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Abstract

We establish the C1+γ -Hölder regularity of the regular free boundary in the stationary obstacle problem defined by the fractional 
Laplace operator with drift in the subcritical regime. Our method of the proof consists in proving a new monotonicity formula and 
an epiperimetric inequality. Both tools generalizes the original ideas of G. Weiss in [15] for the classical obstacle problem to the 
framework of fractional powers of the Laplace operator with drift. Our study continues the earlier research [12], where two of us 
established the optimal interior regularity of solutions.
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1. Introduction

In this paper we continue the study initiated in [12] of the obstacle problem

min{Lû(x), û(x) − ϕ̂(x)} = 0, ∀x ∈R
n, (1.1)

where we have denoted by L the fractional Laplacian operator with drift defined by

Lψ(x) := (−�)s ψ(x) + b(x)·∇ψ(x) + c(x)ψ(x), ∀ψ ∈ C2
0(Rn). (1.2)
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For 0 < s < 1 the action of the fractional Laplacian (−�)s on functions ψ ∈ C2
0(Rn) is given by the singular integral,

(−�)sψ(x) = cn,s p.v.

∫
Rn

ψ(x) − ψ(y)

|x − y|n+2s
dy, (1.3)

which is understood in the sense of the principal value. The constant cn,s in (1.3) is positive and depends only on 
the dimension n ∈ N and on the parameter s. The range (0, 1) of the parameter s is particularly interesting because 
in this case the fractional Laplacian operator is the infinitesimal generator of the symmetric 2s-stable process [1, 
Example 3.3.8].

In the subcritical regime, that is, when s ∈ (1/2, 1), in [12, Theorem 1.1] two of us established the existence and 
the optimal regularity ̂u ∈ C1+s(Rn) of the solution to the problem (1.1) under the assumptions that b ∈ Cs(Rn; Rn), 
c ∈ Cs(Rn), with c ≥ 0, and the obstacle ϕ̂ ∈ C3s(Rn) ∩ C0(R

n), and satisfies (Lϕ̂)+ ∈ L∞(Rn). Furthermore, if b is 
Lipschitz continuous and c ≥ c0 > 0, the solution is unique. For the definition of the Hölder spaces Cr(Rn) we refer 
the reader to §1.5 below.

The assumption s ∈ (1/2, 1) plays a crucial role in [12] since it allows to treat the drift term in the definition (1.2)
of L as a lower-order term. This assertion is made precise in §1.1, where we also explain the technical difficulties 
caused by the lower-order terms b and c in the definition (1.1) of the operator L.

In the present article we continue the study of the obstacle problem (1.1). In our main result, Theorem 1.3 below, 
we establish the C1+γ -Hölder continuity of the free boundary in the neighborhood of any regular free boundary point.

1.1. Reduction to an obstacle problem for the fractional Laplacian without drift

In [12, §2.3] it was proved that the study of the obstacle problem with drift (1.1) can be reduced to one without
drift in the following way. Given a solution ̂u ∈ C1+s(Rn) to (1.1) we construct a function w ∈ C3s(Rn) as a solution 
to the linear equation,

(−�)sw = b(x)·∇û + c(x)̂u.

Applying the second part of [13, Proposition 2.8] with α = σ = s (note that since 1/2 < s < 1 we have α + 2σ =
3s > 1), and using the fact that the right-hand side in the latter equation is in Cs(Rn), we have that the function w
belongs to C3s(Rn). We now define

u := û − w, and ϕ := ϕ̂ − w.

Since s > 1/2 we have 3s > 1 + s and thus C3s(Rn) is continuously embedded into C1+s(Rn), see §1.5, and thus 
u ∈ C1+s(Rn). Such u is a solution to the obstacle problem defined by the fractional Laplacian operator without drift,

min{(−�)s u(x),u(x) − ϕ(x)} = 0, ∀x ∈R
n. (1.4)

We remark that because of the preceding reduction procedure to an obstacle problem without drift, the obstacle 
function ϕ can be assumed at most to belong to the Hölder space C3s(Rn), even when the obstacle function ϕ̂, in 
problem (1.1), is assumed to be a smooth function. This is the main technical difference in the study of the fractional 
Laplacian operator with drift, and the one without drift.

1.2. Main result

To state our main result concerning the regularity of the free boundary we henceforth indicate with

�̂(̂u) := ∂ {̂u = ϕ̂},
the set of free boundary points corresponding to the obstacle problem for the fractional Laplacian with drift (1.1). 
Likewise, the notation

�(u) := ∂{u = ϕ}
will indicate the free boundary for problem (1.4). We notice that the reduction procedure from an obstacle problem 
with drift to one without drift described in §1.1 above implies that �̂(̂u) = �(u). Henceforth, we denote by �1+s(u)

the subset of �(u) composed of regular free boundary points for the problem (1.4) according to Definition 2.3 below.
We can now define the set of regular free boundary points for problem (1.1).
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Definition 1.1. We say that a free boundary point x0 ∈ �̂(̂u) is regular for problem (1.1) if x0 is a regular free boundary 
point for problem (1.4), i.e., x0 ∈ �1+s(u). If we denote by ̂�1+s (̂u) the set of regular free boundary points for problem 
(1.1), then according to our definition we have ̂�1+s (̂u) = �1+s(u).

The following two theorems are the main results of this paper.

Theorem 1.2 (C1+γ regularity of the regular free boundary for problem (1.4)). Let s ∈ (1/2, 1), and let u ∈ C1+s(Rn)

be a solution to the obstacle problem (1.4), where the obstacle function ϕ ∈ C3s(Rn). Let x0 ∈ �1+s(u). Then, there 
are positive constants, γ = γ (κ, n, s) ∈ (0, 1) and η, such that B ′

η(x0) ∩ �(u) ⊆ �1+s(u), and there is a function, 
g ∈ C1+γ (Rn−1), such that, after a possible rotation of the system of coordinates in Rn, one has

B ′
η(x0) ∩ �(u) = B ′

η(x0) ∩ {x = (x′, xn) ∈R
n−1 ×R | xn ≤ g(x′)}. (1.5)

To put Theorem 1.2 in the proper historical perspective we recall that when the obstacle is assumed to belong to 
C2,1(Rn), the C1+γ -Hölder continuity of the regular free boundary for the obstacle problem (1.4) was obtained by 
Caffarelli, Salsa, and Silvestre, see [Theorem 7.7] in [2]. In this paper we improve on this result by establishing the 
regularity of the free boundary under the weaker condition that ϕ ∈ C3s(Rn), which is crucial in our proof of Theo-
rem 1.3. This limitation in the regularity of the obstacle function makes the method of the proof of [2, Theorem 7.7]
inapplicable to our framework. Our approach to Theorem 1.2 is based on adaptation of the Weiss monotonicity for-
mula ([14, Theorem 3.1], [15, Theorem 2]), and on a suitable epiperimetric inequality ([15, Theorem 1]). Similar ideas 
have been recently used in [7] to establish the C1+γ -Hölder continuity of the regular free boundary in the Signorini 
problem with variable Lipschitz coefficients (see [7, Theorem 1.2]). Here we would also like to mention that the Sig-
norini problem with variable Sobolev coefficients in W 1,p, p > n + 1, has been recently studied in [8,9], employing 
new techniques based on Carleman inequalities.

Theorem 1.3 (C1+γ regularity of the regular free boundary for problem (1.1)). Let s ∈ (1/2, 1), and assume that 
b ∈ Cs(Rn; Rn) and c ∈ Cs(Rn). Let û ∈ C1+s(Rn) be a solution to the obstacle problem (1.1) for the fractional 
Laplacian with drift, where the obstacle ϕ̂ ∈ C3s(Rn). Let x0 ∈ �̂1+s (̂u). Then, there exist positive constants γ =
γ (κ, n, s) ∈ (0, 1) and η, such that B ′

η(x0) ∩ �̂(̂u) ⊆ �̂1+s (̂u), and there is a function g ∈ C1+γ (Rn−1) such that, after 
a possible rotation of the system of coordinates in Rn, one has

B ′
η(x0) ∩ �̂(̂u) = B ′

η(x0) ∩ {x = (x′, xn) ∈R
n−1 ×R | xn ≤ g(x′)}. (1.6)

1.3. Outline of the article

In §2 we recall the Almgren-type monotonicity formula, established in [12, Propositions 2.12 and 2.13], with the 
aid of which we define the concept of regular free boundary points for problem (1.4). In §3 we prove a Weiss-type 
monotonicity formula adapted to our framework, and we introduce the sequence of homogeneous rescalings at regular 
free boundary points together with some of the main properties which are extensively used in the sequel. In §4 we 
establish in Theorem 4.2 a generalization of the epiperimetric inequality first obtained by Weiss in [15, Theorem 1]
in the analysis of the classical obstacle problem. In §5 we finally prove our main results, Theorems 1.2 and 1.3. In 
Appendix A we prove various auxiliary results that we use throughout the article.

1.4. Notations and conventions

With R+ := (0, ∞), we denote by Rn+1+ the upper half-space Rn × R+. If v, w ∈ R
n, we let v·w indicate their 

scalar product. For x0 ∈ R
n+1 and r > 0, let Br(x0) be the Euclidean ball in Rn+1 of radius r centered at x0, and for 

x0 ∈ R
n and r > 0 we indicate with B ′

r (x0) the Euclidean ball in Rn of radius r centered at x0. We denote by B+
r (x0)

the half-ball, Br(x0) ∩ (Rn ×R+). For brevity, when x0 = 0, we write Br , B ′
r , and B+

r instead of Br(0), B ′
r (0), and 

B+
r (0), respectively.

For a set S ⊆R
n, we denote its complement by Sc := R

n \ S, and we let int(S) denote its topological interior.
For any real numbers, a and b, we denote a ∧ b := min{a, b}.
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1.5. Function spaces

In what follows we will need the Hölder spaces Ck+α(�), where � ⊂ R
n is an open set. We recall that for any 

k ∈N0 =N ∪ {0} the space Ck(�) is the Banach space of the functions u ∈ Ck
loc(�) such that the norm

|u|k;� =
k∑

j=0

[u]j ;� < ∞,

where

[f ]0;� = sup
�

|f |, [f ]j ;� = sup
�

max|α|=j
|Dαf |.

Notice that |f |0;� = [f ]0;�. For 0 < δ < 1 we say that u is δ-Hölder continuous in � if the seminorm

[u]δ;� = sup
x,y∈�,x �=y

|u(x) − u(y)|
|x − y|δ < ∞.

When δ = 1 we say that u is Lipschitz continuous in �. We let

[u]k+δ;� = max|α|=k
[Dαu]δ;�.

For 0 < δ < 1 and k ∈ N ∪ {0} we define Ck+δ(�) as the Banach space of functions in Ck(�) such that the norm

|u|k+δ;� = |u|k;� + [u]k+δ;� < ∞.

When � =R
n we simply write Ck+δ instead of Ck+δ(Rn). Let us note explicitly that when k = 0 the space Cδ(�) is 

defined as the set of functions in C(�) which are δ-Hölder continuous in � and such that

|u|δ;� = |u|0;� + [u]δ;� < ∞.

We will often make use of the simple observation that if u, v ∈ Cδ(�), then uv ∈ Cδ(�) as well. Also, we note that 
if r ≥ s ≥ 0, then Cr(�) ⊂ Cs(�), with the inclusion being continuous. This can be seen as follows. Let u ∈ Cr(�)

and x, y ∈ �. Suppose first that |x − y| ≤ 1. Then,

|u(x) − u(y)|
|x − y|s = |u(x) − u(y)|

|x − y|r |x − y|r−s ≤ [u]r;�.

This gives [u]s;� ≤ [u]r;�. If instead |x − y| ≥ 1, then

|u(x) − u(y)| ≤ 2|u|0;� ≤ 2|u|0;�|x − y|s .
This gives [u]s;� ≤ 2|u|0;� ≤ 2|u|r;�.

One should pay attention to the fact that, although the spaces Cr(�) are defined for every r ≥ 0, when r ∈ N it is 
not true that Cr(�) = C(r−1)+1(�) according to our definition of the spaces Ck+δ(�); i.e., Cr(�) is not the space of 
functions having r − 1 Lipschitz continuous derivatives in �.

Finally, we will need the weighted Hölder spaces C1+α
a (�̄), where α ∈ (0, 1), � ⊆ R

n+1+ is an open set, and we 
recall that a = 1 − 2s. A function u ∈ C1(�) is said to belong to C1+α

a (�̄) if

‖u‖
C1+α

a (�̄)
:= ‖u‖Cα(�̄) + ‖uxi

‖Cα(�̄) + ‖|y|a∂yu‖Cα(�̄) < ∞. (1.7)

2. Regular free boundary points and Almgren rescalings

We divide this section into two parts. In §2.1 we review the Almgren-type monotonicity formula introduced in [12]
which we use to define the notion of regular free boundary points. In §2.2, we recall the definition of the Almgren 
rescalings and we establish some of their properties, which play a fundamental role in the study of the regularity of 
the free boundary in a neighborhood of free boundary points.
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2.1. Regular free boundary points

In this section we give the definition of regular free boundary points, and we establish some of their properties 
which will be used in the sequel.

Let a := 1 − 2s. We consider the operator La defined, for all v ∈ C2(Rn+1+ ), by

Lav(x, y) = div(|y|a∇v)(x, y), (x, y) ∈R
n+1+ . (2.1)

The relation between the degenerate-elliptic operator La and the fractional Laplacian operator, (−�)s , is investigated 
in [3, §3], where it is established that La-harmonic functions, u, satisfy

lim
y↓0

yauy(x, y) = −(−�)su(x,0), (2.2)

where identity (2.2) holds up to multiplication by a constant factor (see [3, Formula (3.1)]). In other words, the 
fractional Laplacian operator, (−�)s , is a Dirichlet-to-Neumann map for the elliptic operator La . For a probabilistic 
interpretation of the relationship between the fractional Laplacian operator (−�)s , and the degenerate-elliptic operator 
La , see [10], where the authors establish that the 2s-symmetric stable process, with infinitesimal generator (−�)s , is 
a Brownian motion subordinated with the inverse local time of a Bessel process, with infinitesimal generator La.

We fix a point x0 ∈ �(u). Following [12, Definition (2.41)], we introduce the height function,

vx0(x, y) := u(x, y) − ϕ(x, y) − 1

2s
(−�)sϕ(x0)|y|1−a, (2.3)

where the functions u(x, y) and ϕ(x, y) are the La-harmonic extensions of u(x) and ϕ(x) from Rn to Rn+1+ . When 
x0 = 0, we write for brevity v(x, y) instead of v0(x, y). From [12, Equations (2.43), (2.44), (2.46), and (2.47)] we 
recall that the height function vx0(x, y) satisfies the conditions:

Lavx0 = 0 in R
n × (R \ {0}), (2.4)

vx0 ≥ 0 on R
n × {0}, (2.5)

Lavx0(x, y) ≤ hx0(x)Hn|{y=0} on R
n+1, (2.6)

Lavx0(x, y) = hx0(x)Hn|{y=0} on R
n+1 \ ({y = 0} ∩ {vx0 = 0}), (2.7)

where the source function hx0 is defined by

hx0(x) := 2
(
(−�)sϕ(x) − (−�)sϕ(x0)

)
, x ∈R

n.

From the construction (2.3) of the height function vx0 and from [12, Theorem 1.1], it follows that hx0 belongs to 
Cs(Rn), and there is a positive constant, C, such that

|vx0(x,0)| ≤ C|x|1+s , and |hx0(x,0)| ≤ C|x|s , x ∈R
n. (2.8)

We recall the Almgren-type monotonicity formula associated to the function vx0(x, y) that two of us established in 
[12, Proposition 2.12]. For this purpose, we first need to introduce suitable weighted Sobolev spaces. Let U ⊆ R

n+1

be a Borel set. We say that a function w belongs to the weighted Sobolev space H 1(U, |y|a), if w and Dw are function 
in L2

loc(U, |y|a) and∫
U

(
|w|2 + |∇w|2

)
|y|a < ∞.

From [3, §2.4] it follows that the auxiliary function vx0(x0 + ·) belongs to the spaces C(Rn+1) and H 1(Br , |y|a), for 
all r > 0. In particular, the following quantities are well-defined:

Fx0(r) :=
∫

∂Br

|vx0(x0 + ·)|2|y|a, (2.9)

dx0,r :=
(

1

rn+a
Fx0(r)

)1/2

, (2.10)

�
p
x0(r) := r

d

dr
log max{Fx0(r), r

n+a+2(1+p)}, (2.11)
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where r > 0 and p > 0. The functions Fx0(r) and �p
x0(r) are the analogues of the functions Fu(r) and �u(r) given by 

[2, Definitions (3.1) and (3.2)], but adapted to our framework. We can now state the following result which combines 
Propositions 2.12 and 2.13 from [12].

Proposition 2.1 (Almgren-type monotonicity formula). Let s ∈ (1/2, 1), α ∈ (1/2, s), and x0 be a free boundary 
point. Then, for all p ∈ [s, α + s − 1/2) there exist positive constants, C = C(‖u‖C1+α(Rn)), γ = 2(α + s − p) − 1, 
and r0 = r0(α, p, s, ‖u‖C1+α(Rn)) ∈ (0, 1), such that the function

(0, r0) � r �→ eCrγ

�
p
x0(r), (2.12)

is nondecreasing. Moreover, if

lim inf
r↓0

dx0,r

r1+p
< ∞, (2.13)

then

�
p
x0(0+) = n + a + 2(1 + p), (2.14)

and if

lim inf
r↓0

dx0,r

r1+p
= ∞, (2.15)

then

�
p
x0(0+) ≥ n + a + 2(1 + s). (2.16)

We also have a straightforward consequence of the proof of [12, Proposition 2.13].

Proposition 2.2 (Property of the Almgren-type monotonicity formula). Let s ∈ (1/2, 1), α ∈ (1/2, s), and x0 ∈ �(u). 
Then for all p ∈ [s, α + s − 1/2), we have that either one of the following three possibilities occurs:

�
p
x0(0+) = n + a + 2(1 + s), �

p
x0(0+) = n + a + 2(1 + p), or �

p
x0(0+) ≥ n + a + 4.

Proof. In the case (2.13), we have from Proposition 2.1 that identity (2.14) holds. It only remains to analyze the 
case when condition (2.15) holds. Following the proof of [12, Proposition 2.13], we see that either (2.14) holds, 
or �p

x0(0+) = �vx0
(0+), where �vx0

(r) is the Almgren monotonicity formula defined in [2, Formula (3.2)]. From 
[2, Lemma 6.1], it follows that �vx0

(0+) = n + a + 2(1 + s), or �vx0
(0+) ≥ n + a + 4. Thus the conclusion of 

Proposition 2.2 holds. �
We can now give the definition of regular free boundary points for problem (1.4).

Definition 2.3. We say that a free boundary point x0 ∈ �(u) is regular for problem (1.4) if

�
p
x0(0+) = n + a + 2(1 + s), ∀p ∈ (s,2s − 1/2). (2.17)

The set of regular free boundary points will be denoted by �1+s(u).

We have the following.

Lemma 2.4 (Property of regular free boundary points). Let x0 ∈ �(u). If there exists q ∈ (s, 2s − 1/2) such that 
�

q
x0(0+) = n + a + 2(1 + s), then x0 is a regular free boundary point.

Proof. Because �q
x0(0+) = n + a + 2(1 + s), it follows from Proposition 2.1 that property (2.15) holds with p = q , 

and so using definitions (2.9) and (2.10), we have that Fx0(r) > rn+a+2(1+q), for r small enough. This implies that

�
q
x0(r) = r

F ′
x0

(r)

F (r)
.

x0
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Making use of the monotonicity of the function r �→ eCrγ
�

q
x0(r), and the fact that �q

x0(0+) = n + a + 2(1 + s), we 
obtain that for all ε > 0, there is a positive constant rε such that

r
F ′

x0
(r)

Fx0(r)
< n + a + 2(1 + s) + ε, ∀ r ∈ (0, rε).

Integrating in r , we obtain that we can find a positive constant, Cε, such that

Fx0(r) ≥ Cεr
n+a+2(1+s)+ε, ∀ r ∈ (0, rε).

Given p ∈ (s, 2s − 1/2), we choose ε > 0 small enough such that 2s + ε < 2p, which gives

max{Fx0(r), r
n+a+2(1+p)} = Fx0(r), ∀ r ∈ (0, rε).

From definition (2.11) of the function �p
x0(r) we obtain that

�
p
x0(r) = r

F ′
x0

(r)

Fx0(r)
= �

q
x0(r), ∀ r ∈ (0, rε),

and thus we conclude that �p
x0(0+) = n + a + 2(1 + s) for all p ∈ (s, 2s − 1/2). It follows that x0 is a regular free 

boundary point. �
We now have the following analogue of [7, Lemma 3.3] which shows that the set of regular free boundary points 

is open in the relative topology of the free boundary.

Lemma 2.5. Let x0 ∈ �1+s(u). Then, there is a positive constant, η = η(x0), such that

B ′
η(x0) ∩ �(u) ⊆ �1+s(u).

Moreover, for all p ∈ (s, 2s − 1/2), the convergence

�
p
x (r) → n + a + 2(1 + s), as r ↓ 0 (2.18)

is uniform, for all x ∈ B ′
η(x0) ∩ �(u).

Proof. Our method of the proof follows that of [7, Lemma 3.3], but contains small variations because the Dirichlet-
to-Neumann map (−�)1/2 = ∂ν in [7] is replaced by the fractional Laplacian operator (−�)s in our problem. Let 
p ∈ (s, 2s − 1/2), and choose a constant ε ∈ (0, (p ∧ 1 − s)/2). Our goal is to first show that there are positive 
constants, η = η(ε, x0) and ρ = ρ(ε, x0), such that

�
p
x (ρ) < n + a + 2(1 + s) + ε, ∀x ∈ B ′

η(x0) ∩ �(u). (2.19)

Because x0 ∈ �1+s(u), it follows from Definition 2.3 that

�
p
x0(r) = r

F ′
x0

(r)

Fx0(r)
→ n + a + 2(1 + s), as r ↓ 0,

and so there is a positive constant, ρ = ρ(ε, x0) < r0/2, where r0 is given by Proposition 2.1, such that

r
F ′

x0
(r)

Fx0(r)
< n + a + 2(1 + s) + ε

3
, ∀ r ∈ (0,2ρ). (2.20)

Using [12, Theorem 1.1], it follows that the function

�(u) � x �→ ρ
F ′

x(ρ)

Fx(ρ)

is continuous. Combined with inequality (2.20), this implies the existence of a positive constant η = η(ε, x0) such 
that

ρ
F ′

x(ρ)
< n + a + 2(1 + s) + 2ε

, ∀x ∈ B ′
η(x0) ∩ �(u). (2.21)
Fx(ρ) 3
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For x ∈ B ′
η(x0) ∩ �(u) fixed, because the function

(0,∞) � r �→ r
F ′

x(r)

Fx(r)

is continuous, we obtain from inequality (2.21) that there is a positive constant δ = δ(ε, x) < ρ such that

r
F ′

x(r)

Fx(r)
< n + a + 2(1 + s) + ε, ∀ r ∈ (ρ − δ,ρ + δ). (2.22)

Integrating in r the previous inequality gives us that there is a positive constant, c, such that

Fx(r) > crn+a+2(1+s)+ε, ∀ r ∈ (ρ − δ,ρ + δ).

Because we have chosen ε ∈ (0, (p ∧ 1 − s)/2) we see that

max{Fx(r), r
n+a+2(1+p)} = Fx(r), ∀ r ∈ (ρ − δ,ρ + δ).

Using definition (2.11) of the function �p
x (r), together with (2.22), it follows that inequality (2.19) holds. Without 

loss of generality, we may assume that the positive constant ρ is chosen small enough so that

eCrγ

<
n + a + 2(1 + s) + 2ε

n + a + 2(1 + s) + ε
, ∀ r ∈ [0,2ρ).

Combined with (2.19) this implies that

eCργ

�
p
x (ρ) < n + a + 2(1 + s) + 2ε.

Recalling that we have chosen ε ∈ (0, (p ∧ 1 − s)/2), the preceding inequality implies

eCργ

�
p
x (ρ) < n + a + 2(1 + p ∧ 1).

Applying Proposition 2.2, we obtain that �p
x (0+) = n + a + 2(1 + s), which implies that x belongs to �1+s(u), 

whenever x ∈ B ′
η(x0) ∩ �(u).

The uniform convergence (2.18) in x ∈ B ′
η(x0) ∩ �(u) is a consequence of Dini’s Theorem since, with x0 replaced 

by a fixed x ∈ B ′
η(x0) ∩ �(u), the function (2.12) is nondecreasing, while for fixed r ∈ (0, ρ], the function �(u) �

x �→ eCrγ
�

p
x (r) is continuous. This concludes the proof. �

2.2. Almgren rescalings

We now discuss properties of the sequence of Almgren-type rescalings {ṽx0,r}r>0 of the function v. We recall their 
definition from [12, Identity (2.54)]:

ṽx0,r (x, y) := v(x0 + rx, ry)

dx0,r

, (x, y) ∈R
n ×R, (2.23)

where dx0,r is defined in (2.10), and x0 ∈ �(u). When x0 = 0 we write for brevity ṽr instead of ṽx0,r . We first need to 
introduce the set H1+s consisting of homogeneous functions on Rn+1 of degree 1 + s of the form:

H1+s =
{
A

(
x·e +

√
(x·e)2 + y2

)s (
x·e − s

√
(x·e)2 + y2

)
| e ∈ ∂B ′

1, A ≥ 0

}
. (2.24)

We have the following properties of the sequence of rescalings around a regular free boundary point:

Lemma 2.6. There exists c > 0 such that for all x0 ∈ �1+s(u) and all p ∈ (s, 2s − 1/2) one has:

(i) Property (2.15) holds.
(ii) There exists r0 = r0(p, x0) > 0 such that

�
p
x0(r) = r

F ′
x0

(r)

Fx0(r)
, ∀ r ∈ (0, r0). (2.25)
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(iii) The family of rescalings {ṽx0,r }r>0 is bounded in H 1(B+
1 , |y|a) and contains a subsequence that converges 

strongly in H 1(B+
1/8, |y|a) to a homogeneous function ṽx0,0 ∈H1+s ; i.e., there exists e ∈ ∂B ′

1 and c > 0 such that

ṽx0,0 = c

(
x·e +

√
(x·e)2 + y2

)s (
x·e − s

√
(x·e)2 + y2

)
. (2.26)

Moreover, the function ṽx0,0(x, y) satisfies the system of conditions:

ṽx0,0 ≥ 0 on R
n × {0},

ṽx0,0(x, y) = ṽx0,0(x,−y), ∀ (x, y) ∈R
n ×R+,

Laṽx0,0 = 0 on R
n+1 \ (

R
n × {0} ∩ {ṽx0,0 = 0}) ,

Laṽx0,0 ≤ 0 on R
n+1, (2.27)

Proof. Properties (i) and (ii) are a straightforward consequence of Proposition 2.1. We now give the proof of property 
(iii). The boundedness in H 1(B+

1 , |y|a) and the existence of a subsequence of rescalings that converges strongly in 
H 1(B+

1/8, |y|a) to a function ṽx0,0, and satisfies the conditions (2.27), follows from the proof of [12, Proposition 2.13]. 
From [12, Identities (2.95) and (2.97)] we observe that

r
∫
Br

|∇ṽx0,0|2|y|a∫
∂Br

|ṽx0,0|2|y|a = 1 + s,

for all r > 0 small enough. It follows from [3, Theorem 6.1] that ṽx0,0 is a homogeneous function of degree 1 + s. 
This implies that ṽx0,0 is its own Almgren blowup and hence we can apply [2, Proposition 5.5 and Lemma 6.2] to 
conclude that there is a real constant c > 0, and a direction e ∈ ∂B ′

1, such that ∂{ṽx0,0 = 0} ∩R
n × {0} is a half-space 

and the representation formula (2.26) holds. The constant c depends only and n and s because of the normalization 
‖ṽx0,0‖L2(∂B1,‖y‖a) = 1, which follows from the definition (2.23) of rescalings. �

We next state an analogue of [7, Lemma 3.4], which shows a locally uniform convergence of the Almgren rescalings 
ṽx,r to the homogeneous functions in H1+s in the weighed C1+α

a -norm, as defined in (1.7).

Lemma 2.7 (Convergence to homogeneous functions). Let x0 ∈ �1+s(u). There exists α ∈ (0, 1) such that for all ε > 0
one can find r0 = r0(x0) > 0 and η = η(x0) > 0 for which

inf
v∈H1+s

‖ṽx,r − v‖
C1+α

a (B̄+
1/8)

< ε, (2.28)

for all r ∈ (0, r0) and all x ∈ B ′
η(x0) ∩ �1+s(u).

Before proving Lemma 2.7 we establish the following uniform a priori local Schauder estimates.

Lemma 2.8. Let x0 ∈ �1+s(u). Then, there exist constants α ∈ (0, 1), C > 0, η > 0 and r0 > 0, such that for all 
r ∈ (0, r0) and every x ∈ B ′

η(x0) ∩ �1+s(u)

‖ṽx,r‖C1+α
a (B̄+

1/8)
≤ C. (2.29)

Proof. Let η = η(x0) > 0 be chosen as in the statement of Lemma 2.5. In [12, Lemma 2.17] an estimate similar 
to (2.29) was obtained, but with the constant r0 = r0(x) > 0 depending on the free boundary point x ∈ B ′

η(x0) ∩
�1+s(u). From the proof of [12, Lemma 2.17] we can trace the dependence of the constant r0(x) on the validity of 
[12, Inequality (2.62)]. That is, for all x ∈ B ′

η(x0) ∩ �1+s(u) there exists r0(x) > 0 such that

Fx(r) ≥ rn+a+2(1+p), ∀ r ∈ (0, r0(x)), (2.30)

where p ∈ (2, 2s −1/2) is any fixed constant. We now show that we can choose uniformly the positive constant r0(x), 
depending only on x0. From property (2.18), given ε ∈ (0, p − s) there exists r0 = r0(x0) > 0 such that �p

x (r) <
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n + a + 2(1 + s) + ε, for all r ∈ (0, r0) and every x ∈ B ′
η(x0) ∩ �1+s(u). Using the definition (2.11) of the function 

�
p
x (r), this implies that

r
d

dr
log max{Fx(r), r

n+a+2(1+p)} < n + a + 2(1 + s) + ε,

for all r ∈ (0, r0), and every x ∈ B ′
η(x0) ∩ �1+s(u). Integrating in r the latter inequality we obtain the existence of 

C = C(n, s, ‖u‖C(Rn), x0) > 0 such that

Fx(r) ≥ Crn+a+2(1+s+ε), ∀ r ∈ (0, r0), ∀x ∈ B ′
η(x0) ∩ �1+s(u).

This immediately implies inequality (2.30). We may now conclude with the aid of [12, Lemma 2.17] that the uniform 
local Schauder estimate (2.29) holds. �

We can now present the

Proof of Lemma 2.7. The proof can be obtained using the same argument as the one in the proof of [7, Lemma 3.4], 
with the observation that we must replace the C1+1/2(B̄+

1 ) uniform Schauder estimates of the sequence of rescal-
ings with the ones obtained in Lemma 2.8. Furthermore, we need to replace the application of [7, Theorem 2.4 and 
Lemma 2.5] with that of Proposition 2.1. �
3. A Weiss-type monotonicity formula and homogeneous rescalings at regular free boundary points

In this section, we introduce in §3.1 a Weiss-type functional and establish its monotonicity property. We then 
discuss in §3.2 the homogeneous rescalings and some of their properties which are used extensively in the sequel.

3.1. Weiss-type monotonicity formula

Let x0 ∈ �(u) and vx0(x, y) be the height function defined in (2.3). We let

Ix0(r) :=
∫

Br(x0)

|∇vx0 |2|y|a +
∫

B ′
r (x0)

vx0hx0 , ∀ r ∈R+. (3.1)

Following [15, p. 25], we now introduce a Weiss-type functional adapted to our framework.

Definition 3.1. We define the Weiss-type functional

WL(v, r, x0) := 1

rn+2
Ix0(r) − 1 + s

rn+3
Fx0(r), ∀ r ∈R+, (3.2)

where we recall that the function Fx0(r) is defined in (2.9).

Remark 3.2. Although, as it was pointed put in (2.4), strictly speaking the function vx0 satisfies the equation Lavx0 = 0
in Rn × (R \{0}), in order to avoid making the notation too cumbersome we have opted for WL(v, r, x0), instead of the 
heavier notation WLa(v, r, x0). Furthermore, because the free boundary point x0 is kept fixed in most of our proofs, 
for the sake of brevity we write WL(v, r) instead of WL(v, r, x0). Also, when r = 1, we write for simplicity WL(v)

instead of WL(v, 1, x0).

We recall some useful identities concerning the functionals Ix0(r) and Fx0(r). The integration by parts formula 
together with the system of conditions (2.4)–(2.7) gives

Ix0(r) =
∫

∂Br (x0)

vx0∇vx0 ·ν|y|a, (3.3)

where ν denotes the outer unit normal to ∂Br(x0). Differentiating (3.1) with respect to r gives
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I ′
x0

(r) =
∫

∂Br (x0)

|∇vx0 |2|y|a +
∫

∂B ′
r (x0)

vx0hx0 . (3.4)

From (3.4), and [12, Lemma A.7 and Identity (A.8)], we thus obtain

I ′
x0

(r) = 2
∫

∂Br (x0)

|∇vx0 ·ν|2|y|a + n + a − 1

r

∫
∂Br (x0)

vx0∇vx0 ·ν|y|a

− n + a − 1

r

∫
B ′

r (x0)

vx0hx0 − 2

r

∫
B ′

r (x0)

(x, y)·∇vx0hx0 +
∫

∂B ′
r (x0)

vx0hx0 . (3.5)

We also easily obtain the derivative of the functional Fx0(r) in (2.9):

F ′
x0

(r) = 2
∫

∂Br (x0)

vx0∇vx0 ·ν|y|a + n + a

r
Fx0(r). (3.6)

We next want to understand the behavior of the Weiss functional WL(v, r, x0), as r tends to 0. We begin by proving 
that the functional WL(v, r, x0) is bounded as r tends to 0, and for this purpose we make use of the following result.

Lemma 3.3 (Growth of vx0 near x0). Let x0 ∈ �(u). Then, there exists C > 0 such that

|vx0(x, y)| ≤ C|(x − x0, y)|1+s , ∀ (x, y) ∈ R
n+1. (3.7)

Proof. The method of proof of [12, Claim 2.20] can be adapted to the present setting to yield estimate (3.7). A more 
detailed proof is given in Lemma A.1. �
Lemma 3.4 (Boundedness of the Weiss-type functional). Let x0 ∈ �(u). Then, there exists C, r0 > 0 such that for every 
r ∈ (0, r0) one has

|Fx0(r)| ≤ Crn+3, |Ix0(r)| ≤ Crn+2. (3.8)

In particular, we obtain

|WL(v, r)| ≤ C, 0 < r < r0. (3.9)

Proof. The proof of the former inequality in (3.8) is an immediate consequence of the growth bound (3.7) and of the 
definition (2.9) of the functional Fx0(r). The growth estimate (2.8) imply the existence of C, r0 > 0 such that∣∣∣∣∣∣∣

∫
B ′

r (x0)

vx0hx0

∣∣∣∣∣∣∣ ≤ Crn+1+2s , 0 < r < r0.

Using this estimate together with (3.8), the fact that 2s > 1, and that the functional WL(v, r) + Cr2s−1 is nondecreas-
ing, we infer the existence of C, r0 > 0 such that

1

rn+2

∫
Br(x0)

|∇vx0 |2|y|a ≤ C + WL(v,1), 0 < r < r0.

From this estimate the latter inequality in (3.8), and (3.9) now follow. �
Analogously to [7, Theorem 4.3] (see also the original result by Weiss for the classical obstacle problem in [15, 

Theorem 2]), we have the following crucial monotonicity formula.
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Theorem 3.5 (Adjusted monotonicity of the Weiss-type functional). There exist constants C, r0 > 0 such that for all 
x0 ∈ �(u) and every 0 < r < r0 one has:

d

dr

(
WL(v, r) + Cr2s−1

)
≥ 2

rn+2

∫
∂Br (x0)

(
(1 + s)vx0

r
− ∇vx0 ·ν

)2

|y|a. (3.10)

In particular, it follows that the function

r �→ WL(v, r) + Cr2s−1 (3.11)

is nondecreasing on (0, r0).

Proof. From expression (3.2) of the Weiss functional we obtain

d

dr
WL(v, r) = −n + 2

rn+3
Ix0(r) + 1

rn+2
I ′
x0

(r) + (1 + s)(n + 3)

rn+4
Fx0(r) − 1 + s

rn+3
F ′

x0
(r). (3.12)

Combining identities (3.5) and (3.6), and using the fact that a = 1 − 2s, it follows that

d

dr
WL(v, r) = 2

rn+2

∫
∂Br (x0)

(
(1 + s)vx0

r
− ∇vx0 ·ν

)2

|y|a

− n + a − 1

rn+3

∫
B ′

r (x0)

vx0hx0 − 2

rn+3

∫
B ′

r (x0)

(x, y)·∇vx0hx0 + 1

rn+2

∫
∂B ′

r (x0)

vx0hx0 .

Using the basic estimates (2.8), we obtain the upper bound∣∣∣∣∣∣∣
n + a − 1

rn+3

∫
B ′

r (x0)

vx0hx0

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

2

rn+3

∫
B ′

r (x0)

(x, y)·∇vx0hx0

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

1

rn+2

∫
∂B ′

r (x0)

vx0hx0

∣∣∣∣∣∣∣
≤ Cr−2(1−s) = C

2s − 1

d

dr
r2s−1, (3.13)

for all r ∈ (0, r0) and for some number r0 > 0 depending on x0. It follows that the inequality (3.10) for C and 
r ∈ (0, r0). This, in turn, implies that the functional (3.11) is nondecreasing. �

We can now establish a result which is analogous to [7, Lemma 4.4].

Lemma 3.6. If x0 ∈ �1+s(u), then WL(v, 0+) = 0.

Proof. From definition (3.2) of WL(v, r), we have that

WL(v, r) = Fx0(r)

rn+3

(
r

Ix0(r)

Fx0(r)
− (1 + s)

)
, ∀ r ∈ R+.

Identities (2.25), (3.3) and (3.6) gives us that

2r
Ix0(r)

Fx0(r)
= �

p
x0(r) − (n + a),

where p ∈ (2, 2s − 1/2). Applying property (2.17), we have that

lim
r↓0

r
Ix0(r)

Fx0(r)
= 1 + s,

and using the boundedness property (3.8), we obtain the conclusion. �
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3.2. Homogeneous rescalings

To study the regularity of the free boundary in a neighborhood of regular points, we use in a fundamental way the 
following homogeneous rescalings of the height function vx0(x, y), defined in (2.3). For x0 ∈ �1+s(u), we define

vx0,r (x, y) := 1

r1+s
vx0(x0 + rx, ry), ∀ (x, y) ∈R

n+1, ∀ r > 0. (3.14)

When x0 = O , we write for brevity vr instead of vx0,r . In the sequel, we will use two main results about the sequence 
of homogeneous rescalings {vx0,r}r>0: the convergence result in Lemma 3.7, and the homogeneity of the limit, estab-
lished in Lemma 3.8.

Lemma 3.7 (Convergence of the sequence of rescalings). Let x0 ∈ �1+s(u). Any sequence of homogeneous rescalings, 
{vx0,rk }k∈N, such that rk → 0, as k tends to ∞, contains a convergent subsequence in C1+γ

a (B̄+
1/8), for some γ ∈ (0, 1). 

Any limit function, vx0,0, of a convergent subsequence of {vx0,rk }k∈N belongs to C1+γ
a (B̄+

1/8), and satisfies conditions
(2.4)–(2.7), with vx0 replaced by vx0,0, and hx0(x) replaced by 0.

We also have

Lemma 3.8 (Limit of the sequence of rescalings). Let vx0,0 be as in Lemma 3.7. Then vx0,0 is a homogeneous function 
of degree 1 + s. In particular, vx0,0 ∈H1+s .

We establish Lemmas 3.7 and 3.8 with the aid of several intermediate results.

Lemma 3.9. Let x0 ∈ �1+s(u), and r > 0. The homogeneous rescaling vx0,r satisfies the system of conditions
(2.4)–(2.7), with vx0 replaced by vx0,r , and hx0(x) replaced by rshx0(x0 + rx).

Proof. Direct calculations give us that

Lavx0,r (x, y) = rsLavx0(x0 + rx, ry), ∀ (x, y) ∈R
n+1,

and so, the conclusion of the lemma follows immediately. �
The proof of Lemma 3.7 is based on the uniform a priori local Schauder estimates in the Hölder space of functions 

C1+α
a (B̄+

1/8), defined in (1.7).

Lemma 3.10 (Uniform Schauder estimates). Let x0 ∈ �1+s(u). Then, there exist constants C, r0 > 0, and α ∈ (0, 1), 
such that

‖vx0,r‖C1+α
a (B̄+

1/8)
≤ C, ∀ r ∈ (0, r0). (3.15)

Moreover, the constants C and r0 are locally uniform in x0.

Proof. Because x0 belongs to �1+s(u), and the homogeneous rescalings {vx0,r}r>0 satisfy the conclusion of 
Lemma 3.9, it follows that the hypotheses of [12, Lemma 2.17] are verified (uniformly in a neighborhood of x0), 
and so there are positive constants, α ∈ (0, 1), C and r0, such that estimate (3.15) holds, for all r ∈ (0, r0). �

We can now give the proof of Lemma 3.7 with the aid of Lemma 3.10.

Proof of Lemma 3.7. The Schauder estimate (3.15) and Arzelá-Ascoli Theorem implies that the sequence of rescal-
ings, {vx0,rk }k∈N, contains a convergent subsequence in any space C1+γ

a (B̄+
1/8), for all γ ∈ (0, α), where α ∈ (0, 1)

is the constant appearing in the conclusion of Lemma 3.10. From Lemma 3.9, it follows that any limit function of a 
convergence subsequence is a solutions to the system of conditions (2.4)–(2.7), with hx0(x) replaced by 0. �
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Next, we give the proof of Lemma 3.8, using the monotonicity property of the Weiss functional established in 
Lemma 3.5. Note, there is a shorter proof (given after this one) by using the classification of Almgren blowups in 
Lemma 2.6, but nevertheless we prefer to include this proof as it also serves as an illustration for the properties of the 
Weiss functional.

Proof of Lemma 3.8. Let r0 be the positive constant in the hypotheses of Lemma 3.5, and let 0 < R1 < R2 < r0. We 
apply inequality (3.10) to vx0 and integrate over the interval (rkR1, rkR2), obtaining that

WL(vx0 , rkR2) − WL(vx0 , rkR1) + Cr2s−1
k (R2s

2 − R2s
1 )

≥
rkR2∫

rkR1

2

rn+4

∫
∂Br

[
(1 + s)vx0(x0 + x, y) − ∇vx0(x0 + x, y)·(rν)

]2 |y|a dr

=
R2∫

R1

2

rn+3
k rn+4

∫
∂Brrk

[
(1 + s)vx0(x0 + x, y) − ∇vx0(x0 + x, y)·(rrkν)

]2 |y|a dr,

where ν denotes the outer unit normal vector to the spheres ∂Br and ∂Brrk . Using the definition of the homogeneous 
rescalings (3.14), and that of the Weiss functional (3.2), we obtain in the preceding inequality,

WL(vx0 , rkR2) − WL(vx0 , rkR1) + Cr2s−1
k (R2s

2 − R2s
1 )

≥
R2∫

R1

2r
n+a+2(1+s)
k

rn+3
k

1

rn+4

∫
∂Br

[
(1 + s)vx0,rk − ∇vx0,rk ·(rν)

]2 |y|a dr

=
R2∫

R1

2

rn+4

∫
∂Br

[
(1 + s)vx0,rk − ∇vx0,rk ·(rν)

]2 |y|a dr.

Letting now k tend to ∞, and using the fact that 2s > 1, it follows from Lemma 3.6 that the left-hand side in the 
preceding inequality tends to 0. Applying also Lemma 3.7 to the right-hand side of the preceding inequality, we see 
that

0 ≥
R2∫

R1

2

rn+4

∫
∂Br

[
(1 + s)vx0,0 − ∇vx0,0·(rν)

]2 |y|a dr.

Because the positive constants R1 < R2 are arbitrarily chosen in the interval (0, r0), it follows that ∇vx0,0·(rν) =
(1 + s)vx0,0 on ∂Br , for all r ∈ (0, r0), and so the limit function vx0,0 is homogeneous of degree 1 + s. Finally, the fact 
that vx0,0 ∈ H1+s follows from [2, Proposition 5.5 and Lemma 6.2], as either vx0,0 = 0, or vx0,0 is a positive multiple 
of its own Almgren blowup at the origin. �

As we mentioned above, there is a shorter proof of Lemma 3.8, which relies on similar properties of Almgren 
rescalings and blowups.

Alternative Proof of Lemma 3.8. For any r > 0 we have the following formula relating the homogeneous and 
Almgren rescalings:

vx0,r = dx0,r

r1+s
ṽx0,r .

By Lemma 2.6, it follows that the sequence of Almgren rescalings {ṽx0,rk } contains a convergent subsequence to a 
function ṽx0,0 ∈ H1+s . Besides, the estimate on Fx0 in (3.8) tells that dx0,r ≤ Cr1+s and thus, passing to a further 
subsequence, we will obtain that
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vx0,rkj
→ c ṽx0,0, where c = lim

j

dx0,rkj

r1+s
kj

.

Hence, vx0,0 = c ṽx0,0 ∈ H1+s , with c ≥ 0, which completes the proof. �
4. An epiperimetric inequality

In this section we establish a generalization of the epiperimetric inequality obtained by Weiss for the classical 
obstacle problem in the context of the obstacle problem for the fractional Laplacian with drift. Our main result, 
Theorem 4.2, is tailor made for analyzing regular free boundary points.

Let x0 ∈ �1+s(u). For the purpose of this section, we can assume without loss of generality that x0 = 0. Following 
[15, p. 27] (see also [7, Definition 6.1]), we define a version of the boundary adjusted Weiss energy adapted to our 
framework.

Definition 4.1 (Boundary adjusted Weiss energy). Given v ∈ H 1(B1, |y|a), we next introduce the boundary adjusted 
energy as the Weiss type functional defined in (3.2), with r = 1 and zero obstacle, i.e.,

W(v) := W(v,1) =
∫
B1

|∇v|2|y|a − (1 + s)

∫
∂B1

v2|y|a. (4.1)

We now consider the function

v̂0(x, y) =
(

xn +
√

x2
n + y2

)s (
xn − s

√
x2
n + y2

)
.

The function v̂0 belongs to H1+s , and so it is a (1 + s)-homogeneous global solution of the obstacle problem for the 
fractional Laplacian (1.4) with zero obstacle function. The following is the central result of this section, which is a 
generalization of [15, Theorem 1] to the setting of our article. This result adapts [7, Theorem 6.3] to the context of the 
present work.

Theorem 4.2 (Epiperimetric inequality). There exists κ ∈ (0, 1) and δ ∈ (0, 1) such that if w ∈ H 1(B1, |y|a) is a 
homogeneous function of degree (1 + s) such that w ≥ 0 on B ′

1 and ‖w − v̂0‖H 1(B1,|y|a) ≤ δ, then there exists w̃ ∈
H 1(B1, |y|a) such that w̃ = w on ∂B1, w̃ is nonnegative on B ′

1 and

W(w̃) ≤ (1 − κ)W(w).

Remark 4.3. We observe explicitly that if v is a solution to the obstacle problem (1.4) with zero obstacle, and v
belongs to H1+s , then we can rewrite∫

B1

|∇v|2|y|a =
∫

∂B1

v∇v·ν|y|a = (1 + s)

∫
∂B1

v2|y|a,

which implies that W(v) = 0. In the preceding identity, ν denotes the outer unit normal to ∂B1.

Proof of Theorem 4.2. We argue by contradiction and assume that the result does not hold. Then, there exist se-
quences of real numbers κm → 0 and δm → 0, and functions wm ∈ H 1(B1, |y|a), homogeneous of degree (1 + s), 
such that wm ≥ 0 on B ′

1 and

‖wm − v̂0‖H 1(B1,|y|a) ≤ δm, (4.2)

but such that, for every w̃m ∈ H 1(B1, |y|a) with the properties that w̃m ≥ 0 on B ′
1, and w̃m = wm on ∂B1, we have 

that

W(w̃m) > (1 − κm)W(wm). (4.3)

With such an assumption in place we start by observing that there exists
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gm = Am

(
x·em +

√
(x·em)2 + y2

)s (
x·em − s

√
(x·em)2 + y2

)
belonging to the space of homogeneous functions H1+s , which achieves the minimum distance from wm to H1+s , 
that is

‖wm − gm‖H 1(B1,|y|a) = inf
g∈H1+s

‖wm − g‖H 1(B1,|y|a).

Indeed, this follows from the simple fact that the set H1+s is locally compact. Combining this inequality with (4.2)
we deduce that

‖gm − v̂0‖H 1(B1,|y|a) ≤ 2δm,

and, as a consequence, we must have that em → en and Am → 1, as m tends to ∞, where en ∈ R
n denotes the unit 

vector having all coordinates zero, except for the n-th coordinate. Hence,∥∥∥∥ (wm − gm)

Am

∥∥∥∥
H 1(B1,|y|a)

≤ δm

Am

→ 0, as m → ∞.

If we rename wm

Am
by wm, and δm

Am
by δm, and rotate Rn to send em to en, the renamed function wm is homogeneous of 

degree (1 + s), nonnegative on B ′
1, and satisfies

inf
g∈H1+s

‖wm − g‖H 1(B1,|y|a) = ‖wm − v̂0‖H 1(B1,|y|a) ≤ δm. (4.4)

Moreover, inequality (4.3) still holds for the renamed functions wm, because of the scaling property W(tw) =
t2W(w), and the invariance of W(w) under rotations in Rn.

We note explicitly that (4.3) implies in particular that wm �= v̂0 for every m ∈ N, as W(v̂0) = 0, by Remark 4.3. 
Thus we can assume without loss of generality that

δm = ‖wm − v̂0‖H 1(B1,|y|a) > 0. (4.5)

We now want to rewrite (4.3) in a slightly different way, using the properties of function v̂0. Given φ ∈ H 1(B1, |y|a), 
we consider the first variation of W at v̂0 in the direction of φ,

δW(v̂0)(φ) :=
∫
B1

2∇v̂0·∇φ|y|a − (1 + s)

∫
∂B1

2v̂0φ|y|a, (4.6)

where the boundary integral in (4.6) and thereafter is interpreted in the sense of traces. To compute δW(v̂0)(φ), we 
rewrite the first integral in the right-hand side of (4.6) as∫

B1

2∇v̂0·∇φ|y|a = −4
∫
B ′

1

φ lim
y↓0

|y|a∂y v̂0 +
∫

∂B1

2φ∇v̂0·ν|y|a,

where we used the fact that the function v̂0 is symmetric with respect to the hyperplane {y = 0}. In the preceding 
identity, ν denotes the unit outer normal to ∂B1. Because the function v̂0 is homogeneous of degree (1 + s), Euler’s 
formula gives us that∫

B1

2∇v̂0·∇φ|y|a = −4
∫
B ′

1

φ lim
y↓0

|y|a∂y v̂0 + (1 + s)

∫
∂B1

2φv̂0|y|a.

We conclude that

δW(v̂0)(φ) = −4
∫
B ′

1

φ lim
y↓0

|y|a∂y v̂0. (4.7)

For any function w̃m ∈ H 1(B1, |y|a) with the properties that w̃m ≥ 0 on B ′
1, and w̃m = wm on ∂B1, by plugging in 

φ = w̃m − v̂0 into identities (4.6) and (4.7), we obtain that
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W(w̃m) = W(w̃m) − W(v̂0) − δW(v̂0)(w̃m − v̂0) − 4
∫
B ′

1

(w̃m − v̂0) lim
y↓0

|y|a∂yv̂0

=
∫
B1

|∇(w̃m − v̂0)|2|y|a − (1 + s)

∫
∂B1

(w̃m − v̂0)
2|y|a − 4

∫
B ′

1

(w̃m − v̂0) lim
y↓0

|y|a∂y v̂0,

where we have used in the first identity, the fact that W(v̂0) = 0, by Remark 4.3. Using a similar identity for W(wm), 
we can rewrite inequality (4.3) as

(1 − κm)

⎡⎢⎣∫
B1

|∇(wm − v̂0)|2|y|a − (1 + s)

∫
∂B1

(wm − v̂0)
2|y|a − 4

∫
B ′

1

(wm − v̂0) lim
y↓0

|y|a∂y v̂0

⎤⎥⎦
<

∫
B1

|∇(w̃m − v̂0)|2|y|a − (1 + s)

∫
∂B1

(w̃m − v̂0)
2|y|a − 4

∫
B ′

1

(w̃m − v̂0) lim
y↓0

|y|a∂y v̂0. (4.8)

Inequality (4.8) will play a key role in the proof of the epiperimetric inequality, and it will be used repeatedly.
Let us introduce the normalized functions

ŵm = wm − v̂0

δm

, ∀m ∈ N.

By identity (4.5), we have

‖ŵm‖H 1(B1,|y|a) = 1 ∀m ∈ N. (4.9)

By the weak compactness of the unit sphere in H 1(B1, |y|a), we can assume that

ŵm → ŵ weakly in H 1(B1, |y|a), as m → ∞.

By the compactness of the Sobolev embedding and traces operator from H 1(B1, |y|a) into the Sobolev space 
L2(B1, |y|a), L2(B ′

1), L
2(∂B1, |y|a), we may assume that

ŵm → ŵ strongly in L2(B1, |y|a), L2(B ′
1), and L2(∂B1, |y|a), as m → ∞.

See [11, Theorem 2.8] for the boundedness of the trace operator from H 1(B1, |y|a) into L2(B ′
1), and see [4, 

Lemma A.25] for the boundedness of the trace operator from H 1(B1, |y|a) into L2(∂B1, |y|a).
We then make the following

Claim 4.4. The limit function ŵ satisfies the following properties:

(i) ŵ ≡ 0;
(ii) ŵm → 0 strongly in H 1(B1, |y|a), as m → ∞.

Note that property (ii) will give us a contradiction with condition (4.9). Hence, the theorem will follow once we 
prove the claim. In what follows, we denote

� = �(v̂0) = {(x,0) ∈R
n × {0} | v̂0(x,0) = 0},

the coincidence set of the function v̂0.

Proof of Claim 4.4. We organize the proof into several steps.

Step 1. We start by showing that there is a positive constant, C, such that∥∥∥∥wm

δ2
m

lim
y↓0

|y|a∂y v̂0

∥∥∥∥
1 ′

≤ C, ∀m ∈N. (4.10)

L (B1)
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To this end, we pick a function η ∈ W
1,∞
0 (B1), such that 0 < η ≤ 1, and define

w̃m = (1 − η)wm + ηv̂0.

Then, it is clear that the function w̃m satisfies the properties:

w̃m = wm on ∂B1, w̃m ≥ 0 on B ′
1, and w̃m − v̂0 = (1 − η)(wm − v̂0).

We can thus apply inequality (4.8) to the function w̃m, obtaining

(1 − κm)

⎛⎜⎝∫
B1

|∇(wm − v̂0)|2|y|a − (1 + s)

∫
∂B1

(wm − v̂0)
2|y|a − 4

∫
B ′

1

wm lim
y↓0

|y|a∂y v̂0

⎞⎟⎠
<

∫
B1

|∇((1 − η)(wm − v̂0))|2|y|a − (1 + s)

∫
∂B1

(1 − η)2(v̂0 − wm)2|y|a

− 4
∫
B ′

1

(1 − η)(wm − v̂0) lim
y↓0

|y|a∂yv̂0

=
∫
B1

[
(1 − η)2|∇(wm − v̂0)|2 + |∇η|2(wm − v̂0)

2 − 2(1 − η)(wm − v̂0)∇η·∇(wm − v̂0)
]
|y|a

− (1 + s)

∫
∂B1

(1 − η)2(v̂0 − wm)2|y|a − 4
∫
B ′

1

(1 − η)wm lim
y↓0

|y|a∂y v̂0.

Dividing by δ2
m, rearranging terms and using property (4.9), it follows that

4
∫
B ′

1

(κm − η)
wm

δ2
m

lim
y↓0

|y|a∂y v̂0 ≤ −(1 − κm)

⎛⎜⎝∫
B1

|∇ŵm|2|y|a − (1 + s)

∫
∂B1

ŵ2
m|y|a

⎞⎟⎠
+

∫
B1

[
(1 − η)2|∇ŵm|2 + |∇η|2ŵ2

m − 2(1 − η)ŵm∇η·∇ŵm

]
|y|a

− (1 + s)

∫
∂B1

(1 − η)2ŵ2
m|y|a

≤ C,

where C is a positive constant, independent of m ∈N. At this point, we choose η(x) = η̃(|x|), and let

0 < ε =
1∫

0

η̃(r)rn+1dr.

Since κm → 0, as m → ∞, possibly by passing to a subsequence, we can assume without loss of generality that 
κm ≤ ε

2 (n + 2), for every m ∈N. With such a choice, we have that

1∫
0

(η̃(r) − κm)rn+1dr ≥ ε

2
, ∀m ∈ N.

Using the fact that wm and v̂0 are homogeneous functions of degree 1 + s, we obtain that
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C ≥ 4
∫
B ′

1

(κm − η)
wm

δ2
m

lim
y↓0

|y|a∂y v̂0 = 4

⎛⎝ 1∫
0

(κm − η̃(r))rn+1dr

⎞⎠ ∫
∂B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0

≥ 2ε

∫
∂B ′

1

wm

δ2
m

(
− lim

y↓0
|y|a∂y v̂0

)
,

which, again by the homogeneity of wm and v̂0, the fact that wm ≥ 0 on B ′
1 and the fact that

lim
y↓0

|y|a∂yv̂0 ≤ 0 on B ′
1, (4.11)

proves inequality (4.10).

Step 2. We start by showing that

Laŵ = 0 on B1 \ �. (4.12)

To establish property (4.12), it is sufficient to show that, for any ball B , such that its concentric double 2B � B1 \ �, 
and for any function φ ∈ H 1(B, |y|a), such that φ − ŵ ∈ H 1

0 (B, |ya|), that is φ = ŵ in the trace sense on ∂B , we have 
that ∫

B

|∇ŵ|2|y|a ≤
∫
B

|∇φ|2|y|a.

To begin, we fix a function φ ∈ L∞(B1) ∩ H 1(B, |y|a), and we consider

w̃m = η(v̂0 + δmφ) + (1 − η)wm,

where η ∈ C∞
0 (B1 \ �) is such that 0 ≤ η ≤ 1. Notice that on ∂B1, we have that w̃m = wm, and because φ ∈ L∞(B1)

and η ∈ C∞
0 (B1 \ �), for m large enough, we have w̃m is nonnegative on B ′

1. For such sufficiently large m, we can 
thus use the function w̃m in inequality (4.8), and dividing by δ2

m, we obtain

(1 − κm)

⎛⎜⎝∫
B1

|∇ŵm|2|y|a − (1 + s)

∫
∂B1

ŵ2
m|y|a − 4

∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0

⎞⎟⎠
<

∫
B1

[
|∇(ηφ)|2 + |∇((1 − η)ŵm)|2 + 2∇(ηφ)·∇((1 − η)ŵm)

]
|y|a

− (1 + s)

∫
∂B1

((1 − η)ŵm + ηφ)2|y|a − 4
∫
B ′

1

(1 − η)
wm

δ2
m

lim
y↓0

|y|a∂y v̂0

=
∫
B1

[
|∇(ηφ)|2 + |∇((1 − η)ŵm)|2 + 2∇(ηφ)·∇((1 − η)ŵm)

]
|y|a

− (1 + s)

∫
∂B1

ŵ2
m|y|a − 4

∫
B ′

1

(1 − η)
wm

δ2
m

lim
y↓0

|y|a∂y v̂0,

where in the last line we used the fact that η ∈ C∞
0 (B1 \ �). Using property (4.11) and that wm is nonnegative on B ′

1, 
the preceding inequality implies∫

B1

|∇ŵm|2|y|a < κm

∫
B1

|∇ŵm|2|y|a + (1 + s)(1 − κm)

∫
∂B1

ŵ2
m|y|a+

+
∫ [

|∇(ηφ)|2 + |∇((1 − η)ŵm)|2 + 2∇(ηφ)·∇((1 − η)ŵm)
]
|y|a
B1
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− (1 + s)

∫
∂B1

ŵ2
m|y|a − 4κm

∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0

= κm

∫
B1

|∇ŵm|2|y|a − (1 + s)κm

∫
∂B1

ŵ2
m|y|a

+
∫
B1

[
|∇(ηφ)|2 + |∇((1 − η)ŵm)|2 + 2∇(ηφ)·∇((1 − η)ŵm)

]
|y|a

− 4κm

∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0.

Thus, we can find a positive constant, C, independent of m ∈N, such that∫
B1

|∇ŵm|2|y|a < Cκm +
∫
B1

[
|∇(ηφ)|2 + |∇((1 − η)ŵm)|2 + 2∇(ηφ)·∇((1 − η)ŵm)

]
|y|a,

which yields∫
B1

(1 − (1 − η)2)|∇ŵm|2|y|a ≤ Cκm +
∫
B1

[|∇(ηφ)|2 + ŵ2
m|∇η|2

− 2(1 − η)ŵm∇η·∇ŵm + 2∇(ηφ)·∇((1 − η)ŵm)
]|y|a.

Passing to the limit m → ∞, we obtain∫
B1

(1 − (1 − η)2)|∇ŵ|2|y|a ≤
∫
B1

[|∇(ηφ)|2 + ŵ2|∇η|2

− 2(1 − η)ŵ∇η·∇ŵ + 2∇(ηφ)·∇((1 − η)ŵ)
]|y|a.

Notice that∫
B1

|∇(ηφ + (1 − η)ŵ)|2|y|a =
∫
B1

[
|∇(ηφ)|2 + |∇((1 − η)ŵ)|2 + 2∇(ηφ)·∇((1 − η)ŵ)

]
|y|a

=
∫
B1

[|∇(ηφ)|2 + ŵ2|∇η|2 + (1 − η)2|∇ŵ|2 − 2ŵ(1 − η)∇ŵ·∇η

+ 2∇(ηφ)·∇((1 − η)ŵ)
]|y|a.

Hence the preceding inequalities give us that∫
B1

|∇ŵ|2|y|a ≤
∫
B1

|∇(ηφ + (1 − η)ŵ)|2|y|a.

By approximation, we can remove the condition that φ belongs to L∞(B1), and by considering open balls, B � B1 \�, 
we may choose the function η such that η = 1 in B , and φ = ŵ outside B . This gives us∫

B1

|∇ŵ|2|y|a ≤
∫
B

|∇φ|2|y|a +
∫

B1\B
|∇ŵ|2|y|a,

and so we obtain that∫
B

|∇ŵ|2|y|a ≤
∫
B

|∇φ|2|y|a,

which proves that Laŵ = 0 in B .
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Step 3. We next want to prove that

ŵ = 0 Hn-a.e. in �. (4.13)

We note that the function v̂0 satisfies the property that

lim
y↓0

|y|a∂yv̂0 < 0, ∀ (x,0) ∈ int(�).

Therefore, given a subset ω � int(�), there exists a positive constant, Cω, such that∣∣∣∣lim
y↓0

|y|a∂yv̂0

∣∣∣∣ ≥ Cω, ∀ (x,0) ∈ ω.

At points (x, 0) ∈ int(�), we can thus write

ŵm = wm − v̂0

δm

= wm

δ2
m

(
lim
y↓0

|y|a∂y v̂0

)
δm

lim
y↓0

|y|a∂y v̂0
.

This gives∫
ω

|ŵm| ≤ δm

Cω

∫
ω

wm

δ2
m

∣∣∣∣lim
y↓0

|y|a∂y v̂0

∣∣∣∣ ≤ Cδm

Cω

,

where in the last inequality we have used property (4.10). Since δm → 0, we conclude that ‖ŵm‖L1(ω) → 0, as m
tends to ∞. By the arbitrariness of ω � int(�), we infer that

ŵm(x,0) → 0, Hn-a.e. (x,0) ∈ �, as m → ∞,

which proves identity (4.13).

Step 4 (Proof of property (i)). We next show that

ŵm → 0 weakly in H 1(B1, |y|a), as m → ∞, (4.14)

or, equivalently, that ŵ = 0. We begin by observing that, since the functions ŵm’s are homogeneous of degree 1 + s, 
their weak limit ŵ is also homogeneous of degree 1 + s. Combining this observation with the results proved in Steps 2
and 3, it follows that the limit function ŵ satisfies the following properties:

(i) Laŵ = 0 on B1 \ �;
(ii) ŵ = 0 Hn-a.e. on �;
(iii) ŵ is homogeneous of degree 1 + s.

By Lemma A.3 we conclude that, if we define

U0(x, y) =
(

xn +
√

x2
n + y2

)s

,

then there exist constants c0, . . . , cn−1 such that

ŵ = c0v̂0 +
n−1∑
j=1

cj xjU0.

We next show that all constants cj = 0, for all j = 1, . . . , n. To simplify the notation, in the following lines, we write 
‖ · ‖ = ‖ · ‖H 1(|y|a,B1)

, and we let 〈·, ·〉 denote the inner product in H 1(B1, |y|a). Using property (4.4), we have that

‖wm − g‖2 ≥ ‖wm − v̂0‖2 ∀g ∈ H1+s ,

and recalling that ŵm = wm−v̂0
δm

, we can write the preceding inequality as

‖δmŵm + v̂0 − g‖2 ≥ ‖δmŵm‖2,
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or

2δm〈ŵm, v̂0 − g〉 + ‖v̂0 − g‖2 ≥ 0.

Therefore, it follows that

〈ŵm,g − v̂0〉 ≤ ‖v̂0 − g‖2

2δm

. (4.15)

Applying this to g = (1 + δ2
m)v̂0, we obtain

〈ŵm, v̂0〉 ≤ δm

2
‖v̂0‖2.

Letting m → ∞, we arrive at

〈ŵ, v̂0〉 = c0‖v̂0‖2 ≤ 0.

This implies that c0 ≤ 0. The same argument applied to g = (1 − δ2
m)v̂0, allows us to conclude that we also have 

c0 ≥ 0, and so c0 = 0. We now rewrite inequality (4.15) as〈
ŵm,

g − v̂0

δ2
m

〉
≤ δm

2

∥∥∥∥g − v̂0

δ2
m

∥∥∥∥2

. (4.16)

For all j = 1, . . . , n − 1, we define the function gj
θ ∈H1+s by

g
j
θ (x, y) :=

(
xn cos θ + xj sin θ +

√
(xn cos θ + xj sin θ)2 + y2

)s

×
(

xn cos θ + xj sin θ − s

√
(xn cos θ + xj sin θ)2 + y2

)
,

and we see that

1

θ

(
g

j
θ − v̂0

)
→ (1 − s2)xjU0, as θ ↓ 0, (4.17)

where the converge is the H 1(B1, |y|a). We also notice that

〈xiU0, xjU0〉 = 0, ∀ i, j = 1, . . . , n − 1, i �= j. (4.18)

Choosing g := g
j
θ with θ = δ2

m in inequality (4.16), letting m tend to ∞ and using properties (4.17) and (4.18), we 
obtain

〈(1 − s2)ŵ, xjU0〉 = (1 − s2)cj‖xjU0‖2 ≤ 0.

Hence, it follows that cj ≤ 0, because s ∈ (0, 1). Replacing xj with −xj in the preceding argument, we also obtain 
−cj ≤ 0. Thus, we conclude that cj = 0, for all j = 1, . . . , n − 1, which implies ŵ = 0. This concludes the proof of 
(4.14).

Step 5 (Proof of property (ii)). Finally, we claim that, along a subsequence, we have that

ŵm → 0 strongly in H 1(B1, |y|a), as m → ∞. (4.19)

Because we already have the strong convergence ŵm → ŵ = 0 in L2(B1, |y|a), as m tends to ∞, we are left with 
proving that

∇ŵm → 0 strongly in L2(B1, |y|a), as m → ∞. (4.20)

To this end, we pick η ∈ C
0,1
0 (B1), such that 0 ≤ η ≤ 1, and consider w̃m = (1 − η)wm + ηv̂0. Clearly, we have that

w̃m = wm on ∂B1, w̃m ≥ 0 on B ′
1, and w̃m − v̂0 = (1 − η)(wm − v̂0).
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Applying inequality (4.8) with this choice of the function w̃m, dividing by δ2
m, and recalling that ŵm = wm−v̂0

δm
, we 

obtain

(1 − κm)

⎛⎜⎝∫
B1

|∇ŵm|2|y|a − (1 + s)

∫
∂B1

ŵ2
m|y|a − 4

∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0

⎞⎟⎠
≤

∫
B1

[
(1 − η)2|∇ŵm|2 + ŵ2

m|∇η|2 − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a

− (1 + s)

∫
∂B1

(1 − η)2ŵ2
m|y|a − 4

∫
B ′

1

(1 − η)
wm

δ2
m

lim
y↓0

|y|a∂y v̂0.

The preceding inequality yields∫
B1

|∇ŵm|2|y|a − 4
∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0

≤
∫
B1

[
(1 − η)2|∇ŵm|2 + |∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a

− (1 + s)

∫
∂B1

(1 − η)2ŵ2
m|y|a − 4

∫
B ′

1

(1 − η)
wm

δ2
m

lim
y↓0

|y|a∂y v̂0

+ (1 − κm)(1 + s)

∫
∂B1

ŵ2
m|y|a + κm

⎛⎜⎝∫
B1

|∇ŵm|2|y|a − 4
∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0

⎞⎟⎠
=

∫
B1

[
(1 − η)2|∇ŵm|2 + |∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a

+ κm

⎛⎜⎝∫
B1

|∇ŵm|2|y|a − 4
∫
B ′

1

wm

δ2
m

lim
y↓0

|y|a∂y v̂0 − (1 + s)

∫
∂B1

ŵ2
m|y|a

⎞⎟⎠
+ (1 + s)

∫
∂B1

(
1 − (1 − η)2

)
ŵ2

m|y|a − 4
∫
B ′

1

(1 − η)
wm

δ2
m

lim
y↓0

|y|a∂yv̂0.

From properties (4.9), (4.10) and the previous inequality, it follows that∫
B1

|∇ŵm|2|y|a

≤
∫
B1

[
(1 − η)2|∇ŵm|2 + |∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a

+ Cκm + (1 + s)

∫
∂B1

ŵ2
m|y|a + 4

∫
B ′

1

η
wm

δ2
m

lim
y↓0

|y|a∂y v̂0.

We now make the following choice of the function η in the preceding inequality,

η(x) =

⎧⎪⎨⎪⎩
1, if |x| ≤ 1

2 ,

2(1 − |x|), if 1
2 < |x| < 1,

0, if |x| ≥ 1,
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and we obtain∫
B 1

2

|∇ŵm|2|y|a ≤
∫
B1

[
|∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a + (1 + s)

∫
∂B1

ŵ2
m|y|a + Cκm

+ 4
∫
B ′

1

η
wm

δ2
m

lim
y↓0

|y|a∂y v̂0

≤
∫
B1

[
|∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a + (1 + s)

∫
∂B1

ŵ2
m|y|a + Cκm,

where in the last inequality we used inequality (4.11), and the fact that η and wm are nonnegative functions on B ′
1. We 

thus conclude that∫
B 1

2

|∇ŵm|2|y|a ≤
∫
B1

[
|∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a + (1 + s)

∫
∂B1

ŵ2
m|y|a + Cκm. (4.21)

We now observe that, since ŵm is homogeneous of degree 1 + s, and thus ∇ŵm is homogeneous of degree s, we have 
that ∫

B1

|∇ŵm|2|y|a = 2n+3
∫

B 1
2

|∇ŵm|2|y|a,

where we recall that a = 1 − 2s. Using the preceding identity in inequality (4.21), we conclude that∫
B1

|∇ŵm|2|y|a ≤ 2n+3
(∫
B1

[
|∇η|2ŵ2

m − 2(1 − η)ŵm∇ŵm·∇η
]
|y|a

+ (1 + s)

∫
∂B1

ŵ2
m|y|a + Cκm

)
.

To complete the proof of (4.19), and consequently of Theorem 4.2, all we need to do at this point is to observe that, 
on a subsequence, the right-hand side of the latter inequality converges to 0 as m → ∞. This follows from the facts 
that κm → 0, ‖ŵm‖L2(B1,|y|a) → 0, ‖ŵm‖L2(∂B1,|y|a) → 0, and ‖∇ŵm‖L2(B1,|y|a) ≤ 1. �

This completes the proof of the Claim 4.4, and thus that of the theorem. �
5. C1+γ regularity of the regular part of the free boundary

In this section, we prove the main results of our article, Theorems 1.2 and 1.3. We prove Theorem 1.2 using a series 
of intermediate results. We begin with the following analogue of [7, Lemma 7.1], adapted to the framework of our 
article.

Lemma 5.1. Assume that 0 ∈ �1+s(u). Let r1 ∈ (0, 1), and let wr denote the (1 + s)-homogeneous extension of the 
rescaling vr from ∂B1 to B1. For all r ∈ (0, r1), assume that there is a function, ζr ∈ H 1(B1, |y|a), such that ζr is 
nonnegative on B ′

1, ζr = wr on ∂B1, and such that

W(ζr) ≤ (1 − κ)W(wr), (5.1)

where κ ∈ (0, 1) is the constant appearing in Theorem 4.2. Then, there are positive constants, C and β = β(κ, n, s) ∈
(0, 1), such that∫

∂B1

|vr − vr ′ ||y|a ≤ Crβ, 0 < r ′ < r1. (5.2)
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Proof. We divide the proof into several steps.

Step 1 (Decay of WL(v, r), as r ↓ 0). In this step, we show that there are positive constants, C and γ ∈ (0, 1), such 
that

WL(v, r) ≤ Crγ , ∀ r ∈ (0, r1). (5.3)

Our method of the proof of inequality (5.3) consists in using the properties of the Weiss functional, WL(v, r), and of 
the boundary adjusted Weiss energy, W(v, r), together with the epiperimetric inequality.

From identities (3.2) and (3.12), it follows that

d

dr
WL(v, r) = −n + 2

r
WL(v, r) + (1 + s)

rn+4
F(r) + 1

rn+2
I ′(r) − 1 + s

rn+3
F ′(r),

and using identities (3.4) and (3.6), we have that

d

dr
WL(v, r) = −n + 2

r
WL(v, r) + (1 + s)

rn+4
F(r) + 1

rn+2

∫
∂Br

|∇v|2|y|a

+ 1

rn+2

∫
∂B ′

r

vh − 2(1 + s)

rn+3

∫
∂Br

v(∇v·ν)|y|a − (1 + s)(n + a)

rn+4
F(r).

From property (2.8), and denoting by ∂τ v the tangential derivative of v to ∂Br , we obtain

d

dr
WL(v, r) ≥ −n + 2

r
WL(v, r) − Cr2s−2 + 1

rn+2

∫
∂Br

(
|∇v·ν|2 + |∂τ v|2

)
|y|a

− 2(1 + s)

rn+3

∫
∂Br

v(∇v·ν)|y|a − (1 + s)(n − 2s)

rn+4

∫
∂Br

|v|2|y|a,

where C is a positive constant. Using the definition (3.14) of the homogeneous rescalings, {vr}r>0, the preceding 
inequality can be rewritten in the form

d

dr
WL(v, r) ≥ −n + 2

r
WL(v, r) − Cr2s−2 + 1

r

∫
∂B1

(∇vr ·ν − (1 + s)vr )
2 |y|a

− (1 + s)(n + 1 + s − 2s)

r

∫
∂B1

|vr |2|y|a + 1

r

∫
∂B1

|∂τ vr |2|y|a. (5.4)

Because wr = vr on S1, we have that∫
∂B1

(
|∂τ vr |2 − (1 + s)(n + 1 − s)|vr |2

)
|y|a

=
∫

∂B1

(
|∂τwr |2 − (1 + s)(n + 1 − s)|wr |2

)
|y|a. (5.5)

Using the fact that wr is (1 + s)-homogeneous, we have that ∇wr ·ν = (1 + s)wr on ∂B1. Using in addition the fact 
that |∂τwr |2 = |∇wr |2 − |∇wr ·ν|2, it follows that∫

∂B1

(
|∂τwr |2 − (1 + s)(n + 1 − s)|wr |2

)
|y|a

=
∫

∂B1

(
|∇wr |2 − (1 + s)(n + 2)|wr |2

)
|y|a. (5.6)

The (1 + s)-homogeneity of wr also gives us
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∫
B1

|∇wr |2|y|a = 1

n + 2

∫
∂B1

|∇wr |2|y|a. (5.7)

Inequalities (5.5)–(5.7), and definition (4.1) of the boundary adjusted Weiss energy, yield∫
∂B1

(
|∂τ vr |2 − (1 + s)(n + 1 − s)|vr |2

)
|y|a = (n + 2)W(wr,1).

The preceding identity and inequality (5.4) yield

d

dr
WL(v, r) ≥ n + 2

r
(W(wr,1) − WL(v, r))

+ 1

r

∫
∂B1

(∇vr ·ν − (1 + s)vr )
2 |y|a − Cr2s−2. (5.8)

We next use the hypothesis that for all r ∈ (0, r1), there is a function, ζr ∈ H 1(B1, |y|a), such that ζr is nonnegative 
on B ′

1, ζr = wr on ∂B1, and such that inequality (5.1) holds. Without loss of generality, we may assume that ζr is a 
minimizer of W(·, 1) in the class of functions

C := {ζ ∈ H 1(B1, |y|a) | ζ = vr = wr on ∂B1, and ζ ≥ 0 on B ′
1}.

This is equivalent to minimizing the energy 
∫
B1

|∇ζ |2|y|a among the class of functions C, and so a standard calculus 
of variations argument implies that ζr is a La-superharmonic function, that is∫

B1

∇ζr ·∇ϕ|y|a ≥ 0, (5.9)

for all nonnegative test functions, ϕ ∈ H 1(B1, |y|a), with supp(ϕ) ⊆ B1, and also,∫
B1

∇ζr ·∇ϕ|y|a = 0,

for all test functions, ϕ ∈ H 1(B1, |y|a), such that supp(ϕ) ⊆ B1 \ (B ′
1 ∩ {ζr = 0}). The preceding identity implies that

Laζr = 0 a.e. on B1 \ (B ′
1 ∩ {ζr > 0}). (5.10)

Given a nonnegative test function, ϕ ∈ H 1(B1, |y|a), with supp(ϕ) ⊆ B1, we have that∫
B1

∇ζ+
r ·∇ϕ|y|a =

∫
∂{ζr>0}∩B1

∇ζr ·νϕ|y|a −
∫

{ζr>0}∩B1

Laζrϕ.

The preceding identity together with property (5.10), and the fact that the normal derivative ∇ζr ·ν ≤ 0 on ∂{ζr > 0} ∩
B1, implies that∫

B1

∇ζ+
r ·∇ϕ|y|a ≤ 0,

and so, ζ+
r is a La-subharmonic function. Inequality (5.9) gives us that∫

B1

∇ζ+
r ·∇ϕ|y|a ≥

∫
B1

∇ζ−
r ·∇ϕ|y|a,

for all nonnegative test functions, ϕ ∈ H 1(B1, |y|a), with supp(ϕ) ⊆ B1, and so ζ−
r is also a La-subharmonic function. 

We now let

ζ̂r (x, y) := r1+sζr ((x, y)/r), ∀ (x, y) ∈ Br,
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and we see that ζ̂r = v on ∂Br , and using definition (4.1) of the boundary adjusted Weiss energy, we have

W(ζr,1) = 1

rn+2

∫
Br

|∇ ζ̂r |2|y|a − 1 + s

rn+3

∫
∂Br

|v|2|y|a. (5.11)

Because v verifies conditions (2.4)–(2.7) on Br , instead of Rn+1, we see that v is a minimizer of the energy∫
Br

|∇ϕ|2|y|a +
∫
B ′

r

ϕh,

in the class of functions {ϕ ∈ H 1(Br , |y|a) | ϕ = v on ∂Br, ϕ ≥ 0 on B ′
r }. In particular, this implies∫

Br

|∇ ζ̂r |2|y|a +
∫
B ′

r

ζ̂rh ≥
∫
Br

|∇v|2|y|a +
∫
B ′

r

vh,

Because the functions ζ±
r are La-subharmonic on B1, we have that ζ̂r is also La-subharmonic on Br , and the weak 

maximum principle [6, Theorem 2.2.2] implies

sup
Br

|ζ̂±
r | ≤ sup

∂Br

|v|.

From Lemma A.1, it follows that there exists C > 0 such that |v(x, y)| ≤ Cr1+s on Br , and so we have

|ζ̂r (x, y)| ≤ Cr1+s , ∀ (x, y) ∈ Br, ∀ r ∈ (0,1).

Combining the preceding three inequalities with (2.8), we find∫
Br

|∇ ζ̂r |2|y|a ≥
∫
Br

|∇v|2|y|a − Crn+1+2s .

Using the preceding inequality with (5.11), it follows that

W(ζr,1) ≥ 1

rn+2

∫
Br

|∇v|2|y|a − 1 + s

rn+3

∫
∂Br

|v|2|y|a − Cr2s−1,

and so, definition (3.2) of the Weiss functional gives

W(ζr,1) ≥ WL(v, r) − Cr2s−1.

Hypothesis (5.1) and the preceding inequality imply

W(wr,1) − WL(v, r) ≥ 1

1 − κ
W(ζr ,1) − WL(v, r)

≥ κ

1 − κ
WL(v, r) − Cr2s−1. (5.12)

We now obtain from inequality (5.8)

d

dr
WL(v, r) ≥ n + 2

r

κ

1 − κ
WL(v, r) − Cr2s−2.

This estimate implies that for any γ > 0 one has

d

dr

(
WL(v, r)r−γ

) = d

dr
WL(v, r)r−γ − γWL(v, r)r−γ−1

≥
(

(n + 2)κ

1 − κ
− γ

)
WL(v, r)r−γ−1 − Cr2s−2−γ .

Choosing γ < (n + 2)κ/(1 − κ), and using Lemmas 3.5 and 3.6, it follows that there exists C > 0 such that
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d

dr

(
WL(v, r)r−γ

) ≥ −C

(
(n + 2)κ

1 − κ
− γ

)
r2s−2−γ − Cr2s−2−γ = −Cr2s−2−γ .

Integrating the preceding inequality from r to r1, with r > 0, we infer

WL(v, r1)r
−γ

1 − WL(v, r)r−γ ≥ −Cr
2s−1−γ

1 + Cr2s−1−γ ,

from which inequality (5.3) now follows. This completes the proof of Step 1.

Step 2. We now show that there exists C > 0 such that for all r ∈ (0, r1) one has

1

r

∫
∂B1

(∇vr ·ν − (1 + s)vr )
2 |y|a ≤ d

dr
WL(v, r) + Cr2s−2. (5.13)

From inequality (5.8), it follows that

1

r

∫
∂B1

(∇vr ·ν − (1 + s)vr )
2 |y|a ≤ d

dr
WL(v, r) − n + 2

r
(W(wr,1) − WL(v, r)) + Cr2s−2.

Furthermore, inequality (5.12) gives

1

r

∫
∂B1

(∇vr ·ν − (1 + s)vr )
2 |y|a ≤ d

dr
WL(v, r) − n + 2

r

κ

1 − κ
WL(v, r) + Cr2s−2.

Lemmas 3.5 and 3.6 imply that WL(v, r) ≥ −Cr2s−1. Combining this with the preceding inequality yields (5.13). 
This concludes the proof of Step 2.

Step 3 (Proof of estimate (5.2)). Let 0 < r ′ < r < r1, and denote g(r) = vr . Direct calculations give∫
∂B1

|vr − vr ′ ||y|a =
∫

∂B1

∣∣∣∣∣∣
r∫

r ′
g′(t) dt

∣∣∣∣∣∣ |y|a

=
∫

∂B1

∣∣∣∣∣∣
r∫

r ′

(
1

t1+s
∇v(t (x, y))·(x, y) − 1 + s

t

v(t (x, y))

t1+s

)
dt

∣∣∣∣∣∣ |y|a

≤
r∫

r ′

1

t

∫
∂B1

|∇vt ·ν − (1 + s)vt | |y|a dt.

Hölder’s inequality implies

∫
∂B1

|vr − vr ′ ||y|a ≤ C

r∫
r ′

1√
t

⎛⎜⎝1

t

∫
∂B1

|∇vt ·ν − (1 + s)vt |2 |y|a
⎞⎟⎠

1/2

dt,

where C = C(n, s) > 0. Using inequality (5.13), we conclude that∫
∂B1

|vr − vr ′ ||y|a ≤ C

r∫
r ′

1√
t

(
d

dt
WL(v, t) + Ct2s−2

)1/2

dt.

Applying Hölder’s inequality again to the right-hand side of the latter inequality gives∫
∂B1

|vr − vr ′ ||y|a ≤ C

⎛⎝ r∫
r ′

1

t
dt

⎞⎠1/2 ⎛⎝ r∫
r ′

(
d

dt
WL(v, t) + Ct2s−2

)
dt

⎞⎠1/2

= C
(
ln r/r ′)1/2

(
WL(v, r) − WL(v, r ′) + Cr2s−1 − C(r ′)2s−1

)1/2
.
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The assumption s > 1/2, estimate (5.3), and the fact that WL(v, r) ≥ −Cr2s−1, from Lemmas 3.5 and 3.6, imply∫
∂B1

|vr − vr ′ ||y|a = C
(
ln r/r ′)1/2

(
rγ + Cr2s−1

)1/2
.

Letting β := γ ∧ (2s − 1), we can now repeat the dyadic argument in [7, Estimate (7.2) on p. 29] to finally obtain 
(5.2).

This completes the proof. �
Proposition 5.2. Let x0 ∈ �1+s(u). Then, there exist constants C, η, r0 > 0, and β = β(κ, n, s) ∈ (0, 1), such that 
B ′

η(x0) ∩ �(u) ⊆ �1+s(u), and for all x ∈ B ′
η(x0) ∩ �(u) and all r ∈ (0, r0), we have that∫

∂B1

|vx,r − vx,0||y|a ≤ Crβ, (5.14)

where vx,0 is any limit of a convergent sequence of homogeneous rescalings, {vx,rk}k∈N, with rk ↓ 0. In particular, the 
blowup limit vx,0 is unique.

Proof. The method of the proof is exactly the same as that of [7, Proposition 7.2], with the observations that we 
choose the positive constant r0 as in Lemma 2.7, we set r1 = r0 in Lemma 5.1, and we replace the application of [7, 
Lemma 3.3] with that of Lemma 2.5, of [7, Lemma 3.4] with that of Lemma 2.7, and that of [7, Lemma 7.1] with that 
of Lemma 5.1. We omit the detailed proof for brevity. �

We next have the analogue of [7, Proposition 7.3] in which we establish that the blowup limits are nontrivial.

Proposition 5.3. Assume that the hypotheses of Proposition 5.2 hold. Then, for every x ∈ B ′
η(x0) ∩ �(u) the unique 

blowup limit vx,0 is nonzero, where η is the positive constant appearing in the statement of Proposition 5.2.

Proof. Assume by contradiction that vx,0 ≡ 0. Proposition 5.2 implies that there exist C, r0 > 0 such that∫
∂B1

|vx,r ||y|a ≤ Crβ, ∀ r ∈ (0, r0),

and definitions (2.23) and (3.14) give∫
∂B1

|ṽx,r ||y|a ≤ C
r1+s+β

dx,r

, ∀ r ∈ (0, r0). (5.15)

Proposition 2.1 and the fact that x ∈ �1+s(u) (see Definition 2.3) imply that Fx,r > rn+a+2(1+p), for all p ∈ (s, 2s −
1/2). The preceding inequality together with identity (2.10) imply that dx,r > r1+p . We see that we can choose 
p ∈ (s, 2s − 1/2), such that β + s − p > 0, and letting r tend to 0 in (5.15) gives

lim
r↓0

∫
∂B1

|ṽx,r ||y|a = 0.

This contradicts property (2.28), which shows that the limit above is nontrivial. We thus conclude that the unique 
blowup limit vx,0 is nontrivial. �
Proposition 5.4. Assume that the hypotheses of Proposition 5.2 hold. Then there are positive constants, C and γ =
γ (κ, n, s) ∈ (0, 1), such that∫

∂B ′
|vx1,0 − vx2,0| ≤ C|x1 − x2|γ , ∀x1, x2 ∈ B ′

η(x0) ∩ �(u), (5.16)
1



562 N. Garofalo et al. / Ann. I. H. Poincaré – AN 34 (2017) 533–570
where η is the positive constant appearing in the statement of Proposition 5.2.

Proof. Since vx1,0 − vx2,0 is a 1 + s homogeneous function, proving inequality (5.16) is equivalent to establishing 
the following one∫

B ′
1

|vx1,0 − vx2,0| ≤ C|x1 − x2|γ , ∀x1, x2 ∈ B ′
η(x0) ∩ �(u). (5.17)

Let η and r0 be the positive constants appearing in the conclusion of Proposition 5.2. Consider r ∈ (0, r0) and x1, x2 ∈
B ′

η(x0) ∩ �(u). Property (5.14) implies for all x1, x2 ∈ B ′
η(x0) ∩ �(u) and every r ∈ (0, r0)∫

∂B1

|vx1,0 − vx2,0||y|a ≤ Crβ +
∫

∂B1

|vx1,r − vx2,r ||y|a. (5.18)

From the mean value theorem and definition (3.14) of the homogeneous rescalings we infer

vx1,r (x, y) − vx2,r (x, y) = 1

r1+s

1∫
0

∇xv(tx1 + (1 − t)x2 + rx, ry)·(x1 − x2) dt, ∀ (x, y) ∈ B̄1.

If we use the estimate (see the proof of Lemma A.1)

|∇xv(tx1 + (1 − t)x2 + rx, ry)| ≤ C
(
|x1 − x2|s + rs

)
, (x, y) ∈ B̄1,

we conclude that∫
∂B1

|vx1,r − vx2,r ||y|a ≤ C

(( |x1 − x2|
r

)1+s

+ |x1 − x2|
r

)
.

We now let r := |x1 − x2|σ , where σ ∈ (0, 1) is arbitrarily fixed. Then, inequality (5.18) becomes∫
∂B1

|vx1,0 − vx2,0||y|a ≤ C
(
|x1 − x2|σβ + |x1 − x2|1−σ

)
.

We now choose 2γ := σβ ∧ (1 − σ). The latter inequality and the 1 + s-homogeneity of vx1,0 − vx2,0 then give∫
B1

|vx1,0 − vx2,0||y|a ≤ C|x1 − x2|2γ . (5.19)

The inequality (5.19), combined with the uniform sup estimate of |vx1,0 − vx2,0| (see Lemma 3.3), allows to conclude∫
B1

|vx1,0 − vx2,0|2|y|a ≤ C|x1 − x2|2γ . (5.20)

To obtain estimate (5.16) from (5.20), we next use the trace theorem in [11, Theorem 2.8], which gives∫
B ′

1

|vx1,0 − vx2,0|2 ≤ C‖vx1,0 − vx2,0‖2
H 1(B1,|y|a)

=
∫
B1

|vx1,0 − vx2,0|2|y|a +
∫
B1

|∇(vx1,0 − vx2,0)|2|y|a. (5.21)

To control the second term in the right-hand side of the latter inequality we now exploits the fact that the blowup limits 
verify the conditions (2.4)–(2.7), with hx0 replaced by 0, and x0 replaced by x1 and x2. These conditions imply that
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∫
B1

Lavx,0vx,0 = 0, where x = x1 or x = x2,

∫
B1

Lavx1,0vx2,0 ≤ 0,

∫
B1

Lavx2,0vx1,0 ≤ 0.

From these equations we infer∫
B1

La(vx1,0 − vx2,0)(vx1,0 − vx2,0) ≥ 0.

Integrating by parts in the preceding inequality yields∫
B1

|∇(vx1,0 − vx2,0)|2|y|a ≤
∫

∂B1

(∇(vx1,0 − vx2,0)·ν
)
(vx1,0 − vx2,0)|y|a.

Using the fact that vx1,0 and vx2,0 are (1 + s)-homogeneous functions, from the preceding inequality we find∫
B1

|∇(vx1,0 − vx2,0)|2|y|a ≤ (1 + s)

∫
∂B1

|vx1,0 − vx2,0|2|y|a ≤ C

∫
B1

|vx1,0 − vx2,0|2|y|a,

where in the second inequality we have again used the homogeneity of vx1,0 − vx2,0. Substituting this information in 
(5.21) we conclude∫

B ′
1

|vx1,0 − vx2,0|2 ≤ C

∫
B1

|vx1,0 − vx2,0|2|y|a. (5.22)

Combining (5.22) with (5.20), we finally obtain∫
B ′

1

|vx1,0 − vx2,0|2 ≤ C|x1 − x2|2γ .

The sought for conclusion (5.16) now immediately follows from this latter estimate and the uniform estimates of 
vx1,0 − vx2,0 in sup norm already invoked above. �

To proceed, we use Lemma 3.8 and Proposition 5.3 to represent the unique blowups vx̄,0 for x̄ ∈ B ′
η(x0) as

vx̄,0(x, y) = Ax̄

(
x·ex̄ +

√
(x·ex̄)2 + y2

)s (
x·ex̄ − s

√
(x·ex̄)2 + y2

)
, ∀ (x, y) ∈R

n+1

for a constant Ax̄ > 0, and a unit vector ex̄ ∈ R
n. We then show that Proposition 5.4 implies the following Hölder 

continuity of the mappings x̄ �→ Ax̄ , x̄ �→ ex̄ .

Lemma 5.5. Assume that the hypotheses of Proposition 5.2 hold. Then, there exist constants C > 0 and γ =
γ (κ, n, s) ∈ (0, 1) such that for all x1, x2 ∈ B ′

η(x0) ∩ �(u) one has

|Ax1 − Ax2 | ≤ C|x1 − x2|γ , (5.23)

|ex1 − ex2 | ≤ C|x1 − x2|γ . (5.24)

Proof. Similarly to the proof of [7, Lemma 7.5], inequality (5.23) follows from the fact that there exists C =
C(n, s) > 0 such that
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‖vx,0‖L1(∂B ′
1)

= Cax, ∀x ∈ B ′
η(x0) ∩ �(u).

Thus, inequality (5.16), together with the triangle inequality, implies (5.23).
To prove inequality (5.24), because Ax0 is a positive constant, by Proposition 5.3, we may assume without loss 

of generality that the positive constant η is small enough so that Ax ≥ Ax0/2, for all x ∈ B ′
η(x0) ∩ �(u). Inequalities 

(5.23) and (5.16) give∫
∂B ′

1

∣∣∣∣ 1

Ax1
vx1,0 − 1

Ax2
vx2,0

∣∣∣∣ ≤ C|x1 − x2|γ , ∀x1, x2 ∈ B ′
η(x0) ∩ �(u).

Using definition (2.24) of the class of functions H1+s in the preceding inequality, we obtain that∫
∂B ′

1

∣∣∣x·ex11{x·e
x1>0} − x·ex21{x·e

x2>0}
∣∣∣ dx ≤ C|x1 − x2|γ ,

which immediately implies (5.24). This completes the proof. �
Proof of Theorem 1.2. The method of the proof is similar to that of [7, Theorem 7.6], but we include it for clarity 
and completeness. We divide the proof into several steps.

Step 1. Let η be the positive constant in Proposition 5.2. Our goal is to prove that for all ε > 0, there exists rε > 0
such that

‖vx,r − vx,0‖C1
a (B̄+

1 ) < ε, ∀x ∈ B ′
η/2(x0) ∩ �(u), ∀ r ∈ (0, rε). (5.25)

Assuming by contradiction that (5.25) does not hold, it follows that there is ε0 > 0, and there is a sequence {rk}k∈N
convergent to 0, and a sequence of points, {xk}k∈N ⊆ B ′

η/2(x0) ∩ �(u), such that

‖vxk,rk − vxk,0‖C1
a (B̄+

1 ) ≥ ε0, ∀ k ∈ N. (5.26)

We can assume without loss of generality that the sequence of points {xk}k∈N converges to x̄ ∈ B ′
η/2(x0) ∩ �(u), and 

using the uniform Schauder estimate (3.15),3 we can assume without loss of generality that the sequence {vxk,rk }k∈N
converges in C1+α′

a (B̄+
1 ), for all α′ ∈ (0, α), to a function w ∈ C1+α

a (B̄+
1 ).

We next prove that w = vx̄,0. Integrating inequality (5.14), and using definition (3.14) of the homogeneous rescal-
ings, we have that

‖vx,r − vx,0‖L1(B1,|y|a) ≤ Crβ, ∀x ∈ B ′
η(x0), ∀ r ∈ (0, r0),

where r0 is the positive constant in Proposition 5.2. Besides, from the structure of the blowups vx,0 in Lemma 5.5 it 
is immediate to see that {vxk,0}k∈N converges to vx̄,0 in C1

a(B̄+
1 , |y|a), as k → ∞. We then obtain that vxk,rk → vx̄,0

in L1(B1, |y|a) and thus, necessarily, w = vx̄,0. Finally, since the sequences {vxk,rk }k∈N and {vxk,0}k∈N both converge 
to vx̄,0 in C1

a(B̄+
1 , |y|a), this contradicts our assumption (5.26).

Step 2. For a given ε > 0 and a unit vector e ∈ R
n, define the cone

Cε(e) = {x ∈R
n | x·e ≥ ε|x|}.

We then claim that, there is a positive constant, rε, such that for any x ∈ B ′
η/2(x0) ∩ �(u), we have

Cε(ex) ∩ B ′
rε

⊆ {vx(·,0) > 0}. (5.27)

Indeed, consider a cutout from the sphere ∂B ′
1/2 by the cone Cε(e),

3 Note that even though the conclusions of Lemmas 3.7 and 3.10 are stated to hold on B̄+
1/8, they hold also on B+

R , for any R > 0, by simply 
considering the rescalings {vx ,8Rr } instead of {vx0,r } and using the homogeneity of vx ,0.
0 0
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Kε(e) = Cε(e) ∩ ∂B ′
1/2,

and note that

Kε(ex) � {vx,0(·,0) > 0} ∩ B ′
1, and vx,0(·,0) ≥ Axcε on Kε(ex),

for some positive universal constant cε. Invoking Proposition 5.3, without loss of generality we may assume that 
Ax ≥ Ax0/2, for all x ∈ B ′

η0
(x0) ∩�(u). Applying inequality (5.25), we can thus find a positive constant rε, such that

vx,r (·,0) > 0 on Kε(ex), ∀ r ∈ (0, rε).

Scaling back by r , we have

vx(·,0) > 0 on rKε(ex) := Cε(ex) ∩ ∂B ′
r/2, ∀ r ∈ (0, rε).

Taking the union over all r < rε , we obtain that the inclusion (5.27) holds.

Step 3. We next claim that for any ε > 0, there exists a positive constant, rε, such that for any x ∈ B ′
η/2(x0) ∩ �(u), 

we have

−Cε(ex) ∩ B ′
rε

⊆ {vx(·,0) = 0}. (5.28)

To prove (5.28) we note that −Kε(ex) � {vx,0(·, 0) = 0} ∩ B ′
1, and we also have that

lim
y→0+ |y|a∂yvx,0(·, y) ≤ −Axcε < −(Ax0/2)cε on − Kε(ex),

for a positive universal constant cε. Then, inequality (5.25) implies that there is a positive constant, rε, such that

lim
y→0+ |y|a∂yvx,r (·, y) < −(Ax0/4)cε on − Kε(ex), ∀ r ∈ (0, rε). (5.29)

We claim that this implies that

vx,r (·,0) = 0 on − Kε(ex), ∀ r ∈ (0, rε).

Indeed, from identity (2.7), and inequality (2.8), it follows that

lim
y→0+ |y|a |∂yvx,r (z, y)| = r2s

∣∣∣∣hx(rz)

r1+s

∣∣∣∣
≤ Cr2s−1,

for all z ∈ {vx,r (·, 0) > 0}. If there were z ∈ {vx,r (·, 0) > 0} ∩ −Kε(ex), then when r is small enough the previous 
inequality would give us a contradiction with (5.29), which immediately implies that property (5.28) holds.

Step 4. Without loss of generality, we can assume that ex0 = en, where en denotes the unit vector in Rn with all 
coordinates zero, except for the n-th coordinate. Properties (5.27) and (5.28) can be written in the form:

x +
(
Cε(ex) ∩ B ′

rε/2

)
⊆ {v > 0},

x −
(
Cε(ex) ∩ B ′

rε/2

)
⊆ {v = 0},

for all x ∈ B ′
η/2(x0) ∩ �(u). Taking x sufficiently close to x0, Lemma 5.5 guarantees that

Cε(ex) ∩ B ′
rε/2 ⊃ C2ε(e

n) ∩ B ′
rε/4.

Hence, there exists a positive constant, ηε, such that

x +
(
C2ε(e

n) ∩ B ′
rε/4(x0)

)
⊆ {v > 0},

x −
(
C2ε(e

n) ∩ B ′
rε/4(x0)

)
⊆ {v = 0},

for any x̄ ∈ B ′
ηε

(x0) ∩ �(u). Now, fixing ε = ε0, by the standard arguments, we can conclude that there exists a 
Lipschitz function, g : Rn−1 → R, with |∇g| ≤ Cn/ε0, such that
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B ′
ηε0

(x0) ∩ {v(·,0) = 0} = B ′
ηε0

(x0) ∩ {xn ≤ g(x′)},
B ′

ηε0
(x0) ∩ {v(·,0) > 0} = B ′

ηε0
(x0) ∩ {xn > g(x′)}.

Step 5. Using the normalization ex0 = en, and letting ε tend to 0, we see that �(u) is differentiable at x0 with normal 
ex0 . Recentering at any x ∈ B ′

ηε0
(x0) ∩�(u), we see that �(u) has a normal ex at x. Finally, noting that by Lemma 5.5

the mapping x �→ ex is Cγ , we obtain that the function g belongs to C1+γ .

The proof of Theorem 1.2 is now complete. �
We conclude §5 with the

Proof of Theorem 1.3. It follows immediately from Theorem 1.2, and the reduction procedure described in §1.1. �
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Appendix A. Auxiliary results

In this section we collect various results that we use in the proofs in the main body of our article. We first prove an 
upper bound on the height function vx0 defined in (2.3) which we use in the proof of Lemma 5.1.

Lemma A.1 (Growth of the function vx0 on Br ). Let vx0 be the height function defined in (2.3), where u ∈ C1+s(Rn)

is a solution to problem (1.4), with obstacle function ϕ ∈ C1+s(Rn). Then, there exists C = C(n, s, ‖u‖C1+s (Rn),

‖ϕ‖C1+s (Rn)) > 0 such that for all r ∈ (0, 1) and every x0 ∈ �(u), one has

‖vx0(x0 + ·, ·)‖C(B̄r )
≤ Cr1+s . (A.1)

Proof. Without loss of generality, we can assume that x0 = 0. We denote w(x) := u(x) − ϕ(x), where u is a 
C1+s(Rn) solution to the obstacle problem (1.4). Because the functions u and ϕ belong to C1+s(Rn), we have that 
w ∈ C1+s(Rn), and

w(0) = 0, and ∇xw(0) = 0.

From definition (1.3) of the fractional Laplacian operator, property (2.2), the fact that u solves (1.4) and 0 ∈ �(u), we 
also have that

lim
y↓0

|y|avy(0, y) = 0.

Since u(x, y) and ϕ(x, y) are the La-harmonic extensions of the functions u(x) and ϕ(x) from Rn to Rn+1+ , we have

ψ(x, y) :=
∫
Rn

P (z, y)ψ(x − z) dz, (x, y) ∈ R
n+1+ , (A.2)

where ψ = u or ψ = ϕ, and P denotes the Poisson kernel

P(x, y) = Cn,s

y2s(|x|2 + y2
)(n+2s)/2

, (x, y) ∈ R
n+1+ , (A.3)

for an appropriate Cn,s > 0. Because u solves problem (1.4) and 0 ∈ �(u), we have that (−�)su(0) = 0. Combining 
this fact with equalities (1.3) and (A.2), we see from (2.3) that we can write v in the form

v(x, y) := Cn,s

∫
n

y2s(|z|2 + y2
)(n+2s)/2

w(x − z) dz − Cn,s

∫
n

y2s

|z|n+2s
w(z) dz. (A.4)
R R
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We next want to show that there is a positive constant, C = C(‖u‖C1+s (Rn), ‖ϕ‖C1+s (Rn)), such that

|v(x, y) − v(0, y)| ≤ C|x|1+s , ∀(x, y), (0, y) ∈ B1, (A.5)

|v(0, y)| ≤ C|y|1+s , ∀(0, y) ∈ B1. (A.6)

It is clear that if we establish (A.5) and (A.6) the proof of the lemma will be concluded since (A.1) follows immediately 
from them. Inequality (A.6) can be proved in exactly the same way as [12, Inequality (2.107)], with the observation 
that in its proof we replace the functions ψ(x, y) and ψ0(|z|) − ψ0(0) with v(x, y) and w(z), respectively. It only 
remains to discuss inequality (A.5). Using the representation formula (A.4), we have that

|v(x, y) − v(0, y) − ∇xv(0, y)·x| ≤
∫
Rn

P (z, y)|w(x − z) − w(−z) − ∇zw(−z, y)·x|dz,

and using the fact that w belongs to C1+s(Rn), and P(·, y) is a probability density, it follows that

|v(x, y) − v(0, y) − ∇xv(0, y)·x| ≤ C|x|1+s , (A.7)

where C = C(‖u‖C1+s (Rn), ‖ϕ‖C1+s (Rn)) is a positive constant. Because we have ∇xw(0) = 0, it follows that

|∇xv(0, y)| ≤
∫
Rn

P (z, y)|∇zw(z) − ∇zw(0)|dz

≤ Cn,s

∞∫
0

∫
∂B ′

1

1

(1 + t2)(n+2s)/2
|∇zw(tyω) − ∇zw(0)|dσ(ω)dt (writing z = tω)

≤ C|y|s
∞∫

0

t s

(1 + t2)(n+2s)/2
dt,

where in the last inequality we used the fact that w ∈ C1+s(Rn), and C is a positive constant depending on n, s, 
‖u‖C1+s (Rn), and ‖ϕ‖C1+s (Rn). We also see that the integral in the last inequality is finite, and so we obtain that

|∇xv(0, y)| ≤ C|y|s .
The preceding inequality together with (A.7) yield estimate (A.5). This concludes the proof of Lemma A.1. �

In the proof of Lemma A.3 below we make use of the following result.

Lemma A.2 (Regularity in the x′-variables). Let s ∈ (0, 1), and u ∈ H 1(B1, |y|a) be a weak solution to equation

Lau = 0 on B1 \ {xn ≤ 0, y = 0},
u = 0 on B1 ∩ {xn ≤ 0, y = 0}. (A.8)

Then, for all r ∈ (0, 1) and all α ∈ N
n−1, we have that

Dα
x′u ∈ H 1(Br , |y|a) ∩ L∞(Br)

and the derivative Dα
x′u is a weak solution to equation (A.8) on Br . Moreover, there exists C = C(α, n, r, s) > 0 such 

that

‖Dα
x′u‖H 1(Br ,|y|a) + ‖Dα

x′u‖L∞(Br ) ≤ C‖u‖H 1(B1,|y|a). (A.9)

Proof. By definition, because u ∈ H 1(B1, |y|a) is a weak solution to (A.8), it follows that for all test functions 
ϕ ∈ C∞

0 (B1 \ {x < 0, y = 0}) one has∫
∇u·∇ϕ|y|a = 0. (A.10)
B1
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Denoting by H 1
0 (B1 \{xn ≤ 0, y = 0}) the closure of C∞

0 (B1 \{xn ≤ 0, y = 0}) with respect to the H 1(B1, |y|a)-norm, 
the preceding equality holds for all test functions ϕ that belong to H 1

0 (B1 \ {xn ≤ 0, y = 0}).
Let r ∈ (0, 1), h ∈ (0, (1 − r)/4), and ei ∈ R

n−1, with i = 1, 2, . . . , n − 1, be the unit vector in the standard 
Euclidean basis. We first prove the statement of the Lemma A.2 for α = ei , and then an induction argument can easily 
be applied to obtain the conclusion for all α ∈ N

n−1. Consider the finite difference operator

Di
hu(x′, xn, y) = u(x′ + hei, xn, y) − u(x′, xn, y)

h
, ∀ (x′, xn, y) ∈ B1−h.

Choosing ϕ = ηDi
hu with η ∈ C∞

0 (B1−2h), we see that ϕ ∈ H 1
0 (B1 \ {xn < 0, y = 0}, |y|a), and identity (A.10) gives∫

B1

∣∣∣∇Di
hu

∣∣∣2 η2|y|a = −2
∫
B1

∇Di
hu·∇ηDi

huη|y|a,

from which it follows that∫
B1

∣∣∣∇Di
hu

∣∣∣2 η2|y|a ≤ 4
∫
B1

|Di
hu|2|∇η|2|y|a.

Choosing η ∈ C∞
0 (B1) such that

η ≡ 1 on Br and η ≡ 0 on Bc
(1+r)/2,

the preceding inequality implies the existence of C = C(n, r, s) > 0 such that∫
Br

∣∣∣∇Di
hu

∣∣∣2 |y|a ≤ C

∫
B(1+r)/2

|Di
hu|2|y|a.

An immediate generalization of [5, Theorem 5.8.3 (i)] to our weighted Sobolev spaces gives∫
B(1+r)/2

|Di
hu|2|y|a ≤ C

∫
B1

|∇u|2|y|a, (A.11)

for a C > 0 and for all h ∈ (0, (1 − r)/4). Combining the preceding two inequalities with the generalization of [5, 
Theorem 5.8.3 (ii)] to our weighted Sobolev spaces, it follows that uxi

∈ H 1(Br , |y|a), and

‖uxi
‖H 1(Br ,|y|a) ≤ C‖∇u‖L2(B1,|y|a), (A.12)

where C = C(n, r, s) > 0.
It is now easy to see that identity (A.10) holds with u replaced by Di

hu. Using the uniform bound (A.11) on the 
H 1(B(1+r)/2, |y|a)-norm of the finite differences, we can take a weak limit along a subsequence hn → 0, to conclude 
that identity (A.10) holds with u replaced by uxi

. Clearly, the derivative uxi
= 0 on Br ∩ {xn < 0, y = 0} in the trace 

sense in H 1(Br , |y|a), and so we obtain that uxi
is a weak solution in Br to equation (A.8).

Because the domain B1 \ {xn < 0, y = 0} is not required to satisfy an exterior cone condition, we may apply [6, 
Lemma 2.4.1] to conclude that there is a positive constant, C = C(n, r, s), such that

‖uxi
‖L∞(Br ) ≤ C‖u‖H 1(B1,|y|a). (A.13)

Combining the norm estimates (A.12) and (A.13), we obtain inequality (A.9) with α = ei , for all i = 1, 2, . . . , n − 1. 
The statement for all α ∈N

n−1 follows by an induction argument. �
The following asymptotic expansion of homogeneous solutions to equation (A.8) around the origin is a crucial tool 

in the proof of Theorem 4.2 above.

Lemma A.3. Let s ∈ (0, 1) and u ∈ H 1(B1, |y|a) be a homogeneous function of degree 1 + s. Assume that u is a weak 
solution to equation (A.8). Then, there exist real constants, c0, c1, . . . , cn−1, such that
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u(x′, xn, y) =
(

xn +
√

x2
n + y2

)s
[
c0

(
xn − s

√
x2
n + y2

)
+

n−1∑
i=1

cixi

]
. (A.14)

Proof. Because the function u is homogeneous of degree 1 + s, the second order derivatives uxixj
are homogeneous 

functions of degree −1 + s. By Lemma A.2, the derivatives uxixj
are also bounded, for all i, j = 1, . . . , n − 1, and so

uxixj
= 0 on B1, ∀ i, j = 1, . . . , n − 1. (A.15)

On B1 \ {y = 0}, the weak solution u is a smooth function because the operator La has smooth coefficients and is 
locally strictly elliptic (therefore, La is hypoelliptic). Denoting

B1/2 := {(xn, y) ∈R
2 | x2

n + y2 < 1/4}, and B±
1/2 := B1/2 ∩ {y > (<)0},

and defining

a0(xn, y) := u(0, xn, y), and ai(xn, y) := uxi
(0, xn, y), ∀ (xn, y) ∈ B±

1/2,

we can write the function u in the form

u(x′, xn, y) = a0(xn, y) +
n−1∑
i=1

ai(xn, y)xi, (A.16)

for all (xn, y) ∈ B±
1/2 and |x′| < 1/2. By construction, the function a0(xn, y) is homogeneous of degree 1 + s, and 

the functions ai(xn, y), for i = 1, . . . , n − 1, are homogeneous of degree s. Because u and uxi
are weak solutions to 

equation (A.8) on B1, it follows from [6, Theorems 2.3.12 and 2.4.6] that they are continuous functions on B1 \ {xn =
y = 0}. Thus, the functions ai(xn, y) are continuous on B1/2 \ {xn = 0}. Because they have a positive degree of 
homogeneity, it follows that the functions ai(xn, y) are continuous on B1/2, for all i = 0, 1, . . . , n − 1.

For all i = 1, . . . , n − 1, we have that

ai(xn, y) = uxi
(x′, xn, y),

for all (xn, y) ∈ B±
1/2 and |x′| < 1/2, which implies by Lemma A.2 that the function ai(xn, y) belongs to 

H 1(B±
1/2, |y|a), and it is a weak solution to equation (A.8) on B±

r . Moreover, ai(xn, y) is continuous up to y = 0
and ai(xn, 0) = 0, when xn < 0. Because ai(xn, y) is homogeneous of degree s, it follows that there is a constant ci

such that ai(xn, 0) = cix
s
n, when xn > 0.

Because the functions u ∈ H 1(B1, |y|a) and ai ∈ H 1(B±
1/2, |y|a), for all i = 1, . . . , n − 1, are continuous weak 

solutions to equation (A.8), it follows from identity (A.16) that the function a0(xn, y) belongs to H 1(B±
1/2, |y|a), and 

is also a continuous weak solution to equation (A.8). Similarly to the functions ai(xn, y), for i = 1, . . . , n − 1, the 
function a0(xn, y) satisfies the boundary condition a0(xn, 0) = 0, when xn < 0, and there is a constant c0 such that 
a0(xn, y) = c0x

1+s
n , when xn > 0.

For all i = 1, . . . , n − 1, we now show that ai(xn, y) can be written is the form

ai(xn, y) = ci

2s

(
xn +

√
x2
n + y2

)s

. (A.17)

In polar coordinates, we can write the function in the form ai(xn, y) = bi(r, θ) = rsϕi(θ). Because Laai = 0 on B±
1/2, 

we obtain that the function ϕi(θ) satisfies the second order ordinary differential equation

sin θ ϕθθ + a cos θ ϕθ + (as + (1 + s)2) sin θ ϕ = 0 on (0, θ),

with Dirichlet boundary conditions

ϕ(0) = ci

2s
and ϕ(π) = 0,

and so, it has a unique solution. A direct calculation gives that the function

ϕ(θ) = ci

s
(cos θ + 1)s, ∀ θ ∈ [0,1],
2
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satisfies the preceding conditions. Thus, the function ai(xn, y) indeed takes the form (A.17).
A similar argument implies that the function a0(xn, y) must take the form

a0(xn, y) = c0

2s(−1 + s)

(
xn +

√
x2
n + y2

)s (
xn − s

√
x2
n + y2

)
. (A.18)

Identities (A.18), (A.17) and (A.16) give us the precise form (A.14) of the function u(x). This concludes the proof. �
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