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Abstract

We consider the singular perturbation problem −ε2�u + (u − a(|x|))(u − b(|x|)) = 0 in the unit ball of R
N , N � 1, under

Neumann boundary conditions. The assumption that a(r)−b(r) changes sign in (0,1), known as the case of exchange of stabilities,
is the main source of difficulty. More precisely, under the assumption that a − b has one simple zero in (0,1), we prove the
existence of two radial solutions u+ and u− that converge uniformly to max{a, b}, as ε → 0. The solution u+ is asymptotically
stable, whereas u− has Morse index one, in the radial class. If N � 2, we prove that the Morse index of u−, in the general class, is

asymptotically given by [c+ o(1)]ε− 2
3 (N−1) as ε → 0, with c > 0 a certain positive constant. Furthermore, we prove the existence

of a decreasing sequence of εk > 0, with εk → 0 as k → +∞, such that non-radial solutions bifurcate from the unstable branch
{(u−(ε), ε), ε > 0} at ε = εk , k = 1,2, . . . . Our approach is perturbative, based on the existence and non-degeneracy of solutions
of a “limit” problem. Moreover, our method of proof can be generalized to treat, in a unified manner, problems of the same nature
where the singular limit is continuous but non-smooth.
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1. Introduction

1.1. The problem

We consider the singularly perturbed elliptic problem

−ε2�u+ (
u− a

(|x|))(u − b
(|x|)) = 0 in B1, ∂νu = 0 on ∂B1, (1)
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Fig. 1. The graphs of a, b.

in the unit ball of R
N, N � 1, centered at the origin. The perturbation parameter ε is positive and small. The outward

normal derivative of u on the boundary of B1 is denoted by ∂νu. The functions a(r), b(r) are in C3[0,1], independent
of ε, and there exists r0 ∈ (0,1) such that

a(r) > b(r), r ∈ [0, r0), a(r) < b(r), r ∈ (r0,1], and ar(r0) < br(r0) (see Fig. 1). (2)

This last assumption can be viewed as a non-degeneracy condition. Moreover, we assume that

ar(0) = br(0) = 0, and br(1) = 0. (3)

(The case where br(1) �= 0 can be treated by simply adding a boundary layer correction, see Remark 3.17.)
The assumption that a − b changes sign is related to the phenomenon of exchange of stabilities, and implies that,

even in the case N = 1, the standard theory of singularly perturbed systems [21] cannot be applied.
We are interested in solutions of (1), not necessarily radially symmetric, that converge uniformly to max{a, b} as

ε → 0. We say that such solutions have a corner layer at |x| = r0. Furthermore, we are interested in estimating the
convergence of such cornered layered solutions to max{a, b} as ε → 0, and to study their stability properties.

Problem (1) is a characteristic case of the general problem

−ε2�u + f
(
u, |x|) = 0 in B1, ∂νu = 0 on ∂B1,

where f ∈ C3(R × [0,1]) is independent of ε > 0, and

f
(
a(r), r

) = 0, f
(
b(r), r

) = 0, r ∈ [0,1],
fu

(
a(r), r

)
> 0, r ∈ [0, r0), fu

(
b(r), r

)
> 0, r ∈ (r0,1], fuu

(
a(r0), r0

)
> 0,

where a, b ∈ C3[0,1] satisfy (2) and (3). However, in order to present the main ideas of the paper as clearly as possible,
we have chosen to deal with the model problem (1). We remark that our approach can also be extended to cover the
case where a − b has finitely many simple zeroes in (0,1), as well as the case where f depends (suitably) on ε > 0.

1.2. Motivation for the current work

In the present paper, we deal with (1) via a technique widely used in the recent years: we look for solutions as

u = uap + φ, (4)

where uap is an approximate solution constructed by solutions of a limiting problem (see (14) below). The function
φ will be found using the contraction mapping theorem. Although this approach has been used in many other papers
in the context of spike or transition layer problems, some important differences occur with respect to the standard
technique in the case of corner layer problems. Indeed, in other classes of equations, like Allen–Cahn or focusing
Nonlinear Schrödinger, the solutions of the corresponding limiting problems give rise to a local approximate inner
solution, typically having a spike or transition layer profile, that can be made global by a standard cut-off function
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argument (see [18,45]). Actually, the one-dimensional version of the previously mentioned equations fits in the frame-
work of standard geometric singular perturbation theory [21,37,64]. In the present situation, and generally in problems
involving corner layers, globalizing the inner solution, namely rigorously matching it with the outer, is not standard
(see Subsection 1.5 for more details). Our motivation for the current work is to develop a matching procedure and a
perturbation argument that have the flexibility to treat a class of corner layer problems in a unified manner, and the
potential to deal with non-radial problems in general domains. We believe that the study of these problems, under the
simplifying assumption of radial symmetry, is important in order to develop methods which may ultimately lead to
the resolution of the general problems.

Singular perturbation problems of the same nature as (1) appear in population dynamics, when two or more species
interact in a highly competitive way, and spatial segregation may occur. A wide literature is devoted to this topic,
mainly for the case of competition models of Lotka–Volterra type (see for example [13,16]). In [13] the behavior of
the positive steady-states of a Lotka–Volterra model, in the case of two species, as the competition rate ε−2 tends to
infinity, was reduced to the study of

−ε2�u+ u
(
u− A(x)

) = 0, u > 0 in Ω, u = 0 on ∂Ω, (5)

where Ω is a smooth bounded domain in R
N , and A is the harmonic extension in Ω of a sign-changing A ∈ C(∂Ω).

It was shown in [13], via the method of upper and lower solutions (using the corresponding limit problem (14)), that

there exists a solution of (5) such that u − max{A,0} = O(ε
2
3 ) as ε → 0, uniformly in Ω̄ . Note that, in this problem,

the corresponding non-degeneracy condition (2) is ensured by Hopf’s lemma [27] (see [9, Proposition 3.16] for a
result that allows more general A’s and boundary conditions in (5)). A more complicated model was treated in [16],
without making use of limit problem (14), and the convergence to the singular cornered layered solution was estimated
in L2(Ω).

Another problem that motivated our study of (1) is the semiclassical limit of the de-focusing nonlinear Schrödinger
equation with a potential trap. In [35] the authors considered the harmonic trapping case, in R

2, with a cubic nonlin-
earity. This leads to the study of the problem

−ε2�u+ u
(
u2 − B(x)

) = 0, u > 0 in R
N, u → 0 as |x| → +∞, (6)

where B(x) = 1 − |x|2Λ, with |x|2Λ = x2
1 +Λ2x2

2 , 0 <Λ � 1. It was shown in [35], via variational methods and upper
and lower solutions, that there exists a solution of (6) such that u → √

max{B,0} as ε → 0, uniformly in R
2. Notice

that the singular limit
√

max{B,0} is continuous but non-smooth at the ellipse |x|Λ = 1. If N = 1, a shooting argument
approach, for a related problem, can be found in [23]. In the case where Λ = 1, the problem becomes radial, and an
inner solution can be directly constructed as

ε
1
3 U

(
r − 1

ε
2
3

) (
see [25,62]

)
,

where U is the Hastings–McLeod solution of the Painlevé II equation, namely

−Uξξ +U
(
U2 −Br(1)ξ

) = 0, ξ ∈ R, U − (
Br(1)ξ

) 1
2 → 0 as ξ → −∞,

U → 0 as ξ → +∞ (
see [1,33,61]

)
.

Let us remark that the approach we develop in the present paper can be applied to the study of systems without
variational structure.

The Lazer–McKenna conjecture, for a super-linear elliptic problem of Ambrosetti–Prodi type, is also related to our
study of (1). The following problem was studied in [17]:

−ε2�u+ |u|p − ϕ1(x) = 0 in Ω, u = 0 on ∂Ω, (7)

where Ω is a smooth bounded domain in R
N , p > 1, and ϕ1 > 0 is the principal Dirichlet eigenfunction of Ω . It was

shown in [17], via the method of upper and lower solutions, that there exists a solution of (7) such that, for every

compact subset D of Ω , u − ϕ
1
p

1 = O(ε2) as ε → 0, uniformly in D. Note that, by Hopf’s lemma [27], the function

ϕ
1
p

1 is continuous but non-smooth at the boundary ∂Ω , since p > 1. An inner solution, near the boundary ∂Ω , can be
constructed by the limiting problem

−Uξξ + |U |p − ξ = 0, ξ > 0, U(0) = 0, U − ξ
1
p → 0 as ξ → +∞ (

see [17]
)
.
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Finally, let us mention that corner layer problems also arise in a class of nonlinear elliptic equations involving
large or exponential nonlinearities, like the Brezis–Nirenberg problem (see [31]). After an appropriate rescaling, the
corresponding limit problem is

Uξξ + eU = 0, ξ ∈ R
(
see [31]

)
. (8)

Note that (8) is invariant with respect to translations and dilations. Moreover, it is well known that all solutions
of (8) diverge linearly as ξ → ±∞, as is the case of the limit problem (14) in our situation. In the radial case, a
perturbation argument has been developed in [31], based on the construction of approximate solutions from solutions
of (8). However, there was no matching involved in that construction, thus making it hard to generalize the approach
of [31] to deal with the non-radial scenario. Let us also mention that, in this class of problems, non-radial bifurcations
from the radial corner layered solution branch have been studied in [28,43,51]. (The one-dimensional profile U in (8)
is unstable.)

1.3. Known results

The known results for problem (1) concern the case N = 1, where (1) can be written as a geometric singular
perturbation problem, and the general case N � 1, where stable solutions can be constructed by the method of upper
and lower solutions.

1.3.1. Case N = 1
If N = 1, problem (1) can be written as a geometric singular perturbation problem composed of two fast equations

and a slow equation (see [37]). Let u1 = u, u2 = εu̇1, where ˙= d
dt

, then (1) is equivalent to the connection problem
(see [64]){

εu̇1 = u2,

εu̇2 = (
u1 − a(x)

)(
u1 − b(x)

)
,

ẋ = 1,
(9)

with boundary manifolds

B0 = {u1 ∈ R, u2 = 0, x = 0} and B1 = {u1 ∈ R, u2 = 0, x = 1}. (10)

As ε → 0, the limit of (9), which is only defined on the so-called slow manifold

S = {
u1 = a(x), u2 = 0, x ∈ [0,1]} ∪ {

u1 = b(x), u2 = 0, x ∈ [0,1]},
is plainly ẋ = 1. Hence, the one-dimensional slow manifold S undergoes a transcritical bifurcation at the point
c = (a(r0),0, r0) (recall (2)), as the slow variable x changes (and thus S is not actually a manifold, although we will
refer to it as one). By transforming the slow system (9) to the fast variable τ := t/ε, we obtain the equivalent fast
system{

u′
1 = u2,

u′
2 = (

u1 − a(x)
)(
u1 − b(x)

)
,

x′ = ε,

(11)

where ′ = d
dτ

. Letting ε → 0 in (11), we obtain the fast limit system{
u′

1 = u2,

u′
2 = (

u1 − a(x)
)(
u1 − b(x)

)
,

x′ = 0,
(12)

for which S is a manifold of equilibria. By virtue of (2), the branches of S defined by

Sa = {
u1 = a(x), u2 = 0, x ∈ [0, r0)

}
and Sb = {

u1 = b(x), u2 = 0, x ∈ (r0,1]},
consist of normally hyperbolic equilibria of (12) (see [37]), with one negative and one positive eigenvalue; whereas at
the equilibrium c ∈ S all eigenvalues are zero. Note that the singular connecting orbit

Γ0 = {
u1 = max

{
a(t), b(t)

}
, u2 = 0, x = t, t ∈ [0,1]}
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parameterizes Sa ∪ {c} ∪ Sb. Hence, the loss of normal hyperbolicity of the slow manifold S at the point c prohibits
the use of standard geometric singular perturbation theory [21,37,39] in order to deduce the persistence of the singular
orbit Γ0, for small ε > 0. The fact that Γ0 perturbs, for small ε > 0, to a connecting orbit Γε of (9), (10) has been
proven in [56], using the blow-up procedure for dealing with loss of normal hyperbolicity of the slow manifold [20,
42]. Actually, the problem treated in [56] was a Hamiltonian system in the whole real line, but the same proof applies
thanks to [64]. One appends the equation ε′ = 0 to (11), and performs a blow-up of the point (c,0) of u1u2xε-space
to a 3-sphere by the transformation

u1 = a(r0)+R2ū1, u2 = R3ū2, x = r0 + R2x̄, ε = R3ε̄, (13)

where (ū1, ū2, x̄, ε̄) ∈ S3 and R � 0. Within the sphere, the de-singularized vector field has an equilibrium with a two-
dimensional center-unstable manifold, and another with a two-dimensional center-stable manifold. It has been shown
in [56] that these invariant manifolds intersect transversely along an inner solution, furnished by an asymptotically
stable solution of the problem

Uξξ = (
U − ar(r0)ξ

)(
U − br(r0)ξ

)
, ξ ∈ R, U − ar(r0)ξ → 0 as ξ → −∞,

U − br(r0)ξ → 0 as ξ → +∞. (14)

One then uses a shooting argument, together with the Corner Lemma of [55], to infer that, for small ε > 0, the unstable
manifold Wu(B0) intersects the stable manifold Ws(B1) transversely along a solution Γε of (9), (10). It follows that
dist(Γε,Γ0) → 0 as ε → 0 and, given any D > 0, we have

u1(t) = a(r0)+ ε
2
3 U

(
t − r0

ε
2
3

)
+ O

(
ε

4
3
)
, |t − r0| � Dε

2
3 as ε → 0. (15)

We remark that no information about the stability properties of the obtained corner layered solution has been given
in [56].

1.3.2. General N � 1
In [7], the authors considered the problem

−ε2�u+ f (u, x) = 0 in Ω, ∂νu = 0 on ∂Ω, (16)

where Ω is a smooth bounded domain in R
N , N � 1, and f ∈ C2(R × Ω̄) (Ω, f independent of ε) satisfying the

following hypothesis:
There exists a smooth (N − 1)-dimensional sub-manifold C ⊂ Ω dividing Ω in two open connected components

Ω1,Ω2, and u1, u2 ∈ C2(Ω̄) such that

u1 > u2 in Ω1, u1 < u2 in Ω2, (17)

f
(
ui(x), x

) = 0, x ∈ Ω, fu

(
ui(x), x

)
> 0, x ∈ Ωi,

fu

(
ui(x), x

)
< 0, x ∈ Ω/Ωi, i = 1,2, (18)

fu

(
u0(x), x

)
> c|t |, |t | � d, where u0 = max{u1, u2}, (19)

and (θ, t) are the Fermi coordinates associated to the manifold C (see [22,45]), and c, d > 0 are constants independent
of ε > 0.

It was shown in [7], via the method of upper and lower solutions, that there exists a solution uε of (16) such that∣∣uε(x) − u0(x)
∣∣ � Cε

2
3 , x ∈ Ω̄, (20)

where C > 0 is a constant independent of ε. Moreover, it has been shown in [6] that the principal eigenvalue of the
linearization of (16) on uε satisfies

Λ1 � cε
2
3 , (21)

where c > 0 is a constant independent of ε. Hence, the solution uε is asymptotically stable (with respect to the
parabolic dynamics). We remark that the method of upper and lower solutions renders only stable solutions, and, in
general, is not applicable to the study of systems. Let us also point out that problem (16) was not linked to a limit
problem (see (14)), as ε → 0, in [6] or [7].
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1.4. Main results

In Theorem 3.29 we establish the existence of two radially symmetric solutions u+, u− of (1), with u−(r0) <

a(r0) < u+(r0), converging uniformly to max{a, b} as ε → 0, and, for any D > 0, we have

u±(r) = a(r0)+ ε
2
3 U1±

(
r − r0

ε
2
3

)
+ ε

4
3 U2±

(
r − r0

ε
2
3

)
+ O

(
ε2), |r − r0| � Dε

2
3 as ε → 0,

where U1+ >U1− are solutions of (14), whose existence and non-degeneracy are proven in Propositions 3.2 and 3.6
respectively, and U2± solve linear equations (36). We note that, besides establishing existence of two solutions, our
estimate improves that of [56] (see (15) herein) if N = 1, as well as that of [7] (see (20) herein) in the case of radial
symmetry. Moreover, we prove that the first m eigenvalues of the radial linearization of (1) on u± satisfy

λi± = μi±ε
2
3 + O

(
ε

4
3
)

as ε → 0, i = 1, . . . ,m, (22)

where μi±, i = 1, . . . ,m are the first m eigenvalues of the limiting eigenvalue problem

−ψξξ + (
2U1± − ar(r0)ξ − br(r0)ξ

)
ψ = μψ, ψ ∈ L2(R), (23)

which is exactly the linearization of (14) on U1±, in particular

μ1+ > 0 and μ1− < 0 <μ2−. (24)

Hence the solution u+ is asymptotically stable, whereas u− is unstable with one negative (radial) eigenvalue.
Next we consider the linearization of (1) on u+ and u−, in the general class of functions, using a separation of

variables. It is well known that the eigenfunction corresponding to the principal eigenvalue is radial and we may
assume that it is positive. Hence, via (22)+ and (24), we infer that the solution u+ is asymptotically stable, in the
general class, if ε > 0 is sufficiently small. Note that, in view of (24), estimate (22)+, with i = 1, improves the
corresponding estimate of [6] (see (21) herein). On the other hand, we will show that the linearized operator of (1)

on u− has asymptotically [cε− 2
3 ] negative non-radial eigenvalues, as ε → 0, where c > 0 is a constant independent

of ε > 0 (see Theorem 4.5). We give some accurate estimates for the small eigenvalues of the linearization of (1) at
u− (similar estimates can be shown for the linearization at u+), and obtain a rather sharp asymptotic formula for the
Morse index of u−.

Finally, in Theorems 5.2, 5.4 and 5.6, we prove the existence of a plethora of non-radial solutions of (1) bifurcating
from the unstable branch (u−(ε), ε), ε > 0 small.

1.5. Strategy of the proof and structure of the paper

In Section 3 we consider problem (1) in the class of radial solutions. One can calculate, via asymptotic analysis,
a formal (non-standard) inner expansion

uin(r) = a(r0)+ ε
2
3 U1

(
r − r0

ε
2
3

)
+ ε

4
3 U2

(
r − r0

ε
2
3

)
+ · · · (25)

near r = r0 (note that this is compatible with the blow-up transformation (13)). The function U1 in (25) has to satisfy
the limit problem (14). Surprisingly, we obtain two solutions U1+ and U1− of (14), and hence two inner approxima-
tions. Loosely speaking, the solution U1+ is a minimum, whereas U1− is a mountain-pass [52]. Moreover, both U1+
and U1− are non-degenerate solutions of (14). We remark that U1+ has appeared recently in a class of related singular
perturbation problems in [13,36,56]. The existence of U1−, to the best of our knowledge, was not previously in the
literature (see the appendix of [8] for a related result). The functions U2± in (25)± satisfy linear problems (36)±, (41)
below, which are solvable thanks to the non-degeneracy of U1±. In this paper we have calculated the first two terms of
the inner expansion (25). If these inner approximations uin± are substituted in (1), one finds that the remainder grows
with respect to the distance from r = r0 (see (34)); in contrast to the problems studied in [3,54] where the remainder
gets smaller (see also [18,45]). Additionally, the second order term (that involves U2) of the inner approximations
uin± decays slowly to the corresponding term of the outer approximation max{a, b} (see Proposition 3.11). These
facts pose important difficulties for matching the inner with the outer approximation, in order to construct a global
approximation that is valid in the whole domain. We accomplish the desired matching by a novel procedure that glues
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uin with a suitable perturbation of max{a, b} at |r − r0| = Lε
2
3 , L > 0 fixed, in a C1 and piecewise C2 manner. The

obtained approximations uap± satisfy

−ε2�uap± + (
uap± − a

(|x|))(uap± − b
(|x|)) = O

(
ε

8
3
)

uniformly in B1 ∩ {∣∣|x| − r0
∣∣ �= Lε

2
3
}
, (26)

and uap± = max{a, b} + O(ε
2
3 ) uniformly in B̄1, as ε → 0. (Note that φ in (4) has to be radial, C1 and piecewise C2

with finite jumps at |r − r0| = Lε
2
3 .) Our method, close in spirit to that of [62], provides optimal estimates, and the

flexibility to deal with a variety of corner layer problems. Furthermore, it has the potential to treat non-radial problems
in general domains. In a related corner layer problem in R, of the same nature as (6), treated in [62], the gluing had to

be performed at |r − r0| = | ln ε|ε 2
3 . What allows us now to match at the optimal distance from r = r0 is that we first

suitably “prepare” the outer solution for the gluing, as described in (60). Next we study the linearization of (1) near
uap±, in the radial class, namely

L±(ϕ) = −ε2�ϕ + (2uap± + e − a − b)ϕ, ∂νϕ = 0 on ∂B1, ϕ radial, (27)

where e is an arbitrary continuous radial function that is sufficiently small, say ‖e‖L∞(B1) = o(1)ε
4
3 . We prove that

the following a priori estimate holds,

L±(ϕ) = f ⇒ ‖ϕ‖L∞(B1) � Cε− 2
3 ‖f ‖L∞(B1), (28)

where f is radial, possibly discontinuous at |r − r0| = Lε
2
3 (see Proposition 3.23). Furthermore, given any integer

m � 1 independent of ε, we find that the first m eigenvalues of L± satisfy (22), where μi, i = 1, . . . ,m are the first
m eigenvalues of the limiting problem (23) and satisfy (24) (see Proposition 3.25). We would like to mention that in
many well-known radial singular perturbation problems, such as the Allen–Cahn or focusing nonlinear Schrödinger
equation, the corresponding linearization on the layered approximation typically has a small O(εα), α > 0, nonzero
eigenvalue and the rest of the spectrum is uniformly bounded away from zero, as ε → 0 (see [3,19]). By (26), (28),
and the contraction mapping theorem, we can find φ± = O(ε2) as ε → 0, uniformly in B̄1, such that u±, defined by
(4)±, solve (1). Clearly,

u± = uap± + O
(
ε2) as ε → 0, uniformly in B̄1,

and the radial linearizations of (1) on u± satisfy the eigenvalue distribution (22), see Theorem 3.29.
In Section 4, assuming N � 2, we linearize (1) on u− and consider the following eigenvalue problem:

−ε2�Ψ + (2u− − a − b)Ψ = ΛΨ in B1, ∂νΨ = 0 on ∂B1 (29)

(here Ψ is not assumed to be radial). Following [19], we prove that, given M > 0 (independent of ε), the eigenvalues
Λ1 <Λ2 � · · · of (29) behave qualitatively like

Λk = μ1−ε
2
3 + τkε

2, 1 � k �
[
Mε− 2

3
]
, (30)

for small ε > 0, where τk = (k − 1)(k + N − 3) are the eigenvalues of the Laplace–Beltrami operator of SN−1

(see Theorem 4.5). We remark that our analysis is more delicate than that of [19] because the corresponding one-
dimensional profile (u− for N = 1) has many small eigenvalues, as described by (22).

Relation (30) implies that the eigenvalues of (29) grow from a negative number (recall (24)) and eventually cross
zero, as ε → 0. This suggests the possibility of a great number of symmetry-breaking bifurcations from the radially
symmetric branch (u−(ε), ε) (it is a smooth branch by the radial non-degeneracy of u−). We show that this is indeed
the case by making use of topological and equivariant bifurcation theory (see Section 5).

2. Notation

Throughout this paper, unless specified otherwise, we will denote by c/C positive small/ large generic constants,
independent of ε, whose value will change from line to line. The values of ε will satisfy 0 < ε < ε0 with ε0 getting
smaller at each step (so that all previous relations still hold). Frequently we will suppress the obvious dependence of
quantities on ε. Furthermore, Landau’s symbols O(1), o(1) as ε → 0 will be understood in the sense that |O(1)| � C

for small ε > 0 and o(1) → 0 as ε → 0. By [d] ∈ N we will denote the integer part of d > 0. Finally, if X is a linear
space of functions defined in B1, we will denote by Xr ⊂ X the subspace of radial functions.
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3. Radial corner layered solutions

In this section we will show that, for small ε > 0, problem (1) has two radial solutions which possess a corner layer
at r = r0.

In the class of radial solutions, problem (1) is equivalent to

−ε2urr − ε2 N − 1

r
ur + (

u − a(r)
)(
u − b(r)

) = 0 in (0,1), ur(0) = ur(1) = 0. (31)

3.1. The inner solution

We will begin by constructing an approximate solution for the equation of (31), valid only in a “small” neighbor-
hood of r = r0. We call such an approximation an inner solution.

Motivated from [56], we seek an inner solution near r = r0 in the form

uin(r) = a(r0)+ ε
2
3 U1

(
r − r0

ε
2
3

)
+ ε

4
3 U2

(
r − r0

ε
2
3

)
, (32)

with U1, U2 to be determined.

Remark 3.1. Another approach would be to seek an inner solution as

uin(r) = εβU0

(
r − r0

εα

)
+ εγ U1

(
r − r0

εα

)
+ εδU2

(
r − r0

εα

)
,

carry out the calculation below, and find a posteriori that α = 2
3 , β = 0, U0 = a(r0), γ = 2

3 , δ = 4
3 .

Let

ξ = r − r0

ε
2
3

. (33)

Then, for r − r0 = o(1) or equivalently ξ = o(ε− 2
3 ), we have

−ε2(uin)rr − ε2 N − 1

r
(uin)r + (

uin − a(r)
)(
uin − b(r)

)
= −ε

4
3 (U1)ξξ − ε2(U2)ξξ − ε2 N − 1

r0 + ε
2
3 ξ

(U1)ξ − ε
8
3

N − 1

r0 + ε
2
3 ξ

(U2)ξ

+ (
a(r0)+ ε

2
3 U1 + ε

4
3 U2 − a

(
r0 + ε

2
3 ξ

))(
a(r0)+ ε

2
3 U1 + ε

4
3 U2 − b

(
r0 + ε

2
3 ξ

))
= (−(U1)ξξ + ar(r0)br (r0)ξ

2 − ar(r0)ξU1 − br(r0)ξU1 +U2
1

)
ε

4
3

+
(

−(U2)ξξ − N − 1

r0
(U1)ξ + 1

2
ar(r0)brr (r0)ξ

3 − ar(r0)ξU2 + 1

2
arr (r0)br (r0)ξ

3 − 1

2
arr (r0)ξ

2U1

− 1

2
brr (r0)ξ

2U1 + 2U1U2 − br(r0)ξU2

)
ε2

+ O
(
ε

8
3 ξ(U1)ξ + ε

8
3 (U2)ξ + ε

8
3 ξ4 + ε

10
3 ξ5 + ε

8
3 ξ2U2 + ε4ξ6 + ε

8
3 ξ3U1 + ε

10
3 ξ3U2 + ε

8
3 U2

2

)
. (34)

The above relation indicates that U1, U2 should satisfy

−(U1)ξξ + (
U1 − ar(r0)ξ

)(
U1 − br(r0)ξ

) = 0, (35)

−(U2)ξξ + (
2U1 − ar(r0)ξ − br(r0)ξ

)
U2

= N − 1

r0
(U1)ξ − 1

2
ar(r0)brr (r0)ξ

3 − 1

2
arr (r0)br (r0)ξ

3 + 1

2
arr (r0)ξ

2U1 + 1

2
brr (r0)ξ

2U1, (36)

for ξ ∈ R.
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Let K = K(ε) be any number satisfying

K(ε) → +∞, ε
2
3 K(ε) → 0 as ε → 0. (37)

Then

uin
(
r0 −Kε

2
3
) − a

(
r0 −Kε

2
3
)

= a(r0)+ ε
2
3 U1(−K) + ε

4
3 U2(−K) − a(r0)+ ar(r0)Kε

2
3 − 1

2
arr (r0)K

2ε
4
3 + O

(
K3ε2)

= (
U1(−K) + ar(r0)K

)
ε

2
3 +

(
U2(−K) − 1

2
arr (r0)K

2
)
ε

4
3 + O

(
K3ε2) as ε → 0. (38)

Similarly,

(uin − b)
(
r0 +Kε

2
3
) = (

U1(K) − br(r0)K
)
ε

2
3 +

(
U2(K) − 1

2
brr (r0)K

2
)
ε

4
3 + O

(
K3ε2) as ε → 0. (39)

The inner approximate solution uin should match with the outer approximation max{a, b} at the points r0 ± Kε
2
3 , as

ε → 0. Therefore, in view of (37), (38) and (39), the asymptotic behavior of U1, U2 should be

U1(ξ) − ar(r0)ξ → 0 as ξ → −∞, U1(ξ) − br(r0)ξ → 0 as ξ → +∞, (40)

U2(ξ) − 1

2
arr (r0)ξ

2 → 0 as ξ → −∞, U2(ξ) − 1

2
brr (r0)ξ

2 → 0 as ξ → +∞. (41)

In the following proposition and remarks we will show, via the method of upper and lower solutions, the existence
of an asymptotically stable solution U1+ of (35), (40).

Proposition 3.2. There exists a solution U1+ of (35), (40) satisfying

U1+(ξ) > ar(r0)ξ, ξ � 0 and U1+(ξ) > br(r0)ξ, ξ > 0. (42)

Moreover, there exists a constant C > 0 such that∣∣U1+(ξ) − max
{
ar(r0)ξ, br (r0)ξ

}∣∣ � C
(|ξ | + 1

)− 1
4 e− 2

3 (br (r0)−ar (r0))
1
2 |ξ | 3

2
, ξ ∈ R. (43)

Proof. This has been proven in [13] and [56] (see also [36]). For completeness, we present here a proof that is slightly
simpler than the one of [56].

Let

u = max
{
ar(r0)ξ, br (r0)ξ

} =
{
ar(r0)ξ, ξ � 0,
br(r0)ξ, ξ > 0.

(44)

Then u solves (35) for ξ �= 0 and, recalling (2), we have uξ (0−) < uξ (0+). Hence, it follows that u is a weak lower
solution of (35), see [5,49].

In view of (2), there exists a unique continuous φ ∈ L2(R) satisfying{−φξξ + (
br(r0)− ar(r0)

)|ξ |φ = 0, ξ �= 0,
φξ

(
0−) − φξ

(
0+) = br(r0)− ar(r0).

(45)

Furthermore, the function φ is strictly positive, and bounded from above by the right-hand side of (43) for some
constant C > 0 (see [4, p. 100]). Now let

ū = u+ φ, ξ ∈ R.

Then, via (44), (45), we have that ū ∈ C2(R) (with ūξξ (0) = 0) and

−ūξξ + (
ū − ar(r0)ξ

)(
ū − br(r0)ξ

) = −φξξ + φ2 + (
br(r0)− ar(r0)

)|ξ |φ = φ2 > 0, ξ ∈ R.

Hence, it follows that ū is an upper solution of (35) such that u(ξ) < ū(ξ), ξ ∈ R.
By a well-known theorem [5,49], we infer that there exists a stable solution U1+ of (35) such that u(ξ) < U1+(ξ) <

ū(ξ), ξ ∈ R. The assertions of the proposition now follow at once.
The proof of the proposition is complete. �
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Remark 3.3. From (35) and (43), it follows that (U1+ − max{ar(r0)ξ, br (r0)ξ})ξ = O(e−c|ξ | 3
2
) as ξ → ±∞.

Remark 3.4. In view of (42), we have

2U1+(ξ) − ar(r0)ξ − br(r0)ξ � c|ξ | + c, ξ ∈ R, (46)

and thus the spectrum of the linearized operator, in L2(R),

M+(ψ) = −ψξξ + (
2U1+(ξ) − ar(r0)ξ − br(r0)ξ

)
ψ,

consists of simple positive eigenvalues μ1+ <μ2+ < · · · with μi+ → +∞ as i → +∞ (see [34, Theorem 10.7]).

In order to show the existence of an unstable solution of (35), (40), we will make use of the following lemma which
is of independent interest.

Lemma 3.5. If V ∈ C1(R) is even, V (0) > 0, Vξ (ξ) > 0, ξ > 0, and limξ→+∞ V (ξ) = +∞, then there exists a
positive solution of

uξξ − 2V (ξ)u + u2 = 0, ξ ∈ R, (47)

such that u is even, uξ (ξ) < 0, ξ > 0, and limξ→+∞ u(ξ) = 0.
Moreover, the spectrum of the linearized operator, in L2(R),

L(ϕ) = −ϕξξ + 2
(
V (ξ) − u(ξ)

)
ϕ,

consists of simple eigenvalues λ1 < λ2 < · · · with λi → +∞ as i → +∞, and λ1 < 0 < λ2.

Proof. Under the assumptions of the lemma, existence of a positive solution of (47) such that limξ→±∞ u(ξ) = 0 has
been shown by a “mountain pass” type argument in [52] (see Theorem 1.7 and Corollary 1.9 therein). Since V is even
and Vξ (ξ) > 0, ξ > 0, it follows from the moving plane method [26] that u is even and uξ (ξ) < 0, ξ > 0 (see also [38,
Lemma 2.3]).

Since V (ξ) − u(ξ) → +∞ as ξ → ±∞, the spectrum of L consists of discrete eigenvalues λ1 < λ2 < · · · with
λi → +∞ as i → +∞ (see [34, Theorem 10.7]). Each λi , i � 1, is simple and the corresponding eigenfunction ϕi

has exactly i − 1 zeros in (−∞,+∞) (obviously simple). This fact and the evenness of the potential 2(V (ξ)− u(ξ))

imply that ϕi is even if i is odd, and ϕi is odd if i is even. Note also that ϕi(ξ) → 0 super-exponentially as ξ → ±∞,
and the same holds for u as well. We may assume that ϕi(ξ) > 0 for sufficiently large ξ > 0 and ‖ϕi‖L∞(R) = 1, i � 1.

We have

−(ϕ1)ξξ + 2
(
V (ξ) − u(ξ)

)
ϕ1 = λ1ϕ1, (48)

and

−uξξ + 2
(
V (ξ) − u(ξ)

)
u = −u2. (49)

Multiplying (48) by u, (49) by ϕ1, subtracting and integrating by parts over (−∞,+∞), we arrive at

λ1

+∞∫
−∞

ϕ1udξ = −
+∞∫

−∞
u2ϕ1 dξ.

Recalling that ϕ1(ξ), u(ξ) > 0, ξ ∈ R, we get λ1 < 0.
We have

−(ϕ2)ξξ + 2
(
V (ξ) − u(ξ)

)
ϕ2 = λ2ϕ2, (50)

and

−wξξ + 2
(
V (ξ) − u(ξ)

)
w = −2Vξ (ξ)u(ξ), (51)
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where w = uξ . Similarly as before, and making use of w(0) = ϕ2(0) = 0, we obtain

λ2

+∞∫
0

ϕ2wdξ = −2

+∞∫
0

Vξuϕ2 dξ.

Recalling that ϕ2(ξ) > 0, w(ξ) < 0, Vξ (ξ) > 0, u(ξ) > 0, ξ > 0, we get λ2 > 0.
The proof of the lemma is complete. �
We can now establish the existence of an unstable solution U1− of (35), (40).

Proposition 3.6. There exists a solution U1− of (35), (40) satisfying

U1−(ξ) < ar(r0)ξ, ξ � 0 and U1−(ξ) < br(r0)ξ, ξ > 0. (52)

Moreover, the spectrum of the linearized operator, in L2(R),

M−(ψ) = −ψξξ + (
2U1−(ξ) − ar(r0)ξ − br(r0)ξ

)
ψ,

consists of simple eigenvalues μ1− <μ2− < · · · with μi− → +∞ as i → +∞, and

μ1− < 0 <μ2−. (53)

Proof. We make the substitution

U(ξ) =
(
br(r0)− ar(r0)

2

) 2
3

v

((
br(r0)− ar(r0)

2

) 1
3

ξ

)
+ ar(r0)+ br(r0)

2
ξ. (54)

In terms of v, problem (35), (40) is equivalent to

vξξ (ξ) = v2(ξ) − ξ2, ξ ∈ R, (55)

and

v(ξ)− |ξ | → 0 as ξ → ±∞. (56)

We can apply Proposition 3.2 (with ar(r0) = −1, br(r0) = 1) to obtain a solution V+ of (55), (56) such that
V+(ξ) > |ξ |, ξ ∈ R. It is easy to see that V+ is even and (V+)ξ (ξ) > 0, ξ > 0. (Note that if Ṽ solves (55), (56), and
Ṽ (ξ) � −|ξ |, ξ ∈ R, then Ṽ ≡ V+.)

We search for another solution of (55), (56) in the form

V− = V+ − u, with u(ξ) → 0 as ξ → ±∞,

and see that u has to solve (47) with V = V+. We therefore choose u to be the solution given in Lemma 3.5, and
find that V− is even, increasing for ξ > 0, and solves (55), (56). Since V−(0) < 0, there exists a unique ξ0 > 0 such
that ξ0 + V−(ξ0) = 0. In [0, ξ0), we have ξ + V−(ξ) < 0, and thus V−(ξ) < ξ . The same inequality also holds true in
[ξ0,+∞). To see this, let w = ξ −V−, ξ � ξ0, then w(ξ0) = 2ξ0 > 0, limξ→+∞ w(ξ) = 0, and −wξξ +(V−+ξ)w = 0,
ξ > ξ0. Recalling that V−(ξ) + ξ > 0 in (ξ0,+∞), by the maximum principle, we deduce that w > 0, ξ � ξ0. Hence,
by the evenness of V−, we infer that V−(ξ) < |ξ |, ξ ∈ R.

It is straightforward to verify that U1− given by (54) with v = V− satisfies the assertions of the proposition, and
the proof is complete. �
Remark 3.7. Note that U1− enjoys the same asymptotic behavior as U1+ (see Proposition 3.2 and Remark 3.3).

Remark 3.8. For notational simplicity, we will sometimes drop the subscripts +, −.

Remark 3.9. Note that the function 2U1(ξ) − ar(r0)ξ − br(r0)ξ is even.

In the sequel we will make use of the following lemma which is a consequence of the maximum principle.
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Lemma 3.10. Suppose that ψ ∈ C2 satisfies

−ψξξ + p(ξ)ψ = f (ξ), ψ(ξ) → 0 as ξ → +∞, (57)

where p, f are continuous, and

p(ξ) � cξ,
∣∣f (ξ)

∣∣ � Cξ−α,

for large ξ > 0, and some positive constants c, C, α.
Then

ψ(ξ) = O
(
ξ−α−1) as ξ → +∞.

Proof. Let ψ̄ = Dξ−α−1, ξ > 0, with D > 0 large to be determined. Then

−ψ̄ξξ + pψ̄ − f � −(α + 1)(α + 2)Dξ−α−3 + cDξ−α −Cξ−α

= Dξ−α−3(−(α + 1)(α + 2) + (
c − CD−1)ξ3) > 0,

provided D > 2c−1C and ξ � ξ1 = (2c−1(α + 1)(α + 2))
1
3 . We chose D > 2c−1C such that |ψ(ξ1)| < ψ̄(ξ1). The

assertion of the lemma now follows readily from the maximum principle, since p is positive (recall also that ψ → 0
as ξ → +∞ and −ψ̄ is a lower solution of (57)). �

In the following proposition, based on the non-degeneracy of U1± and Lemma 3.10, we will solve for U2± the
problems (36)±, (41).

Proposition 3.11. Given U1 = U1+ or U1 = U1−, there exists a unique solution U2+, U2− of (36)±, (41) respectively.
Moreover, for every m ∈ N, we have

U2±(ξ) = 1

2
arr (r0)ξ

2 +
m∑
i=1

(3i − 3)!
3i−1(i − 1)!

arr (r0) + N−1
r0

ar(r0)

(ar (r0)− br(r0))i
ξ2−3i + O

(
ξ−3m−1) as ξ → −∞,

U2±(ξ) = 1

2
brr (r0)ξ

2 +
m∑
i=1

(3i − 3)!
3i−1(i − 1)!

brr (r0) + N−1
r0

br(r0)

(br (r0)− ar(r0))i
ξ2−3i + O

(
ξ−3m−1) as ξ → +∞.

Proof. Given m ∈ N, we define a Ũ2 ∈ C3(R) such that

Ũ2(ξ) =

⎧⎪⎨
⎪⎩

1
2arr (r0)ξ

2 + ∑m
i=1

(3i−3)!
3i−1(i−1)!

arr (r0)+N−1
r0

ar (r0)

(ar (r0)−br (r0))
i ξ2−3i , ξ � −1,

1
2brr (r0)ξ

2 + ∑m
i=1

(3i−3)!
3i−1(i−1)!

brr (r0)+N−1
r0

br (r0)

(br (r0)−ar (r0))
i ξ2−3i , ξ � 1.

We search for solutions of (36)±, (41) in the form

U2 = Ũ2 +ψ, ψ ∈ L2(R).

Recalling the asymptotic behavior of U1, (U1)ξ , from Proposition 3.2 and Remarks 3.3, 3.7, it is straightforward to
see that Eq. (36) becomes

−ψξξ + (
2U1 − ar(r0)ξ − br(r0)ξ

)
ψ = f1(ξ) + f2(ξ), ξ ∈ R, (58)

with f1, f2 ∈ C1(R) satisfying

f1(ξ) =

⎧⎪⎨
⎪⎩

(3m−3)!(2−3m)(1−3m)

3m−1(m−1)!
arr (r0)+N−1

r0
ar (r0)

(ar (r0)−br (r0))
m ξ−3m, ξ � −1,

(3m−3)!(2−3m)(1−3m)

3m−1(m−1)!
brr (r0)+N−1

r0
br (r0)

(br (r0)−ar (r0))
m ξ−3m, ξ � 1,

and f2, (f2)ξ = O(e−c|ξ | 3
2
) as ξ → ±∞. In view of Remark 3.4 and Proposition 3.6, we know that the linear operators

M± appearing in the left-hand side of (58) are invertible. Hence, we obtain unique ψ+, ψ− ∈ W 1,2(R) satisfying (58)±
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respectively (note that f1 + f2 ∈ L2(R)). Then, clearly U2± = Ũ2 + ψ± solve (36)± and (41) respectively. Finally,
using Lemma 3.10, we obtain that ψ± = O(ξ−3m−1) as ξ → ±∞.

The proof of the proposition is complete. �
Remark 3.12. By differentiating (58), and using Lemma 3.10, we find that (U2± − Ũ2)ξ = O(ξ−3m−2) as ξ → ±∞.

The properties of the inner solution we have constructed are summarized in

Proposition 3.13. The inner approximation uin, defined in (32), satisfies

−ε2(uin)rr − ε2 N − 1

r
(uin)r + (

uin − a(r)
)(
uin − b(r)

) = O
(
ε

8
3
)
, |r − r0| � Lε

2
3 , (59)

as ε → 0, where L> 0 is any fixed constant.

Proof. Relation (59) follows immediately from (34), by recalling (35) and (36). �
3.2. The outer solution

Now we will suitably modify max{a, b} and construct outer approximations uout±, valid for |r − r0| � Lε
2
3 , that

glue continuously with the inner approximations uin± at |r − r0| = Lε
2
3 , where L > 0 is a constant independent of

ε > 0.

3.2.1. The first outer approximation ũout

Let L > 0 be a constant to be chosen large, but independent of ε. First we define the outer solution of (31), in

[0, r0 −Lε
2
3 ], as

ũout = a(r) +
(
ε

2
3 U1

(
r − r0

ε
2
3

)
− ar(r0)(r − r0)+ ε

4
3 U2

(
r − r0

ε
2
3

)
− 1

2
arr (r0)(r − r0)

2
)
ζ(r), (60)

0 � r � r0 −Lε
2
3 , where 0 � ζ � 1 is a smooth cut-off function such that

ζ(r) =
{

1, |r − r0| � δ,

0, |r − r0| � 2δ,
(61)

for some small fixed δ > 0 such that (r0 − 10δ, r0 + 10δ) ⊂ (0,1). Similarly we define ũout in [r0 + Lε
2
3 ,1]. Notice

that, from (3), we have

(ũout)r (0) = (ũout)r (1) = 0. (62)

The following lemma contains the fundamental estimate regarding ũout.

Lemma 3.14. Let

Ẽout(r) = −ε2(ũout)rr − ε2 N − 1

r
(ũout)r + (

ũout − a(r)
)(
ũout − b(r)

)
, r ∈ (

0, r0 −Lε
2
3
) ∪ (

r0 +Lε
2
3 ,1

)
.

Then

Ẽout(r) =
{

O(ε
8
3 + ε2|r − r0|), Lε

2
3 < |r − r0| � δ,

O(ε2), |r − r0| > δ,

as ε → 0.

Proof. In (r0 − δ, r0 −Lε
2
3 ), by (60), (61), we have
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−ε2(ũout)rr − ε2 N − 1

r
(ũout)r + (

ũout − a(r)
)(
ũout − b(r)

)
= −ε2arr (r) − ε

4
3 (U1)ξξ − ε2(U2)ξξ + ε2arr (r0)

− ε2 N − 1

r
ar(r) − ε2 N − 1

r
(U1)ξ + ε2 N − 1

r
ar(r0)− ε

8
3
N − 1

r
(U2)ξ + ε2 N − 1

r
arr (r0)(r − r0)

+
(
ε

2
3 U1 − ar(r0)(r − r0)+ ε

4
3 U2 − 1

2
arr (r0)(r − r0)

2
)

×
(
ε

2
3 U1 + ε

4
3 U2 − br(r0)(r − r0)− 1

2
brr (r0)(r − r0)

2 + O
(
(r − r0)

3))

= where Ui, (Ui)ξ , (Ui)ξξ , i = 1,2, are evaluated at ξ = r − r0

ε
2
3

, and in view of (35), (36),

− ε2(arr (r) − arr (r0)
) − ε2 N − 1

r

(
ar(r) − ar(r0)− (r − r0)

r0
(U1)ξ + ε

2
3 (U2)ξ − arr (r0)(r − r0)

)

+ ε
8
3

(
U2

2 − 1

2
arr (r0)ξ

2U2 − 1

2
brr (r0)ξ

2U2 + 1

4
arr (r0)brr (r0)ξ

4
)

+ ε
8
3
(
U1 − ar(r0)ξ

)
O

(
ξ3) + ε

10
3

(
U2 − 1

2
arr (r0)ξ

2
)

O
(
ξ3)

= O
(
ε

8
3 + |r − r0|ε2),

where we used the estimates of Propositions 3.2, 3.11 and Remarks 3.3, 3.7, 3.12. Hence, the assertion of the lemma

holds in (r0 − δ, r0 −Lε
2
3 ). In (r0 − 2δ, r0 − δ), the previously mentioned estimates imply that∣∣ũout − a(r)

∣∣ + ∣∣(ũout − a(r)
)
r

∣∣ + ∣∣(ũout − a(r)
)
rr

∣∣ = O
(
ε2),

and in (0, r0 −2δ) we have ũout = a. Thus, the assertion of the lemma holds in (0, r0 − δ) as well (recall (3)). Identical
calculations also apply in (r0 +Lε

2
3 ,1).

The proof of the lemma is complete. �
3.2.2. The refined outer approximation uout

Motivated from [62], we now define the outer solution of (31), in [0, r0 −Lε
2
3 ], as

uout = ũout + σ, (63)

where σ solves⎧⎨
⎩

−ε2σrr − ε2 N − 1

r
σr + (

2ũout − a(r) − b(r)
)
σ = −Ẽout(r), r ∈ (

0, r0 − Lε
2
3
)
,

σr (0) = 0, σ
(
r0 − Lε

2
3
) = uin

(
r0 − Lε

2
3
) − ũout

(
r0 −Lε

2
3
) (64)

(Ẽout is as in Lemma 3.14). Similarly we define uout in [r0 + Lε
2
3 ,1]. It is useful to note at this point that uout is

determined from ũout by one step of Newton’s iteration applied to (31).
Existence and estimates for σ are provided by the following lemma.

Lemma 3.15. If ε > 0 is sufficiently small, there exists a unique solution of (64). Moreover,

σ(r) = O
(
ε2), 0 � r � r0 −Lε

2
3 , (65)

and

σr

(
r0 − Lε

2
3
) = O

(
ε

4
3
)

as ε → 0. (66)

Analogous estimates also hold for σ in [r0 +Lε
2
3 ,1].
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Proof. Note that, thanks to (2) and (40), we can choose an L> 0 such that

U1(ξ) � max
{
ar(r0)ξ, br (r0)ξ

} − br(r0)− ar(r0)

4
|ξ |, |ξ | � L.

Then

2U1(ξ) − ar(r0)ξ − br(r0)ξ � br(r0)− ar(r0)

2
|ξ |, |ξ | � L (67)

(in the case where U1 = U1+, by (46), we have a stronger estimate).

If 0 � r � r0 −Lε
2
3 , we have

2ũout(r) − a(r) − b(r) = a(r) − b(r) + 2ε
2
3

(
U1

(
r − r0

ε
2
3

)
− ar(r0)

r − r0

ε
2
3

)
ζ(r)

+ 2ε
4
3

(
U2

(
r − r0

ε
2
3

)
− 1

2
arr (r0)

(
r − r0

ε
2
3

)2)
ζ(r)

� c|r − r0| −Cε
2
3 e−cL

3
2 −Cε

4
3 � c

2

(|r − r0| + ε
2
3
)
, (68)

provided ε > 0 is sufficiently small, where we used (2), (41), (43), Remark 3.7, and possibly increased L (indepen-
dently of ε). From now on we fix such an L> 0.

Hence, the linear elliptic boundary value problem{
−ε2�σ + (2ũout − a − b)σ = −Ẽout, |x| < r0 −Lε

2
3 ,

σ = uin
(
r0 −Lε

2
3
) − ũout

(
r0 −Lε

2
3
)
, |x| = r0 −Lε

2
3 ,

(69)

where ũout = ũout(|x|), a = a(|x|), b = b(|x|), Ẽout = Ẽout(|x|), has a unique solution σ = σ(x). This solution is
radially symmetric, i.e., σ = σ(|x|) (otherwise (69) would have infinitely many different solutions through rotations

around the origin). Furthermore, Eq. (69) implies that �(ũout + σ) ∈ Cα(|x| � r0 − Lε
2
3 ), for some 0 < α < 1,

and thus ũout + σ ∈ C2+α(|x| � r0 − Lε
2
3 ) (see [27]). Then, identifying σ(r) with σ(|x|), it is easy to see that

σ ∈ C2[0, r0 −Lε
2
3 ] and solves (64).

Let xε , with |xε| = rε � r0 −Lε
2
3 , be such that

σ(xε) = max
|x|�r0−Lε

2
3

σ.

Without loss of generality, we may assume that σ(xε) > 0. Three possibilities can occur:

1. If |xε| = r0 −Lε
2
3 , from (32), (60), (61) and (64), we have

σ(xε) = −
(
a
(
r0 −Lε

2
3
) − a(r0)+ ar(r0)Lε

2
3 − 1

2
arr (r0)L

2ε
4
3

)
= O

(
ε2).

2. If r0 − δ � |xε| < r0 −Lε
2
3 , we have �σ(xε) � 0 and, from Lemma 3.14 together with (68), (69), we obtain that

c
(|rε − r0| + ε

2
3
)
σ(xε) � Cε2(ε 2

3 + |rε − r0|
)
,

i.e., σ(xε) = O(ε2).
3. If |xε| � r0 − δ, we have �σ(xε) � 0 and, via Lemma 3.14 together with (68), (69), we arrive at

cσ (xε) � Cε2.

Similarly we can show that min|x|�r0−Lε
2
3
σ = O(ε2), and (65) follows.

In (r0 − 2Lε
2
3 , r0 −Lε

2
3 ), we have 2ũout − a − b = O(ε

2
3 ) (see (68)) and, via Lemma 3.14 and (65), Eq. (64) can

be written as

−ε2(rN−1σr

) + O
(
ε

2
3 ε2) = O

(
ε

8
3
)
, i.e.,

(
rN−1σr

) = O
(
ε

2
3
)
.

r r
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So,

r0−Lε
2
3∫

r0−2Lε
2
3

(
r − r0 + 2Lε

2
3
)(
rN−1σr

)
r
dr = O

(
ε2),

and an integration by parts yields

−
r0−Lε

2
3∫

r0−2Lε
2
3

rN−1σr dr +Lε
2
3
(
r0 −Lε

2
3
)N−1

σr

(
r0 −Lε

2
3
) = O

(
ε2).

Integrating by parts one more time, we find that

r0−Lε
2
3∫

r0−2Lε
2
3

(N − 1)rN−2σ dr + O
(‖σ‖L∞

) +Lε
2
3
(
r0 − Lε

2
3
)N−1

σr

(
r0 − Lε

2
3
) = O

(
ε2),

and by using again (65), we obtain relation (66).

Identical calculations also hold for σ in [r0 +Lε
2
3 ,1], and the proof of the lemma is complete. �

The refined outer solution we have constructed satisfies the following proposition.

Proposition 3.16. The outer approximation uout, defined in (63), satisfies

−ε2(uout)rr − ε2 N − 1

r
(uout)r + (

uout − a(r)
)(
uout − b(r)

) = O
(
ε4),

r ∈ (
0, r0 − Lε

2
3
) ∪ (

r0 +Lε
2
3 ,1

)
, (70)

(uout)r (0) = (uout)r (1) = 0, (71)

(uout − uin)
(
r0 ±Lε

2
3
) = 0, (uout − uin)r

(
r0 ±Lε

2
3
) = O

(
ε

4
3
)
, (72)

and

uout(r) − uin(r) = O
(
(r − r0)

3 + ε2) in
(
r0 − δ, r0 − Lε

2
3
) ∪ (

r0 +Lε
2
3 , r0 + δ

)
, (73)

as ε → 0.

Proof. By (63), (64), and their analogs in (r0 +Lε
2
3 ,1), we derive that

−ε2(uout)rr − ε2 N − 1

r
(uout)r + (

uout − a(r)
)(
uout − b(r)

) = σ 2,

r ∈ (0, r0 − Lε
2
3 ) ∪ (r0 + Lε

2
3 ,1), and (70) follows from the first assertion of Lemma 3.15. Relation (71) is a direct

consequence of (62) and the definition of σ (recall (64)). In [r0 − δ, r0 − Lε
2
3 ], by (32), (60), (61), we have

(uout − uin)(r) = a(r) − a(r0)− ar(r0)(r − r0) − 1

2
arr (r0)(r − r0)

2 + σ(r)

(a similar relation also holds in [r0 + Lε
2
3 , r0 + δ]), and now (72), (73) follow readily from the definition of σ (recall

(64)) and Lemma 3.15.
The proof of the proposition is complete. �
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Remark 3.17. If we had not assumed that br(1) = 0, in (3), then we simply replace b, in the analog of (60), by
b1 = b + ζ(1 − r + r0)β , where β solves⎧⎨

⎩−ε2βrr − ε2 N − 1

r
βr + (

b(r)− a(r)
)
β = 0, r ∈ (1 − 3δ,1),

β(1 − 3δ) = 0, βr(1) = −br(1),

and ζ is as in (61). Since b(r) − a(r) � c, r ∈ [1 − 3δ,1], it follows that |β(r)| � Cε exp(c r−1
ε

), r ∈ [1 − 3δ,1]. The
addition of this boundary layer correction to b does not affect our proofs at all, but note that the bound in (121), below,
would become O(ε) if 1 − 2

c
| ln ε|ε � r � 1 as ε → 0.

3.3. The gluing procedure

Up to this point, we have constructed inner and outer approximations for (31) that glue continuously at |r − r0| =
Lε

2
3 . Now, with the addition of a suitable correction, we will glue them in a C1, piecewise C2 manner, and construct

global approximate solutions uap± that are valid in the whole domain.

3.3.1. The continuous approximation ũap

First we define the approximate solution of (31) as

ũap =
{
uout, r ∈ [0, r0 −Lε

2
3 ] ∪ [r0 +Lε

2
3 ,1],

uin, r ∈ (r0 −Lε
2
3 , r0 +Lε

2
3 ).

(74)

In view of (72), we know that ũap ∈ C([0,1]) ∩ C2([0,1] − {r0 ± Lε
2
3 }), and the jump discontinuities of (ũap)r at

r0 ±Lε
2
3 satisfy

(ũap)r
((
r0 ± Lε

2
3
)−) − (ũap)r

((
r0 ±Lε

2
3
)+) = O

(
ε

4
3
)
. (75)

3.3.2. Balancing the jumps of (ũap)r at |r − r0| = Lε
2
3

Our next task is to construct a small function with the property that, when added to ũap, it balances the jump

discontinuities of (ũap)r at r = r0 ± Lε
2
3 while preserving the remainder that ũap leaves in (31) for r �= r0 ± Lε

2
3

(recall (59) and (70)).
From (2), (32), (65), and (68), it follows that⎧⎨

⎩2ũap − a − b � cε
2
3 , r ∈ [

0, r0 − Lε
2
3
] ∪ [

r0 +Lε
2
3 ,1

]
,

2ũap − a − b = O
(
ε

2
3
)
, r ∈ (

r0 −Lε
2
3 , r0 +Lε

2
3
)
.

(76)

Remark 3.18. In the case where U1 = U1+, the first relation of (76) holds for every r ∈ [0,1] (recall (46)). On the

other hand, in the case where U1 = U1−, we have 2ũap − a − b � −cε
2
3 for some r ∈ (r0 −Lε

2
3 , r0 + Lε

2
3 ).

Let

q =

⎧⎪⎨
⎪⎩

2ũap − a − b, r ∈ [0, r0 −Lε
2
3 ] ∪ [r0 +Lε

2
3 ,1],

q(r0+Lε
2
3 )−q(r0−Lε

2
3 )

2Lε
2
3

(r − r0 +Lε
2
3 )+ q(r0 −Lε

2
3 ), r ∈ (r0 − Lε

2
3 , r0 +Lε

2
3 ).

(77)

Then q ∈ C([0,1]) and, by (76),

q(r) � cε
2
3 , r ∈ [0,1]. (78)

Relations (77) and (78) suggest the following lemma.
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Lemma 3.19. If ε > 0 is sufficiently small, there exists a unique ρ ∈ C([r0 − 3δ, r0 + 3δ]) ∩ C1((r0 − 3δ, r0 + 3δ) −
{r0 − Lε

2
3 }) such that

−ε2ρrr − ε2 N − 1

r
ρr + qρ = 0 in (r0 − 3δ, r0 + 3δ) − {

r0 −Lε
2
3
}
, (79)

ρ(r0 − 3δ) = 0, ρ
(
r0 − Lε

2
3
) = ε2, ρ(r0 + 3δ) = 0. (80)

Moreover, for some numbers c,C > 0,

0 < ρ(r) � Cε2 exp

(
−c

|r − r0 +Lε
2
3 |

ε
2
3

)
, r ∈ (r0 − 3δ, r0 + 3δ), (81)

and the jump discontinuity of ρr at r0 −Lε
2
3 satisfies

cε
4
3 � ρr

((
r0 −Lε

2
3
)−) − ρr

((
r0 −Lε

2
3
)+)

� Cε
4
3 . (82)

Proof. Existence and uniqueness follow readily from (78). The fact that ρ > 0 in (r0 − 3δ, r0 + 3δ) is a consequence
of the maximum principle. The upper bound in (81) follows from Lemma 3.3 in [50], see also [22, p. 230].

To show (82) we will use a re-scaling argument. Let

ρ̃(s) = ε−2ρ
(
r0 − Lε

2
3 + ε

2
3 s

)
, L− 3δ

ε
2
3

� s � 0.

Then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ρ̃ss − ε
2
3

N − 1

r0 −Lε
2
3 + ε

2
3 s

ρ̃s + ε− 2
3 q

(
r0 − Lε

2
3 + ε

2
3 s

)
ρ̃ = 0, L − 3δ

ε
2
3

< s < 0,

ρ̃

(
L− 3δ

ε
2
3

)
= 0, ρ̃(0) = 1, and 0 < ρ̃(s) � Cecs, L − 3δ

ε
2
3

< s � 0.

(83)

In view of (60) and (65), it is straightforward to verify that

ε− 2
3 q

(
r0 −Lε

2
3 + ε

2
3 s

) → 2U1(s − L) − ar(r0)(s − L) − br(r0)(s −L) as ε → 0, (84)

uniformly in compact subsets of (−∞,0]. Therefore, applying standard interior and boundary elliptic estimates
(see [27]) to (83), we can extract a subsequence εn → 0, n → +∞, such that ρ̃εn → ρ̃0 as n → +∞ in C1

loc((−∞,0]).
From (83) and (84), we find that ρ̃0 satisfies{−(ρ̃0)ss + (

2U1(s −L) − ar(r0)(s −L) − br(r0)(s −L)
)
ρ̃0 = 0, s < 0,

ρ̃0(0) = 1, and 0 < ρ̃0(s) � Cecs, s � 0.
(85)

By the uniqueness of the limiting function (recall (67)), we deduce that

ρ̃ε → ρ̃0 in C1
loc

(
(−∞,0]) as ε → 0.

In particular, we have that (ρ̃ε)s(0−)− (ρ̃0)s(0−) = o(1) as ε → 0, i.e.,

ρr

((
r0 −Lε

2
3
)−) = (ρ̃0)s

(
0−)

ε
4
3 + o

(
ε

4
3
) = cε

4
3 + o

(
ε

4
3
)

as ε → 0, (86)

with c = (ρ̃0)s(0−) > 0. (From (67), (85), we see that (ρ̃0)ss > 0, s < 0, (ρ̃0)s → 0 as s → −∞, and it follows that
(ρ̃0)s > 0, s � 0.) Similarly we can show that

ρr

((
r0 −Lε

2
3
)+) = −cε

4
3 + o

(
ε

4
3
)

as ε → 0, (87)

for some c > 0. (We have only to note that

ε− 2
3 q

(
r0 −Lε

2
3 + ε

2
3 s

) → q0(s) in Cloc
([0,+∞)

)
as ε → 0,

with q0(s) > 0, s � 0.) Relation (82) now follows immediately from (86) and (87).
The proof of the lemma is complete. �
Similarly we have
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Lemma 3.20. If ε > 0 is sufficiently small, there exists a unique � ∈ C([r0 − 3δ, r0 + 3δ]) ∩ C1((r0 − 3δ, r0 + 3δ) −
{r0 + Lε

2
3 }) such that

−ε2�rr − ε2 N − 1

r
�r + q� = 0 in (r0 − 3δ, r0 + 3δ) − {

r0 + Lε
2
3
}
, (88)

�(r0 − 3δ) = 0, �
(
r0 +Lε

2
3
) = ε2, �(r0 + 3δ) = 0. (89)

Moreover, for some numbers c,C > 0,

0 < �(r) � Cε2 exp

(
−c

|r − r0 −Lε
2
3 |

ε
2
3

)
, r ∈ (r0 − 3δ, r0 + 3δ), (90)

and the jump discontinuity of �r at r0 +Lε
2
3 satisfies

cε
4
3 � �r

((
r0 +Lε

2
3
)−) − �r

((
r0 +Lε

2
3
)+)

� Cε
4
3 . (91)

Remark 3.21. Ideally we would like ρ to solve the distributional equation

−ε2�ρ + (2ũap − a − b)ρ = ε
10
3 δ{|x|=r0−Lε

2
3 } in R

N

(similarly for �). However, in the case where U1 = U1−, it is not obvious to us how to establish existence and estimates
for the above equation, as the potential of the Schrödinger operator in the left-hand side takes some negative values
(recall Remark 3.18). A possible approach could make use of the non-degeneracy of the linear operator M−, defined
in Proposition 3.6, and re-scaling arguments as in Subsection 3.4. Estimates for the fundamental solution of a class
of one-dimensional Schrödinger operators with nonnegative potentials, vanishing at some points, have been obtained
recently in [24].

Let

ω = (Aρ +B�)ζ, r ∈ [0,1], (92)

where

A = (uin)r (r0 −Lε
2
3 )− (uout)r (r0 −Lε

2
3 )

ρr((r0 −Lε
2
3 )−)− ρr((r0 − Lε

2
3 )+)

, B = (uout)r (r0 +Lε
2
3 )− (uin)r (r0 +Lε

2
3 )

�r((r0 + Lε
2
3 )−)− �r((r0 +Lε

2
3 )+)

, (93)

and ζ was defined (61). Note that ω ∈ C([0,1])∩ C1([0,1] − {r0 ±Lε
2
3 }).

3.3.3. The C1, piecewise C2, approximation uap
Let

uap = ũap +ω ∈ C1([0,1]) ∩ C2([0,1] − {
r0 ± Lε

2
3
})
, (94)

with (uap)rr having finite jump discontinuities at |r − r0| = Lε
2
3 (recall (74), (92), (93)).

From (72), (82) and (91), we see that

|A| + |B| � C.

Hence, by (61), (81), (90), we easily deduce that

ω = O
(
ε2), r ∈ [0,1]; ω = 0, r ∈ (0, r0 − 2δ) ∪ (r0 + 2δ,1), (95)

and, via Eqs. (79), (88),

|ω| + |ωr | + |ωrr | � C exp

(
− c

ε
2
3

)
, r ∈ (r0 − 2δ, r0 − δ) ∪ (r0 + δ, r0 + 2δ). (96)

Note also that, by Eqs. (79) and (88), we have

−ε2ωrr − ε2 N − 1

r
ωr + qω = 0 in (r0 − δ, r0 + δ)− {

r0 ±Lε
2
3
}
. (97)

Everything we have done so far has led us to the following proposition.
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Proposition 3.22. The approximate solution uap, defined in (94), satisfies

−ε2(uap)rr − ε2 N − 1

r
(uap)r + (

uap − a(r)
)(
uap − b(r)

) = O
(
ε

8
3
)
, r ∈ (0,1) − {

r0 ±Lε
2
3
}
, (98)

(uap)r (0) = (uap)r (1) = 0, (99)

and

uap(r) − uin(r) = O
(
(r − r0)

3 + ε2), r ∈ (r0 − δ, r0 + δ), (100)

as ε → 0.

Proof. In (r0 − δ, r0 + δ)− {r0 ± Lε
2
3 },

−ε2(uap)rr − ε2 N − 1

r
(uap)r + (

uap − a(r)
)(
uap − b(r)

)
= −ε2(ũap)rr − ε2 N − 1

r
(ũap)r + (

ũap − a(r)
)(
ũap − b(r)

)
− ε2ωrr − ε2 N − 1

r
ωr + (

2ũap − a(r) − b(r)
)
ω +ω2 and by (59), (70), (74), (95), (97),

= O
(
ε

8
3
) + (

2ũap − a(r) − b(r) − q(r)
)
ω

= O
(
ε

8
3
) + O

(
ε

2
3 ε2),

as ε → 0, where we used (76), (77) and (95). Thus, relation (98) is valid in (r0 − δ, r0 + δ) − {r0 ± Lε
2
3 }. In (0, r0 −

δ) ∪ (r0 + δ,1), relation (98) follows readily from (70), (95), and (96). In view of (71) and (95), we find that (99)
holds. Relation (100) is a direct consequence of (73) and (95).

The proof of the proposition is complete. �
3.4. Linear theory for the radial problem

Now we will study the linearization of (31) near the approximate solutions uap±.

3.4.1. The linear operator L

Throughout this subsection we will consider the linear operator

L(ϕ) = −ε2�ϕ +Q
(|x|)ϕ, D(L) = {

ϕ ∈ W 2,2
r (B1): ∂νϕ = 0 on ∂B1

}
, (101)

where

Q = 2uap − a − b + e with ‖e‖Cr(B̄1)
= o(1)ε

4
3 as ε → 0 (e otherwise arbitrary). (102)

The linear operator L is self-adjoint in L2
r (B1). It is easy to see, from (65), (68), (76), (95) and (102), that

Q(r) � c
(|r − r0| + ε

2
3
)

in
[
0, r0 −Lε

2
3
] ∪ [

r0 + Lε
2
3 ,1

]
, (103)

Q(r) � −Cε
2
3 in [0,1], (104)

if ε > 0 is sufficiently small. Moreover, letting

Q̃(ξ) = ε− 2
3 Q

(
r0 + ε

2
3 ξ

)
, ξ ∈

(
− r0

ε
2
3

,
1 − r0

ε
2
3

)
, (105)

we find, via (100), that

Q̃(ξ) = 2U1(ξ) − ar(r0)ξ − br(r0)ξ + O
((
ξ2 + 1

)
ε

2
3
)
, ξ ∈

(
− δ

ε
2
3

,
δ

ε
2
3

)
as ε → 0. (106)
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3.4.2. A priori estimates for the equation L(ϕ) = f

The a priori estimates, in the uniform norm, of the following proposition will be crucially used later on for showing
the existence of solutions of (31), uniformly close to the approximations uap±, for ε > 0 small.

Proposition 3.23. Suppose that ϕ, f are radial, ϕ ∈ C1([0,1]) ∩ C2((0,1] − {r0 ± Lε
2
3 }) with ϕrr possibly having

finite jump discontinuities at r0 ±Lε
2
3 , and f ∈ C([0,1] − {r0 ±Lε

2
3 }) possibly having finite jump discontinuities at

r0 ±Lε
2
3 .

If

L(ϕ) = f in B1, ∂νϕ = 0 on ∂B1,

then

‖ϕ‖L∞
r (B1) � Cε− 2

3 ‖f ‖L∞
r (B1),

provided ε ∈ (0, ε0), where ε0,C > 0 are independent of f, ε.
If

L(ϕ) = ∣∣|x| − r0
∣∣f in B1, ∂νϕ = 0 on ∂B1,

then

‖ϕ‖L∞
r (B1) � C‖f ‖L∞

r (B1),

provided ε ∈ (0, ε0), where ε0,C > 0 are independent of f , ε.

Proof. We will prove the first assertion of the proposition, and leave the other one to the interested reader. We will

argue by contradiction. Let us assume the existence of sequences εn > 0, ϕn ∈ C1([0,1]) ∩ C2((0,1] − {r0 ± Lε
2
3
n })

with (ϕn)rr possibly having finite jump discontinuities at r0 ±Lε
2
3
n , fn ∈ C([0,1]−{r0 ±Lε

2
3
n }) possibly having finite

jump discontinuities at r0 ±Lε
2
3
n such that

εn → 0, ε
− 2

3
n ‖fn‖L∞

r (B1) → 0 as n → +∞, ‖ϕn‖L∞
r (B1) = 1, (107)

and

−ε2
n�ϕn + Qn

(|x|)ϕn = fn in B1, ∂νϕn = 0 on ∂B1, n � 1. (108)

Without loss of generality we may assume that ‖ϕn‖L∞
r (B1) = ϕn(xn) = 1 with |xn| = rn, 0 � rn � 1. Note that

rn ∈ [
r0 − 2Lε

2
3
n , r0 + 2Lε

2
3
n

]
for all large n � 1. (109)

Indeed, if for a subsequence |xn| < r0 − 2Lε
2
3
n or r0 + 2Lε

2
3
n < |xn| � 1, then �ϕn(xn) � 0. To see this, first of all

note that �ϕn is continuous at xn (from (108)). Supposing that �ϕn(xn) > 0, then there exists a ball Bn, contained in
B̄1 − {0}, such that �ϕn(x) > 0 in Bn, xn ∈ ∂Bn, and ϕn(x) < ϕn(xn) = 1 in Bn (note that ϕn ∈ C1(B̄n) ∩ C2(Bn)).
Therefore, by the Hopf boundary lemma [27], we have ∂νϕn > 0 at xn, where ν is any outward normal vector with
respect to Bn. This is a contradiction because if xn ∈ B1 then ∇ϕn(xn) = 0, and if xn ∈ ∂B1 then ∂νϕn = 0 at xn.

Hence, via (103) and (108), we get cε
2
3
n � fn(xn) which is not possible, if n is sufficiently large, by (107).

On the other hand, ϕ̃n(ξ) = ϕn(r0 + ε
2
3
n ξ) clearly satisfies⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
−(ϕ̃n)ξξ − ε

2
3
n

N − 1

r0 + ε
2
3
n ξ

(ϕ̃n)ξ + Q̃nϕ̃n = ε
− 2

3
n fn

(
r0 + ε

2
3
n ξ

)
, |ϕ̃n| � 1, − r0

ε
2
3
n

< ξ <
1 − r0

ε
2
3
n

,

ϕ̃n(ξn) = 1, ξn = rn − r0
2
3

, n � 1,
(110)
εn
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where Q̃ was defined in (105). Using (106), (107), and a standard compactness argument, as in the proof of
Lemma 3.19, we find that, after passing to a suitable subsequence,

ϕ̃n → ϕ̃0 in C1
loc(R) and ξn → ξ0 ∈ [−2L,2L] as n → +∞,

where for the second relation we used (109). Passing to the limit, along this subsequence, in (110) yields

−(ϕ̃0)ξξ + (
2U1(ξ) − ar(r0)ξ − br(r0)ξ

)
ϕ̃0 = 0, |ϕ̃0| � 1, ξ ∈ R, and ϕ̃0(ξ0) = 1.

Since 2U1(ξ) − ar(r0)ξ − br(r0)ξ → +∞ linearly as ξ → ±∞, by a standard barrier argument, we get ϕ̃0 =
O(e−c|ξ | 3

2
) as ξ → ±∞, in particular ϕ̃0 ∈ L2(R) which implies that Kernel{M} �= ∅ (M as in Remark 3.4 and

Proposition 3.6). However, in view of Remark 3.4 and Proposition 3.6, this is not possible. We have thus reached a
contradiction, and the proof is complete. �
Remark 3.24. In the case where U1 = U1+, the assertion of Proposition 3.23 can be derived directly from a maximum
principle argument (recall Remark 3.18).

3.4.3. Spectral analysis of L

We will show that the spectrum of L± is linked, as ε → 0, to that of the limit operators M±, defined in Remark 3.4
and Proposition 3.6. Let us recall that the spectrum of the linear operator, in L2(R),

M(ψ) = −ψξξ + (
2U1(ξ) − ar(r0)ξ − br(r0)ξ

)
ψ,

consists of simple eigenvalues μ1 < μ2 < · · · with μi → +∞ as i → +∞, see Remark 3.4 and Proposition 3.6.
Furthermore, the corresponding L∞-normalized eigenfunctions ψi satisfy∣∣(ψi)ξξ

∣∣ + ∣∣(ψi)ξ
∣∣ + |ψi | � Ci exp

(−ci |ξ | 3
2
)
, ξ ∈ R, (111)

and ψi has i − 1 zeros in R, i = 1,2, . . . .
The following proposition will be the basis for studying the stability properties, in the radial class, of the radial

solutions that we will construct close to uap±.

Proposition 3.25. Given m ∈ N (independent of ε), the first m eigenvalues λ1 < · · · < λm of L, in the radial class,
and the corresponding L∞

r -normalized eigenfunctions ϕi satisfy

λi = μiε
2
3 + O

(
ε

4
3
)

and ϕi

(
r0 + ε

2
3 ξ

) → ψi in C1
loc(R) as ε → 0, i = 1, . . . ,m. (112)

Proof. Let us consider

μiε
2
3 , Φi = ψi

( |x| − r0

ε
2
3

)
ζ
(|x|), x ∈ B1, i = 1, . . . ,m (113)

(ζ was defined in (61)) as approximate eigenvalue-eigenfunction pairs for L. Note that, from (111),

‖Φi‖2
L2
r (B1)

= ε
2
3

δ

ε
2
3∫

− δ

ε
2
3

(
r0 + ε

2
3 ξ

)N−1
ψ2

i (ξ) dξ + O
(
e− c

ε
) = ε

2
3 rN−1

0

+∞∫
−∞

ψ2
i dξ + o

(
ε

2
3
)

as ε → 0, (114)

where we used Lebesgue’s dominated convergence theorem. For r ∈ (r0 − δ, r0 + δ) or equivalently ξ ∈ (− δ

ε
2
3
, δ

ε
2
3
),

via (106) and (111), we have

ε− 2
3
(
L(Φi)− μiε

2
3 Φi

)(
r0 + ε

2
3 ξ

) = −(ψi)ξξ − N − 1

r0 + ε
2
3 ξ

ε
2
3 (ψi)ξ + Q̃ψi −μiψi = O

(
ε

2
3
)

exp
(−c|ξ | 3

2
)
.

For r ∈ (0, r0 − δ)∪ (r0 + δ,1), we have (L(Φi)− μiε
2
3 Φi)(r) = O(e− c

ε ). Similarly as in (114), we find that∥∥L(Φi)−μiε
2
3 Φi

∥∥
2 = O

(
ε

5
3
) = O

(
ε

4
3
)‖Φi‖L2(B ). (115)
Lr (B1) r 1
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Since L is self-adjoint in L2
r (B1) with domain D(L) as in (101), by employing regular perturbation theory for self-

adjoint operators (see [34, pp. 53–54]), we deduce from (115) that

σ(L)∩ (
μiε

2
3 − O

(
ε

4
3
)
,μiε

2
3 + O

(
ε

4
3
)) �= ∅ as ε → 0, i = 1, . . . ,m. (116)

We denote by λi, i = 1, . . . ,m, the first m eigenvalues of L. In view of (104) and (116), we infer that

−Cε
2
3 � λi � μmε

2
3 + O

(
ε

4
3
)

as ε → 0, i = 1, . . . ,m. (117)

Since L is a radial operator, it follows that to each λi there corresponds a unique L∞
r -normalized eigenfunction ϕi .

Moreover, it is well known (see [66, Chapter VI]) that ϕi(r) has i − 1 zeros in (0,1) (all of them simple). Note that,

from (103) and the Neumann boundary conditions, the zeros of ϕi , i = 1, . . . ,m are contained in (r0 − Cmε
2
3 , r0 +

Cmε
2
3 ) for some large constant Cm >L.

Clearly ϕ̃i (ξ) = ϕi(r0 + ε
2
3 ξ) satisfies

−(ϕ̃i)ξξ − ε
2
3

N − 1

r0 + ε
2
3 ξ

(ϕ̃i)ξ + Q̃ϕ̃i = λiε
− 2

3 ϕ̃i , ξ ∈
(

− r0

ε
2
3

,
1 − r0

ε
2
3

)
, (118)

and ‖ϕ̃i‖L∞ = 1, i = 1, . . . ,m. Using (106), (117), and passing to a subsequence εn → 0, n → +∞, as in (110), we
find that

ϕ̃i,n → ϕ̃i,0 in C1
loc(R), λi,nε

− 2
3

n → λ̃i,0 as n → +∞,

and

−(ϕ̃i,0)ξξ + (
2U1(ξ) − ar(r0)ξ − br(r0)ξ

)
ϕ̃i,0 = λ̃i,0ϕ̃i,0, ξ ∈ R, ‖ϕ̃i,0‖L∞(R) = 1, i = 1, . . . ,m.

(119)

As in the proof of Proposition 3.23, we see that ϕ̃i,0 → 0 super-exponentially as ξ → ±∞ and, in particular, that
ϕ̃i,0 ∈ L2(R). Since each ϕ̃i,n, n � 1, has i − 1 zeros, all of them simple and contained in (−Cm,Cm), it follows that
ϕ̃i,0 has i −1 simple zeros in (−2Cm,2Cm) (we also made use of the uniqueness theorem of initial value problems for
Eq. (119) at this point). On the other hand, since Cm > L, we see from (67) that ϕ̃i,0 does not have any zeros outside
of (−Cm,Cm). Hence ϕ̃i,0 has i − 1 zeros in (−∞,+∞). Consequently, we obtain that λ̃i,0 = μi and ϕ̃i,0 = ψi ,
i = 1, . . . ,m. By the uniqueness of the limit, and (116), we deduce that (112) holds.

The proof of the proposition is complete. �
Remark 3.26. By using (120), it is possible to obtain higher order approximations of the eigenvalues λi, i � 1, in
Proposition 3.25. Although, this is of interest in its own right, we do not exhibit the details in this paper.

Remark 3.27. It is not obvious to us, how to conclude the validity of the L∞
r -bounds of Proposition 3.23 directly

from Proposition 3.25.

Remark 3.28. Since

2U1(ξ) − ar(r0)ξ − br(r0)ξ = (
br(r0)− ar(r0)

)|ξ | + O
(
e−c|ξ | 3

2 )
as ξ → ±∞,

it follows from the WKB eigenvalue condition [4, pp. 521] that

μi = ci
2
3 + o

(
i

2
3
)

as i → +∞, for some constant c > 0.

Hence, by examining the proof of Proposition 3.25, we expect that there exists a constant d > 0 such that the first [ d
ε
]

(radial) eigenvalues of L behave qualitatively like μiε
2
3 , i = 1, . . . , [ d

ε
] as ε → 0.
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3.5. Existence and stability of radial corner layered solutions

We are now in position to show, via the contraction mapping theorem, the existence of solutions u± of (31) near
the approximations uap±, for small ε > 0, and study their stability properties.

Theorem 3.29. Problem (31) admits two distinct solutions u+, u− such that

u±(r) = a(r0)+ ε
2
3 U1±

(
r − r0

ε
2
3

)
+ ε

4
3 U2±

(
r − r0

ε
2
3

)
+ O

(
ε2 + (r − r0)

3), r ∈ (r0 − δ, r0 + δ), (120)

and

u± − max{a, b} = O
(
ε2), r ∈ [0, r0 − δ] ∪ [r0 + δ,1] as ε → 0, (121)

where U1, U2 are as is Propositions 3.2, 3.6, 3.11.
Moreover, given m ∈ N, the first m eigenvalues of the radial linearized operators

L±(ϕ) = −ε2�ϕ + (2u± − a − b)ϕ, ∂νϕ = 0 on ∂B1,

satisfy

λi± = μi±ε
2
3 + O

(
ε

4
3
)

as ε → 0, i = 1, . . . ,m,

where

0 <μ1+ <μ2+ < · · · and μ1− < 0 <μ2− < · · · ,
were defined in Remark 3.4 and Proposition 3.6.

Proof. We search for a solution of (31) as

u = uap + φ,

with φ ∈ C1([0,1]) ∩C2((0,1) − {r0 ±Lε
2
3 }). We find that φ satisfies

L(φ) = N(φ) +E, (122)

where L is as in (101), (102), with e = 0,

N(φ) = −φ2 and E = ε2(uap)rr + ε2 N − 1

r
(uap)r − (

uap − a(r)
)(
uap − b(r)

)
(note that the equality in (122) holds in the L2

r (B1) sense). Given φ ∈ C
γ
r (B̄1), for some 0 < γ < 1, the right-hand

side of (122) is in L
p
r (B1) for every p > 1. Hence, by Proposition 3.23 and elliptic regularity theory [27], there exists

a unique T (φ) ∈ W
2,p
r (B1)∩ D(L) such that

L
(
T (φ)

) = N(φ) +E. (123)

By choosing p >N large, we find that T (φ) ∈ C
1+γ
r (B̄1) (see [27]). Now, via (123) and elliptic regularity theory, we

obtain that

uap + T (φ) ∈ C
2+γ
r (B̄1). (124)

Let

XM = {
φ ∈ C

γ
r (B̄1): ‖φ‖L∞

r (B1) � Mε2},
where M > 0 is a large constant, independent of ε, to be determined so that T (XM) ⊆ XM and T is a contraction in
XM with respect to the L∞

r -norm, if ε > 0 is sufficiently small. If φ ∈ XM , then from (98), Proposition 3.23 (which
can be applied thanks to (124)) and (123), we obtain that∥∥T (φ)

∥∥ ∞ � Cε− 2
3 ‖φ‖2

L∞(B ) +Cε2 � CM2ε
10
3 + Cε2 � Mε2,
Lr (B1) r 1
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for small ε > 0, provided M is fixed sufficiently large. Hence, we have that T (XM) ⊆ XM for small ε > 0. Similarly,
if φ1, φ2 ∈ XM , we derive that∥∥T (φ1)− T (φ2)

∥∥
L∞
r (B1)

� CMε
4
3 ‖φ1 − φ2‖L∞

r (B1).

Thus, if ε > 0 is sufficiently small, the mapping T is a contraction in XM . Therefore, by the contraction mapping
principle, we deduce that T has a unique fixed point φ∗ ∈ XM , if ε > 0 is sufficiently small. Recalling (124), we see
that u± = uap± + φ∗± = uap± + T (φ∗±) ∈ C

2+γ
r (B̄1), and solve (31) (recall also (99)). Note that

u± = uap± + O
(
ε2), uniformly in B̄1, as ε → 0,

and (120) now follows from (100). Relation (121) follows readily by recalling (60), (65), and (95). The asymptotic
estimates on the first m eigenvalues are a direct consequence of Proposition 3.25, with Q = 2u± − a − b = 2uap± −
a − b + 2φ∗±, see (102).

The proof of the theorem is complete. �
3.5.1. Smoothness of the radial corner layered solutions u± with respect to ε > 0

The bifurcation problems, we will consider in Section 5, require smoothness of the solution u−, with respect to
ε > 0, and information on the behavior of ∂

∂ε
u− as ε → 0. A formal calculation, starting from (120), predicts the

following

Lemma 3.30. There exists ε0 > 0 such that the mappings u± : (0, ε0) → C2+γ (B̄1) are C2, where 0 < γ < 1. More-
over,

ε
1
3

(
∂

∂ε
u±

)(
r0 + ε

2
3 ξ

) → 2

3

(
U1± − ξ(U1±)ξ

)
in C1

loc(R) as ε → 0.

Proof. Let Z = Cγ (B̄1), where 0 < γ < 1, endowed with the usual L2 inner product,

X = {
u ∈ C2+γ (B̄1): ∂νu = 0 on ∂B1

}
, and I = (0, ε0).

We associate to (1) the map F :X × I → Z defined by

F(u, ε) = −ε2�u + (
u − a

(|x|))(u − b
(|x|)).

Clearly F ∈ C2(X × I, Z), i.e., F ∈ C2(Xr × I, Zr), and one has

Fu(u, ε)v = −ε2�v + (
2u(x)− a

(|x|) − b
(|x|)) v,u, v ∈ X, ε ∈ I.

In view of Theorem 3.29, the linear operators (Fu(u±, ε))−1 :Zr → Xr exist, and, by the closed graph theorem, they
are bounded. The implicit function theorem then implies that, for each ε ∈ (0, ε0), u± are isolated solutions of (1) in
Xr , and u± : (0, ε0) → X are C2.

For convenience, let us drop the subscripts ± and write ∂
∂ε

u(x) = u̇(x), x ∈ B1. By differentiating (1) (at u =
u±(ε)) with respect to ε, we obtain that

L(u̇) = 2ε�u = 2ε−1(u − a
(|x|))(u − b

(|x|)) in B1, ∂νu̇ = 0 on ∂B1,

where L is as in Theorem 3.29. From (60), (65), (95), and Theorem 3.29, we infer that u − max{a, b} = O(ε
2
3 ),

uniformly in B̄1, as ε → 0. Furthermore, from (2), we have |a(|x|) − b(|x|)| � C||x| − r0|, x ∈ B̄1. So,

L(u̇) = O
(
ε

1
3 + ε− 1

3
∣∣|x| − r0

∣∣) in B1, ∂νu̇ = 0 on ∂B1.

Hence, via Proposition 3.23 and a standard comparison argument, we derive that

‖u̇‖L∞
r (B1) � Cε− 1

3 . (125)

Let w(ξ) = ε
1
3 (u̇)(r0 + ε

2
3 ξ), then

−wξξ − ε
2
3

N − 1
2
3

wξ + Q̃w = 2ε− 4
3
(
u
(
r0 + ε

2
3 ξ

) − a
(
r0 + ε

2
3 ξ

))(
u
(
r0 + ε

2
3 ξ

) − b
(
r0 + ε

2
3 ξ

))
,

r0 + ε ξ
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|w(ξ)| � C, ξ ∈ (− r0

ε
2
3
,

1−r0

ε
2
3

) (recall (125)), where Q̃ is as in (105) with e = 2(u − uap). In view of (106), (120), and

the standard compactness argument, we can pass to a subsequence εn → 0, n → +∞, such that wn → w0 in C1
loc(R)

as n → +∞. Moreover,

M(w0) = −(w0)ξξ + (
2U1 − ar(r0)ξ − br(r0)ξ

)
w0 = 2

(
U1 − ar(r0)ξ

)(
U1 − br(r0)ξ

) = 2(U1)ξξ ,

|w0(ξ)| � C, ξ ∈ R, and it follows that w0 ∈ L2(R). On the other hand, it is easy to check that M(U1 − ξ(U1)ξ ) =
3(U1)ξξ , ξ ∈ R. Hence, by Remark 3.4 and Proposition 3.6, we deduce that w0 = 2

3 (U1 − ξ(U1)ξ ). The uniqueness of
the limit implies the assertion of the lemma, and the proof is complete. �
4. The non-radial linearized operator on the radial corner layered solution u−

In the rest of the paper, we will assume that N � 2. In this section we will study the linearization of (1), in the
general class (not necessarily radial), at the radial solution u−. In particular, we will estimate the asymptotic behavior
of the eigenvalues that are closest to zero, as ε → 0. We will call such eigenvalues critical.

We consider the eigenvalue problem

−ε2�Ψ +Q−
(|x|)Ψ = ΛΨ in B1, ∂νΨ = 0 on ∂B1, (126)

where Q− = 2u− − a − b (recall that Q− satisfies the hypotheses of (102)). Here Ψ is not assumed to be radially
symmetric. It is well known that (126) has a sequence of eigenvalues Λ1 < Λ2 � Λ3 � · · · , with Λ1 the principal
eigenvalue whose corresponding eigenfunction Ψ1 can be chosen positive, and Λk → +∞ as k → +∞. Moreover,
Ψ1 is radially symmetric and therefore Λ1 = λ1 (defined in Theorem 3.29). Any other eigenvalue Λk corresponds to
a finite number of linearly independent sign-changing eigenfunctions which span a finite dimensional space Yk . Note
that we have Y1 = Span{Ψ1}. Denote mk = dim(Yk), and suppose Λj < 0, Λj+1 � 0; then

Mε =
j∑

k=1

mk (127)

is called the Morse index of u−.

4.1. Separation of variables

For studying (126), we make use of polar coordinates

x = (r, θ), r = |x|, θ ∈ SN−1,

and the Laplace–Beltrami operator �SN−1 on the unit sphere SN−1. We have

� = ∂rr + N − 1

r
∂r + 1

r2
�SN−1 .

It is well known that the eigenvalues of −�SN−1 are τk = (k−1)(k+N −3), k = 1,2, . . . , and that the eigenfunctions
corresponding to τk span the space of homogeneous and harmonic polynomials of degree k − 1, which we denote by
Hk−1. Moreover, the following orthogonal decomposition holds

L2(SN−1) =
⊕
k�1

Hk−1, and dim(Hk−1) = (2k +N − 4)(k +N − 4)!
(k − 1)!(N − 2)! . (128)

By Lemma 3.3 in [19], we know that the pair (Λ,Ψ ), Ψ nontrivial, solves (126) if and only if there exists a pair
(Λ,A), A nontrivial, that solves⎧⎪⎨

⎪⎩
−ε2Arr − ε2 N − 1

r
Ar +

(
ε2 τk

r2
+Q−(r)

)
A = ΛA in (0,1),

A ∈ C2((0,1]) ∩C
([0,1]), Ar(1) = 0,

(129)

for some k = 1,2, . . . . Furthermore,

Ψ (x) = A
(|x|)Θ(

x

|x|
)

for some Θ ∈ Hk−1. (130)
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4.2. The critical eigenvalues of the general singular radial problem

As in [19], for later applications, we consider a more general problem⎧⎪⎨
⎪⎩

−ε2Arr − ε2 N − 1

r
Ar +

(
εα

τ

r2
+ Q−(r)

)
A = ΛA in (0,1),

A ∈ C2((0,1]) ∩ C
([0,1]), Ar(1) = 0,

(131)

where τ > 0 and α ∈ [ 2
3 ,2]. It has been shown in [19,60] that if A solves (131) (recall that τ > 0), then A(0) = 0 and

A(r)r−γ → β, Ar(r)r
1−γ → εα−2τβ

γ + N − 2
as r → 0, (132)

for some β �= 0, where

γ = 1

2

(
2 −N +

√
(N − 2)2 + 4εα−2τ

)
.

Despite of the fact that (131) is a singular eigenvalue problem, we can still show the existence of a “principal”
eigenvalue.

Lemma 4.1. Given τ ∗ > 0 (independent of ε), there exists ε0 > 0 such that for each ε ∈ (0, ε0), τ ∈ (0, τ ∗], α ∈ [ 2
3 ,2],

problem (131) has a solution pair (Λ
ε,τ,α
1 ,A

ε,τ,α
1 ) with A

ε,τ,α
1 (r) > 0 in (0,1], ‖Aε,τ,α

1 ‖L∞(0,1) = 1,(
A

ε,τ,α
1

)
r
> 0 in

(
0, r0 − Cε

2
3
); (

A
ε,τ,α
1

)
r
< 0 in

(
r0 + Cε

2
3 ,1

)
,

and

−Cε
2
3 � Λ

ε,τ,α
1 � Cε

2
3 ,

for some constant C > 0 depending only τ∗.
Moreover, if (Λ∗,A∗) is another solution pair of (131), with A∗(r) > 0 in (0,1], then Λ∗ = Λ

ε,τ,α
1 and A∗ is a

constant multiple of Aε,τ,α
1 .

Proof. This is essentially Lemma 3.4 in [19], where the heterogeneous Allen–Cahn equation was treated. We will
adapt their proof to our present situation because it will be the basis for showing that Λε,τ,α

1 is differentiable, with
respect to ε > 0, in Lemma 4.3 below. In turn, this differentiability property will be required in Section 5 dealing with
the bifurcation problem.

For small η > 0 (independent of ε), let us consider the auxiliary problem over (η,1),

−ε2Arr − ε2 N − 1

r
Ar +

(
εα

τ

r2
+Q−(r)

)
A = ΛA, A(η) = 0, Ar(1) = 0. (133)

This is a regular eigenvalue problem, and let us denote its first eigenvalue by Λη, and by Aη the corresponding
eigenfunction such that

Aη > 0 in (η,1] and ‖Aη‖L∞(η,1) = 1. (134)

From the variational characterization

Λη = inf
v∈Dη−{0}

∫
η<|x|<1

[
ε2|∇v|2 +

(
εα

τ

|x|2 + Q−
(|x|))v2

]
dx

/ ∫
η<|x|<1

v2 dx, (135)

where Dη = {v ∈ W
1,2
r (η < |x| < 1): v = 0 on |x| = η, ∂νv = 0 on ∂B1}, we easily see that Λη varies continuously,

and is strictly increasing, with respect to η. By (104) and (135), certainly

Λη � −Cε
2
3 , ε ∈ (0, ε1) (ε1, C > 0 independent of ε, η, τ,α). (136)

Next we use Φ1, defined in (113) (with ψ1 = ψ1−), as a test function in (135) to obtain an upper bound for Λη. We
have
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∫
η<|x|<1

[
ε2|∇Φ1|2 +

(
εα

τ

|x|2 + Q−
(|x|))Φ2

1

]
dx

=
∫
B1

[
ε2|∇Φ1|2 +Q−

(|x|)Φ2
1

]
dx + εατ

r0+2δ∫
r0−2δ

ψ2
1

(
r − r0

ε
2
3

)
ζ 2(r)rN−3 dr

�
(
L−(Φ1),Φ1

)
L2(B1)

+ εα+ 2
3 τ

2δ

ε
2
3∫

− 2δ

ε
2
3

ψ2
1 (ξ)

(
r0 + ε

2
3 ξ

)N−3
dξ

� μ1−ε
2
3 ‖Φ1‖2

L2(B1)
+ ∥∥L−(Φ1)−μ1−ε

2
3 Φ1

∥∥
L2(B1)

‖Φ1‖L2(B1)
+ εα+ 2

3 τ
(
rN−3

0 ‖ψ1‖2
L2(R)

+ o(1)
)
.

In view of (114), (115), and (135), we derive that

Λη � μ1−ε
2
3 + εαr−2

0 τ + Cε
4
3 + τo

(
εα

)
� C∗ε

2
3 , ε ∈ (0, ε1)

(
C∗ > 0 depends only on τ ∗), (137)

where ε1 is independent of η, τ,α. Therefore, it follows from (103) and (137) that

εα
τ

r2
+ Q−(r) −Λη � cε

2
3 in

(
η, r0 − C∗ε

2
3
) ∪ (

r0 +C∗ε
2
3 ,1

)
, ε ∈ (0, ε∗), (138)

for some new C∗ >L, ε∗ > 0 depending only on τ ∗, and c > 0 independent of ε, η, τ , α. So, from (133), (134), (138),

we obtain that (rN−1(Aη)r )r > 0 in (η, r0 −C∗ε
2
3 )∪ (r0 +C∗ε

2
3 ,1), and, since (Aη)r (η) > 0, (Aη)r (1) = 0, we infer

that

(Aη)r > 0 in
(
η, r0 −C∗ε

2
3
);

(Aη)r < 0 in
(
r0 +C∗ε

2
3 ,1

)
, ε ∈ (0, ε∗)

(
ε∗, C∗ > 0 depend only on τ ∗). (139)

By (133), (134), (136), (137), and standard elliptic estimates, we can find a subsequence ηj → 0, j → +∞, such that
Aηj → A0 in C1

loc((0,1]), and Ληj → Λ0 as j → +∞. Furthermore, we have

−ε2(A0)rr − ε2 N − 1

r
(A0)r +

(
εα

τ

r2
+Q−(r)

)
A0 = Λ0A0 in (0,1), (A0)r (1) = 0, A0 ∈ C2((0,1]),

−Cε
2
3 � Λ0 � Cε

2
3 , ε ∈ (0, ε0) (ε0, C > 0 depend only on τ ∗). From (134), (139), and the above equation, we

obtain that ‖A0‖L∞(0,1) = 1, A0 > 0 in (0,1], and (A0)r � 0 in (0, r0 −Cε
2
3 ); (A0)r � 0 in (r0 +Cε

2
3 ,1), ε ∈ (0, ε0)

(ε0, C > 0 depend only on τ ∗). It follows that A0 ∈ C([0,1]), and thus satisfies (131). We have proven the existence
part of the lemma, with Λ

ε,τ,α
1 = Λ0 and A

ε,τ,α
1 = A0.

It remains to show uniqueness. Suppose that (Λ∗,A∗) and (Λ,A) are two pairs of solutions of (131), as described
in the statement of the lemma, with Λ∗ �= Λ. By virtue of (132), the behavior of A∗, A for r near 0 allows us to use
integration by parts to obtain

1∫
0

(
rN−1Ar

)
r
A∗ dr =

1∫
0

(
rN−1(A∗)r

)
r
Adr.

Therefore we can multiply the equation of (Λ,A) by rN−1A∗, the equation of (Λ∗,A∗) by rN−1A, subtract, and
integrate over (0,1), to arrive at

(Λ −Λ∗)
1∫

0

A∗(r)A(r)rN−1 dr = 0.

But this is impossible since A∗(r), A(r) > 0 in (0,1]. This proves that Λ∗ = Λ. Then, the uniqueness theorem of
initial value problems for ordinary differential equations implies that A∗(r) = A∗(1)

A(1) A(r), r ∈ [0,1].
The proof of the lemma is complete. �
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The following proposition concerns the asymptotic behavior of (Λε,τ,α
1 , Aε,τ,α

1 ) as ε → 0.

Proposition 4.2. Given τ ∗ > 0 (independent of ε), we have

A
ε,τ,α
1

(
r0 + ε

2
3 ξ

) → ψ1− in C1
loc(R) and Λ

ε,τ,α
1 = μ1−ε

2
3 + r−2

0 τεα + O
(
ε

4
3
)
,

as ε → 0, uniformly in τ ∈ (0, τ ∗] and α ∈ [ 2
3 ,2]; where ψ1− > 0, μ1− < 0 were defined in Proposition 3.6.

Proof. Note that Ã1(ξ) = A
ε,τ,α
1 (r0 + ε

2
3 ξ) satisfies

−(Ã1)ξξ − ε
2
3

N − 1

r0 + ε
2
3 ξ

(Ã1)ξ +
(
εα− 2

3
τ

(r0 + ε
2
3 ξ)2

+ Q̃−(ξ)

)
Ã1 = ε− 2

3 Λ
ε,τ,α
1 Ã1, (140)

ξ ∈ (− r0

ε
2
3
,

1−r0

ε
2
3

), where Q̃− is as in (105).

Suppose that ε → 0, τε ∈ (0, τ ∗], and αε ∈ [ 2
3 ,2]. Then, thanks to the properties of Aε,τ,α

1 , Λε,τ,α
1 we established in

Lemma 4.1, relation (106), and the standard compactness argument, we can pass to a subsequence εn → 0, n → +∞,
such that

Ã1,n → Ã1,0 in C1
loc(R), ε

− 2
3

n Λ
εn,τn,αn

1 → Λ̃0
1 and ε

αn− 2
3

n τn → c0 as n → +∞, (141)

for some Ã1,0 ∈ C1(R), Λ̃0
1 ∈ R, c0 ∈ [0, τ ∗]. Furthermore, we have

−(Ã1,0)ξξ + (
2U1−(ξ) − ar(r0)ξ − br(r0)ξ

)
Ã1,0 =

(
Λ̃0

1 − c0

r2
0

)
Ã1,0, ξ ∈ R,

Ã1,0(ξ) > 0, ξ ∈ R, ‖Ã1,0‖L∞(R) = 1, and it follows that Ã1,0 ∈ L2(R). Hence, we infer that Ã1,0 = ψ1−, and
Λ̃0

1 = μ1− + r−2
0 c0. By the uniqueness of the limit (of {Ã1}), we deduce that

Ã1 → ψ1− in C1
loc(R) as ε → 0, uniformly in τ ∈ (

0, τ ∗] and α ∈
[

2

3
,2

]
. (142)

This proves the first assertion of the proposition.
We multiply (140) by ψ1−, and integrate over (− δ

ε
2
3
, δ

ε
2
3
), to find

−

δ

ε
2
3∫

− δ

ε
2
3

(Ã1)ξξψ1− − ε
2
3

δ

ε
2
3∫

− δ

ε
2
3

N − 1

r0 + ε
2
3 ξ

(Ã1)ξψ1− +

δ

ε
2
3∫

− δ

ε
2
3

(
εα− 2

3
τ

(r0 + ε
2
3 ξ)2

+ Q̃−(ξ)

)
Ã1ψ1−

= ε− 2
3 Λ

ε,τ,α
1

δ

ε
2
3∫

− δ

ε
2
3

Ã1ψ1−.

Recalling the definition of (μ1−,ψ1−) (see also (148) below), it is convenient to integrate by parts the first integral
in the above relation (the boundary terms are of order O(e− c

ε ), by (111) and Lemma 4.1). We can now pass to the
limit ε → 0 in the resulting identity, thanks to (106), (111), (142) and Lebesgue’s dominated convergence theorem.
We conclude that the second assertion of the proposition holds as well.

The proof of the proposition is complete. �
A formal calculation, based on the second assertion of Proposition 4.2, predicts the following lemma.
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Lemma 4.3. Given τ ∗ > 0 (independent of ε), if τ ∈ (0, τ ∗], α ∈ [ 2
3 ,2], then Λ

ε,τ,α
1 is C1 with respect to ε ∈ (0, ε0).

Moreover,

∂

∂ε
Λ

ε,τ,α
1 = 2

3
μ1−ε− 1

3 + αr−2
0 τεα−1 + o

(
ε− 1

3
)

as ε → 0,

uniformly in τ ∈ (0, τ ∗] and α ∈ [ 2
3 ,2].

Proof. Because (131) is a singular eigenvalue problem, we will again make use of the regularized problem (133).
Since Λη is a simple eigenvalue of (133) (according to the definition in [14]), by a result of [14], we know that
(Λη,Aη) depend smoothly on ε ∈ (0, ε0) (recall that ε0 depends only on τ ∗). In particular, it follows that Aη is a C1

map from (0, ε0) to C2([η,1]).
For simplifying notation in this proof, we will write (Λ,A) = (Λη,Aη), Λ̇ = ∂

∂ε
Λ, Ȧ = ∂

∂ε
A, r ∈ [η,1], ε ∈ (0, ε0),

and (Λ1,A1) = (Λ
ε,τ,α
1 ,A

ε,τ,α
1 ), r ∈ [0,1], ε ∈ (0, ε0).

Differentiating (133) with respect to ε ∈ (0, ε0), we derive that

−ε2Ȧrr − ε2 N − 1

r
Ȧr +

(
εα

τ

r2
+Q−

)
Ȧ −ΛȦ

= 2ε−1Q−A + (2 − α)εα−1 τ

r2
A− 2ε−1ΛA− 2u̇−A + Λ̇A,

r ∈ (η,1), and Ȧ(η) = Ȧr (1) = 0. Multiplying both sides of the above equation by rN−1A, integrating by parts over
(η,1), and using (133), we arrive at

−Λ̇

1∫
η

A2rN−1 = 2ε−1

1∫
η

Q−A2rN−1 + (2 − α)εα−1τ

1∫
η

A2rN−3 − 2ε−1Λ

1∫
η

A2rN−1

− 2

1∫
η

u̇−A2rN−1. (143)

Let us fix an arbitrary compact interval J ⊂ (0, ε0). From the proof of Lemma 4.1, we have that Λ → Λ1 as
η → 0, uniformly in ε ∈ J . Thus Λ1 is continuous in ε ∈ J . Next we want to show that Λ̇ converges, pointwise in
(0, ε0), as η → 0. We will make use of the fact that A → A1 in C1

loc((0,1]) as η → 0 (from the proof of Lemma 4.1),

together with the bounds: 0 < A � 1, r ∈ (η,1], and 0 < A � Drγ
′
, r ∈ (η, d] for some positive constants γ ′, d ,

D independent of η (this follows from (133), (134), and a standard barrier argument). Now employing Lebesgue’s
dominated convergence theorem, via (143), we find that

Λ̇ → −2ε−1
∫ 1

0 Q−A2
1r

N−1 + (2 − α)εα−1τ
∫ 1

0 A2
1r

N−3 − 2ε−1Λ1
∫ 1

0 A2
1r

N−1 − 2
∫ 1

0 u̇−A2
1r

N−1∫ 1
0 A2

1r
N−1

as η → 0, ε ∈ (0, ε0)

(note that if N � 3, then the bound |A| � 1 suffices in order to pass to the limit). Hence Λ1 is differentiable with
respect to ε ∈ J , and

∂

∂ε
Λ1 = −2ε−1

∫ 1
0 Q−A2

1r
N−1 + (2 − α)εα−1τ

∫ 1
0 A2

1r
N−3 − 2ε−1Λ1

∫ 1
0 A2

1r
N−1 − 2

∫ 1
0 u̇−A2

1r
N−1∫ 1

0 A2
1r

N−1
,

ε ∈ J. (144)

Since J was an arbitrary compact interval of (0, ε0), and the right-hand side of (144) is continuous in ε > 0 (recall
Lemma 3.30), we conclude that Λ1 ∈ C1((0, ε0)).

Before we proceed any further, let us note that as in [10,19], we have
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0 <A(r) � exp

(
−c

|r − r0|
ε

2
3

)
, r ∈ (η,1] and

0 <A1(r) � exp

(
−c

|r − r0|
ε

2
3

)
, r ∈ (0,1], ε ∈ (0, ε0), (145)

where ε0, c > 0 depend only on τ ∗ (recall (138)).
Note that, via Lemma 3.30, Proposition 4.2, and (145),

1∫
0

u̇−A2
1r

N−1 = ε
1
3

1−r0

ε
2
3∫

− r0

ε
2
3

ε
1
3 (u̇−)

(
r0 + ε

2
3 ξ

)
A2

1

(
r0 + ε

2
3 ξ

)(
r0 + ε

2
3 ξ

)N−1

= 2

3
rN−1

0 ε
1
3

+∞∫
−∞

(
U1− − ξ(U1−)ξ

)
ψ2

1− + o
(
ε

1
3
)

as ε → 0. Similarly,

1∫
0

A2
1r

N−1 = ε
2
3 rN−1

0

+∞∫
−∞

ψ2
1− + o

(
ε

2
3
)

as ε → 0,

1∫
0

A2
1r

N−3 = ε
2
3 rN−3

0

+∞∫
−∞

ψ2
1− + o

(
ε

2
3
)

as ε → 0,

1∫
0

Q−A2
1r

N−1 = ε
4
3 rN−1

0

+∞∫
−∞

(
2U1− − ar(r0)ξ − br(r0)ξ

)
ψ2

1− + o
(
ε

4
3
)

as ε → 0
(
recall (106)

)
.

In view of the above, Proposition 4.2, and (144), we obtain that

∂

∂ε
Λ1 =

(
−2

∫ +∞
−∞ (2U1− − ar(r0)ξ − br(r0)ξ)ψ

2
1−∫ +∞

−∞ ψ2
1−

+ αεα− 2
3 τr−2

0 + 2μ1− + 4

3

∫ +∞
−∞ (U1− − ξ(U1−)ξ )ψ

2
1−∫ +∞

−∞ ψ2
1−

)

× ε− 1
3 + o

(
ε− 1

3
)

(146)

as ε → 0.
The only thing that remains is to calculate the integrals in the above relation. Since ψ1− is even (recall Remark 3.9),

certainly

+∞∫
−∞

ξψ2
1− = 0 and

+∞∫
−∞

ξ2ψ1−(ψ1−)ξ = 0. (147)

Now, we multiply the relation

−(ψ1−)ξξ + (
2U1− − ar(r0)ξ − br(r0)ξ

)
ψ1− = μ1−ψ1− (148)

by ψ1−, and integrate by parts over (−∞,+∞), to find that

+∞∫
U1−ψ2

1− = μ1−
2

+∞∫
ψ2

1− − 1

2

+∞∫ (
(ψ1−)ξ

)2
. (149)
−∞ −∞ −∞
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Differentiating (148), multiplying the resulting identity by ξψ1−, then integrating by parts over (−∞,+∞), using
(147) and (149), we arrive at

+∞∫
−∞

ξ(U1−)ξψ
2
1− =

+∞∫
−∞

(
(ψ1−)ξ

)2
. (150)

Now the assertion of the lemma follows at once from (146) via (147), (149), and (150).
The proof of the lemma is complete. �
We will need the following rough estimate.

Lemma 4.4. Given τ ∗ > 0 (independent of ε), suppose that ε ∈ (0, ε0), τ ∈ (0, τ ∗], α ∈ [ 2
3 ,2], and let (Λ,A) be a

solution pair of (131) with Λ �= Λ
ε,τ,α
1 and ‖A‖L∞(0,1) = 1. Then, for a possibly smaller ε0 > 0 (independent of τ , α),

Λ � μ2−
2

ε
2
3 , ε ∈ (0, ε0),

where μ2− > 0 was defined in Proposition 3.6.

Proof. We argue by contradiction. Suppose that there exist εn → 0 as n → +∞, τn ∈ (0, τ ∗], αn ∈ [ 2
3 ,2], and

(Λn,An) solving (131), with ε = εn, τ = τn, α = αn, such that Λn �= Λ
εn,τn,αn

1 , ‖An‖L∞(0,1) = 1, and Λn <
μ2−

2 ε
2
3
n ,

n � 1. In view of (104), we get

−Cε
2
3
n � Λn <

μ2−
2

ε
2
3
n , C > 0 independent of n (151)

(plainly multiply (131)n by rN−1An, and integrate by parts over (0,1) using (132)). Since Λn �= Λ
εn,τn,αn

1 , the second
assertion of Lemma 4.1 implies that An should change sign in (0,1). By (103), (151), and recalling that An(0) = 0,

(An)r (1) = 0, we deduce that all sign changes of An, as well as the maxima of |An|, take place in (r0 −Cε
2
3
n , r0 +Cε

2
3
n ),

C > 0 independent of n.

Let Ãn(ξ) = An(r0 + ε
2
3
n ξ), ξ ∈ (− r0

ε
2
3
n

,
1−r0

ε
2
3
n

). Then, arguing as in the proof of Proposition 4.2, we can pass to a

subsequence such that

Ãn → Ã0 in C1
loc(R), ε

− 2
3

n Λn → Λ̃0 and τnε
αn− 2

3
n → d0 as n → +∞.

Furthermore, we have

−(Ã0)ξξ + (
2U1−(ξ) − ar(r0)ξ − br(r0)ξ

)
Ã0 =

(
Λ̃0 − d0

r2
0

)
Ã0, ξ ∈ R.

Moreover, the function Ã0 changes sign in (−2C,2C), ‖Ã0‖L∞(R) = 1, and it follows that Ã0 ∈ L2(R). On the other
hand, since Λ̃0 − r−2

0 d0 � Λ̃0 � μ2−
2 , we get that Ã0 = ψ1− > 0, contradicting the fact that Ã0 changes sign.

The proof of the lemma is complete. �
4.3. The critical eigenvalues of the non-radial operator

We are now in position to give some accurate estimates for the critical eigenvalues of the linearized eigenvalue
problem (126).

Theorem 4.5. Given τ∗ > 0 (independent of ε), there exists ε0 > 0 such that (126) has eigenvalues of the form

Λ
ε,τk,2 = μ1−ε

2
3 + (k − 1)(k + N − 3)r−2ε2 + O

(
ε

4
3
)
, k = 1, . . . ,K as ε → 0, (152)
1 0
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provided τK = (K − 1)(K + N − 3) � τ ∗ε− 4
3 , ε ∈ (0, ε0). In the above, the multiplicity mk of the eigenvalue Λ

ε,τk,2
1

is given by

mk = (2k + N − 4)(k +N − 4)!
(k − 1)!(N − 2)! , 1 � k � K,

which is the dimension of the space Hk−1 of homogeneous and harmonic polynomials of degree k − 1, and the
eigenfunctions associated to Λ

ε,τk,2
1 are of the form

A
ε,τk,2
1

(|x|)Θ(
x

|x|
)

= ψ1−
( |x| − r0

ε
2
3

)
Θ

(
x

|x|
)

+ o(1)‖Θ‖L∞(SN−1),

Θ ∈ Hk−1, uniformly in B̄1, 1 � k � K, (153)

as ε → 0. (Λε,τk,2
1 , Aε,τk,2

1 were defined in Lemma 4.1.)
Furthermore, for any integer K(ε) satisfying

μ1− + r−2
0 τK(ε)ε

4
3 � μ2−

4
, (154)

the first eigenvalues Λ1 <Λ2 � · · · � ΛK(ε) of (126) are Λk = Λ
ε,τk,2
1 , k = 1, . . . , K(ε), ε ∈ (0, ε0).

Proof. By Lemma 4.1, there exists ε0 > 0 such that (Λ
ε,τ, 2

3
1 ,A

ε,τ, 2
3

1 ) is a solution pair of (131) for each ε ∈ (0, ε0),

τ ∈ [0, τ ∗], and α = 2
3 (when τ = 0, we have Λ

ε,0, 2
3

1 = λ1− as in Theorem 3.29). In other words, (Λε,ε
− 4

3 τ,2
1 ,A

ε,ε
− 4

3 τ,2
1 )

is a solution pair of (131) for each ε ∈ (0, ε0), τ ∈ [0, τ ∗], and α = 2
3 . It follows that (Λε,τk,2

1 ,A
ε,τk,2
1 ) are solution

pairs of (129) provided τkε
4
3 � τ ∗. By Proposition 4.2, for those k’s, the eigenvalue Λ

ε,τk,2
1 satisfies (152), and,

via (145), the associated eigenfunction (of (129)) satisfies A
ε,τk,2
1 = ψ1−(

|x|−r0

ε
2
3

) + o(1) as ε → 0, uniformly in B̄1.

From [19], we know that the eigenvalues of (126) are in a one to one correspondence with those of (129), and that

the eigenfunctions of (126) corresponding to Λ
ε,τk,2
1 , with τkε

4
3 � τ ∗, ε ∈ (0, ε0), are of the form A

ε,τk,2
1 (|x|)Θ( x

|x| ),
Θ ∈ Hk−1 (see (128) for the explicit formula of dim(Hk−1)). The first assertion of the theorem follows readily.

On the other hand, Lemma 4.4 implies that there exists a possibly smaller ε0 > 0 such that if Λ is an eigenvalue of

(126) with Λ �= Λ
ε,τk,2
1 , τkε

4
3 � τ ∗, ε ∈ (0, ε0), then Λ � μ2−

2 ε
2
3 . Hence, we infer that Λε,τk,2

1 , τkε
4
3 � τ ∗ are the only

eigenvalues of (126) that could be less than μ2−
2 ε

2
3 , if ε ∈ (0, ε0). Now, if K(ε) is an integer as in (154), by (152), we

find that Λ
ε,τK(ε),2
1 <

μ2−
3 , ε ∈ (0, ε0), for a possibly smaller ε0 > 0. So, certainly Λk := Λ

ε,τk,2
1 , k = 1, . . . , K(ε) are

the first eigenvalues of (126), ε ∈ (0, ε0). (The monotonicity of Λε,τ,α
1 with respect to τ follows by working as in the

second part of the proof of Lemma 4.1.) We conclude that the second assertion of the theorem holds as well.
The proof of the theorem is complete. �

4.3.1. Eigenvalues crossing zero
In the following corollary, we will show that the eigenvalues of (126) grow from a negative number, and eventually

cross zero transversely (with nonzero speed), as ε → 0. This property will be used in Section 5 for showing that
non-radial solutions of (1) bifurcate from the unstable radially symmetric solution branch, as ε → 0.

Corollary 4.6. If k ∈ N is such that

τk ∈
( |μ1−|

2
r2

0ε
− 4

3 ,

(
|μ1−| + μ2−

4

)
r2

0ε
− 4

3

)
, (155)

then there exists

εk =
(

r2
0 |μ1−|

(k − 1)(k +N − 3)

) 3
4 + o

(
k− 3

2
)

as k → +∞,

such that the eigenvalue Λk = Λ
εk,τk,2 of (126), with ε = εk , satisfies Λk = 0, provided ε > 0 is sufficiently small.
1
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Moreover,

∂

∂ε
Λk = 4

3
|μ1−| 3

4 r
− 1

2
0

(
(k − 1)(k + N − 3)

) 1
4 + o

(
k

1
2
)

as k → +∞. (156)

Proof. Let τ∗ = (|μ1−| + μ2−
4 )r2

0 . By virtue of Theorem 4.5, there exists ε0 > 0 such that the first eigenvalues of

(126) are Λk = Λ
ε,τk,2
1 , k = 1, . . . ,K , provided τK = (K − 1)(K +N − 3) � τ ∗ε− 4

3 , ε ∈ (0, ε0).
For ε ∈ (0, ε0), and k any integer satisfying (155), we define

gε,k(ε) = Λ
ε,τk,2
1 , ε ∈ (0, ε0).

Note that, by Lemma 4.3, we have gε,k ∈ C1((0, ε0)). We claim that, for any small d > 0 (independent of ε), if ε0 > 0
is chosen smaller, there exists

εk ∈ (((|μ1−| − d
)
r2

0 τ
−1
k

) 3
4 ,

((|μ1−| + d
)
r2

0 τ
−1
k

) 3
4
)

such that gε,k(εk) = 0. Indeed, let εk = ((|μ1−| − d)r2
0τ

−1
k )

3
4 , then by Proposition 4.2,

gε,k(εk) = Λ
εk,τk,2
1 = Λ

εk,(|μ1−|−d)r2
0 εk

− 4
3 ,2

1 = Λ
εk,(|μ1−|−d)r2

0 ,
2
3

1 = −dεk
2
3 + o

(
εk

2
3
)
< 0,

provided ε0 > 0 is sufficiently small (note that cε � εk � Cε). Similarly we find that gε,k(ε̄k) > 0, where ε̄k =
((|μ1−| + d)r2

0τ
−1
k )

3
4 , and the desired claim follows. The first assertion of the corollary now follows at once.

By Lemma 4.3 and Theorem 4.5, we deduce that

∂

∂ε
Λk = 2

3
μ1−ε− 1

3 + 2τkr
−2
0 ε + o

(
ε− 1

3
)

as ε → 0, if τk � τ ∗ε− 4
3 , ε ∈ (0, ε0).

Substituting ε = εk in the above relation, we conclude that the second assertion of the corollary holds as well.
The proof of the corollary is complete. �

Remark 4.7. The above corollary indicates that for showing existence of an unstable corner layered solution of the
general problem (16)–(19) one has to overcome resonance phenomena as in [18,45–48,57].

4.3.2. Morse index of u−
In the following corollary we provide an asymptotic estimate for the Morse index Mε of u− as ε → 0.

Corollary 4.8. The Morse index Mε of u− satisfies

lim
ε→0

Mε

ε− 2
3 (N−1)

=
(
r2

0 |μ1−|
4π

)N−1
2 |SN−1|

Γ (N+1
2 )

.

Proof. We adapt the proof of [19]. From Theorem 4.5, we infer that there exists an integer

kε = r0|μ1−| 1
2 ε− 2

3 + o
(
ε− 2

3
)

as ε → 0, (157)

such that the eigenvalues Λi, i � 1, of (126) satisfy Λ1 < Λ2 � · · · � Λkε < 0 � Λkε+1 � · · · . Furthermore, the
multiplicity mi of Λi is equal to the dimension of the space Hi−1 of homogeneous and harmonic polynomials of
degree i − 1. Hence, recalling (127), we see that the Morse index of u− is given by

Mε =
kε∑
i=1

dim(Hi−1) = N(kε), where N(κ) =
κ∑

i=1

dim(Hi−1) =  {τi : τi � τκ}. (158)

Consequently, by (157), (158), we derive that

Mε = N(τkε ) = N
(
r2

0 |μ1−|ε− 4
3 + o

(
ε− 4

3
))

as ε → 0.
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On the other hand, from Weyl’s asymptotic formula [63, Theorem 3.1], we know that

lim
κ→+∞

N(κ)

κ
N−1

2

= |SN−1|
Γ (N+1

2 )(4π)
N−1

2

.

The assertion of the corollary now follows readily. �
5. Non-radial bifurcations from the radial corner layered solution u−

We will make use of the mapping F and the function spaces X, Z introduced in the proof of Lemma 3.30. We seek
non-radial solutions of (1) in the form

u = u−(ε) + φ, φ ∈ X.

In terms of φ, problem (1) becomes

G(φ, ε) = 0, where G(φ, ε) = F
(
u−(ε) + φ, ε

)
. (159)

In view of Lemma 3.30, clearly G : X × (0, ε0) → Z is C2,

G(0, ε) = 0, ε ∈ (0, ε0),

and

Gφ(0, ε)w = Fu

(
u−(ε), ε

)
w = −ε2�w + (2u− − a − b)w, w ∈ X, ε ∈ (0, ε0). (160)

Furthermore, it is a standard fact that G is a nonlinear Fredholm operator with respect to φ ∈ X for all ε ∈ (0, ε0), and
a potential operator from X to Z for all ε ∈ (0, ε0) (see for instance [41]).

We say that bifurcation from the trivial branch φ = 0 takes place at ε = ε̄ > 0 if every neighborhood of (0, ε̄) in
X × (0, ε0) contains a nontrivial solution (φ, ε), φ �= 0, of G(φ, ε) = 0.

Remark 5.1. Note that the bifurcating solutions are non-radial since the solution u− is radially non-degenerate.

5.1. Topological bifurcation from the radial corner layered solution u−

It is easy to check that the only possible values of ε̄ for which bifurcation is possible must satisfy
Kernel{Gφ(0, ε̄)} �= 0. On the other hand, utilizing the potential structure of the problem, we will show that the
reciprocal also holds true:

Theorem 5.2. If k ∈ N is such that τk ∈ (
|μ1−|

2 r2
0ε

− 4
3 , (|μ1−| + μ2−

4 )r2
0ε

− 4
3 ), ε ∈ (0, ε0), then (0, εk), as defined in

Corollary 4.6, is a bifurcation point of G(φ, ε) = 0 in the following sense: (0, εk) is a cluster point of nontrivial
non-radial solutions (φ, ε) ∈ X × (0, ε0), φ �= 0, of G(φ, ε) = 0.

Proof. We know from Theorem 4.5 and Corollary 4.6 that, for ε, k as in the statement of the theorem, Λk = 0 is
an isolated eigenvalue of Gφ(0, εk), and the corresponding kernel has dimension mk . Furthermore, from the second
assertion of Corollary 4.6, we infer that 0 is a locally hyperbolic equilibrium of Gφ(0, ε) for ε ∈ (εk − δ, εk) ∪
(εk, εk + δ), and some small δ = δ(k) > 0, in the sense that Gφ(0, ε) has no spectral point on the imaginary axis
for ε ∈ (εk − δ, εk) ∪ (εk, εk + δ). Moreover, the crossing number χ(Gφ(0, ε), εk) of the family Gφ(0, ε) at ε = εk
through 0 is nonzero, in the sense that the Morse index of Gφ(0, ε) for ε ∈ (εk − δ, εk) is strictly greater than the
Morse index of Gφ(0, ε), for ε ∈ (εk, εk + δ) (actually it increases by mk), see [41, p. 212] for these definitions. In
view of the above and Remark 5.1, in order to establish the assertion of the theorem, it is sufficient to apply the local
bifurcation result for potential operators of [40] (see also [41, Theorem II.7.3]).

The proof of the theorem is complete. �
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5.2. Equivariant bifurcation from the radial corner layered solution u−

In this subsection, following [28] and [54], we will show that (159) has nontrivial solutions by using an equivariant
bifurcation theory.

Let O(N) denote the orthogonal group in R
N (see [11]). We define an O(N)-action on Z by

(ξ · φ)(x) = φ
(
ξ−1x

)
, φ ∈ Z, ξ ∈ O(N), (161)

where ξ−1x is the matrix multiplication. It is easy to see that the mapping G(·, ε) :X → Z is O(N)-equivariant,
namely,

G(ξ · φ, ε) = ξ · G(φ, ε), φ ∈ X, ξ ∈ O(N).

The linearization of G(φ, ε) = 0 around the trivial branch φ = 0 is the linear operator Gφ(0, ε) in (160). Corollary 4.6

says that, for k ∈ N and ε ∈ (0, ε0) such that τk ∈ (
|μ1−|

2 r2
0ε

− 4
3 , (|μ1−| + μ2−

4 )r2
0ε

− 4
3 ), there exists εk ∈ (cε,Cε) such

that the kth eigenvalue of Gφ(0, εk) = Fu(u−(εk), εk) satisfies Λk = 0. It is a general fact [29, p. 304] that the linear
operator Gφ(0, εk) is O(N)-equivariant, and that its kernel and range are O(N)-invariant. Actually, by Theorem 4.5,

Kernel
{
Gφ(0, εk)

} = Span

{
A

εk,τk,2
1

(|x|)Θ(
x

|x|
)
, Θ ∈ Hk−1

}
,

where A
εk,τk,2
1 was defined in Lemma 4.1, and Hk−1 is the space of harmonic and homogeneous polynomials of

degree k − 1.
We will set up (159) for an application of the equivariant branching lemma due to Cicogna and Vanderbauwhede

(see [12,65]). Following [11, Chapter 2], [29, Chapter VII], we will first reduce the infinite dimensional problem (159)
to a finite dimensional one. This reduction is called the Lyapunov–Schmidt reduction (with symmetry). According to
the standard L2-inner product, X, Z are decomposed as

X = Ek ⊕ M, Z = N ⊕ Fk, (162)

where

Ek = Kernel
{
Gφ(0, εk)

}
, M = E⊥

k and N = Range
{
Gφ(0, εk)

}
, Fk = N ⊥.

(Note that dim(Ek) = dim(Fk) = dim(Hk−1).) By Lemma 2.3.1 in [11], we can choose the projection P :Z → N
associated with the decomposition (162) to be O(N)-equivariant. Now, problem (159) becomes equivalent to{

(a) PG(p +w,εk + μ) = 0,
(b) (I − P)G(p +w,εk +μ) = 0,

p ∈ Ek, w ∈ M, (163)

where μ ∈ (−εk, ε0 − εk) is our bifurcation parameter. Because of the invertibility of

PGφ(0, εk) : M → N ,

the implicit function theorem gives rise to a solution of (163)(a) as w = w(p,μ), in a neighborhood of (p,μ) = (0,0),
which satisfies

w(0,μ) = 0 and wp(0,0) = 0. (164)

Then, substituting the function w = w(p,μ) into (163)(b), we obtain the bifurcation equation

G(p,μ) = 0, (165)

where G(·,μ) :Ek → Fk is defined by

G(p,μ) = (I − P)G
(
p +w(p,μ), εk +μ

)
. (166)

It is known [11, Chapter 2], [29, Chapter VII] that G(·,μ) is also O(N)-equivariant. By virtue of (164), the bifurcation
problem (165) also has the trivial branch (p,μ) = (0,μ) which corresponds to the one of (159). Nontrivial solutions
of (165) thus correspond to non-radial solutions of (159) which are as symmetric as nonzero elements of Hk−1. We
will now show that nontrivial solutions of (165) bifurcate from (p,μ) = (0,0) by utilizing the following equivariant
branching lemma.
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Proposition 5.3. (See [12,65], and [11, Chapter 2], [30, Chapter XIII].) Let O(N) be acting on Ek and Fk as in (161).
Assume:

(a) Fix(O(N)) := {p ∈ Ek: ξ · p = p ∀ξ ∈ O(N)} = {0},
(b) Ξ is an isotropy subgroup of O(N) such that dim Fix(Ξ) = 1 in Ek ,
(c) G(p,μ) = 0 is the bifurcation equation (165) in Fix(Ξ), and

Gpμ(0,0)(pk) �= 0,

where pk ∈ Fix(Ξ) is nonzero.

Then there exists a smooth nontrivial branch of solutions (p,μ) = (tpk,μk(t)), μk(0) = 0, to the equation
G(p,μ) = 0 for t near zero.

In order to apply this beautiful result, we need to verify that the three conditions (a), (b) and (c) above are satisfied
for our present situation. Condition (a) has to do with the way in which the Lie group O(N) acts on Ek , and hence
is independent of the mapping G . In our case, O(N) acts via (161), and the action of O(N) on the unit sphere by
ξ · x = ξx (ξ ∈ O(N), x ∈ SN−1) is transitive. Therefore, elements of Ek which are fixed by all ξ ∈ O(N) are
functions of r = |x| only, namely, radially symmetric ones. On the other hand, the only radially symmetric element of
Ek is zero. Hence, condition (a) is fulfilled. Condition (b) is also strictly related to the action of O(N) on Ek , and thus
is independent of G . To show that (b) is satisfied, we need to classify the isotropy subgroups of O(N) whose fixed
point subspace in Ek has dimension one. It has been shown in Subsection 3.1 of [53] that, when N = 2, the dihedral
group Dk−1 of degree 2(k − 1) is the only maximal isotropy subgroup of O(2) whose fixed point subspace in Ek is
one dimensional. Moreover, this one-dimensional subspace is spanned by

pk = A
εk,τk,2
1

(|x|) cos

(
(k − 1)

x

|x|
)
. (167)

Therefore, condition (b) in Proposition 5.3 is fulfilled with Ξ = Dk−1. Furthermore, it has been shown in Subsec-
tion 3.2 of [53] that condition (c) in Proposition 5.3 is equivalent to

∂

∂ε
Λk

∣∣∣∣
ε=εk

�= 0

(see also the proof of the first part of Theorem 1.16 in [14]). In view of (156), we infer that the above relation holds,

since τk ∈ (
|μ1−|

2 r2
0ε

− 4
3 , (|μ1−| + μ2−

4 )r2
0ε

− 4
3 ), provided we chose ε0 > 0 sufficiently small. Consequently, when

N = 2, all the conditions in Proposition 5.3 are satisfied with Ξ = Dk−1 and pk as in (167).
We conclude that the following theorem holds.

Theorem 5.4. Suppose that N = 2, and k ∈ N is such that τk ∈ (
|μ1−|

2 r2
0ε

− 4
3 , (|μ1−| + μ2−

4 )r2
0ε

− 4
3 ), ε ∈ (0, ε0), then

(0, εk) (defined in Corollary 4.6) is a bifurcation point of G(φ, ε) = 0 in the following sense: There exists a smooth
nontrivial branch of solutions (φ, ε) = (tpk + O(t2), εk(t)), εk(0) = εk (pk as in (167)), to the equation G(φ, ε) = 0
for t near zero. Moreover, the symmetry group of φk(·) is Dk−1.

Remark 5.5. We emphasize that the only place where N = 2 was used was in the verification of condition (b) in
Proposition 5.3. Therefore, Theorem 5.4 extends to any dimension N � 3 as soon as one identifies the isotropy
subgroups of O(N) whose fixed point subspace in Ek is one dimensional.

5.2.1. Multiple bifurcation
The ball B1 of R

N , N � 2, is invariant under many group actions. By considering suitable symmetries of some
homogeneous and harmonic polynomials, we can derive results on multiple non-radial bifurcation.

Let us consider the subspaces

X̃ = {
φ ∈ X: φ(x1, . . . , xN) = φ

(
ξ · (x1, . . . , xN−1), xN

)
, for any ξ ∈ O(N − 1)

}
,

Z̃ = {
φ ∈ Z: φ(x1, . . . , xN) = φ

(
ξ · (x1, . . . , xN−1), xN

)
, for any ξ ∈ O(N − 1)

}
,
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where X, Z were defined in the proof of Lemma 3.30. Clearly the mapping

G̃(φ, ε) = G(φ, ε), φ ∈ X̃, ε ∈ (0, ε0),

satisfies G̃ : X̃ × (0, ε0) → Z̃, and is C2. Furthermore, we have G̃(0, ε) = 0, ε ∈ (0, ε0), and the linear operator
G̃φ(0, ε) : X̃ → Z̃ is Fredholm of index zero, for every ε ∈ (0, ε0). By Proposition 5.2 in [58], we know that the
subspace Vk , spanned by the functions of Hk−1 which are O(N − 1) invariant, is one dimensional. So, let Vk =
Span{vk}, k � 1, for some nonzero vk ∈ Hk−1. Hence, if k, εk are as in Corollary 4.6, we have

Ker
{
G̃φ(0, εk)

} = Span{qk}, where qk = A
εk,τk,2
1

(|x|)vk ∈ X̃. (168)

Moreover, relation (156) implies that

G̃φε(0, εk)(qk)∩ Range
{
G̃φ(0, εk)

} = 0

(see the proof of the first part of Theorem 1.16 in [14]). Thus, all the conditions of the Crandall–Rabinowitz bifurcation
theorem from a simple eigenvalue [41, p. 15] are satisfied for G̃ : X̃ × (0, ε0) → Z̃. We conclude that the following
theorem holds.

Theorem 5.6. Suppose that N � 2, and k ∈ N is such that τk ∈ (
|μ1−|

2 r2
0ε

− 4
3 , (|μ1−| + μ2−

4 )r2
0ε

− 4
3 ), ε ∈ (0, ε0), then

(0, εk) (defined in Corollary 4.6) is a bifurcation point of G(φ, ε) = 0 in the following sense: There exists a smooth
nontrivial branch of solutions (φ̃, ε̃) = (tqk + O(t2), ε̃k(t)), ε̃k(0) = εk , φ̃(t) ∈ X̃ (qk as in (168)), to the equation
G(φ, ε) = 0 for t near zero.

Let us now consider the subgroup Ξh ⊆ O(N) defined by

Ξh = O(h)× O(N − h) for 1 � h �
[
N

2

]
.

In [59] it was shown that if k is odd, then the space Hk−1, restricted to the functions invariant by the action of Ξh, has
dimension one. Moreover, if we get a nontrivial bifurcating solution φ of (159) which is invariant with respect to the
action of two groups Ξh1 and Ξh2 , then φ must be radial and this is not possible (recall Remark 5.1). Hence, solutions
which are invariant with respect to the action of different groups Ξh are actually distinct. Therefore, repeating the
arguments leading to the previous theorem, restricted to the subspace of functions which are invariant with respect to
the action of Ξh, 1 � h � [N2 ], we derive the existence of [N2 ] distinct smooth solution branches of (159) bifurcating
from (0, εk), k odd and sufficiently large.

Remark 5.7. Standard tools of bifurcation theory should allow one to perform a detailed local analysis near the
bifurcation points. What is the global behavior of the solution branches is a very interesting question. Based on paper
[2] we expect that, at least when N = 2, the non-radial branches can be continued for ε > 0 arbitrarily small, and
reach non-radial solutions of (1) of the form u+ − ψ where ψ is a suitable superposition of scaled ground states of

�U − V+(x)U +U2 = 0, (x, y) ∈ R
2, U ∈ L2(

R
2),

where V+ > 0 is as in (55), (56). (Existence of ground states for the above equation has been proven in [44].)

Remark 5.8. Bifurcations of non-symmetric solutions of some classes of singularly perturbed elliptic equations have
been considered in [3,15,28,32,43,51,53,54].
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