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Abstract

In this paper we prove the existence of infinitely many sign-changing solutions for the system of m Schrödinger equations with
competition interactions

−�ui + aiu
3
i + βui

∑
j �=i

u2
j = λi,βui , ui ∈ H 1

0 (Ω), i = 1, . . . ,m

where Ω is a bounded domain, β > 0 and ai � 0 ∀i. Moreover, for ai = 0, we show a relation between critical energies associated
with this system and the optimal partition problem

inf
ωi⊂Ω open

ωi∩ωj =∅ ∀i �=j

m∑
i=1

λki
(ωi),

where λki
(ω) denotes the ki -th eigenvalue of −� in H 1

0 (ω). In the case ki � 2 we show that the optimal partition problem appears
as a limiting critical value, as the competition parameter β diverges to +∞.

Résumé

Dans cet article nous montrons l’existence d’une infinité de solutions qui changent de signe pour le système d’équations de
Schrödinger avec des interactions compétitives

−�ui + aiu
3
i + βui

∑
j �=i

u2
j = λi,βui , ui ∈ H 1

0 (Ω), i = 1, . . . ,m

où Ω est un domaine borné, β > 0 et ai � 0 ∀i. De plus, quand ai = 0, nous démontrons une relation entre les énergies critiques
associées à ce système et le problème de partition optimale

inf
ωi⊂Ω open

ωi∩ωj =∅ ∀i �=j

m∑
i=1

λki
(ωi),
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où λki
(ω) indiques la ki -ème valeur propre de l’opérateur −� in H 1

0 (ω). Dans le cas ki � 2, nous montrons que le problème de
partition optimale apparaît comme une valeur limite critique, en tant que paramètre de compétition β diverge vers +∞.
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1. Introduction

Let Ω be a bounded regular domain in R
N , N � 2, and let m ∈ N. In this paper we are concerned with the study

of the following system of Schrödinger equations with competitive interactions⎧⎨
⎩

−�ui + aiu
3
i + βui

∑
j �=i

u2
j = λi,βui,

ui ∈ H 1
0 (Ω), i = 1, . . . ,m,

(1)

where β > 0, ai � 0 and λi,β are real parameters.
The first purpose of this paper is to prove the following result.

Theorem 1.1. For each β > 0 and a1, . . . , am � 0, there exist infinitely many sign-changing solutions of (1).

In this context, a vector solution u = (u1, . . . , um) ∈ H 1
0 (Ω;R

m) is said to be sign-changing if u+
i , u−

i �≡ 0 for
every i. We stress that, for each β > 0, λi,β is not fixed a priori; instead, by the statement “u is a solution of (1)” we
mean that there exists (u,λ) such that (1) holds. Assuming enough regularity on the solution, clearly λi,β will depend
on u through the relation

λi,β =
∫
Ω

(|∇ui |2 + aiu
4
i + βu2

i

∑
j �=i u

2
j ) dx∫

Ω
u2

i dx
.

System (1) arises in the study of many physical phenomena, such as the study of standing waves in a mixture
of Bose–Einstein condensates in m different hyperfine states. The parameters ai (called the intraspecies scattering
length) represent the self-interactions of each state; when ai > 0 this is called the defocusing case, in opposition to
the focusing one, when ai < 0. As for the parameter β (the interspecies scattering length), it represents the interaction
between unlike particles. Since we assume β > 0, the interaction is of repulsive type.

In the last few years, several mathematical questions have been studied around system (1). When it comes to
existence results in bounded domains, all results presented in the literature concern the case of m = 2 equations and
N � 3. The authors, in collaboration with Noris and Verzini [18], have shown the existence of positive solutions in
the defocusing case a1 = a2 = a > 0. In the focusing case a1 = a2 = a < 0, for λ1,β ≡ λ2,β ≡ λ < 0 (fixed a priori),
Dancer, Wei and Weth [11] have shown the existence of infinitely many positive solutions of (1), while for λ > 0 the
same result was proved by Noris and Ramos [17]. In all these works the fact that the system is invariant under the
transformation (u1, u2) �→ (u2, u1) plays a crucial role. We would also like to mention, always in the focusing case,
the works by Bartsch, Dancer and Wang [1] for local and global bifurcation results in terms of the parameter β , and the
results of Domingos and Ramos [12] concerning the existence of positive solutions for some λ1,β ≡ λ1 �= λ2 ≡ λ2,β .
Our existence result of sign-changing solutions for systems of type (1) is, up to our knowledge, new.

Another interesting feature of system (1) is the asymptotic study of its solutions as β → +∞. Although everything
of what we are about to say holds true in a more general framework, let us focus our attention at this point to the case
where ai = 0 ∀i in (1), that is:⎧⎨

⎩
−�ui + βui

∑
j �=i

u2
j = λi,βui,

ui ∈ H 1
0 (Ω), i = 1, . . . ,m.

(2)

As mentioned before, β > 0 is of repulsive type, and it has been shown (see for example [5,7,19,21], among others)
that in several situations it occurs what is called phase separation, which means that the limiting profiles (as β → +∞)
have disjoint supports. In particular in [19] it is proved that if {uβ}β = {(u1,β , . . . , um,β)}β is a family of solutions
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of (2) uniformly bounded in L∞-norm, and {λi,β}β is bounded in R for all i, then there exists ū = (ū1, . . . , ūm) such
that ūi · ūj ≡ 0 in Ω ∀i �= j and, up to a subsequence, ui,β → ūi strongly in H 1

0 (Ω) ∩ C0,α(Ω). Moreover,

−�ūi = λiūi in the open set {ui �= 0}, (3)

with λi = limβ λi,β (in some sense, (2) can be seen as a singular perturbation of (3)). Observe that then λi is an
eigenvalue of −� in H 1

0 ({ūi �= 0}) and that the sets {ūi �= 0} are disjoint. Therefore it is natural to look for relations
between solutions of (2) and solutions of the class of optimal partition problems

for k1, . . . , km ∈ N, inf
ωi⊂Ω open

ωi∩ωj =∅ ∀i �=j

m∑
i=1

λki
(ωi), (4)

where λki
(ω) denotes the ki -th eigenvalue (counting multiplicities) of (−�,H 1

0 (ω)). The second main result of this
paper is the following.

Theorem 1.2. Consider (4) with k1 = · · · = km = 2, that is

inf
ωi⊂Ω open

ωi∩ωj =∅ ∀i �=j

m∑
i=1

λ2(ωi). (5)

Then there exist a sequence uβ = (u1,β , . . . , um,β) and a Lipschitz vector function u = (u1, . . . , um) such that

(i) uβ is a sign-changing solution of (2);
(ii) ui,β → ui in C0,α(Ω) ∩ H 1

0 (Ω) for every i = 1, . . . ,m, as β → +∞;
(iii) if ωi := {ui �= 0}, then (ω1, . . . ,ωm) solves (5).

Moreover, we have Ω = ⋃m
i=1 ω̄i and the set Γ := Ω ∩ (

⋃m
i=1 ∂ωi) is a regular hypersurface of class C1,α , up to a

set having at most Hausdorff measure N − 2.

Adapting the proof of the previous theorem, we will actually see that a similar result holds for (4) in the more
general case where one takes k1, . . . , km ∈ {1,2} (with the difference that the approximating solutions uβ will only
change sign in the components i such that ki = 2, and all the other components will be positive). We should mention
that for k1 = · · · = km = 1 a result similar to Theorem 1.2 was already know if one combined the papers [5,6]. Some
preliminary results were also proved by Chang, Lin, Lin and Lin [7] (which, as far as we know, is the first paper
to establish a connection between (2) and (4) for ki = 1) and by Conti, Terracini and Verzini [9], while Helffer,
Hoffmann-Ostenhof and Terracini [15] have proved that, in dimension two, every solution (ω1, . . . ,ωm) of (4) is
regular in the sense of the last paragraph of Theorem 1.2. Passing from the case of a sum of first eigenvalues to the
sum of second eigenvalues is not trivial, because while in the first case one can work with minima of the energy
functional associated with (2), in the latter case one has to define an appropriate minimax quantity. We would like to
mention that in the case k1 = · · · = km = k, the existence of solution of (4) was proved in the class of quasi-open sets
by Bucur, Buttazzo and Henrot [4], and more recently in the class of open sets (but only in dimension two) by Burdin,
Bucur and Oudet [3].

The structure of this paper is as follows. In Section 2 we prove the existence of infinitely many sign-changing
solutions for a general competitive system. The main tool will be the use of a new notion of Krasnoselskii genus,
which will take in consideration the fact that the functionals considered are even in each single component. This
genus will be rather effective in connecting problem (2) with (4) (as will become evident in Lemma 4.1). Section 3 is
then dedicated to the proof of Theorem 1.1, applying the results of Section 2 to system (1). Observe that one difficulty
to overcome is the fact that the energy functional

u = (u1, . . . , um) �→
m∑

i=1

∫
Ω

(
|∇ui |2 + aiu

4
i

2

)
dx +

m∑
i,j=1
i �=j

β

2

∫
Ω

u2
i u

2
j dx

for ‖ui‖L2(Ω) = 1, might take the value +∞. We overcome this fact by using a truncation argument. Finally in the
last section we will present the proof of Theorem 1.2.
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2. Sign-changing solutions for general competitive systems

Take two odd functions f,g : R → R, of class C1, such that

(fg1) f ′(t), g′(t) � 0 for every t > 0.
(fg2) There exist C > 0 and 1 < p < min{2∗/2,3}, 1 < q < min{2∗,3} such that∣∣f (t)

∣∣ � C
(
1 + |t |p−1), ∣∣g(t)

∣∣ � C
(
1 + |t |q−1) for every t ∈ R.

(fg3) For every s, t � 0,

f (s)t + f (t)s � f (s)s + f (t)t and g(s)t + g(t)s � g(s)s + g(t)t.

Let G(s) := ∫ s

0 g(ξ) dξ , F(s) := ∫ s

0 f (ξ) dξ .
In this section we will focus on the proof of the following result.

Theorem 2.1. There exist infinitely many sign-solutions of the system

−�ui + g(ui) + f (ui)
∑
j �=i

F (uj ) = λiui, ui ∈ H 1
0 (Ω), i = 1, . . . ,m. (6)

As we shall see in the next section, Theorem 1.1 will be a consequence of this theorem.

Remark 2.2. From the previous list of hypotheses, we can conclude that F(t),G(t) are even nonnegative functions,
f (t)t, f ′(t), g(t)t, g′(t) � 0 for every t ∈ R, f (0) = g(0) = 0, and moreover

f (s)t + f (t)s � f (s)s + f (t)t and g(s)t + g(t)s � g(s)s + g(t)t for every s, t ∈ R. (7)

We will look for solutions of (6) as critical points of the functional

J (u) =
m∑

i=1

∫
Ω

(|∇ui |2 + 2G(ui)
)
dx +

m∑
i,j=1
j �=i

∫
Ω

F(ui)F (uj ) dx,

restricted to the L2-sphere

M = {
u = (u1, . . . , um) ∈ H 1

0

(
Ω;R

m
)
: ‖ui‖L2(Ω) = 1 ∀i

}
.

In order to obtain infinitely many critical points, we will define several minimax levels using a new definition of vector
genus.

2.1. Vector genus. Minimax levels

Take the involutions

σi : M → M, σi(u1, . . . , um) = (u1, . . . ,−ui, . . . , um) ∀i.

Consider moreover the class of sets

F = {
A ⊆ M: A is a closed set and σi(u) ∈ A ∀u ∈ A, i = 1, . . . ,m

}
and, for each A ∈ F and k1, . . . , km ∈ N, the class of functions

F(k1,...,km)(A) =
{

f = (f1, . . . , fm): A →
m∏

i=1

R
ki−1:

fi : A → R
ki−1 continuous, and

fi(σi(u)) = −fi(u) for every i,

fi(σj (u)) = fi(u) whenever j �= i

}
.



H. Tavares, S. Terracini / Ann. I. H. Poincaré – AN 29 (2012) 279–300 283
Definition 2.3 (Vector genus). Let A ∈ F and take m positive integers k1, . . . , km. We say that �γ (A) � (k1, . . . , km) if
for every f ∈ F(k1,...,km)(A) there exists ū ∈ A such that f (ū) = (f1(ū), . . . , fm(ū)) = (0, . . . ,0). We denote

Γ (k1,...,km) := {
A ∈ F : �γ (A) � (k1, . . . , km)

}
.

Remark 2.4. Observe that we don’t actually define the quantity �γ (A), but only give a meaning to the expression
“ �γ (A) � (k1, . . . , km)”. A different, but related notion of genus was introduced by Chang, Wang, Zhang in [8, Defini-
tion 2.1].

Remark 2.5. Recall the usual definition of Krasnoselskii genus associated with the Z2 symmetry group: for every
nonempty and closed set A ⊂ H 1

0 (Ω) such that −A = A,

γ (A) := inf
{
k: there exists h : A → R

k \ {0} continuous and odd
}

and γ (A) := ∞ if no such k exists. Then for m = 1 the notion of vector genus coincides with the usual one, in the
sense that, for k ∈ N,

�γ (A) � k ⇐⇒ γ (A) � k.

The key properties of this notion of genus will come out from the following Borsuk–Ulam type result due to
Dzedzej, Idzik and Izydorek (see [13,14]). A weaker version for the case of the product of two spheres had already
been proved by Zhong [22].

Theorem 2.6. If f̃ : ∏m
i=1 Sni → ∏m

i=1 R
ni is a continuous function such that, for every i ∈ {1, . . . ,m},

f̃i (x1, . . . ,−xi, . . . , xm) = −f̃i (x1, . . . , xi, . . . , xm),

f̃i(x1, . . . ,−xj , . . . , xm) = f̃i (x1, . . . , xj , . . . , xm) ∀j �= i,

then there exists (x̄1, . . . , x̄m) ∈ ∏m
i=1 Sni such that f̃ (x̄1, . . . , x̄m) = (0, . . . ,0).

Lemma 2.7. With the previous notations, the following properties hold.

(i) Take
∏m

i=1 Ai ⊆ M and let ηi : Ski−1 ⊂ R
ki → Ai be a homeomorphism such that ηi(−x) = −ηi(x) for every

x ∈ Ski−1, i ∈ {1, . . . ,m}. Then

m∏
i=1

Ai ∈ Γ (k1,...,km).

(ii) We have η(A) ∈ Γ (k1,...,km) whenever A ∈ Γ (k1,...,km) and η : A → M is such that η ◦ σi = σi ◦ η ∀i.

Proof. (i) Take f ∈ F(k1,...,km)(
∏m

i=1 Ai) and consider the map

ϕ :
m∏

i=1

Ski−1 →
m∏

i=1

R
ki−1; ϕ(x1, . . . , xm) := f

(
η1(x1), . . . , ηm(xm)

)
.

For each fixed i ∈ {1, . . . ,m}, we have that

ϕi(x1, . . . ,−xi, . . . , xm) = fi

(
η1(x1), . . . , ηi(−xi), . . . , ηm(xm)

)
= fi

(
η1(x1), . . . ,−ηi(xi), . . . , ηm(xm)

)
= −fi

(
η1(x1), . . . , ηi(xi), . . . , ηm(xm)

)
= −ϕi(x1, . . . , xi, . . . , xm)

and, for j �= i,
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ϕi(x1, . . . ,−xj , . . . , xm) = fi

(
η1(x1), . . . , ηj (−xj ), . . . , ηm(xm)

)
= fi

(
η1(x1), . . . ,−ηj (xj ), . . . , ηm(xm)

)
= fi

(
η1(x1), . . . , ηj (xj ), . . . , ηm(xm)

)
= ϕi(x1, . . . , xj , . . . , xm).

Hence Theorem 2.6 implies that ϕ−1({(0, . . . ,0)}) �= ∅, and hence also f −1({(0, . . . ,0)}) �= ∅.
(ii) First of all, it is easy to prove that if A ∈ F and η is as in the statement, then the set η(A) ∈ F . Take any

f ∈ F(k1,...,km)(η(A)). Then the map

f ◦ η : A →
m∏

i=1

R
ki−1, u �→ (

f1
(
η(u)

)
, . . . , fm

(
η(u)

))
is continuous and, for every i,

fi

(
η
(
σi(u)

)) = fi

(
σi

(
η(u)

)) = −fi

(
η(u)

)
,

and for every i �= j ,

fi

(
η
(
σj (u)

)) = fi

(
σj

(
η(u)

)) = fi

(
η(u)

)
.

Hence f ◦η ∈ F(k1,...,km)(A) and from the definition of genus we deduce the existence of ū ∈ A such that f (η(ū)) =
(0, . . . ,0), and the proof is complete. �

Together with this notion of genus, in order to obtain solutions which change sign, we will use a strategy based on
the work of Conti, Merizzi, Terracini [10], using cones of positive/negative functions. A similar approach was also
used for instance in [2,16]. In our case, for each i ∈ {1, . . . ,m}, we define the cone

Pi = {
u = (u1, . . . , um) ∈ H 1

0

(
Ω;R

m
)
: ui � 0

}
and take P := ⋃m

i=1(Pi ∪−Pi ). Moreover, for each δ > 0, we define Pδ = {u ∈ H 1
0 (Ω;R

m): dist2(u, P ) < δ}, where
dist2 denotes the distance associated with the L2-norm. Observe that dist2(u, Pi ) = ‖u−

i ‖L2(Ω) and dist2(u,−Pi ) =
‖u+

i ‖L2(Ω).

Lemma 2.8. For every δ <
√

2/2 we have that A \ Pδ �= ∅ whenever A ∈ Γ (k1,...,km) with ki � 2 ∀i.

Proof. Given A ∈ Γ (k1,...,km), consider the map

f = (f1, . . . , fm) : A →
m∏

i=1

R
ki−1; fi(u) =

(∫
Ω

ui |ui |dx,0, . . . ,0

)
.

Clearly f ∈ F(k1,...,km)(A), hence there exists ū ∈ A such that f (ū) = (0, . . . ,0). By recalling that A ⊆ M, we deduce
that ∫

Ω

(
ū+

i

)2
dx =

∫
Ω

(
ū−

i

)2
dx = 1

2
for all i.

Thus dist2(ū, P ) = √
2/2, and ū ∈ A \ Pδ for every δ <

√
2/2. �

We are now ready to define a sequence of minimax levels which will turn out to be critical levels for J |M. For
every k1, . . . , km � 2 and δ <

√
2/2, define

d
k1,...,km

δ = inf
A∈Γ (k1,...,km)

sup
A\Pδ

J. (8)
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Remark 2.9. It will be important to have an upper-bound for these minimax levels which is independent of δ. Con-
sidering

d̃k1,...,km = inf
A∈Γ (k1,...,km)

sup
A

Jβ,

it is easy to see that

d
k1,...,km

δ � d̃k1,...,km for every k1, . . . , km ∈ N, δ > 0.

Throughout this chapter, we will denote d̃k1,...,km simply by d̃ .

2.2. Existence of sign-changing critical points of J |M at level d
k1,...,km

δ

As a first step towards the proof of Theorem 2.1, we will now show that d
k1,...,km

δ is indeed a critical level for
sufficiently small δ. More precisely, we have the following.

Theorem 2.10. There exist δ > 0, u ∈ H 1
0 (Ω;R

m) and λi ∈ R such that

−�ui + g(ui) + f (ui)
∑
j �=i

F (uj ) = λiui in Ω, i = 1, . . . ,m,

and J (u) = d
k1,...,km

δ . Moreover, each ui is a sign-changing function.

In order to prove this result we need to find a pseudogradient for J over M for which the set Pδ is positively
invariant for the associated flow. Following [10, Theorem 3.1], such pseudogradient should be of the type Id − K ,
where Id is the identity in H 1

0 (Ω;R
m) and K is an operator such that K(Pδ) ⊆ Pδ/2 for small δ. The gradient of J

constrained to M does not seem to satisfy this, due to the sign of the terms G(ui),
∑

j �=i F (ui)F (uj ), and hence this
part is not straightforward.

For technical reasons, we will work on the neighborhood of M in H 1
0 (Ω;R

m):

M∗ =
{
u ∈ H 1

0

(
Ω;R

m
)
: ‖ui‖L2(Ω) >

1

2
∀i

}

(observe that ui �≡ 0 ∀i whenever u ∈ M∗).

Proposition 2.11. Given u ∈ M∗ and i ∈ {1, . . . ,m}, there exists a unique solution wi ∈ H 1
0 (Ω), μi ∈ R of the

problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�wi + g(wi) + f (wi)
∑
j �=i

F (uj ) = μiui in Ω,∫
Ω

uiwi dx = 1.
(9)

Proof. Existence: Fix u ∈ M∗ and consider the minimization problem

m := inf

{∫
Ω

(
1

2
|∇w|2 + G(w) + F(w)

∑
j �=i

F (uj )

)
dx: w ∈ H 1

0 (Ω),

∫
Ω

wui dx = 1

}
� 0.

Take a minimizing sequence (wn)n, that is∫ (
1

2
|∇wn|2 + G(wn) + F(wn)

∑
j �=i

F (uj )

)
dx → m and

∫
wnui dx = 1.
Ω Ω
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As F , G are nonnegative function, we obtain that (wn)n is an H 1
0 -bounded sequence, thus there exists w̄ such that, up

to a subsequence,

wn ⇀ w̄ weakly in H 1
0 (Ω), and strongly in L2(Ω) and L2p(Ω).

Therefore
∫
Ω

w̄ui dx = 1 and

m �
∫
Ω

(
1

2
|∇w̄|2 + G(w̄) + F(w̄)

∑
j �=i

F (uj )

)
dx

� lim inf
n→∞

∫
Ω

(
1

2
|∇wn|2 + G(wn) + F(wn)

∑
j �=i

F (uj )

)
dx = m.

Thus w̄ achieves m, and by the Lagrange multiplier rule we have that w̄ solves (9) for some μi .

Uniqueness: Take w and v to be solutions of

−�w + g(w) + f (w)
∑
j �=i

F (uj ) = μ1ui,

∫
Ω

wui dx = 1

and

−�v + g(v) + f (v)
∑
j �=i

F (uj ) = μ2ui,

∫
Ω

vui dx = 1.

Subtracting the second equation from the first one, multiplying the result by w − v and integrating by parts yields∫
Ω

∣∣∇(w − v)
∣∣2

dx +
∫
Ω

(
g(w) − g(v)

)
(w − v)dx +

∫
Ω

(
f (w) − f (v)

)
(w − v)

∑
j �=i

F (uj ) dx

=
∫
Ω

μ1ui(v − w)dx −
∫
Ω

μ2ui(v − w)dx = 0.

As s �→ f (s), g(s) are nondecreasing (cf. (fg1)), then (f (w) − f (v))(w − v) � 0 and (g(w) − g(v))(w − v) � 0,
whence∫

Ω

∣∣∇(w − v)
∣∣2

dx = 0, and w ≡ v.

Finally, observe that from (9) we deduce that each μi is uniquely determined by the expression

μi =
∫
Ω

(
|∇wi |2 + g(wi)wi + f (wi)wi

∑
j �=i

F (uj )

)
dx. � (10)

We can now define the operator

K : M∗ → H 1
0

(
Ω;R

m
); u �→ K(u) = w,

that is, for each u, K(u) = w is the unique solution of the system (9).
Next we state and prove three properties of the operator K .

Lemma 2.12. (K|M is a compact operator.) Let (un)n ⊂ M be a bounded sequence in H 1
0 (Ω;R

m). Then there exists
w ∈ H 1

0 (Ω;R
m) such that, up to a subsequence,

K(un) → w strongly in H 1
0

(
Ω;R

m
)
.
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Proof. Let (un)n = (u1,n, . . . , um,n)n be as in the statement and let wn := K(un). Multiplying (9) by ui,n and inte-
grating by parts, we deduce∫

Ω

|∇wi,n|2 �
∫
Ω

(
|∇wi,n|2 + g(wi,n)wi,n + f (wi,n)wi,n

∑
j �=i

F (uj,n)

)
dx = μi,n

=
∫
Ω

(
∇wi,n · ∇ui,n + g(wi,n)ui,n + f (wi,n)ui,n

∑
j �=i

F (uj,n)

)
dx

� ‖wi,n‖H 1
0 (Ω)‖ui,n‖H 1

0 (Ω) + C1

∫
Ω

(
1 + |wi,n|q−1)|ui,n|dx

+ C1

∫
Ω

(
1 + |wi,n|p−1)|ui,n|

(
1 +

∑
j �=i

|uj,n|p
)

dx

� C2‖wi,n‖H 1
0 (Ω) + C1

∫
Ω

(|ui,n| + |wi,n|q−1|ui,n|
)
dx

+ C1

∫
Ω

(
|ui,n| + |wi,n|p−1|ui,n| + |ui,n|

∑
j �=i

|uj,n|p + |wi,n|p−1|ui,n|
∑
j �=i

|uj,n|p
)

dx

� C2‖wi,n‖H 1
0 (Ω) + C3 + C1‖u1,n‖Lq(Ω)‖wi,n‖q−1

Lq(Ω) + C1‖ui,n‖Lp(Ω)‖wi,n‖p−1
Lp(Ω)

+ C1‖ui,n‖L2(Ω)

∑
j �=i

‖uj,n‖p

L2p(Ω)
+ C1‖wi,n‖p−1

L2p(Ω)
‖ui,n‖L2p(Ω)

∑
j �=i

‖uj,n‖p

L2p(Ω)

� C2‖wi,n‖H 1
0 (Ω) + C3 + C4‖wi,n‖q−1

H 1
0 (Ω)

+ C5‖wi,n‖p−1
H 1

0 (Ω)
.

As p,q < 3, then p−1, q −1 < 2 and we conclude that (wn)n is H 1
0 -bounded. Hence also all μi,n are bounded (recall

from (10) their expressions) and, up to a subsequence, wn converges weakly in H 1
0 to some function w̄. Multiplying

this time row i in (9) by wi,n − w̄i , we see that∫
Ω

∇wi,n · ∇(wi,n − w̄i) dx = −
∫
Ω

g(wi,n)(wi,n − w̄i) dx −
∫
Ω

f (wi,n)(wi,n − w̄i)
∑
j �=i

F (uj,n) dx

+
∫
Ω

μi,nui,n(wi,n − w̄i) dx → 0,

and therefore wi,n → w̄i strongly in H 1
0 (Ω). �

Lemma 2.13. The operator K is of class C1.

Proof. We will apply the Implicit Function Theorem to the C1 map

Ψ : M∗ × H 1
0 (Ω) × R → H 1

0 (Ω) × R;
Ψ (u,v,λ) =

(
v + (−�)−1

(
g(v) + f (v)

∑
j �=i

F (uj ) − λui

)
,

∫
Ω

vui dx − 1

)
.

Observe that (9) holds if and only if Ψ (u,wi,μi) = (0,0). Take such a zero of Ψ and let us compute the derivative of
Ψ with respect to v,λ at the point (u,wi,μi) in the direction (w̄, λ̄). We obtain a map Φ : H 1

0 (Ω)×R → H 1
0 (Ω)×R

given by
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Φ(w̄, λ̄) := Dv,λΨ (u,wi,μi)(w̄, λ̄)

=
(

w̄ + (−�)−1
(

w̄g′(wi) + w̄f ′(wi)
∑
j �=i

F (uj ) − λ̄ui

)
,

∫
Ω

w̄ui dx

)
.

Let us prove that Φ is a bijective map.
Φ is injective: If Φ(w̄, λ̄) = (0,0), then we can multiply the equation

−�w̄ + w̄g′(wi) + w̄f ′(wi)
∑
j �=i

F (uj ) − λ̄ui = 0 (11)

by w̄, yielding

‖w̄‖2
H 1

0 (Ω)
� ‖w̄‖2

H 1
0 (Ω)

+
∫
Ω

w̄2g′(wi) dx +
∫
Ω

w̄2f ′(wi)
∑
j �=i

F (uj ) dx = λ̄

∫
Ω

uiw̄ dx = 0,

whence w̄ ≡ 0. Again by using (11) we obtain λ̄ui = 0, thus also

λ̄ = λ̄

∫
Ω

uiwi dx = 0.

Φ is surjective: Take (f, c) ∈ H 1
0 (Ω) × R and let w̃1, w̃2 be solutions of the (linear) problems

−�w̃1 + w̃1g
′(wi) + w̃1f

′(wi)
∑
j �=i

F (uj ) = f,

−�w̃2 + w̃2g
′(wi) + w̃2f

′(wi)
∑
j �=i

F (uj ) = ui.

Take moreover κ = (c − ∫
Ω

w̃1ui dx)/
∫
Ω

w̃2ui dx. Then Φ(w̃1 + κw̃2, κ) = (f, c). �
Lemma 2.14. There exists δ > 0 (which can be chosen arbitrary small) such that

dist2
(
K(u), P

)
< δ/2, ∀u ∈ M, J (u) � d̃ + 1, dist2(u, P ) < δ. (12)

Proof. 1. Suppose, in view of a contradiction, that there exists δn → 0 and un ∈ M with J (un) � d̃ + 1,
dist2(un, P ) < δn and dist2(K(un), P ) � δn/2. Suppose moreover, without loss of generality, that

dist2(un, P ) = ∥∥u−
1,n

∥∥
2 (< δn → 0).

Let wn = K(un) and μi,n := ∫
Ω

(|∇wi,n|2 + g(wi,n)wi,n + f (wi,n)wi,n

∑
j �=i F (uj,n)) dx for every i. We deduce

from Lemma 2.12 the existence of ū, w̄, and μ̄i such that

un → ū weakly in H 1
0

(
Ω;R

m
)
, strongly in L2

(
Ω;R

m
)

and L2p
(
Ω;R

m
);

wn → w̄ strongly in H 1
0

(
Ω;R

m
)
, and μi,n → μ̄i in R.

Observe that

−�w̄1 + g(w̄1) + f (w̄1)
∑
j�2

F(ūj ) = μ̄1ū1 � 0,

and (from the hypotheses made on f,g) f (s), g(s) = O(s) as s → 0. Hence by the strong maximum principle w̄1 > 0,
and therefore we can conclude that |{w1,n < 0}| → 0 as n → ∞.

2. Observe now that in general, by using both Hölder and Sobolev inequalities we have

‖u‖2
L2(Ω)

� C2
S p

(|Ω|)‖u‖2
1 ,
H0 (Ω)



H. Tavares, S. Terracini / Ann. I. H. Poincaré – AN 29 (2012) 279–300 289
where p(|Ω|) = |Ω|(2∗−2)/2∗
and CS is the best Sobolev constant of the embedding H 1

0 (Ω) ↪→ L2∗
(Ω). This fact

together with (9) allows us to obtain

∥∥w−
1,n

∥∥2
L2({w1,n<0}) � C2

S p
(∣∣{w1,n < 0}∣∣) ∫

Ω

∣∣∇w−
1,n

∣∣2
dx

� C2
S p

(∣∣{w1,n < 0}∣∣) ∫
Ω

(∣∣∇w−
1,n

∣∣2 − g(w1,n)w
−
1,n − f (w1,n)w

−
1,n

∑
j�2

F(uj,n)

)
dx

= −μ1,nC
2
S p

(∣∣{w1,n < 0}∣∣) ∫
Ω

u1,nw
−
1,n dx

� μ1,nC
2
S p

(∣∣{w1,n < 0}∣∣) ∫
Ω

u−
1,nw

−
1,n dx

� μ1,nC
2
S p

(∣∣{w1,n < 0}∣∣)∥∥u−
1,n

∥∥
L2(Ω)

∥∥w−
1,n

∥∥
L2({w1,n<0})

� C′ p
(∣∣{w1,n < 0}∣∣) δn

∥∥w−
1,n

∥∥
L2({w1,n<0})

and hence ‖w−
1,n‖L2(Ω) < δn/2 for sufficiently large n, which is a contradiction. �

Now define

V : M∗ → H 1
0

(
Ω;R

m
); u �→ u − K(u).

Observe that, for u ∈ M,

V (u) = 0 ⇐⇒ u solves (6).

Next we show that V satisfies the Palais–Smale condition and that it is a pseudogradient for J over M.

Lemma 2.15 (Palais–Smale type condition). Let un ∈ M be such that, as n → ∞,

J (un) → c < ∞ and V (un) → 0 in H 1
0

(
Ω;R

m
)
.

Then there exists u ∈ M such that, up to a subsequence, un → u in H 1
0 (Ω;R

m).

Proof. Since ‖un‖2
H 1

0 (Ω)
� J (un) � c + 1 < ∞ for large n, there exists u ∈ M and w ∈ H 1

0 (Ω;R
m) such that, up to

a subsequence,

un ⇀ u weakly in H 1
0

(
Ω;R

m
)

and wn := K(un) → w strongly in H 1
0

(
Ω;R

m
)
.

Then we have, as n → ∞,

o(1) = 〈
V (un),un − u

〉
H 1

0 (Ω)
= 〈un,un − u〉H 1

0 (Ω) − 〈wn,un − u〉H 1
0 (Ω).

Since the last term tends to zero as n → ∞, the proof is finished. �
Lemma 2.16. We have〈∇J (u),V (u)

〉
H 1

0 (Ω)
� 2

∥∥V (u)
∥∥2

H 1
0 (Ω)

whenever u ∈ M.

Proof. First of all observe that, by (9),∫
ui(ui − wi)dx =

∫
u2

i dx −
∫

uiwi dx = 1 − 1 = 0 whenever u ∈ M.
Ω Ω Ω
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This together with (7) yields

〈∇J (u),V (u)
〉
H 1

0 (Ω)
= 2

m∑
i=1

∫
Ω

(
∇ui · ∇(ui − wi) + g(ui)(ui − wi) + f (ui)(ui − wi)

∑
j �=i

F (uj )

)
dx

� 2
m∑

i=1

∫
Ω

(
∇ui · ∇(ui − wi) + g(wi)(ui − wi) + f (wi)(ui − wi)

∑
j �=i

F (uj )

)
dx

= 2
m∑

i=1

∫
Ω

(∇ui · ∇(ui − wi) − ∇wi · ∇(ui − wi) + μiui(ui − wi)
)
dx

= 2〈u − w,u − w〉H 1
0 (Ω)

= 2
∥∥V (u)

∥∥2
H 1

0 (Ω)
. �

With V we can now construct a J -decreasing flow for which Pδ is positively invariant.

Lemma 2.17. There exists a unique global solution η : R
+ × M → H 1

0 (Ω;R
m) for the initial value problem

d

dt
η(t, u) = −V

(
η(t, u)

); η(0, u) = u ∈ M. (13)

Moreover:

(i) η(t, u) ∈ M,∀t > 0, u ∈ M.
(ii) For each u ∈ M, the map t �→ J (η(t, u)) is nonincreasing.

(iii) There exists δ̄ such that, for every δ < δ̄,

η(t, u) ∈ Pδ whenever u ∈ M ∩ Pδ, J (u) � d̃ + 1, and t > 0.

Proof. As V ∈ C1(M∗), there exists a solution η : [0, Tmax) × M∗ → H 1
0 (Ω;R

m), where Tmax is the maximal time
of existence of solution. We have

d

dt

∫
Ω

η2
i (t, u) dx = −2

∫
Ω

ηi(t, u)Vi

(
η(t, u)

)
dx

= 2
∫
Ω

ηi(t, u)Ki

(
η(t, u)

)
dx − 2

∫
Ω

η2
i (t, u) dx

= 2 − 2
∫
Ω

η2
i (t, u) dx

whence

d

dt

(
e2t

(∫
Ω

η2
i (t, u) dx − 1

))
= 0.

As
∫
Ω

η2
i (0, u) dx = ∫

Ω
u2

i dx = 1, we get∫
Ω

η2
i (t, u) dx = 1 for every t.

Moreover, from this and Lemma 2.16 we see that

d

dt
J
(
η(t, u)

) = −〈∇J
(
η(t, u)

)
,V

(
η(t, u)

)〉
H 1

0 (Ω)
� −2

∥∥V
(
η(t, u)

)∥∥
H 1

0 (Ω)
� 0.

In particular, ‖η(t, u)‖2
1 � J (η(t, u)) � J (u) < +∞ and thus Tmax = +∞ and (i), (ii) hold.
H0 (Ω)
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(iii) Take δ̄ > 0 so that (12) holds for every δ < δ̄. For every u ∈ M such that J (u) � d̃ +1 and dist2(u, P ) = δ < δ̄,
since

η(t, u) = η(0, u) + t η̇(0, u) + o(t) = u − tV (u) + o(t) as t → 0,

we see that

dist2
(
η(t, u), P

) = dist2
(
u − t

(
u − K(u)

) + o(t), P
)

= dist2
(
(1 − t)u + tK(u) + o(t), P

)
� (1 − t)dist2(u, P ) + t dist2

(
K(u), P

) + o(t)

< (1 − t)δ + tδ/2 + o(t) < δ

for sufficiently small t > 0, and the conclusion follows. �
We can now conclude the section with a proof of the desired result.

Proof of Theorem 2.10. Take any δ < min{√2/2, δ̄} and denote d
k1,...,km

δ simply by d . In view of a contradiction,
suppose there exists 0 < ε < 1 such that∥∥V (u)

∥∥2
H 1

0 (Ω)
� ε, ∀u ∈ M:

∣∣J (u) − d
∣∣ � 2ε, dist2(u, P ) � δ. (14)

Let us take any A ∈ Γ (k1,...,km) such that

sup
A\Pδ

J < d + ε � d̃ + 1

and consider B := η(1,A), where η is defined by (13). From Lemmas 2.7 and 2.8 we know that B ∈ Γ (k1,...,km) and
that B \ Pδ �= ∅. Take u ∈ A such that η(1, u) /∈ Pδ and

d − ε � sup
B\Pδ

J − ε � J
(
η(1, u)

)
.

Since Pδ is positively invariant for the flow η (cf. Lemma 2.17), we see that η(t, u) /∈ Pδ for every t ∈ [0,1]. Moreover,

d � sup
B\Pδ

J � J
(
η(1, u)

) + ε � J
(
η(t, u)

) + ε � J (u) + ε � sup
A\Pδ

J + ε < d + 2ε.

We conclude from (14) that ‖V (η(t, u))‖2
H 1

0 (Ω)
� ε for every t ∈ [0,1] and

d

dt
J
(
η(t, u)

) = −〈∇J
(
η(t, u)

)
,V

(
η(t, u)

)〉
H 1

0 (Ω)

� −2
∥∥V

(
η(t, u)

)∥∥2
H 1

0 (Ω)

� −2ε ∀t ∈ [0,1].
Whence, after an integration,

d − ε � J
(
η(1, u)

)
� J (u) − 2ε < d − ε.

Thus (14) implies a contradiction and therefore we can find a sequence un ∈ M such that

J (un) → d, V (un) → 0 and dist2(un,P ) � δ.

Lemma 2.15 now implies the existence of u ∈ M such that, up to a subsequence, un → u strongly in H 1
0 (Ω;R

m).
Hence J (u) = d , V (u) = 0, and dist2(u,P ) � δ, which yields the desired result. �

We have deduced that for each f,g and k1, . . . , km there exists δ = δ(f, g, k1, . . . , km) < min{√2/2, δ̄} such that
d

k1,...,km

δ is a critical level for J |M. From now on we will denote such level simply by dk1,...,km .
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2.3. Existence of infinitely many sign-changing solutions of (6)

In this subsection we will prove Theorem 2.1. For that, we will prove that dk1,...,km → +∞ as some ki → +∞.

Lemma 2.18. Let k1, . . . , km � 2. Then

dk1,...,km �
m∑

i=1

λki−1(Ω).

Proof. Let {ϕk}k be the sequence of eigenfunctions of (−�,H 1
0 (Ω)), normalized in L2(Ω), associated to the eigen-

values {λk}k . Take A ∈ Γ (k1,...,km) and consider, for each i, the function

gi : A → R
ki−1,

u �→
(∫

Ω

uiϕ1 dx, . . . ,

∫
Ω

uiϕki−2 dx,

∫
Ω

ui |ui |dx

)
.

Then g := (g1, . . . , gm) belongs to F(k1,...,km)(A) and there exists ū ∈ A such that ūi ∈ span{ϕ1, . . . , ϕki−2}⊥ and
ūi /∈ Pδ , as δ <

√
2/2. Thus

sup
u∈A\Pδ

J (u) � J (ū) �
m∑

i=1

∫
Ω

|∇ūi |2 dx �
m∑

i=1

λki−1(Ω),

and the result follows. �
Proof of Theorem 2.1. We have λk(Ω) → +∞ as k → +∞, whence dk1,...,km → +∞ as ki → +∞ for some i and
the result follows. �
3. Proof of Theorem 1.1

Theorem 1.1 is not an immediate consequence of Theorem 2.1. In fact, by choosing f (t) = √
2βt and g(t) = ait

3,
we see that they do not satisfy condition (fg2). Moreover, for N � 5 the associated energy functional

Jβ(u) =
m∑

i=1

∫
Ω

(
|∇ui |2 + aiu

4
i

2

)
dx +

m∑
i,j=1
i �=j

β

2

∫
Ω

u2
i u

2
j dx

might take the value +∞. We overcome these problems by considering suitable truncatures of the functions t �→ t

and t �→ t3. Fix any 1 < p < min{2∗/2,3} and 1 < q < min{2∗,3}. Given n ∈ N we define the odd C1 functions

fn(t) =

⎧⎪⎪⎨
⎪⎪⎩

t, |t | � n,

t |t |p−2

(p−1)np−2 + n − n
p−1 , t � n,

t |t |p−2

(p−1)np−2 + n
p−1 − n, t � −n,

gn(t) =

⎧⎪⎪⎨
⎪⎪⎩

t3, |t | � n,

3t |t |q−2

(q−1)nq−4 + n3 − 3n3

q−1 , t � n,

3t |t |q−2

(q−1)nq−4 + 3n3

q−1 − n3, t � −n,

and their primitives Fn(t) := ∫ t
fn(ξ) dξ , Gn(t) := ∫ t

gn(ξ) dξ .
0 0
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Lemma 3.1. The functions fn and gn satisfy the following properties:

(i) for every n ∈ N there exists C > 0 such that∣∣fn(t)
∣∣ � C

(
1 + |t |p−1), ∣∣gn(t)

∣∣ � C
(
1 + |t |q−1) for every t ∈ R;

(ii) there exists θ > 0 independent of n such that

fn(t)t � θFn(t) and gn(t)t � θGn(t) for every t ∈ R; (15)

(iii) we have

fn(s)t + fn(t)s � fn(s)s + fn(t)t and gn(s)t + gn(t)s � gn(s)s + gn(t)t

for every s, t ∈ R;
(iv) gn(t) � t3 for every t � 0.

Proof. (ii) Since both fn(t)t and Fn(t) are even, it is enough to check (15) for t � 0. Take θ ′ := max{1,p − 1}, and
let us show that

Λ(t) := θ ′fn(t) − f ′
n(t)t � 0 ∀t � 0. (16)

For 0 � t � n, Λ(t) = θ ′t − t = (θ ′ − 1)t � 0, while for t > n,

Λ′(t) = θ ′ tp−2

np−2
− (p − 1)

tp−2

np−2
� 0,

and hence, after an integration, Λ(t) � Λ(n) � 0. Therefore (16) holds and then

fn(t)t �
(
θ ′ + 1

)
Fn(t).

The proof for gn is analogous, taking θ := θ ′ + 1 with θ ′ := max{3, q − 1}.
(iii) Let us first consider the case s, t � 0. If 0 � s, t � n, we have

fn(s)t + fn(t)s = 2st � s2 + t2 = fn(s)s + fn(t)t.

If s, t � n,

fn(s)t + fn(t)s =
(

sp−1

(p − 1)np−2
+ n − n

p − 1

)
t +

(
tp−1

(p − 1)np−2
+ n − n

p − 1

)
s

= sp−1t + tp−1s

(p − 1)np−2
+

(
n − n

p − 1

)
t +

(
n − n

p − 1

)
s

� sp + tp

(p − 1)np−2
+

(
n − n

p − 1

)
t +

(
n − n

p − 1

)
s

= fn(s)s + fn(t)t.

If s � n, 0 � t � n, since(
sp−1

(p − 1)np−2
+ n − n

p − 1
− t

)
(s − t) � 0

then we have

fn(s)t + fn(t)s =
(

sp−1

(p − 1)np−2
+ n − n

p − 1

)
t + ts

�
(

sp−1

(p − 1)np−2
+ n − n

p − 1

)
s + t2

= fn(s)s + fn(t)t.
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Hence (16) holds for s, t � 0. Finally, for s � 0, t � 0, we have

fn(s)t + fn(t)s � 0 � fn(s)s + fn(t)t

while for s, t � 0,

fn(s)t + fn(t)s = fn(−s)(−t) + fn(−t)(−s) � fn(−s)(−s) + fn(−t)(−t) = fn(s)s + fn(t)t.

The proof for gn is analogous.
(iv) We need to check that, for t � n,

Θ(t) := t3 − 3tq−1

(q − 1)nq−4
− n3 + 3n3

q − 1
� 0.

Now Θ(n) = 0, and

Θ ′(t) = 3t2 − 3tq−2

nq−4
� 0 if and only if nq−4 � tq−4,

which is true because q < 3. �
Thus the truncated functions fn, gn satisfy (fg1)–(fg3), and hence from Theorem 2.1 we immediately deduce,

for each n, the existence of infinitely many sign-changing solutions of the problem

−�ui + aign(ui) + 2βfn(ui)
∑
j �=i

Fn(uj ) = λn
i,βui, ui ∈ H 1

0 (Ω). (17)

More precisely, if for each n we define

Jn
β (u) =

m∑
i=1

∫
Ω

(|∇ui |2 + 2aiGn(ui)
)
dx + 2β

m∑
i,j=1
j �=i

∫
Ω

Fn(ui)Fn(uj ) dx

and the minimax levels

c
k1,...,km

β,n = inf
A∈Γ (k1,...,km)

sup
A\Pδ

J n
β ,

there exists an unbounded sequence (uβ)β of solutions of (17) such that J n
β (uβ) = c

k1,...,km

β,n .
We can easily deduce an upper-bound for these minimax levels, independent of n. Indeed, consider the functional

J∞(u) =
{ ∑m

i=1

∫
Ω

(|∇ui |2 + aiu
4
i

2 ) dx if ui · uj ≡ 0 ∀i �= j, and
∫
Ω

u4
i < ∞,

+∞ otherwise.

Using Lemma 2.7(i), one can construct A ∈ Γ (k1,...,km) such that supA J∞ < ∞ (see for instance the proof of
Lemma 4.1 ahead). Then we take

ck1,...,km∞ := min
A∈Γ (k1,...,km)

sup
A

J∞ < ∞.

As 2Gn(t) � t4/2 (cf. Lemma 3.1(iv)) we have Jn
β (u) � J∞(u) ∀u, and hence

c
k1,...,km

β,n � ck1,...,km∞ for all β > 0 and n ∈ N.

Let

Kk1,...,km

β,n := {
u ∈ H 1

0

(
Ω;R

m
)
: u satisfies (17) and Jn

β (uβ) = c
k1,...,km

β,n

}
.
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By using a Brezis–Kato type argument, we have the following.

Lemma 3.2 (A priori bounds). There exists a constant C = C(β, k1, . . . , km) > 0, independent of n, such that

‖u‖L∞(Ω) � C for every u ∈ Kk1,...,km

β,n .

Proof. 1. (λn
i,β)n are bounded, independently of n. We have

J n
β (u) =

m∑
i=1

∫
Ω

(|∇ui |2 + 2aiGn(ui)
)
dx +

∑
j �=i

∫
Ω

2βFn(ui)Fn(uj ) dx = c
k1,...,km

β,n � ck1,...,km∞ ,

then ∫
Ω

|∇ui |2 dx,

∫
Ω

aiGn(ui) dx,

∫
Ω

βFn(ui)Fn(uj ) dx � ck1,...,km∞ . (18)

This, together with Lemma 3.1(ii) yields∫
Ω

aign(ui)ui dx � θ

∫
Ω

aiGn(ui) dx � θaic
k1,...,km∞ ,

∫
Ω

βfn(ui)uiFn(uj ) dx � θ

∫
Ω

βFn(ui)Fn(uj ) dx � θck1,...,km∞ ,

and hence

0 � λn
i,β =

∫
Ω

(
|∇ui |2 + aign(ui)ui + 2βfn(ui)ui

∑
j �=i

Fn(uj )

)
dx

�
(
1 + θai + 2β(m − 1)θ

)
ck1,...,km∞ .

2. Observe that from (18) we know there exists C > 0 independent of n such that

‖ui‖L2(Ω) � C ∀u ∈ Kk1,...,km

β,n .

Suppose that u ∈ L2+δ(Ω;R
m) for some δ; we can test (17) with ui |ui |δ , obtaining

1 + δ

(1 + δ
2 )2

∫
Ω

|∇|ui |1+ δ
2 |2 dx � 1 + δ

(1 + δ
2 )2

∫
Ω

∣∣∇|ui |1+ δ
2
∣∣2

dx +
∫
Ω

aign(ui)ui |ui |δ dx

+ 2β

∫
Ω

fn(ui)ui |ui |δ
∑
j �=i

Fn(uj ) dx

= λn
i,β

∫
Ω

|ui |2+δ dx.

Hence we have

‖ui‖L2∗(2+δ)/2(Ω) �
(

C2
S

(1 + δ
2 )2

1 + δ

) 1
2+δ

(
λn

i,β

∫
Ω

|ui |2+δ dx

) 1
2+δ

�
(

C
(1 + δ

2 )2

1 + δ

) 1
2+δ ‖ui‖L2+δ(Ω).

Now we iterate, by letting

δ(1) = 0, 2 + δ(k + 1) = 2∗(2 + δ(k)
)
/2.
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Observe that δ(k) → ∞, since δ(k) � (2∗/2)k−1. We then have

‖ui‖L2∗(2+δ)/2(Ω) �
k∏

j=1

[
C

(1 + δ(j)
2 )2

1 + δ(j)

] 1
2+δ(j) ‖ui‖L2(Ω)

� exp

( ∞∑
j=1

1

2 + δ(j)
log

[
C

(1 + δ(j)
2 )2

1 + δ(j)

])
‖ui‖L2(Ω).

As δ(j) � (2∗/2)j−1, we see that

∞∑
j=1

1

2 + δ(j)
log

[
C

(1 + δ(j)
2 )2

1 + δ(j)

]
< ∞,

which provides the uniform bound in L∞(Ω). �
Proof of Theorem 1.1. Let C > 0 be the constant appearing in the previous lemma and take n � C. Then there exist
infinitely many sign-changing solutions u of (17). By the choice of n, each solution of (17) is also a solution of (1),
and the result follows. �
4. Optimal partition problems. Proof of Theorem 1.2

The purpose of this section is to prove Theorem 1.2. Hence we consider a1, . . . , am = 0, and we are dealing
with system (2). Before concentrating our attention on the case of optimal partition problems involving the second
eigenvalue, let us prove some preliminary statements.

Lemma 4.1. Let k1, . . . , km ∈ N. We have

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λki
(ωi) � ck1,...,km∞ ,

where

Pm(Ω) = {
(ω1, . . . ,ωm): ωi ⊆ Ω are open sets, and ωi ∩ ωj = ∅, ∀i �= j

}
.

Proof. Take (ω1, . . . ,ωm) ∈ Pm(Ω) and, for each i ∈ {1, . . . ,m}, let ϕi
1, . . . , ϕ

i
ki

denote the first ki eigenfunctions of

(−�,H 1
0 (ωi)), normalized in L2(Ω). Let

Ai := {
u ∈ span

{
ϕi

1, . . . , ϕ
i
ki

}
: ‖u‖L2(Ω) = 1

}
.

Then there exists an obvious odd homeomorphism between Ai and Ski−1, the unitary sphere in R
ki . Therefore

Lemma 2.7(i) applies, yielding that

m∏
i=1

Ai ∈ Γ (k1,...,km).

As ωi ∩ ωj = ∅ for i �= j , it is now easy to conclude that

m∑
i=1

λki
(ωi) =

m∑
i=1

max
ui∈Ai

∫
Ω

|∇ui |2 dx = max
u∈∏m

i=1 Ai

m∑
i=1

∫
Ω

|∇ui |2 dx

� inf
A∈Γ (k1,...,km)

sup
A

J∞(u) = ck1,...,km∞ . �
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Remark 4.2. By combining Lemmas 2.18 and 4.1 we know that for each k1, . . . , km � 2 there exists a minimax level
c
k1,...,km

β associated with (2) such that

m∑
i=1

λki−1(Ω) � c
k1,...,km

β � inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λki
(ωi).

Since λk � k2/N , then there exist two constants C1,C2 > 0, independent of ki , such that

C1

m∑
i=1

k
2/N
i � c

k1,...,km

β � C2

m∑
i=1

k
2/N
i .

These inequalities can be used to estimate how many critical levels there are in each interval [a, b] ⊆ R
+.

By what we have seen in the previous section, we know that for each k1, . . . , km � 2, β > 0, there exists uβ =
(u1,β , . . . , um,β), a sign-changing solution of (1), satisfying Jβ(uβ) � c

k1,...,km∞ . By combining the results in the works
[19,20], we have the following informations about the asymptotic behavior of the solutions uβ as β → +∞.

Theorem 4.3. There exists a vector Lipschitz function ū = (ū1, . . . , ūm) ∈ M such that, up to a subsequence,

(i) ui,β → ūi in H 1
0 (Ω) ∩ C0,α(Ω) for every 0 < α < 1;

(ii) −�ui = λiui in the open set {ui �= 0}, where λi := limβ λi,β ;
(iii) ūi · ūj ≡ 0 and

∫
Ω

βu2
i,βu2

j,β → 0 as β → +∞, whenever i �= j ;
(iv) the nodal set ΓU := {x ∈ Ω: ūi (x) = 0} consists, up to a set having at most Hausdorff dimension N − 2, of a

union of hypersurfaces of class C∞.

Proof. Let us show first of all that the λi,β ’s appearing in (1) are uniformly bounded in β , and that there exists C > 0,
independent of β , such that

‖uβ‖L∞(Ω) � C. (19)

In fact,

Jβ(uβ) =
m∑

i=1

∫
Ω

|∇ui,β |2 dx +
m∑

i,j=1
j �=i

β

2

∫
Ω

u2
i,βu2

j,β dx � C

and hence∫
Ω

|∇ui,β |2 dx,

∫
Ω

βu2
i,βu2

j,β dx � C ∀i, β > 0.

Therefore λi,β = ∫
Ω

(|∇ui,β |2 + βu2
i,β

∑
j �=i u

2
j,β) dx is bounded independently of β . Moreover, uβ is a bounded

sequence in H 1
0 (Ω;R

m), thus a Brezis–Kato type argument as the one shown in the proof of Lemma 3.2 gives (19).
Now (i)–(iii) follows from [19, Theorems 1.1 & 1.2] (see also Remark 3.11) and (iv) is a direct consequence of [20,
Theorem 1.1]. It should be stressed that although in [19] the results are stated for nonnegative solutions, they also hold
for solutions with no sign-restrictions; all arguments there can be adapted with little extra effort to this more general
case, working with the positive and negative parts of a solution. �

Coming to the proof of Theorem 1.2, let us fix from now on k1 = · · · = km = 2. The importance of having obtained
sign-changing solutions is clarified in the following key result.

Lemma 4.4. Within the notations of the previous theorem, for every i ∈ {1, . . . ,m} we have that∫
Ω

|∇ūi |2 dx � λ2
({ūi �= 0}).



298 H. Tavares, S. Terracini / Ann. I. H. Poincaré – AN 29 (2012) 279–300
Proof. Observe that ui,β is an eigenfunction of the operator −�+β
∑

j �=i u
2
j,β in H 1

0 (Ω) with eigenvalue λi,β . Since
ui,β is a sign-changing solution, we have that

λi,β > λ1

(
−� + β

∑
j �=i

u2
j,β ,Ω

)
,

the first eigenvalue of −� + β
∑

j �=i u
2
j,β in H 1

0 (Ω). Moreover, if ϕi,β � 0 is such that ‖ϕi,β‖L2(Ω) = 1 and

−�ϕi,β + βϕi,β

∑
j �=i

u2
j,β = λ1

(
−� + β

∑
j �=i

u2
j,β ,Ω

)
ϕi,β,

then ∫
Ω

ui,βϕi,β dx = 0.

As ∫
Ω

(
|∇ϕi,β |2 + βϕ2

i,β

∑
j �=i

u2
j,β

)
dx = λ1

(
−� + β

∑
j �=i

u2
j,β ,Ω

)
< λi,β � C,

there exists ϕ̄i � 0 with ‖ϕ̄i‖L2(Ω) = 1 such that ϕi,β ⇀ ϕ̄i weakly in H 1
0 (Ω) and moreover by Fatou’s Lemma∫

Ω

ϕ̄2
i

∑
j �=i

ū2
j dx � lim inf

β→+∞

∫
Ω

ϕ2
i,β

∑
j �=i

u2
j,β dx � lim

β→+∞C/β = 0,

hence ϕi = 0 a.e. on
⋃

j �=i{ūj �= 0}. Since Γ has zero Lebesgue measure (recall Theorem 4.3(iv)) and ϕ̄ �≡ 0 in Ω ,
then ϕ̄i �≡ 0 a.e. over {ūi �= 0} and, as∫

Ω

ūi ϕ̄i dx = 0,

then ūi ∈ H 1
0 ({ūi �= 0}) is a sign changing solution of −�ūi = λiūi , and∫

Ω

|∇ūi |2 dx = λi � λ2
({ūi �= 0}). �

Now we are in a position to prove our second main result.

Proof of Theorem 1.2. By combining everything we have done so far, we obtain

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λ2(ωi) � c2,...,2∞ � Jβ(uβ) =
m∑

i=1

∫
Ω

|∇ui,β |2 dx +
m∑

i,j=1
j �=i

β

2

∫
Ω

u2
i,βu2

j,β dx

and hence, by Theorem 4.3(i), (iii) and Lemma 4.4,

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λ2(ωi) � c2,...,2∞ � lim
β→+∞Jβ(uβ) =

m∑
i=1

∫
Ω

|∇ūi |2

�
m∑

i=1

λ2
({ūi �= 0})

� min
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λ2(ωi).

Thus ({ū1 �= 0}, . . . , {ūm �= 0}) is a solution of (5), and the result now follows from Theorem 4.3(iv). �
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4.1. Further extensions

If k1, . . . , km = 1, observe that we can use similar (even easier) arguments without using the cones Pi . In this case,

c
1,...,1
β := inf

A∈Γ (1,...,1)
sup
A

Jβ = inf
M

Jβ

and we can prove the existence of uβ , solution of (1), such that Jβ(u) = c
1,...,1
β . Thus

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λ1(ωi) � c1,...,1∞ � lim
β→+∞Jβ(uβ) =

m∑
i=1

∫
Ω

|∇ūi |2 dx �
m∑

i=1

λ1
({ūi �= 0})

and hence we get the same result as in Theorem 1.2 with (5) replaced by

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λ1(ωi).

We recover this way the result already shown in [6].
More generally, we can also replace (5) by the problem

inf
(ω1,...,ωm)∈Pm(Ω)

(
m̄∑

i=1

λ1(ωi) +
m∑

i=m̄+1

λ2(ωi)

)
, where m̄ < m,

getting the same conclusions as before. In fact, the same arguments of Sections 2, 3 can be applied, with the difference
that we just take

P :=
m⋃

i=m̄+1

(Pi ∪ −Pi )

in the definition of (8).
We conjecture that, given arbitrary k1, . . . , km ∈ N, there exists uβ = (u1,β , . . . , um,β) solution of (1) with Jβ(uβ) �

c
k1,...,km∞ , and (ū1, . . . , ūm) a limiting profile in the sense of Theorem 4.3, such that (ω1, . . . ,ωm) := ({ū1 �= 0},

. . . , {ūm �= 0}) solves

inf
(ω1,...,ωm)∈Pm(Ω)

m∑
i=1

λki
(ωi).
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