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Abstract

This work is devoted to the study of nonvariational, singularly perturbed elliptic equations of degenerate type. The governing 
operator is anisotropic and ellipticity degenerates along the set of critical points. The singular behavior is of order O

(
1
ε

)
along 

ε-level layers {uε ∼ ε}, and a non-homogeneous source acts in the noncoincidence region {uε > ε}. We obtain the precise geo-
metric behavior of solutions near ε-level surfaces, by means of optimal regularity and sharp geometric nondegeneracy. We further 
investigate Hausdorff measure properties of ε-level surfaces. The analysis of the asymptotic limits as the ε parameter goes to zero 
is also carried out. The results obtained are new even if restricted to the uniformly elliptic, isotropic setting.
© 2016 

MSC: 35B25; 35J60
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1. Introduction

In this paper we develop a systematic approach to study local geometric properties of solutions to singularly 
perturbed equations of the form

Fε(X,uε,∇uε,D
2uε) = 0, (1.1)

taking place within a generic domain in the d-dimensional Euclidean space, � ⊂ R
d . We focus our analysis to 

reaction-diffusion models with singular behavior near ε-level surfaces. The diffusion process is anisotropic and de-
generate as ∇uε ∼ 0. Motivations for the study of singularly perturbed problems as in (1.1) come from the several 
fields of applications: population dynamics, boundary transition layers, fluid mechanics, theory of combustion, certain 
chemical reactions, heat propagation, free boundary problems, approximating singular PDEs, segregation problems, 
etc.
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Singular perturbation theory refers to a rich set of methods, ideas and technics for the study of problems involv-
ing infinitesimal parameters. Such a situation is rather common in applications and this fact has fostered a massive 
development of the theory, whose primary ideas go back to the early 19th century. Singular perturbations are particu-
larly important in the study of physical problems modeled by partial differential equations. Through the last decades, 
several methods have been invented to tackle PDE problems involving singular perturbations: matched asymptotic 
expansions, WKB approximations, periodic averaging, the method of multiple scales, etc. Nowadays singular pertur-
bation theory is a well established, very active and rich field of research for mathematicians, physicists, engineers, 
among other scientists. For a comprehensive reference on singular perturbation theory, we refer the readers to the 
book [12].

For the models treated in this work, the singular behavior of the perturbed equation (1.1) is of order O
(
ε−1

)
near 

ε-level surfaces �ε = {uε ∼ ε}. The diffusion of the governing operator degenerates along the a priori unknown set of 
critical points, C := {X ∈ � 

∣∣ ∇φ(X)| = 0}. A typical example is the class of operators Lγ φ = |∇φ|γ �φ, for γ ≥ 0. 
When γ > 0, the operator is non-variational and degenerate elliptic. The magnitude of the degeneracy is measured 
by the parameter γ ; the bigger the value of γ more degenerate the operator is. This feature impels less efficient 
smoothing effects on the diffusion process and the regularity theory for such class of operators is more involved 
from the mathematical view point. In turn, our goal in this work is to establish analytic and geometric properties 
of nonnegative solutions to (1.1) that are uniform-in-ε. Such estimates will then allow us to understand asymptotic 
limiting problems obtained as the infinitesimal parameter ε goes to zero.

Singularly perturbed methods are also useful tools in the study of elliptic and parabolic equations with singular 
(blowing-up) potentials. Variational, isotropic singular PDEs often arise from critical point theory of nondifferentiable 
functionals. The study of non-variational singularly perturbed PDEs is more delicate than its variational counterpart, 
mainly due to lack energy estimates and monotonicity formulae. Uniform elliptic singularly perturbed problems com-
ing from the theory of flame propagations have been treated in [5], pioneering a large literature on the subject, see 
also [20]. Non-variational equations with singular (blowing-up) potentials were addressed in recent works, [18,11]
and [2].

General, singular perturbed equations ruled by anisotropic and degenerate elliptic operators – object of study of this 
paper – present several new difficulties in its mathematical treatment. Loosely speaking, solutions of such equations 
carry two unknown regions of singular behavior, namely the set of critical points Cε and the actual physical free layer 
of transition, {uε ∼ ε}. A central part of the program is then to show that near ε-level surfaces, �ε , it is possible to 
control uε by ∼ dist(X, �ε). The upper control concerns optimal Lipchitz continuity of solutions independent of ε; 
whereas the control by below reflects a geometric nondegeneracy property. Heuristically, such a fine geometric control 
on uε – independent of ε – implies that, in measure, the two free boundaries do not intersect each other. Implementing 
the heuristics explained above involves a number of technical steps and new tools, which ultimately produce results 
that are original even in the isotropic, non-degenerate case, γ = 0.

We must highlight that the analysis of anisotropic problems treated here are indeed rather more subtle than the 
isotropic case. For instance, even though the limiting equation of problems modeled by |∇vε|γ �vε ≈ ε−1χ{vε≤ε} is 
simply the Laplace equation within the set of positivity, �v = 0 in {v > 0}, the anisotropy of the singular perturbation 
leaves its signature along the limiting transition boundary. It effects the expected linear behavior of the limiting 
function along ∂{v > 0} – see the comments at the beginning of Section 7.

The paper is organized as follows. In Section 2 we discuss the mathematical set-up for the singular perturbed 
problem to be studied. In particular the appropriate notion of solution is introduced at the end of that Section. Non-
degeneracy properties of Perron’s solutions are proven in Section 3 by means of useful barrier constructions. Optimal 
gradient bounds, uniform-in-ε, is derived in Section 4. In Section 6 we derive uniform Hausdorff estimates of {uε ∼ ε}, 
in particular we show that H d−1({uε ∼ ε} ∩ Br) ∼ rd−1. The asymptotic limit as ε → 0 is studied in Section 7.

2. Mathematical set-up

We start off this Chapter by introducing the basic set-up we shall work on in this article. By Sym(d) we denote 
the space of d × d real, symmetric matrices. Given two positive numbers 0 < λ ≤ �, we denote the Pucci extremal 
operators by
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M+
λ,�(M) := λ

⎛
⎝∑

ei<0

ei

⎞
⎠+ �

⎛
⎝∑

ei>0

ei

⎞
⎠ ,

M−
λ,�(M) := λ

⎛
⎝∑

ei>0

ei

⎞
⎠+ �

⎛
⎝∑

ei<0

ei

⎞
⎠ ,

where ei = ei(M) are the eigenvalues of symmetric matrix M . An operator F : Sym(d) → R is said to be 
(λ, �)-uniformly elliptic provided

M−
λ,�(M) ≤ F(M + N) − F(M) ≤ M+

λ,�(M); (2.1)

holds for any M, N ∈ Sym(d). Throughout this paper, F will always denote a (λ, �)-uniformly elliptic operator. With 
no loss of generality we shall always assume the normalization condition

F(0) = 0.

Existence and regularity theory for solutions to uniform elliptic equations has been a central topic of research since 
the late 70s, when Krylov–Safonov Harnack inequality [16,17] paved the way to such a rich subject. It is now well 
established that under the monotonicity assumption encoded in (2.1), the language of viscosity solutions provides 
an appropriate notion of weak solutions, [8]. A consequence of Krylov–Safonov Harnack inequality is that viscosity 
solutions to the homogeneous equation

F(D2u) = 0,

are of class C1,α , for some 0 < α < 1 that depends only upon dimension and ellipticity constants, see [4, Chapters 4, 5]. 
Under concavity assumption on F , Evans and Krylov proved that solutions are classical, i.e., of class C2, see for 
instance [4, Chapter 6]. Regularity theory for fully nonlinear, non-homogeneous equations, F(D2u) = f (X), is more 
involved, and it has been treated by Caffarelli in his epic marking article [3]. In [21], optimal modulus of continuity 
has been provided under appropriate conditions on the coefficients and integrability properties of f . For existence 
results, see [9]. The corresponding theory for fully nonlinear elliptic equations of degenerate type

|∇u|γ F (D2u) = f (X), (2.2)

is more recent and it has received a warm attention through the last decade, see [6,10,13–15,1] among several other 
works on this subject. It has been shown [14,1] that viscosity solutions to (2.2) are also of class C1,β , provided f

is bounded. In fact [1] shows that if F is concave, then solutions are precisely of class C1, 1
1+γ , and such estimate is 

optimal.
In this current article, we are interested in singularly perturbed equations ruled by degenerate elliptic operators as 

in (2.2), i.e., our goal is to study weak solutions to{ |∇uε |γ F (D2uε) = ζε(X,uε) in �,

0 ≤ uε ≤ K0,
(2.3)

where γ ≥ 0 is a degeneracy parameter, F : Sym(d) → R is a fully nonlinear, uniformly elliptic operator. The reaction 
term, ζε , represents the singular perturbation of the model. We are interested in singular behaviors of order O

(
ε−1

)
along ε-level layers {uε ∼ ε}, hence we are led to consider singular reaction terms ζε : � ×R+ →R+ satisfying

0 ≤ ζε(X, t) ≤ B

ε
χ(0,ε)(t) + C , ∀(X, t) ∈ � ×R+, (2.4)

for nonnegative constants B, C ≥ 0.
Clearly ζε ≡ 0 satisfies (2.4), so as to assure that the reaction term is genuinely singular, we shall also consider the 

following non-degeneracy condition:

inf
�×[a,b] εζε(X, εt) := ι > 0, (2.5)

for some 0 < a < b, and some ι independent of ε. Heuristically, (2.5) says that the singular term behaves asymp-
totically as ∼ ε−1χ(0,ε) plus a nonnegative noise that stays uniformly bounded away from infinity. Singular reaction 
terms built up as approximation of unity
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φε(X, t) := 1

ε
φ1

(
t

ε

)
+ gε(X), (2.6)

are particular (simpler) cases covered by the analysis to be developed herein. Indeed, for such approximations, φ1 is 
a nonnegative smooth real function with supp φ1 = [0, 1], and 0 < c0 ≤ gε(X) ≤ c−1

0 . It is plain to check that the 
reaction term written in (2.6) does satisfy (2.4) and (2.5).

Throughout this paper we deal with Perron’s solutions of equation (2.3). That is, given a subsolution uε and a 
supersolution uε of equation (2.3), for which the following inequality uε ≤ uε on ∂� is verified, a Perron’s solution 
is the least supersolution lying between uε and uε . Note that comparison principle assures uε ≤ uε pointwise in �.

Given a sufficiently regular boundary datum ϕ on ∂�, a pair of subsolution and supersolution solutions can aways 
be obtained by solving the

|∇uε|γ F (D2uε) = sup
�×[0,∞)

ζε and |∇uε|γ F (D2uε) = inf
�×[0,∞)

ζε in �, (2.7)

satisfying uε = uε = ϕ on ∂�. Existence of solutions of (2.7) follows for instance by [7, Proposition 2 and Proposi-
tion 3].

Once fixed a pair of subsolution and supersolution solutions of equation (2.3), the following general procedure 
yields existence of Perron’s solution:

Theorem 2.1. Let g : � × [0, ∞) → R be a bounded function, and uniformly Lipschitz in [0, ∞). Assume F : � ×
R

d × Sym(d) → R verifies the monotonicity condition

F (X, �p,N) ≤ F (X, �p,M), (2.8)

for any �p ∈R
d , a.e. X ∈ � and all N, M ∈ Sym(d) verifying the N ≤ M . Assume a priori C0,α estimates for viscosity 

solutions F (X, ∇u, D2u) = f (X) ∈ L∞ and that the equation

F (X,∇u,D2u) = g(X,u) (2.9)

admits subsolution and supersolution u, u ∈ C0(�) respectively, with u = u = ϕ ∈ W 2,∞(∂�), then the function

v(x) := inf
w∈S

w(x) (2.10)

is a continuous viscosity solution to (2.9), satisfying u = ϕ in ∂�, where

S := {
w ∈ C(�)

∣∣ w is a supersolution to (2.9), and u ≤ w ≤ u
}
,

Proof. By looking at the equation (2.9) as[
F (X,∇u,D2u) − λu

]
+ (λu − g(X,u)) = 0,

let us denote the following operator

Af [u] = Af (X,u,∇u,D2u) := F (X,∇u,D2u) − λu + f (X).

Observe that Af enjoys comparison principle, see for instance [7]. Also, we define

h(X, z) := λz − g(X, z) (2.11)

for some number λ > 0 sufficiently large such that ∇z h ≥ λ − ∇z g ≥ λ/2.
Now, we argue by finite induction. Let us consider u0 := u and for each integer k ≥ 0, define uk+1 as the solution 

of {
Afk

(X,u,∇u,D2u) = 0 in �

u = ϕ on ∂�,
(2.12)

where fk(X) := h(X, uk(X)). We claim for each k > 0, uk ≤ uk+1 pointwise in �. Indeed, by (2.12) we note that 
Af0 [u1] = 0 ≤ Af0 [u0] in the viscosity sense and so, comparison principle implies u0 ≤ u1 in �. Now, we suppose 
uk−1 ≤ uk in �. By taking λ > 0 sufficiently large in (2.11), h becomes increasing in the variable z which guarantees 
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Afk
[uk+1] = 0 ≤ Afk

[uk] in the viscosity sense. Hence, applying comparison principle once more we conclude uk ≤
uk+1 in �.

Similarly for each k > 0, we verify uk ≤ u holds pointwise in �. In fact, for f (X) := h(X, u(X)) we have 
Af [u1] ≥ 0 ≥ Af [ u ] in the viscosity sense, so u1 ≤ u in �. By assuming uk ≤ u in � and taking account that 
Af [uk+1] ≥ 0 ≥ Af [ u ] in the viscosity sense, we obtain uk+1 ≤ u in �. Therefore, we derive the following increas-
ing sequence

u = u0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ uk+1 ≤ · · · ≤ u in �.

By a priori C0,α estimates, up to a subsequence {uk} converges locally uniform to a function u∞ defined pointwise 
in �. In addition, passing to another subsequence if necessary, Afk

converges locally uniformly to

A∞[u ] = F (X,∇u,D2u) − λu + h(X,u∞),

and thus u∞ is a viscosity solution of

F (X,∇u,D2u) = g(X,u) in �.

It remains to check that u∞ satisfies (2.10). For each v ∈ S and k > 0, we obtain

Afk
[v ] = F (X,∇v,D2v) − (h(X,v) − h(X,uk)) − g(X,v). (2.13)

Inductively, let us analyze the case k = 0 in (2.13). Since u0 = u ≤ v in �, we obtain

Af0 [u1] = 0 ≥ F (X,∇v,D2v) − g(X,v) = Af0 [v ]
in the viscosity sense. Thus comparison principle implies u1 ≤ v in �. Analogously, for uk ≤ v we obtain

Afk
[uk+1] = 0 ≥ Afk

[v ]
and so uk+1 ≤ v in �. Therefore for any positive integer k there holds uk ≤ v in � and by passing the limit as k → ∞
we reach

u∞(x) = inf
v∈S

v(x),

and the Theorem is proven. �
Henceforth, it is set for this paper that for each ε > 0 fixed, uε always denotes a nonnegative Perron’s solution of 

the singularly perturbed equation

|∇v|γ F (D2v) = ζε(X,v) in �. (Eε)

We conclude this section with a comment on the non-negativity assumption on Perron’s solution. Initially we note 
that, if one assumes

ζε(X, t) = 0 for t ≤ 0, (2.14)

then any solution to (Eε) with nonnegative boundary value is nonnegative inside �, and hence entitled for our analysis. 
Indeed, suppose for the sake of contradiction, that v solves (Eε) in the viscosity sense, v ≥ 0 on ∂� and N := {X ∈
� 

∣∣ v(X) < 0} is nonempty. Clearly v = 0 on ∂N ∩ � and, since v ≥ 0 on ∂�, we conclude v ≥ 0 on ∂N . Now, 
in view of (2.14) and [14, Lemma 6], we conclude v satisfies F(D2v) = 0, in N , which gives a contradiction to the 
maximum principle and the definition of N .

More generally, if one assumes solely condition (2.4), it is still possible to construct a nonnegative subsolution 
to (Eε), provided we have “enough height”, i.e., the infimum of the desired boundary datum ϕ is big enough. In-
deed, within a ball BR(X0), for parameters L � 1 and 0 < α < 1 to be chosen a posteriori, define w(X) = w(r) :=
L|X − X0|α . Direct computation shows that

|∇w|γ M −
λ,�(D2w) = (αL)1+γ [λ(d − 1) − �(1 − α)] r(α−1)(1+γ )−1. (2.15)

Thus, if we choose
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α = 1 − λ

2�
, (2.16)

equation (2.15) becomes

|∇w|γ M −
λ,�(D2w) = ([1 − λ

2�
]L)1+γ λ(d − 1 − 1

2
)r−( λ

2�
(1+γ )+1). (2.17)

Next, we note that

{w ≤ ε} =
{
|X| ≤

( ε

L

) 2�
2�−λ

}
,

and then, in {w ≤ ε}, there holds

|∇w|γ M −
λ,�(D2w) ≥ cL1+γ

( ε

L

)− λ(1+γ )+2�
2�−λ ≥ B

ε
+ C ,

provided L is chosen properly. Another choice for L, which depends only on R and C , assures the desired inequality 
outside {w ≤ ε}.

3. Scaling barriers and geometric nondegeneracy

As explained in the introduction, the first key difficulty in dealing with singularly perturbed degenerate equations 
is to prevent degeneracy along the transition layers. The appropriate tool for such a task is a geometric nondegeneracy 
estimate.

In this Section, we show that solutions grow at least in a linear fashion away from ε-level surfaces, inside {uε > ε}. 
This implies that in measure the two free boundaries do not intersect. The proof shall be based on appropriate barrier 
functions. We carry out a more general construction for future references. To this end, we shall look at degenerate 
elliptic equations of the form

|∇u|γM+
λ,�(D2u) = ζ(X,u), in R

d,

where the reaction term satisfies the mild non-degeneracy assumption:

inf
Rd×[a,b]

ζ(X, t) > 0. (3.1)

Fixed 0 < a < b < 1, for α and A0 positive numbers to be chosen a posteriori, we consider the radially symmetric 
function � : Rd →R defined as follows,

�L(X) :=

⎧⎪⎪⎨
⎪⎪⎩

a for 0 ≤ |X| < L;
A0 (|X| − L)2 + a for L ≤ |X| < L +

√
b−a
A0

;
ψ(L) − φ(L)|X|−α for |X| ≥ L +

√
b−a
A0

.

(3.2)

Under the following choices,

φ(L) := 2

α

√
(b − a)A0

(
L +

√
b − a

A0

)1+α

and ψ(L) := b + φ(L)

(
L +

√
b − a

A0

)−α

, (3.3)

it is possible to verify that �L ∈ C
1,1
loc (Rd). So, we can compute the second order derivatives of �L almost everywhere. 

Our first aim is to show, provided the appropriate parameters, that �L satisfies pointwise

|∇�L(X)|γM+
λ,�(D2�L(X)) ≤ ζ(X,�L(X)) in R

d . (3.4)

Indeed, clearly for 0 ≤ |X| < L the above inequality is verified. In the region L ≤ |X| < L +
√

b−a
A0

, we have

|∇θL(X)| = 2A0 (|X| − L) ≤ 2A0

√
b − a

A0
= 2

√
A0(b − a)
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and

D2�L(X) = 2A0

[(
1

|X|2 − (|X| − L)

|X|3
)

X ⊗ X + (|X| − L)

|X| Id

]
≤ 4A0 · Id.

Therefore, by using the estimates above, we obtain

|∇�L(X)|γ M+
λ,�(D2�L(X)) ≤ 4d�A0

(
2
√

A0(b − a)
)γ

.

Moreover, by construction

a ≤ �L(X) ≤ b

and so, for A0 sufficiently small, we get

|∇�L(X)|γ M+(D2�L(X)) ≤ inf
Rd×[a,b]

ζ(X, t) ≤ ζ(X,�L(X)).

Finally, let us turn our attention to the set |X| ≥ L +
√

b−a
A0

. Direct computation shows

D2�L(X) = αφ(L)|X|−(α+2)

(
− (α + 2)

|X|2 X ⊗ X + Id

)

hence,

M+
λ,�(D2�L(X)) ≤ αφ(L)|X|−(α−2) (−(α + 1)λ + (d − 1)�) .

Finally, taking

α ≥ (d − 1)
�

λ
− 1,

we get

|∇�L(X)|γM+
λ,�(D2�L(X)) ≤ 0 ≤ ζ(X,�L(X)).

Therefore, �L satisfies (3.4).
To complete the analysis of the supersolution �L, we will show that for some universal κ0 > 0, there holds

�L(X) ≥ κ0 · 4L for |X| ≥ 4L, (3.5)

where L ≥ L0 :=
√

b−a
A0

. In fact, by (3.3)

|X| ≥ 4L ≥ 2(L + L0) = 2

(
φ(L)

ψ(L) − b

) 1
α

and hence,

�L(X) = ψ(L) − φ(L)|X|−α ≥ ψ(L) − 2−α(ψ(L) − b) ≥ Cαψ(L),

for α > 1, therefore,

�L(X) ≥ κ0 · 4L

where κ0 > 0 depends on α, d, �, λ and (b − a).
As to establish lower bounds on the growth speed of solutions to (Eε) inward the set {uε > ε}, the strategy now is 

to consider appropriate scaling versions of the universal barrier �L. Hereafter, we will denote the distance of a point 
in the non-coincidence set X ∈ � ∩ {uε > 0} to the approximating transition boundary, �ε , by

dε(X0) := dist(X0, {uε ≤ ε}).
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Fig. 1. Graphic illustrating the scaling barrier argument.

Theorem 3.1. Let {uε}ε>0 the Perron’s solution of (Eε). There exists c > 0 depending on universal parameters such 
that, for X0 ∈ {uε > ε} and 0 < ε � dε(X0) � 1, there holds

uε(X0) ≥ c · dε(X0).

Proof. With no loss of generality, let us assume 0 ∈ {uε > ε}. We set

η := dε(0)

2
and consider the reaction term

ζ(X, t) :=
{

εζε(εX, εt), if εX ∈ �

ι otherwise.

Given the universal barrier �L built-up above, we define

�ε(X) := ε · � η
4ε

(
X

ε

)
.

Easily one verifies that the scaled barrier �ε satisfies

|∇�ε |γ F (D2�ε) ≤ ζε(X,�ε),

and by (3.2) and (3.5), one simply checks that for 4L0ε � η (see Fig. 1),

�ε(0) = a · ε and �ε

∣∣
∂Bη

≥ κ0η. (3.6)

Now, we claim that there exists a Z0 ∈ ∂Bη such that

�ε(Z0) ≤ uε(Z0). (3.7)

In fact, if we assume �ε ≥ uε everywhere in ∂Bη, then the function

vε := min{�ε,u
ε}

would be a supersolution to Eq. (Eε), but vε is strictly below of uε , which contradicts the minimality of uε . Therefore, 
by (3.6) and (3.7), we obtain

κ0η ≤ �ε(Z0) < uε(Z0) ≤ sup
Bη

uε. (3.8)

In addition, uε solves
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c0 ≤ |∇uε |γ F (D2uε) ≤ c−1
0 in B2η.

So, by Harnack inequality, see [14], we get

sup
Bη

uε ≤ C

(
uε(0) + (2η)

2+γ
1+γ c

1
1+γ

0

)
,

and by (3.8),

uε(0) ≥
(

κ0 − Cc
1

1+γ

0 η
1

1+γ

)
η.

Finally, taking η > 0 universally small, we have

uε(0) ≥ c η,

for some 0 < c � 1. �
4. Lipschitz regularity

In this Section, we derive uniform gradient estimates, which in particular provides compactness in the local uniform 
convergence topology. In view of the results proven in Section 3, such an estimate is indeed optimal.

Theorem 4.1 (Uniform Lipschitz Estimate). Let {uε}ε>0 be a solution of (Eε). Given �′ � �, there exists a constant 
C0 depending on dimension, ellipticity constants and on �′, but independent of ε > 0, such that

‖∇uε‖L∞(�′) ≤ C0.

Proof. Initially we analyze the closed transition region {0 ≤ uε ≤ ε} ∩ �′. For ε � dist(�′, ∂�), fix X0 ∈ {0 ≤ uε ≤
ε} ∩ �′ and define the auxiliary function

v(Y ) := 1

ε
uε(X0 + εY ) in B1.

Direct computations show that v satisfies

|∇v(Y )|γ Fε(D
2v(Y )) = εζ(X0 + εY,uε(X0 + εY )) =: fε(Y ) in B1,

where Fε(M) := εF (ε−1M). It follows readily from (2.4) that

0 ≤ fε(Y ) ≤ (B + εC ) ≤ C�.

Thus, from the C1,α regularity estimates ([14], see also [1]), we have

|∇v(0)| ≤ C
{
‖v‖L∞(B1/2) + C�

1
1+γ

}
, (4.1)

for some universal constant C > 0. Since,

v(0) = 1

ε
uε(X0) ≤ 1,

it follows by Harnack inequality [13] (see also [15]) that

‖v‖L∞(B1/2) ≤ C, (4.2)

for a universal constant C > 0. Combining (4.1) and (4.2) we get

|∇uε(X0)| = |∇v(0)| ≤ C0, (4.3)

for some C0 > 0 independent of ε.
We now proceed our analysis as to cover the open region {ε < uε} ∩ �′. For that, let us label

�ε := {X ∈ �′ ∣∣ uε(X) = ε},
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and fix a generic point X1 inside {ε < uε} ∩ �′. In the sequel, we compute the distance from X1 to �ε and call such a 
number r , i.e.,

r := dist(X1,�ε).

Define the renormalized function vr : B1 →R as

vr(Y ) := uε(X1 + rY ) − ε

r
.

One easily verifies that such a function solves

|∇vr |γ Fr(D
2vr) = rζε(X1 + rY,uε(X1 + rY )) =: g(Y ),

in the viscosity sense, where as before, Fr(M) := rF (r−1M). From geometric consideration, uε(X1 + rY ) > ε, for 
all Y ∈ B1, thus, it follows from (2.4) that g(Y ) is bounded, independently of ε, i.e.,

‖g‖L∞(B1) ≤ K0

for a constant K0 that depends only on B, C and diam(�′). Applying once more C1,α regularity estimates from [14]
and [1], we conclude

|∇uε(X1)| = |∇vr(0)| ≤ C

(
1

r
‖uε − ε‖L∞(Br/2(X1)) + K

1
1+γ

0

)
. (4.4)

Now, let Z0 ∈ �ε be a point that realizes distance, i.e.,

r = |X1 − Z0|.
We will select 0 < r < r0 � 1 a posteriori to be universally small. From the Lipchitz regularity estimate early proven 
for points within {0 ≤ uε ≤ ε}, estimate (4.3), we know

|∇uε(Z0)| ≤ C0. (4.5)

Let us label

I := inf
Br/2(X1)

(uε − ε),

and for M � 1 to be chosen a posteriori, define the auxiliary function in Br(X1) \ Br/2(X1) by

�(Z) := I

2M − 1
rM

(
|Z − X1|−M − r−M

)
. (4.6)

Recall that according to Theorem 3.1

I ≥ cr, (4.7)

for ε � r . Direct computation yields

|∇�|γM−
λ,�(D2�) ≥ [λ(M + 1) − �(n − 1)]

(
I

2M − 1
rM · M

)1+γ

r−(M+1)γ−(M+2) (4.8)

in Br(X1) \ Br/2(X1). We now choose M universally large so that

λ(M + 1) − �(n − 1) ≥ λ

10
M,

and in the sequel, taking into account (4.7), we restrict the analysis to 0 < r < r0, for

r0 := δ̃
M2+γ

C (2M − 1)
,

where δ̃ is a positive, small constant that depends only on universal parameters. With such a universal choices made, 
we verify, in the viscosity sense,
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Fig. 2. Barrier for geometric upper control of the grow rate.

|∇�|γ F (D2�) ≥ |∇�|γM−
λ,�(D2�) ≥ C , (4.9)

those, from construction and maximum principle, we have �(Z) ≤ uε(Z) for all points Z ∈ Bd(X1) \ Bd/2(X1). (See 
Fig. 2.)

We estimate

d�

dt

∣∣∣
t=r

∼ I

r
. (4.10)

Hence, we from (4.5) and (4.10), we have

C0 ≥ −∂νuε(Z0) ≥ −d�

dt

∣∣∣
t=r

≥ c
I

r
. (4.11)

It also follows from the scaled Harnack inequality [14] that

‖uε − ε‖L∞(Br/2(X1)) ≤ C
{
I + r2+γ C

}
. (4.12)

Finally, combining (4.4), (4.11), and (4.12), we establish gradient boundedness at interior points of {ε < uε} ∩ �′ and 
hence the proof of Theorem 4.1 is concluded. �

One should notice that for each ε > 0, solutions uε are indeed locally of class C1,α . For instance, when F is 

concave, it follows from [1] that uε ∈ C
1, 1

1+γ

loc . Nonetheless, for any tiny 0 < β � 1, near internal ε-layers, one verifies 
that

lim
ε→∞‖uε‖C1,β = +∞.

On the other hand, Theorem 4.1 implies that the Lipschitz norms of uε remain bounded, independently of ε. In such 
a perspective, this is an optimal estimate.

5. Geometric consequences

In this intermediary section, we discuss some geometric consequences of the sharp control of solutions, established 
in the previous two sections. An immediate consequence of Lipschitz regularity, Theorem 4.1, and Theorem 3.1 is the 
complete control of uε in terms of dε(X0). (See Fig. 3.)

Corollary 5.1. Given a subdomain �′ � �, there exists a universal constant C = C(�′) > 0 such that for X0 ∈
�′ ∩ {uε > ε} and ε � dε(X), there holds
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Fig. 3. Picture representing a slice of the graph of uε controlled from above and from below by ∼ dε – result established in Corollary 5.1.

C−1dε(X0) ≤ uε(X0) ≤ C dε(X0).

Proof. The inequality from below is precisely the Theorem 3.1. Now take Y0 ∈ ∂{uε > ε}, such that |Y0 − X0| =
dε(X0). Thus, follow from Theorem 4.1,

uε(X0) ≤ C dε(X0) + uε(Y0) ≤ C dε(X0),

and the Corollary is proven. �
Now we prove that minimal solutions are strongly non-degenerate near ε-level sets. It means that the maximum 

of uε on the boundary of a ball Br centered in {uε > ε} is of the order of r . This is an additional and important 
information about the growth rate of uε away from ε-level surfaces.

Theorem 5.2. Given �′ � �, there exists a universal constant c > 0 such that, for X0 ∈ {uε > ε}, ε � ρ � 1, there 
holds

c ρ ≤ sup
Bρ(X0)

uε ≤ c−1(ρ + uε(X0)).

Proof. As in the proof of Theorem 3.1, taking �ε(X) = ε� ρ
4ε

(X), we have

uε(Z) > �ε(Z),

for some point Z ∈ ∂Bρ(X0). To conclude, we note that

κ · ρ ≤ �ε(Z) < uε(Z) ≤ sup
Bρ(X0)

uε.

The upper estimate follows directly from Lipschitz regularity. �
Remark 5.3. Given X0 ∈ {uε > ε}, ε � ρ and ρ � 1 universally small, we have from strong non-degeneracy that 
there exists Y0 ∈ Bρ(X0) such that

uε(Y0) ≥ c0ρ.

By Lipschitz continuity, for Z ∈ Bκρ(Y0), we get

uε(Z) − Cκρ ≥ uε(Y0).

Then, by estimates above, it is possible to choose 0 < κ � 1 universally small such that

Z ∈ Bκρ(Y0) ∩ Bρ(X0) and uε(Z) > ε.

Finally, we conclude that there exists a portion of Bρ(X0) with volume in order ∼ ρd within {uε > ε} (see Fig. 4). By 
this fact, we are ready to obtain uniform positive density along level sets of minimal solutions to Eq. (Eε).
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Fig. 4. Geometric idea of the proof of Corollary 5.4.

Corollary 5.4. Given X0 ∈ {uε > ε}, ε � ρ and ρ � 1 universally small, there exists a universal constant 0 < c0 < 1
such that

Ld(Bρ(X0) ∩ {uε > ε})
Ld(Bρ(X0))

≥ c0 ,

where Ld(A) is the Lebesgue measure of the set A.

Proof. Following the lines of Remark 5.3, we check

Ld(Bρ(X0) ∩ {uε > μ}) ≥ Ld(Bρ(X0) ∩ Bκρ(Y0)) = c0 L
d(Bρ(X0)),

for some universal constant 0 < c0 � 1. �
Corollary 5.5. Given X0 ∈ {uε > ε}, ε � ρ and ρ � 1 universally small, then

−
ˆ

Bρ(X0)

uεdX ≥ c ρ

for a universal constant c > 0 which does depend on ε.

Proof. As in Remark 5.3, there exists a universally small constant 0 < κ � 1, such that

−
ˆ

Bρ(X0)

uεdX ≥ Cd−
ˆ

Bρ(X0)∩Bκρ(Y0)

uεdX ≥ c ρ

for a universal constant 0 < c � 1 and some Y0 ∈ {uε > ε}. �
6. Hausdoff estimates

In this section, we establish Hausdorff measure estimate of the approximating level sets. A necessary condition 
for the study of such an estimate is to impose the nondegeneracy of the reaction term propagates up to the transition 
boundary. Hence, hereafter in condition (2.5), we shall take a = 0, i.e.,

inf
�×[0,b] εζε(X, εt) := ι > 0, (6.1)

for some b > 0 will be enforced. A condition at infinity on the governing operator F is also required in the Hausdorff 
estimate analysis. We shall discuss such a condition when time comes.

Our next result says that, in measure, the Hessian of an approximating solution blows-up near the transition bound-
ary as ε → 0.

Proposition 6.1. Fix �′ ��, C � 1 and ρ < dist(�′, ∂�). There exists ε0 > 0 such that, for ε ≤ ε0 there holds
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ˆ

Bρ(Xε)

(
ζε(X,uε) − C

)
dX ≥ 0, (6.2)

for any Xε ∈ ∂{uε > ε} ∩ �′.

Proof. Let us suppose, for sake of contradiction, that there exists C0 > 0 and ρ < dist(�′, ∂�), such that
ˆ

Bρ(Xk)

(
ζεk

(X,uεk ) − C0
)
dX < 0, (6.3)

for points Xεk
∈ ∂{uεk > εk} ∩ �′ and a sequence εk → 0 as k → ∞. Let us define

vk(Y ) := b

εk

uεk (Xεk
+ εk Y ).

From uniform Lipschitz regularity, we know

‖vk‖L∞(Bρ) ≤ C1.

From (6.3) we obtain
ˆ

Bρ/εk

(
(εkb

−1) · ζεk
(Xεk

+ εkY, εkb
−1vk) − C0εkb

−1
)

dX < 0. (6.4)

Easily we verify that vk is a Perron’s solution to

|∇vk|γ Fk(D
2vk) = εkb

−1ζεk
(Xεk

+ εkY, εkb
−1vk) =: fε(X),

where Fk(M ) := εkF (ε−1
k M ) has the same ellipticity constants as F and

‖fε‖L∞(Bρ/εk
) ≤ B + C

b
,

independent of ε. From C1,α estimates, [14,1], up to a subsequence

lim
k→∞vk =: v∞,

in the C1
loc(Bρ) topology. Combining (6.1) with (6.4), we deduce that

either v∞ ≡ 0, or else v∞ ≥ b, everywhere in Bρ. (6.5)

As vk(0) = b for all k ∈ N, we have that v∞(0) = b > 0, so v∞ can not be identically zero. If v∞ ≥ b, we have that 0
is a minimum point, which give us a contradiction by nondegeneracy, i.e.

0 = |∇v∞(0)| = |∇uεk
(0)| + o(1) ≥ c > 0,

and the proof is concluded. �
Heuristically, Proposition 6.1 implies that near the transition boundary, the governing operator F gets evaluated at 

very large matrices. Such an insight motivates the following structural asymptotic condition on the governing operator:

Definition 6.2. We say a uniform elliptic operator F : Sym(d) → R is asymptotically concave if there exists a positive 
matrix F = (fij )d×d and a constant CF > 0, such that

tr(F · M) − F(M) ≥ −CF , (AC)

for all M ∈ Sym(d).
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This is a generalization on the classical concavity assumption on F , required for instance in the Evans and Krylov 
C2,α regularity theorem. Improved regularity estimates for viscosity solutions of asymptotically concave equations 
were proven in [19]. Condition (AC) has shown to be a proper assumption on the governing operator F required in the 
Hausdorff estimate analysis. Hence, hereafter in this Section, we assume the governing operator F is asymptotically 
concave.

It is interesting to notice that if uε is a Perron’s solution to (Eε) then one verifies in the viscosity sense

F(D2uε) = ζε(X,uε)|∇uε |−γ in {uε > ε} ∩ �′, (6.6)

for any �′ � �. Hence, by non-degeneracy and Lipschitz regularity and asymptotic concavity of the operator, i.e., 
(AC), for Xε ∈ {uε > ε} ∩ �′ there holdsˆ

Bρ(Xε)

fij uε
ij dX ≥

ˆ

Bρ(Xε)

(
ζε(X,uε)|∇uε |−γ − CF

)
dX ≥ C

−γ

0

ˆ

Bρ(Xε)

(
ζε(u

ε) − CF C
γ

0

)
dX,

where C0 > 0 comes from the universal control on the Lipschitz norm in Bρ(Xε). Here the expression fij uε
ij is 

understood in the viscosity sense. Thus, combining the estimate above and the Proposition 6.1, we obtainˆ

Bρ(Xε)

fij uε
ij dX ≥ 0, (6.7)

for ε � 1.

Lemma 6.3. There exists a constant C > 0 depending on �′ � � and universal parameters such that, for each 
Xε ∈ ∂{uε > ε} ∩ �′ and ρ � 1, there holdsˆ

Bρ(Xε)∩{ε≤uε<μ}
|∇uε |2 dX ≤ Cμρd−1.

Proof. We define the following cut off function,

�ε =
⎧⎨
⎩

C1ε in {uε ≤ C1ε};
uε in {C1ε < uε ≤ μ};
μ in {uε > μ}.

(6.8)

Estimate (6.7) gives

0 ≤
ˆ

Bρ(Xε)

�εfijDiju
ε dX = 1

ρ

ˆ

∂Bρ(Xε)

fijDiu
ε�ε(Xi − Xi

ε)dH d−1 −
ˆ

Bρ(Xε)

fijDi�
εDju

ε dX

and hence, ˆ

Bρ(Xε)∩{ε≤uε<μ}
fijDiu

εDju
ε dX ≤ 1

ρ

ˆ

∂Bρ(Xε)

fijDiu
ε�ε(Xi − Xi

ε) dH d−1. (6.9)

Using the regularity of uε and ellipticity, we getˆ

Bρ(Xε)∩{ε≤uε<μ}
|∇uε |2 dX ≤ Cμρd−1,

for ρ � 1. �
Given a measurable set G ⊂R

d and a positive number δ > 0, we denote:

Nδ(G) := {X ∈ R
d | dist(X,G) < δ},

the δ-neighborhood of G in Rd . As we move towards uniform bounds of the H d−1-Hausdorff measure of the level-
surfaces ∂{uε > ε}, we recall a classical result from measure theory.
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Lemma 6.4. Given an open set A ��, there holds:

a) If there exists δ such that A has the δ-density property, then there exists a constant C = C(τ, d), where:

|Nδ(∂A) ∩ Bρ(X)| ≤ 1

2dτ
|Nδ(∂A) ∩ Bρ(X) ∩ A| + Cδρd−1

with X ∈ ∂A ∩ � and δ � ρ.
b) If A has uniform density in � along A, then |∂A ∩ �| = 0.

In the sequence, we obtain a d-dimensional measure estimate on ε-level layers, that are uniform with respect to the 
infinitesimal parameter ε.

Lemma 6.5. Fixed �′ � �, there exists a positive constant C� depending on �′ and universal parameters, such that 
if C�μ ≤ 2ρ � dist(�′, ∂�) then, for μ, ε > 0 small enough, with 3C1ε < μ � ρ, we have

Ld
({C1ε < uε < μ} ∩ Bρ(Xε)

)≤ C�μρd−1,

where Xε ∈ ∂{uε > ε} ∩ �′, with dε(Xε) � dist(�′, ∂�) and C1 > 1.

Proof. Let {Bj } be a finite covering of ∂{uε > C1ε} ∩ Bρ(Xε) by balls centered at Xj ∈ ∂{uε > C1ε} with radius 
equals C�μ, satisfying⋃

j

Bj ⊂
[
N η

8 (�′) ∩ Bρ(Xε)
]

where η = dist(∂�′, ∂�) and C� > 0 will be chosen a posteriori. By Heine–Borel Theorem∑
j

χBj
≤ m.

We will verify that if C� � 1 is taken universally large, it is possible to find, another, positive universal constant C2
such that ˆ

{C1ε<uε<μ}∩Bj

|∇uε |2dX ≥ C2|Bj |. (6.10)

In fact, we shall obtain two families of balls, hereby labeled {B1
j } and {B2

j }, both contained in {Bj }, such that:

(A) the radii of B1
j and B2

j are proportional to μ, i.e., up to a multiplicative constant that depends only upon �′);
(B) �ε ≥ 3

4μ in B1
j and �ε ≤ 2

3μ in B2
j , for �ε as in (6.8).

The existence of the above-mentioned balls goes as follows: by strong non-degeneracy, Theorem 7.5, there exists a 
point X1 ∈ 1

4Bj such that

uε(X1) = sup
1
4 Bj

uε ≥ c · C�μ

4
,

for a universal constant c > 0. Now, we can select C� � 1 so large that

C� · c > 4 and K : = sup
N η

8
(�′)

|∇uε | > 1

C�
.

Now, if μ is small enough, we can take r1
j = 1

8K
μ and r2

j = 1
3K

μ as to verify

�ε ≥ 3
μ > C1ε in B1

j = Br1(X1)

4 j
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and

�ε ≤ 2

3
μ < μ in B2

j = Br2
j
(Xj ).

For each j > 0, we define

mj : = −
ˆ

Bj

�ε.

We now claim that the estimate |�ε − mj | > σμ holds in at least one of the two sub balls B1
j , B2

j , for some universal 
constant σ > 0. Indeed, if we assume, for the sake of contradiction, that this is not the case, we could find sequences 
Xn ∈ B1

j , Yn ∈ B2
j such that

|�ε(Xn) − mj |
μ

<
1

n
and

|�ε(Yn) − mj |
μ

<
1

n
∀n.

Letting n → ∞ in the above estimates yields

|�ε(Xn) − �ε(Yn)|
μ

→ 0,

which contradicts property (B). In conclusion, by Poincare’s inequality, we have

σ 2μ2 ≤ −
ˆ

Bj

|�ε − mj |2dX ≤ σ(C�μ)2−
ˆ

Bj

|∇�ε |2dX,

and hence we deduce,ˆ

{C1ε<uε<μ}∩Bj

|∇uε |2dX ≥ C2|Bj |.

Finally, applying nondegeneracy estimates once more, we reach

C3dε(Z) ≤ uε(Z) ≤ μ,

for all Z ∈ {C1ε < uε < μ} ∩ Bρ(Xε). We have verified the following inclusion

{C1ε < uε < μ} ∩ Bρ(Xε) ⊂ N 1
C3

μ
(∂{C1ε ≤ uε} ∩ B2ρ(Xε));

therefore, enlarging C� if necessary and diminishing μ � ρ by universal proportions, we obtain

{C1ε < uε < μ} ∩ Bρ(Xε) ⊂
⋃

2Bj ⊂ B4ρ(Xε).

From (6.10) and Lemma 6.3, we can write

C4μρd−1 ≥
ˆ

B4ρ(Xε) ∩{C1ε<uε<μ}
|∇uε |2d X

≥ 1

m

∑ ˆ

2Bj ∩{C1ε<uε<μ}
|∇uε |2d X

≥ C2

m

∑
|Bj |

≥ C2

m

∑
|{C1ε < uε < μ} ∩ Bρ(Xε)|,

for C4 > 0, a universal constant, which concludes the proof of the Lemma. �
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We are now ready to establish the (d − 1)-Hausdorff estimate of approximating level sets, that are uniform with 
respect to the infinitesimal parameter ε. This will be performed by a combination of the optimal control we have upon 
solutions, together with Lemma 6.5.

Theorem 6.6. Fixed �′ � �, there exists a universally positive constant C = C(�′), such that

L d
(
Nμ({C1ε < uε}) ∩ Bρ(Xε)

)≤ Cμρd−1,

for C1 > 1, Xε ∈ ∂{C1ε < uε} ∩ �′, dε(Xε) � dist(�′, ∂�) and C1ε � ρ. In particular,

H d−1({uε = C1ε} ∩ Bρ(X0)) ≤ Cρd−1, (6.11)

for constants C and C1 independent of ε.

Proof. By optimal regularity, for Z ∈ ∂{C1ε < uε} and Y ∈ Nδ(∂{C1ε < uε}) ∩ Bρ(Xε) ∩ {C1ε < uε}, there holds

uε(Y ) ≤ uε(Z) + C|Z − Y | ≤ μ + Cδ ≤ κμ,

for μ = C δ and κ > 0 universal. Therefore, the inclusion[
Nδ(∂{C1ε < uε}) ∩ Bρ(Xε) ∩ {C1ε < uε}]⊂ [{C1ε < uε < κμ} ∩ Bρ(Xε)

]
(6.12)

is verified. On the other hand, employing Corollary 5.4 and taking δ as above, we check that

L d(Bδ(X) ∩ {uε > C1ε})
L d(Bδ(X))

≥ c for X ∈ ∂{uε > ε},

and hence we conclude that ∂{uε > C1ε} has the δ-density property. Lemma 6.4 sponsors the existence of the univer-
sal, positive constant M such that

L d(Nδ(∂{C1ε < uε}) ∩ Bρ(Xε)) ≤ C2 L d(Nδ(∂{C1ε < uε}) ∩ Bρ(Xε) ∩ {C1ε < uε})
+ Mδρd−1,

thus, applying (6.12), we obtain

L d(Nδ(∂{C1ε < uε}) ∩ Bρ(Xε)) ≤ C2 L d({C1ε < uε < κμ} ∩ Bρ(Xε)) + Mδρd−1,

for some universal constant C2 > 0. Finally for μ � ρ Lemma 6.5 yields

L d
(
Nδ(∂{C1ε < uε}) ∩ Bρ(Xε)

)≤ Cδρd−1,

for some C > 0.
In the sequel, we take a covering of ∂{C1ε < uε} ∩ Bρ(Xε) by balls {Bj } centered at points along ∂{C1ε < uε} ∩

Bρ(Xε) with radius μ � 1. We can write⋃
Bj ⊂ Nμ({C1ε < uε}) ∩ Bρ+μ(Xε).

Thus, there exist universal constants C3, C4 > 0, such that

H d−1(∂{C1ε < uε} ∩ Bρ(Xε)) ≤ C3

∑
Area(∂Bj )

= C3

μ

∑
L d(Bj )

≤ C4

μ
L d(Nμ({C1ε < uε}) ∩ Bρ+μ(Xε))

≤ C4C(ρ + μ)d−1 = C4Cρd−1 + o(1).

Letting μ → 0, we finish the proof of the Theorem. �
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7. Asymptotic limits

In this section, we are interesting in geometric properties of a limiting function

u := lim
k→∞uεk ,

for a subsequence εk → 0. From uniform Lipschitz regularity the family {uε} is pre-compact in C0,1
loc (�). Hence, up 

to a subsequence, there exists a limiting function u, obtained as the uniform limit of uε, as ε → 0. One readily verifies 
that a limiting function u satisfies

(1) 0 ≤ u ≤ K0 in �;
(2) u ∈ C

0,1
loc(�);

(3) 0 ≤ |∇u|γ F (D2u) ≤ C , in {u > 0}, in the viscosity sense.

Let us introduce the following notation:

F(u) := ∂{u > 0} ∩ �.

Combining (3) with the sharp regularity estimate established in [14] and [1], it follows that

u ∈ C
1,α
loc ({u > 0}).

Such an estimate deteriores as we approach F(u); notwithstanding from (2), the gradient remains bounded, even when 
dist(X0, F(u)) → 0.

In the particular case coming from the homogeneous flame propagation theory:

ζε(t) = 1

ε
ζ

(
t

ε

)
,

where ζ is a continuous function supported in [0, 1], then a limiting function satisfies

F(D2u) = 0, in {u > 0},
in view of [14, Lemma 6]. In this case, even though the gradient degeneracy is no longer present in the limiting 
equation, it does leave its signature on the expected linear behavior along the limiting transition boundary. For instance 
let us analyze one-dimensional profiles, i.e., limiting configuration of the equation

|uε
x |γ · uε

xx = ζε(u
ε). (7.1)

Multiplying the above equation by uε
xdx, we find the differential equality:

|uε
x |γ uε

x · (uε
xxdx) = ζε(u

ε).uε
xdx. (7.2)

However,

ζε(u
ε).uε

xdx = d

dx
Zε(u

ε),

where Zε(x) := ´ x/ε

0 ζ(s)ds → ´
ζ(s)ds, as ε → 0. Performing a change of variables

uε
x(x) = v =⇒ uε

xxdx = dv,

we can write down:ˆ
uε

xu
ε
xxdx =

ˆ
|v|γ vdv.

Thus, computing anti-derivatives in (7.2) and letting ε → 0, we obtain for a limiting function u that

|u′| = γ+2

√
(γ + 2)

ˆ
ζ(s)ds.
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Taking γ = 0, we recover the classical free boundary condition in the isotropic flame propagation theory, see for 
instance [5].

Let us continue our discussion on the limiting geometric properties obtained as ε → 0 in (Eε). Next we show that 
at each point Z0 in the free transition boundary F(u), there exists a cone like function with vertex Z0 that traps the 
graph of the limiting function.

Theorem 7.1. Let u be a limiting function, u := lim
k→∞uεk . Given �′ � �, for X0 ∈ {u > 0} ∩ �′ with dist(X0, {u =

0}) � dist(�′, ∂�), there exists a universal constant C > 0 such that,

C−1dist(X0,F(u)) ≤ u0(X0) ≤ C dist(X0,F(u)). (7.3)

Proof. From Corollary 5.1, there exists Yε ∈ {0 ≤ uε ≤ ε} ∩ �′ with dε(X) = |X − Yε | such that

uε(X) ≥ c dε(X) = c |X − Yε |,
for some universal constant c > 0. Up to a subsequence, Yε → Y0 ∈ {u = 0} and hence

u(X) ≥ c |X0 − Y0| ≥ c dist(X,F(u)).

The upper estimate follows readily from local Lipschitz continuity of u. �
Passing the limit as ε → 0 in Theorem 5.2, we the following sharp control on the maximum value of u within balls 

of universally small radii.

Theorem 7.2. Let u be a limiting function, u := lim
k→∞uεk . Given �′ � �, there exist universal positive constants C0

and r0, such that

C−1
0 r ≤ sup

Br(X0)

u ≤ C0(r + u(X0))

for any X0 ∈ �′ ∩ {u > 0} with dist(X0, ∂{u > 0}) � dist(X0, ∂�′) and r ≤ r0.

In the sequel, we show that the set {u > 0} is the limit, in the Hausdorff distance, of {uε > ε} as ε → 0. More 
precisely,

Theorem 7.3. Let u be a limiting function, u := lim
k→∞uεk . Given C1 > 1, the following inclusions,

{u > 0} ∩ �′ ⊂ Nδ({uεk > C1εk}) ∩ �′ and {uεk > C1εk} ∩ �′ ⊂ Nδ({u > 0}) ∩ �′,
hold for δ � 1 and εk � δ.

Proof. We will prove the first inclusion. Let assume for purpose of contradiction that there exist a subsequence εk → 0
and points Xk ∈ {u > 0} ∩ �′ such that

dist(Xk, {uεk > C1εk}) > δ. (7.4)

By Theorem 7.2, and taking k � 1, we get

uεk (Yk) = sup
B δ

2
(Xk)

uεk (Xk) ≥ 1

2
· sup
B δ

2
(Xk)

u(Xk) ≥ cδ ≥ C1εk

for some Yk ∈ Bδ
2
(Xk) ∩ {uεk > C1εk}, which contradicts (7.4). Similarly, we obtain the other inclusion. �

Theorem 7.4. Given a subdomain �′ � �, there exists a universal constants C > 0 and ρ0 > 0 depending on �′ and 
universal parameters such that, for any X0 ∈ F(u) and ρ ≤ ρ0, there holds

C−1ρ ≤ −
ˆ

∂Bρ(X0)

u dH d−1 ≤ C ρ. (7.5)
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As u satisfies the condition (7.5), we say that u is locally uniformly non-degenerate in F(u). Such property is 
another way to rephrase Lipschitz continuity and nondegeneracy of u.

Proof of Theorem 7.4. By Lipschitz continuity, it is easily to check that upper estimate is valid. To prove the lower 
inequality, we consider Yε ∈ ∂{uε > 0}, satisfying

|Yε − X0| = dist(X0, ∂{uε > 0}).
From Theorem 7.3, Yε → X0. We now can pass the limit as εk → 0 in the thesis of Corollary 5.5 and Theorem is 
proven. �

Now, we show that the positive set {u > 0} has uniform density along the free transition boundary F(u).

Theorem 7.5. Given �′ � �, there exists a universal constants c0 > 0, such that for X0 ∈ F(u) ∩ �′ there holds

L d(Bρ(X0) ∩ {u > 0})
L d(Bρ(X0))

≥ c0, (7.6)

for ρ � 1. In particular, Ld(F(u)) = 0.

Proof. Estimate (7.6) follows as in the proof of Theorem 5.4 and Remark 5.3. By Lebesgue differentiation theorem 
and simple covering arguments we conclude the proof of Theorem above. �

From this point on, we restrict our analysis to the class of operators satisfying asymptotically concavity, i.e. 
the condition (AC). The ultimate goal is to prove that the limiting free transition boundary F(u) has local finite 
H d−1-Hausdorff measure.

Theorem 7.6. Given �′ � �, there exists a constant C > 0, depending on �′ and universal parameters such that, for 
X0 ∈ F(u) ∩ �′,

H d−1(F(u) ∩ Bρ(X0)) ≤ Cρd−1.

Proof. From Theorem 7.3, for k � 1 large enough, we have[
Nδ(F(u)) ∩ Bρ(X0)

]⊂ [
N4δ(∂{uεk > C1εk}) ∩ B2ρ(X0)

]
.

Assuming, εk � δ � ρ � dist(�′, ∂�), the assumptions of Theorem 6.6 are satisfied, providing the following esti-
mate on the Lebesgue measure of the δ-neighborhood,

L d(Nδ(F(u)) ∩ Bρ(X0)) ≤ C · δρd−1.

Let {Bj } be a covering of F(u) ∩Bρ(X0) by balls centered at free boundary point on F(u) ∩Bρ(X0) and radius δ > 0. 
Clearly⋃

Bj ⊂ Nδ(F(u)) ∩ Bρ+δ(X0).

In conclusion, there exists a universal constant C > 0 such that

H d−1
δ (F(u) ∩ Bρ(X0)) ≤ C

∑
Area(∂Bj ) = C

δ
L (Bj )

≤ C

δ
L (Nδ(F(u)) ∩ Bρ+δ(X0))

≤ CC(ρ + δ)d−1 = CCρd−1 + o(1).

The proof of the Theorem follows by letting δ → 0. �
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Fig. 5. Geometry of the H d−1-Hausdorff estimate.

The final result we deliver here states that the reduced transition boundary ∂red{u > 0} := F�(u) has total 
H d−1-measure (see Fig. 5). In fact we shall obtain an even stronger geometric measure estimate on such a set.

Theorem 7.7. Given a subdomain �′ � �, there exists a positive universal constant C = C(�′), such that for ρ � 1
and X0 ∈ F(u), there holds

C−1ρd−1 ≤ H d−1(F�(u) ∩ Bρ(X0)) ≤ C ρd−1.

In particular,

H d−1(F(u) \ F�(u)) = 0.

Proof. The upper estimate is a direct consequence of Theorem 7.6. Let us focus on the lower control. Initially we 
note that for X0 ∈ {u > 0}, there holdsˆ

Bρ(X0)

fij Diju
εk dX ≥ 0, (7.7)

for ρ � 1 and k > 0 large enough. Now, let us define the normalized function v k : B1 → R by

v k(X) := uεk (X0 − ρX)

ρ
.

By Lipschitz estimates, up to a subsequence, v k → v uniformly over compact subsets. We will furnish a special 
barrier. For that, let ψ be a nonnegative smooth function in B1, with ψ ≡ 1 in B1/5 and ψ ≡ 0 outside B1/4. Let � be 
the solution to the Dirichlet problem{

L� = −ψ, in B1
� = 0, on ∂B1,

where Lv := tr(fijDij v). It follows from classical elliptic regularity theory that

‖�‖C1,α(B1/2)
≤ C, (7.8)

by some universal constant C > 0. By the maximum principle, � > 0 in B1, and so, Hopf maximum principle yields

fij ∂ i�ηj ≥ c > 0 along ∂B1, (7.9)

where ηj is the j -th coordinate of the outward normal vector to ∂B1. Applying the generalized Gauss–Green formula, 
we deriveˆ

{v>0}∩B1

{
�L(v k) − v kL�

}
dX =

ˆ

∂red{v>0}∩B1

{
�fij ∂iv

k − v kfij ∂i�
}

ηj dH d−1

−
ˆ

v kfij ∂i� ηj dH d−1. (7.10)
{v>0}∩∂B1
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By (7.7), there holds

lim inf
k→∞

ˆ

{v>0}∩B1

{
�L(v k) − v kL(�)

}
dX ≥

ˆ

B1

ψv kdX ≥
ˆ

B1/5

v kdX. (7.11)

Moreover, from uniform gradient bounds of v k , ellipticity and (7.8), we estimate∣∣∣∣∣∣∣
ˆ

∂red{v>0}∩B1

�fij ∂iv
k ηj dH d−1

∣∣∣∣∣∣∣≤ C�H
d−1(∂red{v > 0} ∩ B1), (7.12)

for a universal constant C� > 0. On the other hand,ˆ

∂red{v>0}∩B1

v kfij ∂i� ηj dH d−1 = o(1), (7.13)

as k → ∞ and so, by (7.9), we obtain

lim inf
k→∞

ˆ

{v>0}∩∂B1

v kfij ∂i� ηj dH d−1 ≥
ˆ

{v>0}∩∂B1

v fij ∂i� ηj dH d−1

≥ 0. (7.14)

Combining (7.10)–(7.14), we deduceˆ

B1/5

v dX ≤ C�H
d−1(∂red{v > 0} ∩ B1). (7.15)

Finally, by non-degeneracy, as in the proof of Theorem 7.4, there holds

−
ˆ

B1/5

v dX ≥ C, (7.16)

for a positive universal constant C. Finally, from (7.15) and (7.16) we conclude

H d−1(∂red{v > 0} ∩ B1) ≥ c0,

for a universal constant c0, and the estimate by below is established. The total measure of the reduced transition 
boundary follows by classical considerations. �
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