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Abstract

We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using
(equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise
non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe
problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds.

MSC: 58E11; 58J55; 58E09

1. Introduction

The classical Yamabe problem asks for the existence of constant scalar curvature metrics in any given conformal
class of Riemannian metrics on a compact manifold M . These metrics can be characterized variationally as critical
points of the Hilbert–Einstein functional on conformal classes. The solution of Yamabe’s problem, due to combined
efforts of Yamabe [22], Trudinger [21], Aubin [2] and Schoen [18], provides minimizers of the Hilbert–Einstein
functional in each conformal class. For instance, Einstein metrics are minima of the functional in their conformal
class and in fact, except for round metrics on spheres, they are the unique metrics in their conformal class having
constant scalar curvature, by a theorem of Obata [15]. It is also interesting to observe that, generically, minima of the
Hilbert–Einstein functional in conformal classes are unique, see [1]. However, in many cases a rich variety of constant
scalar curvature metrics arise as critical points that are not necessarily minimizers, and it is a very interesting question
to classify all critical points. In this paper, we propose to use bifurcation theory to determine the existence of multiple
constant scalar curvature metrics on products of compact manifolds. Multiplicity of solutions of the Yamabe problem
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in product manifolds has been studied in the literature, and several results have been obtained in the special case
of products with round spheres, see for instance [6,9,16,19]. A somewhat different multiplicity result can be found
in [17]; bifurcation theory is used in [7] to obtain a multiplicity result for the Yamabe equation on the sphere S

N . In
this paper we consider products of arbitrary factors with constant, but not necessarily positive, scalar curvature, and
we prove a multiplicity result in an infinite number of conformal classes.

Let us describe our result more precisely. Given compact Riemannian manifolds (M0,g(0)) and (M1,g(1)), both
having positive constant scalar curvature, one consider the trivial path gλ, λ ∈ ]0,+∞[, of constant scalar curvature
metrics on the product M = M0 × M1 defined by gλ = g(0) ⊕ λg(1). The main results of the paper (Corollary 4.4,
Theorem 4.5) state that there is a countable set Λ ⊂ ]0,+∞[ that accumulates (only) at 0 and at +∞ such that:

• the family (gλ)λ is locally rigid at all points in ]0,+∞[ \ Λ, i.e., for all λ ∈ ]0,+∞[ \ Λ, any constant scalar
curvature metric g on M which is sufficiently C 2,α-close to gλ must be homothetic to some element of the trivial
family;

• at all λ∗ ∈ Λ, except for a finite subset, there is a bifurcating branch of constant scalar curvature metrics issuing
from the trivial branch at gλ∗ , and that consists of metrics that do not belong to the trivial family.

Rigidity and bifurcation results are also given when the scalar curvatures of g(0) and of g(1) are not both positive,
see Theorem 4.13. Based on these results and other known facts about Yamabe metrics, one obtains some uniqueness
and multiplicity results for constant scalar curvature metrics in fixed conformal classes, see Section 4.4. For instance,
an interesting consequence of our bifurcation result yields the following: if (M1,g(1)) has positive scalar curvature,
then there is a subset F ⊂ ]0,1] that has a countable number of accumulation points tending to 0 such that for
all λ ∈ F , there are at least three distinct constant unit volume scalar curvature metrics in the conformal class of
gλ = g(0) ⊕ λg(1), see Proposition 4.14. Finally, using some recent compactness results for solutions of the Yamabe
problem, see [8,12,13], we establish also the uniqueness of constant scalar curvature metrics in conformal classes in
product of spheres or, more generally, in product of compact Einstein manifolds with positive scalar curvature, see
Section 4.2.

The result is obtained as an application of a celebrated abstract bifurcation result of Smoller and Wasserman
[20], which uses an assumption on the jump of the Morse index for a path of solutions of a family of variational
problems. In the present paper, we consider the variational structure of the Yamabe problem given by the Hilbert–
Einstein functional, defined on the set of metrics of volume 1 in a given conformal class of metrics. A very interesting
observation on the Yamabe variational problem considered here is that the set Λ consisting of instants when the
second variation of the Hilbert–Einstein functional degenerates do not correspond necessarily to jumps of the Morse
index. Namely, the eigenvalues of the Jacobi operator for this functional are arranged into sequences of functions that
are monotonic with respect to λ, but both increasing and decreasing functions appear, see Lemma 4.3. Thus, one can
have a finite number of degeneracy instants λ ∈ Λ where a compensation occurs, and no jump of the Morse index
is produced by the passage through 0 of the eigenvalues. This raises an extremely interesting question on whether
one can have local rigidity also at this sort of neutral degeneracy instants. In the last part of the paper we study this
question, and we setup an equivariant framework to determine some sufficient conditions that guarantee bifurcation
at every degeneracy instant. We define the notion of harmonically freeness for an isometric action of a Lie group G

on a Riemannian manifold M , see Definition 4.6, which roughly speaking means that the corresponding isotropic
representations of G on distinct eigenspaces of the Laplace–Beltrami operator of M should be direct sum of non-
equivalent irreducible representations. The class of manifolds that admit a harmonically free isometric action of a Lie
group includes, for instance, all compact symmetric spaces of rank 1, see Example 4.1. We obtain the result that, if
one of the two factors M0 or M1 admits a harmonically free isometric action of some Lie group, then bifurcation
of the family (gλ)λ must occur at every degeneracy instant (Proposition 4.7). This is obtained using the equivariant
abstract bifurcation result of Smoller and Wasserman [20], by studying the representations of the Lie group G on the
eigenspaces of the Jacobi operator of the Hilbert–Einstein functional.

The paper is organized as follows. Section 2 contains the essential facts on the variational framework of the constant
scalar curvature problem in Riemannian manifolds; the basic references for details are [4,11,19]. Section 3 contains
statements and proofs of a local rigidity theorem (implicit function theorem) and both the simple and the equivariant
bifurcation result for the Yamabe variational problem. In Section 4 we study explicitly the case of product manifolds
and prove our main results. Appendix A contains formal statements of an implicit function theorem and of two bi-
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furcation theorems for variational problems defined on the total space of a fiber bundle, which are best suited for the
theory developed in this paper.

2. The variational setting for the Yamabe problem

We will denote throughout by M a compact manifold without boundary, with m = dim(M) � 3, and by gR an
auxiliary Riemannian metric on M . The metric gR induces inner products and norms in all spaces of tensors on M ,
the Levi-Civita connection ∇R of gR induces a connection in all vector spaces of tensors fields on M . Let S k(M) be
the space of all symmetric (0,2)-tensors of class Ck on M , with k � 2; this is a Banach space when endowed with the
norm:

‖τ‖Ck = max
j=0,...,k

[
max
p∈M

∥∥∇R
(j)τ (p)

∥∥
R

]
.

Let Mk(M) denote the open cone of S k(M) consisting of all Riemannian metrics on M ; for all g ∈ Mk(M), the
tangent space Tg Mk(M) is identified with the Banach space S k(M). Given g ∈ Mk(M), the conformal class of g,
denoted by [g]k is the subset of Mk(M) consisting of metrics that are conformal to g. For all g, [g]k is an open subset
of a Banach subspace of S k , and thus it inherits a natural differential structure. As a matter of facts, in order to comply
with certain Fredholmness assumptions in Bifurcation Theory, we need to introduce conformal classes of metrics
having a Hölder type regularity Ck,α . To this aim, the most convenient definition is to consider a smooth2 metric g
on M , and setting:

[g]k,α = {
ψ · g: ψ ∈ Ck,α(M), ψ > 0

};
thus, [g]k,α can be identified with the open subset of the Banach space Ck,α(M) consisting of positive functions. The
differential structure on [g]k,α is the one induced by Ck,α(M).

For g ∈ Mk(M), we will denote by νg the volume form (or density, if M is not orientable) of g, by Ricg the Ricci
curvature of g, and by κg its scalar curvature function, which is a function of class Ck−2 on M .

The volume function V on Mk(M) is defined by:

V (g) =
∫
M

νg.

Observe that V (g) is smooth, and its differential is given by:

dV (g)h = 1

2

∫
M

trg(h)νg, (1)

for all h ∈ S k(M). Let Mk
1(M) denote the subset of Mk(M) of those metrics g such that V (g) = 1; let us also

consider the scale-invariant Hilbert–Einstein functional on Mk(M), which is the function A : Mk(M) → R defined
by:

A(g) = V (g)
2−m
m

∫
M

κgνg.

We summarize here some well known facts about the critical points of A:

Proposition 2.1.

(a) Mk
1(M) is a smooth embedded codimension 1 submanifold of Mk(M).

(b) Mk,α
1 (M,g) = Mk

1(M) ∩ [g]k,α is a smooth embedded codimension 1 submanifold of [g]k,α .

For g0 ∈ Mk,α
1 (M,g), the tangent space Tg0 Mk,α

1 (M,g) is identified with the closed subspace Ck,α∗ (M,g0) of
Ck,α(M) given by all functions f such that

∫
M

f νg0 = 0.

2 In fact, in most situations it will suffice to assume regularity Ck+1 for g.
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(c) A is a smooth functional on Mk(M) and on [g]k,α .
(d) The critical points of A on Mk

1(M) are the Einstein metrics of volume 1 on M .

(e) The critical points of A on Mk,α
1 (M,g) are those metrics conformal to g, having total volume 1, and that have

constant scalar curvature.
(f) If g0 ∈ Mk,α

1 (M,g) is a critical point of A on Mk,α
1 (M,g), then the second variation d2 A(g0) of A at g0 is

identified with the quadratic form on Ck,α∗ (M,g0) defined by:

d2 A(g0)(f,f ) = m − 2

2

∫
M

(
(m − 1)	g0f − κg0f

)
f νg0 . (2)

Moreover, g0 is a nondegenerate3 critical point of A on Mk,α
1 (M,g) if either κg0 = 0 or if

κg0
m−1 is not an eigen-

value of 	g0 .

Proof. For g ∈ Mk
1(M), setting h = g in (1) we get dV (g)g = 1

2

∫
M

trg(g)νg = m
2 V (g) > 0. Thus, Mk

1(M) and

Mk,α
1 (M,g) are the inverse image of a regular value of the volume function, which proves (a) and (b). For

g ∈ Mk
1(M), the tangent space Tg Mk

1(M) is the kernel of dV (g), i.e., the space of those h ∈ S k(M) such that∫
M

trg(h)νg = 0, see (1). Setting h = f · g, with f ∈ Ck,α(M), we get
∫
M

trg(h)νg = m
∫
M

f νg; so, the tangent space4

Tg Mk,α
1 (M,g) is identified with Ck,α∗ (M,g).

The smoothness of A is clear, since it is the composition of an integral and a second order differential operator
having smooth coefficients. The first variation formula for A is given by5 (see for instance [19]):

dA(g)h = −
∫
M

〈
Ricg − 1

2
κgg,h

〉
g
νg, (3)

h ∈ Tg Mk
1(M), from which it follows that g ∈ Mk

1(M) is a critical point of A if and only if Ricg − 1
2κgg = λ · g for

some map λ, i.e., if and only if exists a function μ such that Ricg = μ · g. Taking traces, one sees that μ = 1
m

κg, i.e.,
g is Einstein. This proves (d). Setting h = f · g in (3), one obtains:

dA(g)(f · g) = m − 2

2

∫
M

f κgνg.

This is zero for all f with
∫
M

f νg = 0 iff and only if κg is constant, proving (e). Formula (2) can be found, for instance,
in [10,19]. It is easy to see that the linear operator (m − 1)	g − κg is (unbounded) self-adjoint on L2(M,νg), that it
leaves invariant the set of functions f such that

∫
M

f νg = 0, and that its restriction as a linear operator on Ck,α∗ (M,g)

is Fredholm, and it has non-trivial kernel if and only if
κg

m−1 is a non-zero eigenvalue of 	g. �
Remark 2.2. An important observation for our theory is that, given λ ∈ R

+, one has 	λg = 1
λ
	g and κλg = 1

λ
κg. This

means that the spectrum of the operator 	g − κg
m−1 is invariant by affine changes of the metric g. On the other hand,

νλg = λ
m
2 νg. When needed, we will normalize metrics to have volume 1, without changing the spectral theory of the

operator 	g − κg
m−1 .

3. Bifurcation and local rigidity for the Yamabe problem

Let M be a fixed compact manifold without boundary, with dim(M) = m � 3, and assume that [a, b] � λ �→
gλ ∈ S k(M), k � 2, is a continuous path of Riemannian metrics on M having constant scalar curvature. An element
λ∗ ∈ [a, b] is a bifurcation instant for the family (gλ)λ∈[a,b] if there exists a sequence (λn)n�1 in [a, b] and a sequence
(gn)n�1 in S k(M) of Riemannian metrics on M satisfying:

3 In the sense of Morse theory.
4 If g0 ∈ [g], then clearly [g0] = [g] and Mk,α

1 (M,g0) = Mk,α
1 (M,g). Thus, in this proof it will suffice to consider the case g0 = g.

5 The symbol 〈·,·〉g in (3) denotes the inner product in the space of symmetric (0,2) tensors induced by g.
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(a) for all n � 1, gn belongs to the conformal class of gλn , but gn �= gλn ;
(b) for all n � 1,

∫
M

νgn = ∫
M

νgλn
;

(c) for all n � 1, gn has constant scalar curvature;
(d) limn→∞ λn = λ∗ and limn→∞ gn = gλ∗ in S k(M).

If λ∗ ∈ [a, b] is not a bifurcation instant, then we say that the family (gλ)λ is locally rigid at λ∗. The implicit function
theorem provides a sufficient condition for the local rigidity.

3.1. A sufficient condition for local rigidity

Proposition 3.1. Let [a, b] � λ �→ gλ be a smooth path of Riemannian metrics of class Ck , k � 3, having constant
scalar curvature κλ for all λ, and let 	λ denote the Laplace–Beltrami operator of gλ. If κλ∗ = 0 or if κλ∗

m−1 is not an
eigenvalue of 	λ∗ (i.e., if gλ∗ is a nondegenerate critical point of A in its conformal class), then the family (gλ)λ is
locally rigid at λ∗.

Proof. Up to a suitable normalization, we can assume
∫
M

νgλ = 1 for all λ ∈ [a, b], see Remark 2.2. Denote by

C 2,α
+ (M) the open set of positive functions in C 2,α(M), and by D the sub-bundle of the trivial fiber bundle C 2,α

+ (M) ×
[a, b] over the interval [a, b], defined by:

D =
{
(ψ,λ) ∈ C 2,α

+ (M) × [a, b]:
∫
M

ψ
m
2 νgλ = 1

}
. (4)

Also, let E the sub-bundle of C 0,α(M) × [a, b] defined by:

E =
{
(ϕ,λ) ∈ C 0,α(M) × [a, b]:

∫
M

ϕνgλ=0

}
. (5)

Finally, consider the smooth map F : D → E given by:

F(ψ,λ) =
(

κψ ·gλ −
∫
M

κψ ·gλνgλ , λ

)
∈ E ; (6)

clearly, given ψ ∈ C 2,α
+ (M) and λ ∈ [a, b], the metric ψ · gλ has volume equal to 1 and constant scalar curvature if

and only if (ψ,λ) ∈ D and F(ψ,λ) = (0, λ). This means that, in order to establish the desired result, we need to look
at the structure of the inverse image F−1(0E ) of the null section 0E of the bundle E . Note that F is a fiber bundle
morphism, i.e., denoting by πD : D → [a, b] and πE : E → [a, b] the natural projections, one has πE ◦ F = πD . The
thesis will follows from the Implicit Function Theorem once we show that the vertical derivative6 dverF(1, λ∗) of F

at the point (1, λ∗) (here 1 is the constant function equal to 1 on M) is a (linear) isomorphism from the Banach space:

D∗ =
{
Ψ ∈ C 2,α(M):

∫
M

Ψ νgλ∗ = 0

}

to the Banach space

E∗ =
{
Φ ∈ C 0,α(M):

∫
M

Φνgλ∗ = 0

}
.

Observe that D∗ is the tangent space at ψ = 1 of the fiber:

Dλ∗ =
{
ψ ∈ C 2,α

+ (M):
∫
M

ψ
m
2 νgλ∗ = 1

}
.

6 See Appendix A, Proposition A.1.



266 L.L. de Lima et al. / Ann. I. H. Poincaré – AN 29 (2012) 261–277
The vertical derivative dvF(1, λ∗) is easily computed as:

2

m − 2
dverF(1, λ∗)Ψ = (m − 1)	λ∗Ψ − κλ∗Ψ −

∫
M

[
(m − 1)	λ∗Ψ − κλ∗Ψ

]
νgλ∗

= (m − 1)	λ∗Ψ − κλ∗Ψ. (7)

For the second equality above, note that 	λ∗ (as well as the operator given by multiplication by a constant) carries
D∗ to E∗. Under the assumption that κλ∗ = 0 or that κλ∗

m−1 is not an eigenvalue of 	λ∗ , dfF(1, λ∗) is injective on D∗.

Moreover, the linear operator 	λ∗ − κλ∗ from C 2,α(M) to C 0,α(M) is Fredholm of index 0. Since the codimensions of
D∗ in C 2,α(M) and of E∗ in C 0,α(M) are equal (both equal to 1), it follows that dfF(1, λ∗) is an isomorphism from
D∗ to E∗. This concludes the proof. �
Corollary 3.2. If gλ∗ is an Einstein metric which is not the round metric on a sphere, then the family (gλ)λ is locally
rigid at λ∗.

Proof. By [10, Theorem 2.4], the positive eigenvalues of 	λ∗ are strictly larger than κλ∗ (i.e., gλ∗ is a strict local
minimum of the Hilbert–Einstein functional in its conformal class). The conclusion follows from Proposition 3.1. �

By a result of Böhm, Wang and Ziller, see [5, Theorem C, p. 687], any metric with unit volume and constant scalar
curvature which is C 2,α-close to an Einstein metric and which is not conformally equivalent to a round metric on the
sphere must be a Yamabe metric, i.e., it realizes the minimum of the scalar curvature in its conformal class. Thus, in
the situation of Corollary 3.2, gλ is Yamabe for λ near λ∗. More generally, gλ is a strict local minimum of the Hilbert–
Einstein functional in its conformal class for λ in every interval I ⊂ [a, b] containing λ∗ such that either κλ = 0
or κλ

m−1 is not an eigenvalue of 	λ for all λ ∈ I . For instance, consider the manifold S
n, n � 2, endowed with the

standard round metric g (say, with normalized volume equal to 1); then, the (normalized) product metric gλ = g ⊕ λg
on S

n × S
n is a strict local minimum of the Hilbert–Einstein functional in its conformal class when λ ∈ ]n−1

n
, n

n−1 [,
see Section 4.2.

3.2. Bifurcation of solutions for the Yamabe problem

An instant λ ∈ ]0,+∞[ for which κλ �= 0 and κλ

m−1 be an eigenvalue of 	λ will be called a degeneracy instant for
the family (gλ)λ. We will now establish some bifurcation results at the degeneracy instants of (gλ)λ.

Theorem 3.3. Let M be a compact manifold, with dim(M) = m � 3, and let [a, b] � λ �→ gλ ∈ S k(M), k � 3, is a
C 1-path of Riemannian metrics on M having constant scalar curvature. For all λ ∈ [a, b], denote by κλ the scalar
curvature of gλ, and by nλ the number of eigenvalues of the Laplace–Beltrami operator 	λ (counted with multiplicity)
that are less than κλ

m−1 . Assume the following:

(a) κa

m−1 is either equal to 0, or it is not an eigenvalue of 	ga ;
(b) κb

m−1 is either equal to 0, or it is not an eigenvalue of 	gb
;

(c) na �= nb.

Then, there exists a bifurcation instant λ∗ ∈ ]a, b[ for the family (gλ)λ.

Proof. The result is obtained applying the non-equivariant bifurcation theorem [20, Theorem 2.1, p. 67] to the fol-
lowing setup. We will use a natural fiber bundle extension of this theorem, whose precise statement is given in
Appendix A, Theorem A.2. Assume as in the proof of Proposition 3.1 that

∫
M

νgλ = 1 for all λ, see Remark 2.2.
Consider the fiber bundles D and E , given respectively in (4) and (5), and let F : D → E be the map given in (6);
the inverse image by F of the null section 0D of D contains the constant section 1E = {1} × [a, b], and the de-
sired result is precisely a fiberwise bifurcation result for this setup. Let H = L2(M) denote the Hilbertable space
of L2-functions on M with respect to any of the measures induced by the volume forms νgλ ; for all λ, let Hλ be
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the closed subspace of H consisting of functions ϕ such that
∫
M

ϕνgλ = 0, endowed with the complete inner prod-
uct 〈φ1, φ2〉λ = ∫

M
φ1φ2νgλ . Note that T1 Dλ is the Banach subspace of C 2,α(M) consisting of maps Φ such that∫

M
Φνgλ = 0. The inclusion Ck,α(M) ⊂ Ck−2,α(M) ⊂ L2(M) induce inclusions T1 Dλ ⊂ Eλ ⊂ Hλ for all λ. The

derivative dF(·, λ) at 1 is identified with the vertical derivative dverF(1, λ) given in (7), which is a linear operator
from T1 Dλ to Eλ which is symmetric with respect to 〈·,·〉λ. This is a Fredholm operator of index 0. Namely, recall that
second order self-adjoint elliptic operators acting on sections of Euclidean vector bundles over compact manifolds are
Fredholm maps of index zero from the space of Ck,α-sections to the space of Ck−2,α-sections, k � 2, see for instance
[24, § 1.4] and [25, Theorem 1.1]. The spaces T1 Dλ and Eλ are codimension 1 closed subspaces of Ck,α(M) and of
Ck−2,α(M) respectively, and dfF(1, λ) carries T1 Dλ into Eλ. This implies that the restriction of dfF(1, λ) to T1 Dλ,
with counterdomain Eλ, is Fredholm of index 0.

Since 	λ is a positive discrete operator, it follows that 	λ − κλ

m−1 has spectrum which consists of a sequence of
finite multiplicity eigenvalues, and only a finite number of them is negative. Note that T1 Dλ is a codimension 1 closed
subspace of Ck,α(M) that is orthogonal relatively to 〈·,·〉λ to the eigenspace of the first eigenvalue of 	λ − κλ

m−1 ,
which consists of constant functions. This implies that the restriction of 	λ − κλ

m−1 to T1 Dλ has the same eigenvalues
of 	λ − κλ

m−1 , except for the first one (given exactly by − κλ

m−1 ), each of them with the same eigenspace. In particular,
jumps of the dimension of the negative eigenspace of dfF(1, λ) occur precisely when jumps of the dimension of the
negative eigenspace of 	λ − κλ

m−1 occur.
In conclusion, assumptions (a) and (b) imply that dfF(1, λ) is an isomorphism at λ = a and at λ = b, respectively.

Assumption (c) implies that there is a jump in the dimension of the negative eigenspace of dfF(1, λ), as λ runs from
a to b. The discreteness of the spectrum implies the existence of an isolated instant λ∗ ∈ ]a, b[ where dfF(1, λ∗) is
singular, and where a jump of the dimension of the negative eigenspace of dfF(1, λ) occurs. Bifurcation must then
occur at λ∗, see Theorem A.2. �

One can give a more general bifurcation result using an equivariant setup. Assume in the above situation that there
exists a (finite dimensional) nice (in the sense of [20]7) Lie group G of diffeomorphisms of M that preserves all
the metrics gλ. This means that, denoting by Iλ the isometry group of (M,gλ), G is contained in the intersection⋂

λ∈[a,b] Iλ. It is easy to see that for every λ and every eigenvalue ρ of 	λ, one has a linear (anti-)representation8 of
πλ,ρ : G → GL(Vλ,ρ), where Vλ,ρ is the ρ-eigenspace of 	gλ . Such a representation is defined by:

πλ,ρ(φ)f = f ◦ φ,

for all φ ∈ G and all f ∈ Vλ,ρ . For all λ, let us denote by π−
λ the direct sum representation:

π−
λ =

⊕
ρ� κλ

m−1

πλ,ρ

of G on the vector space V −
λ given by the direct sum:

V −
λ =

⊕
ρ� κλ

m−1

Vλ,ρ.

Recall that two linear representations πi : G → GL(Vi), i = 1,2, of the group G on the vector space Vi are equivalent
if there exists an isomorphism T : V1 → V2 such that π2(g) ◦ T = T ◦ π1(g) for all g ∈ G.

We then have the following extension of Theorem 3.3:

Theorem 3.4. In the above situation, assume that:

• κa

m−1 is either equal to 0, or it is not an eigenvalue of 	ga ;

7 A group G is nice if, given unitary representations of G on the finite dimensional inner product spaces V and W , assuming that the quotient
spaces D(V )/S(V ) and D(W)/S(W) have the same equivariant homotopy type as G-spaces (D is the unit disk and S is the unit sphere), then the
two representations are equivalent. For instance, denoting by G0 the connected component of the identity of G, G is nice if either G/G0 = {1} or
if G/G0 is the product of a finite number of copies of Z2, or of a finite number of copies of Z3.

8 Note that the action of G on Mk(M) by pull-back is on the right.
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• κb

m−1 is either equal to 0, or it is not an eigenvalue of 	gb
;

• π−
a and π−

b are not equivalent.

Then, there exists a bifurcation instant λ∗ ∈ ]a, b[ for the family (gλ)λ.

Proof. This uses the equivariant bifurcation result of [20, Theorem 3.1], applied to the setup described in the proof
of Theorem A.2. See Theorem A.3 for the precise statement needed for our purposes. Note that the (right) action of
G on D is given by (ψ,λ) · φ = (ψ ◦ φ,λ), for all (ψ,λ) ∈ D and all φ ∈ G, similarly for the action of G on E , and
the function F is equivariant with respect to this action. Clearly, constant functions are fixed by this action, and the
remaining assumptions of Theorem A.3 are easily checked, as in the proof of Theorem 3.3. �
4. Bifurcation in product manifolds

Let (M0,g(0)), (M1,g(1)) be compact Riemannian manifolds with constant scalar curvature denoted by κ(0) and
κ(1) respectively. Let m0 (resp. m1) be the dimension of M0 (resp. M1), and assume m0 +m1 � 3. For all λ ∈ ]0,+∞[
denote by gλ = g(0) ⊕ λ · g(1) the metric on M = M0 × M1. Clearly, gλ has constant scalar curvature

κλ = κ(0) + 1

λ
κ(1). (8)

Observe that, as to degeneracy instants and bifurcation, the role played by the manifolds (M0,g(0)) and (M1,g(1))

is symmetric. Namely, degeneracy instants and bifurcation instants for the family (gλ)λ coincide respectively with
degeneracy instants and bifurcation instants for the family of metrics hλ = 1

λ
g(0) ⊕ g(1) on M = M0 × M1.

Set m = m0 + m1 = dim(M), and let Jλ be the Jacobi operator of the Hilbert–Einstein functional along gλ, given
by:

Jλ = 	λ − κλ

m − 1
,

defined on the space:{
Ψ ∈ C 2,α(M):

∫
M

Ψ νgλ = 0

}

and taking values in the space:{
Φ ∈ C 0,α(M):

∫
M

Φνgλ = 0

}
;

let Σ(Jλ) be its spectrum. This spectrum coincides with the spectrum of 	λ − κλ

m−1 as an operator from C 2,α(M) to
C 0,α(M), with the point − κλ

m−1 removed.

Denote by 0 = ρ
(i)
1 < ρ

(i)
2 < ρ

(i)
3 < · · · the sequence of eigenvalues of 	g(i) , i = 0,1, and denote by μ

(i)
j the

multiplicity of ρ
(i)
j ; Then:

Σ(Jλ) = {
σi,j (λ): i, j � 0, i + j > 0

}
,

where:

σi,j (λ) = ρ
(0)
i + 1

λ
ρ

(1)
j − 1

m − 1

(
κ(0) + 1

λ
κ(1)

)
. (9)

The multiplicity of σi,j (λ) in Σ(Jλ) is equal to the product μ
(0)
i μ

(1)
j , note however that the σi,j ’s need not be all

distinct. Our interest is to determine the distribution of zeros of the functions λ �→ σi,j (λ) as i and j vary; such zeros
correspond to degeneracy instants of the Jacobi operator Jλ. Towards this goal, we make a preliminary observation.

Remark 4.1. Each function σi,j which is not identically zero has at most one zero in ]0,+∞[. Moreover, for any
fixed i and λ̄ ∈ ]0,+∞[, there is at most one j for which σi,j (λ̄) = 0. This depends on the fact that the sequence
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j �→ ρ
(1)
j is strictly increasing. Similarly, for each j and λ̄ ∈ ]0,+∞[, there is at most one value of i for which

σi,j (λ̄) = 0.

Let i∗ and j∗ be the smallest nonnegative integers with the property that:

ρ
(0)
i∗ � κ(0)

m − 1
, ρ

(1)
j∗ � κ(1)

m − 1
. (10)

Let us say that the pair of metrics (g(0),g(1)) is degenerate if equalities hold in both inequalities of (10). In this
situation, the Jacobi operator Jλ is degenerate for all λ > 0, namely, σi∗,j∗(λ) = 0 for all λ.

Remark 4.2. Clearly, if either κ(0) < 0 or κ(1) < 0, then (g(0),g(1)) is not degenerate. We observe also that if either one
of the two metrics g(0) or g(1) is Einstein with positive scalar curvature, then the pair (g(0),g(1)) is never degenerate.
Namely, if say g(0) is Einstein and κ(0) > 0, then κ(0) = m0Ricg(0) ; using Lichnerowicz–Obata theorem (see for
instance [3, Ch. 3, §D], or [14]) one gets:

ρ
(0)
1 � m0

m0 − 1
Ricg(0) = κ(0)

m0 − 1
>

κ(0)

m − 1
.

This says that i∗ = 1, and that equality does not hold in the first inequality of (10). We note however that when the
metrics g(0) and g(1) are not Einstein, then the integers i∗ and j∗ defined above can be arbitrarily large. For instance,
given any manifold (M̄, ḡ) with positive scalar curvature κ̄ , then the product Riemannian manifold M0 = M̄ × S

1(r),
where S

1(r) is the circle of radius r > 0, has constant scalar curvature larger than κ̄ , and every eigenvalue of its
Laplace–Beltrami operator goes to 0 as r → +∞. This implies that i∗ becomes arbitrarily large as r → +∞.

Except for case of degenerate pairs, the operator Jλ is singular only at a discrete countable set of instants λ in
]0,+∞[. We consider separately the (most interesting) case that both scalar curvatures κ(0) and κ(1) are positive.

4.1. The case of positive scalar curvatures

Lemma 4.3. Assume (g(0),g(1)) nondegenerate, and that κ(0), κ(1) > 0. The functions σi,j (λ) satisfy the following
properties.

(a) For all i, j � 0, the map λ �→ σi,j (λ) is strictly monotone in ]0,+∞[, except possibly the maps σi,j∗ , that are

constant equal to ρ
(0)
i − κ(0)

m−1 when ρ
(1)
j∗ = κ(1)

m−1 .
(b) For i �= i∗ and j �= j∗, the map σi,j (λ) admits a zero if and only if :

– either j < j∗ and i > i∗, in which case σi,j is strictly increasing,
– or if j > j∗ and i < i∗, in which case σi,j is strictly decreasing.

(c) If ρ
(0)
i∗ = κ(0)

m−1 , then σi∗,j does not have zeros for any j . If ρ
(0)
i∗ > κ(0)

m−1 , then σi∗,j has a zero if and only if j < j∗.

(d) If ρ
(1)
j∗ = κ(1)

m−1 , then σi,j∗ does not have zeros for any i. If ρ
(1)
j∗ > κ(1)

m−1 , then σi,j∗ has a zero if and only if i < i∗.

Proof. The entire statement follows readily from a straightforward analysis of (9), writing σi,j (λ) = Ai + 1
λ
Bj , with

Ai = ρ
(0)
i − κ(0)

m−1 , and Bj = ρ
(1)
j − κ(1)

m−1 . �
Corollary 4.4. If (g(0),g(1)) is nondegenerate, then the set of instants λ in the open half line ]0,+∞[ at which the
Jacobi operator is singular is countable and discrete; it consists of a strictly increasing unbounded sequence and a
strictly decreasing sequence tending to 0. For all other values of λ, Jλ is an isomorphism, and in particular, the family
(gλ)λ is locally rigid at these instants.

Proof. By Lemma 4.3, each function σi,j has at most one zero, thus there is only a countable numbers of degeneracy
instants for Jλ. For j > j∗ and i < i∗, the zero λi,j of σi,j satisfies:

λi,j =
∣∣∣∣Bj

∣∣∣∣ � Bj ·
[

κ(0)

− ρ
(0)
i∗−1

]−1

−→ +∞, as j → +∞.

Ai m − 1
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Similarly, for i > i∗ and j < j∗, the zero λi,j of σi,j satisfies:

0 < λi,j =
∣∣∣∣Bj

Ai

∣∣∣∣ � A−1
i · κ(1)

m − 1
−→ 0, as i → +∞.

The conclusion follows. �
Theorem 4.5. Let (M0,g(0)) and (M1,g(1)) be compact Riemannian manifolds with positive constant scalar curva-
ture; assume that the pair (g(0),g(1)) is nondegenerate. For λ ∈ ]0,+∞[, let gλ denote the metric g(0) ⊕ λg(1) on the
product M0 × M1. Then, there exists a sequence (λ

(1)
n )n tending to 0 as n → ∞ and a sequence (λ

(2)
n )n tending to

+∞ as n → ∞ consisting of bifurcation instants for the family (gλ)λ.

Proof. By Corollary 4.4, there are two sequences of instants λ at which the Jacobi operator Jλ is singular; these
instants are our candidates to be bifurcation instants. In principle one cannot guarantee that at each of these instants
there is a jump in the dimension of the negative eigenspace of Jλ; namely, the eigenvalues σi,j (λ) described in
Lemma 4.3 can be either increasing or decreasing. Nevertheless, the zeroes of those eigenvalues that are increasing
functions accumulate (only) at zero, while the zeroes of those eigenvalues that are decreasing functions accumulate
(only) at +∞. This implies that at all but a finite number of degeneracy instants there is jump of dimension in the
negative eigenspace of Jλ. The conclusion follows then from Theorem 3.3. �

Note that the case of degenerate pairs cannot be treated with Theorem 3.3, because Jλ is degenerate for all λ, and
thus assumptions (a) and (b) are never satisfied in this case.

Theorem 4.5 leaves an open question on whether there may be some degeneracy instants for the Jacobi operator Jλ

at which bifurcation does not occur. In principle, this situation might occur at those instants λ at which two or more
eigenvalue functions σi,j vanish, compensating the positive and the negative contributions to the dimension of the
negative eigenspace. Let us call neutral a degeneracy instant of this type. It is quite intuitive that existence of neutral
degeneracy instants should not occur generically, although a formal proof of this fact might be quite awkward.

There is an interesting case in which one can establish bifurcation also at neutral degeneracy instants, using the
equivariant result of Theorem 3.4. This case is studied in the sequel. Let us give the following definition:

Definition 4.6. Two representations πi , i = 1,2 of a group G are said to be essentially equivalent if one of the two
is equivalent to the direct sum of the other with a number of copies of the trivial representation of G. Let G be a
group acting by isometries on a Riemannian manifold (N,h). The action will be called harmonically free if, given an
arbitrary family V1, . . . , Vr ,V

′
1, . . . , V

′
s of pairwise distinct eigenspaces of the Laplacian 	h, then the corresponding

representations of G on the direct sums V = ⊕r
i=1 Vi and V ′ = ⊕s

j=1 V ′
j are not essentially equivalent.

For instance, the natural action of the orthogonal group O(n) on the round sphere S
n+1 is harmonically free.

Namely, the representation of O(n) on each eigenspace of the Laplacian of S
n+1 is irreducible. Moreover, the dimen-

sion of the eigenspaces of the Laplacian of S
n+1 form a strictly increasing sequence, from which it follows that the

representations of O(n) on the eigenspaces of the Laplacian of S
n+1 are pairwise non-equivalent. This in particular

implies that direct sum of any two distinct families of eigenspaces of the Laplacian are never essentially equivalent.

Example 4.1. More generally, the action of the isometry group of a compact manifold is harmonically free when
the eigenspaces of the Laplacian are irreducible and pairwise non-equivalent. An important class of examples of this
situation (see [3, Ch. III, §C]) is given by the compact symmetric spaces of rank one, which consists of the following
homogeneous spaces G/H with a G-invariant metric:

• the real projective spaces RP k , with G = O(k + 1) and H = O(k) × {−1,1};
• the complex projective spaces CP k , with G = U(k + 1) and H = U(k) × U(1);
• the quaternionic projective spaces HP k , with G = Sp(k + 1) and H = Sp(k) × Sp(1);
• the Cayley plane P

2(Ca), with G = F4 and H = Spin(9).
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In these examples, the eigenspaces of the Laplacian are irreducible by the natural action of G, see [3, Proposi-
tion C.I.8], and the dimension of these eigenspaces form a strictly increasing sequence. In particular, they are pairwise
non-equivalent. Observe also that all these examples have constant scalar curvature, by homogeneity. In fact, all these
examples are two point homogeneous, which implies that they are Einstein.

Proposition 4.7. Under the hypothesis of Theorem 4.5, assume in addition that there exists a nice Lie group G with
an isometric and harmonically free action on either (M0,g(0)) or on (M1,g(1)). Then, every degeneracy instant for
the Jacobi operator Jλ is a bifurcation instant for the family (gλ)λ.

Proof. We can assume that G acts on (M0,g(0)). For all λ ∈ ]0,+∞[, one obtains a non-trivial isometric action of G

on (M,gλ) by setting g · (x0, x1) = (g · x0, x1), g ∈ G, x0 ∈ M0 and x1 ∈ M1. Let λ̄ be a neutral degeneracy instants
for the family gλ, and let σi,j be one of the eigenvalue functions that vanish at λ̄. For all λ, the eigenspace of σi,j (λ)

is the direct sum of the i-th eigenspace Vi of 	g(0) and the j -th eigenspaces Wj of 	g(1) . There is a representation
of G on this direct sum, given by the direct sum of the natural representation of G on the eigenspace Vi of 	g(0) and
the trivial representation of G on Wj . As λ increases and crosses λ̄, the space Vi ⊕ Wj is added or removed from the
negative eigenspace of Jλ, according to whether σi,j is decreasing or increasing.

Denote by H0 the direct sum of eigenspaces of those eigenvalues σi,j that are negative on the interval [λ̄−ε, λ̄+ε].
Then, for ε > 0 small enough, the negative eigenspace of Jλ̄−ε is a direct sum of the form:

H0 ⊕
r⊕

k=1

Vik ⊕ Wjk
,

and the negative eigenspace of Jλ̄+ε is the direct sum

H0 ⊕
r+s⊕

l=r+1

Vil ⊕ Wjl
,

where the family Vi1, . . . , Vir , Vir+1, . . . , Vis consists of pairwise distinct eigenspaces of 	g(0) . This follows from
the fact that if (i, j) �= (i′, j ′) and σi,j (λ̄) = σi′,j ′(λ̄) = 0, then necessarily i �= i′ and j �= j ′, see Remark 4.1. The
representation π−

λ̄−ε
is the direct sum of the representations of G on H0, on V = ⊕r

k=1 Vik , plus a number of copies

of the trivial representation of G, while he representation π−
λ̄+ε

is the direct sum of the representations of G on H0, on

V ′ = ⊕r+s
l=r+1 Vil plus a number of copies of the trivial representation of G. Hence, π−

λ̄−ε
and π−

λ̄+ε
are not equivalent,

because the action of G on (M0,g(0)) is harmonically free. The result follows then from Theorem 3.4. �
Corollary 4.8. Let (M1,g(1)) be a compact symmetric space of rank 1. Given any compact Riemannian manifold
(M0,g(0)) with positive constant scalar curvature, then the family gλ = g(0) ⊕ λg(1) on M0 × M1 has a countable
number of degeneracy instants that accumulate at 0 and at +∞. There is bifurcation at every degeneracy instant.

Proof. Set m0 = dim(M0) � 2, write M1 = G/H , and consider the isometric action of G by left multiplication. Since
compact symmetric spaces of rank 1 are Einstein and have positive scalar curvature, then the pair (g(0),g(1)) is nonde-
generate, see Remark 4.2. Finally, observe that all the groups G, except for G = O(k +1), that appear in Example 4.1,
are connected, hence they are nice. Also the orthogonal group O(k + 1) is nice, as O(k + 1)/SO(k + 1) ∼= Z2. The
result now follows from Corollary 4.4 and Proposition 4.7, keeping in mind that the action of G on M is harmonically
free, see Example 4.1. �
4.2. Product of spheres

Consider the case when M is the product of two spheres S
n × S

n of same dimension n, endowed with the metric
gλ = g ⊕ λg, where g is the standard round metric on S

n. Since gλ and g 1
λ

belong to the same conformal class, it
suffices to consider the case λ ∈ ]0,1].
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The j -th eigenvalue of 	g is ρj = j (j + n − 1), which gives

σi,j (λ) = 1

λ

[
j (j + n − 1) − n(n − 1)

2n − 1

]
+ i(i + n − 1) − n(n − 1)

2n − 1
;

by Corollary 4.8, every zero of σij is a bifurcation instant. One computes easily that σi,j has a zero in the interval
]0,1] only if j = 0; the zero of σi,0 in ]0,1] is given by:

λi(n) = n(n − 1)

i(i + n − 1)(2n − 1) − n(n − 1)
, i > 0;

this forms a strictly decreasing sequence tending to 0 as i → +∞, and its maximum is λ1(n) = n−1
n

. By Proposi-
tion 3.1, the family gλ is locally rigid in the interval ]n−1

n
, n

n−1 [.
Since for λ = 1 the metric gλ on S

n × S
n is Einstein, we know that g1 is the unique metric in its conformal class

with given volume and constant scalar curvature. It is an interesting open question if the same is true for the metric gλ,
for λ ∈ ]n−1

n
, n

n−1 [. Our local rigidity result gives a partial answer to this question, in that it excludes the existence of

other constant scalar curvature metrics with given volume near gλ for λ ∈ ]n−1
n

, n
n−1 [. This result can be improved as

follows:

Proposition 4.9. Consider the product manifold M = S
n × S

n endowed with the metric gλ = g ⊕ λ · g, where g is the
round metric on S

n. Consider the set:

A =
{
λ ∈

]
n − 1

n
,

n

n − 1

[
: the conformal class of gλ contains only one metric

with constant scalar curvature and volume vλ

}
; (11)

Then, A is an open subset of ]n−1
n

, n
n−1 [ containing 1.

If λ̄ is an accumulation point of A, then every constant curvature metric in the conformal class of gλ̄ which is not
homothetic to gλ̄ is degenerate.9

Proof. Clearly 1 ∈ A, as we observed above. By taking homotheties, we can assume that the volume of each gλ is
equal to 1. Assume λ∗ ∈ A and, by absurd, that there exists a sequence λk ∈ ]n−1

n
, n

n−1 [ \ A with limk→∞ λk = λ∗.
Let gk be a constant scalar curvature metric in the conformal class of gλk

and of volume 1 which is different from gλk
.

By the local rigidity around λ∗, for k large gλk
cannot enter in some neighborhood of gλ∗ . The set of unit volume

constant scalar curvature metrics on S
n × S

n that belong to the conformal class of some gλ, with λ ∈ [n−1
n

, n
n−1 ] is

compact in the C 2-topology; this follows easily from [8,12,13], see Proposition 4.10 below. Hence, the sequence gk

must have a subsequence converging in the C 2-topology to a metric g∞ which belongs to the conformal class of gλ∗ .
By continuity, vol(M,g∞) = 1 and g∞ has constant scalar curvature. This gives a contradiction, because it must be
g∞ �= gλ∗ , but λ∗ ∈ A. This shows that A is open.

Let λ̄ be an accumulation point of A that does not belong to A, and let ḡ �= gλ̄ be a constant scalar curvature
metric in the conformal class of gλ̄ having volume equal to vλ̄. If gλ̄ were nondegenerate, then by the implicit function
theorem (see Proposition 3.1) one could construct a differentiable path of constant scalar curvature metrics λ �→ hλ,
λ ∈ ]λ̄ − ε, λ̄ + ε[, with hλ̄ = ḡ, with hλ �= gλ in the conformal class of gλ and of volume equal to vλ for all λ. This
contradicts the fact that for λ ∈ A near λ̄, gλ is the unique such a metric in its conformal class. �

We have used a compactness result for solutions of the Yamabe problem:

Proposition 4.10. Let M be a compact manifold and let K be a set of smooth Riemannian metrics on M which is
compact in the Ck,α-topology with k sufficiently large,10 and such that one of the following assumptions is satisfied:

9 I.e., a degenerate critical point of the Hilbert–Einstein functional A in M2,α
1 (M,gλ̄), see item (f) in Proposition 2.1.

10 Sufficiently large depending only on dim(M), see [8, Lemma 10.1, p. 172] for details.
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(a) dim(M) � 7;
(b) for all g ∈ K, then the Weyl tensor Wg of g satisfies∣∣Wg(p)

∣∣ + ∣∣∇Wg(p)
∣∣ > 0

at every point p ∈ M ;
(c) dim(M) � 24 and M is spin.

Then, the set of unit volume constant scalar curvature metrics that belong to the conformal class of some g ∈ K is
compact in the C 2-topology. In particular, the conclusion holds for the family of metrics Kn = {gλ: λ ∈ [n−1

n
, n

n−1 ]} in
the product M = S

n × S
n.

Proof. The result follows from the arguments in [8,12,13], see in particular [8, Lemma 10.1]. For the second state-
ment, observe that the manifolds (Sn×S

n,gλ) satisfy assumption (b). Namely, the Weyl tensor of gλ is never vanishing
in S

n × S
n, since this is a homogeneous metric which is not locally conformally flat for every λ. The given set Kn is

compact in the Ck,α-topology for all k. �
In fact, the result of Proposition 4.9 extends immediately to the case of products of arbitrary Einstein manifolds of

positive scalar curvature. We need an elementary result first:

Lemma 4.11. Let W(0), W(1) and W be the Weyl tensors of (M0,g(0)), (M1,g(1)) and (M0 × M1,g(0) ⊕ g(1)) respec-
tively. Assume that M0 is Einstein at p and M1 is Einstein at q . Then W vanishes at a point (p, q) ∈ M0 × M1 if and
only if the following hold:

(a) W(0)(p) = 0, W(1)(q) = 0,
(b) m1(m1 −1)κ(0) +m0(m0 −1)κ(1) = 0, where mj = dim(Mj ) � 2 and κ(j) is the scalar curvature of Mj , j = 0,1.

In particular, if both κ(0) and κ(1) are positive, then (b) is not satisfied and therefore W(p,q) �= 0.

Proof. A direct elementary computation using the standard decomposition of a curvature tensor into its irreducible
components, see for instance [4]. �

A more general result that characterizes conformally flat product manifolds can be found in [23, Theorem 4].

Proposition 4.12. Let (M
m0
0 ,g(0)) and (M

m1
1 ,g(1)) be compact Einstein manifolds of positive scalar curvature κ(0)

and κ(1) respectively. Denote by gλ, λ ∈ ]0,+∞[, the metric g(0) ⊕ λg(1) on the product manifold M = M0 × M1.

Then, there exists an open subset A of ]0,+∞[ containing λ∗ = m0κ
(1)

m1κ
(0) such that for all λ ∈ A, gλ is the unique

constant scalar curvature metric in its conformal class, up to homotheties.
If λ̄ is an accumulation point of A, then every constant curvature metric in the conformal class of gλ̄ which is not

homothetic to gλ̄ is degenerate.

Proof. The proof of Proposition 4.9 can be repeated verbatim here, observing that the value λ∗ = m0 κ(1)

m1 κ(0) corresponds
to the unique Einstein metric of the family gλ. As to the compactness, note that assumption (b) of Proposition 4.10 is
always satisfied in products of Einstein manifolds with positive scalar curvature, by Lemma 4.11. �
4.3. The case of non-positive scalar curvature

Let us now study the bifurcation problem for the family gλ of metrics on the product M0 ×M1 under the assumption
that either κ(0) or κ(1) are non-positive. First, we observe that if both κ(0) and κ(1) are non-positive, then the pair
(g(0),g(1)) is nondegenerate. If κ(0) � 0 and κ(1) > 0, then the pair (g(0),g(1)) is degenerate if and only if κ(0) = 0

and ρ
(1) = κ(1)

.
j∗ m−1
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Theorem 4.13. If κ(0) � 0 and κ(1) � 0, then the family gλ has no degeneracy instants, and thus it is locally rigid at
every λ ∈ ]0,+∞[.

If κ(0) � 0, κ(1) > 0 and the pair (g(0),g(1)) is nondegenerate, then the set of degeneracy instants for the Jacobi
operator Jλ is a strictly decreasing sequence λn that converges to 0 as n → ∞. Moreover, every degeneracy instant
is a bifurcation instant for the family (gλ)λ.

Symmetrically, if κ(0) > 0, κ(1) � 0 and the pair (g(0),g(1)) is nondegenerate, then the set of degeneracy instants for
the Jacobi operator Jλ is a strictly increasing unbounded sequence λn, and every degeneracy instant is a bifurcation
instant for the family (gλ)λ.

Proof. Follows from an elementary analysis of the zeroes of the functions σi,j (λ) given in (9). In the first case
σi,j (λ) > 0 for all i, j = 0,1, . . . , i + j �= 0. In the second (resp. in the third) one, the function σi,j (λ) admits a zero
for all i � 0, and for j ∈ {0,1, . . . , j∗ −1} (resp., for all j � 0, and for i ∈ {0,1, . . . , i∗ −1}) . Then we have a sequence
of instants (λn)n, that converges to 0 (resp. to +∞) as n → ∞ (see the proof of Corollary 4.4), at each of which there
is a jump in the dimension of the negative eigenspace of Jλ. The conclusion follows from Theorem 3.3. �
4.4. A multiplicity result in conformal classes of the bifurcating branches

Let us consider the case of constant scalar curvature manifolds (M0,g(0)) and (M1,g(1)), with κ(1) > 0, and con-
sider the product manifold M = M0 × M1 endowed with the family of metrics gλ = g(0) ⊕ λg(1). Let us recall the
following terminology. A unit volume metric g on M is a Yamabe metric if it has constant scalar curvature, and it
realizes the minimum of all the scalar curvature among the unit volume constant scalar curvature in its conformal
class. Let Y (M) denote the Yamabe invariant of M ; recall that this is the supremum of the scalar curvature of all
Yamabe metrics of M . It is well known that Y (M) � Y (Sm).

Proposition 4.14. Let λn be the decreasing sequence of bifurcation instants for the family gλ, with limn→∞ λn = 0.
Then, for n sufficiently large, the conformal class of each metric in the branch bifurcating from gλn contains at least
three distinct unit volume constant scalar curvature metrics.

Proof. Since κ(1) > 0, one has limλ→0+ κλ = +∞, see (8). Thus, for λ > 0 sufficiently small, κλ > Y (Sm) � Y (M),
which implies that for λ small enough, gλ is not a Yamabe metric. Thus, for n large, gλn is not a Yamabe metric, and
by continuity also nearby metrics are not Yamabe. Hence, each conformal class of the bifurcating branch issuing from
gλn contains a constant scalar curvature of the family, another distinct constant scalar curvature near by, and a Yamabe
metric. �
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Appendix A. Fiberwise implicit function theorem and bifurcation

In this appendix we give a formal statement of an implicit function theorem and two bifurcation results for functions
defined on the total space of a fiber bundle. Their proof is obtained readily from standard results, and they will be
omitted.

A.1. Implicit function theorem

Given fiber bundles πi : Ei → Bi , i = 1,2, and a C 1-morphism of fiber bundles M : E1 → E2, the vertical deriva-
tive of M at e ∈ E1 is the linear map

dverM(e) : Te F (e) → TM(e)F
(
M(e)

)
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given by the differential of the restriction M|F (e) : F (e) → F (M(e)), where F (e) = π−1
1 (π1(e)) ⊂ E1 is the fiber of

E1 through the point e, and F (M(e)) = π−1
2 (π2(M(e))) ⊂ E2 is the fiber of E2 through M(e).

We have used in the proof of Proposition 3.1 a sort of fiber bundle implicit function theorem, whose statement is as
follows:

Proposition A.1. Let πi : Ei → B , i = 1,2, be fiber bundles, let M : E1 → E2 be a fiber bundle morphism of class Ck ,
k � 1, let s : U ⊂ B → E2 be a local section of E2 of class Ck , with U open subset of B containing x0, s(x0) = e2,
and let e1 ∈ M−1(e2). Assume that the vertical derivative dverM(e1) is an isomorphism. Then, there exists an open
neighborhood V of e1 in E1, with U ′ = π1(V ) ⊂ U , and a Ck-section s̃ : U ′ → E1 with s̃(x0) = e1, such that e ∈
V ∩ M−1(s(U)) if and only if e ∈ s̃(U ′). �
A.2. Fiberwise bifurcation

We propose a slightly more general statement of a celebrated bifurcation result by Smoller and Wasserman, see
[20]. Recall that the basic setup of [20] consists of a path λ �→ Mλ of gradient operators from a fixed Banach space
B2 to another fixed Banach space B0, with B2 ⊂ B0, and a path λ → uλ ∈ B2 satisfying Mλ(uλ) = 0 for all λ. The
main results in [20] give sufficient conditions for the existence of bifurcation branch of solutions of the equation
F(u,λ) = Mλ(u) = 0 issuing from some point of the path uλ, both in the general and in the equivariant case. These
results are used in the present paper in a slightly different context, in that our setup consists of a gradient operators Fλ

defined on a smoothly varying Banach submanifold Dλ of a fixed Banach space, and taking values also in a smoothly
varying family Eλ of closed subspaces of a Banach space. An extension of the results in [20] to this situation is quite
straightforward, using local charts and projections, nevertheless it may be interesting to provide a precise statement
of the result which is employed in the present paper.

Let us give a few definitions. Given a Banach space B , a family [a, b] � λ �→ Bλ of Banach submanifolds of B

is said to be a C 1-family of submanifolds of B if the set B = {(x,λ) ∈ B × [a, b]: x ∈ Bλ} has the structure of a
C 1-sub-bundle of the trivial bundle B × [a, b] over [a, b]. For instance, given a C 1-function f : B × [a, b] → R such
that ∂f

∂x
�= 0 at all points in f −1(0), then the family Bλ = {(x,λ): f (x,λ) = 0} is a C 1-family of submanifolds of B .

Similarly, by a C 1-family of closed subspaces of the Banach space B we mean a family [a, b] � λ �→ Sλ of Banach
subspaces of B such that the set S = {(x,λ): λ ∈ [a, b], x ∈ Sλ} is a sub-bundle of the trivial Banach space bundle
B × [a, b] over [a, b]. If λ �→ xλ ∈ B is a C 1-path, B = ⋃

λ(Bλ × {λ}) is a C 1-family of submanifolds of B , with
xλ ∈ Bλ for all λ, then the path λ �→ TxλSλ is a C 1-family of closed subspaces of B .

Theorem A.2. Let B0,B2 be Banach spaces, H a Hilbertable space. Let [a, b] � λ �→ Dλ ⊂ B2 be a C 1-family of
submanifolds of B2, and let [a, b] � λ �→ Eλ ⊂ B0 and [a, b] � λ �→ Hλ ⊂ H be C 1-families of closed subspaces of B0
and of H respectively. Let F : D → E be a C 1 bundle morphism, and assume that the following are satisfied:

(a) λ �→ eλ ∈ Eλ is a C 1-section of the bundle E ;
(b) λ �→ dλ ∈ Dλ is a C 1-section of the bundle D, with

F(dλ,λ) = (eλ, λ)

for all λ;
(c) it is given a C 1-family of complete inner products λ �→ 〈·,·〉λ in Hλ;
(d) there are continuous inclusions B2 ⊂ B0 ⊂ H that induce inclusions Tdλ Dλ ⊂ Eλ ⊂ Hλ for all λ;
(e) for all λ, the map Fλ = F(·, λ) : Dλ → Eλ is a gradient operator at dλ, i.e., the differential dF(·, λ) : Tdλ Dλ → Eλ

is symmetric relatively to the inner product 〈·,·〉λ;
(f) dF(·, λ) : Tdλ Dλ → Eλ is Fredholm of index 0 for all λ;
(g) for all λ, there exists an 〈·,·〉λ-orthonormal basis eλ

1 , eλ
2 , . . . of Hλ consisting of eigenvectors of dF(·, λ);

(h) the corresponding eigenvectors have finite multiplicities, and for all λ the number nλ of eigenvalues (counted with
multiplicities) of dF(·, λ) that are negative is finite;

(i) there exists λ∗ ∈ ]a, b[ such that, for ε > 0 sufficiently small:
– dF(·, λ∗ − ε) and dF(·, λ∗ + ε) are non-singular;
– nλ∗−ε �= nλ∗+ε .
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Then, λ∗ is a bifurcation instant for the equation

F(·, λ) = (eλ, λ),

i.e., there exists a sequence dn ∈ B2, and a sequence λn in [a, b], with dn ∈ Dλn for all n, limn→∞ λn = λ∗,
limn→∞ dn = dλ∗ , dn �= dλn for all n, and such that

F(dn,λn) = (eλn, λn)

for all n.

Proof. Sufficiently small neighborhoods of (dλ∗ , λ∗) in D and of (eλ∗ , λ∗) in E are identified respectively with open
subsets of products Tdλ∗ Dλ∗ × [λ∗ − ε,λ∗ + ε] and Eλ∗ × [λ∗ − ε,λ∗ + ε]. Using these identifications, the bundle
morphism F is given by a C 1-path of gradient operators Fλ between open subsets of the Banach spaces Tdλ∗ Dλ∗
and Eλ∗ . The result is then obtained as a straightforward application of [20, Theorem 2.1]. �

In the situation described by items (a)–(h) in Theorem A.2, assume that G is a connected (or more generally, a nice
in the sense of [20]) Lie group, and that B0, B2 and H are G-spaces. Assume that Dλ, Eλ and Hλ are G-invariant for
all λ, and that F is G-equivariant, i.e.:

F(g · d,λ) = g · F(d,λ)

for all (d,λ) ∈ D and all g ∈ G. Assume further that g · dλ = dλ and g · eλ = eλ for all g ∈ G and all λ. It is easy
to see that every eigenspace of dF(·, λ) is G-invariant for all λ. Denote by π−

λ the representation of G on the finite
dimensional space given by the direct sum of all eigenspaces of dF(·, λ) corresponding to negative eigenvalues.

Theorem A.3. Let λ∗ ∈ ]a, b[ be such that, for ε > 0 sufficiently small:

• dF(·, λ∗ − ε) and dF(·, λ∗ + ε) are non-singular;
• π−

λ∗−ε and π−
λ∗+ε are not equivalent.

Then, λ∗ is a bifurcation instant for the equation F(·, λ) = (eλ, λ).

Proof. The result is an application of [20, Theorem 3.1], using a local product structure of D and E around the points
(dλ∗ , λ∗) and (eλ∗ , λ∗). �
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