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Abstract

We prove regularity results such as interior Lipschitz regularity and boundary continuity for the Cauchy–Dirichlet problem 
associated to a class of parabolic equations inspired by the evolutionary p-Laplacian, but extending it at a wide scale. We employ 
a regularization technique of viscosity-type that we find interesting in itself.
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1. Introduction

The aim of this paper is the study of the behavior of solutions to a wide class of nonlinear parabolic equations 
modeled after

ut − div
(g(|Du|)

|Du| Du
)

= 0 in �T := � × (0, T ) ⊂R
n ×R, (1.1)

n ≥ 2, where � is a bounded domain with C1,β boundary and g :R+ →R+ is a C1 function satisfying

g0 − 1 ≤Og(s) := sg′(s)
g(s)

≤ g1 − 1 for every s > 0 (1.2)

with 1 < g0 ≤ g1 < ∞. Notice that we can assume g0 < g1 without loss of generality. Indeed, if Og(s) is constant, 
say Og(s) = p − 1 for some p > 1, a simple integration shows that g(s) = sp−1 up to a constant factor, and therefore 
in this case (1.1) gives back the evolutionary p-Laplacian widely studied in particular by DiBenedetto, see the mono-
graph [15]. This reveals that (1.1) is a natural generalization of the p-Laplacian, and in effect this class of growth 
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conditions was mathematically introduced exactly in these terms by Lieberman in [30], even if this kind of condition 
appears earlier in the applications, see the forthcoming lines.

We stress that quite a comprehensive study of non-negative solutions to the equation

ut − div
[
ϕ′(u)Du

]= 0 (1.3)

where the function ϕ : [0, ∞) → [0, ∞) satisfies

0 < a ≤ Oϕ(s) := sϕ′(s)
ϕ(s)

≤ 1

a
, for s > 0; 1 + a ≤ Oϕ(s) for s > s0 (1.4)

for some a ∈ (0, 1) and some s0 > 0 has been provided by Dahlberg and Kenig [10,11]; see also the books [12,37]. 
Clearly, while (1.3) is a generalization of the porous medium equation that happens when ϕ(u) = um, m > 0, in the 
same spirit (1.1) can be seen as a generalization of the p-Laplacian.

As in (1.4), we shall also consider a more stringent growth assumption for g for large values of its argument. In 
addition to (1.2), we shall assume that there exist constants c�, ε > 0 such that

g(s) ≥ c�s
n−2
n+2 +ε for any s ≥ 1. (1.5)

Note that in the p-Laplacian case (1.5) reads precisely as p > 2n/(n + 2), a completely natural assumption in the 
theory of the evolutionary p-Laplacian operator, see [15,29,1]. Note moreover that (1.5) is implied by assuming 
g0 > 2n/(n + 2), see Paragraph 2.2.

The regularity for the elliptic and variational counterpart of (1.1) is quite well understood, see for instance [30,3,
9,17] for the first argument and [18,21,7,8] for the second, just to cite some indicative references. In the parabolic 
setting, however, very few results are available, and some of them only in particular cases: to our knowledge, only 
[5,23,24,31,32], almost all by Lieberman and Hwang. After the acceptance of our paper, we learnt that results similar 
to ours in a (vectorial) setting have been independently obtained by Diening, Scharle and Schwarzacher, see [13].

The difficulty, in particular in finding zero-order results, stems from several facts, the main one perhaps being 
that the equation has very different behavior, already in the p-Laplacian case, in the degenerate (p ≥ 2) and singular 
(p < 2) cases. In the degenerate case phenomena such as expansion of positivity occur, see [16,26,28], and the diffu-
sion dominates [14]. On the other hand, in the singular case the evolutionary character dominates [6] and extinction 
of positive solutions in finite time could happen, see [15]. In our general setting the degenerate case occurs when 
s 
→ g(s)/s is increasing, and when it is decreasing we have the singular case. However, it might also happen that 
s 
→ g(s)/s has no monotonicity whatsoever, making the handling of the equation all the more difficult. The compre-
hension of the interaction of these different phenomena is the key for a better understanding of the behavior of local 
solutions to (1.1), and in this paper we hope to start to clarify this difficult point, which will be the object of future 
investigations.

The class of differential operators we study, besides being quite a general extension of a well-known operator, finds 
important applications in the applied sciences, also in view of the following observation. Take the convex primitive G
of g and consider the general minimization problem

u ∈ u0 + W
1,1
0 (�) 
→

∫
�

G(|Du|) dx; (1.6)

it is often convenient to have energies with a precise dependence on |Du| of more general type than monomial (that 
is, the case of the p-Dirichlet energy or appropriate extensions). For instance, in mechanics, fluid dynamics and 
magnetism, as first approximation it is customary to have dependencies of the energy on the modulus of the gradient 
of monomial type but with exponent depending on the size of |Du|, in order to have mathematical models fitting the 
experimental data. In this case g is given by the gluing of different monomials (see the example in Paragraph 2.3). At 
this point, elliptic and parabolic equations having the growth described in (1.1) arise naturally as Euler equations or 
flows of the functional in (1.6). In [36], for instance, the two-dimensional stationary, irrotational subsonic flow of a 
compressible fluid is described using an energy defined in the following way:

G(s) = −
(

1 − γ − 1

2
s2
) γ

γ−1
for small s, G(s) = quadratic otherwise, (1.7)

where γ ∈ (1, 2) is the exponent in the law p ≈ ργ characteristic of polytropic gases.
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More in general, see [4,19,20], one is lead to consider quasilinear static equations in dimension two and three of 
the type

div
[
ρ(|Du|2)Du

]= 0,

with Du representing the velocity field of the flow and q = |Du| being the speed of the flow. In this context one 
introduces the Mach number

M2 ≡ [M(q)]2 := − 2q2

ρ(q2)
ρ′(q2)

(note that we must have ρ′ < 0). In our context, where g(s) = ρ(s2)s, we compute Og(s) = 1 − M(s)2. The general 
theory asserts that a point is elliptic if M < 1 and in this case the flow is subsonic, while if M > 1 the point is 
hyperbolic and the flow there is supersonic. If M = 1 the flow is called sonic. A solution of the boundary value 
problem is called a subsonic (supersonic) flow according to whether all points are subsonic (supersonic); note that 
mixed, or transonic flows can exist, with obvious meaning. However, if for some reason we know that the flow 
maintains a controlled, small speed q , then the problem falls in the class of operators we consider; the approximation 
in (1.7) is a way to study flows in the subsonic regime.

The object of our study will be the Cauchy–Dirichlet problem{
ut − divA(Du) = 0 in �T ,

u = ψ on ∂p�T ,
(1.8)

where A :Rn → R
n is a C1 vector field modeled after the one appearing in (1.1). In particular, we assume it satisfies 

the following ellipticity and growth conditions:⎧⎪⎪⎨⎪⎪⎩
〈DA(ξ)λ,λ〉 ≥ ν

g(|ξ |)
|ξ | |λ|2

|DA(ξ)| ≤ L
g(|ξ |)
|ξ |

, (1.9)

for any ξ ∈ R
n \ {0}, λ ∈ R

n and with structural constants 0 < ν ≤ 1 ≤ L; we assume without loss of generality that 
A(0) = 0. The function g is a C1 function as in (1.1), satisfying only (1.2) and (1.5). For what concerns ψ , we assume 
it to be continuous in ∂p�T with modulus of continuity ωψ with respect to the natural distance distpar,G, that is, there 
exists a continuous, concave function ωψ :R+ → R+ with ωψ(0) = 0 such that

|ψ(x, t) − ψ(y, s)| ≤ ωψ

(
max{|x − y|, [G−1(1/|t − s|)]−1})

for every (x, t), (y, s) ∈ ∂p�T . As already mentioned, � is a bounded domain of Rn, n ≥ 2, whose boundary is of 
class C1,β for some β ∈ (0, 1); we shall provide some more details at the beginning of Section 2.

In this setting, we state the main result of our paper, which concerns at the same time the existence and regularity 
of a (unique) solution to (1.8).

Theorem 1.1. There exists a unique solution u, in the sense of Definition 2, to the Cauchy–Dirichlet problem (1.8), 
where the vector field A satisfies the assumptions (1.9), with g ∈ C1(R+) satisfying (1.2) and (1.5). In particular, 
u is continuous up to the boundary and moreover if the boundary datum ψ is Hölder continuous with respect to the 
natural metric distpar,G defined in (2.1), then so is u.

The following theorem gives some properties together with quantitative estimates for the solution described in the 
previous statement.

Theorem 1.2. Let u be the solution to (1.8) given by Theorem 1.1. Then u is locally Lipschitz continuous and the 
following estimate holds:

‖Du‖L∞(QR) ≤ c

( ∫ [
G(|Du|) + 1

]
dx dt

)max
{

1
2 , 2

ε(n+2)

}
(1.10)
Q2R
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for every parabolic cylinder Q2R � �T . The constant c depends on n, g0, g1, ν, L, ε and c�. Moreover, there exists a 
modulus of continuity ωu :R+ 
→R+ depending on n, g0, g1, ν, L, ε, c�, ‖ψ‖L∞ , ωψ , ∂� such that

|u(x, t) − u(y, s)| ≤ ωu

(
max

{|x − y|, [G−1(1/|t − s|)]−1}) (1.11)

for every (x, t), (y, s) ∈ �T
p

.

We refer the reader to Paragraph 2.1 for the definitions of the standard parabolic cylinders QR(x0, t0) and of the 
parabolic closure of �T . We also mention that in the standard case of the evolutionary p-Laplacian our estimate (1.10)
gives back exactly the gradient sup-estimate available for degenerate and singular equations, see [15, Chapter VIII, 
Theorems 5.1 & 5.2’] and [28,29].

Remark 1. Theorems 1.1 and 1.2 hold for a wider class of operators generalizing (1.1), which allow the presence of a 
function g that is not C1 but merely Lipschitz. Indeed, we may consider Lipschitz functions g : R+ → R+ satisfying 
(1.2) almost everywhere and vector fields A : Rn → R

n in W 1,∞(Rn) satisfying the monotonicity and Lipschitz 
assumptions⎧⎪⎪⎨⎪⎪⎩

〈A(ξ1) −A(ξ2), ξ1 − ξ2〉 ≥ ν
g(|ξ1| + |ξ2|)
|ξ1| + |ξ2| |ξ1 − ξ2|2

|A(ξ1) −A(ξ2)| ≤ L
g(|ξ1| + |ξ2|)
|ξ1| + |ξ2| |ξ1 − ξ2|,

, (1.12)

for every ξ1, ξ2 ∈ R
n such that |ξ1| + |ξ2| �= 0 and for some 0 < ν ≤ 1 ≤ L. For a proof of this fact see the end of 

Section 6.

1.1. Novelties and technical tools

We believe that the main interest of this paper, apart from the results of Theorems 1.1 and 1.2 themselves (that 
will be used for instance in [33]), is the development of some tools for the treatment of the difficult equation (1.8)
(see Paragraph 2.3). We prove the Lipschitz estimate as an a priori estimate for problems enjoying further regularity. 
Instead of using a regularization of the type used in [30,31], the regularization we employ is of viscosity type, closer 
to that in [2]: we consider a vector field of the type

Aε(ξ) := (φε ∗A)(ξ) + ε
(
1 + |ξ |)p−2

ξ, ξ ∈ R
n, ε ∈ (0,1),

where p � 1 is a large exponent and {φε} a family of mollifiers. This allows us to overcome the difficulties of 
deriving regularity estimates for the approximant problems, which we were not able to find in the literature. At this 
point continuity up to the boundary becomes an essential ingredient in the proof of the convergence, as well as the 
fact that we are solving a Cauchy–Dirichlet problem and therefore have a uniform bound on ‖uε‖L∞ given by the 
maximum principle.

We use the a priori Lipschitz continuity (and the further regularity) of the approximating solutions in a way inspired 
by [27]. First, we employ the fact that the function v = |Du|2 is a subsolution to a similar problem, see Lemma 3.1. 
Then, we define an appropriate intrinsic geometry (see (3.7)) depending on the growth of the approximating vector 
field Aε , which allows us to rebalance estimates, in the sense that the weight appearing in the Caccioppoli estimate 
for the equation satisfied by v turns out to be essentially constant, see (3.8). Here the fact that we can bound the 
supremum of Du, and thus of v, from above is essential. Finally, we conclude the proof using an argument based on 
an alternative in order to get rid of the possible dependence on ε in terms of the aforementioned geometry, depending 
in turn on the growth of Aε.

2. Preliminary material: notation, the function g, miscellanea

For what concerns ∂�, we assume that there exists a radius R� > 0 such that for every point x0 ∈ ∂� there is a unit 
vector êx0 such that the restriction of ∂� is a graph of a C1,β function in BR� along the êx0 direction, in the following 
sense: with T being an orthogonal transformation that maps êx0 into (0, 0, . . . , 0, 1), for every 0 < r ≤ R� it holds
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T −1(∂� − x0) ∩ (
B ′

r × (−r, r)
)= graph θ

(see below for the precise meaning of these symbols) with θ ≡ θx0 ∈ C1,β(B ′
r ), θ(B ′

r ) ⊂ (−r, r) and the C1,β norm of 
θ uniformly bounded:

[θ ]C1,β ≤ �.

Note that without loss of generality, we can take êx0 as the inner normal vector in x0: {v : 〈v, êx0〉 = 0} is the tangent 
hyperplane to � in x0; therefore Dθ(0) = 0. Dθ is the full gradient of θ with respect to its n − 1 variables. Finally, 
by saying that a constant depends on ∂�, we shall mean it depends on �.

2.1. Notation

We denote by c a general constant always larger than or equal to one, possibly varying from line to line; relevant 
dependencies on parameters will be emphasized using parentheses, i.e., c1 ≡ c1(n, p, q) means that c1 depends on n, 
p, q . For the ease of notation, we shall also use the following abbreviation:

data := {n,g0, g1, ν,L}.
We denote by

BR(x0) := {x ∈R
n : |x − x0| < R}

the open ball with center x0 and radius R > 0; when clear from the context or otherwise not important, we shall omit 
denoting the center as follows: BR ≡ BR(x0). The standard parabolic cylinder is defined as

QR(x0, t0) := BR(x0) × (t0 − R2, t0),

while we define the natural cylinder as

QG
R(x0, t0) := BR(x0) × (t0 − [G(1/R)]−1, t0).

The latter is strictly linked to the scaling of the equation, see Paragraph 2.6. Unless otherwise explicitly stated, different 
balls and cylinders in the same context will have the same center. We shall denote, for a factor α > 0, by αBR the ball 
BαR and by αQR(x0, t0) the cylinder BαR(x0) × (t0 − (αR)2, t0); similarly for αQG

R(x0, t0). The parabolic boundary 
of a cylindrical domain K =D × �, where D is an open domain and � an open interval of the real line, is defined as

∂pK := (
D × inf�

)∪ (
∂D × �

)
.

Naturally, the parabolic closure of K is then Kp := K ∪ ∂pK. Accordingly with the customary use in the parabolic 
setting, when considering a sub-cylinder K (as above) compactly contained in �T , we shall mean that D � � and 
0 < inf� < sup� ≤ T ; we will write in this case K� �T . By ∂� − x0 we mean the set {x ∈ R

n : x + x0 ∈ ∂�}. The 
standard parabolic distance is

distpar
(
(x, t), (y, s)

) := max
{|x − y|,√|t − s|}

for any (x, t), (y, s) ∈ R
n+1, while a distance strictly related to the scaling properties of the differential operator is

distpar,G
(
(x, t), (y, s)

) := max
{
|x − y|,

[
G−1

( 1

|t − s|
)]−1}

. (2.1)

Note that QG
R(x0, t0) = {(x, t) ∈ R

n+1 : distpar,G((x, t), (x0, t0)) < R, t < t0} and similarly for QR(x0, t0). Accord-
ingly we define the parabolic distance between sets as

distpar(A,B) := inf
(x,t)∈A
(y,s)∈B

distpar
(
(x, t), (y, s)

)
for A, B ⊂R

n+1; similarly for distpar,G(A, B).
At a certain point it will be useful to split Rn = R

n−1 × R. We agree here that we shall write a point x ∈ R
n as 

(x′, xn) ∈ R
n−1 ×R; moreover, with B ′

r (x
′ ) we shall denote the ball of Rn−1 with radius r and center x′ ∈R

n−1.
0 0
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With B ⊂R
� being a measurable set, χB denotes its characteristic function. If furthermore B has positive and finite 

measure and f : B → R
k is a measurable map, we shall denote by

(f )B ≡
∫
B

f (y)dy := 1

|B|
∫
B

f (y)dy

the integral average of f over B. If B is a cylinder, B := K × � ⊂ R
n+1, then we shall denote the slicewise average 

by

(f )K(τ) :=
∫
K

f (y, τ ) dy

for almost every τ ∈ �. By sup we shall mean possibly the essential supremum, and similarly for inf. We shall also as 
usual denote

osc
B

f := sup
B

f − inf
B

f, [f ]C0,γ (B) := sup
x,y∈B
x �=y

|f (x) − f (y)|
|x − y|γ .

Dif := ∂f/∂xi , for i ∈ {1, . . . , n}, will stand for the partial derivative of f in the êi direction, and D2
i,j f will denote 

∂2f/∂xi∂xj . Here êi is the i-th element of the standard orthonormal basis of Rn. By 2∗ we shall denote the Sobolev 
conjugate exponent of 2, with the agreement that in the case n = 2 we fix the value of 2∗ as 4, i.e.,

2∗ :=

⎧⎪⎨⎪⎩
2n

n − 2
n > 2,

4 n = 2.

(2.2)

With s being a real number, we shall denote s+ := max{s, 0} and s− := max{−s, 0}. For a vector ξ = (ξ1, . . . , ξn) ∈ R
n, 

diag ξ denotes the diagonal matrix (ξiδi,j )
n
i,j=1. Finally, R+ := [0, ∞), N is the set {1, 2, . . . } and N0 =N ∪ {0}.

By “equation structurally similar to (1.8)1” we mean an equation of the type ∂tu −div Ã(Du) = 0 with Ã satisfying 
assumptions (1.9) with ν, L and g replaced by ν̃, L̃ and g̃. Both ν̃, L̃ will depend on data, while g̃ will satisfy (1.2)
and (1.5) with ̃g0, ̃g0, c̃� depending on data and c�.

2.2. Properties of g

Without loss of generality we assume that

1∫
0

g(ρ)dρ = 1. (2.3)

Since (1.2) implies that the map r 
→ g(r)r−(g0−1) is increasing, while r 
→ g(r)r−(g1−1) turns out to be decreasing, 
we have

min
{
αg0−1, αg1−1

}
g(r) ≤ g(αr) ≤ max

{
αg0−1, αg1−1

}
g(r)

for every r, α > 0; clearly g(0) = 0 and limr→∞ g(r) = ∞. Since moreover g is strictly increasing, it has a strictly 
increasing inverse function g−1 ∈ C1(R+) with(

g−1
)′

(r) = 1

g′(g−1(r))
for every r > 0.

Using (1.2) we then see that also g−1 satisfies an Orlicz-type condition

1 ≤ (rg−1)′(r)
−1

≤ 1
for every r > 0. (2.4)
g1 − 1 g (r) g0 − 1
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Therefore, anything derived from (1.2) for g holds for g−1 with g0 − 1 and g1 − 1 replaced by 1/(g1 − 1) and 
1/(g0 − 1), respectively.

Define the function G :R+ →R+ as

G(r) :=
r∫

0

g(ρ)dρ. (2.5)

Clearly G′(r) = g(r) > 0 and G′′(r) = g′(r) > 0 implying that G is both strictly increasing and strictly convex in 
(0, ∞). Moreover, G(0) = 0 and G(1) = 1 due to (2.3). We also define 1/G(1/s) = 1/G−1(1/s) = 0 for s = 0. It is 
simple to check by integrating the function r 
→ rg(r) by parts and using (1.2) that also

g0 ≤ G′(r)r
G(r)

≤ g1 (2.6)

holds true for r > 0.
Define the Young complement of G as

G̃(r) = sup
s>0

(rs − G(s)) or G̃(r) :=
r∫

0

g−1(ρ) dρ; (2.7)

in our setting these definitions are equivalent, see [35]. Note that the Young’s inequality

sr ≤ G(s) + G̃(r) (2.8)

holds true for every r, s > 0 and by (2.4) and the second definition in (2.7) also G̃ satisfies an Orlicz-type condition

g1

g1 − 1
≤ G̃′(r)r

G̃(r)
≤ g0

g0 − 1
. (2.9)

Now starting from (2.6) and (2.9), we deduce precisely as for g the inequalities

min
{
αg0, αg1

}
G(r) ≤ G(αr) ≤ max

{
αg0 , αg1

}
G(r), (2.10)

and

min

{
α

g1
g1−1 , α

g0
g0−1

}
G̃(r) ≤ G̃(αr) ≤ max

{
α

g1
g1−1 , α

g0
g0−1

}
G̃(r)

for every α, r ≥ 0. These, together with Young’s inequality (2.8), imply for 0 < ε < 1

sr ≤ G(ε
1
g0 s) + G̃(ε

− 1
g0 r) ≤ εG(s) + c(g0, ε)G̃(r).

Another useful property is

G̃
(G(r)

r

)
≤ G(r) for every r > 0,

see again [35] for the easy proof.
From the second assumption of (1.9) we easily derive an upper bound for A. Indeed, when ξ ∈ R

n \ {0} we have

|A(ξ)| ≤ |ξ |
1∫

0

|DA(sξ)|ds ≤ L|ξ |
1∫

0

g(s|ξ |)
s|ξ | ds ≤ c(L,g0)

|ξ |∫
0

g′(r) dr ≤ c(g0, g1,L)
G(|ξ |)

|ξ | ; (2.11)

this holds also for ξ = 0 by our conventions, since A(0) = 0. Similarly, the first assumption of (1.9) yields

〈A(ξ), ξ 〉 =
1∫
〈DA(sξ)ξ, ξ 〉ds ≥ c(g1, ν)|ξ |

|ξ |∫
g′(r) dr ≥ c(g0, g1, ν)G(|ξ |). (2.12)
0 0
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We define the quantity Vg :Rn → R
n by

Vg(ξ) =
(

g(|ξ |)
|ξ |

) 1
2

ξ

when ξ �= 0 and set Vg(0) = 0. Clearly Vg is a continuous bijection of Rn and, moreover, has a continuous inverse by 
the inverse function theorem. Furthermore, the following monotonicity formula holds true:

〈A(ξ1) −A(ξ2), ξ1 − ξ2〉 ≥ c
g(|ξ1| + |ξ2|)
|ξ1| + |ξ2| |ξ1 − ξ2|2 ≥ c |Vg(ξ1) − Vg(ξ2)|2 (2.13)

for a constant c ≡ c(g0, g1, ν) and for every ξ1, ξ2 ∈ R
n, see [17,18].

2.3. A concrete example

We give here a nontrivial example of a Lipschitz function g satisfying our assumptions – see Remark 1. This 
example is inspired by [30]. In particular we want to demonstrate the possibility that g oscillates between degenerate 
and singular behavior. Suppose 2n/(n + 2) < g0 < g1 and set δ = (g1 − g0)/3 > 0. Define the sequence sk = 22k

for 
k ∈N0 and the function

g(s) =

⎧⎪⎪⎨⎪⎪⎩
sg0−1+δ, 0 < s < 2

s−δ
2k+1s

g1−1, s2k ≤ s < s2k+1

sδ
2k+2s

g0−1, s2k+1 ≤ s < s2k+2

.

Clearly g is Lipschitz and it satisfies (1.2). Moreover, (2.3) holds after scaling by a suitable normalization constant. 
We observe that

lim sup
s→+∞

g(s)

s
=

⎧⎪⎨⎪⎩
+∞, g1 > 2 + δ (iff g0 + 2g1 > 6)

1, g1 = 2 + δ (iff g0 + 2g1 = 6)

0, g1 < 2 + δ (iff g0 + 2g1 < 6)

,

lim inf
s→+∞

g(s)

s
=

⎧⎪⎨⎪⎩
+∞, g0 > 2 − δ (iff 2g0 + g1 > 6)

1, g0 = 2 − δ (iff 2g0 + g1 = 6)

0, g0 < 2 − δ (iff 2g0 + g1 < 6)

.

By taking g0 = 2 − 3
2n

, g1 = 2 + 3
2n

we obtain a particularly interesting case, that is, we have lim infs→+∞ g(s)/s = 0
but lim sups→+∞ g(s)/s = +∞. Furthermore, if we consider the function

g̃(s) = 1

g(1/s)
,

we find similar behavior as s → 0+. This is to say, we can build a structure function g (and accordingly a vector 
field A as in (1.1)) that, for � ∈ N, along the sequence {�−k}k∈N0 the function g(s)/s is at the same time as large 
and as close to zero as we wish, and therefore it does not enjoy any monotonicity properties. This gives a clue about 
the difficulty of the application of De Giorgi-type methods, in particular when they have to be matched with intrinsic 
geometries: note that the expressions of the type G(s)/s2 ≈ g(s)/s appear already in the energy estimate for (1.1), 
see Lemma 2.3. On the other hand, when the quantity g(|Du|)/|Du| is known to be under control, then the equation 
becomes treatable, see for instance Proposition 3.4 and in particular (3.8).

2.4. Orlicz spaces

For G as in (2.5), a measurable function u : A → R, A ⊂R
k , k ∈N belongs to the Orlicz space LG(A) if it satisfies∫

G(|u|) dx < ∞.
A
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The space LG(A) is a vector space, since G satisfies the �2-condition (2.10), and it can be shown to be a Banach 
space if endowed with the Luxemburg norm

‖u‖LG(A) := inf

⎧⎨⎩λ > 0 :
∫
A

G
( |u|

λ

)
dx ≤ 1

⎫⎬⎭.

A function u belongs to LG
loc(A), if u ∈ LG(A′) for every A′ � A. If also the weak gradient of u belongs to LG(A), 

we say that u ∈ W 1,G(A). The corresponding space with zero boundary values, denoted W 1,G
0 (A), is the completion 

of C∞
c (A) under the norm

‖u‖W 1,G(A) := ‖u‖LG(A) + ‖Du‖LG(A).

We denote by V G(�T ) the space of functions u ∈ LG(�T ) ∩ L1(0, T ; W 1,1(�)) for which also the weak spatial 
gradient Du belongs to LG(�T ). The space V G(�T ) is also a Banach space with the norm

‖u‖V G(�T ) := ‖u‖LG(�T ) + ‖Du‖LG(�T ).

Moreover, we denote by V G
0 (�T ) the space of functions u ∈ V G(�T ) that belong to W 1,G

0 (�) for almost every 
t ∈ (0, T ), while the localized version V G

loc(�T ) is defined, as above, in the customary way. We also shorten

V 2,G(�T ) := L∞(
0, T ;L2(�)

)
∩ V G(�T )

and similarly for the localized and the zero trace versions. We shall moreover denote V 2,p(�T ), for p > 1, the space 
V 2,G(�T ) for the choice G(s) = sp .

2.5. The concept of solution and consequences

We fix here the notions of solution employed in this paper.

Definition 1. A function u is a weak solution to (1.8)1 in a cylindrical domain K ⊂ R
n+1, with the vector field A

satisfying the assumptions (1.9), if u ∈ V
2,G
loc (K) and it satisfies the weak formulation∫

K

[− u∂tη + 〈A(Du),Dη〉]dx dt = 0 (2.14)

for every test function η ∈ C∞
c (K). If instead of equality we have the ≤ (≥) sign for every nonnegative η ∈ C∞

c (K), 
we say that u is a weak subsolution (supersolution) in K.

Definition 2. A function u is a solution to the Cauchy–Dirichlet problem (1.8) if u ∈ C0(�T ) is a weak solution to 
(1.8)1 in �T and moreover u = ψ pointwise on ∂p�T .

A very useful formulation, equivalent to (2.14), is the one involving Steklov averages. Indeed, the mild regularity of 
a solution does not allow us to use it as a test function. Furthermore, it is sometimes useful to have a weak formulation 
allowing for test functions independent of time, or test functions possibly vanishing only on the parabolic boundary of 
a cylinder. Apart from mollification, the possible way to have such properties involve the so-called Steklov averaging 
regularization of a function: for f :K =D × (t1, t2) → R measurable and 0 < |h| � 1 appropriate, it is defined as

fh(x, t) := 1

h

t∫
t−h

f (x, s) ds for (x, t) ∈ D × (t1 + h, t2);

note that we employ the backward regularization. If f ∈ Lq(K) for some q ≥ 1, then fh → f in Lq(D × (t1 + ε, t2))
for every ε > 0; the same holds in the LG spaces. Moreover, if f ∈ C0(t1, t2; Lq(D)) then fh(·, τ) → f (·, τ) in 
Lq(D) for a.e. τ ∈ (t1 + ε, t2) and for every ε > 0.
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At this point it is quite easy to infer the following slicewise formulation for weak solutions (see [15]) using density 
arguments with respect to the spatial variable:∫

D

[
∂tuh(·, τ )η + 〈[A(Du)]h(·, τ ),Dη

〉]
dx = 0 (2.15)

for every η ∈ W
1,G
0 (D), almost every τ ∈ (t1 + h, t2), and h > 0 such that the functions are well defined. Similar 

results hold also for weak super- and subsolutions.

Proposition 2.1 (Comparison principle). Let K := D × (t1, t2) ⊂ �T and let u ∈ C0(Kp
) be a weak subsolution to

(1.8)1 and v ∈ C0(Kp
) a weak supersolution to (1.8)1 in K. If u ≤ v on ∂pK, then u ≤ v in Kp

.

Proof. For ε > 0 fixed define ϕε(t) := (t2 − ε − t)+ and test (2.14) formally with

η = (uh − vh − ε)+ϕε.

Note that η is compactly supported in K due to the continuity of u and v and the fact that u ≤ v on ∂pQ. Subtracting 
the Steklov version of the variational inequality of v from that of u and integrating over (t1, t2) yields∫

K

∂t (uh − vh)η dx dt +
∫
K

〈[A(Du)]h − [A(Dv)]h,Dη〉dx dt ≤ 0.

By the monotonicity of A, Lemma 2.13, we have∫
K

〈[A(Du)]h − [A(Dv)]h,Dη〉dx dt →
∫

K∩{u>v+ε}
〈A(Du) −A(Dv),Du − Dv)〉ϕε dx dt ≥ 0,

and for the parabolic term we obtain using integration by parts∫
K

∂t (uh − vh)(uh − vh − ε)+ϕε dx dt = −1

2

∫
K

(uh − vh − ε)2+∂tϕε dx dt → 1

2

t2−ε∫
t1

∫
D

(u − v − ε)2+ dx dt

as h → 0. Combining these gives

t2−ε∫
t1

∫
D

(u − v − ε)2+ dx dt ≤ 0,

which implies u ≤ v + ε almost everywhere in D × (t1, t2 − ε). Since this holds for every ε > 0 and u, v ∈ C(Q), the 
result follows. �

Observe that the uniqueness of a solution to the Cauchy–Dirichlet problem (1.8) follows immediately from the 
previous result. Moreover, we have the following corollary.

Corollary 2.2 (Maximum principle). Let K ⊂ �T and let u ∈ C(Kp
) be a weak solution to (1.8)1 in K. Then

inf
∂pK

u ≤ u ≤ sup
∂pK

u

in Kp
and, moreover,

sup
K

|u| = sup
∂pK

|u|.

We recall the following standard energy inequality for local weak solutions. We give it in a more general form for 
future reference.
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Lemma 2.3 (Caccioppoli’s inequality). Let K := D × (t1, t2) � �T and let u be a weak solution to (1.8) in K. Then 
there exists a constant c ≡ c(g0, g1, ν, L) such that

sup
τ∈(t1,t2)

∫
D

[
(u − k)2±ϕg1

]
(·, τ ) dx +

∫
K

G
(|D(u − k)±|)ϕg1 dx dt

≤
∫
D

[
(u − k)2±ϕg1

]
(·, t1) dx + c

∫
K

[
G
(|Dϕ|(u − k)±

)+ (u − k)2±|∂tϕ|
]
dx dt

for any k ∈R and for every ϕ ∈ W 1,∞(K) vanishing in a neighborhood of ∂D× (t1, t2) and with 0 ≤ ϕ ≤ 1. The same 
inequality but only with the “+” sign holds for weak subsolutions.

Proof. Fix ϕ ∈ W 1,∞(K) as in the statement of the lemma, call w := ±(u − k)± and choose η = whϕ
g1 as the test 

function in (2.15). Then we integrate over (t1, τ) for τ ∈ (t1, t2) to obtain∫
K

∂tuh whϕ
g1χ(t1,τ ) dx dt +

∫
K

〈[A(Du)]h,D
(
whϕ

g1
)〉
χ(t1,τ ) dx dt = 0. (2.16)

Integration by parts gives∫
K

∂tuh whϕ
g1χ(t1,τ ) dx dt = 1

2

τ∫
t1

∫
D

∂t (w
2
h)ϕ

g1 dx dt

= 1

2

∫
D

w2
hϕ

g1 dx

∣∣∣∣∣∣
τ

t=t1

− 1

2

τ∫
t1

∫
D

w2
h∂t

(
ϕg1

)
dx dt

→ 1

2

∫
D

w2ϕg1 dx

∣∣∣∣∣∣
τ

t=t1

− 1

2

τ∫
t1

∫
D

w2∂t

(
ϕg1

)
dx dt (2.17)

as h → 0. For the elliptic part we have by (2.12)∫
K

〈[A(Du)]h,D(whϕ
g1)

〉
χ(t1,τ ) dx dt

→
τ∫

t1

∫
D

〈
A(Du),Dw

〉
ϕg1 dx dt + g1

τ∫
t1

∫
D

〈
A(Du),Dϕ

〉
w ϕg1−1 dx dt

≥ c1

τ∫
t1

∫
D

G(|Dw|)ϕg1 dx dt −
∣∣∣∣g1

∫
K

〈
A(Du),Dϕ

〉
w ϕg1−1 dx dt

∣∣∣∣,
where c1 depends on g0, g1, ν. Furthermore, by (2.11), Young’s inequality with ε ∈ (0, 1) to be chosen and the 
properties of g we obtain∣∣∣∣∣∣g1

∫
K

〈
A(Du),Dϕ

〉
w ϕg1−1 dx dt

∣∣∣∣∣∣≤ g1

∫
K

|A(Dw)||Dϕ||w|ϕg1−1 dx dt

≤ εc2

∫
K

G̃

(
G(|Dw|)

|Dw| ϕg1−1
)

dx dt + c(ε)

∫
K

G(|Dϕ||w|) dx dt

≤ εc2

∫
K

G(|Dw|)ϕg1 dx dt + c(ε)

∫
K

G(|Dϕ||w|) dx dt, (2.18)
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where c2 depends on g0, g1, L and c(ε) depends on g0, g1, L as well as on ε. Now, combining (2.17)–(2.18) with 
(2.16) yields

1

2

∫
D

w2ϕg1 dx

∣∣∣∣∣∣
τ

t=t1

− 1

2

∫
K

w2∂t

(
ϕg1

)
dx dt + c1

τ∫
t1

∫
D

G(|Dw|)ϕg1 dx dt

≤ εc2

∫
K

G(|Dw|)ϕg1 dx dt + c(ε)

∫
K

G(|Dϕ||w|) dx dt.

We conclude by taking the essential supremum with respect to τ ∈ (t1, t2), choosing ε ∈ (0, 1) such that εc2 ≤ c1/2, 
reabsorbing the term on the right-hand side and recalling the definition of w.

The proof for subsolutions is very similar, taking into account that the test function η must be nonnegative. �
2.6. The geometry of the problem

In order to understand the equation, the first thing we want to stress is its scaling. Suppose u solves the model 
equation (1.1) in Q1 = B1 × (−1, 0) and let κ > 0. Then the function

ū(x, t) := κu
(x − x0

r
,

1

κ2
G
(κ

r

)
(t − t0)

)
solves in

Qκ
r (x0, t0) := Br(x0) ×

(
t0 − κ2

[
G
(κ

r

)]−1
, t0

)
the equation

ūt − div
( ḡ(|Dū|)

|Dū| Dū
)

= 0, (2.19)

where

ḡ(s) := κ

r

[
G
(κ

r

)]−1
g
(κ

r
s
)
. (2.20)

The function ḡ has the same structure as g, in the sense that it satisfies (1.2) exactly with parameters g0 and g1 and 
moreover, we have G(1) = 1, where

G(s) :=
s∫

0

ḡ(σ ) dσ =
[
G
(κ

r

)]−1
G
(κ

r
s
)
.

Conversely, if we have a solution w to (1.8) in Qκ
r , then

w̄(x, t) := 1

κ
w
(
x0 + rx, t0 + κ2

[
G
(κ

r

)]−1
t
)

solves (2.19) in Q1 with ḡ as in (2.20). In case we consider the general equation (1.8), the same scaling argument 
holds if we consider the vector field

A(ξ) := κ

r

[
G
(κ

r

)]−1
A
(κ

r
ξ
)

which satisfies the structural conditions (1.9) with g replaced by the function ḡ.

2.7. Other auxiliary results

The following lemma encodes the self-improving property of reverse Hölder inequalities. We take the form pro-
posed in [27, Lemma 5.1] with slight changes in order to meet our purposes.
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Lemma 2.4. Let μ be a nonnegative Borel measure with finite total mass. Moreover, let γ > 1 and {σQ}0<σ≤1 be a 
family of open sets with the property

σ ′Q⊂ σQ⊂ 1Q =Q

whenever 0 < σ ′ < σ ≤ 1. If w ∈ L2(Q) is a nonnegative function satisfying( ∫
σ ′Q

w2γ dμ

)1/(2γ )

≤ c0

σ − σ ′

( ∫
σQ

w2 dμ

)1/2

for all 1/2 ≤ σ ′ < σ ≤ 1, then for any 0 < q < 2 there is a positive constant c ≡ c(c0, γ, q) such that( ∫
σQ

w2γ dμ

)1/(2γ )

≤ c

(1 − σ)ξ

(∫
Q

wq dμ

)1/q

,

for all 0 < σ < 1, where ξ := 2γ−q
q(γ−1)

.

The next one is a classic iteration Lemma.

Lemma 2.5. Let φ : [R, 2R] → [0, ∞) be a function such that

φ(r) ≤ 1

2
φ(s) + A

(s − r)β
+ B for every R ≤ r < s ≤ 2R,

where A, B ≥ 1 and β > 0. Then

φ(R) ≤ c(β)

[
A

Rβ
+ B

]
.

3. A priori Lipschitz estimates

In this section we impose on u an additional regularity assumption and prove intrinsic estimates for the gradient 
of u. To be precise, we shall suppose

u,Du ∈ C0
loc(�T ), u ∈ L2

loc(0, T ;W 2,2
loc (�)). (3.1)

This is to say, we shall prove the estimates of this section as a priori estimates, leaving to Section 4 the approximation 
procedure which will explain how to deduce the desired estimates without the additional assumption (3.1). Notice that 
the continuity of u and Du allows us to treat their pointwise values. Due to the assumed extra regularity it will be 
possible to differentiate the equation; this will be done by showing that the function

v := |Du|2 (3.2)

is a subsolution to a similar equation.

Lemma 3.1. Let u be a weak solution to (1.8)1 in �T and, moreover, assume that the regularity assumptions (3.1)
hold. Then v is a weak subsolution to

∂tv − div(DA(Du)Dv) = 0 in �T . (3.3)

Proof. Formally, the idea is to differentiate equation (1.8)1 with respect to xj for j = 1, . . . , n, then multiply by Dju, 
and finally sum over j . To this end, let 0 ≤ ϕ ∈ C∞

c (�T ), and test (2.14) with

η = −Dj

(
Djuϕ

)
.

This choice can be justified by using Steklov averages, as done previously in the paper; we shall proceed formally. 
Integration by parts yields
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0 = −
∫

�T

u∂t

(−Dj

(
Djuϕ

))
dx dt +

∫
�T

〈A(Du),D
(−Dj

(
Djuϕ

))〉dx dt

=
∫

�T

∂t (Dju)Djuϕ dx dt +
∫

�T

〈DjA(Du),D
(
Djuϕ

)〉dx dt

= −1

2

∫
�T

|Dju|2∂tϕ dx dt + 1

2

∫
�T

〈DA(Du)D
(|Dju|2),Dϕ〉dx dt +

∫
�T

〈DA(Du)DDju,DDju〉ϕ dx dt.

Now, since∫
�T

〈DA(Du)DDju,DDju〉ϕ dx dt ≥ ν

∫
�T

g(|Du|)
|Du| |DDju|2ϕ dx dt ≥ 0

by (1.9)1, summing up over j = 1, . . . , n leads to

−
∫

�T

|Du|2∂tϕ dx dt +
∫

�T

〈DA(Du)D|Du|2,Dϕ〉dx dt ≤ 0.

This proves the claim. �
Next we prove a Caccioppoli inequality of porous medium type for the function v.

Lemma 3.2. Let u be a weak solution of (1.8) in �T and assume that (3.1) holds. Let K := D × (t1, t2) � �T and 
k ∈R. Then there exists a constant c ≡ c(ν, L) such that

sup
τ∈(t1,t2)

∫
D

[(v − k)2+ϕ2](·, τ ) dx +
∫
K

g(|Du|)
|Du| |D(v − k)+|2ϕ2 dx dt

≤ c

∫
K

(v − k)2+
(

g(|Du|)
|Du| |Dϕ|2 + |∂tϕ|

)
dx dt

for every ϕ ∈ C∞(K) vanishing in a neighborhood of ∂pK.

Proof. We can take

η = (v − k)+ϕ2χ(t1,τ )

for τ ∈ (t1, t2) as the test function in the weak formulation of (3.3), up to a regularization similar to the previous ones. 
For the parabolic part we have

−
τ∫

t1

∫
D

v ∂t

(
(v − k)+ϕ2

)
dx dt = 1

2

τ∫
t1

∫
D

∂t (v − k)2+ϕ2 dx dt

= 1

2

∫
D

[(v − k)2+ϕ2](·, τ ) dx − 1

2

τ∫
t1

∫
D

(v − k)2+∂tϕ
2 dx dt.

The elliptic term can be estimated from below by using the assumptions (1.9) and Young’s inequality with ε = ν/(2L). 
This gives

τ∫ ∫ 〈
DA(Du)Dv,D

(
(v − k)+ϕ2

)〉
dx dt
t1 D
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=
τ∫

t1

∫
D

〈DA(Du)D(v − k)+,D(v − k)+〉ϕ2 dx dt + 2

τ∫
t1

∫
D

〈DA(Du)D(v − k)+,Dϕ〉 (v − k)+ϕ dx dt

≥ ν

τ∫
t1

∫
D

g(|Du|)
|Du| |D(v − k)+|2ϕ2 dx dt − 2L

τ∫
t1

∫
D

g(|Du|)
|Du| |D(v − k)+||Dϕ| (v − k)+ϕ dx dt

≥ ν

2

τ∫
t1

∫
D

g(|Du|)
|Du| |D(v − k)+|2ϕ2 dx dt − c(ν,L)

τ∫
t1

∫
D

g(|Du|)
|Du| |Dϕ|2 (v − k)2+ dx dt,

and thus, we obtain∫
D

[(v − k)2+ϕ2](·, τ ) dx + ν

τ∫
t1

∫
D

g(|Du|)
|Du| |D(v − k)+|2ϕ2 dx dt

≤ c

∫
K

g(|Du|)
|Du| |Dϕ|2 (v − k)2+ dx dt +

∫
K

(v − k)2+|∂tϕ|dx dt.

Since τ ∈ (t1, t2) was arbitrary, the result follows. �
Combining the previous lemma with Sobolev’s inequality leads to the following estimate.

Lemma 3.3. Let the assumptions of Lemma 3.2 be in force. Then there exists a constant c ≡ c(n, g1, ν, L) such that∫
K

g(|Du|)
|Du| (v − k)

2γ
+ ϕ2γ dx dt ≤ c |D|2/n(t2 − t1)

γ−1

⎛⎝∫
K

(v − k)2+
(

g(|Du|)
|Du| |Dϕ|2 + |∂tϕ|

)
dx dt

⎞⎠γ

, (3.4)

where – recall (2.2) –

γ := 2 − 2

2∗ > 1.

Proof. By Hölder’s and Sobolev’s inequalities we have∫
K

g(|Du|)
|Du| (v − k)

2γ
+ ϕ2γ dx dt

= 1

t2 − t1

t2∫
t1

∫
D

g(|Du|)
|Du| (v − k)2+ϕ2((v − k)2+ϕ2)1−2/2∗

dx dt

≤ 1

t2 − t1

t2∫
t1

(∫
D

((g(|Du|)
|Du|

)1/2
(v − k)+ϕ

)2∗

dx

)2/2∗(∫
D

(v − k)2+ϕ2 dx

)1−2/2∗

dt

≤ c(n)|D|2/n

(
sup

τ∈(t1,t2)

∫
D

[(v − k)2+ϕ2](·, τ ) dx

)1−2/2∗ ∫
K

∣∣∣∣D((g(|Du|)
|Du|

)1/2
(v − k)+ϕ

)∣∣∣∣2 dx dt. (3.5)

A straightforward calculation yields∣∣∣∣D((g(|Du|)
|Du|

)1/2
(v − k)+ϕ

)∣∣∣∣2
=
∣∣∣∣[ (v − k)+

( |Du|g′(|Du|) − 1

)
+ 1

](g(|Du|))1/2
D(v − k)+ϕ +

(g(|Du|))1/2
(v − k)+Dϕ

∣∣∣∣2
4v g(|Du|) |Du| |Du|
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≤ c(g1)
g(|Du|)
|Du| |D(v − k)+|2ϕ2 + 2

g(|Du|)
|Du| (v − k)2+|Dϕ|2,

and thus, integrating and estimating the first term using Lemma 3.2 yields∫
K

∣∣∣∣D((g(|Du|)
|Du|

) 1
2
(v − k)+ϕ

)∣∣∣∣2 dx dt ≤ c

∫
K

(v − k)2+
(

g(|Du|)
|Du| |Dϕ|2 + |∂tϕ|

)
dx dt,

where the constant c depends only on g1, ν, and L. From Lemma 3.2 it also follows that

sup
τ∈(t1,t2)

∫
D

[(v − k)2+ϕ2](·, τ ) dx ≤ c (t2 − t1)

∫
K

(v − k)2+
(

g(|Du|)
|Du| |Dϕ|2 + |∂tϕ|

)
dx dt;

therefore, by inserting the previous two inequalities into (3.5) we obtain (3.4). �
Next the aim is to prove an intrinsic reverse Hölder’s inequality. To this end, let Qρ(x0, t0) ⊂ �T , let λ ≥ 1 be such 

that

λ ≥ 1

4
sup

Qρ(x0,t0)

|Du|, (3.6)

and set

θλ := g(λ)

λ
.

We introduce the intrinsic cylinder

Qλ
ρ ≡ Qλ

ρ(x0, t0) := min{1, θλ}1/2Bρ(x0) ×
(
t0 − min{1, θ−1

λ }ρ2, t0

)
. (3.7)

Note that we have the alternative expression

Qλ
ρ =

⎧⎨⎩Bρ(x0) ×
(
t0 − θ−1

λ ρ2, t0

)
, θλ ≥ 1

θ
1/2
λ Bρ(x0) × (

t0 − ρ2, t0
)
, 0 < θλ < 1,

from which we easily see the analogy with the intrinsic geometry used to handle the parabolic p-Laplacian, recall-
ing that in this case g(s)/s = sp−2 and λ is “dimensionally comparable” to |Du|. Observe that we clearly have 
Qλ

ρ(x0, t0) ⊂ Qρ(x0, t0) in any case.

Lemma 3.4. Let u be a weak solution to (1.8)1 in �T , assume that (3.1) and (3.6) hold and let q > 0. Then there 
exists a constant c ≡ c(n, g1, ν, L, q) such that( ∫

Qλ
ρ/2

(v − k)
2γ
+ dx dt

)1/(2γ )

≤ c

( ∫
Qλ

ρ

(v − k)
q
+ dx dt

)1/q

for every k ≥ λ2.

Proof. Let 1/2 ≤ σ ′ < σ ≤ 1 and choose a cut-off function ϕ ∈ C∞(σQλ
ρ) vanishing in the neighborhood of ∂p(σQλ

ρ)

such that 0 ≤ ϕ ≤ 1, ϕ = 1 in σ ′Qλ
ρ , and

|Dϕ| ≤ c

ρ(σ − σ ′)
min

{
1, θλ

}−1/2
, |∂tϕ| ≤ c

ρ2(σ − σ ′)2
min

{
1, θ−1

λ

}−1
.

Observe that by the inclusion Qλ
ρ(x0, t0) ⊂ Qρ(x0, t0) and (3.6) we have

|Du| ≤ 4λ in Qλ
ρ.
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Moreover, we have |Du| ≥ λ in the support of (v − k)+, since k ≥ λ2 and v = |Du|2. Thus, by using the properties of 
g we obtain

1

4
θλ ≤ g(|Du|)

|Du| ≤ c(g1)θλ (3.8)

in Qλ
ρ ∩ {v ≥ k}. Now Lemma 3.3 yields∫
σ ′Qλ

ρ

(v − k)
2γ
+ dx dt ≤ c(n) θ−1

λ

∫
σQλ

ρ

g(|Du|)
|Du| (v − k)

2γ
+ ϕ2γ dx dt

≤ c θ−1
λ

∣∣∣min{1, θλ}1/2Bσρ

∣∣∣2/n(
min{1, θ−1

λ }(σρ)2
)γ−1

( ∫
σQλ

ρ

(v − k)2+
(

g(|Du|)
|Du| |Dϕ|2 + |∂tϕ|

)
dx dt

)γ

≤ c θ−1
λ min{1, θλ}min{1, θ−1

λ }γ−1ρ2γ

(
θλ min{1, θλ}−1 + min{1, θ−1

λ }−1

ρ2(σ − σ ′)2

∫
σQλ

ρ

(v − k)2+ dx dt

)γ

= c

(σ − σ ′)2γ

( ∫
σQλ

ρ

(v − k)2+ dx dt

)γ

.

This is to say( ∫
σ ′Qλ

ρ

(v − k)
2γ
+ dx dt

)1/(2γ )

≤ c

σ − σ ′

( ∫
σQλ

ρ

(v − k)2+ dx dt

)1/2

,

where the constant c depends only on n, g1, ν, L.
Next we use Lemma 2.4 with w = (v − k)+ and dμ = 1

|Qλ
ρ | dx dt . This gives for every 0 < q < 2 a constant 

c ≡ c(n, g1, ν, L, q) such that( ∫
Qλ

ρ/2

(v − k)
2γ
+ dx dt

)1/(2γ )

≤ c

( ∫
Qλ

ρ

(v − k)
q
+ dx dt

)1/q

;

the case q ≥ 2 now follows from Hölder’s inequality. �
Iterating the previous result yields the following pointwise estimate.

Proposition 3.5. Let u be a weak solution to (1.8) in �T and assume that (3.1) holds. Then for every q > 0 there 
exists a constant c ≡ c(n, g1, ν, L, q) such that

|Du(x0, t0)| ≤ λ + c

( ∫
Qλ

ρ(x0,t0)

(|Du|2 − λ2)q
+ dx dt

)1/(2q)

holds for every λ satisfying (3.6).

Proof. The idea is to apply De Giorgi’s iteration method with the aid of Lemma 3.4. Let us first consider the case 
0 < q < 2. To this end, choose for j ∈ N0

ρj = 2−j ρ, kj = λ2 + (1 − 2−j )d,

where d > 0 is to be determined later. Observe that ρ0 = ρ, k0 = λ2, and ρj decreases to zero and kj increases to 
λ2 + d as j tends to infinity; clearly kj ≥ λ2. Denote Qj := Qλ

ρ (x0, t0) and

j
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Yj :=
( ∫

Qj

(v − kj )
q
+ dx dt

)1/q

for j ∈N0.

By Lemma 3.4 we have( ∫
Qj+1

(v − kj )
2γ
+ dx dt

)1/(2γ )

≤ c

( ∫
Qj

(v − kj )
q
+ dx dt

)1/q

,

and since kj+1 > kj implies

(v − kj )
2γ
+ ≥ (kj+1 − kj )

2γ−q(v − kj+1)
q
+χ{v≥kj+1},

we obtain

Yj+1 ≤ c

(kj+1 − kj )β

( ∫
Qj+1

(v − kj )
2γ
+ dx dt

)2γ /q

≤ c∗d−β2βjY
1+β
j ,

for every j ∈ N0, where β := 2γ /q − 1 > 0 and c∗ ≡ c∗(n, g1, ν, L, q). Then a standard hyper-geometric iteration 
lemma implies Yj → 0 as j → ∞, provided that

Y0 ≤ (2c∗)−
1
β d

and this can be guaranteed by choosing

d = (2c∗)
1
β

( ∫
Qλ

ρ(x0,t0)

(
v − λ2)q

+ dx dt

)1/q

.

Now Lebesgue’s differentiation theorem yields(
v(x0, t0) − (

λ2 + d
))

+ = lim
j→∞

( ∫
Qj

(
v − (

λ2 + d
))q

+ dx dt

)1/q

≤ lim
j→∞Yj = 0,

which implies, recalling the choice of d ,

v(x0, t0) ≤ λ2 + c

( ∫
Qλ

ρ(x0,t0)

(
v − λ2)q

+ dx dt

)1/q

.

The case q ≥ 2 follows again by Hölder’s inequality. �
4. Approximation

In this section we regularize the equation in order to apply the results of the previous section and show that the 
gradient of the solution to the regularized equation is uniformly bounded. Then all we have left to prove is that the 
approximating solutions converge to a function that solves the original equation.

To this end, define for ε ∈ (0, 1)

Aε(ξ) := (φε ∗A)(ξ) + ε
(
1 + |ξ |)g̃1−2

ξ, (4.1)

where φε(ξ) = φ(ξ/ε)/εn; φ is a standard mollifier with 
∫
Rn φ dx = 1. That is, we mollify the vector field A and 

perturb it with the nondegenerate g̃1-Laplacian, where g̃1 > max{g1, 2}; we can take for example g̃1 := g1 + 1. It is 
straightforward to see that Aε satisfies (1.9) with g replaced by

gε(s) := g(s + ε)
s + ε(1 + s)g̃1−2s (4.2)
s + ε
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and L, ν replaced by L̃ = c(n, g1)L, ̃ν = ν/c(n, g1), see also Paragraph 6.1. Now the key point is that Ogε can be 
bounded independently of ε. Indeed, we have

g̃0 − 1 ≤Ogε (s) ≤ g̃1 − 1,

where ̃g0 := min{g0, 2}. Note that gε also satisfies the lower bound in (1.5), since gε(s) ≥ g(s)/2 for s ≥ 1.
Let uε ∈ V 2,̃g1(�T ) ∩ C0(�T ) be the solution to the Cauchy–Dirichlet problem{

∂tuε − divAε(Duε) = 0 in �T ,

uε = ψ on ∂p�T ;
(4.3)

for existence and uniqueness of such solutions see for instance [25]. Since

ε(1 + s)g̃1−2 ≤ gε(s)

s
≤ c(g1)

ε
(1 + s)g̃1−2,

in addition to satisfying gε-ellipticity and -growth conditions analogous to (1.9), the vector field Aε also enjoys 
nondegenerate p-Laplacian growth conditions with p = g̃1. Hence, by standard theory, uε satisfies the assumption 
(3.1), see [15,27–29]; therefore the results of the previous section are at our disposal for u ≡ uε . Note that all the 
constants will turn out to be effectively independent of ε.

Let us then show how to apply the result of the previous section in order to locally bound the gradient of the 
approximating solution uniformly in terms of ε. Here we also prove an estimate that, once convergence is established, 
leads to (1.10). Observe that the assumption (1.5) is crucial in this proof. We shall shorten ‖ψ‖L∞ ≡ ‖ψ‖L∞(∂p�T ).

Proposition 4.1. Let uε be a solution to (4.3) and let K� �T . Then ‖Duε‖L∞(K) is bounded by a constant depending 
on data, ε, c�, ‖ψ‖L∞ , and distpar(∂p�T , K), but independent of ε.

Proof. Let us consider a standard parabolic cylinder Q4R ≡ Q4R(x∗, t∗) ⊂ �T and a subcylinder Qρ(x0, t0) ⊂ Q2R . 
Moreover, let λ ≥ 1 be such that

λ ≥ 1

4
sup

Qρ(x0,t0)

|Duε|. (4.4)

We divide the proof into two cases depending on which term of gε dominates at λ.

Case I. Assume

g(λ + ε)

λ + ε
≤ ε(1 + λ)g̃1−2.

Setting

θε
λ := gε(λ)

λ
= g(λ + ε)

λ + ε
+ ε(1 + λ)g̃1−2

we clearly have

ε(1 + λ)g̃1−2 ≤ θε
λ ≤ 2ε(1 + λ)g̃1−2. (4.5)

By applying Proposition 3.5 to uε with q = g̃1/2 we obtain

|Duε(x0, t0)| ≤ λ + c

( ∫
Qλ

ρ(x0,t0)

(
|Duε|2 − λ2

)g̃1/2

+ dx dt

)1/g̃1

≤ λ + c

(
max{1, θε

λ}
min{1, θε

λ}n/2

∫
Qρ(x0,t0)

|Duε|g̃1 dx dt

)1/g̃1

,

since Qλ
ρ(x0, t0) ⊂ Qρ(x0, t0).

We further distinguish two cases: in the case when θε
λ ≥ 1 we get
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max{1, θε
λ}

min{1, θε
λ}n/2

= θε
λ ≤ 2ε(1 + λ)g̃1−2,

while when 0 < θε
λ < 1 we have

max{1, θε
λ}

min{1, θε
λ}n/2

= (θε
λ)−n/2 ≤

(
ε(1 + λ)g̃1−2

)−n/2 = ε
(
ε1+2/n(1 + λ)g̃1−2

)−n/2; (4.6)

in both cases we have used (4.5). Since

ε ≥ g(λ + ε)

(1 + λ)g̃1−2(λ + ε)
≥ c�

(
λ + ε

) n−2
n+2 +ε−1(1 + λ

)2−g̃1 ≥ c�

(
1 + λ

)2−g̃1+min{ε−4/(n+2),0} =: c�

(
1 + λ

)η̄
by (1.5) and the fact that λ ≥ 1, plugging this estimate into (4.6) yields(

ε1+2/n
(
1 + λ

)g̃1−2
)−n/2 ≤ c(n, c�)

(
1 + λ

)−(η̄(1+2/n)+g̃1−2)n/2 ≤ c(n, c�)
(
1 + λ

)g̃1−min{ε(n+2)/2,2};
a direct computation shows indeed the relation between the exponents. Hence we have

|Duε(x0, t0)| ≤ λ + c
(
1 + λ

)1−min{ε(n+2)/(2g̃1),2/g̃1}
(

ε

∫
Qρ(x0,t0)

|Duε|g̃1 dx dt

)1/g̃1

≤ 2λ + c

(
ε

∫
Qρ(x0,t0)

|Duε|g̃1 dx dt

)max{2/[ε(n+2)],1/2}
+ 1

by Young’s inequality; we also used ̃g1 > 2.

Case II. Suppose then that

g(λ + ε)

λ + ε
> ε(1 + λ)g̃1−2.

Here we have

g(λ + ε)

λ + ε
≤ θε

λ ≤ 2
g(λ + ε)

λ + ε
,

and again by Proposition 3.5

|Duε(x0, t0)| ≤ λ + c

(
max{1, θε

λ}
min{1, θε

λ}n/2

∫
Qρ(x0,t0)

(|Duε|2 − λ2)q
+ dx dt

) 1
2q

.

When θε
λ ≥ 1, choosing q = 1 leads to

|Duε(x0, t0)| ≤ λ + c

(
g(λ + ε)

λ + ε

∫
Qρ(x0,t0)

(|Duε|2 − λ2)
+ dx dt

) 1
2

≤ λ + c

( ∫
Qρ(x0,t0)

g(|Duε|)
|Duε|

(|Duε|2 − λ2)
+ dx dt

) 1
2

≤ λ + c

( ∫
Qρ(x0,t0)

G(|Duε|)χ{|Duε |≥1} dx dt

) 1
2

.

The second inequality stems from the fact that

1
(λ + ε) ≤ |Duε| ≤ 4(λ + ε) (4.7)
2



P. Baroni, C. Lindfors / Ann. I. H. Poincaré – AN 34 (2017) 593–624 613
in the set Qρ(x0, t0) ∩ {|Duε| ≥ λ} by (4.4), while for the last one we used (2.6) and the fact that λ ≥ 1.
In the case 0 < θε

λ < 1 we choose q = ε(n + 2)/4 and use (1.5) and again (4.7) to obtain

|Duε(x0, t0)| ≤ λ + c

((
g(λ + ε)

λ + ε

)− n
2

∫
Qρ(x0,t0)

(|Duε|2 − λ2)q
+ dx dt

) 1
2q

≤ λ + c

( ∫
Qρ(x0,t0)

( |Duε|
g(|Duε|)

) n
2 (|Duε|2 − λ2)q

+ dx dt

) 1
2q

≤ λ + c

( ∫
Qρ(x0,t0)

|Duε|
(

1− n−2
n+2 −ε

)
n
2 +2q

χ{|Duε |≥1} dx dt

) 1
2q

= λ + c

( ∫
Qρ(x0,t0)

|Duε|1+ n−2
n+2 +εχ{|Duε |≥1} dx dt

) 2
ε(n+2)

≤ λ + c

( ∫
Qρ(x0,t0)

G(|Duε|)χ{|Duε |≥1} dx dt

) 2
ε(n+2) ;

note that(
1 − n − 2

n + 2
− ε

)n

2
+ 2q =

( 4

n + 2
− ε

)n

2
+ ε

n + 2

2
= 1 + n − 2

n + 2
+ ε.

Therefore in both cases we have

|Duε(x0, t0)| ≤ λ + c

( ∫
Qρ(x0,t0)

G(|Duε|)χ{|Duε |≥1} dx dt

)max
{

1
2 , 2

ε(n+2)

}
.

Combining Cases I and II and denoting η̃ := max
{ 1

2 , 2
ε(n+2)

}
yields

|Duε(x0, t0)| ≤ 2λ + c

( ∫
Qρ(x0,t0)

(
G(|Duε|)χ{|Duε |≥1} + ε|Duε|g̃1

)
dx dt

)η̃

+ 1

≤ 2λ + c
(R

ρ

)(n+2)η̃
( ∫

Q2R

Gε(|Duε|) dx dt

)η̃

+ 1, (4.8)

since

G(s) ≤ 1

g0
g(s + ε)(s + ε) ≤ 4

g0

g(s + ε)

s + ε
s2 ≤ 4

g0
sgε(s) ≤ 4g̃1

g0
Gε(s)

for s ≥ 1 and trivially

εsg̃1 ≤ ε(1 + s)g̃1−2s2 ≤ g̃1Gε(s).

The constant c in (4.8) depends only on data, ε, c�.
Let us now choose two intermediate cylinders QR ⊂ Qr � Qs ⊂ Q2R and fix

λ := 1 + 1

4
‖Duε‖L∞(Qs) < ∞, (x0, t0) ∈ Qr, ρ := s − r

2
> 0.

Clearly Qρ(x0, t0) ⊂ Qs so that (4.4) holds. Then (4.8) implies

‖Duε‖L∞(Qr ) ≤ 1

2
‖Duε‖L∞(Qs) + c

( R

s − r

)(n+2)η̃
( ∫

Gε(|Duε|) dx dt

)η̃

+ 3.
Q2R
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Now, by choosing φ(r) = ‖Duε‖L∞(Qr ), iteration Lemma 2.5 gives

‖Duε‖L∞(QR) ≤ c

( ∫
Q2R

[
Gε(|Duε|) + 1

]
dx dt

)η̃

. (4.9)

At this point, in order to get rid of the dependence on ε on the right-hand side, the idea is to use the Caccioppoli 
inequality of Lemma 2.3 to translate the dependence on Duε to one on uε , and the latter in turn into a dependence 
on ψ . Indeed, take ϕ ∈ C∞(Q4R) vanishing in a neighborhood of ∂pQ4R such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Q2R , and 
|Dϕ|2 + |∂tϕ| ≤ c/R2. Since

sup
Q4R

|uε| ≤ sup
∂p�T

|uε| = sup
∂p�T

|ψ | ≤ ‖ψ‖L∞

by the maximum principle, Corollary 2.2, we can estimate by Lemma 2.3∫
Q2R

Gε(|Duε|) dx dt ≤ c

∫
Q4R

[
Gε(|Dϕ||uε|) + u2

ε |∂tϕ|
]
dx dt

≤ c

(
1 + ‖ψ‖L∞

R

)g̃1

+ c

(‖ψ‖L∞

R

)2

= c
(
data, ε, c�,‖ψ‖L∞,R

)
. (4.10)

Note that the constant does not depend on ε. Therefore we conclude the proof of the proposition, modulo a standard 
covering argument. �
4.1. A uniform interior modulus of continuity via Lipschitz regularity

In this section we prove that the approximating solutions uε are equicontinuous in the interior of the domain; in 
particular we shall show their equi-Lipschitz regularity with respect to the parabolic metric.

Proposition 4.2. Let uε be a solution to (4.3). Then uε ∈ Lip(1,1/2)(�T ) locally, uniformly in ε; this is to say, for 
every subcylinder K � �T there exists a constant c depending on data, ε, c�, ‖ψ‖L∞ , and distpar(∂p�T , K) such 
that

|uε(x, t) − uε(y, s)| ≤ c distpar
(
(x, t), (y, s)

)
(4.11)

for every (x, t), (y, s) ∈ K and for every ε ∈ (0, 1).

Proof. Fix an intermediate set K′ such that K�K′ ��T and

distpar(ẑ, ∂p�T ) = distpar(K, ∂p�T )/2 =: d/2

for every ẑ ∈ ∂pK′. Take also a cylinder Qr(x0, t0) ⊂ K′ with (x0, t0) ∈ K; this will happen for instance if r ≤ d/2. 
Since Duε is continuous, by applying the divergence theorem and using the bound for Aε in (2.11) we infer∫

Br(x0)

uε(·, τ ) dx

∣∣∣∣t2
τ=t1

= n

r

t2∫
t1

∫
∂Br (x0)

〈
Aε(Duε),

x − x0

|x − x0|
〉
dHn−1 dt ≤ c

r

t2∫
t1

∫
∂Br (x0)

gε(Duε) dHn−1 dt

for all t0 − r2 < t1 ≤ t2 < t0, where Hn−1 stands for the (n − 1)-dimensional Hausdorff measure. We thus estimate

osc
τ∈(t0−r2,t0)

(uε)Br (x0)(τ ) = sup
t0−r2<t1≤t2<t0

∣∣∣∣ ∫
Br (x0)

uε(·, τ ) dx

∣∣∣∣t2
τ=t1

∣∣∣∣
≤ c

r

t0∫
2

∫
∂B (x )

gε(Duε) dHn−1 dt
t0−r r 0
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≤ c r
(
1 + ‖Duε‖L∞(Qr (x0,t0))

)g̃1−1

≤ c r
(
1 + ‖Duε‖L∞(K′)

)g̃1−1
.

Now by Proposition 4.1, in particular by (4.9)–(4.10), we have

osc
τ∈(t0−r2,t0)

(uε)Br (x0)(τ ) ≤ c
(
data, c�, ε,‖ψ‖L∞, d

)
r. (4.12)

At this point we simply split for (x1, t1), (x2, t2) ∈ Qr(x0, t0)

|uε(x1, t1) − uε(x2, t2)| ≤
∣∣∣uε(x1, t1) −

∫
Br(x0)

uε(·, t1) dx

∣∣∣
+
∣∣∣∣ ∫
Br (x0)

uε(·, t1) dx −
∫

Br(x0)

uε(·, t2) dx

∣∣∣∣+ ∣∣∣uε(x2, t2) −
∫

Br(x0)

uε(·, t2) dx

∣∣∣.
While in order to bound the second term we shall use (4.12), the first and last terms can be estimated using the mean 
value theorem as follows:∣∣∣uε(xi, ti) −

∫
Br(x0)

uε(·, ti) dx

∣∣∣≤ ∫
Br (x0)

∣∣uε(xi, ti) − uε(x, ti)
∣∣dx ≤ 2r ‖Duε‖L∞(K′),

for i ∈ {1, 2}. Therefore, using again Proposition 4.1, we have

osc
Qr(x0,t0)

uε ≤ c r (4.13)

with c as in (4.12), in particular not depending on ε. To conclude the proof, for (x1, t1), (x2, t2) ∈ K, we simply 
check whether distpar

(
(x1, t1), (x2, t2)

) ≤ d/4 holds true or not; if so, then there exists a cylinder Qr(x0, t0) with 
r = distpar

(
(x1, t1), (x2, t2)

)
such that (x1, t1), (x2, t2) ∈ Qr(x0, t0) and we can apply (4.13) that directly yields (4.11). 

If on the other hand distpar
(
(x1, t1), (x2, t2)

)
> d/4, then, again simply using the maximum principle, we have

|uε(x, t) − uε(y, s)| ≤ 2‖uε‖L∞(�T ) ≤ 8
distpar

(
(x1, t1), (x2, t2)

)
d

‖ψ‖L∞; (4.14)

the proof is concluded. �
Remark 2. Notice that, tracking the dependence on d of the constant in Proposition 4.2 and in turn the dependence on 
R of estimate (4.10), and also slightly modifying the previous proof, we deduce that estimate (4.11) can be rewritten 
as

|uε(x, t) − uε(y, s)| ≤ c

d
γ
z,w

distpar
(
(x, t), (y, s)

)
, (4.15)

for an exponent γ ≡ γ (n, g1, ε) ≥ 1 and a constant c depending only on data, ε, c�, ‖ψ‖L∞ , with z = (x, t), 
w = (y, s) and accordingly

dz,w := min
{
distpar(z, ∂p�T ),distpar(w, ∂p�T ),1

}
.

Indeed, if distpar(z, w) ≤ dz,w/8, then we can apply the argument in the first part of the proof of Proposition 4.2 with 
r = distpar(z, w) to get (suppose s ≤ t )

|uε(z) − uε(w)| ≤ osc
Qr(z)

uε ≤ c

d
γ
z,w

distpar(z,w),

where γ = g̃1(g̃1 − 1)η̃, since we have Qr(z) ⊂ Qdz,w/8(z), Qdz,w/2(z) ⊂ �T and so

‖Duε‖L∞(Qr (z)) ≤ ‖Duε‖L∞(Qdz,w/8(z)) ≤ c

d
g̃1η̃
z,w

The case where dz,w < 8 distpar(z, w) can be approached exactly as in (4.14).
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5. Continuity at the boundary

In this section we prove that the solution to the approximating problem (4.3) is continuous up to the boundary 
independently of ε by building an explicit barrier. We do not want to enter the details of the theory and the general 
relation between existence of barriers and regularity of the boundary points; the interested reader can see the nice 
paper [25] for the evolutionary p-Laplacian, while [22,34] summarize the results in the elliptic setting.

We shall begin with the proof of the continuity at the lateral boundary; here we shall give all the details needed. 
For the continuity at the initial boundary we shall however only sketch the proof, which on the other hand is very 
similar and easier than the lateral case. Again, we will prove the existence of a uniform (in the sense that it will be 
independent of ε) modulus of continuity for uε; in the last section we shall show that this modulus is easily inherited 
by the limit of uε .

Let us begin with the construction of an explicit barrier at the lateral boundary. Due to a scaling argument that will 
be clear soon it is enough to consider a very special case.

5.1. An explicit construction of a supersolution at the boundary

We define the function

v+(x, t) := |x′|2 + M
√

xn + (2t + 1)−,

where M ≥ 1 is to be chosen depending on data. We aim to show that v+ is a weak supersolution in

Q := {
(x, t) ∈R

n+1 : |x′| ≤ 1, xn ∈ [0,2], t ∈ [−1,0]}.
Simple calculations show that

Dv+ = (2x′,Mx
−1/2
n /2), ∂t v

+ = −2χ{−1<t<−1/2}, D2v+ = diag (2, . . . ,2,−Mx
−3/2
n /4),

and moreover, since D2
i,j v

+ = 0 whenever i �= j , we have

divA(Dv+) =
n∑

i=1

DiAi (Dv+) =
n∑

i,j=1

Dξj
Ai (Dv+)D2

i,j v
+ = 2

n−1∑
i=1

Dξi
Ai (Dv+) − M

4
DξnAn(Dv+)x

−3/2
n .

The first term we estimate from above using (1.9)2 and for the second term we can apply (1.9)1, since DξnAn(Dv+) =
〈DA(Dv+)ên, ên〉. Furthermore, if we require M ≥ 23/216(n − 1)L/ν, we obtain

divA(Dv+) ≤
(

2(n − 1)L − ν

4
Mx

−3/2
n

)g(|Dv+|)
|Dv+| ≤ −ν

8
Mx

−3/2
n

g(|Dv+|)
|Dv+| . (5.1)

Now, observe that since M ≥ 4 we also get

|Dv+| =
√

4|x′|2 + (
Mx

−1/2
n /2

)2 ≤ Mx
−1/2
n

in Q. On the other hand, we have

|Dv+| ≥ Mx
−1/2
n /2 ≥ 1.

Using these estimates we obtain

g(|Dv+|)
|Dv+| ≥ |Dv+|g0−2 ≥

{
1, g0 ≥ 2(
Mx

−1/2
n

)g0−2
g0 < 2

,

and thus

divA(Dv+) ≤ −ν

8
Mmin{g0,2}−1x

−(min{g0,2}+1)/2
n .

The exponent of xn is negative, so that by choosing M ≡ M(data) large enough (recall that g0 > 1), we finally 
obtain



P. Baroni, C. Lindfors / Ann. I. H. Poincaré – AN 34 (2017) 593–624 617
∂tv
+ − divA(Dv+) ≥ −2 + ν

8
2−(min{g0,2}+1)/2Mmin{g0,2}−1 ≥ 0.

It is easy to see that v+ ∈ V
2,G
loc (Q) and thus v+ is a (weak) supersolution in Q.

5.2. A reduction of the oscillation in a significant case

We set ourselves now in what seems to be a very particular, unitary case; it will be clear soon that, up to a simple 
rescaling procedure, this will be the significant case for the proof.

Let �̄ be a bounded C1,β domain and �̄T := �̄× (−1, 0). Suppose that 0 ∈ ∂�̄ and the orthonormal system where 
the boundary is a graph is the standard cartesian one, with the direction where ∂�̄ is a graph given by ên. We hence 
have

∂�̄ ∩ {|x′| < 1, |xn| < 1} = graph θ̄ , with θ̄ : B ′
1(0) → (−1,1) and θ̄ (0) = 0

and �̄ ∩ {|x′| < 1, |xn| < 1} is the epigraph of θ̄ . Let ū be a weak solution to (1.8)1 in

�̄T ∩Q1 with Q1 := B ′
1 × (−1,1) × (−1,0) ⊂R

n+1,

such that ū = ψ̄ in ∂p�̄T ∩Q1. Moreover, we suppose ψ̄(0) = ū(0) = 0. Take δ ∈ (0, 1) to be fixed later. We assume 
that

the graph of θ̄ over B ′
1 is contained in the cylinder B ′

1 × (−δ, δ) (5.2)

and moreover that

osc
∂�̄∩B ′

1×(−1,1)

ψ̄ ≤ δ and osc
�̄T ∩Q1

ū ≤ 1 (5.3)

Let us take the barrier v+ built in the previous paragraph and shift it in the ên direction as follows:

v+
δ (x′, xn, t) := v+(x′, xn + δ, t) + δ.

Now v+
δ is defined and continuous, in particular, over the parabolic closure of �̄T ∩Qδ , where Qδ = B ′

1 × (−δ, 1) ×
(−1, 0), and there it is still a supersolution to an equation structurally similar to (1.8)1. The aim is to prove that ū ≤ v+

δ

on ∂p(�̄T ∩Qδ) by considering the different pieces:

• on [∂�̄ × (−1, 0)] ∩Qδ we estimate

ū − v+
δ ≤ ψ̄ − δ ≤ 0

using (5.3)1 and since v+ ≥ 0;

• on 
[
(∂B ′

1 × [−δ, 1]) ∩ �̄
]× (−1, 0) we have

ū − v+
δ ≤ 1 − 1 − δ ≤ 0,

by (5.3)2 together with ū(0) = 0 and the fact that v+ ≥ 1, since |x′| = 1;
• on B ′

1 × {1} × (−1, 0) we have

ū − v+
δ ≤ 1 − M ≤ 0, (5.4)

since ū ≤ 1 as above and on {xn = 1} we have v+
δ ≥ M ≥ 1;

• finally, on �̄ ∩ (B ′
1 × (−δ,1)) × {−1} we again have v+

δ ≥ 1 due to the expression of the time-dependent part, 
and therefore the conclusion again follows.

Note that the first three pieces exhaust the lateral boundary of �̄T ∩ Qδ , while the fourth one makes up its initial 
boundary. Therefore, we have ū ≤ v+

δ on the parabolic boundary of �̄T ∩Qδ and hence, by Proposition 2.1, ū ≤ v+
δ

in �̄T ∩Qδ . Now, if δ ≤ 1/2, we have

v+
δ ≤ δ2 + M(2δ)1/2 in [(B ′

δ × (−δ, δ)) ∩ �̄] × (−δ,0).
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Therefore, if we choose δ small enough, depending only on M and so ultimately on data, such that δ2 +M(2δ)1/2 ≤
1/4, then we have

sup
[(B ′

δ×(−δ,δ))∩�̄]×(−δ,0)

ū ≤ 1

4
.

Completely analogously we may consider the subsolution v−(x′, xn, t) = −v+(x′, xn, t) to obtain a corresponding 
bound from below. All in all, we conclude with

osc
[Bδ∩�̄]×(−δ,0)

ū ≤ 1

2
. (5.5)

5.3. Iteration

Let R0 ≤ min{R�, 1} be fixed and let Qω
r (x0, t0) be a cylinder not intersecting the initial boundary, with x0 ∈ ∂�, 

ω > 0 and r ≤ R0. Since we are supposing R0 ≤ R�, we have that the boundary of � can be written as a C1,β graph 
in Br : there exists a unitary vector ê ∈ R

n such that if we set T : Rn →R
n for the orthogonal transformation that maps 

ên = (0, . . . , 0, 1) into ê, we have

T −1(∂� − x0) ∩ (
B ′

r × (−r, r)
)= graph θ

for some θ ∈ C1,β(B ′
r ) with values in (−r, r). We now start from the assumption

osc
�T ∩Qω

r (x0,t0)
uε ≤ ω. (5.6)

We define, for j ∈N, the quantities

ωj := 2−jω, rj+1 = min
{
σrj , rj+1

}
, r0 = r

where σ ∈ (0, 1/2) is such that σ ≤ δ√
2

and (2σ)g0 ≤ 4(
√

2)−g1δ (see (5.9)), with δ ∈ (0, 1/2) being the constant 
defined in the previous paragraph, and r̄j is such that

osc
∂lat�T ∩Q

ωj

rj
(x0,t0)

ψ ≤ δ ωj . (5.7)

Note that this is possible, since ψ is continuous so that at ωj fixed the map ρ 
→ osc
Q

ωj
ρ (x0,t0)

ψ vanishes as ρ → 0. 

We prove by induction

osc
�T ∩Q

ωj
rj

(x0,t0)

uε ≤ ωj . (5.8)

Now (5.8)0 is simply (5.6), so we suppose that (5.8)j holds and we prove (5.8)j+1, for j ∈N0. Rescale uε as follows:

ū(x, t) := 1

ωj
uε

(
x0 + rj√

2
T x, t0 + ω2

j

[
G
(√

2ωj

rj

)]−1
t
)

− uε(x0, t0)

ωj

.

This is a solution to an equation structurally similar to (1.8)1, see Paragraph 2.6, in particular in [(B ′
1 × (−1, 1)) ∩

�] × (−1, 0), with boundary datum

ψ̄(x, t) := 1

ωj
ψ
(
x0 + rj√

2
T x, t0 + ω2

j

[
G
(√

2ωj

rj

)]−1
t
)

− uε(x0, t0)

ωj

and where the boundary of �̄ := [√2T −1(� − x0)/rj ] ∩ (B ′
1 × (−1, 1)) is given by the graph of the function θ̄ (x ′) =

θ(rj x
′/

√
2)/rj over B ′

1. We have

osc
B ′

1

|Dθ̄ | = 1√
2

osc
B ′

r /
√

2

|Dθ | ≤ 1√
2

osc
B ′

R0

|Dθ | ≤ R
β

0√
2
�.
j
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Now we choose R0 small enough so that the right hand side of the chain of inequalities in the above display is 
smaller than δ, where δ is the quantity fixed in the previous paragraph. This ensures that (5.2) is satisfied (since 
Dθ(0) = Dθ̄(0) = 0 = θ(0) = θ̄ (0)). Since all the other assumptions in Paragraph 5.2 are satisfied (in particular by 
our choice of r̄j ), we have estimate (5.5) at hand; therefore (5.8)j+1 follows by our definition of rj+1 and ωj+1. 
Indeed, scaling back we have

osc
�T ∩Q̂rj

uε ≤ 1

2
ωj with Q̂rj := B

δrj /
√

2(x0) ×
(
t0 − δ ω2

j

[
G
(√

2ωj

rj

)]−1
, t0

)
and by (2.10) and our definition of σ , we infer

ω2
j+1

[
G
(ωj+1

rj+1

)]−1 ≤ (2σ)g0

4
ω2

j

[
G
(ωj

rj

)]−1 ≤ δ

(
√

2)g1
ω2

j

[
G
(ωj

rj

)]−1 ≤ δ ω2
j

[
G
(√

2ωj

rj

)]−1
. (5.9)

Finally, we note that the lengths of the time intervals also go to zero, that is, the cylinders are shrinking. Indeed, the 
first inequality in the above computation shows that the ratio of two consecutive time scales is bounded by (2σ)g0/4, 
which is clearly strictly smaller than one.

5.4. Some quantitative estimates

Let us set

ω := 2‖ψ‖L∞ + 1,

fix a radius r < R0, and take a point (x0, t0) ∈ ∂lat�T such that QG

max{1,ω2/g0−1}r (x0, t0) does not intersect the initial 
boundary. Clearly (5.6) holds by the maximum principle. Now we recall that ψ has the modulus of continuity ωψ :

|ψ(x, t) − ψ(y, s)| ≤ ωψ

(
distpar,G((x, t), (y, s))

)
for all (x, t), (y, s) ∈ ∂p�T . Since

Q
ωj
ρ (x0, t0) ⊂ Bρ(x0) × (t0 − [G(2−j (1−2/g1)ω1−2/g0/ρ)]−1, t0),

we have

Q
ωj
ρ (x0, t0) ⊂ QG

Aj ρ(x0, t0),

with Aj := max{1, 2j (1−2/g1)ω2/g0−1} ≥ 1. Thus we see that if we want (5.7) satisfied, it is enough to require

Aj r̄j ≤ max{1,ω2/g0−1}r,
so that QG

Aj r̄j
(x0, t0) does not intersect the initial boundary, and

ωψ(r̄j ) ≤ δ A−1
j ωj = δ min{2−jω,2−2j (1−1/g1)ω2(1−1/g0)}

by the concavity of ωψ(·). At this point we have (5.8) at our disposal, and this will be used noting that in particular 
we have

Q
ωj
rj (x0, t0) ⊃ QG

rj /Bj
(x0, t0)

with Bj := max{1, 2−j (1−2/g0)ω1−2/g1} ≥ 1. Hence, for (x, t) ∈ �T ∩ QG
r/B0

(x0, t0) fixed we find the largest j ∈ N0
such that

rj+1

Bj+1
≤ distpar,G((x, t), (x0, t0)) <

rj

Bj

.

Note that this is possible, since clearly rj/Bj ≤ rj → 0 as j → ∞. At this point

|uε(x, t) − uε(x0, t0)| ≤ osc
�T ∩Q

ωj
r (x0,t0)

uε ≤ 2−jω.
j



620 P. Baroni, C. Lindfors / Ann. I. H. Poincaré – AN 34 (2017) 593–624
Let {(rj+1/Bj+1, 2−jω)}j∈N0 be a sequence of points in R2 and call ωu the smallest concave function such that 
ωu(rj+1/Bj+1) ≥ 2−jω; note that ωu is a modulus of continuity. For instance, one can take the piecewise linear 
interpolation of the sequence {(xj , yj )}j∈N given by xj = maxk≥j+1 rk/Bk , yj = 2−jω, which is component-wise 
decreasing as j increases. This finally leads to

|uε(x, t) − uε(x0, t0)| ≤ 2−jω ≤ ωu(rj+1/Bj+1) ≤ ωu

(
distpar,G((x, t), (x0, t0))

)
, (5.10)

and this holds for (x, t) ∈ �T ∩ QG
r/B0

(x0, t0). In fact, it also holds for points (x, t) outside QG
r/B0

(x0, t0), since then 
we have distpar,G((x, t), (x0, t0)) > r/B0 and thus

|uε(x, t) − uε(x0, t0)| ≤ 2B0

r
‖ψ‖L∞

r

B0
≤ c distpar,G((x, t), (x0, t0))

by the maximum principle. Note that the modulus of continuity ωu at this point depends on data, ||ψ ||L∞ , ωψ but 
also on r .

If now ψ is γ -Hölder continuous with respect to the G-parabolic metric, then we see that it is enough to take 
r̄j = c(data, ω, γ )2−ηj r for some η ≡ η(g1, γ ). This yields that the numbers rj can be written as η̄j r for some 
η̄ ∈ (0, 1). Now the Hölder continuity follows, for instance, similarly to [15, Chapter III, Lemma 3.1].

5.5. Continuity at the initial boundary

We begin by modifying the barrier built in Paragraph 5.1 to meet the different situations at the initial boundary. We 
start by considering the case where, before rescaling, we have a solution in a cylinder Br(x0) × (0, ω2/G(ω/r)), with 
Br(x0) ⊂ �, equal to ψ̄ over Br(x0) × {0}; that is, the true case of initial boundary continuity. Later on we shall face 
the “corner case”, that is the case of cylinders Br(x0) × (0, ω2/G(ω/r)) with x0 ∈ ∂�.

After rescaling, one sees that it is enough to build a supersolution in Q := B1 × (0, 1). In this case the explicit ex-
pression is simply v+(x, t) := |x|1/2. We then have v+ ∈ V

2,G
loc (Q) and v+ is a supersolution to (1.8)1 in Q. Moreover, 

if we further suppose that

osc
B1×{0}

ψ̄ ≤ δ, osc
Q

ū ≤ 1, ū(0,0) = ψ̄(0,0) = 0

for some δ ∈ (0, 1), it is easy to see that ū ≤ v+ + δ on ∂pQ. Indeed on ∂B1 × (0, 1) we have v+ = 1 but ū ≤ 1, while 
on B1 × {0} we have ū = ψ̄ ≤ δ and v+ ≥ 0. Therefore we can deduce by Proposition 2.1 that ū ≤ v+ + δ in Q. Now 
the proof goes on similarly as in Paragraphs 5.2 to 5.4, with possibly new constants δ and R0.

For the “corner situation”, we are lead to consider a solution in a domain of the type Q := B ′
1 × (−1, 1) × (0, 1); 

the supersolution in this case is v+ = |x′|2 + Mx
1/2
n , with M as in Paragraph 5.1. The fact that the function is a 

supersolution follows plainly from (5.1). Assuming now that the boundary graph θ̄ over B ′
1 takes values in (−δ, δ)

and

osc
∂p�̄T ∩Q

ψ̄ ≤ δ, osc
Q

ū ≤ 1, ū(0,0) = ψ̄(0,0) = 0,

we have ū ≤ v+
δ in ∂p�̄T ∩ Q, since ū = ψ̄ ≤ δ there; on the remaining part of the parabolic boundary of Q we use 

the fact that v+
δ is larger than one, as in (5.4). Again, now the proof is similar as above.

In both cases, a scaling and iteration procedure like the one used in Paragraph 5.4 allows us to prove the reduction 
of oscillation in a sequence of nested cylinders of the type (� ∩Brj (x0)) × (0, ω2

jG(ωj/rj )), with x0 ∈ �. This leads 
to

|uε(x, t) − uε(x0,0)| ≤ ωu

(
distpar,G((x, t), (x0,0))

)
(5.11)

for every (x, t) ∈ �T . Moreover, opportune statements similar to above still hold in the case ψ is Hölder continuous.
At this point we call R̃ the smallest value of R0 coming from the three different cases, ultimately a constant 

depending on data and ∂�. Choose r = R̃/2. Now r is a constant depending only on data and ∂�. By combining 
the boundary estimates (5.10) and (5.11) with the interior estimate in Remark 2 we obtain

|uε(x, t) − uε(y, s)| ≤ ωu

(
distpar,G((x, t), (y, s))

)
(5.12)
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for every (x, t), (y, s) ∈ �T
p

, where ωu depends on data, ε, c�, ωψ , ‖ψ‖L∞ , ∂�. Indeed, if one of the points is in 
∂p�T , then (5.12) is either (5.10) or (5.11). In the case where both (x, t), (y, s) ∈ �T we consider two different cases. 
Either the mutual distance of (x, t) and (y, s) is small compared to their distance to the boundary, in which case we 
use the interior estimate, or otherwise we can again use the boundary estimates.

Let us make this rigorous. Denote z = (x, t), w = (y, s). If distpar,G(z, w) ≥ 1, we are done by the maximum 
principle. Note now that if distpar,G(z, w) ≤ 1, we have

distpar,G(z,w)max{1,g1/2} ≤ distpar(z,w) ≤ distpar,G(z,w)min{1,g0/2}.

Observe that (4.15) can be written in terms of the parabolic G-distance as follows:

|uε(z) − uε(w)| ≤ c
[
dG
z,w

]−γ max{1,g1/2} distpar,G(z,w)min{1,g0/2},

where

dG
z,w := min

{
distpar,G(z, ∂p�T ),distpar,G(w, ∂p�T ),1

}
.

If now distpar,G(z, w) ≤ [
dG
z,w

]2γ max{1,g1/2}, that is, the mutual distance of z and w is small compared to their distance 
to the boundary, then we have

|uε(z) − uε(w)| ≤ c distpar,G(z,w)min{1,g0−1}/2.

On the other hand, when distpar,G(z, w) >
[
dG
z,w

]2γ max{1,g1/2} there exists a cylinder QG
ρ (x0, t0) � z, w with ρ =

2distpar,G(z, w)min{1/2,1/g1}/γ such that either x0 ∈ ∂� or the bottom of QG
ρ (x0, t0) touches the initial boundary. Now 

using triangle inequality and the boundary estimates yields

|uε(z) − uε(w)| ≤ 2ωu(ρ) ≤ 4ωu

(
distpar,G(z,w)min{1/2,1/g1}/γ ).

Finally, we take the largest modulus of continuity ωu for which all the conditions proved above are satisfied, and this 
proves (5.12). The proof in the Hölder case is similar, since in this case we can quantify all the moduli.

6. Conclusion

Call uj := uε for ε = 1/j , j ∈ N, and similarly Aj , gj , φj . From the results of the preceding section, that is, 
from the equi-boundedness of the sequence {uj }j∈N following from the maximum principle Corollary 2.2 and the 
global equi-continuity coming from the results of Sections 4 and 5, using Ascoli–Arzelà theorem we see that uj → u

uniformly in C0(�T
p
) for some u ∈ C0(�T

p
). Now all we have left to prove is that u is a weak solution to (1.8)1, 

which follows easily from the next proposition.

Proposition 6.1. Let uj ∈ V
2,G
loc (�T ) ∩ C0(�T

p
) be the solutions to (4.3) defined above. Suppose there exists a func-

tion u such that uj → u almost everywhere in �T . Then Duj → Du almost everywhere.

Proof. Take K � �T and choose a cutoff function ϕ ∈ C∞
c (�T ) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in K, and 

‖∂tϕ‖L∞(�T ), ‖Dϕ‖L∞(�T ) ≤ c for some c ≥ 1 depending on dist(K, ∂p�T ). Let j, k ∈ N and test the weak for-
mulations of uj and uk with η = wj,kϕ, where wj,k := uj − uk . This choice can be justified by standard methods 
such as Steklov averages. By subtracting we obtain

0 = −
∫

�T

wj,k∂t (wj,kϕ) dx dt +
∫

�T

〈Aj (Duj ) −Ak(Duk),D(wj,kϕ)〉dx dt

= −1

2

∫
�T

w2
j,k∂tϕ dx dt +

∫
�T

〈
Aj (Duj ) −Ak(Duk),Dϕ〉wj,k dx dt

+
∫ 〈

Aj (Duj ) −A(Duj ),Dwj,k

〉
ϕ dx dt +

∫ 〈
A(Duj ) −A(Duk),Dwj,k

〉
ϕ dx dt
�T �T
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+
∫

�T

〈
A(Duk) −Ak(Duk),Dwj,k

〉
ϕ dx dt =: I + II + III + IV + V.

Since ‖Duj‖L∞(�T ) ≤ c uniformly with respect to j by Proposition 4.1, we also have

‖Aj (Duj )‖L∞(�T ) ≤ c gj

(‖Duj‖L∞(�T )

)≤ c.

Thus, by the definition of Aj∣∣I + II + III + V
∣∣≤ c ‖uj − uk‖L2(�T ) + c‖(φj ∗A)(Duj ) −A(Duj )‖L2(�T )

+ c‖A(Duk) − (φk ∗A)(Duk)‖L2(�T ) + c
(
1/j + 1/k

)
.

The first term on the right-hand side tends to zero as j, k → ∞ by Lebesgue’s dominated convergence theorem and 
the second and third by the properties of mollifiers; the last one is obvious. On the other hand, by (2.13)

IV ≥ c

∫
K

|Vg(Duj ) − Vg(Duk)|2 dx dt.

Thus

c

∫
K

|Vg(Duj ) − Vg(Duk)|2 dx dt ≤ IV ≤ |I + II + III + V | → 0

as j, k → ∞. We have shown that the sequence {Vg(Duj )}j∈N is Cauchy in L2(K) and therefore there exists a 
function w ∈ L2(K) such that Vg(Duj ) → w in L2(K) as j → ∞. This implies that there exists a (nonrelabeled) 
subsequence Vg(Duj ) converging to w almost everywhere in K. Now the fact that Vg has a continuous inverse yields

Duj = V −1
g (Vg(Duj )) → V −1

g (w) =: v
almost everywhere in K.

Now, since uj → u almost everywhere in K, we have for any φ ∈ C∞
c (K) that∫

K

uDφ dx dt = lim
j→∞

∫
K

ujDφ dx dt = − lim
j→∞

∫
K

Duj φ dx dt = −
∫
K

vφ dx dt

by Lebesgue’s dominated convergence theorem and the definition of weak gradient, showing that v = Du. Thus, 
we have Duj → Du almost everywhere in K for any K � �T , which implies that Duj → Du almost everywhere 
in �T . �

To conclude, (1.10) follows from (4.9) simply using the local almost everywhere convergence of Duε, and (1.11)
follows from (5.12) using the global uniform convergence of uε.

6.1. Weakening the assumptions

As mentioned in Remark 1, in this paragraph we show how to modify the proofs of the paper in order to obtain 
Theorems 1.1 and 1.2 for vector fields satisfying the weaker assumptions (1.12).

We observe that assumptions (1.9) are only used in order to have the analogous properties for the regularized vector 
field Aε defined in (4.1). Moreover, (2.11) and (2.12) trivially hold by taking ξ2 = 0 in (1.12). Thus, it suffices to show 
that under the assumptions (1.12) we still have (1.9) for Aε with g replaced by gε defined in (4.2).

We shall focus only on the convolution part of the vector field Aε, since for the part involving the nondegenerate 
g̃1-Laplacian the corresponding estimates are classic and easy to verify. Therefore, we only need to prove (1.9) with 
A replaced by φε ∗A and g(s) replaced by g(s+ε)

s+ε
s. Using (1.12) we have

〈D(φε ∗A)(ξ)λ,λ〉 = lim
h→0

1

h

∫
〈A(ξ +hλ−η)−A(ξ −η),λ〉φε(η) dη ≥ c(g0)ν

∫
g(|ξ − εη|)
|ξ − εη| φ(η)dη |λ|2
Bε(0) B1(0)
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and

|Dj(φε ∗A)(ξ)| = lim
h→0

1

h

∣∣∣∣ ∫
Bε(0)

(A(ξ + hêj − η) −A(ξ − η))φε(η) dη

∣∣∣∣≤ c(g1)L

∫
B1(0)

g(|ξ − εη|)
|ξ − εη| φ(η)dη.

Hence, if we can show that∫
B1(0)

g(|ξ − εη|)
|ξ − εη| φ(η)dη ≈ g(|ξ | + ε)

|ξ | + ε
(6.1)

independently of ε, we are done.
Consider first the case |ξ | ≥ 2ε. This implies |ξ − εη| ≥ 1

3 (|ξ | + ε), and thus |ξ − εη| ≈ |ξ | + ε so that (6.1) holds. 
On the other hand, if |ξ | < 2ε, we have∫

B1(0)

g(|ξ − εη|)
|ξ − εη| φ(η)dη ≤ sup

B1(0)

φ

∫
B3(ξ/ε)

1

|ξ/ε − η| dη
g(|ξ | + ε)

ε
≤ c(n) sup

B1(0)

φ
g(|ξ | + ε)

|ξ | + ε

and ∫
B1(0)

g(|ξ − εη|)
|ξ − εη| φ(η)dη ≥

∫
B1/2(0)\B1/4(ξ/ε)

g(|ξ − εη|)
|ξ − εη| φ(η)dη

≥ inf
B1/2(0)

φ |B1/2(0) \ B1/4(ξ/ε)| g(ε/4)

|ξ | + ε

≥ c(n,g1) inf
B1/2(0)

φ
g(|ξ | + ε)

|ξ | + ε
.

Note that we can assume without loss of generality that supB1(0) φ ≤ c and infB1/2(0) φ ≥ 1/c for some c ≡ c(n) > 0.
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