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Abstract

Finite time blow-up is shown to occur for solutions to a one-dimensional quasilinear parabolic—parabolic chemotaxis system as
soon as the mean value of the initial condition exceeds some threshold value. The proof combines a novel identity of virial type with
the boundedness from below of the Liapunov functional associated to the system, the latter being peculiar to the one-dimensional
setting.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

We study the possible occurrence of blow-up in finite time for solutions to a one-dimensional parabolic system
modeling chemotaxis [17]. More precisely, we consider the Keller—Segel chemotaxis model with nonlinear diffusion
which describes the space and time evolution of a population of cells moving under the combined effects of diffusion
(random motion) and a directed motion in the direction of high gradients of a chemical substance (chemoattractant)
secreted by themselves. If # > 0 and v denote the density of cells and the (rescaled) concentration of chemoattractant,
respectively, the Keller—Segel model with nonlinear diffusion reads

du=div(a@)Vu —uVv)  in(0,00) x 2, (1)
ehv=DAv—yv4+u—M in (0,00) X £2, 2)
a(u)oyu =o,v=0 on (0, 00) x 952, 3)
(u, v)(0) = (uo, vo) in £2. 4)

In general, §2 is an open bounded subset of RY, N > 1, with smooth boundary 052, a is a smooth non-negative
function, and the parameters ¢, D, y, and M are non-negative real numbers with D > 0 and M > 0. In addition, the
initial data ug and vy satisfy
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ug =0, /uo(x) dx =|2|M, and /vo(x) dx =0. (®)]
2 2

The constraints (5) ensure in particular that a solution (u, v) to (1)—(4) satisfies (at least formally) the same properties
for positive times, that is,

u(t) >0, /u(t,x)dx=|.Q|M, and /v(t,x)dx:O. ©6)
2 2

The main feature of (1) is that it involves a competition between the diffusive term div(a(u)Vu) (spreading the
population of cells) and the chemotactic drift term — div(zVv) (concentrating the population of cells) that may lead
to the blow-up in finite time of the solution to (1)—(4). The possible occurrence of such a singular phenomenon is
actually an important mathematical issue in the study of (1)—(4) which is also relevant from a biological point of view:
indeed, it corresponds to the experimentally observed concentration of cells in a narrow region of the space which is a
preamble to a change of state of the cells. From a mathematical point of view, the blow-up issue has been the subject
of several studies in the last twenty years, see the survey [13] and the references therein.

Still, it is far from being fully understood, in particular when ¢ > O (the so-called parabolic—parabolic Keller—Segel
model). In that case, the only finite time blow-up result available seems to be that of Herrero and Veldzquez who
showed in [9,10] that, when £2 is a ball in R2, D=1, and a = 1, there are M > 87 and radially symmetric solutions
(u, v) to (1)—(4) which blow up in finite time. These solutions are constructed as small perturbations of time rescaled
stationary solutions to (1)—(4) and a similar result is also true when & = 0 [8]. The result in [10] actually goes far
beyond the mere occurrence of blow-up in finite time as the shape of the blow-up profile is also identified. Recall that
the condition M > 8 is necessary for the finite blow-up to take place: indeed, it is shown in [21] that, if §2 is a ball
inRZ, D=1,anda=1, radially symmetric solutions to (1)—(4) are global as soon as M < 8m. We refer to [7,21] for
additional global existence results when §2 is a bounded domain in R2,¢>0,anda=1.In [12,14,22] the existence
of unbounded solutions is shown for ¢ > 0 and a = 1, but it is not known whether the blow-up takes place in finite
or infinite time. The same approach is employed in [15] to obtain unbounded solutions to quasilinear Keller—Segel
systems, still without knowing whether the blow-up time is finite or infinite. The finite time blow-up result proved in
this paper (Theorem 1) is thus the first one of this kind for quasilinear parabolic—parabolic Keller—Segel systems.

In contrast, for the parabolic—elliptic Keller—Segel system corresponding to ¢ = 0, several finite time blow-up
results are available. There is thus a discrepancy between the two cases € > 0 and ¢ = 0 which may be explained as
follows. On the one hand, as observed in [16] when € =0, £2 is a ball of R2,a=1,and ug is radially symmetric, it is
possible to reduce (1)—(4) to a single parabolic equation for the cumulative distribution function

u,r):= / u(t,x)dx.
B(0,r)

Finite time blow-up is then shown with the comparison principle by constructing appropriate subsolutions. This ap-
proach was extended to nonlinear diffusions (non-constant a) and arbitrary space dimension N > 1 in [6]. On the
other hand, it has been noticed in [2,18] that, still for a = 1, the moment M} of u defined by

My (1) :=/|x|ku(t,x)dx, k € (0, 00),
2

satisfies a differential inequality which cannot hold true for all times for a suitably chosen value of k£ > 0, for it would
imply that u reaches negative values in finite time in contradiction with (6). In contrast to the previous approach, this
is an obstructive method which provides no information on the blow-up profile and is somehow reminiscent of the
celebrated virial identity available for the nonlinear Schrodinger equation (see, e.g., [4, Section 6.5] and the references
therein). Nevertheless, it applies to more general sets £2 [19,20,22]. We recently develop further this technique to
establish finite time blow-up of radially symmetric solutions to (1)—(4) with ¢ = 0 in a ball of RN, N > 2, when
the diffusion is nonlinear [5], the main idea being to replace the moments by nonlinear functions of the cumulative
distribution function U. For a related model in RY with nonlinear diffusion a (n) = mu™1 m > 1, finite time blow-up
results were recently established in [3,24] by looking at the evolution of the second moment M5.
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Coming back to the parabolic—parabolic Keller—Segel system (1)—(4) (¢ > 0), it seems unlikely that the first ap-
proach described above (reduction to a single equation) could work and the purpose of this paper is to show that finite
time blow-up results can be established by the second approach in the one-dimensional case (N = 1). More precisely,
we consider the initial-boundary value problem

du =y (a(u)dcu —udv)  in (0,00) x (0, 1), (7)

88[v:D3§v—yv+u—M in (0, 00) x (0, 1), (8)

a(u)dyu =0,v=0 on (0, o0) x {0, 1}, ©))

(u, v)(0) = (uo, vo) in (0, 1), (10)
and assume that

£>0, D>0, y>0, M>0, (11)

and the initial data (1o, vo) € W12(0, 1; R?) satisfy
1 1

uyg =0, /uo(x)dsz, and /vo(x)dxzo. (12)
0 0

We further assume that @ € C2(R) and that there are p € (1, 2], and ¢; > 0 such that
O<a(r)<c(1+r)"?7 forr>0. (13)

Our main result then reads as follows.

Theorem 1. Assume that the parameters ¢, D, y, M, the initial data (uo, vo), and the function a fulfil the condi-
tions (11), (12), and (13), respectively. Then there is a unique classical maximal solution

(,v) € C([0, T x [0, 11; R*) N C"2((0, T,,) x [0, 1]; R?)
to (7)—(10) with the maximal existence time T,, € (0, oo]. It also satisfies
1 1
u(t,x) =0, /u(l,x)dx:M, and /v(t,x)dx:O (14)
0 0
for (t,x) € [0, T,y) x [0, 1]. Introducing

M? D+y ,
F(z1,22) :=C1(1+M)+E+ZI+MZ2+ 23,
Py e (147 4 e M Ve )
0 (21,22, 23) == T 14D 23 | F(z1, 22
ci(g — DNg4=2/ap M4
19 = Da 2 T gy gpya—2va - M (15)
(p—DHM» q(g+1)
and
1 1 X q
mq(0) ::;/(/udy)dy) dx,
0 0

for (z1, 22, z23) € [0, c><>)3 and q = 2, we have T, < o0 as soon as Py (my(0), [voll g1, eM) < O for some finite q €
2,2/Q2 — p)]. In particular, if ug is such that

Py (mq 0),0, 0) <0 for some finite q € (2, 2/(2— p)], (16)
there is © > 0 such that eM € (0, 9) and ||vo|l g1 < ¥ imply that Py(m4(0), lvoll g1, eM) < 0 and thus T, < oo.
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There are functions u( satisfying (12) and (16) if M is sufficiently large. Indeed, observe that

y M2 Cl(q _ l)q(qu)/qD M2 q-2)/q M9
0,000=(1+2L 14+ M)+ — 1+ + - M
Py ( ) ( +D)<Cl( + )+2D>+ T <Cl( + )+2D> 2@ D

is negative for sufficiently large M as g > 2. Given such an M > 0 and choosing the function up(x) =
2M max{x +6 — 1, 0}/82, x € (0, 1), we have m,(0) = 2M)%8/(2q + 1) and P, (m,(0),0,0) <0 for § > 0 small
enough. In fact, if u¢ fulfils (16), then the same computation as the one leading to Theorem 1 shows that the corre-
sponding solution to the parabolic—elliptic Keller—Segel system (¢ = 0) blows up in a finite time and the last assertion
of Theorem 1 states that this property remains true for the parabolic—parabolic Keller—Segel system (¢ > 0) provided
¢ and vg are small, that is, in a kind of neighbourhood of the parabolic—elliptic case.

Remark 2. The growth condition required on a in (13) is seemingly optimal: indeed, it is proved in [6] that 7}, = co
if a(r) = co(1 4+ r)~? for some p < 1 and ¢ =0, and the proof is likely to extend to the case ¢ > 0. Global existence
of solutions to (7)—(10) is actually shown in [23] for & > 0 under the stronger assumption that a(r) > co(1 + r?) for
some cg > 0 and p > 0.

The proof of Theorem 1 relies on two properties of the Keller—Segel system (7)—(10): first, there is a Liapunov
functional [7,11] which is bounded from below in the one-dimensional case [6] and which provides information on
the time derivative of v. This will be the content of Section 2 where we also recall the local well-posedness of (7)—(10).
We next derive an identity of virial type for the L?-norm of the indefinite integral of u in Section 3 which involves in
particular the time derivative of v. The information obtained on this quantity in the previous section then allow us to
derive a differential inequality for the L7-norm of the indefinite integral of u for a suitable value of ¢ which cannot
be satisfied for all times if the parameters ¢, D, y, M, and the initial data (u¢, vg) are suitably chosen.

2. Well-posedness and Liapunov functional

In this section, we recall the local well-posedness of (7)—(10) in w20, 1; R?) [1,11] and the availability of a
Liapunov functional for this system [7,11]. To this end, we assume that

0<aeC*R) (17)
and define b € C?((0, 00)) by

b(1)=b'(1):=0 and b"(r):= a(r) forr > 0. (18)
r

Proposition 3. Assume that the parameters €, D, y, M, and the function a fulfil (11) and (17), respectively. Given the
initial data (ug, vo) € WH2(0, 1; R?) satisfying (12), there is a unique classical maximal solution

(u,v) € C([0, T x [0, 11; R*) N C"2((0, Ty) x [0, 1]; R?)

to (7)—(10) with the maximal existence time T,, € (0, 0] and (u,v) satisfies (14) for t € [0, Tp,). In addition, if
T, < 00, we have
tim (Juto)] + [00)]) = . (19)
Owing to the assumptions on a and the initial data, the existence and uniqueness of a maximal solution to (7)—(10)
readily follow from [1, Theorems 14.4 & 14.6], see [11, Theorem 1]. As for the last statement (19), it is a consequence
of the upper triangular structure of the system (in the sense that the second equation (8) does not involve the second-
order derivative of u) and [1, Theorem 15.5].

Next, an important property of (7)—(10) first noticed in [7] for a = 1 and further developed in [11, Theorem 2] in a
more general setting is the availability of a Liapunov functional.
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Lemma 4. Assume that the parameters €, D, y, M, and the function a fulfil (11) and (17), respectively. Given
the initial data (ug, vg) € WI’Z(O, 1; Rz) satisfying (12) and such that b(ug) € L'(0, 1), the corresponding classical
solution (u, v) to (7)-(10) satisfies

t
L(u(),v()) +a/||a,v(s)y|§ds < L(ug,vg) fortel0,Ty), (20)

where
1

L(u,v) ::/(b(u)—uv—}—§|8xv|2+%|v|2)dx. Q1)
0

Proof. We sketch the proof for the sake of completeness. It follows from (7)—(9) that
J 1 1
EL(M, v) = /(b (u) —v)dudx +/ D0, v, 0,v + (yv — u)dv) dx
0

0
1

—/(b”(u)axu — 9xv) (a()dyu — udcv) dx
8tv(—D8}%v +yv— u) dx

+

u|, (b (w) —v)|* dx — /(M + £0v) v dx

|
o\_ S _ o

< —eldvll3, (22)

the last inequality being a consequence of (14). Integrating the previous inequality with respect to time gives (20). O

We next take advantage of the one-dimensional setting to show that L is bounded from below without prescribing
growth conditions on a. This fact has already been observed in [6] and is peculiar to the one-dimensional case. Indeed,
as shown in [7,12], the occurrence of blow-up is closely related to the unboundedness of the Liapunov functional.

Lemma 5. Assume that the parameters ¢, D, y, M, and the function a fulfil (11) and (17), respectively. Given
the initial data (ug, vo) € W'2(0, 1; R?) satisfying (12) and such that b(ug) € L' (0, 1), the corresponding classical
solution (u, v) to (7)—(10) satisfies

2

L > M 0,7, 23
(). 0(0) > =3 fort €[0.T,,). 23)

Proof. Owing to (14), the Poincaré inequality ensures that ||v(#)|lco < [[0xv(#)]|2 for z € [0, T},) so that
1
/uﬂ)v(ﬂdx [v® ] ey <[av@ |, [u®];-
0
We use again (14) as well as the non-negativity of b to conclude that
D D M\* M2
L,v0) > 2 @]} - Mool =2 (Il - 3 ) - 55

for ¢ € [0, T;;,), from which (23) readily follows. O
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3. Finite time blow-up

As already mentioned, the main novelty in this paper is a new identity of virial type which is the cornerstone
of the proof that blow-up takes place in finite time under suitable assumptions. Specifically, we assume that the
parameters &, D, y, M, and the function a fulfil the conditions (11) and (13), respectively. Recalling the definition
(18) of b, we deduce from (13) that

ci(r—1
b(ry<ci(rlnr —r 4+ 1)1 11(r) + %1[1@0)(;’) <ci(14+r), r=0. 24)
We also define
o
A(r) = —/a(s) ds, r=>0, (25)
r
and infer from (13) that A is well-defined and satisfies
0< —A@)r < - 2L ro. (26)
p—

Consider next the initial data (uq, vg) € w20, 1;: R?) satisfying (12). If (u, v) denotes the corresponding classical
solution to (7)—(10) given by Proposition 3, we define the cumulative distribution functions U and V by

X X

U(t,x) :=/u(l,y)dy and V(t,x) :=/v(t,y)dy (27)
0 0
for (¢, x) € [0, T;;;) x [0, 1]. It readily follows from (7)—(9) and (14) that (U, V) solves
U = 3y A(u) — udyv in (0, T,) x (0, 1), (28)
e0;V=Doyv—yV+U-Mx in(0,7T,) x (0,1), (29)
the function A being defined in (25), and
Uit,00=M—-U(@,1)=0 and V(#0=V(, 1)=0, tel0,T,). (30)

Lemma 6. Introducing m,(t) := |U(¢) ||Z/q for q =2, we have

1
dm, M Ma+!
— = —my— ———— + M A(ut, 1)) - —1/U‘1—2A d
TR AT ES T (u(@, D) — (g —1) uA(u)dx
0
1 1
+qiD/U’13,vdx— %/U‘Huvczx 31)
0 0

fort €10, T,).
Proof. We infer from (28), (29), and (30) that

dmy

1
L= [U‘FlA(u)]iz(l)—(q — 1)/U‘1*2uA(u)dx
0

1
1
- E/MU‘I_I(SB,V~I-)/V — U+ Mx)dx
0
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1
1 =
=M Aut, D) = (@ - 1) / Ul 2uA(u)dx — —D[U‘fa[v]ﬁ_1
q =

0
1 1 X
_ M — M
i/ Ul,vdx — L/Uq_lquij7[Uq+l]x:(l)——[qu]x:(l)+—m
D D (g+ 1D x=0" 4D x=0""p
0 0

1 1
= M Autt, D) — (g — ) / U A dx + / Utdvdx
q
0

y 1 M+l M
——/Uq_lqux—7+—mq,
D q(¢q+1)D D
0

which is the expected identity. O

At this point, we notice that the solution to the ordinary differential equation DX =MX — (M9+! /(q(g+ 1))
(obtained by neglecting several terms in (31)) is given by

M1 M
X(t) = ———— M’/D<XO—7>,
O=lqrnte O =G+

and thus vanishes at a finite time if X (0) < M?/(q(g + 1)). If a similar argument could be used for (31), we would
obtain a positive time #y such that m (o) = O which clearly contradicts the properties of U (#): indeed, by (27)
and (30), x — U (ty, x) is continuous with U (fp, 1) = M. Consequently, the solution (u, v) to (7)—(10) no longer exists
at this time #yp and blow-up shall have occurred at an earlier time, thus establishing Theorem 1. For this approach to
work, we shall of course control the other terms on the right-hand side of (31) which will in turn give rise to the
blow-up criterion stated in Theorem 1. The latter is actually a simple consequence of the following result:

Theorem 7. Assume that the parameters ¢, D, y, M, and the initial data (ug, vo) are such that

M2
E(mq (0) + L(ug, vo) + E) <0 (32)
for some finite g € (2,2/(2 — p)], where
eMia—1 —1DaW¥=2/ap M4
E(2) = (1 + 24 _“UO”HI + ) cilg — Da e
D M 49D (p—1M?P qlg+1)

forz > 0. Then T,, < oo.

Proof. The starting point of the proof being the identity (31), we first derive upper bounds for the terms on the right-
hand side of (31) involving A, &, and y. Thanks to (26) and the non-negativity of U, it follows from the Holder
inequality that

1
M A(ut, D) — (g — 1)/Uq_2uA(u)dx < %/Uq_zuz_pdx

1

2/q

-2

L al@=Dg Uy /u«zfp)q)/zdx .
(p—1 !

0
Since g € (2,2/(2 — p)], we may use the Jensen inequality and (14) to conclude that

ci(g — )gl=2/4 2P a2/
(p—1) I

MO A, 1) — (g — 1) / UT2uA () dx < (33)
0
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Next, to estimate the term involving y, we adapt an argument from [18] and first claim that

M
V(0) 2 Vit x) = o (63 = x) + 22, (40) €10, T) x [0, 11, (34)
where i denotes the unique solution to
edh — Dafh +yh=0, (t,x)e€(0,00)x (0,1), (35)
h(t,0)=h(t,1)=0, te(0,00), (36)
. M 3
(0, x) = min V(O,x)—i—@(x—x ),01 <0, xe(0,1). (37)

Indeed, V,, <V on [0, T;;;) x {0, 1} and {0} x [0, 1], and it follows from the non-negativity of U and the negativity of
h that

M
£8; Vs — DO2Vyy + y Vi = £3rh — Mx — D32h + 6—g(x3 —x)+yh

<—Mx <U—Mx=¢3,V — D>V +yV.

The comparison principle then implies (34). We next infer from (34) and the non-negativity of ¥ and U that

1 1
L/Uq_lquxé—l/Uq_ludex
D D
0 0

1
_ _qLD[Uq Vil 2o+ qLD / U9, Vyy dx
0

y (M
<5 E+||axh||oo my.

We next note that 9,/ also solves (35) with homogeneous Neumann boundary conditions, the latter property being a
consequence of (35) and (36). Since

< volloo + L
X [V N
0lloco 3D

the comparison principle and the non-negativity of y warrant that |05/ () ||co < ||V0llco + (M /3 D) for t > 0. Conse-
quently, recalling the Sobolev embedding ||vo|lco < [lvoll 51, we end up with

M
|8:7(0, )| < |vo(x) + 6—D(1 —3x?)

1
14 _ yM D
—B/U‘I lqux<ﬁ<l+M||v0||H1>mq. (38)
0

We finally infer from (14), (27), (30), and the Holder inequality that

1 1
M9/? Ma/2
£ [ vtavax< & U219, dx < S—mY P a0]la. 39)
gD gD q'/?D
0 0
It now follows from (31), (33), (38), and (39) that
qu M Y 14 C](q—l)q(q_2)/qD (q-2)/ M1 eM1/? 172
— < —(l1+=4+= 7 _ )
dt D[( +D+M”v0”Hl mq"‘ (p_l)Mp_l ml] q(q+1) +q1/2Dml] ” [U||2
< M eM1 &‘Mq/z 1/2
\BE(mq)_4qD2mq+ql/2qu ||8IU||2'

Owing to (12) and (24), we have b(uq) € L' (0, 1) and it follows from (22), (23), and the above inequality that
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2 eM4 eM4/?

oy + L+ Y <X pmyy = M 2 S 12 00 — 0,02
dt 2D D 4qD? q'/?D

M M2 0\?
= BE(mq) —e( l19;v]l2 — mmq

M

Using now the monotonicity of E and (23), we end up with

gt 260+ LY <My 4 L0y + 2
7\ wv)+ o5 ) S HE\mg wv)+ 55 -
Assume now for contradiction that 7;, = oco. The previous inequality and (32) then warrant that there is a time

to > 0 such that m (o) + L(u(to), v(t9)) + (M?/2D) = 0 and hence mg(tp) = 0 by (23). This in turn implies that
U (tp, x) =0 for all x € [0, 1] and contradicts (30). Consequently, 7,, < oco. O

The remaining step towards Theorem 1 is to use the properties of a to simplify the condition (32) derived in
Theorem 7.

Proof of Theorem 1. It follows from (12), (24), and the Sobolev embedding ||vplleo < ||Vl 1 that

1
2 2

M D 2, Y 2 M
L(uo,v0)+5< 01(1+M0)+5|8xv()| +5|v0| + uollvollco dx+5
0
M?> D+y
< 1+M —
ci(1+ )+2D+ 5

= F(mg(0), lvoll 1) — mq(0),

the function F being defined in Theorem 1. Therefore,

2
lvoll2,1 + Mlvoll

M2
E<mq(0) + L(uo, vo) + E) < (E o F)(mg(0), lvoll 1) =Py (mg(0), llvoll 1, £M),
and the condition P, (m,(0), ||voll g1, €M) < O clearly implies (32) and hence 7, < co. O
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