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Wasserstein geometry of porous medium equation ✩
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Abstract

We study the porous medium equation with emphasis on q-Gaussian measures, which are generalizations of Gaussian measures
by using power-law distribution. On the space of q-Gaussian measures, the porous medium equation is reduced to an ordinary dif-
ferential equation for covariance matrix. We introduce a set of inequalities among functionals which gauge the difference between
pairs of probability measures and are useful in the analysis of the porous medium equation. We show that any q-Gaussian measure
provides a nontrivial pair attaining equality in these inequalities.
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1. Introduction

A q-Gaussian measure is one of power-law distributions on R
d , which is described by mean, covariance matrix

parameters and the q-exponential function given by

expq(t) := [1 + (1 − q)t
] 1

1−q

+ for q ∈ Qd := (0,1) ∪
(

1,
d + 4

d + 2

)
,

where we put [x]+ := max{x,0} and by convention 0a := ∞ for any negative number a (see (3.1) for the precise
definition of q-Gaussian measures). The q-Gaussian measure is considered as an approximation of the Gaussian
measure since the q-exponential function recovers the usual exponential function in the limit q → 1. This paper aims
to demonstrate that the q-Gaussian measure inherits some features of the Gaussian measure. To do this, let us start by
recalling properties of the Gauss measure.

For any v ∈ R
d and V ∈ Sym+(d,R), which is the set of symmetric positive definite matrices of size d , the

Gaussian measure N(v,V ) with mean v and covariance matrix V is given by
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N(v,V ) := exp

(
−1

2

〈
x − v,V −1(x − v)

〉)(
det(2πV )

)− 1
2 Ld ,

where Ld stands for the Lebesgue measure on R
d . For example, the density of N(0,2tId), where Id is the identity

matrix of size d and t > 0, is the heat kernel which is a self-similar solution to the heat equation

∂

∂t
ρ = �ρ.

As well as the heat kernel, a solution to the heat equation with an initial data being a Gaussian density remains
Gaussian densities for all future time, that is, the space of Gaussian measures is stable under the heat equation. On the
space of Gaussian measures, the heat equation is reduced to an ordinary differential equation for covariance matrix.

It simplifies not only the analysis of the heat equation but also the analysis of the Wasserstein space to restrict
arguments to the space of Gaussian measures. The Wasserstein space is the space P2 of Borel probability measures
on R

d having finite second moments equipped with a distance function W2 defined by

W2(μ, ν) := inf

{( ∫
Rd×Rd

|x − y|2 dπ(x, y)

) 1
2 ∣∣∣ π : a transport plan of μ and ν

}
,

where a transport plan of μ and ν is a probability measure on R
d ×R

d such that π[B ×R
d ] = μ[B] and π[Rd ×B] =

ν[B] for any Borel set B ⊂ R
d . A transport plan is said to be optimal if it attains the infimum above, which always exits

(see [24, Chapter 4]). Though the explicit expression of an optimal transport plan is not usually obtained, the explicit
expression of an optimal transport plan of a pair of Gaussian measures is known, which guarantees the convexity of
the space of Gaussian measures in Wasserstein geometry. The restriction to the space makes it possible to analyze
Wasserstein geometry in detail (see [17]).

We furthermore focus on the fact that the Gaussian measure satisfies a set of inequalities among the relative en-
tropy H , the Fisher information I and the Wasserstein distance function W2, all of which gauge differences between
pairs of probability measures and are defined by

H(μ|ν) :=
{∫

Rd
dμ
dν

ln dμ
dν

dν if μ is absolutely continuous with respect to ν,

+∞ otherwise,

I (μ|ν) :=
{∫

Rd |∇ ln dμ
dν

|2 dμ if μ is absolutely continuous with respect to ν,

+∞ otherwise.
We say that a probability measure ν satisfies the logarithmic Sobolev inequality with constant λ, in short LS(λ) if we
have

H(μ|ν) � 1

2λ
I (μ|ν)

for all absolutely continuous probability measure μ with respect to ν. Similarly, the probability measure ν is said
to satisfy the Talagrand inequality with constant λ, in short T(λ) (resp. the HWI inequality with constant λ, in short
HWI(λ)) if we have

W2(μ, ν) �
√

2

λ
H(μ|ν)

(
resp. H(μ|ν) � W2(μ, ν)

√
I (μ|ν) − λ

2
W2(μ, ν)2

)
for all absolutely continuous probability measure μ with respect to ν. Any Gaussian measure satisfies LS(λ), T(λ)
and HWI(λ), where λ−1 is the largest eigenvalues of the covariance matrix, and moreover provides a nontrivial pair
attaining equality in these inequalities. Note that criteria for a probability measure to satisfy LS(λ), T(λ) and HWI(λ)
are known, for example, LS(λ) with some convexity condition for ν implies T(λ) (see [15] for the details). The key of
the proof that LS(λ) implies T(λ) is to analyze asymptotic behaviors of the Fokker–Planck equation of the form

∂

∂t
ρ = �ρ + div(ρ∇Ψ ),

where Ψ is a function on R
d , on the contrary, these inequalities are applied to analyze asymptotic behaviors of the

Fokker–Planck equation. In particular, Otto [14] investigated the asymptotic behaviors in the case that Ψ (x) = |x|2/4
using Wasserstein gradient structure, where the scaling
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ρ(t, x) = t−
d
2 ρ̂
(
ln t, t−

1
2 x
)

provides a one-to-one correspondence between solutions ρ to the heat equation and the solutions ρ̂ to the Fokker–
Planck equation.

We show that such features are inherited to the space of q-Gaussian measures after some preliminaries on the
q-exponential function and the Wasserstein geometry in Section 2. Section 3 is devoted to the convexity of the space
of q-Gaussian measures in the Wasserstein space (Theorem A). In Section 4, we consider the features of q-Gaussian
measures as solutions to the porous medium equation

∂

∂t
ρ = �

(
ρ2−q

)
. (1.1)

Since the stability of the space of q-Gaussian measures has been already shown by Ohara and Wada [12], it is possible
to restrict the porous medium equation to the space of q-Gaussian measures. We introduce the ordinary differential
equation for covariance matrix obtained by restricting the porous medium equation to the space of q-Gaussian mea-
sures (Theorem B). Section 5 is concerned with generalizations of the logarithmic Sobolev inequality, the Talagrand
inequality and the HWI inequality, which play crucial roles in analyzing the asymptotic behaviors of the nonlinear
Fokker–Planck equation

∂

∂t
ρ = �

(
ρ2−q

)+ div(ρ∇Ψ ).

We give criteria for a probability measure to satisfy these inequalities and show that any q-Gaussian measure provides
a nontrivial pair attaining equality in these inequalities if q > 1 (Corollaries C, D). We finally prove that a variant of
the logarithmic Sobolev inequality implies a variant of the Talagrand inequality using the nonlinear Fokker–Planck
equation (Theorem E).

We refer to the preceding results in the literature. Generalizations of the logarithmic Sobolev inequality, the Tala-
grand inequality and the HWI inequality have been studied by several authors. Carrillo, Jüngel, Markowich, Toscani
and Untterreiter [6] studied these functional inequalities for parabolic systems using entropy dissipation methods.
Carrillo, McCann and Villani [7] also investigated these functional inequalities and they also estimated in [8] the con-
traction rate of nonlinear evolution equations in the Wasserstein distance function. Agueh, Ghoussoub and Kang [1]
and Cordero-Erausquin, Gangbo and Houdré [9] introduced variants of the relative entropy and the Fisher informa-
tion, through modifying the Boltzmann entropy and the quadratic transport cost. However, none of them referred to
the q-Gaussian measures and our result is the first one concerning the importance of the q-Gaussian measures in the
porous medium equation. See also [13], where Ohta and the author investigated the nonlinear Fokker–Planck equation
on a (weighted) Riemannian manifold using the Wasserstein gradient structure and the q-exponential function.

2. Preliminaries

2.1. q-exponential function and q-logarithmic function

We first summarize the q-calculus, see [21] for further discussion. Take q ∈ Qd and fix it. We define the q-
logarithmic function lnq by

lnq(t) := t1−q − 1

1 − q

for t > 0. Since the function lnq is monotone increasing, there exists its inverse function on the image. This inverse
function is called the q-exponential function expq and is naturally extended to all of R as

expq(t) := [1 + (1 − q)t
] 1

1−q

+ .

Note that the functions lnq and expq recover the usual logarithmic function and the usual exponential function as q

tends to 1, respectively.
Let us define functionals on the space P ac of absolutely continuous probability measures with respect to the

Lebesgue measure using the q-logarithmic function. The Tsallis entropy Eq is defined by
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Eq(μ) := −
∫
Rd

f q lnq(f ) dLd = −
∫
Rd

f q − f

q − 1
dLd

for μ = f Ld ∈ P ac, which is regarded as an approximation of the Boltzmann entropy E since we have

Eq(μ)
q→1−−−→ E(μ) = −

∫
Rd

f ln(f ) dLd .

We also define the q-relative entropy Hq and the q-Fisher information by

Hq(μ|ν) := 1

2 − q

∫
Rd

[
f lnq(f ) − g lnq(g) − (2 − q) lnq(g)(f − g)

]
dLd,

Iq(μ|ν) :=
∫
Rd

∣∣∇[lnq(f ) − lnq(g)
]∣∣2 dμ

for μ = f Ld , ν = gLd ∈ P ac, both of which are non-negative and gauge the difference between pairs of probability
measures. Note that limq→1 Hq(μ|ν) = H(μ|ν) and limq→1 Iq(μ|ν) = I (μ|ν) hold. The square root of the q-relative
entropy Hq is considered as a generalization of the distance function in the context of information geometry since
this satisfies a generalized Pythagorean relation (see [2,3] for information geometry). We refer to the generalized
Pythagorean relation in Remark 3.2. It will be demonstrated in (5.15) that −Iq(μ|ν) is the first variation of Hq(·|ν)

at μ.

2.2. Wasserstein geometry

We briefly recall some results on the Wasserstein space. See [23,24] and references therein for the details and more
information on Wasserstein geometry.

As mentioned in the introduction, an optimal transport of any pair in P2 always exits. Though the explicit expres-
sion of an optimal transport is usually not obtained, it has been known since the work of Brenier [5] that an optimal
transport is characterized by a push forward measure of the gradient of a convex function. A push forward measure of
a probability measure μ by a map T , denoted by T	μ, is defined by T	μ[B] := μ[T −1(B)] for all Borel sets B ⊂ R

d .
Given two probability measures μ = f Ld , ν = gLd and a differentiable map T on R

d , ν = T	μ is equivalent to that

f = g(T )det(dT ) (2.1)

holds for μ-almost everywhere, where dT is the total differential of T . We denote by id the identity map on R
d .

Theorem 2.1. (See [5].) Let μ,ν ∈ P2 be such that μ does not give mass to sets of Hausdorff dimension at most
(d − 1). Then there exists a convex function such that ∇ϕ pushes μ forward to ν and [id ×∇ϕ]	μ is a unique optimal
transport plan of them. Moreover, {[(1 − t)id + t∇ϕ]	μ}t∈[0,1] is a unique geodesic from μ to ν in the Wasserstein
space.

The converse situation also holds true, that is, if a support of a transport plan is almost contained in the subdiffer-
ential of a convex function, then the transport plan is optimal. This is known as Knott–Smith optimality criterion.

Theorem 2.2. (See [23, Theorem 2.16].) Let ϕ be a proper lower semicontinuous convex function on R
d . For

μ,ν ∈ P2, let π be a transport plan of them such that∫
Rd×Rd

[
ϕ(x) + sup

z∈Rd

(〈y, z〉 − ϕ(z)
)− 〈x, y〉

]
dπ(x, y) � ε.

Then we have∫
Rd×Rd

|x − y|2 dπ(x, y) � W2(μ, ν)2 + 2ε.
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We finally give the explicit expression of the optimal transport between a pair of Gaussian measures, which helps
us to understand Wasserstein geometry (see [17] and references therein for more details). Given any X ∈ Sym+(d,R),
we define a symmetric positive definite matrix X1/2 = √

X such that X1/2 · X1/2 = X.
For any pair of Gaussian measures N(v,V ) and N(u,U), we define the symmetric positive definite matrix T and

the associated function T by

T := U
1
2
(
U

1
2 V U

1
2
)− 1

2 U
1
2 , T (x) := 1

2

〈
x − v,T (x − v)

〉+ 〈x,u〉, (2.2)

which provides an optimal transport plan of N(v,V ) and N(u,U). In other words, [id × ∇T ]	N(v,V ) is the optimal
transport plan of them and then the Wasserstein distance between them is given by

W2
(
N(v,V ),N(u,U)

)2 = |v − u|2 + trV + trU − 2 tr

√
U

1
2 V U

1
2 .

A unique geodesic from N(v,V ) to N(u,U) is given by {N(wt ,Wt)}t∈[0,1], where the time-dependent vector wt and
the time-dependent matrix Wt are defined by

wt := (1 − t)v + tu, Wt := [(1 − t)Id + tT
]
V
[
(1 − t)Id + tT

]
. (2.3)

3. q-Gaussian measure

Let us summarize the definition of q-Gaussian measures and then discuss Wasserstein geometry of the space of
q-Gaussian measures. Background on q-Gaussian measures is found in [20] and [21].

A probability measure Nq(v,V ) is called the q-Gaussian measure with mean v and covariance matrix V if it
maximizes the Tsallis entropy Eq among μ ∈ P ac with mean v and covariance matrix V . It is known that the q-
Gaussian measure Nq(v,V ) is given by

Nq(v,V ) = C0(detV )−
1
2 expq

[
−1

2
C1
〈
x − v,V −1(x − v)

〉]
Ld, (3.1)

where C0 and C1 are the positive constants given by

C0 = C0(q, d) :=

⎧⎪⎪⎨
⎪⎪⎩

Γ (
2−q
1−q

+ d
2 )

Γ (
2−q
1−q

)
(
(1−q)C1

2π
)

d
2 if 0 < q < 1,

Γ ( 1
q−1 )

Γ ( 1
q−1 − d

2 )
(
(q−1)C1

2π
)

d
2 if 1 < q < d+4

d+2 ,

C1 = C1(q, d) := 2

2 + (d + 2)(1 − q)

and Γ (·) is the Γ -function (see [22]). In some cases, the q-Gaussian measure N∗
q (v,V ) is obtained as a maximizer of

the Tsallis entropy Eq under the q-mean v constraint and the q-covariance V constraint, that is, N∗
q (v,V ) maximizes

the Tsallis entropy Eq among μ = f Ld ∈ P ac satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(f ) =
∫
Rd

f q dLd,

∫
Rd

xf (x)q dLd(x) = Q(f )v,

∫
Rd

(x − v)T(x − v)f (x)q dLd(x) = Q(f )V,

where vectors in R
d are column and Tx stands for the transpose of x. A relation between Nq(v,V ) and N∗

q (v,V ) is
given by

N∗
q (v,V ) = Nq

(
v,

2 + d(1 − q)
V

)
.

2 + (d + 2)(1 − q)
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We use the usual mean and covariance constraint condition throughout this paper. In this case, the q-Gaussian measure
is well defined for q ∈ Qd and the q-Gaussian measure Nq(v,V ) recovers the Gaussian measure N(v,V ) as q tends
to 1. We denote by nq(v,V ) the density of Nq(v,V ) with respect to the Lebesgue measure.

The space of q-Gaussian measures is convex in the Wasserstein space.

Theorem A. For any q ∈ Qd , the space of q-Gaussian measures is convex and isometric to the space of Gaussian
measures with respect to Wasserstein geometry.

Proof. For the function T given in (2.2), we have

nq(v,V ) = nq(u,U)(∇T )(det Hess T )

for Nq(v,V )-almost everywhere, which implies [∇T ]	Nq(v,V ) = Nq(u,U) by (2.1). Theorem 2.2 with the convex-
ity of T ensures the optimality of [id × ∇T ]	Nq(v,V ) and we have

W2
(
Nq(v,V ),Nq(u,U)

)2 = |v − u|2 + trV + trU − 2 tr

√
U

1
2 V U

1
2

= W2
(
N(v,V ),N(u,U)

)2
.

Hence the map from the space of Gaussian measures to the space of q-Gaussian measures sending N(v,V ) to
Nq(v,V ) is an isometry with respect to W2.

Moreover, for the time-dependent vector wt and the time-dependent matrix Wt given in (2.3), {Nq(wt ,Wt)}t∈[0,1]
is a unique geodesic from Nq(v,V ) to Nq(u,U), which shows the convexity of the space of q-Gaussian measures in
the Wasserstein space. �
Remark 3.1. The convexity of the space of q-Gaussian measures is due to the characterization by the mean and
covariance matrix parameter rather than the q-exponential function, which suggests the existence of other convex
spaces (see [19]).

Remark 3.2. We briefly explain that the square root of the q-relative entropy satisfies a generalized Pythagorean
relation. Given μ ∈ P ac, let Nq(v,V ) be a minimizing q-Gaussian measure for the variational problem

min
{
Hq

(
μ
∣∣Nq(u,U)

) ∣∣ (u,U) ∈ R
d × Sym+(d,R)

}
.

Then the following Pythagorean relation

Hq

(
μ
∣∣Nq(u,U)

)= Hq

(
μ
∣∣Nq(v,V )

)+ Hq

(
Nq(v,V )

∣∣Nq(u,U)
)

holds for any q-Gaussian measure Nq(u,U). For the proof, see [12, Proposition 3].

4. q-Gaussian measures as solutions to porous medium equation

It is known that the porous medium equation (1.1) allows for a self-similar solution of the form

ρq(x, t) := [At−dα(1−q) − B|x|2t−1] 1
1−q

+ = [A − B|x|2t−2α
] 1

1−q

+ t−dα,

where the constants α and B are given by

α = α(q, d) := 1

d(1 − q) + 2
, B = B(q, d) := (1 − q)α

2(2 − q)
.

The other constant A = A(q,d) is defined by the total mass of the solution and we normalized it such that∫
d

ρq(x, t) dLd = 1.
R
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To be precise, A is given by

A := C
2α(1−q)

0

[
α

(2 − q)C1

]dα(1−q)

.

The solution ρq was discovered by Barenblatt [4] and Pattle [16] and is called the Barenblatt–Pattle solution. It is
easy to check the relation

ρq(x, t) = nq

(
0,Ct2αId

)
(x),

where the constant C = C(q, d) is given by

C := (2 − q)C1

α
A.

As well as the Barenblatt–Pattle solution, it was proved by Ohara and Wada [12, Proposition 5] that a solution to the
porous medium solution with an initial data being a q-Gaussian density remains q-Gaussian densities for all future
time. This fact implies that a solution to the porous medium equation on the space of q-Gaussian measures can be
explicitly solved [12, Remark 2]. To do this, we introduce the map Θ on Sym+(d,R) such that

Θ(V ) := (detV )−α(1−q)V .

Note that ρq(x, t) = nq(0,CΘ(tId))(x) holds.

Theorem B. For any q ∈ Qd and V ∈ Sym+(d,R), we set the time-dependent matrix Vt as

Θ(Vt ) = Θ(V ) + σ(t)Id ,
d

dt
σ (t) = 2α

(
detΘ(Vt )

)− 1−q
2 .

Then nq(v,CΘ(Vt )) is a solution to the porous medium equation (1.1).

Remark 4.1. The assertion also holds true for q = 1.

Proof of Theorem B. For simplicity, we use the following notations

|x|2V := 〈x,V −1x
〉
, Θt := Θ(Vt ), F (t, x) := [A − B|x − v|2Θt

]
+.

Then we have ρ(t, x) := F 1/(1−q)(detΘt)
−1/2 = nq(v,CΘ(Vt ))(x) and calculate

�
(
ρ2−q(t, x)

)= αF
q

1−q (t, x)(detΘt)
− 2−q

2

(
2B

1 − q
|x − v|2

Θ2
t
− F(t, x) tr

(
Θ−1

t

))
.

Combining well-known equations for a time-dependent invertible matrix Xt

d

dt

(
X−1

t

)= −X−1
t

(
d

dt
Xt

)
X−1

t ,
d

dt
detXt = (detXt) tr

(
X−1

t

d

dt
Xt

)
with the assumption

d

dt
Θt = 2α(detΘt)

− 1−q
2 Id,

we obtain

∂

∂t

(
ρ(t, x)

)= αF
q

1−q (t, x)(detΘt)
− 2−q

2

(
2B

1 − q
|x − v|2

Θ2
t
− F(t, x) tr

(
Θ−1

t

))
.

We thus have

∂

∂t
ρ = �

(
ρ2−q

)
,

proving that ρ(t, x) = nq(c,CΘ(Vt ))(x) is a solution to (1.1). �
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Remark 4.2. It is known that the scaling

ρ(t, x) = t−dαρ̂
(
ln t, t−αx

)
provides a one-to-one correspondence between solutions ρ to the porous medium equation and solutions ρ̂ to the
nonlinear Fokker–Planck equation of the form

∂

∂t
ρ̂ = �

(
ρ̂2−q

)+ [ρ̂(∇ α

2
|x|2
)]

.

In particular, the Barenblatt–Pattle solution corresponds to the stationary solution nq(0,CId) to the nonlinear Fokker–
Planck equation (for instance, see [14]). Since the solutions obtained by Theorem B contain nonself-similar solutions,
we obtain nonequilibrium solutions to the nonlinear Fokker–Planck equation. Such solutions help us to understand
the asymptotic behavior of solutions to the nonlinear Fokker–Planck equation. As an example, the author [18] demon-
strated by using elemental calculations that Nq(0,CId) satisfies the q-logarithmic Sobolev inequality, the q-Talagrand
inequality and the q-HWI inequality for any q-Gaussian measures, which are defined in Section 5 and are key ingre-
dients to analyze the asymptotic behavior of solutions to the nonlinear Fokker–Planck equation.

5. Functional inequalities

In this section, we study relations among the functionals Hq , Iq and W2 in the form of inequality and discuss the
importance of q-Gaussian measures in the inequalities. We deal with the three inequalities, called the q-logarithmic
Sobolev inequality, q-Talagrand inequality and q-HWI inequality, of the form

Hq(μ|ν) � 1

2λ
Iq(μ|ν),

W2(μ, ν) �
√

2

λ
Hq(μ|ν),

Hq(μ|ν) �
√

Iq(μ|ν)W2(μ, ν) − λ

2
W2(μ, ν)2.

Though criteria for a probability measure to satisfy the three inequalities have been already provided even in a more
general setting (for instance see [1,7,9]), we show criteria to emphasize the importance of the q-Gaussian measure.
We use the same symbol ∇ for the distributional gradient.

Lemma 5.1. Given μ1 = f1 Ld,μ2 = f2 Ld ∈ P2 ∩ P ac, let T be a map such that [id × T ]	μ1 is an optimal transport
of them. For a C2-function Ψ on R

d such that HessΨ is bounded below by some number K , we have∫
Rd

(f2 − f1)Ψ dLd �
∫
Rd

〈∇Ψ,T − id〉f1 dLd + K

2
W2(μ1,μ2)

2. (5.1)

If we moreover assume that f1 has a weak derivative, then we have∫
Rd

[
f2 lnq(f2) − f1 lnq(f1)

]
dLd �

∫
Rd

〈
T − id,∇(f 2−q

1

)〉
dLd

=
∫
Rd

(2 − q)
〈
T − id,∇ lnq(f1)

〉
dμ1. (5.2)

Proof. Since the assumption HessΨ � K provides

Ψ
(
T (x)

)− Ψ (x) �
〈∇Ψ (x),T (x) − x

〉+ K

2

∣∣x − T (x)
∣∣2,

we obtain (5.1) by integrating it with respect to μ1, where we use the optimality of [id × T ]	μ1.
We next prove (5.2). Since the equality is trivial, we only prove the inequality. Due to Theorem 2.1 and (2.1), there

exists a convex function ϕ such that
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∇ϕ = T , Hessϕ = dT , f1 = f2(T )det(dT )

hold for μ1-almost everywhere. Let U be the maximal subset where ϕ has the second derivative. Then the change of
variable formula for y = T (x) implies∫

Rd

f2 lnq(f2) dLd =
∫

U

f1 lnq

(
f2(T )

)
dLd

and ∫
Rd

[
f2 lnq(f2) − f1 lnq(f1)

]
dLd =

∫
U

[
lnq

(
f2(T )

)− lnq(f1)
]
f1 dLd .

Fix x ∈ U and set

b(t) := lnq

(
f1(x)

det[Id + t (Hessϕ(x) − Id)]
)

,

which is convex for t ∈ [0,1] (see [11, Theorem 2.2]). Hence we have

b(1) − b(0) = lnq

(
f2
(
T (x)

))− lnq

(
f1(x)

)
� b′(0) = −f

1−q

1 (x)�

(
ϕ(x) − |x|2

2

)

and by integrating it with respect to μ1 = f1 Ld , we obtain∫
Rd

[
f2 lnq(f2) − f1 lnq(f1)

]
dLd � −

∫
U

f
1−q

1 (x)�

(
ϕ(x) − |x|2

2

)
f1(x) dLd(x)

� −
∫
Rd

f
1−q

1 (x)�D′
(

ϕ(x) − |x|2
2

)
f1(x) dLd(x)

=
∫
Rd

〈∇(f1)
2−q,∇ϕ − id

〉
dLd,

where �D′ is the distributional Laplacian. In the second inequality, we use the Aleksandrov theorem [10] which states
that �D′ϕ coincides with �ϕ on U , and the non-negativity of �D′ϕ on the interior of the domain of ϕ, which is
derived from the convexity of ϕ. Thus the lemma is proved. �

We now give a criterion for a probability measure to satisfy the q-logarithmic Sobolev inequality and the q-
Talagrand inequality. For ν ∈ P2, we set

P ac
2 (ν) := {μ ∈ P2 ∩ P ac

∣∣ μ is absolutely continuous with respect to ν
}
.

Proposition 5.2. For ν := expq(−Ψ )Ld ∈ P2 with q ∈ Qd , we assume that Ψ is C2 and that HessΨ is bounded
below by a positive number λ.

(1) The q-logarithmic Sobolev inequality

Hq(μ|ν) � 1

2λ
Iq(μ|ν) (5.3)

holds for all μ ∈ P ac
2 (ν) such that the density of μ has a first weak derivative.

(2) The q-Talagrand inequality

W2(μ, ν) �
√

2

λ
Hq(μ|ν) (5.4)

holds for all μ ∈ P ac
2 (ν).
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Proof. (1) Lemma 5.1 with (f1, f2) = (dμ/dLd, expq(−Ψ )) provides

−Hq(μ|ν) = −1

2 − q

∫
Rd

[
f1 lnq(f1) − f2 lnq(f2) − (2 − q) lnq(f2)(f1 − f2)

]
dLd

= −1

2 − q

∫
Rd

[
f1 lnq(f1) − f2 lnq(f2) + (2 − q)Ψ (f1 − f2)

]
dLd

�
∫
Rd

[〈
T − id,∇(lnq(f1) + Ψ

)〉+ λ

2
|id − T |2

]
f1 dLd

� −
∫
Rd

1

2λ

∣∣∇(lnq(f1) − lnq(f2)
)∣∣2f1 dLd

= − 1

2λ
Iq(μ|ν),

where we use the assumption μ ∈ P ac
2 (ν) in the second line and complete the square in the second inequality.

(2) Setting (μ1,μ2) = (ν,μ) and adding up the inequality (5.1), (5.2), we have

λ

2
W2(μ, ν)2 � Hq(μ|ν). �

Let us demonstrate that any q-Gaussian measure provides a nontrivial pair which attains equality in (5.3) and (5.4).

Corollary C. For V ∈ Sym+(d,R), let σ be the largest eigenvalue of V and v∗ be the corresponding eigenvector.
Then for any q > 1 and v ∈ R

d , a pair (μ, ν) = (Nq(v + v∗,V ),Nq(v,V )) attains equality in the inequalities (5.3)
and (5.4) for λ satisfying

λσ = C
1−q

0 C1(detV )−
1−q

2 .

Remark 5.3. For the function Ψ satisfying expq(−Ψ ) = nq(v,V ), we have HessΨ = C
1−q

0 C1(detV )−(1−q)/2V −1,
that is, the Hessian of Ψ is bounded below by λ. The assumption q > 1 guarantees P ac

2 (ν) = P2 ∩ P ac.

Proof of Corollary C. By the proof of Proposition 5.2, equality holds for a pair (μ, ν) in (5.3) if and only if the
inequalities in (5.1), (5.2) are equalities and we have

λ
(
x − T (x)

)= ∇
(

lnq

(
dμ

dLd

)
+ Ψ (x)

)
(5.5)

for μ-almost everywhere, where T is an optimal transport map of μ and ν. Similarly, equality holds for a pair (μ, ν)

in (5.4) if and only if the inequalities in (5.1) and (5.2) are equalities. To have equality in (5.2), T must be a translation
map, that is, T (x) = x + u for some u ∈ R

d (see [11, Theorem 2.2]). In the case of T (x) = x + u, equality in
each of (5.1) and (5.5) is equivalent to that ∇Ψ (T (x)) − ∇Ψ (x) = λu holds for μ-almost everywhere. The pair
(Nq(v + tv∗,V ),Nq(v,V )) satisfies these conditions, hence we have equality in (5.3) and (5.4). �
Remark 5.4. The proof of Corollary C is needed in order to consider conditions to establish equality in (5.3) and (5.4).
We directly show that the pair (μ, ν) = (Nq(v + v∗,V ),Nq(v,V )) given in Corollary C attains equality in (5.3)
and (5.4) by computing

Hq(μ|ν) = λ

2

∣∣v∗∣∣2, Iq(μ|ν) = λ2
∣∣v∗∣∣2, W2(μ, ν) = ∣∣v∗∣∣.

In this case, the both sides of (5.3) coincide with λ|v∗|/2 and the both sides of (5.4) are equal to |v∗|.
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Remark 5.5. Since the square root of Hq behaves like the distance function in information geometry, the q-Talagrand
inequality provides the comparison between the two different geometries, namely, Wasserstein geometry and infor-
mation geometry.

We next provide a criterion for a probability measure to satisfy the q-HWI inequality using not Lemma 5.1 but the
geodesic equation. For a geodesic {μt }t∈[0,1] in the Wasserstein space, there exists a family {Φt }t∈[0,1] of functions
such that⎧⎪⎨

⎪⎩
∂

∂t
μt + div(μt∇Φt) = 0,

∂

∂t
Φt + 1

2
|∇Φt |2 = 0,

(5.6)

where the function Φt serves as a “tangent vector field” on the Wasserstein space (a heuristics can be found in [15]
and also see [23,24]). In short, the relation between this “tangent vector field” Φt and an optimal transport map T

from μ0 to μ1 is

∇Φt = [T − id] ◦ (T −1
t

)
, Tt := id + t[T − id].

Proposition 5.6. For ν := expq(−Ψ )Ld ∈ P2 with q ∈ Qd and q � (d + 1)/d , we assume that Ψ is C2 and that
HessΨ is bounded below by some number K . Suppose that the support of ν is convex. Then the q-HWI inequality

Hq(μ|ν) � W2(μ, ν)

√
Iq(μ|ν) − K

2
W2(μ, ν)2 (5.7)

holds for any μ ∈ P ac
2 (ν) such that the density of μ has a first weak derive.

Remark 5.7. If K is positive, then the support of ν is automatically convex (see [13, Lemma 2.5]). The convexity of
the support of ν provides the convexity of P ac

2 (ν) in the Wasserstein space (see [8, Corollary 4.3]).

Proof of Proposition 5.6. Let {μt = ft Ld}t∈[0,1] be a geodesic from μ ∈ P ac
2 (ν) to ν and {Φt }t∈[0,1] be the function

satisfying (5.6). We calculate

d

dt
Hq(μt |ν) =

∫
Rd

〈∇Φt,∇
[
lnq(ft ) − lnq(f1)

]〉
dμt , (5.8)

d2

dt2
Hq(μt |ν) =

∫
Rd

[
HessΨ (∇Φt,∇Φt) + f

1−q
t

2 − q

(
(1 − q)(�Φt)

2 +
∑
ij

(HessΦt)
2
ij

)]
dμt , (5.9)

d

dt

∫
Rd

|∇Φt |2 dμt = 0, (5.10)

where we use the condition that −lnq(expq(−Ψ )) = Ψ holds on the support of μt ∈ P ac
2 (ν). Combining the inequality

(1 − q)(�Φt)
2 +
∑
ij

(HessΦt)
2
ij �
(

1 − q + 1

d

)
(�Φt)

2 � 0 (5.11)

provided by the Cauchy–Schwarz inequality and the assumption q � (d + 1)/d , with the assumption HessΨ � K ,
we deduce from (5.9) and (5.10) that

d2

dt2
Hq(μt |ν) �

∫
Rd

K|∇Φt |2 dμt = KW2(μ0,μ1)
2 = KW2(μ, ν)2. (5.12)

It follows that
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−Hq(μ|ν) = Hq(μ1|ν) − Hq(μ0|ν)

=
1∫

0

[ t∫
0

d2

ds2
Hq(μs |ν)ds + d

ds

∣∣∣∣
s=0

Hq(μs |ν)

]
dt

�
1∫

0

[ t∫
0

KW2(μ0,μ1)
2 ds + d

ds

∣∣∣∣
s=0

Hq(μs |ν)

]
dt

= K

2
W2(μ0,μ1)

2 +
∫
Rd

〈∇Φ0,∇
[
lnq(f0) − lnq(f1)

]〉
dμt

� K

2
W2(μ0,μ1)

2 −
√√√√∫

Rd

|∇Φ0|2 dμt

∫
Rd

∣∣∇[lnq(f0) − lnq(f1)
]∣∣2 dμt

= K

2
W2(μ, ν)2 − W2(μ, ν)

√
Iq(μ|ν), (5.13)

where the third line follows from (5.12) and the forth line follows from (5.8). In the fifth line, we apply the Cauchy–
Schwarz inequality. This concludes the proof of Proposition 5.6. �

The pair of q-Gaussian measure given in Corollary C also attains equality in the inequality (5.7).

Corollary D. For V ∈ Sym+(d,R), let σ be the largest eigenvalue of V and v∗ be the corresponding eigenvector.
Then for any q > 1 and v ∈ R

d , a pair (μ, ν) = (Nq(v + v∗,V ),Nq(v,V )) attains equality in the inequality (5.7) for
λ satisfying

λσ = C
1−q

0 C1(detV )−
1−q

2 .

Proof. To establish equality in (5.7), HessΨ (∇Φt,∇Φt) = K|∇Φt |2 holds and the inequalities in (5.11), (5.13) need
to be equalities, which is equivalent to ∇Φt ≡ u, where u is the difference between the mean of ν and μ. The given
pair satisfies these conditions and we have equality in (5.7). �

We finally give a new relation between the q-logarithmic inequality and the q-Talagrand inequality. To do this, we
deal with the following evolution equation given by⎧⎨

⎩
∂

∂t
ρ = 1

2 − q
�
(
ρ2−q

)+ div(ρ∇Ψ ), x ∈ Ω,

ρ = 0, x ∈ Ωc,

(5.14)

where Ω is an open set defined by

Ω := {x ∈ R
d
∣∣ (1 − q)Ψ (x) < 1

}
.

For technical reasons, we need to require the solutions ρ of (5.14) to satisfy the following conditions (I), (II) and (III).

(I) ρ is non-negative and smooth.
(II) ρ conserves the total mass and has a finite third moment, that is,∫

Rd

ρ dLd =
∫
Ω

ρ dLd = 1,

∫
Rd

|x|3ρ dLd < ∞.

(III) For ξt (x) := lnq(ρ) − lnq(expq(−Ψ )), there exists a locally bounded function a(t) such that
(a) |∇(ξt (x) − ξt (y))| � a(t)|x − y|.
(b) |∇(ξ2

t (x))| � a(t)(1 + |x|3).
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For a function Ψ , we set

P (Ψ ) := {f Ld ∈ P ac
∣∣ the solution to (5.14) with initial data f satisfies (I)–(III)

}
.

Remark 5.8. Let Ψ (x) = λ|x|2/2 with some λ > 0. If 1 < q < (d +5)/(d +3), then any q-Gaussian measure belongs
to P (Ψ ) (any q-Gaussian measure has a finite third moment if q < (d + 5)/(d + 3)). For q < 1, Nq(0, aId) ∈ P (Ψ )

if λ2αa < (C
1−q

0 C1)
2α , which ensures that the support of Nq(0, aId) is contained in Ω .

Theorem E. For ν := expq(−Ψ )Ld ∈ P2 with q ∈ Qd , we assume that Ψ is C2 and that HessΨ is bounded below by
a positive number K . If there exists some positive number λ such that

Hq(μ|ν) � 1

2λ
Iq(μ|ν)

holds for any μ ∈ P ac
2 (ν) ∩ P (Ψ ), then we also have

W2(μ, ν) �
√

2

λ
Iq(μ|ν)

for any μ ∈ P ac
2 (ν) ∩ P (Ψ ).

Remark 5.9. Proposition 5.2 says that the condition HessΨ � K > 0 implies that the q-Talagrand inequality (5.4)
holds with the constant K . However, λ is independent of K in Theorem E and the estimate in the q-Talagrand in-
equality is improved if λ > K .

The basic strategy for proving Theorem E is similar to the proof of [15, Theorem 1], where the key ingredients are
some variations along the flow (5.14) and the convergence of the solution in the sense of Hq and W2.

For μ = f Ld , let ft be the solution to (5.14) with the initial data f0 = f . Then ft satisfies

∂

∂t
ft = 1

2 − q
�
(
f

2−q
t

)+ div(ft∇Ψ ) = div(ft∇ξt )

and the conditions (I) and (II) guarantee μt := ft Ld ∈ P ac
2 (ν). We first consider the variations of Hq(μt |ν) and

W2(μ,μt ) along the solution to (5.14).

Lemma 5.10.

d

dt
Hq(μt |ν) = −Iq(μt |ν), (5.15)

d+

dt
W2(μ,μt ) = lim sup

s↓0

W2(μ,μt+s) − W2(μ,μt )

s
�
√

Iq(μt |ν). (5.16)

Proof. Set g := expq(−Ψ ). For any smooth function η with compact support, we have

d

dt

(
1

2 − q

∫
Rd

[
ft lnq(ft ) − g lnq(g) − (2 − q) lnq(g)(ft − g)

]
η dLd

)

= −
∫
Rd

ft

〈
∇ξt ,∇

[(
ξt + 1

2 − q

)
η

]〉
dLd

= −1

2

∫
d

〈∇η,∇(ξ2
t

)〉
dμt − 1

2 − q

∫
d

〈∇η,∇ξt 〉dμt −
∫
d

η|∇ξt |2 dμt ,
R R R
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where we use integration by parts. We choose a sequence {ηn} of smooth functions with compact support satisfying

ηn is uniformly bounded and converges pointwise to 1,
∇ηn is uniformly bounded and converges pointwise to 0.

The Dominated Convergence Theorem with the condition (III) yields

d

dt

(
1

2 − q

∫
Rd

[
ft lnq(ft ) − g lnq(g) − (2 − q) lnq(g)(ft − g)

]
dLd

)

= −
∫
Rd

∣∣∇[ft lnq(ft ) − g lnq(g)
]∣∣2 dμt ,

proving (5.15).
We next compute the variation of W2(μ,μt ). Due to the triangle inequality for the Wasserstein distance function∣∣W2(μ,μt+s) − W2(μ,μt )

∣∣� W2(μt ,μt+s),

we only need to show

lim sup
s↓0

1

s
W2(μt ,μt+s) �

√
Iq(μt |ν).

The condition (III)(a) guarantees the existence of a family {ϕs}s∈[0,ε] of diffeomorphisms on Ω such that

∂ϕs(x)

∂s
= −(∇ξt+s) ◦ ϕs(x) and ϕ0 = id

for small enough ε > 0. First we prove that [ϕs]	μt = μt+s , that is,∫
Rd

η
(
ϕ−1

s

)
dμt+s =

∫
Rd

η dμt (5.17)

for all smooth functions η with compact support. For ηs := η ◦ ϕ−1
s , we have

0 = ∂η

∂s
= ∂(ηs ◦ ϕs)

∂s
= ∂ηs

∂s
(ϕs) +

〈
(∇ηs) ◦ ϕs,

∂ϕs

∂s

〉

=
(

∂ηs

∂s
− 〈∇ηs,∇ξt+s〉

)
◦ ϕs,

which implies

d

ds

∫
Rd

ηs dμt+s =
∫
Rd

[
∂ηs

∂s
− 〈∇ηs,∇ξt+s〉

]
dμt+s = 0,

where we use the assumption ft which is the solution to (5.14). It follows that∫
Rd

η
(
ϕ−1

s

)
dμt+s =

∫
Rd

ηs dμt+s =
∫
Rd

η
(
ϕ−1

0

)
dμt =

∫
Rd

η(y) dμt ,

which is (5.17). Hence [id × ϕs]	μt is a transport plan of μt and μt+s and by definition of Wasserstein distance
function, we have

1

s
W2(μt ,μt+s) �

√√√√∫
d

|x − ϕs(x)|2
s2

dμt .
R
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The condition (III)(a) ensures that (|x −ϕs(x)|/s)2 is uniformly bounded above by an integrable function with respect
to μt for s ∈ (0, ε], and converges to the integrable function |∇ξt |2 as s → 0. The Dominated Convergence Theorem
yields

lim sup
s↓0

1

s
W2(μt ,μt+s) �

√√√√∫
Rd

|∇ξt |2 dμt =
√

Iq(μt |ν),

which is the desired result. �
We next investigate the asymptotic behavior of μt in terms of Hq and W2.

Lemma 5.11.

Hq(μt |ν)
t↑∞−−−→ 0, W2(μ,μt )

t↑∞−−−→ W2(μ, ν).

Proof. From (5.15) and the assumption that the q-logarithmic Sobolev inequality (5.3) holds for μ ∈ P ac
2 (ν)∩ P (Ψ ),

we deduce

d

dt
Hq(μt |ν) = −Iq(μt |ν) � −2λHq(μt |ν).

Integrating both sides of the inequality above, we have

Hq(μt |ν) � e−2λtHq(μ|ν)
t↑∞−−−→ 0.

Proposition 5.2(2) with the assumption HessΨ � K provides

W2(μt , ν) �
√

2

K
Hq(μt |ν)

t↑∞−−−→ 0.

Combining this with the triangle inequality, we obtain the conclusion. �
Proof of Theorem E. For the function

ψ(t) := W2(μ,μt ) +
√

2

λ
Hq(μt |ν),

we have

d+

dt
ψ(t) �

√
Iq(μt |ν) − Iq(μt |ν)√

2λHq(μt |ν)
� 0,

where we apply Lemma 5.10 in the first inequality and the second inequality follows from (5.3). Combining the
monotonicity of ψ with Lemma 5.11, we obtain the desired inequality, that is,

W2(μ, ν) = lim
t↑∞ψ(t) � ψ(0) =

√
2

λ
Hq(μ|ν). �
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