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Abstract

This is a study of the Euler equations for free surface water waves in the case of varying bathymetry, considering the problem in
the shallow water scaling regime. In the case of rapidly varying periodic bottom boundaries this is a problem of homogenization
theory. In this setting we derive a new model system of equations, consisting of the classical shallow water equations coupled with
nonlocal evolution equations for a periodic corrector term. We also exhibit a new resonance phenomenon between surface waves
and a periodic bottom. This resonance, which gives rise to secular growth of surface wave patterns, can be viewed as a nonlinear
generalization of the classical Bragg resonance. We justify the derivation of our model with a rigorous mathematical analysis of the
scaling limit and the resulting error terms. The principal issue is that the shallow water limit and the homogenization process must
be performed simultaneously. Our model equations and the error analysis are valid for both the two- and the three-dimensional
physical problems.

MSC: 76B15; 35Q35
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1. Introduction

Studies of the Euler equations for free surface water waves are important to understanding the dynamics of ocean
waves. The case of an idealized flat bottom and the resulting model equations has been widely studied for many years.
The more realistic situation of varying bathymetry is less well known, despite its fundamental importance to studies of
ocean wave dynamics in coastal regions, and there is not a complete consensus as to the appropriate model equations.
In the case of topography there are many asymptotic scaling regimes of interest, including long-wave of modulational
hypotheses for the evolution of the free surface, and short scale and/or long scale variations in the variable bottom
fluid boundary.

In this paper we address the evolution of waves in the shallow water regime, for which we investigate the effect
of the roughness of the bottom topography. The simplest situation is where the bottom varies periodically and rapidly
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with respect to the typical surface wavelength, a regime which can be described in the context of homogenization
theory. Ideally, wave motion in this regime of rapid periodic bottom variations is described in terms of a long wave
effective component, which is then adjusted by a smaller multi-scale corrector at the next order of approximation. In
terms of the initial value problem for this regime, initial configurations consisting of large scale data with a multi-scale
corrector term are expected to give rise to solutions with the same character, up to a smaller error term. In this paper
we derive a system of model equations for such multi-scale approximate solutions. While other authors have looked
at similar situations, as far as we know this system is new, consisting of a version of the shallow water equations for a
mean field or effective components of the surface elevation and the fluid velocity, which then drive a nonlocal system
of two additional equations for the evolution of a more rapidly oscillating corrector term. Because of the number of
other models that have been proposed to describe this setting, we justify the derivation of our system with a rigorous
analysis, giving error estimates for our approximate solutions. In cases in which there is a resonance between the
effective velocity and the periodic bottom, the solution of the corrector equation can exhibit secular growth at a linear
rate. This phenomenon can be viewed as a nonlinear generalization of the classical Bragg resonance between the
bottom topography and the free surface. This is a local phenomenon, which may occur when the local Froude number
is subcritical. In the absence of resonances, our analysis is valid over time intervals of existence of the effective
component.

The literature on models of free surface water waves over a variable depth is extensive, including the paper of Miles
[21] on its Hamiltonian formulation, and that of Wu [29] on models which are valid in long wave scaling regimes. The
paper of Rosales and Papanicolaou [27] studies the long wave regime in which the bottom is rapidly varying, in the
sense that the typical wavelength of surface waves is taken to be much longer than typical lengthscale of the variations
of the bottom depth. When the latter are periodic, or more generally when they are given by a stationary ergodic
process, the techniques of homogenization theory are used to obtain effective long wave model equations. The two
most important examples are of periodic bottom topography, and of topography given by a stationary random process.
Recently there has been a renewal of interest in this problem, both from the point of view of modeling of water waves
in asymptotic scaling regimes, and of mathematical analysis. A central question is the validity of the homogenization
approximation, and the character of the resulting model equations. Following [27], the paper of Nachbin and Sølna
[22] studies the deformation of surface waves by the effects of propagation over a rough bottom, taken in the shallow
water scaling regime. In this work the bottom is given by a random process, and the authors treat both the two- and
three-dimensional cases. The paper of Craig et al. [10] considers large periodic bottom variations, again for dimensions
n = 1 + d (d = 1,2), deriving model equations to quite high order of accuracy for the profiles which describe weak
limits of surface waves in the homogenization limit of the nonlinear long wave regime. Similarly, the paper of Garnier,
Kraenkel and Nachbin [12] studies the long wave scaling limits of water waves over a periodic bottom (for d = 1),
deriving an effective KdV equation, for which they describe the dependence of the coefficients of nonlinearity and
dispersion on the topography of the bottom. This study continues in Garnier, Grajales and Nachbin [13] in the case
of random bathymetry. There are other studies of surface wave propagation over periodic bathymetry, that focus on
regimes which are not homogenization theoretic. Namely, there is the case in which the typical wavelength of surface
waves is comparable or smaller than the typical bottom variations. Among these, Choi and Milewski [6] consider
periodic solutions of systems of KdV equations which are coupled through resonant interactions with a periodic
bottom. The paper by Nakoulima et al. [23] considers shallow water theory with and without dispersive corrections,
for a periodic and piecewise constant bottom of very long wavelength.

The paper of Grataloup and Mei [14] considers the propagation of modulational solutions over a random seabed
in dimension d = 1, which is extended to the case d = 2 in Pihl, Mei and Hancock [26]. In this work, the typical
wavelengths represented in the surface and the topography are comparable, and the effort is to derive envelope equa-
tions for the free surface and to understand its statistical properties, given the ensemble of realizations of the random
bathymetry.

There is also a long history of study of resonant interaction between water surface waves with periodic bottom.
The paper of Mei [20] gives the theory of linear Bragg resonances between surface waves and bottom variations of
the same spatial scale. This is extended to nonlinear resonances in Liu and Yue [19]. The difference between these
references and our work is that, in the latter, short scales perturbations of the free surface are generated by interaction
of the bottom with long waves on the free surface, a feature typical of homogenization theory.

None of the references above, however, give a mathematical theorem which justifies on a rigorous basis the model
equations that are derived. After the derivation of the shallow water model in the present paper, the second main point



W. Craig et al. / Ann. I. H. Poincaré – AN 29 (2012) 233–259 235
of our work is to provide a rigorous justification of this derivation. There is a history of results on the mathematical
verification of the model equations for free surface water waves, starting in fact with the papers of Ovsjannikov [24,
25] and Kano and Nishida [17] which give existence theorems for the full water wave equations and as well a proof
of convergence of solutions in the shallow water scaling limit. In both cases the bottom is assumed to be flat, and
the authors work with initial data given in spaces of analytic functions. Results on long wave scaling limits of the
water waves problem in dispersive regimes include Craig [8] and Schneider and Wayne [28] and their treatment of
the two-dimensional problem, a long-time existence theory, and the Boussinesq and KdV limits in Sobolev spaces.
More recently, the paper of Lannes [18] gives an existence theory for solutions of the water wave problem for fluid
domains with smooth variable bathymetry, and the further paper of Alvarez-Samaniego and Lannes [2] gives rigorous
results on a number of long wave scaling limits of the same problem (see also Iguchi [15] and earlier papers of Bona
et al. [4] and Chazel [5]), all papers working with Sobolev space initial data. In the context of this body of work,
what distinguishes the present paper is the oscillatory nature of the bottom boundary of the fluid domain, which has
the implications that the solutions themselves are oscillatory, and principally, that the homogenization theory Ansatz
giving the form of solutions must be justified. Our analysis has several features in common with the results of [11] on
the justification of the nonlinear Schrödinger equation and the Davey–Stewartson system as envelope equations for
modulation theory, the most important of which being that the principal theorem is a consistency result rather than a
full fledged limit theorem for solutions. Nonetheless, as far as we know this is the first rigorous result which justifies
with a rigorous analytic argument the application of homogenization theory to the water wave problem with rapidly
varying periodic bathymetry. In the present framework, precise error estimates are needed because the shallow water
limit and the homogenization limit do not commute. More precisely, shallow water expansions are derived for slowly
varying bottoms, neglecting some terms that are relevant for rough bottoms. Conversely, homogenization limits are
usually performed with low regularity estimates on solutions, that place them outside of the regime of high order
shallow water asymptotics (see for instance [7] for a recent homogenization result at leading order for the Dirichlet–
Neumann operator). The point of our work and the source of many of its technical difficulties is that we perform the
homogenization and shallow water limit simultaneously, thereby retaining the full complement of relevant terms from
the original water waves equations. The (local) effects of this infinity of terms neglected in previous studies add up to
create the nonlocal effects present in our approximation.

1.1. General setting

The time-dependent fluid domain consists of the fluid domain Ω(b, ζ ) = {(x, z) ∈ Rd+1, −H0 + b(x) < z <

ζ(x, t)} in which the fluid velocity is represented by the gradient of a velocity potential Φ . The dependent variable
ζ(x, t) denotes the surface elevation and b(x) denotes the variation of the bottom of the fluid domain from its mean
value. We use the Hamiltonian formulation due to Zakharov [30] and Craig and Sulem [9] in the form of a coupled
system for the surface elevation ζ and the trace of the velocity potential at the surface ψ = Φ|z=ζ , namely⎧⎨⎩

∂t ζ − G[ζ, b]ψ = 0,

∂tψ + gζ + 1

2
|∇ψ |2 − (G[ζ, b]ψ + ∇ζ · ∇ψ)2

2(1 + |∇ζ |2) = 0.
(1.1)

The quantity G[ζ, b]· is the Dirichlet–Neumann operator, defined by

G[ζ, b]ψ =
√

1 + |∇ζ |2∂nΦ|z=ζ , (1.2)

where Φ is the solution of the elliptic boundary value problem{
�Φ + ∂2

z Φ = 0 in Ω(b, ζ ),

Φ|z=ζ = ψ, ∂nΦ|z=−H0+b
= 0.

(1.3)

Writing the equations of evolution in terms of nondimensional variables, different asymptotic regimes of this prob-
lem are identified by scaling regimes of the associated dimensionless parameters. Denote by A the typical amplitude
of surface waves, with λ their typical wavelength. Similarly let B denote the typical amplitude of the variations of the
bottom from its mean value H0, with 	 their typical wavelength. From these quantities we define the dimensionless
variables as follows:
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x = λX′, z = H0z
′, t = λ√

gH0
t ′,

ζ = Aζ ′, Φ = A

H0
λ
√

gH0Φ
′, b = Bb′

(
x

	

)
. (1.4)

Stemming from this change of variables there are four dimensionless parameters:

μ = H 2
0

λ2
, ε = A

H0
, β = B

H0
, γ = 	

λ
. (1.5)

Our analysis is concerned with the shallow water regime μ � 1. The relative amplitude of solutions is governed by ε.
In addition to this, the relative amplitude of the bathymetry is given by β , the parameter γ determines the relative
length of bottom perturbations with respect to the typical wavelength of surface waves, and the bottom variations b′(·)
are assumed to be 2π -periodic in all variables. We consider relatively large amplitude surface waves, meaning that no
smallness assumption is made on ε. As usual for this regime, we therefore set ε = 1 for the sake of simplicity. With
regard to the bottom variations, we set

β = √
μ = γ � 1. (1.6)

The fact that β = γ corresponds to small bathymetry slope in this regime, while the roughness strength is ρ :=√
μ/γ = 1. For clarity of notation we drop this ‘prime’ notation for the remainder of the paper.

1.2. Presentation of results

The first result of this paper is the construction of an approximate solution (ζa,ψa) of the water waves problem in
the form of the Ansatz

ζa = ζ0(X, t) + γ ζ1(X, t,X/γ, t/γ ), (1.7)

ψa = ψ0(X, t) + γ 2ψ1(X, t,X/γ, t/γ ). (1.8)

Remark 1.1. The factor of γ 2 in front of the corrector ψ1 is natural; indeed, this yields a O(γ ) corrector for the
velocity, which is the physical relevant quantity.

Setting V0 = ∇ψ0 and h0 = 1 + ζ0, we show that (ζ0,V0) satisfies the classical shallow water system with flat
bottom,{

∂t ζ0 + ∇ · (h0V0) = 0,

∂tV0 + ∇ζ0 + (V0 · ∇)V0 = 0,
(1.9)

while the corrector terms (ζ1,ψ1) satisfy a linear nonlocal coupled system of equations in the fast variables (τ = t/γ ,
Y = X/γ ){

∂τ ζ1 + V0 · ∇Y ζ1 − |DY | tanh
(
h0|DY |)ψ1 = V0 · ∇Y sech

(
h0 |DY |)b,

∂τψ1 + V0 · ∇Y ψ1 + ζ1 = 0.
(1.10)

In system (1.10), the functions ζ1,ψ1 are periodic in the variables Y , while the variables (t,X) are to be treated as
parameters. The above system represents the linearized water wave equations in a fluid region of depth h0, with a
background flow given by the velocity field V0. The source term of the RHS is due to the effect of scattering of the
background flow from the variable bottom.

The second result of this paper is a mathematical justification of the derivation of the above system of model
equations (1.9)–(1.10). Our proof is in the form of a consistency analysis of the Euler equations of free surface
water waves, for which we show that the functions (ζa,ψa) whose constituents satisfy (1.9)–(1.10) are approximate
solutions of the Euler equations. They are not in general an exact solution, but they satisfy Eqs. (1.1) up to an error
term Ea , and we show that this error is small. Namely, we prove that

|Ea|H ∗ < Cγ 3/8,
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where the appropriate norm | · |H ∗ is defined as |Ea|H ∗ = |Ea1|L2 + γ −3/8|Ea2|H 1/2 , and Ea = (Ea1,Ea2). In partic-
ular, the error is small for the usual Hamiltonian norm of the water waves equations. The most striking point of our
analysis is that this result is valid for the natural time scale t = O(1) associated to (1.9) only if the free surface does
not resonate with the rapidly varying bottom. Such a resonance is obtained if there exists (t,X) such that(

k · V0(X, t)
)2 = |k| tanh

(
h0(X, t)|k|)

for some k ∈ Z corresponding to a nonzero mode of the Fourier decomposition of the bottom parametrization b. This
condition can be viewed as a nonlinear generalization of the classical Bragg resonance which is obtained when the
wavelengths of the free surface and of the bottom are of the same order, while here, the latter is much smaller. In
absence of such resonances, it is possible to find locally stationary solutions for the corrector terms, that is, solutions
to (1.10) that do not depend on the fast time variable τ . When such resonances occur, the dependence of the correctors
on τ cannot be removed, and this induces secular growth effects that destroy the accuracy of the approximation (it is
only valid on a much smaller time scale, t = o(1), than the relevant one). It is likely that in this case, the dynamics of
the leading term (ζ0,V0) is affected, but this point is left for a future study.

The Ansatz (1.7)–(1.8) and the error estimates for the quantity Ea represent a problem in homogenization theory.
The principal terms (ζ0,ψ0) are solutions of an effective equation, and the multiscale terms (ζ1,ψ1) are the first
corrector terms. The dynamics of the Euler equations require solving an elliptic equation at each instant of time, on
an unknown domain Ω(bγ , ζ ) whose boundaries are defined by oscillatory functions. The approach we take in this
paper to the analysis of this elliptic problem and its asymptotic behavior is to transform this domain to a reference
domain Ω0, resulting in an elliptic problem with rapidly varying periodic coefficients. The principal (effective) term
and the correctors are derived from this problem, with the principal term solving an effective equation, and the correc-
tor solving an appropriate cell problem. These are then used to express the Dirichlet–Neumann operator on the free
surface of the fluid domain, which in turn is used to express the evolution equations (1.1). The dynamics of the short
spatial scales are separated from the evolution of the long scales using the concept of convergence on two scales [1].
The principal part of our mathematical analysis is to control the error estimates of the homogenization approximation
(1.7)–(1.8) in describing the solutions of this elliptic boundary value problem and the associated expression for the
Dirichlet–Neumann problem.

2. Euler equations

Zakharov showed that the water wave problem can be written in the Hamiltonian form [30]

∂t

(
ζ

ψ

)
=

(
0 I

−I 0

)(
δζ H

δψH

)
, (2.1)

where the canonical variables are the surface elevation ζ and the trace of the velocity potential on the free surface
ψ = Φ|z=ζ , and the Hamiltonian H is given by

H(ζ,ψ) = 1

2

∫
Rd

ψG[ζ, b]ψ + gζ 2 dX. (2.2)

The system for (ζ,ψ) is written as (1.1), which in dimensionless form becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t ζ − 1

μ
Gμ[ζ,βbγ ]ψ = 0,

∂tψ + ζ + 1

2
|∇ψ |2 − μ

( 1
μ
Gμ[ζ,βbγ ]ψ + ∇ζ · ∇ψ)2

2(1 + μ|∇ζ |2) = 0,

(2.3)

where bγ (·) = b(·/γ ) and where Gμ[ζ,βbγ ] is the nondimensionalized Dirichlet–Neumann operator defined by

Gμ[ζ,βbγ ]ψ =
√

1 + |∇ζ |2∂nΦ|z=ζ (2.4)

and where Φ is the potential function, satisfying
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{
μ�Φ + ∂2

z Φ = 0 in Ω,

Φ|z=ζ = ψ, ∂nΦ|z=−1+βbγ
= 0,

(2.5)

in the fluid domain Ω(bγ , ζ ),

Ω(bγ , ζ ) = {
(X, z) ∈ Rd+1,−1 + βb(X/γ ) < z < ζ(X)

}
.

The operator ∂n is the outwards conormal derivative associated with the operator μ� + ∂2
z . One can rewrite (2.3) in

Hamiltonian form (2.1), replacing the Hamiltonian H given by (2.2) by its nondimensional form

H(ζ,ψ) = 1

2

∫
Rd

(
ψ

1

μ
Gμ[ζ,βbγ ]ψ + ζ 2

)
dX. (2.6)

2.1. Notation

We denote by d = 1 or 2 the horizontal dimension of the fluid domain, and by X ∈ Rd the horizontal variables,
while z is the vertical variable. We denote by ez the unit upward vertical vector.

The domain and the potential function will depend upon both regular and rapidly oscillating variables, which
we denote X ∈ Rd and Y ∈ Td = Rd/(2πZ)d , respectively. That is, we will give data for the water wave problem
which is of a multiscale nature, with the fixed multiscale bottom variations as well, and we will seek solutions which
have a well-defined asymptotic expansion in terms of multiscale quantities. To express this, we use the classical
notation of a multiscale function that is, a function f (X,Y ) defined on Rd × Td , for which the realization is the trace
f |

Y= X
γ

= f (X,X/γ ) [3]. In the problem we consider, there are other variables as well, such as the vertical variable

z ∈ [−1,0], for which f = f (X,Y, z) is a multiscale function whose realization is f (X,X/γ, z).
The differential operators ∇ and � act on functions of the horizontal variable X. The operator Λ is defined by

Λ := (1 − �)1/2. We use the standard notation for Fourier multipliers, namely D = 1
i
∇ and f̂ (D)u(k) = f (k)û(k).

When applied to multiscale functions, we distinguish this fact using the notation ∇Y , �Y , DY , when differential
operators act specifically on the fast variables Y , and ∇X , �X , DX when they act on the long scale X variables.
Finally, the notation ∇μ stands for ∇μ = (

√
μ∇T , ∂z)

T .
We encounter functions defined on the fluid domain Ω(bγ , ζ ) or the reference domain Ω0 = Rd × (0,1), as well

as functions defined on the free surface, parametrized by X ∈ Rd . The notation used for function space norms is that
‖ · ‖L2 , ‖ · ‖Hr is used for the classical Sobolev space norms over Ω0, while for norms defined over the boundary
X ∈ Rd we use the notation | · |L2 , | · |Hr . Norms of multiscale functions are given similarly, for example | · |L2(C1

Y ).

For all r1, r2 � 0, we also define the space Hr1,r2 = Hr1,r2(Rd × Td) by

Hr1,r2
(
Rd × Td

) = {
f ∈ L2(Rd × Td

)
, |f |Hr1,r2 < ∞}

, (2.7)

with |f |2
Hr1,r2 = |(1 − �X)r1/2(1 − �Y )r2/2f |2

L2(Rd×Td )
.

2.2. Change of variables and domain

The first component of the Hamiltonian (2.6) corresponds to the nondimensionalized kinetic energy. It follows
from the definition of Gμ[ζ,βbγ ] and Green’s identity that∫

Rd

ψ
1

μ
Gμ[ζ,βbγ ]ψ dX = 1

μ

∫
Ω

∣∣∇μΦ
∣∣2 dzdX, (2.8)

where Φ is the velocity potential (2.5). Since this expression depends on β and γ through the domain of integration
Ω(bγ , ζ ), it is convenient to transform it into an integral over a fixed domain independent of the parameters and of
the perturbations ζ and b. Under the assumption that the fluid height h = 1 + ζ −βbγ is always non-negative, namely

∃α > 0, 1 + ζ − βbγ � α on Rd, (2.9)

an explicit diffeomorphism S mapping the flat strip Ω0 onto the fluid domain Ω is given by
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S:
Ω0 → Ω,

(X, z) �→ (
X,z + σ(X, z)

)
,

(2.10)

where σ(X, z) = (z + 1)ζ(X) − zβbγ (X). We have in particular h = 1 + ∂zσ .
Defining φ on Ω0 by φ = Φ ◦ S, one can check (see Proposition 2.7 of [18] and §2.2 of [2]) that the new potential

function φ solves{
∇μ · P [σ ]∇μφ = 0,

φ|z=0 = ψ, ∂nφ|z=−1 = 0,
(2.11)

where ∂nφ|z=−1 is the outward conormal derivative in the new variables

∂nφ|z=−1 = −ez · P [σ ]∇μφ|z=−1

and where the matrix P [σ ] is given by

P [σ ] =
(

hI −√
μ∇σ

−√
μ∇σT 1+μ|∇σ |2

h

)
, with h = 1 + ζ − βbγ . (2.12)

3. Multiple scale asymptotic expansions

3.1. Ansatz and decomposition of the solutions

This section is devoted to the study of the elliptic problem (2.11) where (ζ,ψ) are given; the time is fixed and
appears as a parameter. We pose the multiple-scale Ansatz on (ζ,ψ):

ζ = ζ0(X) + γ ζ1(X,X/γ ), ψ = ψ0(X) + γ 2ψ1(X,X/γ ). (3.1)

Recalling that β = γ = √
μ, this leads to the decomposition of the height function of the fluid domain

h = h0 + βh1, where h0 = 1 + ζ0 and h1 = ζ1 − bγ .

Similarly, the new vertical deformations are posed in terms of this Ansatz

σ = σ0 + βσ1, where σ0 = (z + 1)ζ0 and σ1 = (z + 1)ζ1 − zbγ .

The coefficients P [σ ] are then written as

P [σ ] = P0 + βP1,

with

P0 = P [σ0] and βP1 = P [σ ] − P0. (3.2)

Explicitly

P1 =
(

(ζ1 − b)I −√
μ∇σ1

−√
μ∇σT

1
1
β
(

1+μ|∇σ |2
h

− 1+μ|∇σ0|2
h0

)

)
.

We accordingly decompose the potential function φ as

φ = φ0(X, z) + βγχ(X, z;γ ) = φ0(X, z) + μχ(X,z;γ ) (3.3)

where all the contributions coming from the roughness are contained in χ . This section is devoted to deriving asymp-
totic expansions, with accompanying error estimates on the two components φ0 and χ , in the limit μ → 0. In order to
do so, we must augment (2.9) with the assumption that

∃α0 > 0, 1 + ζ0 � α0 on Rd . (3.4)

This ensures that the water depth does not vanish for the averaged fluid domain that arises when all the fluctuations
due to the roughness are neglected. Assumption (3.4) ensures the coercivity of P0.
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Proposition 3.1. Let ζ, b ∈ W 1,∞(Rd) and assume that (2.9) and (3.4) are satisfied. Then for all ψ such that ∇ψ ∈
H 1/2(Rd)d , there exists a unique solution φ to (2.11) such that ∇μφ ∈ H 1(Ω0)

d+1. Moreover, φ0 and χ solve{
∇μ · P0∇μφ0 = 0,

φ0|z=0 = ψ0, −ez · P0∇μφ0|z=−1 = 0,
(3.5)

and ⎧⎪⎪⎨⎪⎪⎩
∇μ · P [σ ]∇μχ = − 1

γ
∇μ · P1∇μφ0,

χ |z=0 = ψ1, −ez · P [σ ]∇μχ|z=−1 = 1

γ
ez · P1∇μφ0|z=−1 .

(3.6)

Proof. The existence of a unique solution φ such that ∇μφ ∈ H 1(Ω0)
d+1 to (2.11) is a classical result, and we thus

omit the proof. Similarly, there exists a unique solution φ0 such that ∇μφ0 ∈ H 1(Ω0)
d+1 to (3.5) since the boundary

condition on the lower boundary is the conormal derivative associated to the elliptic operator ∇μ · P0∇μ. It remains
to prove that χ solves (3.6). A calculation gives that

∂nφ|z=−1 := −ez · P [σ ]∇μφ|z=−1

= −βγ ez · P [σ ]∇μχ |z=−1 − ez · P0∇μφ0|z=−1 − βez · P1∇μφ0|z=−1 .

Since by assumption one also has ∂nφ|z=−1 = 0 and −ez · P0∇μφ0|z=−1 = 0, one has

−ez · P [σ ]∇μχ |z=−1 = 1

γ
ez · P1∇μφ0|z=−1 .

It is straightforward to check that χ |z=0 = ψ1 and that

∇μ · P [σ ]∇μχ = 1

γβ

(∇μ · P [σ ]∇μφ − ∇μ · P [σ ]∇μφ0
)

= − 1

γ
∇μ · P1∇μφ0,

and the result follows. �
3.2. Asymptotic analysis with estimates of ∇μφ0

In this section we prove an estimate on ∇μφ0, and we give the first terms of its asymptotic expansion in the limit
as μ → 0. For purposes of understanding the H−1/2-norm of the trace of ∇μφ0 on the free surface {z = 0}, we use
L2 estimates on Ω0 of both ∇μφ0 and its generalized Riesz transform, given by Λ−1∂z∇μφ0. This is generalized to
higher order norms.

Proposition 3.2. Let r ∈ N and ζ0 ∈ W 1+r,∞ ∩ W 2,∞(Rd) and assume that (3.4) is satisfied for some α0 > 0. Then:

(i) For all μ ∈ (0,1) and all ψ0 such that ∇ψ0 ∈ Hr(Rd)d , the solution φ0 to (3.5) satisfies∥∥Λr∇μφ0
∥∥

L2 � √
μC

(
1

α0
, |ζ0|W 1+r,∞

)
|∇ψ0|Hr ;

∥∥Λr−1∂z∇μφ0
∥∥

L2 � μC

(
1

α0
, |ζ0|W 1+r,∞ , |ζ0|W 2,∞

)
|∇ψ0|Hr .

(ii) If ∇ψ0 ∈ Hr+1(Rd)d , one also has∥∥Λr
(∇μφ0 − ∇μψ0

)∥∥
L2 � μC

(
1

α0
, |ζ0|W 1+r,∞

)
|∇ψ0|Hr+1;

∥∥Λr−1∂z

(∇μφ0 − ∇μψ0
)∥∥

L2 � μC

(
1

α0
, |ζ0|W 1+r,∞ , |ζ0|W 2,∞

)
|∇ψ0|Hr+1 .
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(iii) Suppose that ζ0 ∈ W 2+r,∞(Rd) and �ψ0 ∈ H 2+r (Rd), and set

φ
(1)
0 = −h2

0

(
z2

2
+ z

)
�ψ0 (h0 := 1 + ζ0),

as the next term of the asymptotic expansion. Then there are estimates of the remainder, in the form∥∥Λr
(∇μφ0 − ∇μ

(
ψ0 − μφ

(1)
0

))∥∥
L2 � μ2C

(
1

α0
, |ζ0|W 2+r,∞

)
|�ψ0|H 2+r ;

∥∥Λr−1∂z∇μ
(
φ0 − ψ0 − μφ

(1)
0

)∥∥
L2 � μ2C

(
1

α0
, |ζ0|W 2+r,∞

)
|�ψ0|H 2+r .

Proof. The first inequality of the proposition is obtained by standard elliptic estimates for ‖∇μφ0‖L2 (see Corol-
lary 2.2 of [2]). The Riesz transform of ∇μφ0 has components Λ−1∂z∇μφ0 = (

√
μΛ−1∇∂zφ0,Λ

−1∂2
z φ0); estimates

of the first component come from the first inequality of (i), since Λ−1∇ is L2 bounded. Estimates of the second
component are obtained through Eq. (3.5) itself. Namely one has an expression for ∂2

z φ0 in the form

∂2
z φ0 = μ

h0

1 + μ|∇σ0|2
[
−∂z|∇σ0|2

h0
∂zφ0 + ∂z(∇σ0 · ∇φ0) + ∇ · (∇σ0∂zφ0) − ∇ · (h0∇φ0)

]
. (3.7)

In order to get an estimate on ‖Λr−1∂2
z φ0‖2, we need the following lemma.

Lemma 3.3. Let r ∈ N and F and G � 0 be such that Λr−1F ∈ L2(Ω0) and G ∈ L∞((−1,0);W |r−1|,∞(Rd)). Then∥∥∥∥Λr−1
(

F

1 + G

)∥∥∥∥
L2

� C
(‖G‖

L∞
z W

|r−1|,∞
X

)∥∥Λr−1F
∥∥

L2 .

Proof. Just write F
1+G

= F − F G
1+G

. Recalling that one has |fg|Hr−1 � |f |Hr−1 |g|W |r−1|,∞ , we get∥∥∥∥Λr−1
(

F

1 + G

)∥∥∥∥
L2

�
∥∥Λr−1F

∥∥
L2

(
1 +

∥∥∥∥ G

1 + G

∥∥∥∥
L∞

z W
|r−1|,∞
X

)
� C

(‖G‖
L∞

z W
|r−1|,∞
X

)∥∥Λr−1F
∥∥

L2 . �
Applying this lemma to (3.7) with G = μ|∇σ0|2, one easily gets∥∥Λr−1∂2

z φ0
∥∥

L2 � μC

(
1

α0
, |ζ0|Wr+1,∞

)
1√
μ

∥∥Λr∇μφ0
∥∥

L2 ,

and the estimate follows from the control on ‖Λr∇μφ0‖L2 established above.
For the second point of the proposition, we write φ0 = ψ0 + μχ

(1)
0 . The resulting system for χ

(1)
0 is⎧⎪⎪⎨⎪⎪⎩

∇μ · P0∇μχ
(1)
0 = − 1

μ
∇μ · P0∇μψ0,

χ
(1)
0 |z=0 = 0, −ez · P0∇μχ

(1)
0 |z=−1 = 1

μ
ez · P0∇μψ0|z=−1 .

(3.8)

A calculation shows that

− 1

μ
∇μ · P0∇μψ0 = −∇ · (h0∇ψ0) + ∂z(∇σ0 · ∇ψ0) = −h0�ψ0

and that ez · P0∇μψ0|z=−1 = 0, we obtain{
∇μ · P0∇μχ

(1)
0 = −h0�ψ0,

χ
(1) = 0, −e · P ∇μχ

(1) = 0.
(3.9)
0 |z=0 z 0 0 |z=−1
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Multiplying the equation by χ
(1)
0 and integrating by parts, we get∫

Ω0

∇μχ
(1)
0 · P0∇μχ

(1)
0 dzdX =

∫
Ω0

χ
(1)
0 h0�ψ0 dzdX.

Using the coercivity of the matrix P0 (Proposition 2.3(iii) of [2]), the Cauchy–Schwarz inequality and Poincaré in-
equality (in order to control ‖χ(1)

0 ‖L2 by ‖∇μχ
(1)
0 ‖L2 ), one gets∥∥∇μχ

(1)
0

∥∥
L2 � C

(
1

α0
, |ζ0|W 1,∞

)
|�ψ0|L2

and the result follows. Higher order estimates are handled similarly and only require the control of additional commu-
tator estimates. We omit these classical details. The estimate of the generalized Riesz transform Λ−1∂z∇μ(φ0 − ψ0)

is similar to the analog estimate in (i) of this proposition.
For the third point of the proposition, we solve (3.9) at lowest order in μ. We write χ

(1)
0 = φ

(1)
0 + μχ

(2)
0 , or

equivalently

φ0 = ψ0 + μφ
(1)
0 + μ2χ

(2)
0

with φ
(1)
0 = −h2

0(
z2

2 + z)�ψ0. The correction χ
(2)
0 satisfies the system⎧⎨⎩ ∇μ · P0∇μχ

(2)
0 = −∇ · (h0∇φ

(1)
0 − ∇σ0∂zφ

(1)
0

)+ ∂z

(
∇σ0 · ∇φ

(1)
0 − |∇σ0|2

h0
∂zφ

(1)
0

)
,

χ
(2)
0 |z=0 = 0, −ez · P0∇μχ

(2)
0 |z=−1 = 0,

(3.10)

where we used the fact that ez · P0∇μφ
(1)
0 |z=−1 = 0 to obtain the bottom boundary conditions. Proceeding as above,

we get the result. �
3.3. Asymptotic analysis with estimates of χ

To find an asymptotic expansion of χ , our starting point is Eq. (3.6) for χ . Decompose the solution as the sum of
a multiscale function and a correction term,

χ = φ
(0)
1 (X,Y, z)|

Y= X
γ

+ √
μχ

(1)
1 (X, z;γ ). (3.11)

When acting on a multiscale function of the variables (X,X/γ ), the operator ∇μ becomes ∇Y,z + ∇μ
X , where ∇μ

X =(√
μ∇X

0

)
:

∇μ
(
f (X,Y )|

Y= X
γ

) = [(∇Y,z + ∇μ
X

)
f (X,Y )

]∣∣
Y= X

γ
.

We can therefore write

∇μ · P [σ ]∇μχ = (∇Y,z + ∇μ
X

) · P0
(∇Y,z + ∇μ

X

)
φ

(0)
1

∣∣
Y= X

γ

+ β∇μ · P1∇μφ
(0)
1 + √

μ∇μ · P [σ ]∇μχ
(1)
1 ,

so that (3.6) becomes (recall that β = √
μ)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Y,z · P0∇Y,zφ
(0)
1

∣∣
Y= X

γ
+ √

μ∇μ · P [σ ]∇μχ
(1)
1

= − 1

γ
∇μ · P1∇μφ0 + √

μ∇μ · Ã + √
μg̃,(

φ
(0)
1 |

Y= X
γ

+ √
μχ

(1)
1

)
|z=0 = ψ1|

Y= X
γ

,(−ez · P0∇Y,zφ
(0)
1

∣∣
Y= X

γ

)
|z=−1 − √

μez · P [σ ]∇μχ
(1)
1 |z=−1

= 1
ez · P1∇μφ0|z=−1 − √

μez · Ã|z=−1

(3.12)
γ
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with1

Ã = −P1∇μφ
(0)
1 − P0

(∇Xφ
(0)
1

0

)
|
Y= X

γ

and

g̃ = −
(∇X

0

)
· (P0∇Y,zφ

(0)
1

)
|
Y= X

γ

.

In order to make the leading order terms in (3.12) explicit, we further decompose P0 as P0 = P
(0)
0 + √

μP
(1)
0 and

P1 = P
(0)
1 + √

μP
(1)
1 , with

P
(0)
0 =

(
h0I 0

0 1
h0

I

)
, P

(1)
0 =

(
0 −∇σ0

−∇σT
0

√
μ|∇σ0|2

h0

)
and

P
(0)
1 =

(
(ζ1 − b)I −∇Y σ1
−∇Y σT

1
b−ζ1

h2
0

I

)
, P

(1)
1 =

(
0 −∇Xσ1

−∇XσT
1 p

(1)
22

)
where the (2,2)-coefficient of P

(1)
1 is

p
(1)
22 = μ−1/2

(
β−1

(
1 + μ|∇σ |2

h
− 1 + μ|∇σ0|2

h0

)
− b − ζ1

h2
0

)
.

Lemma 3.4. The coefficient matrix P1 = P1(σ ) has multiscale functions as coefficients. Considered as P1 =
P1(X,X/

√
μ), the following estimates hold for all r ∈ N:

∥∥P
(0)
1

∥∥
L∞

z Wr,∞ + ∥∥∂zP
(0)
1

∥∥
L∞

z Wr,∞ � μ−r/2C

(
1

α0
, |ζ0|Cr+1

)(|ζ1|Cr + |∇Y ζ1|Cr + |b|Cr+1

)
,

∥∥P
(1)
1

∥∥
L∞

z Wr,∞ + ∥∥∂zP
(1)
1

∥∥
L∞

z Wr,∞ � μ−r/2C

(
1

α0
,

1

α
, |ζ0|Cr+1 , |ζ1|Cr , |∇Xζ1|Cr , |∇Y ζ1|Cr , |b|Cr+1

)
.

Proof. The proof follows by inspecting the elements of P1, P
(0)
1 and P

(1)
1 . �

Given the above decompositions of P0 and P1, the first term of the LHS of (3.12) is

∇Y,z · P0∇Y,zφ
(0)
1 = ∇Y,z · P (0)

0 ∇Y,zφ
(0)
1 + √

μ∇Y,z · P (1)
0 ∇Y,zφ

(0)
1

and, using that γ = √
μ, the first term of the RHS of (3.12) is

1

γ
∇μ · P1∇μφ0 = 1

γ
∇μ · P (0)

1 ∇μψ0 + 1

γ
∇μ · P (0)

1 ∇μ(φ0 − ψ0) + ∇μ · P (1)
1 ∇μφ0

= ∇Y,z · P (0)
1

(∇ψ0
0

)∣∣
Y= X

γ
+ ∇μ

X · P (0)
1

(∇ψ0
0

)∣∣
Y= X

γ

+ 1

γ
∇μ · P (0)

1 ∇μ(φ0 − ψ0) + ∇μ · P (1)
1 ∇μφ0.

1 The operator ∇μ always acts on multiscale functions on the two variables X and z (and not on Y ). The notation ∇μφ
(0)
1 is therefore a shortcut

for ∇μ(φ
(0)
1 |

Y= X ).

γ
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Extracting the principal term from these two expressions, we deduce that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇Y,z · P (0)
0 ∇Y,zφ

(0)
1

∣∣
Y= X

γ
+ √

μ∇μ · P [σ ]∇μχ
(1)
1

= −∇Y,z · P (0)
1

(∇ψ0
0

)∣∣
Y= X

γ
+ √

μ∇μ · A + √
μg|

Y= X
γ
,(

φ
(0)
1 |

Y= X
γ

+ √
μχ

(1)
1

)
|z=0 = ψ1|

Y= X
γ

,

−ez · (P (0)
0 ∇Y,zφ

(0)
1

∣∣
Y= X

γ

)
|z=−1

− √
μez · P [σ ]∇μ

(
χ

(1)
1 |

Y= X
γ

)∣∣
z=−1

= ez ·
{
P

(0)
1

(∇ψ0
0

)
− √

μez · A
}

|z=−1

,

(3.13)

with

A = Ã − 1

γ
√

μ
P

(0)
1 ∇μ(φ0 − ψ0) − 1√

μ
P

(1)
1 ∇μφ0 +

(
2∇σ0 · ∇Y φ

(0)
1 − √

μ
|∇σ0|2

h0
∂zφ

(0)
1

)
ez

and with

g|
Y= X

γ

= g̃ − ∇∂zσ0 · ∇Y φ
(0)
1 − (∇Xζ1) · ∇ψ0 − (ζ1 − b)�ψ0. (3.14)

In order to solve (3.13), we construct φ
(0)
1 as a solution of a cell problem in the variables Y and z (the variable X

being considered a parameter). The resulting solution cancels the higher order terms in (3.13), and we are left with an
equation for the corrector χ

(1)
1 .

3.3.1. The cell problem
We assume that b, ζ1 are periodic with respect to the variable Y and we seek a periodic function φ

(0)
1 (·, Y, z) that

solves⎧⎪⎪⎨⎪⎪⎩
∇Y,z · P (0)

0 ∇Y,zφ
(0)
1 = −∇Y,z · P (0)

1

(∇ψ0
0

)
,

φ
(0)
1 |z=0 = ψ1; −ez · P (0)

0 ∇Y,zφ
(0)
1 |z=−1 = ez · P (0)

1

(∇ψ0
0

)
.

(3.15)

This choice of φ
(0)
1 cancels the highest order terms in (3.13). Taking into account the definition of P

(0)
0 and P

(0)
1 , we

can further simplify (3.15) into⎧⎨⎩
(
h2

0�Y + ∂2
z

)
φ

(0)
1 = 0,

φ
(0)
1 |z=0 = ψ1,

1

h0
∂zφ

(0)
1 |z=−1 = ∇Y b · ∇ψ0.

(3.16)

We recall that the spaces Hr1,r2 that appear in the statement below are defined in (2.7).

Proposition 3.5. The solution φ
(0)
1 of the cell problem (3.16) is given in operator notation by the expression

φ
(0)
1 (X,Y, z) = cosh(h0(z + 1)|DY |)

cosh(h0|DY |) ψ1(X,Y ) + sinh(h0z|DY |)
cosh(h0|DY |)

∇Y

|DY |b(Y ) · ∇ψ0(X). (3.17)

Assume that h0 = h0(X) = 1 + ζ0 satisfies the hypotheses (3.4), and let r0 > d/2 and r ∈ N. Then, for all multiindex
α = (α1, α2) ∈ Nd × Nd such that |α1| + |α2| = r , one has∥∥∂α1

X ∂α2

Y ∇Xφ
(0)
1

∥∥
L2

XL∞
Y,z

� C
(|h0|Cr+1

)(|∇Xψ1|
H |α1|,r0+|α2| + |∇Xψ1|H 0,r0+r + |b|Cr+2 |∇ψ0|Hr+1

)
,∥∥∂α1

X ∂α2

Y ∇Y,zφ
(0)
1

∥∥
L2 L∞ � C

(|h0|Cr+1

)(|∇Y ψ1|
H |α1|,r0+|α2| + |∇Y ψ1|H 0,r0+r + |b|Cr+2 |∇ψ0|Hr+1

)
. (3.18)
X Y,z
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Moreover, derivatives of the multiscale function φ
(0)
1 |

Y= X
γ

are controlled as follows

∥∥Λr∇μφ
(0)
1

∥∥
L2 � μ−r/2C

(|h0|Cr+1

)× (
μ

r+1
2 |∇Xψ1|Hr,r0 + |∇Y ψ1|H 0,r0+r + |b|Cr+2 |∇ψ0|Hr+1

)
, (3.19)

and if r � 1, the same upper bound holds for 1√
μ
‖Λr−1∂z∇μφ

(0)
1 ‖L2 .

It is of note that the solution of the cell problem is a multiscale expression that can be differentiated arbitrarily
many times with respect to the variables (X,Y, z) without developing singular behavior in the limit as μ → 0.

Proof. Decomposing the function φ
(0)
1 in Fourier modes φ̂

(0)
1k with respect to the Y variable, we find

φ̂
(0)
1k = Ake

h0z|k| + Bke
−h0z|k|

with coefficients

Ak = 1

eh0|k| + e−h0|k|

(
i

k

|k| · ∇ψ0b̂k + eh0|k|ψ̂1k

)
,

Bk = 1

eh0|k| + e−h0|k|

(
−i

k

|k| · ∇ψ0b̂k + e−h0|k|ψ̂1k

)
.

After substitution, the solution φ
(0)
1 is written using operator notation as in the statement (3.17) of the proposition.

For the proof of the estimates of the derivatives of φ
(0)
1 (X,Y, z), the expression (3.17) is conveniently written in

operator notation as

C1(h0, z,DY )ψ1(X,Y ) + C2(h0, z,DY )b(Y ) · ∇ψ0(X),

where the components are

C1(h0, z,DY ) = cosh(h0(z + 1)|DY |)
cosh(h0|DY |) , C2(h0, z,DY ) = sinh(h0z|DY |)

cosh(h0|DY |)
∇Y

|∇Y | .

For the first term, we remark that the Sobolev embedding H
r0
Y ⊂ L∞

Y yields∥∥∂α1

X ∂α2

Y ∇ kC1(h0, z,DY )ψ1
∥∥2

L2
XL∞

Y,z
�

∫
Rd

[
sup

z

(∣∣(∂α1

X ∂α2

Y ∇ kC1ψ1
)
(X, ·, z)∣∣

H
r0
Y

)]2
dX (k = 0,1)

where ∇ 0 stands for ∇X and ∇ 1 for ∇Y,z.
Now, by Plancherel formula (with respect to Y ), one easily checks that

sup
z

∣∣(∂α1

X ∂α2

Y ∇XC1ψ1
)
(X, ·, z)∣∣

H
r0
Y

� C
(|h0|Hr+1

)( ∑
β�α1

∣∣∂β
X∇Xψ1(X, ·)∣∣

H
r0+r−|β|
Y

+ ∣∣∇Y ψ1(X, ·)∣∣
H

r0+r

Y

)
,

sup
z

∣∣(∂α1

X ∂α2

Y ∇Y,zC1ψ1
)
(X, ·, z)∣∣

H
r0
Y

� C
(|h0|Hr+1

) ∑
β�α1

∣∣∂β
X∇Y ψ1(X, ·)∣∣

H
r0+r−|β|
Y

.

Plugging these inequalities into the integral above then yields the desired result,∥∥∂α1

X ∂α2

Y ∇XC1(h0, z,DY )ψ1
∥∥

L2
XL∞

Y,z
� C

(|h0|Cr+1

)(|∇X,Y ψ1|
H |α1|,r0+|α2| + |∇X,Y ψ1|H 0,r0+r

)
,∥∥∂α1

X ∂α2

Y ∇Y,zC1(h0, z,DY )ψ1
∥∥

L2
XL∞

Y,z
� C

(|h0|Cr+1

)(|∇Y ψ1|
H |α1|,r0+|α2| + |∇Y ψ1|H 0,r0+r

)
.

For the control of the derivatives of C2(h0, z,DY )b(Y ) · ∇ψ0, we easily get that∥∥∂α1

X ∂α2

Y ∇X,Y,zC2(h0, z,DY )b(Y ) · ∇ψ0
∥∥2

L2
XL∞

Y,z
� C

(|h0|Cr+1

)|b|Cr+2 |∇ψ0|Hr+1,

where we have (somewhat non-optimally) estimated the action of singular integral operators on L∞
Y at the cost of one

derivative. This ends the proof of (3.18).
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For the proof of (3.19), we remark that the LHS can be controlled as∥∥Λr∇μ
(
φ

(0)
1 |

Y= X
γ

)∥∥
L2 �

∑
α1,α2

μ− |α2|
2
∥∥∂α1

X ∂α2

Y

(∇Y,z + ∇μ
X

)
φ

(0)
1

∥∥
L2

XL∞
Y,z

,

where the summation is over (α1, α2) ∈ Nd × Nd such that |α1| + |α2| � r . The result follows therefore from (3.18)
and a straightforward interpolation between the lowest and highest terms in terms of μ. In order to prove that the same
bound holds for 1√

μ
‖Λr−1∂z∇μφ

(0)
1 ‖L2 when r � 1, we just have to remark that

∥∥Λr−1∂z∇μ
(
φ

(0)
1 |

Y= X
γ

)∥∥
L2 �

∑
α1,α2

μ− |α2|
2
∥∥∂α1

X ∂α2

Y

(∇Y,z + ∇μ
X

)
∂zφ

(0)
1

∥∥
L2

XL∞
Y,z

,

where the summation is over (α1, α2) ∈ Nd × Nd such that |α1| + |α2| � r − 1. From the explicit expression of φ
(0)
1 ,

we can check it is possible to replace ∂zφ
(0)
1 by |DY |φ(0)

1 in the above summation, so that the result follows as
for (3.19). �
3.3.2. Estimate on the corrector χ

(1)
1

With φ
(0)
1 as in the previous section, the system (3.13) reduces to the following boundary value problem for χ

(1)
1 ,{

∇μ · P [σ ]∇μχ
(1)
1 = ∇μ · A + g,

χ
(1)
1 |z=0 = 0, −ez · P [σ ]∇μχ

(1)
1 |z=−1 = −ez · A|z=−1 .

(3.20)

Proposition 3.6. Let r ∈ N and denote (r − 1)+ = max{r − 1,0} and r̃ = (r − 1)+ + 1. The solution χ
(1)
1 of (3.20)

satisfies the estimates∥∥Λr∇μχ
(1)
1

∥∥
L2 � μ− r

2 Mr

(|∇ψ0|Hr+1 + μr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H 1,r0+r

)
,∥∥Λr−1∂z∇μχ

(1)
1

∥∥
L2 � μ− (r−1)+

2 Mr

(|∇ψ0|Hr+1 + μ
(r−1)+

2 |∇X,Y ψ1|Hr̃+1,r0 + |∇X,Y ψ1|H 1,r0+̃r

)
,

with Mr = C( 1
α
, 1

α0
, |ζ0|Cr+1∩C2 , |ζ1|Cr+1∩C2, |b|Cr+1∩C2).

Proof. The method follows the recipe of classical energy estimates, paying attention to the rapidly oscillating coef-
ficients and their commutators with differential operators. Indeed multiplying (3.20) by χ

(1)
1 and integrating by parts

yields∫
Ω0

P [σ ]∇μχ
(1)
1 · ∇μχ

(1)
1 dzdX =

∫
Ω0

A · ∇μχ
(1)
1 dzdX −

∫
Ω0

gχ
(1)
1 dzdX.

The matrix of coefficients P [σ ] is coercive under condition (2.9) (Proposition 2.3(iii) of [2]), and is uniformly so with
regard to the small parameters, as the scaling regime we are studying imposes that β = γ .

Using the Cauchy–Schwarz inequality and Poincaré inequality, one finds, as in the proof of Proposition 3.2, that∥∥∇μχ
(1)
1

∥∥
L2 � M0

(‖A‖L2 + ‖g‖L2

)
(3.21)

with M0 as in the statement of the proposition.
For the general case r ∈ N, the procedure is exactly the same replacing g by Λrg and A by A(r), with

A(r) = ΛrA − [
Λr,P [σ ]]∇μχ

(1)
1 ;

in particular, it follows from classical commutator estimates and Lemma 3.4 that

∥∥A(r)
∥∥

L2 �
∥∥ΛrA

∥∥
L2 + C

(
1

α0
,

1

α
, |ζ0|Cr+1 , |ζ1|Cr+1 , |b|Cr+1

) r∑
μ−k/2

∥∥Λr−k∇μχ
(1)
1

∥∥
L2
k=1
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so that (3.21) yields in this configuration

∥∥Λr∇μχ
(1)
1

∥∥
L2 � M0

(∥∥ΛrA
∥∥

L2 + ∥∥Λrg
∥∥

L2

)+ Mr

r∑
k=1

μ−k/2
∥∥Λr−k∇μχ

(1)
1

∥∥
L2 . (3.22)

We therefore need the following lemma.

Lemma 3.7. The following estimate holds∥∥ΛrA
∥∥

L2 + ∥∥Λrg
∥∥

2 � μ−r/2Mr

(|∇ψ0|Hr+1 + μ
r
2
(|∇Xψ1|Hr,r0 + |∇Y ψ1|Hr+1,r0

)
+ |∇Xψ1|H 0,r0+r + |∇Y ψ1|H 1,r0+r

)
.

Proof. – Control of ‖ΛrA‖L2 . Recall that

A = −P1∇μφ
(0)
1 − 1

μ
P

(0)
1 ∇μ(φ0 − ψ0) − 1√

μ
P

(1)
1 ∇μφ0

− P0

( ∇Xφ
(0)
1

0

)
|
Y= X

γ

+
(

2∇σ0 · ∇Y φ
(0)
1 − √

μ
|∇σ0|2

h0
∂zφ

(0)
1

)
|
Y= X

γ

ez. (3.23)

A direct application of the chain rule gives

∥∥ΛrA
∥∥

L2 �
r∑

k=0

[
‖P1‖L∞

z Wk,∞
∥∥Λr−k∇μφ

(0)
1

∥∥
L2 + ∥∥P

(0)
1

∥∥
L∞

z Wk,∞

∥∥∥∥ 1

μ
Λr−k∇μ(φ0 − ψ0)

∥∥∥∥
L2

+ ∥∥P
(1)
1

∥∥
L∞

z Wk,∞

∥∥∥∥ 1√
μ

Λr−k∇μφ0

∥∥∥∥
L2

]
+ ‖P0‖L∞

z Wr,∞
∥∥Λr∇Xφ

(0)
1

∥∥
L2 + C

(
|ζ0|Cr+1 ,

1

α0

)∥∥Λr∇Y,zφ
(0)
1

∥∥
L2 . (3.24)

Using (2.12) and Lemma 3.4 to control the norms of P0 and P1, and Proposition 3.2 to control the second and third
terms in the above expression, we find

∥∥ΛrA
∥∥

L2 � Mr

(
μ−r/2|∇ψ0|Hr+1 +

r∑
k=0

μ−k/2
∥∥Λr−k∇μφ

(0)
1

∥∥
2

+ ∥∥Λr
(∇Xφ

(0)
1 |

Y= X
γ

)∥∥
2 + ∥∥Λr

(∇Y,zφ
(0)
1 |

Y= X
γ

)∥∥
2

)
.

We now control ‖Λr−k∇μφ
(0)
1 ‖2 through (3.19), while ‖Λr(∇Xφ

(0)
1 |

Y= X
γ

)‖2 and ‖Λr(∇Y,zφ
(0)
1 |

Y= X
γ

)‖2 can be con-

trolled using (3.18) and proceeding as in the proof of (3.19). This yields∥∥ΛrA
∥∥

L2 � μ−r/2Mr

(|∇ψ0|Hr+1 + μ
r
2 |∇Xψ1|Hr,r0 + |∇X,Y ψ1|H 0,r0+r

)
.

– Control of ‖Λrg‖L2 . We first recall that

g = −
( ∇X

0

)
· P0

(∇Y,zφ
(0)
1

)
|
Y= X

γ

+ (−∇∂zσ0 · ∇Y φ
(0)
1 − ∇Xζ1 · ∇ψ0 − (ζ1 − b)�ψ0

)
|
Y= X

γ

.

We get therefore∥∥Λrg
∥∥

2 � μ−r/2Mr

(|∇ψ0|Hr+1 + μr/2
∥∥Λr

(∇Y,zφ
(0)
1 |

Y= X
γ

)∥∥
H 1

)
� μ−r/2Mr

(|∇ψ0|Hr+1 + μr/2|∇Y ψ1|Hr+1,r0 + |∇Y ψ1|H 1,r0+r

)
. �
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Using (3.22) and the lemma, we get directly

μr/2
∥∥Λr∇μχ

(1)
1

∥∥
L2 � Mr

(|∇ψ0|Hr+1 + μr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H 1,r0+r

)
+ Mr

r∑
k=1

μ(r−k)/2
∥∥Λr−k∇μχ

(1)
1

∥∥
L2 ,

and the estimate on ‖Λr∇μχ
(1)
1 ‖ follows from a straightforward induction. We now turn to prove the estimate on

‖Λr−1∂z∇μχ
(1)
1 ‖. As for the control of Λr−1∂z∇μφ0 in Proposition 3.2, it is enough to get an upper bound on

‖Λr−1∂2
z χ

(1)
1 ‖. The idea is to proceed as in Proposition 3.2, using the equation to get ∂2

z χ
(1)
1 in terms of quantities

under control,

∂2
z χ

(1)
1 = h

1 + μ|∇σ |2
[
μ

(
−∂z|∇σ |2

h
∂zχ

(1)
1 + ∂z

(∇σ · ∇χ
(1)
1

)+ ∇ · (∇σ∂zχ
(1)
1

)− ∇ · (h∇χ
(1)
1

))
+ RHS (3.20)

]
;

the presence of the fast scale X/
√

μ makes things a little more complicated than in the proof of Proposition 3.2, and
we need product estimates and a refinement of Lemma 3.3 for multiscale functions.

Lemma 3.8. Let r ∈ N, and denote (r − 1)+ = max{r − 1,0}. Let also G = G(X,Y, z) ∈ L∞
z W

(r−1)+,∞
X,Y , and F ∈

L2(Ω0) be such that Λ(r−1)+F ∈ L2(Ω0). Then

∥∥Λr−1(G|
Y= X

γ

F )
∥∥

L2 � ‖G‖
L∞

z W
(r−1)+,∞
X,Y

(r−1)+∑
k=0

μ−k/2
∥∥Λ(r−1)+−kF

∥∥
L2 .

If moreover G � 0, then∥∥∥∥Λr−1 F

1 + G|
Y= X

γ

∥∥∥∥
L2

� C
(‖G‖

L∞
z W

(r−1)+,∞
X,Y

) (r−1)+∑
k=0

μ−k/2
∥∥Λ(r−1)+−kF

∥∥
L2 .

Proof. The product estimates are a straightforward consequence of the chain rule; the second pair of estimates is
derived as in Lemma 3.3 using these product estimates. �

Using Lemma 3.8 and the above expression for ∂2
z χ

(1)
1 , we get, with r̃ = (r − 1)+ + 1,

∥∥Λr−1∂2
z χ

(1)
1

∥∥
L2 � Mr

(r−1)+∑
k=0

μ−k/2(√μ
∥∥Λr̃−k∇μχ

(1)
1

∥∥
2 + ∥∥Λ(r−1)+−k RHS (3.20)

∥∥
2

)
. (3.25)

We can now use Lemma 3.7 to get∥∥Λ(r−1)+−k RHS (3.20)
∥∥

L2 � √
μ
∥∥Λr̃−kA

∥∥
L2 + ∥∥Λ(r−1)+−kg

∥∥
L2 + ∥∥Λ(r−1)+−k∂zA

∥∥
L2

� μ− r̃−k−1
2 Mr

(|∇ψ0|Hr+1 + μ
r̃
2 |∇X,Y ψ1|Hr̃,r0 + |∇X,Y ψ1|H 0,̃r+r0

)
+ ∥∥Λ(r−1)+−k∂zA

∥∥
L2 , (3.26)

so that the only thing we still need to prove is a control on ‖Λ(r−1)+−k∂zA‖L2 .

Lemma 3.9. For all m ∈ N, 0 � m � r − 1, one has∥∥Λm∂zA
∥∥

L2 � μ− m
2 Mr

(|∇ψ0|Hr+1 + μm/2|∇X,Y ψ1|Hm+1,r0 + |∇X,Y ψ1|H 0,r0+m+1

)
.
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Proof. From the explicit expression of A provided by (3.23), and proceeding as in the proof of Lemma 3.7, we get

∥∥Λm∂zA
∥∥

L2 � Mr

(
μ− m

2 |∇ψ0|Hr+1 + ∥∥Λm
(∇X,Y,zφ

(0)
1 |

Y= X
γ

)∥∥
H 1

z L2 +
m∑

k=0

μ−k/2
∥∥Λm−k∂z∇μφ

(0)
1

∥∥
H 1

z L2

)
,

and the result follows from Proposition 3.5. �
The desired control on ‖Λr−1∂2

z χ
(1)
1 ‖L2 is then a direct consequence of (3.25), (3.26) and the lemma. �

3.4. Asymptotic expansion of the Dirichlet–Neumann operator with estimates

We study here the asymptotic behavior of the Dirichlet–Neumann operator,

G[ζ,βbγ ]ψ = ez · P [σ ]∇μφ|z=0 , (3.27)

where φ solves (2.11). In the previous section, we have shown that when the surface parametrization ζ and the trace
of the potential at the surface ψ are of the form (3.1), one can decompose φ into

φ = φ0 + μχ,

where φ0 is deduced from (2.11) by neglecting all the contributions due to the roughness. We have further decomposed
φ0 and the residual χ (which contains all the roughness effects) as

φ0 = ψ0 + μφ
(1)
0 + μ2χ

(2)
0 and χ = φ

(0)
1 + √

μχ
(1)
1 ,

with controls on the residuals χ
(2)
0 and χ

(1)
1 given in Propositions 3.2 and 3.6 respectively. We can therefore rewrite φ

as the sum of an effective part and a residual part,

φ = φeff + μ3/2φres

with

φeff = ψ0 + μ
(
φ

(1)
0 + φ

(0)
1

)
and φres = χ

(1)
1 + √

μχ
(2)
0 .

Similarly, we decompose the Dirichlet–Neumann operator into an effective and residual part as follows:

Proposition 3.10. We separate the expression for the Dirichlet–Neumann operator as

G[ζ,βbγ ]ψ = (Gψ)eff + μ3/2(Gψ)res

where

1

μ
(Gψ)eff = −∇ · (h0∇ψ0) − ∇Y ζ1|

Y= X
γ

· ∇ψ0

+ |DY | tanh
(
h0|DY |)ψ1(X,Y )|

Y= X
γ

− ∇ψ0 · ∇Y

(
sech(h0|DY )b

)
|
Y= X

γ

.

The remainder (Gψ)res satisfies the estimate (r integer),∣∣(Gψ)res
∣∣
Hr � Mrμ

−r/2−1/8(|∇ψ0|Hr+3 + μr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H 1,r0+r

)
. (3.28)

Remark 3.11. The nonlocal operators in the expression for (Gψ)eff arise from the simultaneous homogenization
process and shallow water limit. Homogenization analysis on a shallow water expansion would give a different result.
The reason for this difference is that certain terms neglected in standard shallow water expansions are not negligible
in the presence of rapidly varying bathymetry; their effects are described in the nonlocal terms of (Gψ)eff .
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Proof. Recalling that P [σ ] = P
(0)
0 + √

μ(P
(1)
0 + P1), with P1 = P

(0)
1 + √

μP
(1)
1 , one has

G[ζ,βbγ ]ψ = ez · P (0)
0 ∇μφeff |z=0 + √

μez · (P (1)
0 + P1

)∇μφeff |z=0 + μ3/2ez · P [σ ]∇μφres|z=0

= ez · P (0)
0 ∇μφeff |z=0 + √

μez · (P (1)
0 + P

(0)
1

)∇μψ0|z=0 + μez · P (1)
1 ∇μψ0|z=0

+ μ3/2ez · (P (1)
0 + P1

)∇μ
(
φ

(1)
0 + φ

(0)
1

)
|z=0 + μ3/2ez · P [σ ]∇μφres|z=0 .

We now decompose

G[ζ,βbγ ]ψ = (Gψ)eff + μ3/2(Gψ)res,

with

(Gψ)eff = ez · P (0)
0 ∇μφeff |z=0 + √

μez · (P (1)
0 + P

(0)
1

)∇μψ0|z=0 ,

(Gψ)res = 1√
μ

ez · P (1)
1 ∇μψ0|z=0 + ez · (P (1)

0 + P1
)∇μ

(
φ

(1)
0 + φ

(0)
1

)
|z=0 + ez · P [σ ]∇μφres|z=0 . (3.29)

The two tasks of this proposition are to give an expression for (Gψ)eff and to prove an estimate for (Gψ)r .
– Explicit computation of (Gψ)eff . From the definition of φeff , we have

1

μ
(Gψ)eff = 1

μ
ez · (P0 + √

μP
(0)
1

)∇μψ0|z=0 + ez · P (0)
0 ∇μφ

(1)
0 |z=0 + ez · P (0)

0 ∇μφ
(0)
1 |z=0

= −∇ · (h0∇ψ0) − ∇Y ζ1|Y= X
γ

· ∇ψ0 + 1

h0
∂zφ

(0)
1

∣∣
z=0. (3.30)

Computing the last term in the RHS with the help of Proposition 3.5, we get

1

h0
∂zφ

(0)
1 |z=0 = |DY | tanh

(
h0|DY |)ψ1(X,Y )|

Y= X
γ

+ ∇ψ0 · ∇Y

(
sech

(
h0|DY |)b)|

Y= X
γ

,

so that Geff is indeed given by the expression stated in the proposition.
– Control of the residual (Gψ)res. From the explicit expression (3.29) of (Gψ)res and Propositions 3.2 and 3.5 and

Lemma 3.4, we get∣∣(Gψ)res
∣∣
Hr � μ−r/2Mr

(|∇ψ0|Hr+1 + μr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H 1,r0+r

)
+ Mr

r∑
k=0

μ−k/2
∣∣Λr−k∇μφres|z=0

∣∣
L2,

which motivates the following lemma.

Lemma 3.12.∣∣∇μφres|z=0

∣∣
L2 � μ−1/8M1

(|∇ψ0|H 2 + μ1/2|∇X,Y ψ1|H 2,r0 + |∇X,Y ψ1|H 1,1+r0

)
.

Proof. We write∣∣∇μφres|z=0

∣∣
L2 � μ1/8

∣∣∇μφres|z=0

∣∣
H 1/2 + μ−1/8

∣∣∇μφres|z=0

∣∣
H−1/2

� μ1/8(μ1/4
∥∥Λ∇μφres

∥∥
L2 + μ−1/4

∥∥∂z∇μφres
∥∥

L2

)
+ μ−1/8(∥∥∇μφres

∥∥
L2 + ∥∥Λ−1∂z∇μφres

∥∥
L2

)
,

where, for the second inequality, we have used two different version of the trace lemma, namely, |F|z=0 |L2 �
μ1/4‖Λ1/2F‖L2 +μ−1/4‖Λ−1/2∂zF‖L2 and |F|z=0 |L2 � ‖Λ1/2F‖L2 +‖Λ−1/2∂zF‖L2 . The estimate follows therefore
from the definition of φres and Proposition 3.6. �

Bound for |Λr−k∇μφres|z=0 |L2 are obtained in the same manner, giving rise to a power of μ in the form
μ−1/8−(r−k)/2. �
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Later in the consistency analysis, we will need an estimate of |(Gψ)res|H 1/2 . For this purpose, interpolating between
Hr−1 and Hr , we have (r � 1):∣∣(Gψ)res

∣∣
H

r− 1
2

� μ1/4
∣∣(Gψ)res

∣∣
Hr + μ−1/4

∣∣(Gψ)res
∣∣
Hr−1

� Mrμ
−(r− 1

2 )/2−1/8(|∇ψ0|Hr+3 + μr/2|∇X,Y ψ1|Hr+1,r0 + |∇X,Y ψ1|H 1,r0+r

)
. (3.31)

4. Homogenization with estimates of the equations for water waves

Up to this point the canonical variables of the water wave problem (ζ,ψ) have been treated as data for an elliptic
partial differential equation in a fixed domain. We now return to study the dynamics of the water waves system (2.3)
as a time dependent problem. We first derive the effective PDEs satisfied by (ζ0,ψ0) and (ζ1,ψ1), after which we
investigate the precision of our approximate solution (3.1) in satisfying the full water wave equation.

4.1. Effective equations

Consider the decomposition (1.7)–(1.8) to be an Ansatz for the full Euler equations (2.3), for which the slow and
fast scale variables are identified through Y = X/

√
μ and τ = t/

√
μ. Substituting these expressions into the full

equations and using the rigorous expansion (3.30), for the first component of equations of (2.3) we obtain an equation
for the quantity (ζa,ψa) = (ζ0 + √

μζ1,ψ0 + μψ1);

∂t ζ0 + ∂τ ζ1 + h0�ψ0 + ∇ζ0 · ∇ψ0 + ∇Y ζ1 · ∇ψ0

− |DY | tanh
(
h0|DY |)ψ1(X,Y )|

Y= X
γ

− ∇ψ0 · ∇Y

(
sech

(
h0|DY |))b|

Y= X
γ

= −√
μ∂tζ1 + √

μ(Gψa)res. (4.1)

At this point the fast and slow time scales are identified, Y = X/
√

μ and τ = t/
√

μ, and we have made no approxi-
mation. Similarly, for the second equation of (2.3) we obtain

∂tψ0 + √
μ∂τψ1 + μ∂tψ1 + ζ0 + √

μζ1 + 1

2

∣∣∇ψ0 + √
μ(∇Y + √

μ∇X)ψ1
∣∣2

= μ
( 1
μ
((Gψa)eff + μ3/2(Gψa)res) + (∇ζ0 + ∇Y ζ1 + √

μ∇Xζ1) · (∇ψ0 + √
μ∇Y ψ1 + μ∇Xψ1))

2

2(1 + μ|∇ζ0 + (∇Y + √
μ∇X)ζ1|2) . (4.2)

Isolating the error terms in (4.2) onto the RHS, one obtains

∂tψ0 + √
μ∂τψ1 + ζ0 + √

μζ1 + 1

2
|∇ψ0|2 + √

μ∇ψ0 · ∇Y ψ1

= −μ∂tψ1 − μ∇ψ0 · ∇Xψ1 − 1

2
μ|∇Y ψ1 + √

μ∇Xψ1|2

+ μ
( 1
μ
((Gψa)eff + μ3/2(Gψa)res) + (∇ζ0 + ∇Y ζ1 + √

μ∇Xζ1) · (∇ψ0 + √
μ∇Y ψ1 + μ∇Xψ1))

2

2(1 + μ|∇ζ0 + (∇Y + √
μ∇X)ζ1|2) .

(4.3)

The bottom profile b is function of the fast variables Y = X/
√

μ.
Now adopt the point of view that we seek multi-scale approximations to the system of Eqs. (4.1)–(4.3). To im-

pose this scaling regime, make the assumption that the variables t,X and τ,Y are independent, so that (ζ0 + √
μζ1,

ψ0 + μψ1) are multiscale functions of the variables (t,X, τ,Y ). In these equations, ζ0 and ψ0 are functions of X, t

only, while ζ1 and ψ1 are multi-scale functions of both time and space. The original variables will be re-imposed when
we return to the identification Y = X/

√
μ and τ = t/

√
μ. In order to justify this otherwise formal separation of slow

and fast scales, we will use results on scale separation that appear in [3,10].
Eqs. (4.1)–(4.2) are two equations for the four unknown quantities (ζ0, ζ1,ψ0,ψ1). In order to obtain well-defined

evolution equations for them, one must identify dynamics that take place on the slow and fast space and time scales.
This is performed using the following scale separation lemmas, in which the underlying periodic nature of the cell
problem plays a rôle.
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Proposition 4.1. Let g be a continuous function on Rd which is periodic over Td , and denote g = 1
(2π)d

∫
Td g(Y )dY

its average value on Td . For any function f (X) in the Schwarz space S(Rd), we have∫
g(X/γ )f (X)dX = g

∫
f (X)dX + O

(
γ N

)
, (4.4)

for any N .

Proposition 4.2. Let g(X,Y ) be a continuous function on Rd × Rd which is periodic in Y ∈ Td , and denote g(X) =
1

(2π)d

∫
Td g(X,Y )dY its average value over Td . For any function f (X) in the Schwarz space S(Rd), we have∫

g(X,X/γ )f (X)dX =
∫

g(X)f (X)dX + O
(
γ N

)
, (4.5)

for any N .

The formal derivation of the effective equations satisfied by (ζ0,ψ0) is to write (4.1)–(4.2) in the sense of distribu-
tions, using test functions f that depend only on the large scale variable X, averaging over the variables Y , and neglect-
ing all the terms that are understood to be of lower order (a rigorous justification of this process will be the object of the
next section). Denote the mean value over the Y variables by (ζ a,ψa) = ( 1

|Γ |
∫
Γ

ζa(X,Y )dY, 1
|Γ |

∫
Γ

ψa(X,Y )dY ).
Then

∂t ζ a = ∂t ζ0 + ∂τ ζ1 + √
μ∂tζ1, (4.6)

and similarly

∂tψa = ∂tψ0 + √
μ∂τψ1 + μ∂tψ1. (4.7)

We assume that ζ 1 = 0 and ψ1 = 0, an assumption that will be shown to be consistent with Eqs. (4.11) and (4.12)
derived below. We obtain therefore ζ a � ζ0 and ψa � ψ0 at lowest order. For Eq. (4.1), using that the Y -derivative of
a periodic function of Y has mean value zero, we find that

∂t ζ0 = −h0�ψ0 − ∇ζ0 · ∇ψ0. (4.8)

From Eq. (4.2), we find

∂tψ0 + (ζ0 + √
μζ 1) + 1

2
|∇ψ0|2 = 0. (4.9)

The lowest order approximation to the system (4.8)–(4.9) takes the form of the classical shallow water system (with
V0 = ∇ψ0 and h0 = 1 + ζ0), namely{

∂t ζ0 = −h0∇ · V0 − ∇ζ0 · V0,

∂tV0 + ∇ζ0 + V0 · ∇V0 = 0.
(4.10)

Returning to (4.1)–(4.2) and using Eqs. (4.10) satisfied by (ζ0,ψ0), we obtain at the next order of approximation the
equation

∂τ ζ1 + V0 · ∇Y ζ1 = |DY | tanh
(
h0|DY |)ψ1 + V0 · ∇Y sech

(
h0|DY |)b. (4.11)

If ζ 1 = 0 at time τ = 0, it remains so for all times. For the evolution equation for ψ1, we find

∂τψ1 + V0 · ∇Y ψ1 + ζ1 = 0. (4.12)

Again, if ψ1 = 0 at time τ = 0, it remains so for all times.
The result is that (4.10) is the shallow water system (1.9) for (ζ0,V0), with V0 = ∇ψ0, and the dispersive corrections

are given by (4.11)–(4.12). This derivation, and a rigorous justification of it, are the principal subject of this paper.
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4.2. Regularity of the approximate solution

The approximate solution is constructed from the solution of a system of simpler model equations (4.10) and
(4.11)–(4.12) where the first is a version of the classical shallow water equations. The second is the system for lin-
ear water waves in the rapid variables (Y, τ ), with a forcing term due to the presence of bottom variations, whose
coefficients depend upon (ζ0(t,X),ψ0(t,X)), for which the slow variables are considered as being fixed.

Theorem 4.3. For r > d/2+1, given initial data (ζ0(·,0),V0(·,0)) in Hr(Rd)×Hr(Rd)d such that (3.4) is satisfied.
Then there exist T > 0 and a smooth solution (ζ0,V0) in C([−T ,T ];Hr(Rd) × Hr(Rd)d) to (4.10) with this initial
data.

Proof. The shallow water system can be written as a symmetric hyperbolic system for the vector function (ζ0,V0 =
∇ψ0). For Sobolev index r > d/2+1, these equations are locally well posed in time for (ζ0(·,0),V0(·,0)) ∈ Hr ×Hr

satisfying the condition (3.4) (see for example [16]). �
The components of the corrector (ζ1,ψ1) = (ζ1(τ, Y ; t,X),ψ1(τ, Y ; t,X)) are multiple scale functions, satisfying

a system of the form

∂τ

(
ζ1
ψ1

)
+ V0(t,X) · ∇Y

(
ζ1
ψ1

)
+

(
0 −|DY | tanh(h0(t,X)|DY |)
I 0

)(
ζ1
ψ1

)
=

(
f

g

)
, (4.13)

for which the large scale variables (t,X) enter as parameters. In the case of Eqs. (4.11)–(4.12) the inhomogeneous
forcing functions are given by

f (Y ; t,X) = V0(t,X) · ∇Y sech
(
h0(t,X)|DY |)b(Y ), g = 0 (4.14)

(in particular, it is autonomous, namely independent of τ , and its zero Fourier mode f vanishes).
Initial data for this system is given in the form (ζ1(0, · ; t,X),ψ1(0, · ; t,X)) in Hr

Y (Td) × H
r+1/2
Y (Td) with zero

mean on Td . The dependence of these solutions on the variables (t,X) will be quantified in a paragraph below.
For the sake of clarity, we omit the dependence on the variables (t,X) in the statement below, since they only act as

parameters in (4.13). It is also convenient to introduce the energy or order r (r ∈ R) defined for all couple of function
(u, v) on Td with zero mean by∥∥(u, v)

∥∥2
Er =

∑
k �=0

(
1 + k2)r(|ûk|2 + |k| tanh

(
h0(t,X)|k|)|v̂k|2

)
, (4.15)

where ûk and v̂k stand for the Fourier components of u and v.

Theorem 4.4. Let r ∈ R. For all (f, g) ∈ C(R : Hr
Y × H

r+1/2
Y (Td)) with zero mean and all (ζ1(0, ·),ψ1(0, ·)) ∈

Hr
Y (Td) × H

r+1/2
Y (Td) with zero mean, there exists a unique solution (ζ1,ψ1) of (4.13) in C(R : Hr

Y (Td) ×
H

r+1/2
Y (Td)) with initial values given by (ζ1(0, ·),ψ1(0, ·)). Moreover, this solution has zero mean and one has

∀τ ∈ R,
∥∥(ζ1(τ ),ψ1(τ )

)∥∥2
Er �

∥∥(ζ1(0),ψ1(0)
)∥∥2

Er + τ sup
0�τ ′�τ

∥∥(f (
τ ′), g(τ ′))∥∥2

Er .

This theorem implies that (ζ1,ψ1) is bounded in Hr × Hr+1/2 over any time interval τ ∈ [−T1, T1]. However,
this bound may grow as T1 → ∞ due to the possible presence of secular terms. Furthermore, when considering
the dependence of this solution on the parameters (t,X), secular growth of the quantities ∂X(ζ1,ψ1), ∂t (ζ1,ψ1) is
quite possible, and would affect the validity of the solution decomposition (1.7)–(1.8) over long time intervals τ ∈
[−T/γ,T /γ ]. In Theorem 4.5, we show that such effects do not occur, at least in the absence of Bragg resonances,
and for initial data (ζ1(0, ·),ψ1(0, ·)) chosen to be stationary in the local environment defined by (ζ0,ψ0).

Proof. For the sake of simplicity, we take g = 0 in the proof below; the adaptation to the general case is straight-
forward. Considered independently of the large scale variables (t,X), the system of Eqs. (4.13) over Y ∈ Td has
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constant coefficients, and the solution operator can be conveniently expressed in Fourier transform. The evolution of
the individual Fourier modes is described by the system

∂τ

(
ζ̂1k

ψ̂1k

)
+

(
ik · V0 0

0 ik · V0

)(
ζ̂1k

ψ̂1k

)
+

(
0 −ω2

k

I 0

)(
ζ̂1k

ψ̂1k

)
=

(
f̂k

0

)
, (4.16)

where the local velocity is V0(t,X), and the frequency is given by ωk = (|k| tanh(h0(t,X)|k|))1/2, both of which
depend parametrically upon the long scale spatial variable (t,X).

Defining new coordinates uk := ω
−1/2
k ζ̂1,k and vk := ω

+1/2
k ψ̂1,k , the propagator for (4.13)–(4.16) is given by

exp

[
τ

( −ik · V0 0
0 −ik · V0

)
+ τ

(
0 ωk

−ωk 0

)]
= e−ik·V0τ

(
cos(ωkτ) sin(ωkτ)

− sin(ωkτ) cos(ωkτ)

)
.

Using complex notation for this system, define

Zk := uk + ivk, Wk := uk − ivk,

with which we express the general solution to (4.16);

Zk(τ) = e−iτ [ωk+k·V0]Zk(0) +
τ∫

0

e−i(τ−s)[ωk+k·V0]ω−1/2
k f̂k(s) ds,

Wk(τ) = e+iτ [ωk−k·V0]Wk(0) +
τ∫

0

e+i(τ−s)[ωk−k·V0]ω−1/2
k f̂k(s) ds. (4.17)

Standard use of the Plancherel identity implies that∥∥Z(τ, ·)∥∥2
H

r+1/4
y

�
∥∥Z(0, ·)∥∥2

H
r+1/4
y

+ C0|τ |∥∥f (s, ·)∥∥2
L∞

s ([−τ,τ ]:Hr
y )

,∥∥W(τ, ·)∥∥2
H

r+1/4
y

�
∥∥W(0, ·)∥∥2

H
r+1/4
y

+ C0|τ |∥∥f (s, ·)∥∥2
L∞

s ([−τ,τ ]:Hr
y )

,

where we have used that ωk � 〈k〉1/2. Recovering our original variables

1

2
(Zk + Wk) = uk = ω

−1/2
k ζ̂1k,

1

2i
(Zk − Wk) = vk = ω

+1/2
k ψ̂1k,

the result is as stated in Theorem 4.4, with in addition a quantitative estimate on the growth in the fast time vari-
able τ . �
4.3. The Bragg resonance condition

Solutions to the linear equation (4.13) exist for all τ ∈ R, however (ζ1(·, τ ),ψ1(·, τ )) may exhibit secular growth in
time; more precisely, it may grow linearly with respect to τ . This is a concern for our model system because τ = t/γ

is the rapid timescale, therefore over physically relevant time intervals of O(1) in the slow time variable t , solutions
of (4.13) may grow from O(1) quantities to O(1/γ ) quantities, thus leaving the range of validity of our assumption
regarding the asymptotic scaling regime. This secular growth for Fourier modes (ζ̂1,k, ψ̂1,k)(τ ) is due to the presence
of Bragg resonances of the kth Fourier mode of the corrector solution with the periodic variations of the bottom
topography defined by b(Y ) for which b̂k �= 0. Note that these resonances differ from the classical Bragg resonances
which are obtained with surface waves and bottoms of comparable wavelength [19]; to our knowledge they had not
been exhibited before. Such a resonance occurs at time t and in X if for some k �= 0 such that b̂k �= 0,

ωk(X, t)2 = (
k · V0(X, t)

)2
, (4.18)

where V0 = ∇ψ0, ωk = (|k| tanh(h0|k|))2.
In absence of such resonances, it is quite easy to check that there is no secular growth of the first corrector:

(ζ1(τ, · ; t,X),ψ1(τ, · ; t,X)) remains bounded with respect to τ in the energy norm (4.15). This easily follows from
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the fact that (ζ1,ψ1) solves (4.13) with a forcing function f given by (4.14) which is independent of τ . The time
integral in (4.17), which is at the origin of the secular growth, can then be explicitly computed, and it is obviously
bounded in absence of Bragg resonance.

Controlling the error corresponding to our approximation requires however some bound on the parametric deriva-
tives of ζ1 and ψ1 (i.e. their derivatives with respect to t and X). These parametric derivatives also solve a problem of
the form (4.13), albeit with a different forcing term (f, g). Theorem 4.4 can therefore be used to give some control on
the energy norm of these parametric derivatives; however the forcing term now depends on τ and the linear secular
growth in τ that appears in the estimate of Theorem 4.4 cannot be removed as above.

As previously explained, this secular growth is destructive for our approximation. While it cannot be avoided in
general for the parametric derivatives of (ζ1,ψ1), we still have some freedom to eliminate it. Indeed, the choice for
the initial condition associated to (4.13) is so far completely arbitrary. It turns out that, in absence of Bragg reso-
nance, there is one choice of initial data that removes the secular growth. This removal is quite spectacular since the
corresponding solutions are independent of τ (and therefore bounded together with all their parametric derivatives).
These constant solutions are found by removing the τ -derivative in (4.13)–(4.14) which leads to solving the following
problem,(

V0 · ∇Y −|DY | tanh(h0|DY |)
I V0 · ∇Y

)(
ζ1

ψ1

)
=

(
V0 · ∇Y sech(h0|DY |)b

0

)
.

In absence of Bragg resonance, this yields, for all k ∈ Z,

ζ̂1,k = − (V0 · k)2 sech(h0|k|)
−(V0 · k)2 + |k| tanh(h0|k|) b̂k, ψ̂1,k = −i

(V0 · k) sech(h0|k|)
−(V0 · k)2 + |k| tanh(h0|k|) b̂k. (4.19)

A quantitative measure of nonresonance with respect to a sequence {0 < Bk < +∞: k ∈ Zd} is necessary for the
analysis that follows; the kth Fourier modes (ζ̂1,k, ψ̂1,k) are nonresonant at (X, t) with respect to the homogenized
solution (ζ0(·, t),ψ0(·, t)) and the bottom topography b(Y ) if b̂k �= 0 and one has∣∣ωk(X, t)2 − (

k · V0(X, t)
)2∣∣ >

1

Bk

. (4.20)

The sequence {Bk} is effectively a bound on the small divisor condition governing Bragg resonances, locally in (X, t).
Given a sequence {Bk: k ∈ Zd} such that Bk < eh|k|/2/δ, if (4.20) holds for all k �= 0, a local stationary solution exists,
and furthermore the secular growth of local solutions can be controlled locally in (X, t). When (4.20) holds uniformly
in (X, t) for all b̂k �= 0, it is a nonresonant situation (relative to the small divisor conditions {Bk}) and solutions can
be controlled globally.

Theorem 4.5. Let r ∈ N, r ′ > d/2 + r + 1, T > 0 and (ζ0,V0) ∈ Cr([−T ,T ];Hr ′−r (Rd)1+d) be a solution of the
shallow water equations (4.10), such that

∃α0 > 0, ∀(X, t) ∈ Rd × [−T ,T ], 1 + ζ0(X, t) � α0.

Assume also that the nonresonance condition (4.20) holds with Bk < eh|k|/δ (for some δ > 0 and 0 < h < α0). Then
there exists a unique locally stationary solution of (4.13), which is given by (4.19). In particular, one has, for all
0 � s � r ′ − r and all s′ > 0,

|ζ1|Cr ([−T ,T ];Hs
X×Hs′

Y )
+ ∣∣ψ1(·)

∣∣
Cr([−T ,T ];Hs

X×Hs′
Y )

� Crss′
(|ζ0|C([−T ,T ];Cr

X), |ψ0|C([−T ,T ];Cr
X)

)(|ζ0|Cr ([−T ,T ];Hs
X) + |ψ0|Cr ([−T ,T ];Hs

X)

)|b|L2
Y
. (4.21)

Proof. Let Fk := R × Rd �→ R defined as

Fk(V, ζ ) = − (V · k)2 sech((1 + ζ )|k|)
2

,
−(V · k) + |k| tanh((1 + ζ )|k|)
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so that ζ̂a,k = F(V0, ζ0)b̂k . The mapping Fk is smooth, vanishes at the origin, and is rapidly decaying together with
all its derivatives as a consequence of the nonresonance assumption (4.20). It follows therefore from Moser’s estimate
that

|k|s′ |ζ̂1,k|C([−T ,T ];Hs
X) � C

(
s, s′, |ζ0|C([−T ,T ];L∞

X ), |V0|C([−T ,T ];L∞
X )

)(|ζ0|C([−T ,T ];Hs
X) + |V0|C([−T ,T ];Hs

X)

)|b̂k|,
so that the bound given in the lemma stems from Plancherel’s inequality in the case r = 0. Bounds for r > 0 and on ψ1
are obtained in the same way. �

The question as to how often Bragg resonances occur merits a discussion. For k �= 0 fixed, (4.20) is an open
condition on the state parameters (ζ0,V0) ∈ C0. In two dimensions (that is, when d = 1), it is related to the local
Froude number of the flow, defined by

Fr2(X, t) := V 2
0 (X, t)

h0(X, t)
;

indeed, the nonresonance condition (4.20) can be stated equivalently as

Fr2(X, t) = tanh(h0(X, t)|k|)
h0(X, t)|k|

and in particular for supercritical flows Fr2(X, t) � 1, Bragg resonances are absent. However, the Froude number is an
indication of criticality which is local in X, and because V0 ∈ Hr , solutions can be supercritical only on compact sets.
For subcritical flows, and for (X, t) fixed, at most one Fourier mode can be in resonance.2 If b(Y ) is a trigonometric
polynomial, then there are a finite number of resonances. Any 2-resonances are separated by a region of nonresonance,
and for V0 → 0 as X → ±∞ further resonances are avoided. In particular, if kmax denotes the highest nonzero Fourier
mode of b and kmin the lowest one, then Bragg resonances are possible only if

Fr2
min � Fr2 � Fr2

max, with Fr2
min = tanh(h0(X, t)|kmin|)

h0(X, t)|kmin| , Fr2
max = tanh(h0(X, t)|kmax|)

h0(X, t)|kmax| .

For general b(Y ) with infinitely many nonzero Fourier coefficients, any zero of velocity V0 is a point of accu-
mulation of resonances and in particular, small resonant patches will appear because V0 → 0 as X → ±∞. Their
asymptotic strength is related to the large k – behavior of |b̂k|.

The character of resonance for d � 2 is different. For b(Y ) given by a trigonometric polynomial, resonances are
isolated for the same reason as for d = 1. In the case of a general b(Y ), there is the potential for a dense set of
resonances in the state space (ζ0,V0) and not just at V0 = 0. This can be seen through the parametric dependence on
(ζ0,V0) of the resonant condition (4.18) in wavenumber space. Given (ζ0,V0), this condition defines a hypersurface
Ek in k ∈ Zd , which, if it passes through a lattice point k ∈ Zd with b̂k �= 0, gives rises to a resonance. Even if it does
not intersect a lattice point, under arbitrarily small perturbations at (ζ0,V0), it will. Hence the set of resonant states
(ζ0,V0) is dense.

Nonetheless, in the measure theoretic sense, Bragg resonances are relatively rare. That is, there is a set of states
(ζ0,V0) for which (4.20) is satisfied for all k �= 0, such that its complement has measure less than Cδ. Indeed, fix
k �= 0. The gradient of the resonance condition with respect to (ζ0,V0) on the curve Ek is non-vanishing, and is of
amplitude of order O(|k|). Thus state variables (ζ0,V0) of distance (Bk|k|)−1 from Ek will satisfy the nonresonance
condition (4.20). The union over k �= 0 of (Bk|k|)−1-tubular neighborhoods of the sets Ek consists of the ‘bad’ states,
for which there exists at least one near resonance as in (4.20). This union has relative measure bounded above by∑

k �=0

1

|k|Bk

< Cδ.

Therefore the resonant set is dense, but has relatively small measure in the space of states (ζ0,V0). Moreover, we see
that the set for which (4.20) is satisfied has the character of a Cantor set.

2 This follows from the fact that tanh(x)/x is strictly decaying on R+ .
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4.4. Consistency analysis

The purpose of this section is to evaluate the error that is made when approximating the solution (ζ,ψ ) of the full
water wave problem by the functions (3.1), where the components (ζ0,ψ0) and (ζ1,ψ1) satisfy the effective system of
Eqs. (4.9) and (4.11) respectively.

Write the full water wave problem (2.3) as

E1(ζ,ψ) = 0, E2(ζ,ψ) = 0, (4.22)

where E1 and E2 identify with the LHS of Eqs. (2.3). We denote our construction of an approximate solution by
Ea := (E1(ζa,ψa),E2(ζa,ψa)), where (ζa,ψa) is defined in (1.7)–(1.8). For this approximate solution, the error is
given by the expression

E1(ζa,ψa) = −√
μ(Gψa)res − √

μ∂tζ1, (4.23)

E2(ζa,ψa)

= μ∇ψ0 · ∇Xψ1 + μ

2
|∇Y ψ1 + √

μ∇Xψ1|2 − μ∂tψ1

− μ
( 1
μ
((Gψa)eff + μ3/2(Gψa)res) + (∇ζ0 + ∇Y ζ1 + √

μ∇Xζ1) · (∇ψ0 + √
μ∇Y ψ1 + μ∇Xψ1))

2

2(1 + μ|∇ζ0 + (∇Y + √
μ∇X)ζ1|2) .

(4.24)

The statement that the expression (ζa,ψa) is a good approximation for Eqs. (2.3) is that the error is small, in an appro-
priate norm, for small μ. Theorem 4.6 is a result of this form, implying the consistency of the approximate solution.
We recall that the leading term (ζ0,ψ0) of the approximation solves the nonlinear shallow water equations (1.9) while,
in absence of Bragg resonances, the correctors (ζ1,ψ1) are explicitly given by (4.19).

Theorem 4.6. Under the assumptions of Theorem 4.5, the approximate solution (ζa,ψa) given by expression (1.7)–
(1.8) satisfies the following consistency estimates∣∣E1(ζa,ψa)

∣∣
L2 � Caμ

3/8,
∣∣E2(ζa,ψa)

∣∣
H 1/2 � Caμ

3/4, (4.25)

for the error term for the water wave system (2.3). The constant Ca is of the form

Ca = C

(
1

α0
, |ζ0|C4 , |V0|H 4, |b|L2

)
.

Remark 4.7. The quantities (ζ0,ψ0, ζ1,ψ1) are solutions of the model equations and following Theorems 4.3, 4.4
and 4.5, are bounded along with their derivatives in terms of the initial data. The norm in which the error is measured
is relatively weak, the reason being that we are dealing with a problem with fast oscillating functions. It is however a
natural norm for this problem since it coincides with the norm of the energy functional associated to the water waves
equations.

Proof. The first component E1 satisfies∣∣E1(ζa,ψa)
∣∣
L2 � √

μ
∣∣(Gψ)res

∣∣
L2

√
μ|∂t ζ1|L2 .

By Proposition 3.10, the norm |(Gψ)res|L2 is bounded by μ−1/8. This estimate involves norms of ζ1, ψ1 and their
derivatives that can becontrolled using Theorem 4.5 in terms of norms of the leading term ζ0 and ψ0. Thus the estimate
of the first component of Ea is shown to be as stated in the theorem.

The second component of the error E2 is given in (4.24). It is made up of a complicated nonlinear expression. This
nonlinear quantity consists of several types of terms, distinguished by whether they depend upon surface variables
alone, or whether they depend upon the Dirichlet–Neumann operator and thus on the solution of an elliptic boundary
value problem with oscillatory coefficients. Further terms of the RHS depend only upon surface variables, as products
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of functions of X and/or multiscale functions. We will use the interpolation estimates in the form (for the sake of
clarity, we omit the dependence on time here)

|f |H 1/2 � μ−1/4|f |L2 + μ1/4|f |H 1 . (4.26)

Products such as |∇ψ0(X) · ∇Y ψ1(X,X/
√

μ)|H 1/2 are controlled by

μ|∇ψ0 · ∇Y ψ1|H 1/2 � μ3/4|∇ψ0|C1 |∇Y ψ1|H 1,r0+1 . (4.27)

Products of multiscale functions are bounded by

μ
∣∣|∇Y ψ1|2

∣∣
H 1/2 � μ3/4|∇Y ψ1|C0

XY
|∇Y ψ1|H 0,r0+1 . (4.28)

Other terms in the first line of the RHS of (4.24) are bounded similarly. We now turn to the second line of the RHS
of (4.24). It has the form μA

B
that we need to bound in H 1/2 norm. The denominator B satisfies B = 2(1 + |∇ζ0 +

μ(∇Y + √
μ∇X)ζ1|2) � 2 and we can therefore write

μ

∣∣∣∣AB
∣∣∣∣
H 1/2

� μ

(
μ−1/4

∣∣∣∣AB
∣∣∣∣
L2

+ μ1/4
∣∣∣∣AB

∣∣∣∣
H 1

)
� μ3/4|A|L2 + μ5/4|∇A|L2 + μ5/4|A∇B|L2 . (4.29)

The numerator A contains many terms. To bound its L2 norm, we have for example terms of the form∣∣∣∣( 1

μ
(Gψ)eff

)2∣∣∣∣
L2

� C (4.30)

where C depends on |∇ζ0|C2 , |∇ψ0|C2 , |∇X,Y ζ1|H 3,r0+1 , |∇X,Y ψ1|H 3,r0+1 . Here again, Theorem 4.5 is used to control
the last two quantities in terms of norms of ζ0 and ψ0. Estimates of terms of the numerator A which depend upon the
quantity (Gψ)res from the Dirichlet–Neumann operator use the results of Section 3 on the boundary value problem
with periodic oscillatory coefficients. For example,∣∣(μ1/2(Gψ)res

)2∣∣
L2 � Cμ3/4. (4.31)

Examination of all terms leads to |A|L2 � C. Noting that the computation of ∇B gives one factor μ and that each
derivation costs a factor μ1/2, we find

|∇B|L4 � Cμ1/4. (4.32)

Considering all terms similarly, we arrive to the conclusion of Theorem 4.6. �
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