + (2zcn)2f’>

03,,G)
2 28 2 28
< 2c(n, P)Clat(Q_/};> Ea(3', 0.8y 0) < Q—/Z Eint(M>), (4.44)
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where we have abbreviated c(n, p) = 372" (n + 2)? and we note that 2¢(n, p) < ¢s due to the definition of cs
in (4.36). Since 2, < 2R < o/2 this implies in particular that Ein (3, r,) < Ein(M2). Next, we will infer a bound for
the mean-value of u and for |D¢; ., | on the cylinder Q, (3). From Holder’s inequality, (4.42) and (4.37) we obtain

|75 < ][ [Du— 7y Qenldz + ][ |Du|dz
052G 052G
~ 1
< (wBiu'0.6r0) +27 f Duld:
07"
~ 1 —1
< (B 0.8.0))° + (2" (1 +3) " M. (4.45)
To proceed further we recall from (2-8) in [20] that
n+2 n—+2
|D£mn|=—x2 ][ u® (x —pdz< . ][ lu|dz.

n n

O (3) Orn (3)

Using the preceding estimate, Poincaré’s inequality from Lemma 2.3, Holder’s inequality, (4.39), (4.42) and (4.45)
we infer with ¢ = 2"12(n + 3) (note also that 2r, < 0/2<1)

3
+|D€5,;n|<2”+2% ][ lu|dz < ¢ ][ |Du|dz < ¢ ][ |Du— 7Ty ®e,ldz+ |7y
n

0, &) 03,3 03, )

|(“)mn

1

~ 2;11 26 = / 2 ~ - / 1
< ¢\ Clat @ Ea(3' 0, E;,’,g) + C(ClatElat(5 > Qs Eg’,g)) T+ M

- 1 _1
<28(clu B, 0.8y,0))% + My <28cs 2 + My < 1+ M. (4.46)

Recall that the constant ¢s was defined in (4.36) such that 2 - 222 (5 4+ 3)2 < ¢5 in (4.36). Hence, by (4.44) and
(4.46) the hypotheses of Proposition 4.6 are satisfied. Therefore the Proposition can be applied with (3, 7, t,,, 1 + M3)
instead of (zo, r, 0, M) to conclude on the one hand that the limit in (4.40) exists and, on the other hand, that for any
0 < r <, /2 there holds

20
r
][ |Du — 36:y|2dZ < Cint[(m) Ein (G, ) + ”zﬂ:|
n

0:(3)
20 28 28
r 2 r
ce (c25) (Z) st ) < (1)
/2 0/2 0/2

where ¢ dependsonn, N, p,v, L, My, H(M>), km,+1.« and §. Here we have also used (4.44) in the second line and
Eint(M3) < 11n the last line. In the remaining case ¢, /2 < r < 0/6 we use (4.41) for 3’ as well as the previous estimate
to infer

][ |Du—.’£3|2dz<2][ |Du — Xy|*dz +4 ][ |Du — Xy|* + | Du — %31 dz
0/ () 07 ) Qtn/2(3)

;,1/2)2'3

<c][ |Du— Xy >dz +c ][ |Du—%/|2dz+c(
3 3 Q/Z

03,G3) 03,23

(i)
gc A b
0/2
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where ¢ depends only on n, N, p,v, L, My, My, H(M1), H(M2), kpM,+1, KMy+1. @, B and || g; ||Lz,2,2ﬁ(Ql+). This com-
pletes the proof of (4.40) and (4.41).
Finally, we will prove that the Lebesgue representative z — X, of Du is Holder continuous on Q;(Zo) U I'g(z0).

Given z1 = (x1,11), 22 = (X2, ) € Q;(ZO) U I'r(z0), we put r = max{|x; — x2|, /|t — 2]} <2R < ¢/6 and a =
%. Then there holds

1%, — X,17 = ][ |x21—x22|2d1<2][ |Du— %, 1> dz +2 ][ |Du — %,,|°dz

0} @ 0/ @ 0@

gz”“[][ |Du — %,,1*dz + ][ IDu—%Zz|2dz:|.

0/ ) 0/ (z2)
Using (4.41) for z; and z» we therefore infer

28 d 28
|le _xzzlzgc(i) gc<M) ,
o o

proving that the Lebesgue representative z — X, of Du is Holder continuous with respect to the parabolic metric
on Q;(Zo) U I'r(zp) with Holder exponent 8. Here, the constant ¢ depends only on n, N, p, v, L, My, M>, H(My),
H(M>), kpm+1, Kmy+1, o, B and || g; ||L2_2,z,g(QT). This completes the proof of Proposition 4.7. 0O

This proves the assertion of Theorem 1.2 concerning the lateral boundary. We now turn our attention to initial
boundary points.

4.2. Regular points on the initial boundary

In this section we prove the characterization of regular points zo lying on the initial boundary £2¢. We shall always
refer to the model situation (2.6) where the boundary values are equal to zero. The general result then follows by
considering the map v(x,t) = u(x,t) — g(x,0) as described in Section 2.1. Since the arguments are similar to the
interior situation considered in [20], we shall only give an outline of the proof. Thereby we shall concentrate our
attention on those arguments which are peculiar of the initial boundary situation.

4.2.1. A-caloric approximation

Lemma 4.8. Given ¢ > 0, 0 < v < L and p > 2 there exists a positive function § = &(n, p, v, L, €) € (0, 1] with the
following property. Whenever A is a bilinear form on RN" which is strongly elliptic with ellipticity constant v > 0
and upper bound L, i.e.

viw* < (Aw,w) and (Aw, @) < Llw||®|

holds whenever w, w € RN" and u € LP (0, 0% Wl'P(BQ; RNy withu =0on B, at the initial time t = 0 (in the usual
Lz-sense) and

ul? ul?
][‘— +|Du|2dz+y”_2][’—' + |DulP dz < 1,
0 o
o)) 09

where 0 < y < 1, is approximately A-caloric in the sense that

< $8sup|Dg|, forevery ¢ € CSO(QO; RN),
05

’][ u-q@; —(ADu, Do) dz
%

then there exists an A-caloric map h € L?(0, (0/2)?; Wl’p(BQ/z; RM)), ie.

/ h- ¢~ (ADh, D)dz =0 for every ¢ € C°(09,5: RY),

0
Qo2
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with h =0 on By in the L2-sense satisfying

flz

2
h p
+|Dh|*dz + y"—2][H +|Dh|Pdz <2202
%

o)) o
and
u—hl? pa|u=h|’
][Q/Z 0/2 | 55
052

Proof. The proof goes as the one for Lemma 4.1, with a few modifications we are going to describe. After reducing
to the case Qg = Q(l) via the usual scaling we proceed by contradiction: we get the existence of ¢ > 0 and sequences

(Aj)jen of bilinear forms on RV with uniform ellipticity constant v > 0 and upper bound L, (v;)jen With v; €
LP(0,1; W-P(By; RN)) satisfying v;(-,0) =0 on By and y; € (0, 1] such that

][lvj|2+ |va|2dz+7/jp_2][ |Dv;|P + |Dv;|Pdz <1 (4.47)
0% 0%

and
‘/vj @1 — (A;Dv;j, Dp)dz| < %sup|D<p| for every ¢ € C§°(0); RY), (4.48)
oY o

but
][ 4|vj—h|2+2pyjp_2|vj—hlpdz>8 (4.49)
Q(l)/z

for all A ;-caloric maps h on Q?/z with 2(-,0) =0 on By, and

][ |h|2+IDh|2dz+y”_2][ |h|P + |Dh|P dz <2-2"T2H2P, (4.50)
0%, 0%,

p=2
We define v; =y f ” v asin (4.5), and proceed as thereafter, up to proving the following strong convergence:

{ v; — v strongly in LZ(Q?; RN), 4.51)

v; — U strongly in LP(QO; RN).

Note that at this stage, and in contrast the case of a Dirichlet condition at the lateral boundary, we cannot immediately
conclude by a trace theorem that v = 0 on By. This can be derived after establishing equicontinuity of v; with respect
to t in W—%2(By, RY) for some £ € N. More precisely, by the way, we have proved the continuity estimate

s—2
w‘|vﬂnh)—vﬂnnwweawmw)<5QAﬂﬁ2—fﬂé+§>v (4.52)
which holds whenever 11, 72 € (0, 1), and j € N. Notice that the previous inequality tells us that the family of Banach
space valued maps v; : (0,1) — wW=t2(B;,RN) is equi-uniformly continuous in (0, 1). Therefore we first observe
that they can be extended, again in an equicontinuous way, as maps defined in [0, 1], i.e. they do have an initial trace
v;(-,0) € W=t2(B,RV) in the sense that lvj (-, ) = v O)llyw—esp, wYy = 0 when T — 05 we call this a “weak
trace”. Moreover, the fact that v; — v in LZ(QO, RY) ensures that there exists T € (0, 1) such that vi(, 7)) = v(, 1)
in L2(B;,R") and therefore also in W —42(B;, RV). Together with the last inequality we deduce that v; is bounded



240 V. Bogelein et al. / Ann. 1. H. Poincaré — AN 27 (2010) 201-255

in CO([0, 11; W=42(By,RM)). This allows us to apply Ascoli—Arzeld’s theorem to conclude that, up to extracting
a non-relabeled subsequence, we may assume that v; — v in (10, 11, w=%5(By,R")). Therefore, by uniform
convergence we have that v;(0) — v(0) in W=65(B1, RY). On the other hand we have that v;(-,0) =0 in the strong
L?-sense by assumption, and therefore also the weak trace of v ; at the initial time is zero, since a strong trace is
also a weak trace — this follows from || - [[y-e2p, r¥) < II - |25, rN)- We deduce at once that the weak trace of v
is zero. Now we know that v is A-caloric, and therefore it has a strong trace, i.e. [[v(-, T) — v(-, 0)[l 2(p,) — O; this
follows from the fact that v € C O([O, 11; L2(B 1)); again, as a strong trace is also a weak trace we finally conclude
with [[v(-, T)ll 2¢p, m¥) = O, that is v has zero trace at the initial time in the sense of (1.2). With this information

we conclude the proof: we can define w; € L*(A W1’2(B3‘?4, RM)) as the unique solution of the following

0 .
G/4H*
Cauchy-Dirichlet problem:

/Wj'(ﬂ[_<Aijj,D(ﬂ)dZ:O foreverygongo(Qg/4,RN),
0%
w;=v onapQg/4.

Since now we have defined the A j-caloric map w; with w;(-,0) = v(-,0) =0 on B34, the rest of the proof follows
as in the lateral boundary case Lemma 4.8, using the corresponding results from Section 3.2, instead of those from
Section 3.1. O

4.2.2. Caccioppoli inequality

We now state the Caccioppoli inequality on initial cylinders of the form Qg(z()) where zg = (x, 0) touching the
initial boundary £2. Since the proof is essentially the same as the one from Lemma 4.2 we shall only outline the
changes that have to be made.

Lemma 4.9. Suppose that u € LP(0, T; WP (2; RN)) is a weak solution of the non-linear parabolic system (2.6)
with u(-,0) = 0 on $2, where the structure conditions (1.4)—(1.6) are in force. Then, for any zo = (x¢,0) € §2¢ and
o € (0, 1) such that Qg (zo) C 27 there holds

][ |DM|2+|DM|de<CCac< ][

07, (z0) 095 (z0)

2
u

0

ul? 26

where ccae = (1 + & ||iz.272,3(QT))C(ns p.L/v, K(1), k1).

Sketch of the proof. Here, we let 0 < ¢ < 02/2 and choose the test-function ¢, (x, 1) = n(x)Z(1)u(x, t), where
is as in the proof of Lemma 4.2 and ¢, € W(}’OO((O, 02)) such that ¢, = 1 on [g, 0% — €], :(t) = t/e on (0, ) and
Ze(t) = (0% — 1) /e on (0% — &, 0?). Testing the parabolic system (2.6) formally with ¢, we arrive at the analogue
of (4.17) with £ =0 and X = 0. Now, the estimates for the terms / and /I are similar to the ones in the proof of
Lemma 4.2. Indeed, the only difference is the estimation of the term IV = IV, which now depends on ¢. Here, we can
exploit the initial condition on u to show that

1V, :/u . 8,(pgdz
2

1
_ / oot dz+ 5 f O lu Pt dz
QY o
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1
=5/|u|2n28,;8dz

09
e 0?
:2—2/f|u|2n2dxdt—2—2 / /|u|2r/2dxdt.
0 B, o—¢ By

Due to our initial condition on u# we have
&

im 22 g dt =
lim lu|“n“dxdt =0.
£l0 2¢e
0 Bg
With this information we can conclude the proof as in Lemma 4.2. O

4.2.3. Linearization
For s > 1, zo = (x0, 0) € £29 and a parabolic cylinder Qg(zo) C 27 we define the excess functionals by

S

u
6020, 0) = ][ Duldz. ¥ 0.0) = ][ )z
09(z0) 09 (z0)

and we shall often abbreviate

¢0=¢2(z0,0) and ¥?=v"(z0,0).

We now state the linearization lemma for cylinders touching the initial boundary, i.e. the analogue of Lemma 4.3.
Here, we are allowed to apply the linearization lemma for interior cylinders from [20, Lemma 4.4] also on the cylinder
Qg (zo) where zg = (x¢, tp), and with the choice £ =0 and M = 0, because the test-function ¢ is assumed to have

compact support in Qg(z()). We only have to take into account the fact that we are dealing with inhomogeneous
systems and that we did impose a slightly weaker regularity assumption on the vector field a, compared to [20],
namely we did not assume any regularity in # on the vector field a in (1.6). Therefore we “freeze” the coefficients in
a((0,1),0,0) instead of a((0,0),0,0) as we did in (4.18) in the lateral boundary situation. Taking into account this
slight change in the proof we come up with @ (gbg + 07) on the right-hand side rather than w; (¢2). The linearization
lemma at the initial time boundary situation then reads as follows:

Lemma 4.10. Suppose that u € LP(0, T; WP (§2; RN)) is a weak solution of (2.6) satisfying u(-, 0) = 0 on §2, where
the structure conditions (1.4)—(1.6) are in force. Then we have

][ u-¢r— (3wd(zo,0,0)Du, Dgo)dz
09(z0)

<ch[wl<¢g+Qv)¢¢’g + @0+ 90+ 0P (69) 7 (14 (v0)

B
7) +Qﬁ] sup |Dgl,
09 (z0)

for any ¢ € Cgo(Qg (20);: RM), zo = (x9,0) € 29 and Qg (zo) C 27. The constant cg, depends on is of the form
cgn = L1+ ||gt||iz,272ﬂ(QT))C(n, P, K(1), k1)

4.2.4. A decay estimate at the initial boundary

At the initial boundary we want to approximate our solution u by an affine map constructed from the initial values,
i.e. the affine map £ : R” — RY minimizing ¢ /, By () |go — £|? dx. Since we have transformed the problem to the
model situation where go = 0 we shall take £ = 0. Therefore, we define the following excess functional

2
u

e

Eini = Eini(z0, 0) == ][ dz

09(z0)

4
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for zg = (xg, 0) € £2¢ and

Eini = Eini (20, 0) := Eini(20, 0) + 0%.

Then, we can show the following excess-decay estimate.

Lemma 4.11. Given o € (B, 1), there exist constants v € (0, zlt]’ Eini € (0,11, oini > 0 and c4 depending on
n,N,p,v,L,K(1),k1,c, B, ||gt||iz,2,2ﬂ(QT) such that the following holds. Suppose thatu € L? (0, T; W”’(.Q; RN))
is a weak solution of (2.6) satisfying u(-,0) = 0 on §2, where the structure conditions (1.4)—(1.6) are in force and

suppose that
@) o< oni
(i)  Eini(0) < Eini

are fulfilled on some cylinder Qg (zo) with zo = (x0, 0) € 20 and B, (xo) € £2. Then for any 0 < r < 0/2 we have

2 p 20
u u r
][ - +‘; dz + ][ |DM|2+|DM|de<Cini|:(E> Eini(Q)+rzﬂ:|,
09%(z0) 0%(z0)
where the constant cin; depends onn, N, p,v, L, K(1), k1, a, B, || gt ”22-2*2%3(:27)' In particular this estimate implies
NI 0 _
Xy = jILH;O(D”)zo,w@ =0.

Sketch of the proof. Since the proof is very much similar to the one from Lemma 4.5 for the lateral boundary
situation, we shall only give a brief outline here. From the linearization Lemma 4.10 and the Caccioppoli inequality 4.9
we infer that u satisfies approximately a linear system with constant coefficients d,,a(zo, 0, 0). This allows us to
apply the A-caloric approximation Lemma 4.8 to find a suitable A-caloric map 4 on Qg P (zo) which is close to u in
LP(Qg/z(ZO), RV) and with 4(-, 0) = 0 on B2 (xp).

Next, we use the excess-decay estimate from Theorem 3.5 for the A-caloric map & and the fact that / is close to u
in L? to infer an estimate for the excess functional Ej,;i(? 0, zo) on a smaller cylinder Qg Q(ZO) with some 9 € (0, %)
and under certain smallness assumptions. Finally, we iterate this estimate to get an excess-decay estimate for # on
cylinders of the type Qg jQ(ZO)’ j € N. From this we deduce an excess-decay estimate for # on arbitrary cylinders

Q(r)(z()) with r < p. Finally, with the help of the Caccioppoli inequality from Lemma 4.2 we also infer the asserted
excess-decay estimate for Du which completes the proof of the lemma. O

4.2.5. Description of regular initial boundary points

As usual, we prove the Holder continuity of Du on the regular set 29 \ X by the integral characterization of
Holder continuous functions of Campanato and Da Prato. Therefore we have to combine the excess-decay estimates
for cylinders touching the initial boundary from above with the one for cylinders lying in the interior of £27 from
Proposition 4.6.

Proposition 4.12. Suppose that u € L? (0, T; WP (£2; RN)) with u(-,0) = 0 on 2 is a weak solution of (2.6) where
the structure conditions (1.4)—(1.6) are in force. Then, for any zo = (x0,0) € 20 \ Zini there exists a neighborhood
U, such that

B
Du e CP2 (U, N (27 U £20); RY™),
where

2ini = {zo € Qo: limiionfg_’7 ][ lu|P dz > O}.
o
0% (z0)
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Proof. In the following we denote by where 0ini, €ini, Cini» Oint(1) and Einc(1) are the constants from Lemma 4.11,
respectively Proposition 4.6 for the choice M = 1 Now, for zg € 20\ Xin; we can find 0 < o < min{Qini, Qint(1)} With
03, (z0) C 21 such that

~ 1 )
Eini(20,0) < 3 (csCin) ™! min{Eini, En(D}, (4.53)

where we define ¢5 = 22327 (n + 3)P. Since 29 > z — Eini (z, 0) is continuous with respect to the center z, there
exists a radius 0 < R < ¢/12 such that

Eini(z,0) < (cs¢in) ™  min{ Eini, Em (1)} (4.54)

for all z = (x, 0) € Dr(z0). Moreover, due to the choice R < ¢/12 and the inclusion Q2 (z0) C 27 we have Qo(z) C

09, (z0) C 27

Now, given o € (B8,1) we choose ¢ in dependence of n, N, p,v,L, K(1),x1,c, 8 to be the constant from
Lemma 4.11. Without loss of generality we can assume that the constant ¢ appearing in Proposition 4.6 (with the
choice M = 1) is equal to the one from Lemma 4.11. In the following we will show that for all 3 € Q% (z0) U DR(z0)
the limit

X; = ]ll)rr;o(Du)z 2io (4.55)
exists and that
r\ 28
][ |Du — %;1*dz < c(—) , (4.56)
Q

0%(3)

for all 0 < r < o/6 and with a constant ¢ depending on n, N, p,v, L, K(1), k1, «, B. For this we will distinguish
between the cases 3 € Dg(zp) and 3 € Q% (z0). In the first case, i.e. the case 3 € Dg(zp), we see that by (4.54) the
hypotheses of Lemma 4.11 are fulfilled (note that c¢5 > 1) so that the application of the lemma yields that

X5 = hm (Dz,t)3 970 =0.

Moreover, for 0 < r < o/2 we have

/

0%G3)

2
u

20
u r
“r‘;’ +|Du| + |Dul|? dz < Clm[(g) Eini(ﬁvQ)‘l‘Vzﬂ]

N\~
<Cini<5> Eini(3,0)

r 213
< c(—) , (4.57)
0

where ¢ dependsonn, N, p,v, L, K(1), k1, a, B, IIgzIILzz %(2r) Here we have used in the last line the bound (4.54)

for Eini (3, 0). Hence, (4.55) and (4.56) are valid with X; = 0.
In the case 3 € Q% (zo) we want to apply Proposition 4.6. Therefore we first have to ensure that the hypotheses are
satisfied. By 3’ = (r, 0) we denote the projection of 3 = (z, t) onto §2¢. From (4.35) we recall that ¢ SR denotes the

unique affine map minimizing £ > | 05 |u — £|? dz. Therefore, by the use of the minimizing property of ¢ 5/TWe
: ,

find

0 13

u—4 a«f
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(p) . e e . . _op
Furthermore, we recall that Ez, i denotes the unique affine map minimizing the functional £ > |, o) lu — 2|7 dz.

Using (4.43) and the minimizing property of ng’ x)” we also find
][ Sl T PRI " "4
—— dz<3"(n+ ][ ‘— Z.
i i
0 /(3 0 /)

At this stage we recall that O vi® C Q" (3 ) which allows us to enlarge the domain of integration from Q vi®
to Q (3 ). Now, since 3’ € Dg(zo) we can use the results from the first case with center 3’ obtaining that the limit
Xy = hmj%oo(Du)é pio
estimates and using (4.57) with (3, V24, t, 0) instead of (3, r, 0), the fact that V2t <2R < 0/2 and (4.54) we infer

= 0 exists and, moreover, that (4.57) holds with 3 instead of 3. Combining the previous

Ein (3, V1) <37 (n +2)P ][ ‘”‘2+ ul”y + V17
n — —| dz
1nt5 ﬂ \/{
OV
<2n+p3p(n+2)17( ‘L‘ + pdz_i_@w)
V2t

0 ’
Q 5 @)

26\ -
<2-3P2"P (n 4+ 2)Peini <£) Eini(3', 0)
Q

V2t\#
< <—> Eine(1), (4.58)
Q
where we have abbreviated Eim G5, NOE Nim(;,, Jt, 63’ ﬁ). Note that the constant ¢5 was defined in (4.53) such that
2-3P2"P(n 4+ 2)P < c5. Since V2t < < 0/2 this implies in particular that Eim(g, V) < Ene(1). Next, we will

infer a bound for the mean-value of u and for | D¢ N il on the cylinder Q /;(3). Starting as in (4.46) and then using
Holder’s inequality, (4.57) and (4.54) we infer with & = 2"72(n + 3) (note also that yp; < 1 and /2t < 1),

1
n+3 V2t\ % LA |
[0), sl +1DE, sl < 2"+1 ][ luldz < C<le< ) Eini (3, Q)) <ées? <1
Q 0@
Recall that ¢5 was defined such that ¢ < ¢s in (4.53). Hence, by the preceding estimate and (4.46) the hypotheses

of Proposition 4.6 are satisfied. Therefore the Proposition can be applied with (3, 7, Jt, 1) instead of (zg, r, 0, M) to
conclude on the one hand that the limit in (4.55) exists and, on the other hand, that for any 0 < r < «/E/ 2 there holds

2a
][ |Du — 36;;|de < Cint[(ﬁ) Ein (3, \/E) +72ﬂ]

0,(3)
2a 71\ 28
\clnt[(f/z) (JQ——) &m(l)+r2ﬁ]

r 28
< C<_> )
Q

where ¢ depends on n, N, p,v, L, K(1), k1, a, B and g1 Here we have also used (4.58) in the second

L2228 27)°
line and &p(1) < 1 in the last line. In the remaining case Jt t/2 < r < /6 we use the previous estimate as well as
(4.56) for 3" (note that X, = 0) to infer
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][ |Du—%5|2dz<2][ |Dul*dz +4 ][ |Dul? + |Du — X;41*dz

0233 0%(3) Q12 ®)
t/2\*f
<c ][ |Dul>dz + ¢ ][ |Du|?dz +c(‘[/ )
Q
05,6 0} ;@)
(5)
g |\ — )
e
where ¢ depends only onn, N, p,v, L, K(1),x1,, B, || ||2 This completes the proof of (4.55) and (4.56).

12.2-28 (-QT)
Now, we can proceed completely similar to the proof of Proposition 4.7 to show that the Lebesgue representative
z+ X, of Du is Holder continuous on Q%, (z0) U DR(zo) which completes the proof of Proposition 4.12. O

4.2.6. Poincaré type inequality, at last

The characterization of regular initial boundary points we have proved so far is not the one stated in Theorem 1.2.
Therefore, we still have to show that Zi; € (X! U £2) N £2y. This is a consequence of the following Poincaré type
inequality, after which, the proof of Theorem 1.2 concerning the initial boundary is complete.

Lemma 4.13. Let M > 0 and suppose that u € L?(0, T, Wbhr(2:RN)) is a weak solution of (2.6) satisfying
u(-,0) =0 on $2, and that the structure conditions (1.4)—(1.6) are in force. Moreover, let zo = (x9,0) € §2¢0 and
0 < 1 such that By(xo) C $2. If |(Du)(Z)O,Q| < M then there exists a constant ¢ = c(n,N,L, p, M, K(1), kpr+1,
llgell L22-2 o)) such that

[ wraz<eer((+op 2o, +0m)
09 (z0)
holds with @, = 5o, 1Du = (D)3, 17 dz.

20,0

Proof. For notational convenience we omit the reference point and write B, and Q, rather than B, (xo) and Q,(zo).
As usual when proving a Poincaré type inequality for solutions of parabolic systems we will avoid the use of time
derivatives of u by proving suitable estimates for differences in time of the weighted means introduced below. Let
n € Cy°(B,) be a non-negative weight-function satisfying 0 < n < ¢, |Dn| < ¢;/0 and 7[39 ndx = 1. We define the

weighted mean of u(-, ) on B, fora.e.t € (0, T) by (u),(t) = fBQ u(-,t)ndx and prove in
Step 1. For k=0, 1 and a.e. t, T € (0, Q2) there holds

|(D*u), () = (D*u), (0] < o' 77 <(1 +ol o, +][ |u|PP dz + Q"ﬁ>, (4.59)
2
with ¢ = C(N7 La M7 K(1)7 KM+1, ”gl”Lz,ZfZﬁ(Q‘lF))

For any i € {I,..., N} we take ¢ : R"*1 — RV with ¢; =7 and @;j =0 for j #1 as test-function in the Steklov
formulation (2.10) of the system (2.6) and obtain for the weighted means of [u; ], (note that [u], = ([u1]n, ..., [un]n))
forae.t, 7 € (0, 92),

t t
o ([u;
(114), ) = (i), 0 = [ 289 as = [ f{fasc. D], D) + g undxas.
T T B,

Passing to the limit 4 | 0, enlarging the domain of integration if necessary and noting that

t
/][(ai ((0.1),0, (Du)]), Dn)dxds =0,

‘[BQ
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we find

| i)y (1) = i)y (D] < Q2||D77||oo][|a((x,t),u, Du) —a((0,1),0, Du)|d(x, 1)
o
+@2||Dn||oo][|a((o, 1,0, Du) —a((0,1),0, (Du)?)|d(x, 1) +a2||n||oo][ |g/Indz
o 09
= Q2 IIDnllso(Ih + 1) + 02 lInllo 3,

with the obvious meaning of /1—I3. We now in turn infer bounds for the terms /1, I, and /3. To estimate I} we use
(1.6) and the assumption |(Du)g| < M. Then, we exploit the properties of 8, namely, for the term involving 1+ MP~!

we use (2.2) with ug = 0 and for the term involving | Du — (Du)gl we use that & < 1. Proceeding this way we infer

1< 2”_2L][ 6 (lul, 0 + lul) (1 +MP~) + | Du— (D" ™) dz
2
< 2”_2L][(1 +MP YK 1)(0P + (ulf) + |Du — (Du)d|" " dz.
2
To estimate I, we decompose Q) = S1 U $3, where
S1={z€ Q): [Du—(Duw))| <1}, S={ze€ Q) |Du— (Du)}| > 1}
and rewrite I as follows

1 1 1
L =—— ...d—i——/...d:—l + 1r9),
2 |Q2|S/( )dz |Q2|S( )dz |Q2|(2,1 2,2)
1 2

with the obvious labeling of I and I5,. For I} we use (1.5) and note that |(Du)2 + s(Du — (Du)g)l <M+1
on S to obtain

12,1=/

S1

< Lipyd /|Du — (Du)g|dz.
N

dz

1
/8wa((0, 1,0, (D)) + s(Du — (Du))))(Du — (Du))) ds
0

For I, we use the growth condition (1.3) instead of (1.5), the assumption |(Du)2| < M and the fact that
|Du — (Du)gl > 1 on S, to obtain

ha2< L/(2+ MP~ 4+ | DuP~ ) dz <3L(1+ MP) /|Du — (Dw)?|" " dz.
S S

Finally, for /3 we obtain

1
2
|I3] < c(n)P ™! (92‘2*‘"("“) / lg:1? dz) < e gl 222 9.
2
Combining the previous estimates for /1, I and I3 and summing overi = 1, ..., N and applying Holder’s inequal-
ity we arrive at
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p=2 1
| )y () = W)y (7)] < cgannnoo((cpr +1)o) +][ lul? dz + Qf’) + 0P M mlloollge Il 2.2-26 )
2
where ¢ = ¢(N,L, M, K(1), kp+1). Taking this to the power p, applying Holder’s inequality and noting that
Moo < ¢y and || Dnlleo < ¢/@ we infer (4.59) for the case k = 0. We get an analogous estimate for the weighted
means of Du by taking D%n instead of n as test-function in (2.10), where o« = 1, ..., n. Indeed using integration

by parts we find that (D%u), (t) = —(u) pa,(¢). Replacing n with D%y in the previous estimate and summing over
a=1,...,n we obtain

p—2

1
|(Du), (1) = (Du),(1)] < c@2||02n||oo<(q>p” +1)o) + ][ lul’ dz +Qﬂ) + P M Diflloollgs Il 22-26 g8
2
where c =c(n,m, N, L, M, K(1), kp+1). Noting that || Dnllec < ¢/0 and 1D19]l00 < /0%, we infer (4.59) also in

the case k = 1.
Step 2. Proof of the Poincaré type inequality. We fix h € (0, 0%). Exploiting the weighted means of u we decompose

o h h »
][|u|de<3p_l|:][|u—(u)n|pdz+ ][(u),](t)dt—][(u)n(t)dt ][(u)ndt :|
Q(g) 0 0 0

2
=377 (1 4+ 1" + ™). (4.60)

p
+

For the estimate of II'M we use (4.59) with k = 0 and Holder’s inequality to infer

" < sup @)y — w)y(]” < ch<(1 +or o, +][ |u|PP dz + Ql’ﬁ).
t,1€(0,02%) 00

Note that the previous bound is independent of /. Passing to the limit |, 0 in ZII? and exploiting our initial condition
on u we find that limy, o 111 (M) = (. Therefore it remains to estimate I. Here, we apply Poincaré’s inequality slicewise
to (u — (u),)(-, t) and obtain for A € (0, 0?) that

I gcgp][ |Du|? dx
o

p
+

]

We now in turn infer estimates for the terms I, 13()“) and IF). We start with I,. Recalling that DCBQ ndx =1 and

0? A
< co? [][ |Du — (Du)y|” + |(Dw)) — (Du),|” dz + ][(Du),,(t)dt —][(Du),,(r)dr
00 0 0

o

A
][ (Du), dt
0

=cn, poP (h + b+ 1Y + 1),

0 <5 < ¢, we rewrite and estimate

QZ
L= ][ ‘ ][ ((Dw)) — Du(y. v))n(y)dy

0 B,

)4
dt < Cn][|Du — (Du)g|” dz.
QO

For the estimate of 13()‘) we use the bound (4.59) with k = 1 and Hoélder’s inequality to infer

< sup |(Du)y () —(Du)y(0)|F < c<(1+<p,’,’2)q>p +][ u|P* dz +Qpﬂ>_
1,7€(0,0%) 00
4
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Note that the preceding bound is independent of A. In [ Y) we want to exploit the initial condition on u. Therefore we
first integrate by parts and then pass to the limit A | 0

A 1

p A !
1
<c971][][|u|dxdt <cgl(x/f|u|2dxdr> — 0.
0 B,

0 B,

) _
1,7 =

A
][][ u(x,7) @ Dn(x)dxdrt
0 B

Therefore, collecting terms we conclude with the following bound for 7:

I <co? ((1 +or o, +][ ulPPdz + Ql’ﬂ).
2
Combining the previous estimates for 7, II'” and III’" we obtain from (4.60):

][ ul? dz < CQP<(1+¢£2)@17 +][ u|PP dz -I-Qpﬁ),
Qg QO
where ¢ = c(n, N, L, M, K(1), kp41, lgell 2226 (o))- By Young’s inequality and since o < 1 we have o”|u|P? <

% lu|? + coF < 2]_(; lu|? 4+ coPP. Therefore, we can absorb the term involving u on the left-hand side in the standard
way and end up the asserted Poincaré type inequality. O

This finishes the proof of the characterization of regular initial boundary points. Finally, we consider the remaining
configuration, namely points lying on the edge 92 x {0}.

4.3. Regular points on the edge

Here we will prove the characterization of regular edge-points in the model situation (2.7) on Q7 which was
explained in Section 2.1. The statement of the main Theorem 1.2 concerning edge-points is therefore equivalent with
Proposition 4.18 which deals with edge-points zg = (x(’), 0,0) € I N Dy, with x(’) e R 1 of QT. Note that in the
edge-situation we can decide whether we proceed similar to the lateral or initial boundary. We will choose the second
one, since it seems slightly more convenient.

4.3.1. A-caloric approximation

As in the preceding sections we shall need a version of the lemma of A-caloric approximation for the edge-situation.
Since the arguments are clear by now, we only state the result. Indeed, the only difference in the present situation is
that we have to identify the zero trace of the limit function v found in (4.51) on both parts of the boundary, i.e. on Flo
and D1+. The first one follows from the trace theorem (as in the proof of Lemma 4.1) whereas the second one follows
by the argument after (4.52) in the proof of Lemma 4.8.

Lemma 4.14. Given ¢ > 0, 0 < v < L and p > 2 there exists a positive function § =6(n, p, v, L, ¢) € (0, 1] with the
following property: whenever A is a bilinear form on RN" which is strongly elliptic with ellipticity constant v > 0 and
upper bound L, i.e.

viwl> <(Aw,w) and (Aw, @) < L|wl|@]
holds whenever w, w € RM" and u € LP(Agz(to); Wl’p(B;(xo), RM)) with u=0 on I"Qo(z()) U Dg(zo) with zo €
I ND;and
][ |Dul* +y??|DulPdz < 1,
0% (20)

where 0 < y < 1, is approximately A-caloric in the sense that
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00 * . N
‘ ][ u-@—{(ADu, Dp)dz| <8 sup |Dg| forevery g e C (QQ(ZO), R ),
05 (z0)
0% (z0) A
then there exists an A-caloric map h € LP(A(()Q/z)Z (t0); Wl’p(Bg'/2 (x0); RM)), i.e.
/ h-g —(ADh,Dg)dz=0  forevery g € C(Q%)2(z0): RY),

QZ/Z (z0)

with h =0 on Fg?/z (zo) U Dz/z (zo) satisfying

][ |Dh|> + yP2|Dh|P dz <2-2"?

QZ/z(ZO)
and
_hl? _hlP
][ u—h p=2 u—‘ dz L e.
0/2 0/2
QZ/z(ZO)

4.3.2. Caccioppoli inequality
Since the proof of the Caccioppoli inequality in the edge-situation is performed by a combination of the arguments
for the lateral and the initial boundary situation we shall omit it and only state the result.

Lemma 4.15. Suppose that u € L”(AO; Wl""(Bfr; RM)) is a weak solution of the non-linear parabolic system (2.7)
with u =0 on I"lo U DfL, where the structure conditions (1.4)—(1.6) are in force. Then, for any zo € I'1 N D1 and
0 € (0, 1) such that Q,(z0) C Q1 there holds

2 b4
u u
][ |Du|2+|Du|pdz<ch(][ . +‘5 dz+@2ﬂ>,
QZ/z(ZO) QZ;(ZO)
where ccae = (1 + & ”22,2—2/3(Q41<))C(na p.L/v, M, H(M), kpm+1).

4.3.3. Linearization

Here we state a version of the linearization lemma which is applicable in the edge. Since the proof is completely
similar to the one of Lemma 4.3 for the initial boundary situation we shall omit it and only state the result. Indeed,
since the test-function has compact support in the domain of integration we do not reach the boundary and therefore
the proof can be completely adopted.

For s > 1, zo € I't N Dy and a parabolic cylinder Q,(zo) C Q1 we define the edge-point excess functionals by

A

dz,

* S * u
&5 (20,0) == ][ [Dul” dz, Vs (20, 0) := ][ ‘5
Q5 (z0) 05 (z0)
and we shall often abbreviate

¢ =¢i(z0,0) and Y =9 (z0,0).

Lemma 4.16. Suppose that u € LP(A(I); Wl’p(Br; RM)) is a weak solution of (2.7) satisfying u =0 on Flo U Di",
where the structure conditions (1.4)—(1.6) are in force. Then we have

][ u- @ — (dwa(zo,0,0)Du, Dy)dz
0% (20)

_1 B
< cuulo1 (0 +07)\ 05 + 85+ vF + 0P (95) 7 (14 (v))7) + o] Sup 1Dl
5o
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forany ¢ € Cgo(QZ(zQ); RM), zoe I N D; and Q,(z0) C Q1. The constant cgy is of the form

CEu = L(l + ||gt||L2,272ﬁ(Q»1k))C(n, p,M,K(1), KM+1)-

4.3.4. A decay estimate at the edge

Having all the prerequisites at hand, we can now use Lemmas 4.14-4.16 to prove an excess-decay estimate valid
for edge-points zg € I'1 N Dj. Since the first two steps of the proof, i.e. the application of the A-caloric approximation
lemma and the iteration are completely similar to the proof of Lemma 4.11 for the initial boundary situation we shall
omit the proof and only state the result, i.e. the analogue of Lemma 4.11. We first define the following edge-point
excess functional

u

4

Eeq = Eed(20,0) :=
05 (20)

for zo € It N Dy and Eeq = Ecq(20, 0) = Eed(20. 0) + 0.

Lemma 4.17. Given a € (B, 1), there exist constants ¥ € (0, %], Eed € (0,1], ged > 0 and c4 depending on
n,N,p,v,L,K(1), k1,0, B, ||lg: ||L2,272ﬂ(Q>1k) such that the following holds. Suppose that u € L? (AY; Wl’p(Bi"; RM))
is a weak solution of (2.7) satisfying u(-,0) =0 on FIO U DI", where the structure conditions (1.4)—(1.6) are in force
and suppose that

0 <0

(i) Eealo) < Eu
are fulfilled on some cylinder QZ (zo) with zo € I'1 N Dy and Qy(z0) C Q1. Then for any 0 < r < 0/2 we have

2a
u u r
][ ’; “r‘; dz + f |Du|2+|Du|pd1<Ced|:<§) Eed(Q)+r2ﬁ:|,
07 (20) 07 (20)

where the constant ceq depends onn, N, p,v, L, K(1), k1, o, B, |18 ||L2,272ﬂ(Q*1<). In particular this estimate implies

2 14

T * —
X = jlgr;o(Du)zo’mQ =0.
4.3.5. Description of regular edge-points
Now we come to the most interesting part concerning the proof of the characterization of regular edge-points.
Indeed, when considering the neighborhood of an edge-point we have to take into account all four possible configu-
rations, namely the edge and interior situation and the lateral and initial boundary situation. This is performed in the
following

Proposition 4.18. Suppose that u € L? (AY; WhP (B : RN)) with u(-,0) =0 on Flo U Dl+ is a weak solution of (2.7)
where the structure conditions (1.4)—(1.6) are in force. Then, for any zo € (I't N D1) \ Xeq there exists a neighborhood
U, such that

ﬁ JR—
Du e CP-2 (U, N QF; RY™),
where

Yed = {ZO el NDy: lim¢i0nfg_1’ ][ lu|P dz > 0}.
0
0 (20)
Proof. First of all we recall the definition of the constants ged, Eed, Ced, Oini»> Eini» Cini> Olat = Olat(1), Elat = Elat(1),

Clat = Clat(1), Oint = Oint(1), Eint = Eint (1) and cjnt = cine (1) from Lemmas 4.17, 4.11, 4.5 and 4.6, respectively for the
choice M = 1. For zg € (I'1 N D1) \ Xeq We can find 0 < o < min{Qed, Oini, Olat, Oint} With Q;Q (z0) C QF such that
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~ 1 -2 .
Eea(z0,0) < 5 (s max{ced, Cini, Clat: ¢int}) ~ Min{Eed, Eini, Elats Eint} (4.61)

where we have defined ¢5 = 22327 (n+3)?. Since I'T1 N D 3 z > Eed(z, ©) is continuous with respect to the center z,
there exists a radius 0 < R < o/12 such that

~ 2 .
Eea(z, 0) < (cs max{ced, Cinis Cla, Cin}) min{Eed, Eini» Eats Einc} (4.62)

forall z € I'r(z9) N Dg(zp). Moreover, due to the choice R < ¢/12 and the inclusion Q’Z‘Q (z0) C QF we have Q,(2) C
03,(z0) C 0}

Now, given o € (8, 1) we choose ¢ in dependence of n, N, p,v, L, K(1),«1, e, B and ||gt||L2,2—2ﬂ(QT) to be the
constant from Lemma 4.11. Without loss of generality we can assume that the constant ¢ appearing in Proposition 4.6
(with the choice M = 1) is equal to the ones from Lemmas 4.5, 4.11 and 4.17. In the following we will show that for
all j € Q% (20) U I'§(z0) U D (20) U (I'r (20) N D (0)) the limit

1 *
X; = jlggo(Du)a,ﬁfg (4.63)
exists and that
r\ 2
][ |Du—x3|2dz<c(5> : (4.64)
05 (3)

for all 0 < r < 0/6 and with a constant ¢ depending on n, N, p,v, L, K(1), k1, @, 8 and ||gl||L2v2*2ﬁ(Q’l*)- For this we
will distinguish between the cases 3 € I'r(z0) N Dr(20), 3 € D;g (z0), 3 € Flg(z()) and 3 € Q% (z0).
In the first case, i.e. the case 3 € I'r(z0) N Dg(zp), we see that by (4.62) the hypotheses of Lemma 4.17 are fulfilled
so that the application of the lemma yields that
X; = lim (Du)

sk
. :O.
j—o00 30/

Moreover, for 0 < r < o/2 we have

ul> ful? r\
][ — +‘; +|Du|2+|Du|sz<ced[<E> Eed(5,9)+r2f’i|
07 (3)
N\~
<Ced<_> Eeq(3,0)
Q
r 2ﬂ
<c(—) , (4.65)
o

where ¢ dependsonn, N, p,v, L, K(1),«1,a, B, |8 ||L2,2—2ﬁ(QT). Here we have used in the last line the bound (4.62)

for Eed(;,, 0). Hence, (4.63) and (4.64) are valid with X; = 0.

In the second case, i.e. the case 3 € D;g (zo), we want to apply Lemma 4.11 and therefore first have to ensure
that the hypothesis are satisfied. By 3’ = (x1, ..., u—1, 0, 0) we denote the projection of 3 = (¢1, ..., In—1, In, 0) onto
I't N Dy. At this stage we recall that Oy, (3) C Q;Fn (3") which allows us to enlarge the domain of integration from

0;,(3) to Q;xn (3)). Now, since 3’ € I'r(z9) N Dg(zo) we can use the results from the first case with center 3’ obtaining
that the limit X,/ := lim j_>oo(Du);k, 9ig = 0 exists and, moreover, that (4.65) holds with 3" instead of 3. Therefore,
using (4.65) with (3, 2r,, 0) instead of (3, r, 0), the fact that 2y, < 2R < 0/2 and (4.62) we infer

2

~ u u p
Eim@,xn)@"“”( ][ —| +|= dz+(2xn>2f’)
21, 2x,
§F11(3
21, \ 22 ~
< 2n+2+pced<ﬂ> Eed(ﬁ/v 0)
0/2

2B
< (%) Eni. (4.66)
%
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Note that the last inequality holds since 2"+2+P L ¢5 which was defined in (4.61). Since 2, < 2R < o/2 this implies
in particular that Ejn;(3,2,) < &ni. Therefore, the hypotheses of Lemma 4.11 are satisfied and the application with
(3, r, rn) instead of (zg, r, o) allows us to conclude on the one hand that the limit in (4.63) exists and, on the other
hand, that for any 0 < r < 1, /2 there holds

20
r
][ |Du — %3|2dz < Cini[(m) Eini (3, tn) + ”Zﬁ]
n

0%G)
20 28
r 2
SCini[<—) (_&) Eini -I-rzﬁ]
tn/2 0

()
gc - )
Q

where ¢ depends on n, N, p,v, L, K(1), k1, @, f and ||g,||Lz,2725(QT). Here we have also used (4.66) and &y < 1 in
the last line. In the remaining case r,/2 < r < ¢/6 we use the previous estimate as well as (4.64) for 3’ (note that
X; =0) to infer

][ |Du—%3|2dz<2][ |Dul*dz + 4 ][ |Dul? + | Du — X;41%dz

07 (3) 07 (3) Q% L)
2\%
gc][ |Du|?dz + ¢ ][ |Du|2dz+c<m)
Q
03,.G3) 03,2G)

(5)
<cl—-)
0

where ¢ depends only on n, N, p,v, L, K(1),«1,a, B and ||g;||L2_2_2/3(QT). This completes the proof of (4.63) and

(4.64) in the case 3 € D} (z0).

Inthecase3 eI’ I(e) (zo) we want to apply Lemma 4.5. As in the last case we first will ensure that the hypotheses of the
lemma are satisfied. By 3’ = (x1, ..., tn—1, 0, 0) we again denote the projection of 3 = (¢1, ..., t,—1, 0, t) onto I N Dy.
From (4.19) we recall that Ez,ﬁ = # fQ}(z) ux, dz denotes the vector minimizing & — fQj;(é) |u — .Exnl2 dz. By

2

the use of the minimizing property of & ST We therefore find
u—=&, rx
R ) dz.

][ NG 2dz< ][

0@ E)

W

Furthermore, we recall that é;’i)ﬂ denotes the vector minimizing & > |, 0. 3) |u — Ex,|P dz. By the use of Lemma 2.2
: NG

and the minimizing property of 5;'2 we therefore find
u—=§ 5,4/t0n

][ 2 pdz<2”1(][ %

07 076 0/

p
dz.

p u
dz+|s§,’;1[—sz,ﬂ|”><2P(n+2)P ][ ‘ﬁ

At this stage we recall that Q%(g) C Qi‘/ﬁ(g/ ) which allows us to enlarge the domain of integration from Q%(g) to
Q:‘/Z_t(;,’ ). Since 3’ € I'r(z0) N Dg(zp) we can use the results from the first case with center 3 obtaining that the limit
Xy = limjﬁoo(Du);‘,’mQ
estimates and using (4.65) with (3, V2, o) instead of (3, r, 0), the fact that V2t <2R < 0/2 and (4.62) we infer

= 0 exists and, moreover, that (4.65) holds with 3 instead of 3. Combining the previous
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FraG, VO <2P(n +2)P ][ ! 2+ AP
) X n — - Z
lat(3 \/E «/%
o7 (5)
<2"+2P(n+2)f’< ‘ ‘ ‘ dz+«/2—t2ﬂ)
V2t V2t
Qfa
26\ -
<22 (n 2)[’Ced<£> Eea(3'.0)
0
26\ 2
<(§> Elat. (4.67)

where we have abbreviated Eldt(g V) = Eldt(g, JtE 5 &, so)- Note that the last inequality holds since 2M2P (n 4 2)P <

¢s which was defined in (4.53). Since v/2t < 2R < < /2 this implies in partlcular that Ela[(g V) < Ear. Next, we will
infer a bound for |§ _vil- Enlarging the domain of integration from Q f(g) to 0 f(g ), using Holder’s inequality,

(4.65) and (4.62) we infer with & = 2"t (n 4 2) (note also that £ < 1 and V2t < 1),

1
2 £\ 2f - 2 1
& il < 2”+1 nt ][ luldz < C<Ced<\/_> Eea(3', Q)) <ées ” <1

075"

Here, in the last line we have also used the fact that &> < ¢5 by the choice of cs in (4.61). Hence, by the preceding
estimate and (4.67) the hypotheses of Lemma 4.5 are satisfied. Therefore the lemma can be applied with (3, 7, v/, 1)
instead of (zo, 7, 0, M) to conclude on the one hand that the limit in (4.63) exists and, on the other hand, that for any
0 < r < +/t/2 there holds

][ |Du — X5 dZ\Clat[< ) E1ac (3, \/_)'1"’2/3]

01 %)
26\ 28
S ““[(J/z) (ﬁ) Gt }

@(5) |

where ¢ depends on n, N, p,v, L, K(1),x1, o, B and || g;] ;22— 2(0%)- Here we have also used (4.67) and Eoq < 1 in

the last line. In the remaining case +/t/2 < r < 0/6 we use the previous estimate as well as (4.64) for 3 (note that
X; = 0) to infer

][ |Du—%2,|2dz<2][ |Du|*dz +4 ][ |Dul?® + | Du — X;1%dz

05 () 05 () Q%z(a)
t/2\2F
<c ][ |Dul?dz + ¢ ][ |Du|2dz+c<‘[/>
0
03, 3vin@)

r 2B
< C<_> )
Q

where ¢ depends only on n, N, p,v, L, K(1), 1, a, 8 and ||g;||L2,272,3(QT). This completes the proof of (4.63) and
(4.64) in the case 3 € I'r(20).
Finally, we come to the remaining case 3 € Q% (z0). Here we can revert to the proofs of Proposition 4.7 and 4.12.

To this aim we write 3 = (¢', £,, t) and distinguish the cases whether v/t < 1, or r, < +/t. In the first case, i.e. when
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V< &, then we denote by 3’ = (¢/, 1, 0) the projection of 3 onto Dfr. Then, we have 3 € Qi)/z(g’) and 3 € D;g (zo)-

Moreover, combining the second last estimate of (4.66) with (4.62) and taking also into account the definition of cs,
we obtain

Eini(3', 10) < (e5¢ini) " min{Eini, Eint)-

Therefore, (4.54) from the proof of Lemma 4.11 is satisfied for (3/, r,) instead of (zg, ¢). This allows us to apply the
arguments from the proof of Lemma 4.11 and conclude (4.63) and (4.64).

In the second case, i.e. when 1, < +/t we denote by 3 = (¢/, 0, t) the projection of 3 onto Flo. Now, we have
3 € Q; () and 3 € Flg(zg). As before, we combine the second last estimate of (4.67) and (4.62) and recall the
definition of c5 to find that

Ela GG, VO < (e5¢1a0) ™ min{Epar, Eine)-

Moreover due to (4.68) we also know that |.§3,’ Vil < 1. Therefore, (4.38) and (4.39) from the proof of Proposition 4.7

are satisfied for (3, V1, 1) instead of (zg, 0, M1, M>). This allows us to apply the arguments from there to deduce
(4.63) and (4.64) also in this case. Since now we have treated all the possible cases, this finally finishes the proof of
the lemma. 0O

At this stage the same comment we made at the beginning of Section 4.2.6 in the initial boundary situation applies.
More precisely, in Lemma 4.17 we indeed proved that the set of singular edge-points is contained in Xq. But this is
not the characterization we stated in Theorem 1.2. Therefore, it remains to show that Xoq C (X' U X2) N §20. But
this follows from a version of the Poincaré type inequality in Proposition 4.12 for the edge-point situation. Indeed,
by a different choice of the weight-function 7 in the proof of Lemma 4.13 such that spt#n is now contained in B;
instead of B, the proof can be adopted line by line. Finally, let us note that it could also be slightly simplified in some
points since in the edge-point situation we are allowed to apply the Poincaré inequality from Lemma 2.3. For the sake
of brevity we shall not repeat the proof here. Therefore, using the edge-point version of Lemma 4.13 we now have
completed the proof of Theorem 1.2 concerning the remaining edge-point situation.

As explained above the proof of Theorem 1.2 is now complete; as mentioned at the beginning of the paper, in a
forthcoming sequel [6] we shall provide estimates ensuring that the boundary regularity criterium found applies at
almost every boundary point.
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