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Abstract

We consider a 3D Approximate Deconvolution Model ADM which belongs to the class of Large Eddy Simulation (LES) models.
We aim at proving that the solution of the ADM converges towards a dissipative solution of the mean Navier–Stokes equations.
The study holds for periodic boundary conditions. The convolution filter we first consider is the Helmholtz filter. We next consider
generalized convolution filters for which the convergence property still holds.
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1. Introduction

Kolmogorov’s theory predicts that simulating incompressible turbulent flows by using the incompressible Navier–
Stokes equations,

∂tu + ∇ · (u ⊗ u) − ν�u + ∇p = f,

∇ · u = 0,

u(0,x) = u0(x), (1.1)

requires N = O(Re9/4) degrees of freedom, where Re = ULν−1 denotes the Reynolds number, U and L being typical
velocity and length scales. This number N is too large, in comparison with memory capacities of actual computers,
to perform a Direct Numerical Simulation (DNS). Indeed, for realistic flows, such as geophysical flows, the Reynolds
number is of order 108, yielding N of order 1018 . . . . This is why one aims at computing at least the “mean values”
of the flow fields, the velocity field u = (u1, u2, u3) and the scalar pressure field p.
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In Large Eddy Simulation model, means of the fields are computed by

u(t,x) =
∫

Gα(x,y)u(y) dy, p =
∫

Gα(x,y)p(y) dy.

For homogeneous turbulent flows, one may take

Gα(x,y) = Gα

(|x − y|).
This filter is a convolution filter, the case that we consider throughout the paper. The scale α is in general chosen

to be of the order of the mesh size in a practical computation [17]. Moreover, the kernel Gα is smooth to get a real
smoothing effect and satisfies Gα → δ when α → 0, where δ is the Dirac function.

In THE PERIODIC CASE or in THE WHOLE SPACE with suitable decay conditions at infinity, the homogeneous
assumption leads the filter operation to COMMUTE with differential operators. Therefore, when we formally filter the
incompressible Navier–Stokes equations, we obtain what we call the “mean Navier–Stokes equations”,

∂tu + ∇ · (u ⊗ u) − ν�u + ∇p = f,

∇ · u = 0,

u(0,x) = u0(x). (1.2)

This raises the question of the interior closure problem, that is the modelling of the tensor R(u) = u ⊗ u.
Large Eddy Simulations (LES) models consider an approximation (w, q) of the means (u,p) and a system satisfied

by these fields, thanks to a suitable definition of R. The tensor R is often defined in terms of (w, q) by

R = w ⊗ w − νT (k/kc)D(w), D(w) = (1/2)
(∇w + ∇wT

)
.

In the formula above, νT is an eddy viscosity based on a cut-off wave number kc ≈ O(1/α) defining the resolved
scales (see a general setting in [27]). This yields a model for the approximate fields (w, q) supposed to fit with the
field (u,p) for large scales, with the constraint that the total energy dissipation of both fields remains the same.
Moreover, it is expected that (w, q) converges towards a solution of the Navier–Stokes equations when α goes to zero
(see in [14]).

Another way that avoids eddy viscosities, consists in approaching R by a quadratic term of the form B(w,w).
J. Leray [18] introduced in 1934 the approximation B(w,w) = w ⊗ w to get smooth approximation to the incom-
pressible Navier–Stokes equations. This approximation yields the recent Leray-alpha fashion models, considered to
be LES models, and a broad class of related models (see e.g. [2,5,10,11,19]), in which the convolution is defined
thanks to the Helmholtz kernel in the periodic case, a kernel considered below.

The model we study in this paper, is the Approximate Deconvolution Model (ADM), first introduced by Adams
and Stolz [1,28,29], as far as we know. This model is defined by

B(w,w) = DN(w) ⊗ DN(w), DN =
N∑

n=0

(I − Gα)n,

where we still denote Gα(w) = w = Gα � w and N is a given integer that we call “the order of the deconvolution”.
This yields the initial value problem:

∂tw + ∇ · (DN(w) ⊗ DN(w)
) − ν�w + ∇q = f,

∇ · w = 0,

w(0,x) = u0(x). (1.3)

Throughout the paper, α > 0 is fixed. In [13,15], the case N = 0 was carefully studied for the Helmholtz kernel. We
are now interested in the question of “N large”.

There are cases and kernels Gα for which DN → G−1
α = Aα in some sense, when N → ∞. This is why we call the

operator DN a deconvolution operator, where we denote the kernel likewise the corresponding convolution operator.
The principle of deconvolution initially comes from image processing [3]. The idea is to reconstruct a noised field

thanks to a deconvolution operator for large N . We do the same thing in model (1.3): we try to re-construct as much
of the field’s high frequency as we can using as few degrees of freedom as possible in a numerical simulation.
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Indeed, when N grows and α is fixed, we expect a numerical simulation by (1.3) to approach a Direct Numerical
Simulation of the mean field that satisfies (1.2), while keeping numerical stability. We studied the question of feasi-
bility of such an ADM in [16]. The issue is that under suitable assumptions, the ADM needs less degrees of freedom
than a DNS in a practical computation for a fixed N and yields reasonable accuracy in terms of resolved scales.

The question of the asymptotic behavior of the model when N goes to infinity and the scale α is fixed, was open
up to now, and is the main aim of the present paper.

As we shall see later, there are cases such that the model (1.3) has a unique solution (wN,qN) for a fixed N , in a
sense to be defined, solution that satisfies estimates uniform in N . Let us define (w, q) to be an eventual limit of a sub-
sequence of {(wN,qN)}N∈N. This raises the question of the equation satisfied by (w, q) and especially the behavior
of the quadratic sequence DN(wN) ⊗ DN(wN) when N → ∞, a question that we study carefully in the remainder.

Notice that when DN → G−1
α = Aα , we expect that DN(wN)⊗DN(wN) converges towards Aα(w)⊗Aα(w) when

N goes to infinity and that the limit satisfies

∂tw + ∇ · (Aα(w) ⊗ Aα(w)
) − ν�w + ∇q = f,

∇ · w = 0, (1.4)

with initial data w(0,x) = u0(x). Therefore, let us set (u,p) = (Aα(w),Aα(q)) or equivalently w = Gα(u) = u,
q = p. If we are in a case where the convolution operator commutes with the differentiation, we obtain that (u,p) is
a solution of the mean incompressible Navier–Stokes equations (1.2).

We prove in this paper a series of convergence results like this, the first one being Theorem 4.1 which is our main
result. These results are consistency and stability results, that are a partial mathematical validation of experimen-
tal/numerical results initially displayed by Adams and Stolz for some special cases.

We consider in this paper the case of periodic boundary conditions. The equations are set in a 3D torus T3 of
size L, T3 = R3/T3, with T3 := 2πZ3/L. We carefully detail the question raised above when the convolution filter is
specified by the Helmholtz equation,

−α2�u + u + ∇π = u, ∇u = 0 in T3.

The corresponding convolution function Gα , denoted by G for simplicity, is given in terms of a Fourier series

G(x) =
∑

k∈T �
3

1

1 + α2|k|2 eik·x.

We start with this filter mainly for historical reasons. In all the above quoted mathematical references about Leray-
alpha and/or Bardina and/or ADM, this filter is the one that is always studied for practical reasons.

We first show an existence and uniqueness result of what we call a “regular weak solution” to model (1.3) for a
fixed N , that satisfies estimates uniform in N (see Definition 3.1 and Theorem 3.1). Then as we already said, we prove
that the corresponding sequence of solutions converges to a solution of the mean Navier–Stokes equations when N

goes to infinity (Theorem 4.1).
Notice that Dunca and Epshteyn [9] have proved an existence result for the ADM already. Their proof does not

include uniform estimates in N and did not allow to take the limit when N goes to infinity. This is why we have to
seek another existence’s proof that precisely allows to take the limit.

We next consider another filter that we call “the generalized Helmholtz filter”, which is specified thanks to the
following PDE,

−α2p�pu + u + ∇π = u, ∇u = 0 in T3,

p ∈ R�+, the convolution function G of which being

G(x) =
∑

k∈T �
3

1

1 + α2p|k|2p
eik·x.

In this case, we prove the existence and uniqueness of a “generalized regular weak solution” to the ADM of order N

when p > 3/4 (see Definition 5.1 and Theorem 5.1). Moreover, we prove that the corresponding sequence converges
to a solution of the mean Navier–Stokes equations, when N goes to infinity (see Theorem 5.2). The case 3/4 < p < 1
is rather academic. In practice, one prefers to take p > 1 to increase the regularity, as shows the analysis carried out
in Section 5.3.
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The above results naturally lead us to consider more general filters that are not specified by a PDE (see Section 6),
but only through their general convolution kernel G,

G(x) =
∑

k∈T �
3

Ĝkeik·x.

When the coefficients Ĝk satisfy the growth condition

∀k ∈ T3,
C1

1 + α2q |k|2q
� Ĝk � C2

1 + α2p|k|2p
,

where C1 > 0 and C2 > 0, p > 3/4, our method still applies and the same results hold as for Helmholtz filters.
Notice that in all cases we considered above, we always have the convergence property DN → G−1, when N → ∞,
in a suitable sense to be precised, where we recall that DN denotes the deconvolution operator. This is always the
property, among others, that we use to take the limit in the equations when N goes to infinity.

We also consider in Section 6, the case of the Fejér convolution kernel, which is natural since this is one of the
main convolution filters used for theoretical results about Fourier series. It is mainly defined thanks to trigonometric
polynomials of the form

G(x) =
∑

k∈T �
3 , |k|�J

Ĝkeik·x,

where the “cut off” J is naturally taken of order 1/α. As we easily see (Section 6.2) the corresponding deconvolution
operator DN is such that the amplitude of frequencies larger than J are of order N + 1, and we do not have “DN →
G−1”. Therefore, our method fails and we are not able to take the limit in the terms DN(wN) ⊗ DN(wN). However,
a “compactness by compensation” (a principle due initially to F. Murat and L. Tartar, see in [24,25,31,32]) might
occur, but this is an open problem.

We only consider periodic boundary conditions in this work, like in most of mathematical papers about LES
models. This raises the issue of the setting and of the mathematical analysis of the ADM, and more generally of LES
models, with other types of boundary conditions. First, we conjecture that our results may be easily extended to the
case of the whole space R3, where the boundary conditions are specified through integrability conditions. It remains
the case of domains with boundaries.

Many of the reported LES of wall bounded flows have no filtering at all in the wall normal direction, because of the
strong inhomogeneity of the turbulence near the wall [7]. Furthermore, LES near walls is one of the great challenges
of turbulence modelling. One may find in [26] a broad review of the major difficulties of such modelling.

The deconvolution procedure was already used for LES of an incompressible channel flow with walls in [29], with
filtering in all coordinate directions. In these simulations, filtering is carried out from the numerical scheme, using a
discrete filter G that depends on the numerical grid. Up to our knowledge, there is no mathematical analysis of the
convergence of this numerical procedure towards weak solutions of the Navier–Stokes equation, which is an open
problem.

In [7,4,23], another way to perform general LES in bounded domains is considered. The flow domain Ωf is embed-
ded in a larger computational domain Ωc , and the velocity u is extended by 0 in the buffer region B = Ωc \ Ωf . The
commutation default term in the mean equations due to the filtering is modelled, as well as the boundary conditions
for the filtered field u, by minimizing its energy in the buffer,

E =
∫

B

(
|u|2 + α

∣∣∣∣∂u
∂t

∣∣∣∣2)
dx,

α being of the order of the time step. Up to our knowledge, there is no mathematical setting and analysis of such
procedure, as well as its possible deconvolution, opening other problems.
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2. General background

2.1. Orientation

This section is first devoted to definitions of: the function spaces that we use, the filter through the Helmholtz
equation, and the “deconvolution operator”. There is nothing new here that is not already introduced in former papers.
This is why we restrict ourselves to what we need for our display and we skip proofs and technical details. Those
details can be proved by standard analysis and the reader can check them in several references already quoted in the
introduction and also quoted below in the text.

2.2. Function spaces

In what follows, we will use the customary Lebesgue Lp and Sobolev Wk,p and Ws,2 = Hs spaces. Since we
work with periodic boundary conditions we can better characterize the divergence-free spaces we need. In fact, the
spaces we consider are well-defined by using Fourier series on the 3D torus T3 defined just below. Let L ∈ R�+ =
{x ∈ R: x > 0} be given. We denote by (e1, e2, e3) the orthonormal basis of R3, and by x = (x1, x2, x3) ∈ R3 the
standard point in R3.

We put T3 := 2πZ3/L.
Let T3 be the torus defined as the compact quotient manifold, T3 = R3/T3.
We use ‖ · ‖ to denote the L2(T3) norm and associated operator norms.
We always impose the zero mean condition

∫
Ω

φ dx = 0 on every field we consider, φ = w,p, f, or w0.
We define, for a general exponent s � 0,

Hs =
{

w: T3 → R3, w ∈ Hs(T3)
3, ∇ · w = 0,

∫
T3

wdx = 0
}
,

where Hs(T3)
k = [Hs(T3)]k , for all k ∈ N. (If 0 � s < 1 the condition ∇ ·w = 0 must be understood in a weak sense.)

A vector field w ∈ Hs being given, we can expand it as a Fourier series

w(x) =
∑

k∈T �
3

ŵkeik·x, where k ∈ T �
3 is the wave number,

and the Fourier coefficients are given by

ŵk = 1

L3

∫
T3

w(x)e−ik·x dx.

The magnitude of k is defined by

k := |k| = {|k1|2 + |k2|2 + |k3|
} 1

2 .

We define the Hs norms by

‖w‖2
s =

∑
k∈T �

3

|k|2s |ŵk|2,

where of course ‖w‖2
0 = ‖w‖2. The inner products associated with these norms are

(w,v)Hs
=

∑
k∈T �

3

|k|2sŵk · v̂k, (2.1)

where here, without risk of confusion with the filter defined later, v̂k denotes the complex conjugate of v̂k. This means

that if v̂k = (v1
k, v2

k, v3
k), then v̂k = (v1

k, v2
k, v3

k).
Since we are looking for real valued vector fields, we have the natural relation, for any field denoted by w ∈ Hs :

ŵk = ŵ−k, ∀k ∈ T �
3 .
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Therefore, our space Hs is a closed subset of the space Hs made of complex valued functions and defined by

Hs =
{

w =
∑

k∈T �
3

ŵkeik·x:
∑

k∈T �
3

|k|2s |ŵk|2 < ∞, k · ŵk = 0

}
,

equipped with the Hilbertian structure given by (2.1). It can be shown (see e.g. [8]) that when s is an integer, ‖w‖2
s =

‖∇sw‖2. One also can prove that for general s ∈ R, (Hs)
′ = H−s (see in [21]).

2.3. About the filter

We now recall the main properties of the Helmholtz filter. In the following, α > 0 denotes a given number and
w ∈ Hs . We consider the Stokes-like problem for s � −1:

−α2�w + w + ∇π = w in T3,

∇ · w = 0 in T3, (2.2)

and in addition,
∫

T3
π dx = 0 to have a uniquely defined Lagrange multiplier.

It is clear that this problem has a unique solution (w,π) ∈ Hs+2 × Hs+1(T3), for any w ∈ Hs . We put G(w) = w,
A = G−1. Notice that even if we work with real valued fields, G = A−1 maps more generally Hs onto Hs+2. Observe
also that – in terms of Fourier series – when one inserts

w =
∑

k∈T �
3

ŵkeik·x

in (2.2), one easily gets that, by searching (w,π) in terms of Fourier series,

w(x) =
∑

k∈T �
3

1

1 + α2|k|2 ŵkeik·x = G(w), and π = 0. (2.3)

With a slight abuse of notation, for a scalar function χ we still denote by χ the solution of the pure Helmholtz problem

Aχ = −α2�χ + χ = χ in T3, G(χ) = χ (2.4)

and of course there are not vanishing-mean conditions to be imposed for such cases. This notation – which is nev-
ertheless historical – is motivated from the fact that in the periodic setting and for divergence-free vector fields the
Stokes filter (2.2) is exactly the same as (2.4). Observe in particular that in the LES model (1.3) and in the filtered
equations (1.2)–(4.3), the symbol “ ” denotes the pure Helmholtz filter, applied component-by-component to the
tensor fields DN(w) ⊗ DN(w), u ⊗ u, and Aw ⊗ Aw respectively.

2.4. The deconvolution operator

We start this section with a useful definition that we shall use several times in the remainder, to understand the
relevant properties of the LES model.

Definition 2.1. Let K be an operator acting on Hs . Assume that e−ik·x are eigen-vectors of K with corresponding
eigenvalues K̂k. Then we shall say that K̂k is the symbol of K .

For instance, the symbol of the operator A is Âk = 1 + α2|k|2 and the one of G is Ĝk = Â−1
k . We now turn to the

definition and various properties of the deconvolution operator.
The deconvolution operator DN is constructed thanks to the Van-Cittert algorithm, and is formally defined by

DN :=
N∑

n=0

(I − G)n. (2.5)

The reader will find a complete description and analysis of the Van-Cittert algorithm and its variants in [20]. Here we
only report the properties we need for the description of the model.
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Starting from (2.5), we can express the deconvolution operator in terms of Fourier series by the formula

DN(w) =
∑

k∈T �
3

D̂N(k)ŵkeik·x,

where

D̂N(k) =
N∑

n=0

(
α2|k|2

1 + α2|k|2
)n

= (
1 + α2|k|2)ρN,k, ρN,k = 1 −

(
α2|k|2

1 + α2|k|2
)N+1

. (2.6)

The symbol D̂N(k) of the operator DN satisfies the following crucial convergence property.

Lemma 2.1. For each fixed k ∈ T3,

D̂N(k) → 1 + α2|k|2 = Âk, as N → +∞, (2.7)

even if not uniformly in k.

This means that {DN }N∈N converges to A in some sense when N → ∞. We need to specify this convergence in
order to take the limit better than in “a formal way”, to go from (1.3) (the ADM model) to (1.4) (the limit, which
is equivalent to the “mean Navier–Stokes equations” (1.2)). One general aim of the paper is to fix the notion of
“DN → A” and to obtain enough estimates for the solution w of (1.3) to take the limit.

The basic properties satisfied by D̂N that we need are summarized in the following lemma.

Lemma 2.2. For each N ∈ N�, the operator DN : Hs → Hs

• is self-adjoint,
• commutes with differentiation,

and satisfies:

1 � D̂N(k) � N + 1 ∀k ∈ T3, (2.8)

D̂N(k) ≈ (N + 1)
1 + α2|k|2

α2|k|2 for large |k|, (2.9)

lim|k|→+∞ D̂N(k) = N + 1 for fixed α > 0, (2.10)

D̂N(k) � 1 + α2|k|2 = Âk ∀k ∈ T3, α > 0. (2.11)

All these claims are straightforward thanks to definition (2.6). Nevertheless, they call for some comments. Observe
first that (2.10) is a direct consequence of (2.9), which says that the Hs ’s are stable under DN ’s action. More precisely,
for all s � 0, the map

w �→ DN(w)

is an isomorphism which satisfies

‖DN‖Hs
= O(N + 1).

Moreover, the term DN(w) ⊗ DN(w) in model (1.3) has more regularity than the convective term Aw ⊗ Aw in the
classical filtered Navier–Stokes equations. This is why we get what we call a unique “regular weak solution” for
model (1.3) (see Definition 3.1 in the next section), which satisfies an energy equality.

As suggested by its name, a “regular weak solution” is more regular than a usual weak solution “à la Leray”,
because each DN is a zero-order differential operator, while A is a second-order operator.

It is however hard to take the limit when N goes to infinity, since high frequency modes of the solution are not
under direct control, and may generate what we call a “sliding peak”.
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3. Existence results

The aim of this section is:

• to give a definition of what is called a “regular weak solution” to model (1.3),
• to prove an existence and uniqueness result of a regular weak solution to model (1.3) for a fixed N .

3.1. Definition of regular weak solution

Recall that α > 0 is fixed, and we assume that the data are such that

u0 ∈ H0, f ∈ L2([0, T ] × T3
)
, (3.1)

which naturally yields

u0 ∈ H2, f ∈ L2([0, T ];H2
)
. (3.2)

Definition 3.1 (“Regular weak” solution). We say that the couple (w, q) is a “regular weak” solution to system (1.3)
if and only if the three following items are satisfied:

1) Regularity

w ∈ L2([0, T ];H2
) ∩ C

([0, T ];H1
)
, (3.3)

∂tw ∈ L2([0, T ];H0
)
, (3.4)

q ∈ L2([0, T ];H 1(T3)
)
. (3.5)

2) Initial data

lim
t→0

∥∥w(t, ·) − u0
∥∥

H1
= 0. (3.6)

3) Weak formulation

∀v ∈ L2([0, T ];H 1(T3)
3), (3.7)

T∫
0

∫
T3

∂tw · v −
T∫

0

∫
T3

DN(w) ⊗ DN(w) : ∇v + ν

T∫
0

∫
T3

∇w : ∇v +
T∫

0

∫
T3

∇q · v =
T∫

0

∫
T3

f · v. (3.8)

All terms in (3.8) are obviously well-defined thanks to (3.3)–(3.4)–(3.5)–(3.7), except the convective term that must
be checked carefully.

Recall first that DN maps Hs onto itself, and the Sobolev embedding implies that w ∈ C([0, T ];H1) ⊂
L∞([0, T ];L6(T3)

3), which yields DN(w) ∈ C([0, T ];H1) ⊂ L∞([0, T ];L6(T3)
3). In particular,

DN(w) ⊗ DN(w) ∈ L∞([0, T ];L3(T3)
3)2

.

Consequently, we have

DN(w) ⊗ DN(w) ∈ L∞([0, T ];H 2(T3)
3)2 ⊂ L∞([0, T ] × T3

)9
,

which yields the integrability of DN(w) ⊗ DN(w) : ∇v for any v ∈ L2([0, T ];H 1(T3)
3).

Remark 3.1. We use the name “regular weak” solution:

• “weak” since in point 3), (w, q) is defined to be a solution in the sense of distributions,
• “regular” because of the spaces involved in point 1), that in particular yields uniqueness.

Moreover, as we shall see later, this solution satisfies an energy-like equality instead of only an energy inequality
in the usual Navier–Stokes equations. We stress that this is one possible choice of definition among many others.
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3.2. Existence result

The main result of Section 3 is the following.

Theorem 3.1. Assume that (3.1) holds, α > 0 and N ∈ N are given and fixed. Then problem (1.3) has a unique regular
weak solution.

Proof. We use the usual Galerkin method, using space vector fields having zero divergence (see [22]). This yields the
construction of the velocity part of the solution. The pressure is then recovered by De Rham Theorem. The proof is
divided into five steps:

STEP 1: we construct approximate solutions wm, solving ordinary differential equations on finite dimensional
spaces (see the definition in (3.9) below);
STEP 2: we look for bounds on {wm}m∈N and {∂twm}m∈N, uniform with respect to m ∈ N, in suitable spaces. To
do so, we use an energy equality satisfied by A1/2D

1/2
N (wm). The most important thing is that these bounds are

almost all uniform in N , where N ∈ N is the index related to the order of deconvolution of the model;
STEP 3: we apply usual results to get compactness properties about the sequence {wm}n∈N. Then we take the limit
when m → ∞ and N is fixed, to obtain a solution to the model;
STEP 4: we check the question of the initial data (point 2)) in Definition 3.1);
STEP 5: we show uniqueness of the solution thanks to Gronwall’s lemma.

Since Steps 1 and 3 are very classical, we will only sketch them, as well as Step 4 which is very close from what has
already been done in [6,21,33]. On the other hand, Step 2 is one of the main original contributions in the paper and
will also be useful in the next section. Indeed, we obtain many estimates, uniform in N , that allow us to take the limit
when N goes to infinity and then to prove Theorem 4.1. Also Step 4 needs some application of classical tools in a
way that is less standard than usual. We also point out that Theorem 3.1 greatly improves the corresponding existence
result in [9] and it is not a simple restatement of those results.

Step 1: Construction of the velocity’s approximations.
Let m ∈ N� be given and let Vm be the space of real valued trigonometric polynomial vector fields of degree less

than or equal to m, with zero divergence and zero mean value on the torus T3,

Vm :=
{

w ∈ H1:
∫
T3

w(x)e−ik·x = 0, ∀k, with |k| > m

}
. (3.9)

We put dm = dim Vm. We have Vm ⊂ Vm+1 and

H1 =
⋃

m∈N�

Vm.

We notice that Vm is a subset of the finite dimensional space

Wm :=
{

w : T3 → C3, w =
∑

k∈T3, |k|�m

ŵkeik·x
}
,

and we have:

Vm := Wm ∩ H0. (3.10)

Let (e1, . . . , edm) be an orthogonal basis of Vm. Let us remark that this basis is not made of the eik·x’s. However, we
do not need to explicit this basis. Moreover, the family {ej }j∈N is an orthogonal basis of H0 as well as of H1. As we
shall see in the following, the ej ’s can be chosen to be eigen-vectors of A, with ‖ej‖ = 1.

Let Pm be the orthogonal projection from Hs (s = 0,1) onto Vm. For instance, for w0 = u0 = ∑∞
j=1 w0

j ej ,

Pm(u0) =
dm∑

w0
j ej .
j=1
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In order to use classical tools for ordinary differential equations, we approximate the external force by means of
a standard Friedrichs mollifier, see e.g. [30,33]. Let ρ be an even function such that ρ ∈ C∞

0 (R), 0 � ρ(s) � 1,
ρ(s) = 0 for |s| � 1, and

∫
R

ρ(s) ds = 1. Then, set F(t) = f(t) if t ∈ [0, T ] and zero elsewhere and for all positive ε

define fε , the smooth (with respect to time) approximation of f, by

fε(t) := 1

ε

∫
R

ρ

(
t − s

ε

)
F(s) ds.

Well-known results imply that if (3.1) is satisfied, then fε → f in L2([0, T ];H1).
Thanks to Cauchy–Lipschitz Theorem, we know that there exist:

• Tm > 0,
• a unique wm(t,x) = ∑dm

j=1 wm,j (t)ej (x), where ∀j = 1, . . . ,m, wm,j ∈ C1([0, Tm]),

such that

• wm,j (0) = w0
j ,

• ∀v ∈ Vm, ∀t ∈ [0, Tm],∫
T3

∂twm(t,x) · v(x) dx −
∫
T3

(
DN(wm) ⊗ DN(wm)

)
(t,x) : ∇v(x) dx + ν

∫
T3

∇wm(t,x) : ∇v(x) dx

=
∫
T3

f1/m(t,x) · v(x) dx, (3.11)

where

∂twm =
dm∑
j=1

dwm,j (t)

dt
ej .

As we shall see it in Step 2, we can take Tm = T . This ends the local-in-time construction of the approximate
solutions wm(t,x).

Remark 3.2. We should write

wm,N,α,

instead of wm. This simplification aims to avoid a too heavy notation, since in this section both N and α are fixed.

Step 2: Estimates.
We need estimates on the wm’s and the ∂twm’s for compactness properties, to take the limit when m → ∞ and N

is still kept fixed.
We must identify suitable test vector fields in (3.11) such that, the scalar product with the nonlinear term vanishes

(if such a choice does exist). The natural candidate is ADN(wm). Indeed, since A is self-adjoint and commutes with
differential operators, we have:∫

T3

(
DN(wm) ⊗ DN(wm)

) : ∇(
ADN(wm)

)
dx =

∫
T3

G
(
DN(wm) ⊗ DN(wm)

) : ∇(
ADN(wm)

)
dx

=
∫
T3

(AG)
(
DN(wm) ⊗ DN(wm)

) : ∇(
DN(wm)

)
dx = 0,

because A ◦ G = Id on Hs , ∇ · (DN(wm)) = 0, and thanks to the periodicity. This yields the equality(
∂twm,ADN(wm)

) − ν
(
�wm,ADN(wm)

) = (
f1/m,ADN(wm)

)
. (3.12)
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This formal computation asks for two clarifications:

(i) We must check that ADN(wm) is a “legal” test vector field, to justify the formal procedure above. That means that
for any fixed time t , ADN(wm) ∈ Vm.

(ii) Equality (3.12) does not give a direct information about wm itself and/or ∂twm. Therefore we must find how to
deduce suitable estimates from (3.12).

Point (i) follows from general properties of the operator G. Indeed, we already know that G(H0) = H2 ⊂ H0.
Moreover, formula (2.3) yields G(Wm) ⊂ Wm. Therefore by (3.10) we get G(Vm) ⊂ Vm. Finally, it is clear that
Ker(G) = 0 and since Vm has a finite dimension, G is an linear isomorphism on it. Then we have A(Vm) ⊂ Vm as
well as DN(Vm) ⊂ Vm. Therefore, ADN(wm)(t, ·) ∈ Vm a “legal” multiplier in formulation (3.11), for each fixed t .
Moreover, since A and DN are self-adjoint operators that commute, one can choose the basis (e1, . . . , edm, . . .) such
that each ej is still an eigen-vector of the operator A and DN together. Therefore, the projection Pm commutes with
A as well as with all by-products of A, such as DN for instance. We shall use this remark later in the estimates.

Let us turn to point (ii). The following identities hold:(
∂twm,ADN(wm)

) = 1

2

d

dt

∥∥A
1
2 D

1
2
N(wm)

∥∥2
, (3.13)(−�wm,ADN(wm)

) = ∥∥∇A
1
2 D

1
2
N(wm)

∥∥2
, (3.14)(

f1/m,ADN(wm)
) = (

A
1
2 D

1
2
N(f1/m),A

1
2 D

1
2
N(wm)

)
. (3.15)

These equalities are straightforward because A and DN both commute, as well as they do with all differential opera-
tors. Therefore (3.12), that we write as

1

2

d

dt

∥∥A
1
2 D

1
2
N(wm)

∥∥2 + ∥∥∇A
1
2 D

1
2
N(wm)

∥∥2 = (
A

1
2 D

1
2
N(f1/m),A

1
2 D

1
2
N(wm)

)
, (3.16)

shows that we get an estimate about A
1
2 D

1
2
N(wm). As we shall see in the remainder, norms of this quantity do con-

trol wm, as well as the natural key variable DN(wm). Finally, this yields an estimate for ∂twm.
We are now in position to get estimates for the sequence (wm)m∈N and related sequences. Since we need to display

many estimates, for the reader’s convenience we organize the results in the following table (3.17), that is organized as
follows.

Label Variable Bound Order

(a) A1/2D
1/2
N

(wm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(b) D
1/2
N

(wm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(c) D
1/2
N

(wm) L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

(d) wm L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(e) wm L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

(f) DN(wm) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(g) DN(wm) L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1 · (N + 1)1/2)

(h) ∂t wm L2([0, T ];H0) O(α−1)

(3.17)

In the first column we have labeled the estimates. The second column precises the variable. The third one explains the
bound in term of function spaces, where to shorten

“Em ∈ F ” = “the sequence {Em}m∈N is bounded in the space F ”.

Finally the fourth column precises the order in terms of α, m, and N for each bound. The quantity

‖u0‖L2 + 1

ν
‖f‖L2([0,T ];L2)

is involved in all estimates and therefore we do not quote it. All bounds are
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– uniform in m,
– uniform in N , except (3.17)(g),
– uniform in T yielding Tm = T for each T .

We mention that we can take T = ∞ if f is defined on [0,∞[.
We now prove all estimates in table (3.17) one after each other.
Checking (3.17)(a): We assumed for the simplicity that f ∈ L2([0, T ] × T3)

3, but the proof remains the same when
f ∈ L2([0, T ];H−1).1 Let us integrate (3.16) on the time interval [0, t] for any time t � Tm and let us use (3.13)–(3.15)
together with Cauchy–Schwartz inequality. We obtain

1

2

∥∥A
1
2 D

1
2
N(wm)(t, ·)∥∥2 + ν

t∫
0

∥∥∇A
1
2 D

1
2
N(wm)

∥∥2
dτ

� 1

2

∥∥A
1
2 D

1
2
NPmu0

∥∥2 +
t∫

0

∥∥A
1
2 D

1
2
N(f1/m)

∥∥ · ∥∥A
1
2 D

1
2
N(wm)

∥∥dτ. (3.18)

• Notice that A
1
2 D

1
2
N(fε) = A− 1

2 D
1
2
N(fε). Since the operator A− 1

2 D
1
2
N has for symbol ρ

1/2
N,k � 1, then ‖A 1

2 D
1
2
N fε‖ �

C‖f‖.
• Since Pm commutes with A and DN , we have∥∥A

1
2 D

1
2
NPmu0

∥∥ = ∥∥PmA
1
2 D

1
2
N u0

∥∥ �
∥∥A

1
2 D

1
2
N u0

∥∥ � ‖u0‖.
• By Poincaré’s inequality and Young’s inequality, and standard properties of mollifiers, we get

1

2

∥∥A
1
2 D

1
2
N(wm)(t, ·)∥∥2 + ν

2

t∫
0

∥∥∇A
1
2 D

1
2
N(wm)

∥∥2
dτ � C

(‖u0‖,‖f‖L2([0,T ];H−1)

)
, (3.19)

that gives (3.17)(a).
In addition, we check here that we can take Tm = T . Indeed, insert the definition of wm in (3.19) and use that the

ej ’s are eigen-vectors for both A and DN and therefore also for A1/2D
1/2
N . Then we get in particular,

dm∑
j=1

ρN,jwm,j (t)
2 � C

(‖u0‖,‖f‖L2([0,T ];H−1)

)
.

Therefore since no ρN,j vanishes, then no wm,j (t) blows up. Therefore, we can take Tm = T for any T < ∞, and the
approximate solutions are well-defined on [0,∞[.

Checking (3.17)(b)–(c): Let v ∈ H2. Then, with obvious notations one has∥∥A
1
2 v

∥∥2 =
∑

k∈T �
3

(
1 + α2|k|2)|̂vk|2 = ‖v‖2 + α2‖∇v‖2.

It suffices to apply this identity to v = D
1
2
N(wm) and to v = ∂iD

1
2
N(wm) (i = 1,2,3) in (3.18) to get the claimed result.

Checking (3.17)(d)–(e): This is a direct consequence of (3.17)(b)–(c) combined with (2.8), that can also be under-
stood as

‖w‖s �
∥∥DN(w)

∥∥
s
� (N + 1)‖w‖s ,

for general w and for any s � 0. This explains why it is crucial to have a “lower bound” for the operator DN .

1 Substitute in (3.15) the integral over T3 with the duality pairing 〈 . 〉 between H1 and H−1 and estimate in a standard way the quantity

〈f1/m,ADN(wm)〉 = 〈A 1
2 D

1
2
N

(f1/m),A
1
2 D

1
2
N

(wm)〉.
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Checking (3.17)(f): The operator A1/2D
1/2
N has for symbol (1 + α2|k|2)ρ1/2

N,k while the one of DN is (1 +
α2|k|2)ρN,k. Since 0 � ρN,k � 1, then ‖DN(w)‖s � ‖A1/2D

1/2
N (w)‖s for general w and for any s � 0. Therefore,

the estimate (3.17)(f) is still a consequence of (3.17)(a).
Checking (3.17)(g): This follows directly from (3.17)(e) together with (2.8). This also explains why the result

depends on N because we use here the upper bound on the norm of the operator DN , that depends on N .
Checking (3.17)(h): Let us take ∂twm ∈ Vm as test vector field in (3.11). We get

‖∂twm‖2 +
∫
T3

AN,m · ∂twm + ν

2

d

dt
‖∇wm‖2 =

∫
T3

f1/m · ∂twm,

where

AN,m := ∇ · (DN(wm) ⊗ DN(wm)
)
. (3.20)

So far wm(0, ·) = Pm(u0) ∈ H2 and obviously ‖Pm(u0)‖2 � Cα−1‖u0‖, we only have to check that AN,m is bounded
in L2([0, T ] × T3)

3 and that the bound does not depend neither on m nor on N .
• Thanks to (3.17)(f), it is easily checked that DN(wm) ∈ L4([0, T ];L3(T3)

3) to conclude, where the bound
depends neither on m nor on N . Therefore, DN(wm) ⊗ DN(wm) ∈ L2([0, T ];L3/2(T3)

9).
• Because the operator (∇·) ◦ G makes to “gain one derivative”, we deduce that AN,m ∈ L2([0, T ];W 1,3/2(T3)

3),
which yields AN,m ∈ L2([0, T ] × T3)

3 since W 1,3/2(T3) ⊂ L3(T3) ⊂ L2(T3) and L2([0, T ];L2(T3)
3) is isomorphic

to L2([0, T ] × T3)
3 (see [21]). Moreover, the bound is of order O(α−1) as well, because the norm of the operator

(∇·) ◦ G is of order O(α−1).
Notice that this bound is not optimal, but fits with our requirements.

Step 3: Taking the limit in the equations when m → ∞, and N is fixed.
Thanks to the bounds (3.17), we can extract from the sequence {wm}n∈N a sub-sequence which converges to a

w ∈ L∞([0, T ];H1) ∩ L2([0, T ];H2). Using Aubin–Lions lemma thanks to (3.17)(d) and (3.17)(h), this convergence
is such that:

wm → w weakly in L2([0, T ];H2
)
, (3.21)

wm → w strongly in Lp
([0, T ];H1

)
, ∀p < ∞, (3.22)

∂twm → ∂tw weakly in L2([0, T ];H0
)
. (3.23)

This already implies that w satisfies (3.3)–(3.4). Note that the continuity of w with values in H1 is a consequence of
w ∈ L2([0, T ];H2) together with ∂tw ∈ L2([0, T ];H0).

Let us determine which equation is satisfied by w. By (3.22) and the continuity of DN in Hs , DN(wm) con-
verges strongly to DN(w) in L4([0, T ] × T3). Hence, DN(wm) ⊗ DN(wm) converges strongly to DN(w) ⊗ DN(w)

in L2([0, T ] × T3). This convergence result together with the strong convergence of (f1/m)m∈N to f, implies that for
all v ∈ L2([0, T ];H1)

T∫
0

∫
T3

∂tw · vdxdτ −
T∫

0

∫
T3

DN(w) ⊗ DN(w) : ∇vdxdτ + ν

T∫
0

∫
T3

∇w : ∇vdxdτ =
T∫

0

∫
T3

f · vdxdτ. (3.24)

Arguing similarly to [20], we easily get that w satisfies (3.6).
We must now introduce the pressure. We take test vector fields in L2([0, T ];H1) to be in accordance with classical

presentations. However, the regularity of w leads to ∇ · (DN(w) ⊗ DN(w)) ∈ L2([0, T ] × T3)
3 as well as �w ∈

L2([0, T ] × T3)
3. Consequently, one can take vector test fields v ∈ L2([0, T ];H0) in formulation (3.24) that we can

rephrase as: ∀v ∈ L2([0, T ];H0),

T∫
0

∫
T3

(∂tw + AN − ν�w − f) · vdxdτ = 0, (3.25)

where for convenience, we have set

AN := ∇ · (DN(w) ⊗ DN(w)
)
.
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Therefore, for almost every t ∈ [0, T ],
F(t, ·) = (∂tw + AN − ν�u − f)(t, ·) ∈ L2(T3)

3

is orthogonal to divergence-free vector fields in L2(T3)
3 and De Rham’s Theorem applies. From (3.25), we deduce

that for each Lebesgue point t of F, there is a scalar function q(t, ·) ∈ H 1(T3), such that F = −∇q . This yields the
following equation, satisfied in the sense of the distributions:

∂tw + AN − ν�w + ∇q = f. (3.26)

It remains to check the regularity of q . Without loss of generality, one can assume that ∇ · f = 0. Therefore, taking the
divergence of Eq. (3.26) yields

�q = ∇ · AN,

which easily yields q ∈ L2([0, T ];H 1(T3)). We already knew about (3.3)–(3.4) (regularity of w) by the previous
section. We now know about (3.5) (existence and regularity of the pressure), (3.7)–(3.8) (weak formulation).

Step 4: About the initial data.
We already know that w(0, ·) ∈ H1 because w ∈ C([0, T ];H1). Moreover, we have

lim
t→0+

∥∥w(t, ·) − w(0, ·)∥∥H1
= 0.

It remains to identify w(0, ·). The construction displayed in Step 1 yields for m ∈ N,

wm(t,x) = Pm(u0)(x) +
t∫

0

∂twm(s,x) ds, (3.27)

an identity that holds in C1([0, T ]×Ω). Because of the weak convergence of (∂twm)m∈N to ∂tw in L2([0, T ];H0) and
thanks to usual properties of Pm, one easily can pass to the limit in (3.27) in a weak sense in the space L2([0, T ];H0),
to obtain

w(t,x) = u0(x) +
t∫

0

∂tw(s,x) ds.

Therefore, w(0,x) = u0(x) and (3.6) is satisfied.

Step 5: Uniqueness.
Let w1 and w2 be two solutions and consider W := w1 − w2. We want to take ADN(W) as test function in the

equation satisfied by W, because it is the natural multiplier for this specific question, and next apply Gronwall’s
lemma.

We must first check that ADN(W) ∈ L2([0, T ] × T3)
3 to be convinced that this is a “legal” multiplier. Notice that

ADN has for symbol(
1 + α2|k|2)2

ρN,k ≈ (N + 1)
(
1 + α2|k|2)2

/α2|k|2 ≈ (N + 1)α2|k|2
for large |k|. Therefore, for each fixed N ∈ N, ADN is “like a Laplacian” and “makes lose” two derivatives in space.
Fortunately, W ∈ L2([0, T ];H2) and therefore ADN(W) ∈ L2([0, T ] × T3)

3. Therefore we can take ADN(W) as
multiplier and integrate by parts. After applying rules many times used in this paper, we get

1

2

d

dt

∥∥A
1
2 D

1
2
N(W)

∥∥2 + ν
∥∥∇A

1
2 D

1
2
N(W)

∥∥2 �
∣∣((DN(W) · ∇)

DN(w2),DN(W)
)∣∣

�
∥∥DN(W)

∥∥2
L4(T3)

∥∥∇DN(w2)
∥∥

�
∥∥DN(W)

∥∥1/2∥∥∇DN(W)
∥∥3/2∥∥∇DN(w2)

∥∥, (3.28)

where the last line is obtained thanks to the well-known “Ladyžhenskaya inequality” for interpolation of L4 with L2

and H 1, see [12, Chapter 1]. Starting from the last line of (3.28), we combine the following known facts:
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∥∥DN(W)
∥∥ �

∥∥A
1
2 D

1
2
N(W)

∥∥,
∥∥DN(∇W)

∥∥ �
∥∥A

1
2 D

1
2
N(∇W)

∥∥,

DN and ∇ commute, ‖DN‖ = (N + 1),

the bound of w2 in L∞([0, T ];H1
)
, Young’s inequality.

We obtain

1

2

d

dt

∥∥A
1
2 D

1
2
N(W)

∥∥2 + ν
∥∥∇A

1
2 D

1
2
N(W)

∥∥2

�
27(N + 1)4 supt�0 ‖∇w2‖

32ν3

∥∥A
1
2 D

1
2
N(W)

∥∥2 + ν

2

∥∥∇A
1
2 D

1
2
N(W)

∥∥2
.

In particular, we get

1

2

d

dt

∥∥A
1
2 D

1
2
N(W)

∥∥2 �
27(N + 1)4 supt�0 ‖∇w2‖

32ν3

∥∥A
1
2 D

1
2
N(W)

∥∥2
.

We deduce from Gronwall’s Lemma that A
1
2 D

1
2
N(W) = 0 because A

1
2 D

1
2
N(W)(0, ·) = 0. To conclude that W = 0, we

must show that the kernel of the operator A
1
2 D

1
2
N is reduced to 0. This operator has for symbol (1+α2|k|2)ρN,k ≈ α|k|

for large values of k. This symbol never vanishes and the equivalence at infinity shows that A
1
2 D

1
2
N is of the same order

of α|∇|. Therefore, it is an isomorphism that maps Hs onto Hs−1 and its kernel is reduced to zero, which concludes
the question of uniqueness. �
Remark 3.3. As we have seen, we can use ADN(w) as a test in Eq. (3.26). Therefore, the following energy equality
is satisfied by A1/2D

1/2
N (w),

1

2

d

dt

∥∥A1/2D
1/2
N (w)

∥∥2 + ν
∥∥∇A1/2D

1/2
N (w)

∥∥2 = (
A−1/2D

1/2
N (f),A1/2D

1/2
N (w)

)
. (3.29)

4. Taking the limit when N → ∞ and energy inequality

The aim of this section is the proof of our main result, Theorem 4.1 below, that states the sequence of regular weak
solutions converges to a solution of the mean Navier–Stokes equations, as N goes to infinity.

We divide this section into two subsections. One is devoted to the proof of the theorem. An additional subsection
is devoted to the study of the energy inequality satisfied by the limit.

4.1. Taking the limit when N → ∞

Let (wN,qN) be the “regular weak” solution to problem (1.3):

∂twN + ∇ · (DN(wN) ⊗ DN(wN)
) − ν�wN + ∇qN = f in [0, T ] × T3,

∇ · wN = 0 in [0, T ] × T3,

wN(0,x) = u0(x) in T3. (4.1)

Recall that the scale α > 0 is fixed. We aim to prove Theorem 4.1

Theorem 4.1. From the sequence {(wN,qN)}N∈N one can extract a sub-sequence (still denoted {(wN,qN)}N∈N) such
that

wN → w

{
weakly in L2

([0, T ];H 2(T3)
3
) ∩ L∞([0, T ];H 1(T3)

3
)
,

strongly in Lp
([0, T ];H 1(T3)

3
)
, ∀1 � p < +∞,

qN → q weakly in L2([0, T ];W 1,2(T3)
) ∩ L5/3([0, T ];W 2,5/3(T3)

)
, (4.2)

and such that the system
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∂tw + ∇ · (Aw ⊗ Aw) − ν�w + ∇q = f,

∇ · w = 0,

w(0,x) = u0(x) (4.3)

holds in the sense of the distributions.

It is straightforward to check that (Aw,Aq) is therefore a distributional solution to the Navier–Stokes equations.
We divide the proof into two steps:

1. We seek additional estimates uniform in N , to get compactness properties for the sequences {DN(wN)}N∈N and
{wN }N∈N.

2. We take the limit in Eq. (4.1) when N → ∞.

The challenge is to take the limit in the nonlinear term DN(wN) ⊗ DN(wN). This is why we want to get a bound on
the sequence {∂tDN(wN)}N∈N in a suitable space, since we already know estimates for {DN(wN)}N∈N. The goal is
to prove a compactness property satisfied by {DN(wN)}N∈N, to take the limit in the nonlinear term.

Step 1: Additional estimates.
We quote in the following table the estimates useful to take the limit. Table (4.4) is organized as the previous

one (3.17).

Label Variable Bound Order

(a) wN L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(b) wN L∞([0, T ];H1) ∩ L2([0, T ];H2) O(α−1)

(c) DN(wN) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(d) ∂t wN L2([0, T ] × T3)3 O(α−1)

(e) qN L2([0, T ];H 1(T3)) ∩ L5/3([0, T ];W2,5/3(T3)) O(α−1)

(f) ∂tDN (wN) L4/3([0, T ];H−1) O(1)

(4.4)

Estimates (4.4)(a), (b), (c), and (d) have already been obtained in the previous section. Therefore, we just have to
check (4.4)(e) and (4.4)(f).

Checking (4.4)(e): Let us take the divergence of (3.26):

−�qN = ∇ · AN − ∇ · f,

where we recall that

AN = ∇ · (DN(wN) ⊗ DN(wN)
)
.

Next, since f ∈ L2([0, T ] × T3)
3, then we get ∇ · f ∈ L2([0, T ];H 1(T3)). We now investigate the regularity of AN .

We already know from the estimates proved in the previous section that AN ∈ L2([0, T ] × T3)
3. This yields the first

bound in L2([0, T ];H 1(T3)) for qN .
We now seek for the other estimate for qN . Classical interpolation inequalities combined with (4.4)(c) yield

DN(wN) ∈ L10/3([0, T ] × T3)
3. Therefore, AN ∈ L5/3([0, T ];W 1,5/3(T3)). Consequently, we obtain

qN ∈ L2([0, T ];H 1(T3)
) ∩ L5/3([0, T ];W 2,5/3(T3)

)
.

Checking (4.4)(f): Let v ∈ L4([0, T ];H1) be given. We use DN(v) ∈ L4([0, T ];H1) as test function in the equation
satisfied by (wN,qN), Eq. (4.1), that is now (by the results previously proved) a completely justified computation. We
get, thanks to:

– ∂twN ∈ L2([0, T ] × T3)
3 (as well as all other terms in the equation),

– DN commutes with differential operators,
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– G and DN are self-adjoint,
– the pressure term vanishes because ∇ · DN(v) = 0,(

∂twN,DN(v)
) = (

∂tDN(wN),v
)

= ν
(
�wN,DN(v)

) − (
DN(wN) ⊗ DN(wN),DN(∇v)

) − (
DN(f),v

)
. (4.5)

We first observe that∣∣(�wN,DN(v)
)∣∣ = ∣∣(∇DN(wN),∇v

)∣∣ � C1(t)‖v‖1, (4.6)

and we use the L2([0, T ];H 1(T3)
3) bound for DN(wN), to infer that the function C1(t) ∈ L2([0, T ]), with a bound

uniform in N ∈ N. Using ‖DN(f)‖ � ‖f‖ already proved in the previous section and Poincaré’s inequality, we handle
the term the external forcing is involved in as follows:∣∣(DN(f),v

)∣∣ � C‖f‖‖v‖1, (4.7)

C being Poincaré’s constant. Finally, from (4.4)(c) and usual interpolation inequalities, we obtain that DN(wN) be-
longs to L8/3([0, T ];L4(T3)

3), which yields

DN(wN) ⊗ DN(wN) ∈ L4/3([0, T ];L2(T3)
9).

Therefore, when we combine the latter estimate with ‖DN(∇v)‖ � ‖∇v‖, we get∣∣(DN(wN) ⊗ DN(wN),DN(∇v)
)∣∣ � C2(t)‖v‖1, (4.8)

where C2(t) ∈ L4/3([0, T ]) and it is uniform in N ∈ N. The final result is a consequence of (4.5) combined with
(4.6)–(4.8), and C1(t) + ‖f(t, ·)‖ + C2(t) = C(t) ∈ L4/3([0, T ]), uniformly in N ∈ N. Therefore, (4.5) yields∣∣(∂tDN wN,v)

∣∣ = ∣∣(∂twN,DN(v)
)∣∣ � C(t)‖v‖1,

hence estimate (3.3)(e) follows.

Step 2: Taking the limit.
Estimates in table (4.4) yield the existence of

w ∈ L∞([0, T ];H1
) ∩ L2([0, T ];H2

)
,

z ∈ L∞([0, T ];H0
) ∩ L2([0, T ];H1

)
,

q ∈ L2([0, T ];H 1(T3)
) ∩ L5/3([0, T ];W 2,5/3(T3)

)
,

such that, up to sub-sequences,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wN → w

⎧⎪⎨⎪⎩
weakly in L2([0, T ];H2

)
,

weakly∗ in L∞([0, T ];H1
)
,

strongly in Lp
([0, T ];H1

)
, ∀p < ∞,

∂twN → ∂tw weakly in L2([0, T ] × T3
)
,

DN(wN) → z

⎧⎪⎨⎪⎩
weakly in L2([0, T ];H1

)
,

weakly∗ in L∞([0, T ];H0
)
,

strongly in Lp
([0, T ] × T3

)3
, ∀p < 10/3,

∂tDN(wN) → ∂tz weakly in L4/3([0, T ];H−1
)
,

qN → q weakly in L2([0, T ];H 1(T3)
) ∩ L5/3([0, T ];W 2,5/3(T3)

)
.

(4.9)

We especially have

DNwN ⊗ DNwN → z ⊗ z strongly in Lp
([0, T ] × T3

)9
, ∀p < 5/3. (4.10)

It is straightforward to take the limit in the equations. It remains to prove that

z = Aw = lim
N→∞DN(wN) (4.11)

thanks to (4.10).
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Let v ∈ L2([0, T ];H2). We have (DN(wN),v) = (wN,DN(v)). We claim that

DN(v) → Av strongly in L2([0, T ] × T3
)3

, (4.12)

which suffices to conclude the proof. Indeed, assume that such a convergence result holds. Then by (4.9), still keeping
the notation (·,·) for the scalar product in L2([0, T ] × T3)

3, as long as no risk of confusion occurs,

(DN(wN),v) (wN,DN(v))

(z,v) (w,Av)

(z,v) (Aw,v)

yielding z = Aw, since for all v ∈ L2([0, T ];H2), (z,v) = (Aw,v).
It remains to prove (4.12). We can write

v =
∑

k∈T �
3

v̂k(t)eik·x,

and consequently (see in [21])

‖v‖2
L2([0,T ];H2)

=
∑

k∈T �
3

|k|4
T∫

0

∣∣̂vk(t)
∣∣2

dt < ∞.

Let ε > 0 be given. Then, there exists 0 < K = K(v) ∈ N such that

∑
|k|>K

2
(
1 + α4|k|4) T∫

0

∣∣̂vk(t)
∣∣2

dt <
ε

2
.

Since 0 � (1 − ρN,k) � 1, we have

T∫
0

∥∥(A − DN)v
∥∥2 =

∑
k∈T �

3

(
1 + α2|k|2)2

(1 − ρN,k)2

T∫
0

∣∣̂vk(t)
∣∣2

dt

=
∑

0<|k|�K

(
1 + α2|k|2)2

(1 − ρN,k)2

T∫
0

∣∣̂vk(t)
∣∣2

dt

+
∑

|k|>K

(
1 + α2|k|2)2

(1 − ρN,k)2

T∫
0

∣∣̂vk(t)
∣∣2

dt

<
∑

0<|k|�K

(
1 + α2|k|2)2

(1 − ρN,k)2

T∫
0

∣∣̂vk(t)
∣∣2

dt + ε

2
.

Observe that – for each given k ∈ T �
3 – we have ρN,k → 1 when N → ∞. Therefore, there exists N0 ∈ N (obviously

depending on v and on K) such that for all N > N0,∑
|k|�K

(
1 + α2|k|2)2

(1 − ρN,k)2

T∫
0

∣∣̂vk(t)
∣∣2

dt <
ε

2
,

hence,

∀ε > 0 ∃N0 = N0(v) ∈ N:
∥∥(A − DN)v

∥∥2
L2([0,T ];H0)

< ε, ∀N > N0,

ending the proof.
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Remark 4.1. Let (uN,pN) = (DN(wN),DN(qN)), and define (u,p) := (Aw,Aq). Our proof also shows that the
field (uN,pN) satisfies the system

∂tuN + (DN ◦ G)
(∇ · (uN ⊗ uN)

) − ν�uN + ∇pN = (DN ◦ G)(f),

∇ · uN = 0,

uN(0,x) = (DN ◦ G)(u0)(x). (4.13)

This equation is consistent with the convergence result, since DN ◦ G → Id, and the proof contains the fact that
(u,p) = limN→+∞(A(wN),A(qN)) is at least a distributional solution of the Navier–Stokes equations (1.1). We also
recall that the energy equality holds (see Remark 3.3), for the solution (wN,qN) of the ADM (4.1).

Remark 4.2. Things that make our convergence result true are essentially:

• The decay in O(|k|−2) of Ĝk and the growth in O(|k|2) of Âk.
• The convergence property (2.7), inequalities (2.8) and (2.11).

4.2. Energy inequality

We now prove that the solution u = A(w) satisfies an “energy inequality”. We still assume that (3.1) holds, i.e.
u0 ∈ H0 and f ∈ L2([0, T ];H0). Moreover, {(wN,qN)}N∈N is a (possibly relabelled) sequence of regular weak solu-
tions that converges to a weak solution (w, q) of the filtered Navier–Stokes equations.

Proposition 4.1. Let u = A(w). Then the field u satisfies the energy inequality:

1

2

∥∥u(t)
∥∥2 + ν

t∫
0

∥∥∇u(s)
∥∥2

ds � 1

2

∥∥u(0)
∥∥2 +

t∫
0

(
f(s),u(s)

)
ds ∀t ∈ [0, T ]. (4.14)

Remark 4.3. The energy inequality above can also be rephrased as follows:

1

2

d

dt
‖Aw‖2 + ν‖∇Aw‖2 � (f,Aw), (4.15)

which holds in the sense of the distributions: for all φ ∈ C∞
0 (0, T ) such that φ � 0,

−1

2

T∫
0

∥∥Aw(s)
∥∥2

φ′(s) ds + ν

T∫
0

∥∥∇Aw(s)
∥∥2

φ(s) ds �
T∫

0

(
f(s),Aw(s)

)
φ(s) ds.

This implies that w is the average of the velocity part u of a dissipative solution of the Navier–Stokes equation (1.1)
in the sense of Leray–Hopf, that one also can read as

1

2

d

dt
‖u‖2 + ν‖∇Au‖2 � (f,u).

Remark 4.4. If we assume less regularity on the external force, for instance f ∈ L2([0, T ];H−1), the proof remains
the same and we obtain the corresponding inequality

1

2

d

dt
‖Aw‖2 + ν‖∇Aw‖2 � 〈f,Aw〉,

where 〈·,·〉 denotes the duality pairing.

Proof of Proposition 4.1. The starting point is the energy equality originally labeled (3.29),

1 d ∥∥A1/2D
1/2
N (wN)

∥∥2 + ν
∥∥∇A1/2D

1/2
N (wN)

∥∥2 = (
A−1/2D

1/2
N (f),A1/2D

1/2
N (wN)

)
. (4.16)
2 dt
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We integrate (4.16) on the time interval [0, t] for any given t ,

1

2

∥∥A1/2D
1/2
N (wN)(t)

∥∥2 + ν

t∫
0

∥∥∇A1/2D
1/2
N (wN)(s)

∥∥2
ds

= 1

2

∥∥A1/2D
1/2
N (wN)(0)

∥∥2 +
t∫

0

(
A−1/2D

1/2
N (f),A1/2D

1/2
N (wN)

)
ds. (4.17)

We must take the limit in (4.17) when N → ∞, and we first focus to its r.h.s. We claim that, up to a sub-sequence,

A1/2D
1/2
N (wN) → A(w) weakly in L2([0, T ];H1

)
,

A1/2D
1/2
N (wN) → A(w) weakly∗ in L∞([0, T ];H0

)
. (4.18)

Thanks to the bound (3.17)(a), we can extract from {A1/2D
1/2
N (wN)}N∈N a sub-sequence (without changing the nota-

tion) such that

A1/2D
1/2
N (wN) → z

{
weakly in L2([0, T ];H1

)
,

weakly∗ in L∞([0, T ];H0
)
.

(4.19)

We must prove z = A(w). We already have proved that when N → ∞ (see (4.9)–(4.11) above)

DN(wN) → Aw

{
strongly in Lp

([0, T ] × T3
)3

, ∀p < 10/3,

weakly in L2([0, T ];H0
)
,

the same kind of proof applies to the sequence {D1/2
N (wN)}N∈N (we skip the details here), and we have at least

D
1/2
N (wN) → A1/2(w) weakly in L2([0, T ];H1

)
(and much better).

By the continuity of A and the uniqueness of the weak limit, we finally get z = A(w), hence (4.18).
Next, due to the assumptions on f it is easy proved using arguments already detailed before, that when N → ∞,

A−1/2D
1/2
N f → f strongly in L2([0, T ];H0

)
.

In addition, since for all N ∈ N, wN(0) = w(0) = u(0) ∈ H2, we can take the limit in the r.h.s. of (4.17) when N → ∞,
and we get

lim
N→+∞

[
1

2

∥∥A1/2D
1/2
N (wN)(0)

∥∥2 +
t∫

0

(
A−1/2D

1/2
N (f),A1/2D

1/2
N (wN)

)
ds

]

= 1

2

∥∥Aw(0)
∥∥2 +

t∫
0

(f,Aw) ds.

The previous limit implies that the left-hand side of (4.17) is bounded uniformly in N ∈ N, and the following inequality
holds,

lim sup
N→+∞

[
1

2

∥∥A1/2D
1/2
N (wN)(t)

∥∥2 + ν

t∫
0

∥∥∇A1/2D
1/2
N (wN)(s)

∥∥2
ds

]

� 1

2

∥∥Aw(0)
∥∥2 +

t∫
0

(
f(s),Aw(s)

)
ds.

Next, we use the elementary inequality for the real valued sequences {aN }n∈N and {bN }n∈N

lim supaN + lim inf
N→+∞bN � lim sup(aN + bN),
N→+∞ N→+∞
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with

aN := 1

2

∥∥A1/2D
1/2
N (wN)(t)

∥∥2 and bN = ν

t∫
0

∥∥∇A1/2D
1/2
N (wN)(s)

∥∥2
ds.

(The inequality holds since we know in advance that the right-hand side is finite.) We infer that

lim sup
N→+∞

1

2

∥∥A1/2D
1/2
N (wN)(t)

∥∥2 + lim inf
N→+∞ν

t∫
0

∥∥∇A1/2D
1/2
N (wN)(s)

∥∥2
ds

� 1

2

∥∥Aw(0)
∥∥2 +

t∫
0

(
f(s),Aw(s)

)
ds.

By lower semi-continuity of the norm this implies that
t∫

0

∥∥∇Aw(s)
∥∥2

ds � lim inf
N→+∞

t∫
0

∥∥∇A1/2D
1/2
N wN(s)

∥∥2
ds.

On the other hand, since D1/2wN → A1/2w weakly∗ in L∞([0, T ];H0) we get, again by identification of the weak
limit, ∥∥Aw(t)

∥∥2 � lim sup
N→+∞

∥∥A1/2D
1/2
N wN(t)

∥∥2
.

By collecting all the estimates, we have finally proved that, for all t ∈ [0, T ],
1

2

∥∥Aw(t)
∥∥2 + ν

t∫
0

∥∥∇Aw(s)
∥∥2

ds � 1

2

∥∥Aw(0)
∥∥2 +

t∫
0

(
f(s),Aw(s)

)
ds. (4.20)

This can be read as the standard energy inequality for u = Aw,

1

2

∥∥u(t)
∥∥2 + ν

t∫
0

∥∥∇u(s)
∥∥2

ds � 1

2

∥∥u(0)
∥∥2 +

t∫
0

(
f(s),u(s)

)
ds ∀t ∈ [0, T ],

which ends the proof of the energy inequality. �
5. Generalized Helmholtz filter

We aim in this section to study the case of “generalized Helmholtz filters”. We call “generalized Helmholtz filter”
a filter defined thanks to the equations

−α2p�pw + w + ∇π = w in T3,

∇ · w = 0 in T3, (5.1)

π having a zero mean on T3. The symbol of the operator �p is |k|2p and α > 0 is still fixed. We introduce the decon-
volution like model that corresponds to this filter (see (5.6) below) and we define the suitable notion of generalized
weak solution.

We show that when p > 3/4 this model has a unique generalized regular weak solution that converges towards a
solution of the mean Navier–Stokes equation. The analysis carried out in this section highlights a strong regularizing
effect when p > 1.

Remark 5.1. The exponent “3/4” looks like a “critical exponent”. We conjecture that we can get an existence and
uniqueness result for lower exponents, but concerning the convergence towards the mean Navier–Stokes equations,
we think that it is the best exponent, but this question remains an open one, although it remains an academic issue.
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The plan of this section follows the previous scheme:

• Definition of the deconvolution operator of order N and main properties.
• Definition of a generalized regular weak solution.
• A priori estimates and existence result.
• Study of the convergence as N goes to infinity.

When arguments are similar to those for the case p = 1 already studied, we shall skip them to focus on essential
features of this generalized situation.

5.1. The generalized deconvolution operator

We first notice that for any given w ∈ Hs (s > 0), w = ∑
k∈T �

3
ŵkeik·x, then (5.1) has a unique solution (w,0),

where w ∈ Hs+2p and

w =
∑

k∈T �
3

1

1 + α2p|k|2p
ŵkeik·x. (5.2)

We write Ap(w) = w, that defines an isomorphism between Hs+2p and Hs , and similarly Gp = A−1
p . We still denote

by Ap and Gp (written with overbars too) the same operator also acting on scalar and/or matrix fields. Let us formally
define our deconvolution operator DN,p by

DN,p :=
N∑

n=0

(I − Gp)n. (5.3)

The symbol of DN,p is

D̂N,p(k) =
N∑

n=0

(
α2p|k|2p

1 + α2p|k|2p

)n

= (
1 + α2p|k|2s

)
ρN,p,k, ρN,p,k = 1 −

(
α2p|k|2p

1 + α2p|k|2p

)N+1

.

All operators Ap , Gp and DN,p are self-adjoint, commute with each other as well as with differential operators. They
have a common basis of eigen-vectors. Moreover, the crucial analogous property to (2.7) holds,

for each k ∈ T3 fixed D̂N,p(k) → 1 + α2p|k|2p = (̂Ap)k, as N → +∞. (5.4)

Even if this convergence is not uniform in N , it is the property that makes possible the ADM (5.6) below to converge
to the mean Navier–Stokes equations. Moreover, elementary calculus yields the same properties as when p = 1,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 � D̂N,p(k) � N + 1, ∀k ∈ T3,

D̂N,p(k) ≈ (N + 1)
1 + α2p|k|2p

α2p|k|2p
, for large |k|,

lim|k|→+∞ D̂N,p(k) = N + 1,

D̂N,p(k) �
(
1 + α2p|k|2p

)
, ∀k ∈ T3.

(5.5)

5.2. “Generalized regular weak solution”

The problem we consider is the problem

∂tw + ∇ · (DN,p(w) ⊗ DN,p(w)
) − ν�w + ∇q = f,

∇ · w = 0,

w(0,x) = u0(x), (5.6)

where here F = A−1
p (F) for any field F.
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Definition 5.1 (“Generalized regular weak” solution). We say that the couple (w, q) is a “regular weak” solution to
system (5.6) if and only if the three following items are satisfied:

1) Regularity

w ∈ L2([0, T ];H1+p

) ∩ C
([0, T ];Hp

)
, (5.7)

∂tw ∈ L2([0, T ];H0
)
, (5.8)

q ∈ L2([0, T ];H 1(T3)
)
. (5.9)

2) Initial data

lim
t→0

∥∥w(t, ·) − u0
∥∥

Hp
= 0. (5.10)

3) Weak formulation

∀v ∈ L2([0, T ];H 1(T3)
3), (5.11)

T∫
0

∫
T3

∂tw · v −
T∫

0

∫
T3

DN,p(w) ⊗ DN,p(w) : ∇v + ν

T∫
0

∫
T3

∇w : ∇v +
T∫

0

∫
T3

∇q · v =
T∫

0

∫
T3

f · v. (5.12)

For simplicity, we still assume that (3.1) holds, that means u0 ∈ H0, f ∈ L2([0, T ]× T3). Similar results to those in
the case p = 1 hold, that we state below.

Theorem 5.1. Assume that (3.1) holds, α > 0 and N ∈ N are given and fixed. Assume in addition that p > 3/4. Then
problem (5.6) has a unique generalized regular weak solution. Moreover, when p � 1,

∂tw ∈ L2([0, T ],Hp−1
)
, q ∈ L2([0, T ],Hp(T3)

)
. (5.13)

We denote by (wN,p, qN,p) the regular weak solution to problem (5.6).

Theorem 5.2. From the sequence {(wN,pqN,p)}N∈N one can extract a sub-sequence (still denoted {(wN,pqN,p)}N∈N)
such that

wN,p → w

{
weakly in L2

([0, T ];H 1+p(T3)
3
) ∩ L∞([0, T ];Hp(T3)

3
)
,

strongly in Lr
([0, T ];Hp(T3)

3
)
, ∀1 � r < +∞,

qN,p → q weakly in L2([0, T ];H 1(T3)
) ∩ L5/3([0, T ];W 2p,5/3(T3)

)
, (5.14)

and such that the system

∂tw + ∇ · (Aw ⊗ Aw) − ν�w + ∇q = f,

∇ · w = 0,

w(0,x) = u0(x) (5.15)

holds in the sense of the distributions.

The construction of approximations thanks to the Galerkin method is the same as the one we detailed before in the
case p = 1, as well as the tools to take the limit when N goes to infinity, as long as we have estimates uniform in N .
Therefore, we restrict the following display to show how to get a priori estimates uniform in N when things are really
new with respect to the case p = 1. Especially we explain why 3/4 is a critical exponent here, and we highlight the
distinction between the cases 3/4 < p � 1 and 1 < p, especially in terms of regularity and for proving uniqueness.
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5.3. Estimates and sketch of proof

We formally take ApDN,pw as test function in (5.12), to get the following energy equality:

1

2

d

dt

∥∥A
1
2
pD

1
2
N,p(w)

∥∥2 + ∥∥∇A
1
2
pD

1
2
N,p(w)

∥∥2 = (
A

1
2
pD

1
2
N,pf,A

1
2
pD

1
2
N,p(w)

)
.

Therefore using the properties (5.5) and the same computations as for table (3.17), we get the following estimates:

Label Variable Bound Order

(a) A
1
2
p D

1
2
N,p

(w) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(b) D
1/2
N,p

(w) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(c) D
1/2
N,p

(w) L∞([0, T ];Hp) ∩ L2([0, T ];H1+p) O(α−p)

(d) w L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(e) w L∞([0, T ];Hp) ∩ L2([0, T ];H1+p) O(α−p)

(f) DN,p(w) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(g) DN,p(w) L∞([0, T ];Hp) ∩ L2([0, T ];Hp+1) O(α−p · (N + 1)1/2)

(h) ∂t w L2([0, T ];H0), for p > 3
4 O(α−p)

(5.16)

The only real novelty in table (5.16) (in comparison with the case p = 1 and table (3.17)), is (5.16)(h), where the
critical exponent 3/4 is involved. Therefore, we shall be satisfied with only checking this estimate.

To get an estimate for ∂tw, uniform in N , it is enough to check that

∇ · (DN,p(w) ⊗ DN,p(w)
) ∈ L2([0, T ] × T3

)3
, (5.17)

the bound being uniform in N . Roughly speaking, (∇·) ◦ Gp allows us to “gain” 2p − 1 derivatives. Therefore,
the first observation is that p must be larger than 1/2 if we want a regularization effect. Recall that by (5.16)(f),
DN,p(w) ⊗ DN,p(w) ∈ L2([0, T ],L3/2(T3)

9). Therefore

∇ · (DN,p(w) ⊗ DN,p(w)
) = [

(∇·) ◦ Gp

](
DN,p(w) ⊗ DN,p(w)

) ∈ L2([0, T ],W 2p−1,3/2(T3)
3),

and we must fix p such that W 2p−1,3/2(T3) ⊂ L2(T3). Using the Sobolev embedding theorem, we know that it holds
if and only if p � 3/4. As we lose the compactness property of the injection in the case p = 3/4, we must retain
exponents p such that p > 3/4.

Following the same process, we easily get the following second set of estimates

Label Variable Bound Order

(a) w L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(b) w L∞([0, T ];Hp) ∩ L2([0, T ];H1+p) O(α−p)

(c) DN,p(w) L∞([0, T ];H0) ∩ L2([0, T ];H1) O(1)

(d) ∂t w L2([0, T ] × T3)3 O(α−p)

(e) q L2([0, T ];H 1(T3)) ∩ L5/3([0, T ];W2p,5/3(T3)) O(α−p)

(f) ∂tDN,p(w) L4/3([0, T ];H−1) O(1)

(5.18)

The existence of a regular weak solution follows as in Section 3.2, without significant changes. For proving unique-
ness, we use the method of Section 3.2, that consists in taking ApDN,pW as test function in the equation, where
W = w1 − w2 and w1, w2 are two generalized weak solutions. We must justify that this operation is possible. To do
so, we must distinguish the cases 3/4 < p � 1 and 1 < p.

Assume first 3/4 < p � 1. Since W ∈ L2([0, T ],H1+p), then ApDN,pW ∈ L2([0, T ],H1−p). In this case,
ApDN,p(W) ∈ L2([0, T ] × T3)

3 and uniqueness can be proven as in Section 3.2.
Assume now 1 < p. The estimate ApDN,pW ∈ L2([0, T ],H1−p) does not allow to take ApDN,pW as test function

in the equation that it satisfies, unless we prove that all terms in the equation are at least in the space L2([0, T ],Hp−1),
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so that the integrals in the variational formulation (5.12) become duality pairings. We then need to get more regularity
about any solution w.

Note that since w ∈ L2([0, T ],H1+p), then �w ∈ L2([0, T ],Hp−1). Let us focus on the nonlinear term. We already
know from (5.18) that

DN,p(w) ⊗ DN,p(w) ∈ L2([0, T ],L3/2(T3)
9). (5.19)

Therefore, we have

∇ · DN,p(w) ⊗ DN,p(w) ∈ L2([0, T ];W 2p−1,3/2(T3)
3) ↪→ L2([0, T ],Hp−1

)
. (5.20)

We conclude that ∂tw ∈ L2([0, T ],Hp−1) thanks to (5.11)–(5.12) and the density of L2([0, T ],H1) in
L2([0, T ],Hp−1). We get (5.13) from the De Rham Theorem, as well as uniqueness that can be proved by using
classical arguments.

We can now take the limit in (5.6) when N goes to infinity as we already did for the case p = 1 in the previous
part, without any change. Note that the analogous convergence property as (4.12) holds, which allows us to identify
the limit and conclude by proving

∀v ∈ L2([0, T ],H2p

)
, DN,p(v) → Apv strongly in L2([0, T ] × T3

)3
, (5.21)

which is one of the main ingredients of the proof.

6. Ultimate generalization and conclusions

We finish the paper by a series of remarks about generalized convolution filters that take inspiration from the
previous one and for which it is possible to take the limit in the corresponding ADM, when N goes to infinity.
Then we consider the well-known Fejér’s filter. As we shall see, we are not able to check if the corresponding ADM
converge or not toward a mean of the Navier–Stokes.

6.1. Generalized convolution filter

All filters we have considered above can be written as

w = G � w = G(w),

with

G =
∑

k∈T �
3

Ĝkeik·x. (6.1)

We also write Âk = Ĝ−1
k . What we did before suggests to ask the Ĝk’s to satisfy the following inequalities

∀k ∈ T �
3 ,

C1

1 + α2q |k|2q
� Ĝk � C2

1 + α2p|k|2p
, (6.2)

where C1 > 0 and C2 > 0, p > 0, and in addition Ĝ0 = 0. The symbol of the corresponding deconvolution operator
DN is then given by

D̂N(k) =
N∑

n=0

(1 − Ĝk)n = 1 − (1 − Ĝk)N+1

Ĝk
. (6.3)

According to the strategy above, we have to check

∀k ∈ T �
3 , lim

N→∞ D̂N(k) = Âk. (6.4)

This is satisfied as long as that ∀k ∈ T �
3 , 0 < Ĝk < 1, which is true when the constant C2 is such that

C2 < 1 + α2p

(
2π

)2p

.

L
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Elementary calculus yields

∀k ∈ T �
3 , 1 � D̂N(k) � N + 1,

∀k ∈ T �
3 , D̂N(k) � Âk,

∀k ∈ T �
3 , D̂N(k) � 1 + α2q |k|2q

C1
,

lim|k|→∞ D̂N(k) = N + 1. (6.5)

We may then introduce the model corresponding to (5.6). The definition of regular weak solution is similar to Defini-
tion 5.1, where the exponent p is the one that is involved in the upper bound in (6.2) above.

The same kind of proof as we did before, yields the existence and uniqueness of a “regular weak solution” to the
model when p > 3/4, that converges to a solution of the mean Navier–Stokes equations. We stress that when p > 1,
we gain more regularity, which is what it is expected.

Notice that the lower bound in (6.2) is necessary. Indeed, it indicates that the operator A maps H2q onto H0, and so
does DN thanks to the third inequality in (6.5). This is useful to prove the analogous convergence property to (4.12)
(see also (5.21)), that allows to identify the limit and conclude by proving

∀v ∈ L2([0, T ],H2q

)
, DN(v) → Av strongly in L2([0, T ] × T3

)3
, (6.6)

which is one of the main ingredients of the proof as we already said.

6.2. Remarks about the Fejér filter

Fejér’s kernel is one of the main popular convolution kernels in the topics of periodic fields. It is used to approach
periodic fields by trigonometric polynomials, yielding elementary proofs of the Stone–Weierstrass theorem and many
other theorems related to Fourier series, since it appears when one writes Cesaro’s means. It is given by the formula

F(x) =
∑

k∈T3, |k|�J

(
1 − |k|

J + 1

)
eik·x, (6.7)

for some given cut-off number J > 0. It seems natural to choose J ∈ N such that J = O(1/α), according to the α

scale.
We define the regularized field thanks to the usual convolution,

w = F � w.

When we write this in Fourier series, we get

w(x) =
∑

k∈T �
3

ŵkeik·x, w = F(w) =
∑

k∈T �
3 , |k|�J

(
1 − |k|

J + 1

)
ŵkeik·x. (6.8)

It is easy checked that F maps Hs onto Hs+2 and that one has

‖w‖s+2 = O

(
1

α2

)
‖w‖s .

Let DF
N be the corresponding deconvolution operator:

DF
N =

N∑
n=0

(I − F)n,

and consider the corresponding ADM

∂tw + ∇ · (DF
N(w) ⊗ DF

N(w)
) − ν�w + ∇q = f,

∇ · w = 0,

w(0,x) = u0(x). (6.9)
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Then it is easy checked

D̂F
N(k) =

(
1 − |k|

J + 1

)−1(
1 −

( |k|
J + 1

)N+1)
if |k| � J,

D̂F
N(k) = N + 1 if |k| > J. (6.10)

Of course, one might prove existence and uniqueness of some kind of regular weak solution to (6.8), say (wN,qN),
that satisfies many estimates uniform in N .

Unfortunately, no property such as (2.7) and (5.4) holds: (D̂F
N(k))N∈N does not converge towards F̂−1(k). So the

property “DF
N → F−1” does not hold, even formally. Therefore we cannot use the method we developed in the paper

to show that the ADM (6.8) converges toward the mean Navier–Stokes equations since we are not able to identify the
limit of DF

N(wN) ⊗ DF
N(wN). This opens an exciting open problem with which we conclude the paper.
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