
Ann. I. H. Poincaré – AN 27 (2010) 351–376
www.elsevier.com/locate/anihpc

Solitary waves for nonlinear Klein–Gordon equations coupled
with Born–Infeld theory

Yong Yu

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA

Received 21 February 2009; received in revised form 28 September 2009; accepted 5 October 2009

Available online 10 November 2009

Abstract

We consider the nonlinear Klein–Gordon equations coupled with the Born–Infeld theory under the electrostatic solitary wave
ansatz. The existence of the least-action solitary waves is proved in both bounded smooth domain case and R

3 case. In particular,
for bounded smooth domain case, we study the asymptotic behaviors and profiles of the positive least-action solitary waves with
respect to the frequency parameter ω. We show that when κ and ω are suitably large, the least-action solitary waves admit only
one local maximum point. When ω → ∞, the point-condensation phenomenon occurs if we consider the normalized least-action
solitary waves.

1. Introduction

1.1. Background

The Born–Infeld geometric theory of electromagnetism is a nonlinear generalization of the classical Maxwell
theory. It was introduced to overcome the infinite energy problem associated with a point-charge source in the original
Maxwell theory. Based on the action principle of special relativity, Born proposed the first Born–Infeld theory (cf. [2]
and [3]). It is defined by the action density

LBI,1 = b2
(

1 −
√

1 + FμνFμν

2b2

)√−det(gμν) (1.1)

where gμν is the metric tensor of a (3 + 1)-dimensional Minkowskian space–time of the signature (+ − −−), and
Fμν = ∂μAν − ∂νAμ is the field strength curvature induced from a gauge potential (connection 1-form) Aμ. Later,
by considering the invariance principle, Born and Infeld reconsidered (1.1) and introduced the second Born–Infeld
theory in [8] and [9], which is defined by the action density

LBI,2 = b2
(√−det(gμν) −

√
−det

(
gμν + Fμν

b

))
. (1.2)
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It is clear that when the Born–Infeld free parameter b → ∞, both (1.1) and (1.2) reduce to the classical Maxwell
theory.

In recent years, the Born–Infeld nonlinear electromagnetism has regained its importance due to its relevance in
the theory of superstrings and membranes (cf. [29]). It has received much attention from both theoretic physicists
and mathematicians (cf. [32,27,1,18,34,24]). Mathematically, motivated from Gibbons’ work (cf. [18]), in [34], Yang
proposed an extended Born–Infeld equation, which can be used to unify the minimal surface equations and maximal
hypersurface equations. Meanwhile, the author studied the existence of magnetostatic minimum-energy solutions in
the Born–Infeld–Higgs model. Later, in Lin and Yang’s work (cf. [24]), the authors studied the gauged harmonic maps
by extending the scalar Higgs fields in [34] to maps from a 2-surface into the standard 2-sphere. The coexistence of
vortices and antivortices were obtained by studying the first-order system of self-dual and anti-self-dual equations.
The existence of cosmic strings induced by these vortices were also established.

1.2. Electrostatic solitary wave ansatz

As we know, the gauge potential Aμ can be coupled to a complex order parameter ψ through the minimal coupling
rule. That is the formal substitution

∂

∂t
�→ ∂

∂t
− iA0,

∇ �→ ∇ − iA

where A = (A1,A2,A3) is a magnetic vector potential, and A0 is an electric potential. Therefore, in a flat
Minkowskian space–time with metric (gμν) = diag[1,−1,−1,−1], we can define the Klein–Gordon–Maxwell La-
grangian density LKGM as

LKGM = 1

2

[∣∣∣∣∂ψ

∂t
− iψA0

∣∣∣∣
2

− |∇ψ − iAψ |2 − m2|ψ |2
]

+ 1

p
|ψ |p (1.3)

where m is the mass of a particle, and p ∈ (2,6) is a constant describing the nonlinearity in (1.3). The nonlinear
Born–Infeld–Klein–Gordon equations (NBIKG for short) are the Euler–Lagrange equations of the total action

S =
∫

LBI,1 + LKGM. (1.4)

Under the electrostatic solitary wave ansatz

ψ(x, t) = u(x)eiωt , A0 = −φ(x), A = 0

where u and φ are real-valued functions defined on a subset U of R
3, and ω is a positive frequency parameter, the

total action in (1.4) takes the form

FU(u,φ) :=
∫
U

1

2
|∇u|2 + 1

2

(
m2 − ω2)u2 − 1

p
|u|p dx − Eu,U (φ) (1.5)

with

Eu,U (φ) :=
∫
U

b2
(

1 −
√

1 − 1

b2
|∇φ|2

)
+ ωu2φ + 1

2
φ2u2. (1.6)

The critical point (φ, u) of FU satisfies the Euler–Lagrange equations associated with (1.5). By standard calculations,
we get⎧⎪⎪⎨

⎪⎪⎩
∇ · ∇φ√

1 − 1
b2 |∇φ|2

= u2(ω + φ),

�u = (
m2 − (ω + φ)2)u − |u|p−2u.

(1.7)

In this article, U is assumed to be a bounded smooth domain in R
3 or the whole R

3 space. When U = R
3, we omit the

subscription U from (1.5) and (1.6). That is, we use F and Eu to denote FR3 and Eu,R3 , respectively. As a convention
in this paper, in an integral expression, if its integration domain is R

3, we will omit R
3 from the integral expression.
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1.3. Main results

The existence of solitary waves has been well studied in different systems (cf. [4–7,10–13,16,22,25]). Particularly
in [13] and [25], the authors considered the system of nonlinear Klein–Gordon equation coupled with the Born–Infeld
type equations. Here, the Born–Infeld type equations refer to the second order expansion of the original Born–Infeld
equations when the Born–Infeld parameter b → ∞. In this article, we study the original Born–Infeld equations.

Firstly, for any fixed u ∈ L2(U), we study the variational problem

min
φ∈M

Eu,U (φ). (1.8)

The configuration space

M := D(U) ∩ {
φ

∣∣ ‖∇φ‖L∞(U) � b
}

(1.9)

naturally arises from the physical constraint (quantity under the square root in (1.6) should be nonnegative) and the
finite energy condition (Eu,U (φ) < ∞) of (1.6). In (1.9), D(U) denotes the completion of C∞

0 (U ;R) with respect to
the norm

‖φ‖D(U) := ‖∇φ‖L2(U) + ‖∇φ‖L4(U).

It is embedded into L∞(U) continuously (cf. Proposition 8 in [17]). Therefore, M is a topological space by equipping
with the uniform norm topology when U is a bounded smooth domain or the locally uniform norm topology when
U = R

3. The existence of global minimizer for the variational problem (1.8) will be studied in Section 2.1 by an
application of the direct method in the Calculus of Variations. The minimizer is unique because of the convexity of
the functional Eu,U . Therefore, we can define a nonlinear operator

Φ : L2(U) �→ M, (1.10)

which sends one L2(U) function u to the unique minimizer of the variational problem (1.8). In Section 2.3, the
operator Φ is proved to be a continuous map between L2(U) and M if we equip L2(U) with its strong topology.

Plug the minimizer Φ(u) into (1.5), the functional

J [u] := FU

(
u,Φ(u)

)
, (1.11)

which is defined on H 1(U) or a subspace of H 1(U), is strongly indefinite. In Proposition 3.1, the functional J will
be proved to be C1 differentiable in the sense of Fréchet. We emphasize here that, with the loss of the C1 regularity
on Φ , our method relies only on the continuity of the operator Φ . In Section 3.2, we will assume U = R

3. By the Z2
Mountain Pass Theorem, we will prove the existence of infinite many critical points of J with radial symmetry when

κ = m

ω
(1.12)

is suitably large (see Theorem 3.3). Furthermore, we will show that among all nonzero critical points of J with radial
symmetry, there exists one that attains the least-J -action (see Theorem 3.8). In Section 3.3, U is a bounded smooth
domain. We will study the positive critical points of the functional J with boundary values set to be 0. Therefore, we
work on the functional

J+[u] :=
∫
U

1

2
|∇u|2 + 1

2

(
m2 − ω2)u2 − 1

p
u

p
+ dx − Eu,U

(
Φ(u)

)
. (1.13)

J+ is defined on H 1
0 (U). Based on the well-known Mountain Pass Lemma due to Ambrosetti and Rabinowitz, we

will show in Theorem 3.18 and Theorem 3.19 that if κ is suitably large, then among all nonzero critical points of J+,
there exists one that attains the least-J -action. We call it the positive least-J -action critical point of J . Compared to
the magnetostatic minimum-energy solutions for the Born–Infeld–Higgs model or the gauged harmonic map model
in [34] and [24], our results in Theorems 3.3, 3.8, 3.18 and 3.19 verify the existence of the least-action solutions in the
context of electrostatic fields. Moreover, in Theorem 3.18, we generalize the existence of the Mountain Pass solution
in [26] and [33] to a coupled system combining a semilinear elliptic equation with an electric potential governed by
the Born–Infeld theory.
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Denote uκ,ω by one positive least-J -action critical point of the functional J+. With respect to the parameters
κ and ω, in Section 4, we focus on the asymptotic behaviors and profiles of the functions in relation to uκ,ω

and Φω(uκ,ω). We adopt a singular perturbation method. In fact, in Section 4.3, we will prove the point-condensation

phenomenon for the normalized function vκ,ω = ω
2

2−p uκ,ω . More precisely, it will be proved that when κ is a suitably
large constant, in the limit of ω → ∞, vκ,ω admits only one local maximum point Pκ,ω . In particular,

vκ,ω(Pκ,ω) �
(
κ2 − 1

) 1
p−2 (1.14)

is uniformly bounded from below by a constant depending only on κ . Meanwhile, the normalized function vκ,ω → 0
in C

1,α
loc (U \ Pκ,ω).

2. Minimizer of Eu,U

2.1. Existence of the minimizer Φ(u)

Denote D1,2(U) by the completion of C∞
0 (U ;R) with respect to the norm

‖φ‖D1,2(U) := ‖∇φ‖L2(U).

D(U) is continuously embedded into both D1,2(U) and L∞(U). Moreover, D1,2(U) is continuously embedded into
L6(U) by Sobolev inequality.

In the following, we begin to study the variational problem (1.8) in this section. First, let us state a lemma.

Lemma 2.1. If {φn} ⊆ M and φn ⇀ φ in D1,2(U), then φn → φ uniformly in Ū if U is a bounded smooth domain;
φn → φ locally uniformly in R

3, if U = R
3.

Proof. Assume that {φnk
} is any subsequence of {φn}. Since {φnk

} ⊆ M and φnk
⇀ φ weakly in D1,2(U), {∇φnk

} is
uniformly bounded in L2(U) and L4(U). If U is a bounded smooth domain, by Morrey’s inequality, we then have

‖φnk
‖
C

0, 1
4 (Ū)

� C‖φnk
‖D(U),

which implies that {φnk
} is equicontinuous on Ū . Apply Arzelá–Ascoli’s theorem, we can extract a subsequence,

which is denoted by {φnkl
}, such that φnkl

⇒ φ in Ū . Because the subsequence {φnk
} is arbitrary, we have φn ⇒ φ

in Ū . R
3 case is similar. We omit the proof. �

In the following, we use the direct method in the Calculus of Variations (cf. Theorem 1.2 in [31]) to show that

Theorem 2.2. For every u ∈ L2(U), there exists a unique Φ(u) ∈ M such that

Eu,U

(
Φ(u)

) = inf
φ∈M

Eu,U (φ).

In fact, we need to verify that:

(1) M is a weakly closed subset of D1,2(U);
(2) Eu,U is coercive and weakly sequentially lower semicontinuous on M with respect to D1,2(U).

Lemma 2.3. M is a weakly closed subset of D1,2(U).

Proof. Note that, D1,2(U) is reflexive and M is convex. We only need to prove the strong closedness of M in D1,2(U).
Choose {φn} ⊆ M , φn → φ in D1,2(U). Up to a subsequence, we can assume ∇φn → ∇φ almost everywhere in U .
Then ‖∇φ‖L∞(U) � b. We also have∫

|∇φn − ∇φ|4 � 4b2
∫

|∇φn − ∇φ|2 → 0.
U U
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Hence, φ ∈ D(U). Under the definition of M in (1.9), φ ∈ M . �
Pay attention to the fact that

F(x,φ,p) = b2
(

1 −
√

1 − 1

b2
|p|2

)
+ ωu2(x)φ + 1

2
u2(x)φ2 � −1

2
ω2u2(x)

is convex in p. Then, F is a Caratheodory function. In the following, we apply Theorem 1.6 in [31] and show that

Lemma 2.4. Eu,U (·) is coercive and weakly sequentially lower semicontinuous with respect to D1,2(U).

Proof. The coercivity of Eu,U with respect to D1,2(U) is a result of the fact that

Eu,U (φ) �
∫
U

1

2
|∇φ|2 dx − 1

2
ω2

∫
U

u2 dx.

Let us now prove the weakly sequentially lower semicontinuity of Eu,U . Assume that {φn} ⊆ M and φn ⇀ φ weakly
in D1,2(U). From Lemma 2.1, we know that φn ⇒ φ locally in U . That is, ∀U ′ � U , we have φn ⇒ φ in U ′. Hence,
φn → φ in L1(U ′). Since ∇φn ⇀ ∇φ weakly in L2(U), we get ∇φn ⇀ ∇φ weakly in L1(U ′). Apply Theorem 1.6
in [31],

Eu,U (φ) � lim inf
n→∞ Eu,U (φn). �

Remark 2.5. Use the same method as the above, we can prove that if {φn} ⊆ M and φn ⇀ φ weakly in D1,2(U), then

∫
U

b2
(

1 −
√

1 − 1

b2
|∇φ|2

)
� lim inf

n→∞

∫
U

b2
(

1 −
√

1 − 1

b2
|∇φn|2

)
.

Now we complete this section by the proof of Theorem 2.2.

Proof of Theorem 2.2. Lemma 2.3 and Lemma 2.4 together with Theorem 1.2 in [31] imply that there exists a
minimizer of Eu,U on M . The convexity of the functional Eu,U ensures the uniqueness of the minimizer. �
2.2. Some properties of the operator Φ

From Theorem 2.2, we can construct the operator Φ , which is defined as in (1.10). Since for a fixed u ∈ L2(U),
Φ(u) is the unique minimizer of the variational problem (1.8), then

Proposition 2.6. ∀u ∈ L2(U) fixed, Φ = Φ(u), we have

∫
U

|∇Φ|2√
1 − 1

b2 |∇Φ|2
�

∫
U

−u2(ω + Φ)Φ. (2.1)

Proof. ∀λ ∈ (0,1), λΦ ∈ M . Consider Eu,U (λΦ) as a function of λ, then

d

dλ
Eu,U (λΦ) =

∫
U

λ
|∇Φ|2√

1 − 1
b2 |∇Φ|2λ2

+ ωu2Φ + λu2Φ2. (2.2)
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Since Φ attains the minimum of Eu,U in M , we have

lim inf
λ→1−

d

dλ
Eu,U (λΦ) � 0. (2.3)

Apply Fatou’s Lemma, (2.2) and (2.3) may imply (2.1). �
Since D(U) is embedded into L∞(U) continuously, then (ω+Φ)Φ ∈ L∞(U). By the assumption that u ∈ L2(U),

we can conclude from Proposition 2.6 that the minimizer Φ = Φ(u) of the variational problem (1.8) satisfies∫
U

|∇Φ|2√
1 − 1

b2 |∇Φ|2
< +∞.

Therefore, we can define K ⊆ M as

K :=
{
ψ ∈ M

∣∣∣ ∫
U

|∇ψ |2√
1 − 1

b2 |∇ψ |2
< +∞

}
. (2.4)

The minimizer Φ = Φ(u) of the variational problem (1.8) is also the minimizer of the problem to minimize the energy
functional Eu,U on K . Therefore, we may get the following proposition.

Proposition 2.7 (Variational Inequality). ∀u ∈ L2(U) fixed, Φ = Φ(u) is the minimizer of Eu,U on M . Then, ∀ψ ∈ K ,∫
U

∇Φ√
1 − 1

b2 |∇Φ|2
· ∇(Φ − ψ) + (ω + Φ)(Φ − ψ)u2 � 0. (2.5)

Proof. ∀ψ ∈ K and 0 < λ < 1, λΦ + (1 − λ)ψ ∈ K . We know that Φ(u) attains the minimum of Eu,U on K , thus,

lim inf
λ→1−

d

dλ
Eu,U

(
λΦ + (1 − λ)ψ

)
� 0.

Apply Lebesgue’s Dominated Convergence theorem. We complete the proof. �
As an application of the variational inequality (2.5), we prove the a priori upper and lower bounds of Φ(u) for a

fixed u ∈ L2(U).

Proposition 2.8. ∀u ∈ L2(U), it results in Φ(u) � 0. Moreover, Φ(u)(x) � −ω if u(x) �= 0.

Proof. Apply the variational inequality (2.5) and set ψ = −Φ−, we have∫
U

∇Φ√
1 − 1

b2 |∇Φ|2
· ∇(

Φ + Φ−) + ω
(
Φ + Φ−)

u2 + (
Φ + Φ−)

Φu2 � 0.

That is,∫
Φ�0

∇Φ+√
1 − 1

b2 |∇Φ+|2
· ∇Φ+ + ωΦ+u2 + Φ+Φ+u2 � 0.

So we get ∇Φ+ = 0. Hence, Φ � 0. If we set ψ = −ω + (ω + Φ)+, then we have∫
Φ�−ω

|∇Φ|2√
1 − 1

b2 |∇Φ|2
+ u2(Φ + ω)2 � 0. (2.6)

Hence, Φ(u)(x) � −ω whenever u(x) �= 0. �
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In the rest of this section, we assume that U = R
3. Let f be a function defined on R

3. With respect to fixed x0 ∈ R
3

and g ∈ O(3), we can define translation and rotation on f as

Tx0f (x) := f (x + x0), Tgf (x) := f (gx), ∀x ∈ R
3. (2.7)

From the definition of K in (2.4), it is easy to prove that K is translation–rotation invariant. Pay attention to the
uniqueness result in Theorem 2.2. We prove the fact that Φ is even and commutes with the group of rototranslations
in Proposition 2.9 below.

Proposition 2.9. ∀u ∈ L2(R3), ∀g ∈ O(3), ∀x0 ∈ R
3, we have

Φ(Tx0u) = Tx0Φ(u), (2.8)

Φ(Tgu) = TgΦ(u), (2.9)

Φ(u) = Φ(−u). (2.10)

Proof. We know that

Eu

(
Φ(u)

) = ETx0u

(
Tx0Φ(u)

)
.

Since K is translation–rotation invariant, we have Tx0Φ(u) ∈ K . Note that, Φ(Tx0u) attains the minimum of ETx0u

on M . Then,

Eu

(
Φ(u)

)
� ETx0u

(
Φ(Tx0u)

)
.

Since x0 is arbitrary, we conclude that

Eu

(
Φ(u)

) = ETx0u

(
Φ(Tx0u)

) = ETx0u

(
Tx0Φ(u)

)
.

The uniqueness result in Theorem 2.2 immediately implies (2.8). The proofs for (2.9) and (2.10) are similar. We omit
the discussions here. �

As an application of (2.8) in Proposition 2.9 and the variational inequality (2.5) in Proposition 2.7, let us consider
a W 2,2 estimate on the minimizer Φ(u).

Lemma 2.10. If ∇Φ(u) ∈ Lp1(R3), ∇u ∈ L2(R3) ∩ Lp2(R3) and u ∈ L2(R3) ∩ Lp3(R3) where 1 � pi � ∞
(i = 1,2,3) satisfying 1

p1
+ 1

p2
+ 1

p3
= 1, then∫ ∑

i,j

∣∣∂ijΦ(u)
∣∣2 � 6ω

∥∥∇Φ(u)
∥∥

Lp1 (R3)
‖∇u‖Lp2 (R3)‖u‖Lp3 (R3). (2.11)

Proof. Assume that Φ = Φ(u), Φ1,ε := Φ(x + εe1) and u1,ε := u(x + εe1) where e1 = (1,0,0). Since K is
translation–rotation invariant, Φ1,ε ∈ K . By Proposition 2.7, we have∫ ∇Φ√

1 − 1
b2 |∇Φ|2

· ∇(Φ − Φ1,ε) + ω(Φ − Φ1,ε)u
2 + (Φ − Φ1,ε)Φu2 � 0. (2.12)

From (2.8) in Proposition 2.9, we know that Φ1,ε = Φ(u(· + εe1)). Apply Proposition 2.7 again, we have∫ ∇Φ1,ε√
1 − 1

b2 |∇Φ1,ε |2
· ∇(Φ1,ε − Φ) + ω(Φ1,ε − Φ)u2

1,ε + (Φ1,ε − Φ)Φ1,εu
2
1,ε � 0. (2.13)

By adding the inequalities (2.12) and (2.13), we have∫ ∣∣∣∣∇ Φ1,ε − Φ
∣∣∣∣
2

+ (
ω + Φ(u)

)(Φ1,ε − Φ
)(

u2(x + εe1) − u2(x)
)

� 0.

ε ε ε
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Therefore,∫ ∣∣∣∣∇ Φ1,ε − Φ

ε

∣∣∣∣
2

+ 2u
(
ω + Φ(u)

)(Φ1,ε − Φ

ε

)(
u(x + εe1) − u(x)

ε

)

+
∫ (

ω + Φ(u)
)(Φ1,ε − Φ

ε

)(
u(x + εe1) − u(x)

ε

)(
u(x + εe1) − u(x)

)
� 0. (2.14)

Since we know that if 1 � p � ∞,∥∥∥∥Φ1,ε − Φ

ε

∥∥∥∥
Lp(R3)

� ‖∇Φ‖Lp(R3).

In particular, if p = ∞,∥∥∥∥Φ1,ε − Φ

ε

∥∥∥∥
L∞(R3)

� b. (2.15)

Then, we know that∫ (
ω + Φ(u)

)(Φ1,ε − Φ

ε

)(
u(x + εe1) − u(x)

ε

)2

� b
∥∥(

ω + Φ(u)
)∥∥

L∞(R3)
‖∇u‖2

L2(R3)
.

Therefore, from (2.14) and Proposition 2.8, we have∫ ∣∣∣∣∇ Φ1,ε − Φ

ε

∣∣∣∣
2

� 2
∫ ∣∣∣∣(ω + Φ(u)

)(Φ1,ε − Φ

ε

)(
u(x + εe1) − u(x)

ε

)
u

∣∣∣∣ + O(ε)

� 2ω

∫ ∣∣∣∣
(

Φ1,ε − Φ

ε

)(
u(x + εe1) − u(x)

ε

)
u

∣∣∣∣ + O(ε). (2.16)

By applying Hölder’s inequality on (2.16) and letting ε → 0, we get∫ ∣∣∇∂1Φ(u)
∣∣2 � 2ω‖∇Φ‖Lp1 (R3)‖∇u‖Lp2 (R3)‖u‖Lp3 (R3)

where 1 � pi � ∞ (i = 1,2,3) satisfying 1
p1

+ 1
p2

+ 1
p3

= 1. �
Apply Lemma 2.10 by setting p1 = ∞, p2 = p3 = 2. The following proposition holds:

Proposition 2.11. If u ∈ H 1(R3), then ∇Φ(u) ∈ H 1(R3;R
3), which satisfies∫ ∑

i,j

∣∣∂ijΦ(u)
∣∣2 � 6ωb‖∇u‖L2(R3)‖u‖L2(R3). (2.17)

2.3. Continuity of the operator Φ

In this section, we study the continuity of the operator Φ in two cases. In Proposition 2.12, we prove that
Φ :L2(U) �→ M is a continuous map if we equip L2(U) with the strong L2(U) topology. If we restrict the opera-
tor Φ on

L := L2(U) ∩ L
12
5 (U) ∩ L3(U) (2.18)

and equip L with the strong L
12
5 (U) ∩ L3(U) topology, then in Proposition 2.13, we show that Φ : L �→ M is a

continuous map. Here, un → u under the strong L
12
5 (U) ∩ L3(U) topology means that un → u in both L

12
5 (U) and

L3(U) strongly. As before, M is a topological space equipped with the uniform norm topology if U is a bounded
smooth domain or with the locally uniform norm topology if U = R

3.

Proposition 2.12. Φ : L2(U) �→ M is a continuous map.
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Proof. Assume that un → u strongly in L2(U). In the following, we show that ∀{unk
} ⊆ {un}, there exists a subse-

quence {unkl
}, such that when U is a bounded smooth domain, Φ(unkl

) ⇒ Φ(u) in Ū ; when U = R
3, Φ(unkl

) ⇒ Φ(u)

locally in R
3.

Note that, {unk
} is uniformly bounded in L2(U). By Propositions 2.6 and 2.8, {Φ(unk

)} is uniformly bounded in
D(U). Hence, it is also uniformly bounded in L∞(U). Then, there exist a subsequence {unkl

} and f ∈ M , such that

Φ(unkl
) ⇀ f in D1,2(U). By Lemma 2.1, Φ(unkl

) ⇒ f in Ū when U is a bounded smooth domain or Φ(unkl
) ⇒ f

locally in R
3 when U = R

3. For the rest of the proof, we only need to show that f = Φ(u).
Because Φ(unkl

) is the minimizer of Eunkl
,U on M and unkl

→ u in L2(U), we have

Eunkl
,U

(
Φ(unkl

)
)
� Eunkl

,U

(
Φ(u)

) → Eu,U

(
Φ(u)

)
.

Note that, {Φ(unkl
)} is uniformly bounded in L∞(U) and converges to f pointwisely. When unkl

→ u in L2(U), we
have ∫

U

Φ(unkl
)u2

nkl
→

∫
U

f u2,

∫
U

Φ(unkl
)2u2

nkl
→

∫
U

f 2u2. (2.19)

From Remark 2.5 and (2.19), we get

Eu,U (f ) � lim inf
l→∞ Eunkl

,U

(
Φ(unkl

)
)
� lim

l→∞Eunkl
,U

(
Φ(u)

) = Eu,U

(
Φ(u)

)
.

By the uniqueness result in Theorem 2.2, f = Φ(u). �
Proposition 2.13. Φ : L �→ M is a continuous map. L is defined in (2.18).

Proof. Assume that un → u in L. When U is a bounded smooth domain, the result has already been included in
Proposition 2.12. Now, we assume U = R

3. Notice Proposition 2.8 and apply Hölder’s inequality on the right-hand
side of (2.1). We have∫ ∣∣∇Φ(un)

∣∣2 + 1

2b2

∣∣∇Φ(un)
∣∣4 � ω‖un‖2

L
12
5 (R3)

∥∥Φ(un)
∥∥

L6(R3)
. (2.20)

Since un → u in L, we have {un} uniformly bounded in L
12
5 (R3). From (2.20), {Φ(un)} is uniformly bounded in

D(R3). Hence, it is also uniformly bounded in L∞(R3) and L6(R3). Then, there exist a subsequence, still denoted by
{Φ(un)}, and f ∈ M , such that Φ(un) ⇀ f in D1,2(R3). Apply Lemma 2.1, Φ(un) ⇒ f locally in R

3. For the rest of
the proof, we only need to show that f = Φ(u).

Note that,∣∣∣∣
∫

u2
nΦ(u) − u2Φ(u)

∣∣∣∣ �
∥∥u2

n − u2
∥∥

L
6
5

∥∥Φ(u)
∥∥

L6 � C
∥∥∇Φ(u)

∥∥
L2‖un − u‖

L
12
5

→ 0, (2.21)∣∣∣∣
∫

u2
nΦ(u)2 − u2Φ(u)2

∣∣∣∣ �
∥∥u2

n − u2
∥∥

L
3
2

∥∥Φ(u)
∥∥2

L6 � C
∥∥∇Φ(u)

∥∥2
L2‖un − u‖L3 → 0. (2.22)

Hence, we have

lim
n→∞Eun

(
Φ(u)

) = Eu

(
Φ(u)

)
.

Since Eun(Φ(un)) � Eun(Φ(u)), then

lim sup
n

Eun

(
Φ(un)

)
� Eu

(
Φ(u)

)
. (2.23)

In another way, note that, {Φ(un)} is uniformly bounded in L6(R3), L∞(R3) and converges to f pointwisely. When
un → u in L, we can apply the Lebesgue’s Dominated Convergence theorem and similar arguments as in (2.21) and
(2.22) to show that∫

u2
nΦ(un) →

∫
u2f,

∫
u2

nΦ(un)
2 →

∫
u2f 2. (2.24)
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Because of Remark 2.5 and (2.24), we have

lim inf
n

Eun

(
Φ(un)

)
� Eu(f ). (2.25)

Obviously, (2.23) and (2.25) imply that Eu(f ) = Eu(Φ(u)). Therefore, we have f = Φ(u) by the uniqueness result
in Theorem 2.2. �
Remark 2.14. If un → u in L2(U) or L, then

lim
n→∞Eun,U

(
Φ(un)

) = Eu,U

(
Φ(u)

)
. (2.26)

3. Existence of solitary wave solutions

In this section, we prove the existence of critical points of J and J+. Firstly, let us study the C1 differentiability of
J and J+ in the sense of Fréchet.

3.1. Differentiability of J and J+

In this section, the functional J is defined on H, which is a subspace of H 1(U). Naturally, H is endowed with the
metric from H 1(U). The main purpose of this section is to prove

Proposition 3.1. J ∈ C1(H;R) in the sense of Fréchet.

Proof. It is sufficient to prove

lim‖v‖
H1 →0

(
J [u + v] − J [u] − DJ [u]v)

/‖v‖H 1 = 0

where

DJ [u]v :=
∫
U

∇u · ∇v + (
m2 − (

ω + Φ(u)
)2)

uv − |u|p−2uv. (3.1)

We split J [u + v] − J [u] − DJ [u]v into three parts. That is,

J [u + v] − J [u] − DJ [u]v = A + B + C

where

A =
∫
U

1

2

∣∣∇(u + v)
∣∣2 − 1

2
|∇u|2 − ∇u · ∇v,

B = − 1

p

∫
U

|u + v|p − |u|p − p|u|p−2uv,

C = Eu,U
(
Φ(u)

) − Eu+v,U

(
Φ(u + v)

) +
∫
U

1

2

(
m2 − ω2)v2 + (

2ω + Φ(u)
)
Φ(u)uv.

By Sobolev embedding theorem, it is easy to prove A, B = o(‖v‖H 1). We thus focus on the proof of C = o(‖v‖H 1).
In the following, we will prove C � o(‖v‖H 1) and C � o(‖v‖H 1) successively. Then we complete the proof of Propo-
sition 3.1.

We first prove C � o(‖v‖H 1(R3)). Since Φ(u + v) minimizes Eu+v,U on M , we have

C � D := Eu,U

(
Φ(u)

) − Eu+v,U

(
Φ(u)

) +
∫

1

2

(
m2 − ω2)v2 + (

2ω + Φ(u)
)
Φ(u)uv.
U
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Therefore, C � o(‖v‖H 1) by the fact that

D =
∫
U

1

2

(
m2 − ω2)v2 − ωΦ(u)v2 − 1

2
Φ(u)2v2 = o

(‖v‖H 1

)
.

Let us now prove C � o(‖v‖H 1). Since Φ(u) minimizes Eu,U on M ,

C � Eu,U

(
Φ(u + v)

) − Eu+v,U

(
Φ(u + v)

) +
∫
U

(
2ω + Φ(u)

)
Φ(u)uv + 1

2

(
m2 − ω2)v2.

Set

Θ := uv
(
Φ(u + v) − Φ(u)

)(
2ω + Φ(u) + Φ(u + v)

)
,

we get

C � o
(‖v‖H 1

) −
∫
U

Θ. (3.2)

In the following, we prove

lim‖v‖
H1 →0

1

‖v‖H 1

∣∣∣∣
∫
U

Θ

∣∣∣∣ = 0 (3.3)

in two cases, then from (3.2), we get C � o(‖v‖H 1).

Case 1 (Bounded Smooth Domain). Under definition of Θ , we have by applying Hölder’s inequality that

1

‖v‖H 1

∣∣∣∣
∫
U

Θ

∣∣∣∣ �
∥∥2ω + Φ(u) + Φ(u + v)

∥∥
L∞(U)

∥∥Φ(u + v) − Φ(u)
∥∥

L∞(U)
‖u‖L2(U).

From Propositions 2.6, 2.8 and the fact that D(U) is embedded into L∞(U) continuously, we know that, as v → 0
in H 1(U), ‖2ω + Φ(u) + Φ(u + v)‖L∞(U) is uniformly bounded by a constant depending on b, ω and ‖u‖L2(U). By
Proposition 2.12, we get (3.3) in the bounded smooth domain case.

Case 2 (The whole Euclidean space R
3). Similarly as in Case 1, when v → 0 in H 1(R3), ‖Φ(u + v)‖L∞(R3) is

uniformly bounded by a constant C = C(b,ω,‖u‖L2(R3)). Since u ∈ L2(R3), ∀ε > 0, there exists R > 0 large enough,
such that ‖u‖L2(Bc

R) < ε. Therefore, by Hölder’s inequality,

1

‖v‖H 1(R3)

∣∣∣∣
∫
Bc

R

Θ

∣∣∣∣ � C‖u‖L2(Bc
R) < Cε. (3.4)

Fix R above. Since we know from Proposition 2.12 that if v → 0 in L2(R3), then Φ(u + v) ⇒ Φ(u) in B̄R . We thus
get

1

‖v‖H 1(R3)

∣∣∣∣
∫
BR

Θ

∣∣∣∣ � C
∥∥Φ(u + v) − Φ(u)

∥∥
L∞(B̄R)

‖u‖L2(R3) → 0, as ‖v‖H 1(R3) → 0. (3.5)

By (3.4) and (3.5), we get (3.3) when U = R
3. �

Remark 3.2. If we consider the functional J+ defined as in (1.13), then by using the same method as in the proof of
Proposition 3.1, we get J+ ∈ C1(H;R) in the sense of Fréchet.
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3.2. Solitary wave solutions – U = R
3

The functional J in (1.11) is defined on H 1(R3). According to Proposition 3.1, J is C1 differentiable in the sense
of Fréchet. In this section, we study the existence of critical points of J by the Z2 Mountain Pass Theorem. More
precisely, we prove

Theorem 3.3. If (
p
2 − 1)m2 >

p
2 ω2, then in H 1(R3), there exist infinitely many critical points of J with radial

symmetry. Moreover, the critical points of J satisfy the equation

−�u + (
m2 − (

ω + Φ(u)
)2)

u − |u|p−2u = 0. (3.6)

Before we prove Theorem 3.3, let us state two lemmas, which are simple applications of (2.9) and (2.10).

Lemma 3.4. ∀u ∈ H 1(R3), J [u] = J [−u].

Lemma 3.5. ∀u ∈ H 1(R3), ∀g ∈ O(3), we have J [Tgu] = J [u].

Lemma 3.4 and Lemma 3.5 imply that the functional J is even and Tg invariant. Therefore, by the principle of
symmetric criticality (cf. [28]), we may restrict J on the radially symmetric subspace H 1

r (R3) ⊂ H 1(R3). That is,

Lemma 3.6. If u ∈ H 1
r (R3) is a critical point of J |H 1

r (R3), then u is a critical point of J .

Because J is invariant under translations, there is a lack of compactness on H 1(R3). For this reason, we restrict
J to the subspace H 1

r (R3), which is a natural constraint for J in the sense of Lemma 3.6. Then, there is no lack of
compactness. Indeed, we have

Lemma 3.7. If (
p
2 − 1)m2 >

p
2 ω2, the functional J |H 1

r (R3) satisfies the Palais–Smale condition.

After some slight modifications, the proof of Lemma 3.7 is almost the same as the proof of Lemma 6 in [13]. We
omit the discussion here. Now we begin to prove Theorem 3.3.

Proof of Theorem 3.3. J is even. According to Lemma 3.7, we know that J |H 1
r

satisfies the Palais–Smale condition.
Therefore, by Theorem 9.12 in [30], we only need to show that J |H 1

r
satisfies the following two geometric hypothesis:

(G1) ∃ρ > 0 and α > 0 such that J [u] � α, ∀u with ‖u‖H 1
r

= ρ;

(G2) for every finite dimensional subspace V of H 1
r , ∃R = R(V ) > 0 such that J [u] � 0, ∀u ∈ V with ‖u‖H 1

r
� R.

Since we know that ∀u ∈ H 1(R3),

C(m,ω)‖u‖2
H 1 − 1

p
‖u‖p

Lp � J [u] � C(m)‖u‖2
H 1 − 1

p
‖u‖p

Lp .

Sobolev inequality implies that ‖u‖Lp � C‖u‖H 1 . This helps us to prove (G1). In finite dimensional subspace V

of H 1
r (R3), the Lp norm and H 1 norm are equivalent. Thus in V , ‖u‖H 1 � C(V )‖u‖Lp , ∀u ∈ V . This helps us to

complete the proof of G2. �
Theorem 3.3 implies the existence of infinitely many critical points of the functional J with the radial symmetry.

In Theorem 3.8 below, we prove the existence of least-J -action critical point among all nonzero critical points of J

with the radial symmetry. Note that J is strongly indefinite. It is not bounded from above or below, we need to restrict
our functional J on the manifold

Σ := {
u ∈ H 1

r

(
R

3) ∣∣ u �≡ 0, u is a critical point of J
}
.
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Theorem 3.8. If (
p
2 − 1)m2 >

p
2 ω2, then

F := inf
u∈Σ

J [u] = min
u∈Σ

J [u] > 0. (3.7)

Proof. First, let us prove F > 0. If u ∈ Σ , then∫
|∇u|2 + (

m2 − (
ω + Φ(u)

)2)
u2 − |u|p = 0. (3.8)

Apply Sobolev embedding theorem,∫
|u|p =

∫
|∇u|2 + (

m2 − (
ω + Φ(u)

)2)
u2 � C

(∫
|u|p

) 2
p

(3.9)

where C > 0 is a constant depending on m and ω. Since u �= 0, we have∫
|u|p � C

p
p−2 > 0. (3.10)

That is, Σ keeps strictly away from 0. By (3.8) and the fact that Eu(Φ(u)) � 0, we have

J [u] �
∫ (

1

2
− 1

p

)
|∇u|2 +

[(
1

2
− 1

p

)
m2 − 1

2
ω2

]
u2 � C‖u‖2

Lp � C(p,ω,m) > 0. (3.11)

Hence, F > 0.
If {un} ⊆ Σ such that J [un] → F , then {J [un]} is bounded and from (3.11), {un} is uniformly bounded in

H 1
r (R3). Therefore, we can extract a subsequence, denoted also by {un}, such that un ⇀ u0 in H 1

r (R3). Since
H 1

r (R3) ↪→ Ls(R3) compactly with s ∈ (2,6), we can further assume that un → u0 in Ls(R3) with s = 12
5 , 3, p.

By Proposition 2.13, we know that Φ(un) ⇒ Φ(u0) locally in R
3. Since∫

∇un · ∇φ + (
m2 − (

ω + Φ(un)
)2)

unφ =
∫

|un|p−2unφ, ∀φ ∈ C∞
0

(
R

3),
let n → ∞,∫

∇u0 · ∇φ + (
m2 − (

ω + Φ(u0)
)2)

u0φ =
∫

|u0|p−2u0φ.

That is, u0 is a weak radial solution of (3.6). Regarding (3.10) and Lp convergence of {un}, we imply that u0 �≡ 0.
Hence, u0 ∈ Σ . In addition, notice Remark 2.14. We have

F � J [u0] =
∫

1

2
|∇u0|2 + 1

2

(
m2 − ω2)u2

0 − 1

p
|u0|p − Eu0

(
Φ(u0)

)
� lim inf

n

∫
1

2
|∇un|2 + 1

2

(
m2 − ω2)u2

n − lim
n

∫
1

p
|un|p − lim

n
Eun

(
Φ(un)

) = F.

i.e. F can be attained by the function u0 ∈ Σ . �
3.3. Solitary wave solutions – bounded smooth domain

In this section, U is a bounded smooth domain. We are interested in the existence of the positive least-J -action
critical point of J . Therefore, we study the functional J+, which is defined on H 1

0 (U). Due to Remark 3.2, J+ is C1

differentiable in the sense of Fréchet.
Follow the notations as in [26]. Given e � 0, e �≡ 0, e ∈ H 1

0 (U) with J+[e] = 0, we define

C := inf
h∈Γ

max
0�t�1

J+
[
h(t)

]
(3.12)

where Γ is the set of all continuous paths joining the origin and this given e. In addition, we define

M[v] := supgv(t), ∀v ∈ H 1
0 (U), v � 0, v �≡ 0 (3.13)
t�0
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where

gv(t) := J+[tv], ∀t � 0. (3.14)

In the following, we study gv(t). The key point is to understand the nonlinear operator Φ defined as in (1.10).

Lemma 3.9. ∀s, t ∈ R, ∀v ∈ L2(U), we have∫
U

∣∣∣∣∇Φ(sv) − ∇Φ(tv)

s − t

∣∣∣∣
2

+ ωv2(s + t)
Φ(sv) − Φ(tv)

s − t

+ v2 Φ(sv) − Φ(tv)

s − t

(
s2 Φ(sv) − Φ(tv)

s − t
+ (s + t)Φ(tv)

)
� 0. (3.15)

Proof. Apply the variational inequality in Proposition 2.7 repeatedly by setting u = sv, ψ = Φ(tv) and u = tv,
ψ = Φ(sv). We can imply (3.15). �
Lemma 3.10. (3.15) implies that for a given v ∈ H 1

0 (U), ∀sn, ln → t , there exist a subsequence {snk
}, {lnk

} and
ζ ∈ D1,2(U), such that

∇Φ(snk
v) − ∇Φ(lnk

v)

snk
− lnk

⇀ ∇ζ in L2(U), (3.16)

Φ(snk
v) − Φ(lnk

v)

snk
− lnk

→ ζ in Ls(U), s = 12

5
,3. (3.17)

Proof. By Hölder inequality, Sobolev inequality and Proposition 2.8, we imply from (3.15) that (Φ(snv) −
Φ(lnv))/(sn − ln) is uniformly bounded in D1,2(U) by a constant depending on ω, t , U and the given function v.
Thus implies (3.16). (3.17) is a result of the fact that D1,2(U) is compactly embedded into Ls(U) with s = 12

5 ,3. �
From Lemma 3.9 and Lemma 3.10, as well as Proposition 2.12, we know that

Lemma 3.11. For a given v ∈ H 1
0 (U), ∀sn, ln → t , there exist a subsequence {snk

}, {lnk
} and ζ ∈ D1,2(U), such that

(3.16), (3.17) hold true and in addition, we have this ζ satisfies∫
U

v2t2ζ 2 + 2tζ v2(ω + Φ(tv)
)
� 0. (3.18)

On the basis of the preparations above, in the following, we consider the first and in some sense the second
derivatives of the function gv .

Proposition 3.12. For a fixed v ∈ H 1
0 (U), gv is C1 differentiable and

g′
v(t) =

∫
U

t |∇v|2 + tv2(m2 − (
ω + Φ(tv)

)2) − tp−1v
p
+, ∀t > 0. (3.19)

Proof. We need only to prove

hv(t) := Etv,U

(
Φ(tv)

)
is C1 differentiable. Assume s → t−. Since Φ(tv) is a minimizer of Etv,U on M , hv(t) � Etv,U (Φ(sv)). So

hv(t) − hv(s) �
(
t2 − s2)∫

ωv2Φ(sv) + 1

2
v2Φ(sv)2.
U
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Let s → t− and notice that Φ(sv) ⇒ Φ(tv) in Ū (see Proposition 2.12). We have

lim sup
s→t−

hv(t) − hv(s)

t − s
� 2t

∫
U

ωv2Φ(tv) + 1

2
v2Φ(tv)2.

Note that, hv(s) � Esv,U (Φ(tv)), similarly, we have

lim inf
s→t−

hv(t) − hv(s)

t − s
� 2t

∫
U

ωv2Φ(tv) + 1

2
v2Φ(tv)2.

Hence,

lim
s→t−

hv(t) − hv(s)

t − s
= 2t

∫
U

ωv2Φ(tv) + 1

2
v2Φ(tv)2.

In the case of s → t+, we can apply the same argument as the above. Therefore,

h′
v(t) = 2t

∫
U

ωv2Φ(tv) + 1

2
v2Φ(tv)2. �

Remark 3.13. Assume v ∈ H 1
0 (U), v � 0, v �≡ 0. By Proposition 2.8 and (3.19), we get∫

U

t |∇v|2 + tv2(m2 − ω2) − tp−1vp � g′
v(t) �

∫
U

t |∇v|2 + tm2v2 − tp−1vp, ∀t > 0.

Set

t1 = 1

‖v‖
p

p−2
Lp(U)

[∫
U

|∇v|2 + (
m2 − ω2)v2

] 1
p−2

, t2 = 1

‖v‖
p

p−2
Lp(U)

[∫
U

|∇v|2 + m2v2
] 1

p−2

.

We have if t < t1, g′
v(t) > 0; if t > t2, g′

v(t) < 0.

Let us study in some sense the second derivative of gv(t) for t ∈ [t1, t2].

Proposition 3.14. If v ∈ H 1
0 (U), v � 0, v �≡ 0, then ∀t ∈ [t1, t2], ∀sn, ln → t , we can extract a subsequence

snk
, lnk

→ t , such that

lim
k→∞

g′
v(snk

) − g′
v(lnk

)

snk
− lnk

� (2 − p)

∫
U

|∇v|2 dx + [
(2 − p)m2 + (p + 4)ω2] ∫

U

v2. (3.20)

In particular, if κ defined in (1.12) satisfies κ2 >
p+4
p−2 , then

lim
k→∞

g′
v(snk

) − g′
v(lnk

)

snk
− lnk

< 0. (3.21)

Proof. We can find ζ and subsequence {snk
}, {lnk

} as in Lemma 3.11 such that (3.16)–(3.18) hold true. By (3.19), we
have

lim
k→∞

g′
v(snk

) − g′
v(lnk

)

snk
− lnk

=
∫
U

|∇v|2 + (
m2 − (

ω + Φ(tv)
)2)

v2 − (p − 1)tp−2vp − 2tζ v2(ω + Φ(tv)
)
.

Since t � t1, by (3.18) and Cauchy–Schwartz inequality, we complete the proof. �
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Proposition 3.14 implies that

Proposition 3.15. If v is assumed as in Proposition 3.14 and κ2 >
p+4
p−2 , then g′

v is strictly decreasing in [t1, t2].

Proof. Let us start from t = t1. We claim that ∃δ > 0, such that g′
v is strictly decreasing in [t1, t1 + δ]. Otherwise,

there exists {sn}, {ln}, such that t1 < sn < ln, sn, ln → t+1 , but

g′
v(sn) � g′

v(ln). (3.22)

By Proposition 3.14, there exists a subsequence snk
, lnk

→ t+1 such that

lim
k→∞

g′
v(snk

) − g′
v(lnk

)

snk
− lnk

< 0.

Since snk
< lnk

, we have g′
v(snk

) > g′
v(lnk

) when k is large. This is a contradiction to (3.22). Set

s := sup
{
δ � t2 − t1

∣∣ g′
v strictly decreasing in [t1, t1 + δ]}. (3.23)

We claim that s = t2 − t1. Otherwise, we can prove that for some δ > 0, g′
v is strictly decreasing on [t1 + s, t1 + s + δ].

This is a contradiction to the definition of s in (3.23). �
Notice that g′

v > 0 on (0, t1), g′
v < 0 on (t2,∞). Therefore, Proposition 3.15 implies that there exists only one

point t0 ∈ [t1, t2], such that g′
v(t0) = 0. More precisely,

Proposition 3.16. If κ2 >
p+4
p−2 , gv has only one local maximum point on (0,+∞). Actually, this local maximum point

is the absolute maximum point of gv . In addition, we know that,

g′
v(t0) = 0 ⇔ gv(t0) = sup

t�0
J+[tv]. (3.24)

Remark 3.17. If u solves⎧⎪⎨
⎪⎩

−�u + (
m2 − (

ω + Φ(u)
)2)

u = u
p−1
+ in U,

u > 0 in U,

u = 0 on ∂U,

(3.25)

weakly, then we know that g′
u(1) = 0. From (3.24), we get J+[u] = M[u].

The preparations above lead to the following theorem.

Theorem 3.18. If κ2 >
p+4
p−2 , then

C = inf
{
M[v] ∣∣ v ∈ H 1

0 (U), v � 0, v �≡ 0
}
. (3.26)

In addition, C is a critical value of J+, which is independent of the choice of e.

Notice Proposition 3.15 and Remark 3.17. The proof of Theorem 3.18 is almost the same as in [26]. We omit it
here. Assume that u is the critical point of J+ corresponding to the critical value C in (3.12). v �≡ 0 is a solution
of (3.25). From Remark 3.17, M[v] = J+[v]. By (3.26), C = J+[u] � M[v] = J+[v]. Therefore,

Theorem 3.19. The critical points corresponding to the critical value in (3.12) are the positive least-J -action critical
points of J .
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4. The asymptotic behaviors and profiles of the positive least-J -action solutions

In order to emphasize on the dependence with κ and ω, in the following, Eu,U , Φ and J+ in the previous sections
are denoted by Eω,u,U , Φω and J+,κ,ω, respectively. κ is assumed to be a suitably large constant. Therefore, from
Theorems 3.18 and 3.19, there exists a positive least-J+,κ,ω-action critical point uκ,ω corresponding to the critical
value in Theorem 3.18. Now, we focus on the asymptotic behaviors and profiles of {uκ,ω} when ω → ∞.

Firstly, let us introduce some notations that will be used in the following sections. After scaling the functional
J+,κ,ω,

Jκ,ω[v] := ω
2p

2−p J+,κ,ω

[
ω

2
p−2 v

]
(4.1)

is a functional defined on H 1
0 (U) with its critical points solving the elliptic problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
− 1

ω2
�u +

(
κ2 −

(
1 + Φω(ω

2
p−2 u)

ω

)2)
u = u

p−1
+ in U,

u > 0 in U,

u = 0 on ∂U.

(4.2)

If e ∈ H 1
0 (U), e � 0, e �≡ 0, J+,κ,ω[e] = 0, then Jκ,ω[ω 2

2−p e] = 0. Assume that Γκ,ω is a set of all continuous paths

connecting 0 and ω
2

2−p e while Γ still denotes the set of all continuous paths connecting 0 and e. Theorems 3.18
and 3.19 imply the following proposition.

Proposition 4.1. If κ2 >
p+4
p−2 , then

Cκ,ω := inf
h∈Γκ,ω

max
0�t�1

Jκ,ω

[
h(t)

] = ω
2p

2−p inf
h∈Γ

max
0�t�1

J+,κ,ω

[
h(t)

]
, (4.3)

Cκ,ω = inf
{

sup
t�0

Jκ,ω[tv] ∣∣ v ∈ H 1
0 (U), v � 0, v �≡ 0

}
. (4.4)

Moreover, Cκ,ω is the least critical value of Jκ,ω among all solutions of (4.2).

From Proposition 4.1, we know that the normalized function ω
2

2−p uκ,ω is a least-Jκ,ω-action solution of the problem
(4.2). More generally, in the following, we assume vκ,ω is a critical point of Jκ,ω corresponding to the critical value
Cκ,ω defined as in (4.3).

4.1. Asymptotic behaviors of Vκ,ω and φκ,ω

First, we assume Pκ,ω is a local maximum point of vκ,ω. After translating and dilating the domain U , we get

Uκ,ω := {
y = ω(x − Pκ,ω): x ∈ U

}
. (4.5)

∀y ∈ Uκ,ω, we define

Vκ,ω(y) := vκ,ω

(
1

ω
y + Pκ,ω

)
, φκ,ω(y) := 1

ω
Φω

(
ω

2
p−2 vκ,ω

)( 1

ω
y + Pκ,ω

)
.

In order to study the asymptotic behaviors of Vκ,ω and φκ,ω when ω → ∞, we first consider the uniform boundedness
of {vκ,ω}. We assume in the following that B is one constant depending on p, κ and the domain U . Notice the a
priori upper and lower bounds of Φω in Proposition 2.8. The following three lemmas are easily proved after slight
modifications of the proofs of Theorem 2 and Corollary 2.1 in [23].

Lemma 4.2. ∃ω0 = ω0(p, κ,U) > 0, such that ∀ω > ω0,

Cκ,ω = Jκ,ω[vκ,ω] � Bω−3. (4.6)
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Note that,

Jκ,ω[vκ,ω] �
∫
U

(
1

2
− 1

p

)
1

ω2
|∇vκ,ω|2 +

[(
1

2
− 1

p

)
κ2 − 1

2

]
v2
κ,ω.

Hence, Lemma 4.2 implies that

Lemma 4.3. ∃ω0 = ω0(p, κ,U) > 0, such that ∀ω > ω0,∫
U

|∇vκ,ω|2 � Bω−1,

∫
U

v2
κ,ω � Bω−3. (4.7)

Therefore, ‖Vκ,ω‖H 1
0 (Uκ,ω) is uniformly bounded if ω > ω0.

By applying a standard iteration method used in the proof of Corollary 2.1 in [23], we have

Lemma 4.4. ∃ω0 = ω0(p, κ,U) > 0, such that

sup
ω>ω0

‖vκ,ω‖L∞(U) � B. (4.8)

On the basis of the preparations above, we begin to study the uniform convergence of φκ,ω when ω → ∞. Since
we are interested in the asymptotic behaviors of vκ,ω when ω → ∞, we assume ω > ω0 in the following.

Proposition 4.5.

lim
ω→∞‖φκ,ω‖L∞(Uκ,ω) = 0. (4.9)

Proof. From

E
ω,ω

2
p−2 vκ,ω,U

(
Φω

(
ω

2
p−2 vκ,ω

))
� 0,

we get∫
U

b2
(

1 −
√

1 − 1

b2

∣∣∇Φω

(
ω

2
p−2 vκ,ω

)∣∣2
)

� 1

2
ω

2p
p−2

∫
U

v2
κ,ω. (4.10)

From Lemma 4.3, we have, ∀q > 0, q is an even number,∫
U

∣∣∇Φω

(
ω

2
p−2 vκ,ω

)∣∣q � C(p,q, κ, b,U)ω
−3+ 2p

p−2 .

This is equivalent to∫
Uκ,ω

|∇φκ,ω|q � C(p,q, κ, b,U)ω
2p

p−2 −2q
. (4.11)

By Hölder inequality, we then get from (4.11) that

∫
Uκ,ω

|∇φκ,ω|2 �
( ∫

Uκ,ω

|∇φκ,ω|q
) 2

q |Uκ,ω|1− 2
q � C(p,q, κ, b,U)|U |1− 2

q ω
(

4p
p−2 −6−q) 1

q ,

∫
U

|∇φκ,ω|4 � C(p,q, κ, b,U)|U |1− 4
q ω

(
8p

p−2 −12−5q) 1
q .
κ,ω
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Fix a large q such that 4p
p−2 − 6 −q < 0 and 8p

p−2 − 12 − 5q < 0. Then, ‖φκ,ω‖D(R3) → 0 as ω → ∞. Since D(R3) ↪→
L∞(R3) continuously, (4.9) holds. �

Before proceeding, let us introduce the elliptic problem{
�w − cw + wp−1 = 0 in R

3,

w > 0 in R
3,

(4.12)

where c > 0 is a constant and w satisfies{
w(0) = maxx∈R3 w(x),

w(z) → 0 as z → ∞.
(4.13)

It is well known that there exists a unique solution, denoted by wc, for the problem (4.12)–(4.13). Moreover, wc must
be spherically symmetric about the origin and strictly decreasing in r = |z|. Since the solution of (4.12)–(4.13) is
unique, we get

wc(x) = c
1

p−2 w(
√

cx), ∀x ∈ R
3, c > 0. (4.14)

Here, w denotes the solution of (4.12)–(4.13) when c = 1.
Now, we begin to study the C2

loc(R
3) convergence of Vκ,ω when ω → ∞. Notice that if K is a compact subset

of R
3, when ω is large enough, K ⊆ Uκ,ω (see Lemma 4.8 in Section 4.2). Therefore, from Lemma 4.3, we can

assume, up to a subsequence, that for some v ∈ H 1
0 (R3),

Vκ,ω ⇀ v in H 1
0,loc

(
R

3), Vκ,ω → v in L
p

loc

(
R

3). (4.15)

Moreover, note that, Vκ,ω satisfies

−�Vκ,ω + (
κ2 − (1 + φκ,ω)2)Vκ,ω = V p−1

κ,ω . (4.16)

From Lemma 4.4 and Proposition 2.8, we know that

�Vκ,ω = (
κ2 − (1 + φκ,ω)2)Vκ,ω − V p−1

κ,ω ∈ L∞(Uκ,ω)

is uniformly bounded. Thus, by using Caldéron–Zygmund inequality, Sobolev embedding theorem and Arzelá–
Ascoli’s theorem, we can assume, up to a subsequence, that

Vκ,ω → v in C1
loc

(
R

3), as ω → ∞. (4.17)

In fact, we can have a stronger convergence than (4.17). As we know, Vκ,ω satisfies (4.16). Hence, ∂iVκ,ω satisfies the
equation

−�∂iVκ,ω + (
κ2 − (1 + φκ,ω)2)∂iVκ,ω − 2Vκ,ω(1 + φκ,ω)∂iφκ,ω = (p − 1)V p−2

κ,ω ∂iVκ,ω

weakly. Apply Caldéron–Zygmund inequality, Sobolev embedding theorem and Arzelá–Ascoli’s theorem again. We
can assume, up to a subsequence that

Vκ,ω → v in C2
loc

(
R

3). (4.18)

From the analysis above, we can assume, up to a subsequence, that Vκ,ω satisfies (4.15) and (4.18) simultaneously.
Note that Vκ,ω is a weak solution of (4.16) and φκ,ω satisfies Proposition 4.5. By letting ω → ∞, we conclude that

v satisfies the elliptic equation in (4.12) with c = κ2 − 1. Moreover, note that, Vκ,ω(0) = vκ,ω(Pκ,ω) � (κ2 − 1)
1

p−2 .
By strong maximum principle, we conclude that v > 0 in R

3. Furthermore, it is known that (see [14, Theorem 5]
and [35]) if v ∈ H 1(R3) solves (4.12), then v(z) → 0 as |z| → ∞. Therefore, one can apply Theorem 2 of [19] and
conclude that (i) v is spherically symmetric with respect to some point z0 ∈ R

3; (ii) vr < 0 for r > 0. Note that,

∇v(0) = lim
ω→∞∇Vκ,ω(0) = 0.

Therefore, v is spherically symmetric with respect to the origin and

v(0) = max
x∈R3

v(x).

Apply the uniqueness theorem in [21], we get v = wκ2−1. Therefore,
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Proposition 4.6. Vκ,ω → wκ2−1 in C2
loc(R

3), when ω → ∞.

4.2. Geometric lemmas about local maximum points of vκ,ω

We prove two geometric lemmas in this section. They will be applied in the next section to determine the number
of local maximum points of vκ,ω.

Lemma 4.7. Assume that x1
κ,ω, x2

κ,ω are two local maximum points of vκ,ω. Then

ω
∣∣x1

κ,ω − x2
κ,ω

∣∣ → +∞, as ω → +∞. (4.19)

Proof. If not, ∃C > 0, ωn → ∞, such that

ωn

∣∣x1
κ,ωn

− x2
κ,ωn

∣∣ � C, ∀n ∈ N. (4.20)

From (4.20), there must exist a constant R > C such that V ′
κ,ωn

:= vκ,ωn(
1
ωn

y + x1
κ,ωn

) has at least two local maximum

points in BR(0) for n large. That is, y = 0 and y = ωn(x
2
κ,ωn

− x1
κ,ωn

) are two local maximum points of V ′
κ,ωn

, at least.
In addition, since w′′

κ2−1
(0) < 0 and wκ2−1 decay to 0 when x → ∞, we can choose two numbers a, b (0 < a < b)

such that wκ2−1(b) < (κ2 − 1)
1

p−2 and

w′′
κ2−1(r) < 0, ∀r ∈ [0, a].

Set

C∗ = min
{∣∣w′

κ2−1(r)
∣∣ ∣∣ r ∈ [a, b]}, ε < C∗.

Assume that Ap,q is the annulus centered at 0 with radius r ∈ [p,q]. In the following, we contradict the assumption
(4.20) so that (4.19) holds true.

(i) If xn is one local maximum point of V ′
κ,ωn

, then �V ′
κ,ωn

(xn) � 0. Hence, from (4.16),

V ′
κ,ωn

(xn) �
(
κ2 − 1

) 1
p−2 . (4.21)

Notice Proposition 4.6 and the fact that wκ2−1(r) < (κ2 − 1)
1

p−2 when R � r � b. Then, when n is large enough,

V ′
κ,ωn

< (κ2 −1)
1

p−2 on Ab,R . Therefore, from (4.21), we know that when n is large enough, there is no local maximum
point of V ′

κ,ωn
on Ab,R .

(ii) From Proposition 4.6, we know that ∇V ′
κ,ωn

⇒ ∇wκ2−1 on Aa,b . Hence, we have |∇V ′
κ,ωn

| � |∇wκ2−1| −
|∇V ′

κ,ωn
−∇wκ2−1| � C∗ − ε > 0 when n is large. That is, when n is large enough, V ′

κ,ωn
has no local maximum point

on Aa,b .

(iii) Note that, w′′
κ2−1

< 0 on the ball B̄a(0), ∇V ′
κ,ωn

(0) = 0 and �V ′
κ,ωn

− �wκ2−1 = V
′p−1
κ,ωn − w

p−1
κ2−1

− [(κ2 −
(1 + φκ,ωn)

2)V ′
κ,ωn

− (κ2 − 1)wκ2−1] ⇒ 0 on B̄a(0). Then we can imply from Lemma 3.3 in [36] that on B̄a(0),
∇V ′

κ,ωn
(x) �= 0 for x �= 0.

From the analysis above, we know that when n is large enough, V ′
κ,ωn

can have only one local maximum point
y = 0 in BR(0). This argument contradicts the assumption (4.20) since we know that when (4.20) holds, V ′

κ,ωn
has at

least two local maximum points in BR(0). �
Lemma 4.8. Assume that Pκ,ω is a local maximum point of vκ,ω . Then

d(Pκ,ω, ∂U)ω → +∞, as ω → +∞. (4.22)

Proof. Suppose on the contrary that there exist a constant C∗ > 0 and ωn → +∞ such that

d(Pκ,ωn, ∂U)ωn � C∗, ∀n ∈ N. (4.23)

Passing to a subsequence, we may assume that Pκ,ωn → P0 ∈ ∂U . Through translation and rotation of the coordinate
system, we may assume that P0 is the origin and the inner normal to ∂U at P0 is pointing in the direction of the
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positive x3 axis. Then there exists a smooth function ωP0(x
′) (x′ = (x1, x2) sufficiently small) such that in a small

neighborhood N of P0,

(i) ωP0(0) = 0 and ∇ωP0(0) = 0;
(ii) ∂U ∩ N = {(x′, x3) | x3 = ωP0(x

′)} and U ∩ N = {(x′, x3) | x3 > ωP0(x
′)}.

By the ωP0 above, we can construct a diffeomorphism F −1 mapping from an open set V ⊂ {y3 > 0} to an open set
O ⊂ U ∩ N by

F −1(y) =
(

y1 − y3
∂ωP0

∂x1

(
y′), y2 − y3

∂ωP0

∂x2

(
y′), y3 + ωP0

(
y′)) ∈ O, ∀y ∈ V . (4.24)

Without loss of generality, we assume that B̄+
3� ⊂ V . When n is large enough, we have Pκ,ωn ∈ O and Qκ,ωn =

(q ′
κ,ωn

,
ακ,ωn

ωn
) = F (Pκ,ωn) ∈ B+

� := {y ∈ B� | y3 > 0} for some ακ,ωn � 0. Since F is a diffeomorphism, from (4.23),
{ακ,ωn} is uniformly bounded. Hence, up to a subsequence, we can assume ακ,ωn → α � 0. Set

R
3
α,+ = {y | y3 > −α}

and

ṽκ,ωn(y) := vκ,ωn

(
F −1(y)

)
, y ∈ B̄+

2�,

w̃κ,ωn(z) := ṽκ,ωn

(
Qκ,ωn + 1

ωn

z

)
, z ∈ B̄�ωn ∩ {z3 � −ακ,ωn}.

It is clear from (4.2) that in B�ωn ∩ {z3 > −ακ,ωn}, w̃κ,ωn satisfies

3∑
i,j=1

∂

∂zi

(
a

ωn

ij

∂w̃κ,ωn

∂zj

)
+

3∑
j=1

(
1

ωn

b
ωn

j −
∑

i

∂a
ωn

ij

∂zi

)
∂w̃κ,ωn

∂zj

−
{
κ2 −

(
1 + 1

ωn

Φω

(
ω

2
p−2
n vκ,ωn

))2[
F −1

(
Qκ,ωn + 1

ωn

z

)]}
w̃κ,ωn + w̃p−1

κ,ωn
= 0 (4.25)

where

a
ωn

ij (z) =
3∑

l=1

∂Fi

∂xl

(
F −1

(
Qκ,ωn + 1

ωn

z

))
∂Fj

∂xl

(
F −1

(
Qκ,ωn + 1

ωn

z

))
, 1 � i, j � 3,

b
ωn

j = (�Fj )

(
F −1

(
Qκ,ωn + 1

ωn

z

))
, j = 1,2,3.

By a similar argument as in the proof of Proposition 4.6, we can assume that

w̃κ,ωn → w0 in C2
loc

(
R

3
α,+

)
.

We claim that this w0 solves the following elliptic problem⎧⎪⎨
⎪⎩

�u − (
κ2 − (1 + τ)2)u + up−1 = 0 in R

3
α,+,

u > 0 in R
3
α,+,

u = 0 on ∂R
3
α,+.

(4.26)

Here, τ ∈ [−1,0] is a constant. But from Theorem 1.1 in [15], the system (4.26) has no solution. We get a contradic-
tion. So the sequence {ωn} satisfying (4.23) does not exist.

In the rest, let us prove the claim that w0 solves the system (4.26). Assume

φ̃κ,ωn(z) := Φωn(ω
2

p−2
n vκ,ωn)

(
F −1

(
Qκ,ωn + 1

z

))
.

ωn ωn
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By using the fact that Φωn(ω
2

p−2
n vκ,ωn) ∈ M , it is simple to see that

‖∇φ̃κ,ωn‖L∞(B̄�ωn∩{z3>−ακ,ωn }) � C

ω2
n

,

C is a constant depending on the Born–Infeld parameter b and the diffeomorphism F . Thus,∫
B̄�ωn∩{zn>−ακ,ωn }

|∇φ̃κ,ωn |2 � C�3

ωn

→ 0, as ωn → ∞. (4.27)

We can choose a sequence of bounded convex open sets {Ωn}, such that Ωn � Ωn+1 � R
3
α,+ and {Ωn} makes a

covering of R
3
α,+. By applying Poincaré inequality on Ωn, we know that for s large∫

Ωn

∣∣φ̃κ,ωs − (φ̃κ,ωs )Ωn

∣∣2 � C(n)

∫
Ωn

|∇φ̃κ,ωs |2 (4.28)

where C(n) depends on Ωn only. Notice Proposition 2.8. ∀s, |(φ̃κ,ωs )Ωn | � 1. Up to a subsequence, we can assume
that φ̃κ,ωs → τ in L2(Ωn) where τ ∈ [−1,0] is a constant. Moreover, by diagonal process, we can assume, up to a
subsequence, that

φ̃κ,ωs → τ in L2
loc

(
R

3
α,+

)
. (4.29)

See from (4.25), (4.29) and the fact that w̃κ,ωs → w0 in C2
loc(R

3
α,+), we know that w0 is a solution of

∑
i,j

∂

∂zi

(
aij (0)

∂w0

∂zj

)
− (

κ2 − (1 + τ)2)w0 + w
p−1
0 = 0.

Here, aij (0) is the limit of a
ωn

ij (z) as n → ∞. In view of

DF (0) = [
DF −1(0)

]−1 = I,

we know that w0 satisfies the equation in (4.26). In order to prove w0 satisfying the boundary value condition in
(4.26), we define

w̄κ,ωn(z) = w̃κ,ωn(z − pn), ∀z ∈ B̄�ωn(pn) ∩ {z3 � −α}
where pn = (0,0, ακ,ωn − α). Denote p0 = (0,0,−α). For a fixed R > 0,

B+
R (p0) := {

x ∈ BR(p0)
∣∣ z3 > −α

}
.

Since {ακ,ωn} is bounded, we have B+
R (p0) � B�ωn(pn) ∩ {z3 � −α} when n is large enough. Apply a stan-

dard Lp estimate on (4.25). We conclude that ∀q > 1, w̄κ,ωn is uniformly bounded in W 2,q (B+
R (p0)). Note that,

ακ,ωn → α and W 2,q (B+
R (p0)) is compactly embedded into C1,β(B̄+

R (p0)) for some β ∈ (0,1). Then w̄κ,ωn ⇒ w0

in B̄+
R (p0). Because w̄κ,ωn(z) = 0 if z3 = −α, w0 satisfies the boundary value condition in (4.26). Note that

w̃κ,ωn(0) = vκ,ωn(Pκ,ωn) � (κ2 − 1)
1

p−2 . By strong maximum principle, we get w0 > 0 in R
3
α,+. Therefore, w0 is

a solution of (4.26). �
4.3. Profiles of the least-J -action solutions

In this section, we show that (1) when κ and ω are suitably large, vκ,ω has exactly one local maximum point Pκ,ω

and (2) outside this local maximum point, vκ,ω → 0 in C
1,α
loc .

Proposition 4.9. vκ,ω has exactly one local maximum point if ω and κ are suitably large.
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Proof. Assume that there exists a sequence ωn → ∞ such that ∀n ∈ N, vκ,ωn has at least l local maximum points. By
Lemmas 4.7 and 4.8, we know that for a fixed R > 0, there exists k(R) > 0, when s > k(R),

B 1
ωs

R

(
xi
κ,ωs

) ⊂ U,B 1
ωs

R

(
xi
κ,ωs

) ∩ B 1
ωs

R

(
xj
κ,ωs

) = ∅ (4.30)

where xi
κ,ωs

and x
j
κ,ωs are two different local maximum points of vκ,ωs .

Note that,

Jκ,ω[vκ,ω] �
∫
U

(
1

2
− 1

p

)
1

ω2
|∇vκ,ω|2 +

[
1

2

(
κ2 − 1

) − 1

p
κ2

]
v2
κ,ω.

If we define

V i
κ,ωs

(x) := vκ,ωs

(
1

ωs

x + xi
κ,ωs

)

where {xi
κ,ωs

| i = 1,2, . . . , l} are l local maximum points of vκ,ωs , then for s large,

Jκ,ωs [vκ,ωs ] �
l∑

i=1

∫
B 1

ωs
R
(xi

κ,ωs
)

(
1

2
− 1

p

)
1

ω2
s

|∇vκ,ωs |2 +
[

1

2

(
κ2 − 1

) − 1

p
κ2

]
v2
κ,ωs

= ω−3
s

l∑
i=1

∫
BR

(
1

2
− 1

p

)∣∣∇V i
κ,ωs

∣∣2 +
[

1

2

(
κ2 − 1

) − 1

p
κ2

](
V i

κ,ωs

)2
. (4.31)

In another way, by Proposition 4.1 and Proposition 2.8, we get

Cκ,ωs � κ
6−p
p−2 inf

v∈P

{
sup
t�0

t2
∫
Uκ

1

2ω2
s

|∇v|2 + 1

2
v2 dy − 1

p
tp

∫
Uκ

v
p
+ dy

}
(4.32)

where

P = {
v

∣∣ v � 0, v ∈ H 1
0 (Uκ), v �≡ 0

}
, Uκ = {y | y = κx, x ∈ U}.

Apply Lemma 3.1 in [26] on the right-hand side of (4.32). We know that if w is the unique solution of the elliptic
problem (4.12)–(4.13) when c = 1, then

Cκ,ωs = Jκ,ωs [vκ,ωs ] � κ
6−p
p−2 ω−3

s

[(
1

2
− 1

p

)
‖w‖2

H 1(R3)
+ o(1)s

]
(4.33)

where o(1)s → 0 when κ is fixed and s → ∞.
Let s → ∞, R → ∞ successively. By (4.31), (4.33) and Proposition 4.6, we have

l

∫
R3

(
1

2
− 1

p

)
|∇wκ2−1|2 +

[
1

2

(
κ2 − 1

) − 1

p
κ2

]
w2

κ2−1 � κ
6−p
p−2

(
1

2
− 1

p

)
‖w‖2

H 1(R3)
. (4.34)

By (4.14), we know that

wκ2−1(x) = (
κ2 − 1

) 1
p−2 w

(√
κ2 − 1x

)
, ∀x ∈ R

3. (4.35)

Plug (4.35) into (4.34), we get

l

[
p − 2

2p
‖w‖2

H 1(R3)
− 1

p(κ2 − 1)

∫
3

w2
]

�
(

κ2

κ2 − 1

) 6−p
2(p−2) p − 2

2p
‖w‖2

H 1(R3)
.

R
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Therefore,

l

[
p − 2

2p
− 1

p(κ2 − 1)

]
�

(
κ2

κ2 − 1

) 6−p
2(p−2) p − 2

2p
. (4.36)

From (4.36), we know that there exists κ0 = κ0(p) > 0, when κ > κ0, l � 1. In other words, vκ,ω has only one local
maximum point in U when κ and ω are suitably large. �

Finally, we prove the point-condensation phenomenon of vκ,ω .

Proposition 4.10. Assume that κ and ω are suitably large. Pκ,ω is the unique local maximum point of vκ,ω. Then, for
some α ∈ (0,1),

vκ,ω(· + Pκ,ω) → 0 in C
1,α
loc

(
U − Pκ,ω \ {0}), as ω → ∞.

Proof. Choose η0 > 0 and R0 > 0 such that

κ2 − 1 > (2η0)
p−2, R0 = (

κ2 − 1
)− 1

2 ln
C(p,κ)

η0
(4.37)

where C(p,κ) satisfies

wκ2−1(x) � C(p,κ)e−(κ2−1)
1
2 |x|, ∀x ∈ R

3. (4.38)

Apply Lemma 4.8 and Proposition 4.6. We know that when ω is large enough,

BR0(0) � Uκ,ω, ‖Vκ,ω − wκ2−1‖C2(B̄R0 (0)) � η0.

Vκ,ω and Uκ,ω in the following were defined at the beginning of Section 4.1. By (4.37), (4.38),

vκ,ω(x) � 2η0, ∀x ∈ ∂B̄ 1
ω

R0
(Pκ,ω).

Note that vκ,ω ∈ H 1
0 (U) and vκ,ω has only one local maximum point in U when ω is large enough. We then claim

that vκ,ω(x) < 2η0 for x ∈ U \ B̄
R0

1
ω
(Pκ,ω). Otherwise, besides Pκ,ω , vκ,ω admits another local maximum point in

U \ B̄
R0

1
ω
(Pκ,ω). Therefore, Vκ,ω satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�Vκ,ω − (
κ2 − (1 + φκ,ω)2 − V p−2

κ,ω

)
Vκ,ω = 0 in Uκ,ω \ B̄R0(0),

Vκ,ω < 2η0 in Uκ,ω \ B̄R0(0),

Vκ,ω � 2η0 on ∂B̄R0(0),

Vκ,ω=0 on ∂Uκ,ω.

(4.39)

In addition, by the modified Bessel function of order 1/2 (see Appendix C in [19]) and the Green’s function for
−� + 1 on R

3, we can construct a function W such that{
�W − (

κ2 − 1 − (2η0)
p−2)W = 0 in R

3 \ {0},
W = 2η0 on ∂BR0(0).

(4.40)

More precisely, by setting

F(x) = 1

|x|e
−|x|, W(y) = B(p,κ)F

(√
κ2 − 1 − (2η0)p−2y

)
where B(p,κ) is a constant so that W ≡ 2η0 on ∂BR0(0). W satisfies (4.40).

By comparison principle, we have Vκ,ω � W on Uκ,ω \ B̄R0(0). Notice the uniform boundedness of Vκ,ω in BR0(0)

(see Lemma 4.4). We conclude that

Vκ,ω(y) � C(p,κ)e−
√

κ2−1−(2η0)
p−2|y|, ∀y ∈ Uκ,ω.
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That is,

vκ,ω(x) � C(p,κ)e−
√

κ2−1−(2η0)
p−2ω|x−Pκ,ω |, ∀x ∈ U. (4.41)

Away from Pκ,ω , the right-hand side of (4.41) is exponentially decay with respect to ω. Since vκ,ω satisfies (4.2), we
then complete the proof by an application of a standard Lp estimate on vκ,ω (see Theorem 9.11 in [20]). �

In the end, from Proposition 4.9 and Proposition 4.10, we have

Theorem 4.11. If uκ,ω is a least-J+,κ,ω-action solution of (3.25), then it has exactly one local maximum point Pκ,ω

when κ and ω are suitably large. In addition, for some α ∈ (0,1),

ω
2

2−p uκ,ω(· + Pκ,ω) → 0 in C
1,α
loc

(
U − Pκ,ω \ {0}), as ω → ∞.
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