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Abstract

We consider the two-dimensional shallow water model derived in [29], describing the motion of an incompressible fluid, confined 
in a shallow basin, with varying bottom topography. We construct the approximate inertial manifolds for the associated dynamical 
system and estimate its order. Finally, working in the whole space R2, under suitable conditions on the time dependent forcing 
term, we prove the L2 asymptotic decay of the weak solutions.
© 2016 

Résumé

Nous considérons le modèle d’eau peu profonde à deux dimensions dérivé dans [29], décrivant le mouvement d’un fluide 
incompressible, confinèe dans un bassin peu profond, avec topographie du fond variable. Nous construisons des variétés inertielles 
approximatives pour le système dynamique associé et nous estimons son ordre. Finalement, pour le espace R2 avec des conditions 
appropriées pour la force, nous prouvons la L2 décroissance asymptotique des solutions faibles.
© 2016 
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1. Introduction

In [29], the authors derived the following shallow water model:

∂u

∂t
+ u · ∇u + ∇p + ηu =

= b−1∇ · [bν(∇u + (∇u)T − I∇ · u)] + f, (1.1a)

∇ · (bu) = 0, (1.1b)
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u(x, t = 0) = u0, (1.1c)

ν · u = 0 x ∈ ∂�, (1.1d)

τ · (∇u + (∇u)T ) · ν = −βu · τ x ∈ ∂�. (1.1e)

In the above system � ⊂ R2 is a bounded domain with sufficiently regular boundary ∂� and u(x, t) denotes the 
velocity of the fluid at x ∈ � and at time t . The smooth function b(x) describes the bottom topography and satisfies 
0 < bi ≤ b(x) ≤ bs , ν(x) is the viscosity, η(x) is a positive smooth bounded function defined in � representing the 
combined actions of the friction at the bottom and the wind pressure, I is the identity, τ and ν are respectively the unity 
tangent and normal vector to the boundary ∂�, β(z) is a regular function defined in ∂� giving the friction coefficient 
at the boundary, and f (x) is the force term which describes the wind stress.

System (1.1a)–(1.1e) was derived in [29] from a three-dimensional anisotropic eddy viscosity model of an in-
compressible fluid confined to a shallow basin with varying bottom topography. To obtain the shallow water model 
(1.1a)–(1.1e), the authors assumed that the depth of the basin is much smaller than the typical horizontal length, and 
the typical velocity of the fluid is much smaller than the velocity of the gravity waves. This last assumption is equiva-
lent to consider the fluid motion on time scales much longer than the period of the gravity waves so that averaging on 
time suppresses gravity waves. The same assumptions had been used in [5] starting from the Euler equations to derive 
the so called lake equations. The system (1.1a)–(1.1e) is therefore a generalization of the lake equations [28,27] as 
the effects of the viscous stresses are taken into account. In [29] the well posedness of the model was also established. 
Given that in large scale flows the Reynolds number can reach values like 109 or higher, the problem of the vanishing 
viscosity limit for models of geophysical interest is considered to be relevant, see e.g. [24] and references therein; the 
zero viscosity of the system (1.1a)–(1.1e) was in fact addressed in [16], while the case of degenerate topography was 
considered in [3,17].

In this paper we construct approximate inertial manifolds whose order decreases exponentially with respect to the 
dimension of the manifold. We give the dependence of all the constants with respect to the corresponding physical 
parameters and in particular we give explicitly the order of the approximate inertial manifolds.

When � = R2 we address the problem of the asymptotic decay of the solutions. Under suitable conditions on the 
forcing term and of the initial datum, we show that the energy norm of weak solution has non-uniform decay. A weak 
solution which satisfies a generalized energy inequality is constructed following [32,35,21]. Then using the Fourier 
splitting method [42,43,49] non-uniform L2 decay is obtained.

Similar decay questions were originally proposed by Leray in [25,26] for the Navier–Stokes equations. The first 
proof for decay without a rate was given by Masuda in [32] and by Kato in [22] in the case of null force and strong 
solutions with small data. Schonbek [42,43], using the Fourier Splitting Method, obtained the algebraic rate of decay 
for weak solution with large data. See also [2,15,20,23,30,48].

The main technical difficulties in the application of the above mentioned theories to system (1.1a)–(1.1e) originate: 
first from the fact that the incompressibility condition (1.1b) is weighted with the bottom topography; second from the 
presence, in (1.1a), of a non-standard dissipative operator. Therefore, besides several technical difficulties with respect 
to the classical 2D Navier–Stokes system, here we had to derive the appropriate exponential dichotomy as well adapted 
Agmon and Brezis–Gallouet inequalities. The technical details are postponed to an Appendix. Concerning the time 
decay in R2, a modified energy inequality allows us to use a modified Fourier splitting method but, the presence of 
bottom topography, gives rise to more complicated terms that require ad hoc estimates.

The plan of the paper is the following. In the next section, after introducing the appropriate mathematical settings 
for the model equations, we prove the existence of the Approximate Inertial Manifolds (AIM) and, then give the 
thickness of the thin neighborhood in terms of the data.

In section 3.1 we give the preliminary results to establish the decay of the solutions. In section 3.2 we prove the 
non-uniform asymptotic decay of the L2 norm of the weak solution.

2. Bounded domain: approximate inertial manifolds

The concept of inertial manifold was introduced in [12], as part of the theory of dissipative differential equations. 
An inertial manifold for a semigroup associated to a dissipative dynamical system, is a finite dimensional Lipschitz 
manifold which is positively invariant, and attracts all the orbits exponentially [38,44,46]. To prove the existence of 
the inertial manifold it is necessary that the so called spectral gap condition [46] is verified. Unfortunately, this 
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spectral gap condition is not verified for Navier–Stokes equations. For this reason the notion of approximate inertial 
manifolds (AIM) was introduced [6,8,11,10,38,39,41,46,47]. The existence of these manifolds does not require the 
spectral gap condition and therefore can be obtained for a broader class of dissipative dynamic systems. The AIM can 
be defined as a Lipschitz manifold surrounded by a thin neighborhood and each orbit of the system must enter in a 
finite time. The order of the manifold is the width of the thin neighborhood and is exponentially small compared to 
the size of the AIM, hence the AIM gives an approximation of the attractor of exponential order. The AIM theory 
plays an important role in the development of new numerical algorithms suitable to the approximation of dissipative 
systems for long times [7,11,18,19,13,34,31].

In this section we construct a sequence of approximate inertial manifolds MN for system (1.1a)–(1.1e). Moreover, 
we show that the AIM MN approximate the global attractor exponentially. For the proof of the existence of MN and 
to estimate the semidistance of the attractor to MN , we shall follow the ideas of [6,8,39,46].

2.1. The mathematical setting

In this section we shall briefly introduce the mathematical setting appropriate for system (1.1a)–(1.1e). More details 
can be found in [29]. One introduces the following Hilbert spaces:

H = {u : u ∈ L2
b, ∇ · (bu) = 0, ν · u = 0x ∈ ∂�} (2.1)

V = {u : u ∈ H 1
b , ∇ · (bu) = 0, ν · u = 0x ∈ ∂�} (2.2)

where L2
b and H 1

b are Sobolev spaces with scalar products and weighted norms defined as:

(u,v)b =
∫
�

bu · vdx , |u|2b =
∫
�

b|u|2dx ,

((u,v))b =
∫
�

b∇u : ∇vdx , ‖u‖2
b =

∫
�

b|∇u|2dx .

The following Poincaré inequality holds:

|u|b ≤ �‖u‖b, (2.3)

where � = �(�).
We take the L2

b scalar product of equation (1.1a) with a generic function v ∈ V and write (1.1a) in the following 
weak form (see [45]):

d

dt
(u,v)b + [u,v]bν + (u,u,v)b + (ηu,v)b = (f ,v)b, (2.4)

where [·, ·]bν : V × V → R, is a bilinear form defined as

[u,v]bν =
∫
�

bν
(
∇u + (∇u)T − I∇ · u

)
:
(
∇v + (∇v)T − I∇ · v

)
dx +

+
∫
∂�

bνβu · vds, (2.5)

and, (·, ·, ·)b : V × V × V → R, is a trilinear form defined by

(u,w,v)b =
∫
�

b (u · ∇w)vdx. (2.6)

The trilinear form defines a continuous bilinear operator B(u, v) = u · ∇v from V × V into V ′ such that

(B(u,v),w)b = (u,v,w)b. (2.7)

With Abν we denote the operator from V → V ′ defined by
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〈Abνu,v〉 = [u,v]bν . (2.8)

We note that Abν is a linear unbounded operator on H with domain

D(Abν) = {u ∈ H 2
b (�),∇ · bu = 0 in �, u · ν = 0,

τ · (∇u + (∇u)T ) · ν = −βu · τ on ∂�},
and D(Abν) ⊂ V ⊂ H ⊂ V ′, where the inclusions are continuous and dense. Moreover V is compactly embedded 
in H .

We observe that B(u, v) : D(Abν) × D(Abν) → H (see again [45]).
Using (2.7) and (2.8), we can write (2.4), the weak form of equation (1.1a), as:

d

dt
u + Abνu + B(u,u) + ηu = f . (2.9)

Note also that the bilinear form [·, ·]bν is coercive, if β(x) ≥ κ(x), where κ is the curvature of ∂�: Supposing this 
hypothesis on β we have

(Abνu,u)b ≥ b̄νi‖u‖2
b, (2.10)

where

b̄ = bi

bs

, νi = inf
�

ν(x),

and

bi = inf
�

b(x) , bs = sup
�

b(x).

For a proof of the coercivity inequality (2.10) see [29].
In [29] the authors established the well-posedness of (2.9). For completeness we state their main result:

Theorem 1. (Theorem 4.1 of [29]) Let � be smooth. Suppose that b(x), ν(x) and η(x) are non-negative function 
over �̄. Suppose, moreover that bν ≥ C > 0 and that β(x) ≥ κ(x) on ∂�, where κ(x) is the curvature of ∂� at x. 
Let uin ∈ H 2

b ∩ V and f ∈ L2
b .

Then the system (1.1a)–(1.1e) has a unique solution u ∈ L∞ ([0, T ],H 2
b

) ∩ C ([0, T ],V ). Moreover, ∂tu ∈
L∞ ([0, T ],H) ∪ L2 ([0, T ],V ).

The spectral problem associated to the compact self-adjoint operator Abν admits solution in H [9], and from the 
coercivity (2.10) derives the existence of a non-decreasing sequence of positive eigenvalues {λn}n∈N with (see [33])

λn ∼ n , for n → ∞ , (2.11)

and a sequence of eigenfunctions forming an orthonormal basis in H . We denote by Pn the projection onto the finite 
dimensional space generated by the first n eigenfunctions and Qn = I − Pn:

Pnu = y, Qnu = z and u = y + z. (2.12)

In Lemma 9, whose proof is postponed to the Appendix, we state that [14]:

|e−Abν tQn|L(H,V ) ≤ b̄− 1
2

(
(νi t)

− 1
2 + λ

1
2
n+1

)
e−λn+1t , t > 0, (2.13)

|(I + τAbν)Pn|L(V ) ≤ (1 + τλn) ≤ eτλn, (2.14)

|I |L(PnH,PnV ) ≤
(

b̄νi

λn

)− 1
2

. (2.15)

If we consider an initial datum uin in a ball of H with center at the origin and radius R, then there exists a time 
t0(R), depending on R and on ν, f , �, b, such that for t ≥ t0:
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|u(t)|b ≤ ρ0, ‖u(t)‖b ≤ ρ1, (2.16)

where ρ0 and ρ1 are the radii of the absorbing balls in H and V , respectively, whose explicit expressions is given 
in [36,40].

Moreover, following [11,10], it is possible to prove that:∣∣∣∣dku

dtk

∣∣∣∣
b

≤ 2kk!
αk

ρ0,

∥∥∥∥dku

dtk

∥∥∥∥
b

≤ 2kk!
αk

ρ1, (2.17)

for t ≥ 2α, where α = α (�, |f|b,‖uin‖b, νi) defines the domain of time analyticity

� = {ξ ∈ C : �ξ ≤ α and |�ξ | ≤ �ξ or �ξ ≥ α and |�ξ | ≤ α}. (2.18)

From (2.16), following [46], one can derive the existence of a compact global attractor A, connected and maximal 
in H , and its Hausdorff dimension m̃ satisfies the following estimate (see [36,40])

m̃ − 1 ≤ b̄

b
1/2
s

c̃�

|f |b�1/2

ν2
i

< m̃.

For completeness, we recall that a global attractor A for a semigroup S(t) defined in H , is a subset of H which 
satisfies the following properties:

• A is an invariant set, i.e. S(t)A =A for every t ≥ 0,
• for every u0 ∈ H , it holds that

dist (S(t)u0,A) := inf
v∈A

|S(t)u0 − v|b → 0, as t → +∞.

As it is usual in the theory of inertial manifold, we consider the associated equation derived from (1.1a), setting the 
non-linear term B(u, u) identically zero when u is outside the absorbing ball in V . Specifically, let θ ∈ C1 be defined 
on R+ which is 1 in [0, 1] and 0 in [2, +∞[. Denote by

Bθu = Bθ(u,u) = θ

(‖u‖b

ρ1

)
B(u,u). (2.19)

In the sequel consider the system:

du

dt
+ Abνu + ηu = Bθu + f . (2.20)

The problem (2.20) is well posed and has the same attractor as (2.9). Moreover there exist two constants M0 and M1, 
see Lemma 12 in the Appendix, such that for every u, v ∈ V ,

|Bθu|b ≤ M0, |Bθu − Bθv|b ≤ M1‖u − v‖b. (2.21)

2.2. Existence of approximate inertial manifolds

An Inertial Manifold (IM) M = {y, �(y)} is a positively invariant manifold defined as the graph of a Lipschitz 
function �, defined from PnH to QnH , which attracts all trajectories of (2.20) exponentially.
We briefly outline the Lyapunov Perron Method ([6,8,11,10,38,39,41,46]) which will be used in our proof to construct 
an IM.

We decompose equation (2.20) using the projections Pn and Qn to obtain a solution in M
dy

dt
+ Abνy + ηy = PnBθ (y + �(y)) + Pnf (2.22)

d�(y)

dt
+ Abν�(y) + η�(y) = QnBθ(y + �(y)) + Qnf . (2.23)

The finite dimensional system of ordinary differential equations (2.22) is called the inertial system associated to M. 
Given the initial condition uin = yin + �(yin), since � is a Lipschitz function, then for every t ∈ R, the equation 
(2.22) determines a unique y(t) = y(t; yin, �).
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Assuming that � is bounded, to determine the function �, integrate system (2.23) in time to obtain

�(yin) =
0∫

−∞
eAbνs[Qn (Bθ (y(s) + �(y(s))) + f ) − η�(y(s))]ds. (2.24)

The function � is the fixed point of the map φ →Fφ defined by

Fφ(yin) =
0∫

−∞
eAbνs[Qn (Bθ (y(s) + φ(y(s))) + f ) − ηφ(y(s))]ds, (2.25)

where φ : PnH → QnH is a bounded Lipschitz function. The existence of an inertial manifold is achieved by showing 
that the map F is a contractive map in the complete metric space

Fl,L = {φ : PnV → QnV : Lip(φ) ≤ l, |φ|∞ = sup
y∈PnV

‖φ(y)‖b ≤ L}, (2.26)

and y is a solution of the system (2.22) with y(t = 0) = yin. We recall that the proof of the existence of the Inertial 
Manifold is based on the spectral gap condition.

If the spectral gap condition is not verified, there is no standard proof for the existence of the IM. However, it is 
possible to construct a sequence of Approximate Inertial Manifolds [6,8,11,10,38,39,41,46]. This is what we will do 
for equation (2.9).

To obtain the AIM we construct an approximating sequence of solutions to the system (2.22) as follows: let y0 =
yin ∈ PnV , and τ > 0 be the discrete time step and define yk , k ≥ 0, by the following Euler explicit discretization of 
(2.22):

yk+1 − yk

−τ
+ Abνyk = PnBθ (yk + φ(yk)) − ηyk + Pnf . (2.27)

Fix the positive integers n and N , to construct the approximation function yτ to y:

yτ (s) = yk for −(k + 1)τ < s ≤ −kτ, k = 0, . . . ,N − 1,

yτ (s) = yN for s ≤ −Nτ. (2.28)

The approximation FN
τ of F is defined substituting y by yτ in (2.25). Explicitly

FN
τ φ(y0) =

− (Abν)
−1(I − e−Abν )

N−1∑
k=0

e−kAbντ [Qn

(
Bθ(yk + φ(yk)) + f

) − ηφ(yk)]

− (Abν)
−1e−NAbντ [Qn

(
Bθ(yN + φ(yN)) + f

) − ηφ(yN)]. (2.29)

To obtain the family of AIM, consider a sequence of positive numbers (τN)N∈N and define the manifolds MN as the 
graph of the functions �N constructed recursively, for N ≥ 0, by

�0 = 0, �N+1 =FN
τN

(�N). (2.30)

The main result of this section is to prove, for every N ≥ 0, the existence of �N in Fl,L. Before proceeding with the 
formulation of the main theorem of this section and its proof, we recall some preliminary properties, which guaranties 
the consistence of the approximation scheme described above. To ease the notation in the sequel, we denote τN by τ . 
Write (2.27) as

y(−(k + 1)τ ) = (I + τAbν)y(−kτ) (2.31)

− τPn (Bθ (y(−kτ) + z(−kτ))) + f ) + τηy(−kτ),

and the approximation error

εk = y(−(k + 1)τ ) − y(−kτ) − τ
dy

dt
(−kτ). (2.32)

The following Lemmas hold:
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Lemma 1. Suppose that u(t) is a complete trajectory inside the global attractor A, then:

‖εk‖b ≤ τ 2β1, k = 0, . . . ,N − 1, (2.33)∥∥∥∥du

dt

∥∥∥∥
b

≤ β2, t < 0, (2.34)

with β1 ≤ 8
α2 ρ1 and β2 ≤ 2ρ1

α
, where α defines the domain of analyticity in (2.17) and ρ1 is the radius of the absorbing 

balls in V in (2.16).

Proof. If the trajectory u(t) is a complete trajectory inside the global attractor A, one can easy obtain (2.33) and 
(2.34) with

β1 = sup
[u(t)]t∈R∈A

sup
t∈R

∥∥∥∥d2u

dt2

∥∥∥∥
b

β2 = sup
[u(t)]t∈R∈A

sup
t∈R

∥∥∥∥du

dt

∥∥∥∥
b

Using (2.17) one derives the desired bounds on β1 and β2. �
Lemma 2. Let be i = 1, 2, and let be yi

0 ∈ PnV . Define yi
k , k = 0, . . . , N by (2.27) and (2.31) with y0 = yi

0 and 
construct yi

τ (s) using (2.28). Then, for every s ≤ 0,

‖y1
τ (s) − y2

τ (s)‖b ≤ e
−s[λn+

(
b̄νi
λn

)− 1
2
(M1+�η̄)(1+l)]‖y1

0 − y2
0‖b, (2.35)

where η̄ = sup� η, and M1 is given in (2.21).

Proof. Denoting by yk = y1
k − y2

k and subtracting (2.27) or (2.31) for i = 1, 2, and using (2.21), (2.14) and the 
Lipschitz constant l of φ, we obtain

‖yk+1‖b ≤ (1 + τλn)‖yk‖b + τ

(
b̄νi

λn

)− 1
2

·

·
[
|Bθ(y

1
k + φ(y1

k)) − Bθ(y
2
k + φ(y2

k))|b + η̄|yk + φ(yk)|b
]

≤ (1 + τλn)‖yk‖b + τ

(
b̄νi

λn

)− 1
2

(M1 + �η̄)(1 + l)‖yk‖b

≤ exp{kτ [λn +
(

b̄νi

λn

)− 1
2

(M1 + �η̄)(1 + l)]}‖y0‖b

for k = 0, . . . , N . From the definition of yi
τ (s) by (2.28), we obtain (2.35). �

In the sequel we use the notation γ = ∫ 0
−∞ |s|−1/2esds. We are now ready to establish the main theorem.

Theorem 2. Suppose that the constants δ1 and δ2 satisfy

(N + 1)τ ≤ δ1

(M1 + �η̄)

(
b̄νi

λn

) 1
2

, (2.36)

and

λn ≥ δ2, (2.37)

then there exist l and L0 such that FN
τ :Fl,L → Fl,L, for all L ≥ L0.
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Proof. We show that the following constant L0 and l are appropriate

L0 = b̄−1/2(|f |b + M0 + η̄ρ0)(γ ν
−1/2
i + 1)λ

−1/2
n+1 . (2.38)

l = 6

(
1

2
+ sup

n

(
νiλn+1

λn

) 1
2
)

and δ1 = min

(
δ0,

log (3/2)

l

)
. (2.39)

Let φ ∈Fl,L, suppose y0 ∈ PnV and (yk)k=0,...,N and yτ (s) be given by (2.27), (2.28).
Using (2.21), (2.13) and recalling that by definition φ(y) ∈ QnV ⊆ V , we have:∥∥∥FN

τ φ(y0)

∥∥∥
b
≤ (2.40)

≤
0∫

−∞

∣∣∣eAbνsQn

∣∣∣
L(H,V )

|f + Bθ(y(s) + φ(y(s))) − η(y(s) + φ(y(s)))|bds

≤ b̄−1/2(|f |b + M0 + η̄ρ0)

0∫
−∞

(
|νis|−1/2 + λ

1/2
n+1

)
eλn+1sds

≤ b̄−1/2(|f |b + M0 + η̄ρ0)(γ ν
−1/2
i + 1)λ

−1/2
n+1 .

From the previous inequality we deduce that 
∥∥FN

τ φ(y0)
∥∥

b
≤ L, for every L ≥ L0, where L0 was defined by (2.38). 

Now, we show that l is our Lipschitz constant. For this scope, let yi
0 ∈ PnV and (yi

k)k=0,...,N and yi
τ (s) constructed 

by (2.27) and (2.28), for i = 1, 2. Therefore, write

FN
τ φ(y1

0) −FN
τ φ(y2

0) =
0∫

−(N+1)τ

eAbνs[Qn(Bθ (y
1
τ (s) + φ(y1

τ (s)))

− Bθ(y
2
τ (s) + φ(y2

τ (s)))) − η(φ(y1
τ (s)) − φ(y2

τ (s)))]ds

+ (Abν)
−1e−(N+1)Abντ [Qn(Bθ (y

1
N + φ(y1

N))

− Bθ(y
2
N + φ(y2

N))) − η(φ(y1
N) − φ(y2

N))]. (2.41)

Using again (2.21), (2.21) and (2.13), we have:∥∥∥FN
τ φ(y1

0) −FN
τ φ(y2

0)

∥∥∥
b
≤ b̄− 1

2 (M1 + �η̄)(l + 1) ·

·
0∫

−(N+1)τ

(
|νis|−1/2 + λ

1/2
n+1

)
eλn+1s‖y1

τ (s) − y2
τ (s)‖bds

+ b̄− 1
2 (M1 + �η̄)(l + 1)ν

−1/2
i λ

−1/2
n+1 e−λn+1(N+1)τ‖y1

N − y2
N‖b.

Using (2.35), since λn+1 − λn ≥ 0, using (2.36), we obtain∥∥∥FN
τ φ(y1

0) −FN
τ φ(y2

0)

∥∥∥
b
≤ �‖y1

0 − y2
0‖b, (2.42)

with

� = b̄− 1
2 (l + 1)eδ1(l+1)

⎡⎣2 (M1 + �η̄)
3
2

(
b̄

νiλn

) 1
4

+ (2.43)

+ (M1 + �η̄)2(νiλn+1)
− 1

2

]
+ eδ1(l+1)

(
νiλn+1

λn

) 1
2

.

We now choose δ1 and δ2 to ensure that � ≤ l then the proof of the theorem will be complete. First choose δ0 > 0, 
with δ1 ≤ δ0, and choose δ2 in (2.37) sufficiently large so that
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b̄− 1
2

⎡⎣2 (M1 + �η̄)
3
2

(
b̄

νiλn

) 1
4

+ (M1 + �η̄)2(νiλn+1)
− 1

2

⎤⎦ eδ1 ≤

≤ b̄− 1
2

⎡⎣2 (M1 + �η̄)
3
2

(
b̄

νiδ2

) 1
4

+ (M1 + �η̄)2(νiδ2)
− 1

2

⎤⎦ eδ0 ≤

≤ 1

2
. (2.44)

Therefore, with this choice of δ0, δ2 and δ1 ≤ δ0 we have

� ≤
(

l

2
+ 1

2
+ sup

n

(
νiλn+1

λn

) 1
2
)

elδ1 ≤ l, (2.45)

by choosing l as defined in (2.39) at the beginning of the Theorem. This completes the proof of the Theorem. �
2.3. Approximation of the attractor

In this section we prove that the approximate inertial manifolds MN built in the previous section as a graph of the 
�N , approximates the global attractor A.

We first try to estimate the semi-distance in V of A to MN

�N = dV (A,MN) = sup
v∈A

inf
w∈MN

‖v − w‖b. (2.46)

We continue to use the notations of the previous sections.

Lemma 3. Let be u0 ∈ A and let be y0 = Pnu0 and z0 = Qnu0, with Pn and Qn = I − Pn the projection operators 
defined in (2.12). Suppose that (2.33), (2.34), (2.36) and (2.37) are satisfied. Then for every φ ∈ Fl,L results that

‖F τ
Nφ(y0) − z0‖b ≤

≤ b̄− 1
2 (M1 + �η̄)

⎡⎣l(λnνi)
− 1

2 + (γ ν
− 1

2
i + 1)

λ
1
2
n+1

⎤⎦ sup
y+z∈A

‖φ(y) − z‖b

+
⎡⎣β1lλ

−1
n + β2b̄

− 1
2 (M1 + �η̄)(1 + l)

(γ ν
− 1

2
i + 1)

λ
1
2
n+1

⎤⎦ τ

+ 2b̄− 1
2 (M0 + η̄ρ0)

[νi(N + 1)τ ]− 1
2 + λ

1
2
n+1

λn+1
e−λn+1(N+1)τ . (2.47)

Proof. Take φ ∈ Fl,L and u0 = y0 + z0 ∈ A a point in the global attractor. Denote with (u(t))t∈R the trajectory in 
A which pass through u0 at t = 0. Consider y(t) = Pnu(t), z(t) = Qnu(t). Define ỹk = y(−kτ) and (yk)k=0,...,N

with (2.27); and consider yτ constructed by (2.28). Using (2.21) and (2.13), the Lipschitz property of φ, the Poincaré 
inequality (2.3) and (2.16), we have:

‖F τ
Nφ(y0) − z0‖b ≤ b̄− 1

2 (M1 + �η̄)(1 + l) · (2.48)

·
0∫

−(N+1)τ

(|νis|− 1
2 + λ

1
2
n+1)e

λn+1s‖yτ (s) − y(s)‖bds

+ (M1 + �η̄)b̄− 1
2 (γ ν

− 1
2

i + 1)λ−1
n+1 sup ‖φ(y) − z‖b
y+z∈A
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+ 2b̄− 1
2 (M0 + η̄ρ0)

[νi(N + 1)τ ]− 1
2 + λ

1
2
n+1

λn+1
e−λn+1(N+1)τ .

To estimate the integral on (2.48), from (2.34), for every s in (−(k + 1)τ, −kτ ], we have

‖yτ (s) − y(s)‖b ≤ ‖ek‖b + |kτ + s| sup
ζ≤0

‖dy

dt
(ζ )‖b ≤ ‖ek‖b + τβ2,

with ek = yk − ỹk . Using (2.31) and (2.32), we have

‖ek+1‖b ≤ (1 + τλn)‖ek‖b + τ

(
b̄νi

λn

)−1/2

(M1 + �η̄)(1 + l)‖ek‖b

+ τ

(
b̄νi

λn

)−1/2

(M1 + �η̄)‖φ(̃yk) − z(−kτ)‖b + ‖εk‖b,

and from (2.33), we have

‖ek‖b ≤ [(M1 + �η̄)
(
b̄ν̄λn

)− 1
2 sup

y+z∈A
‖φ(y) − z‖b + τβ1λ

−1
n ]

· exp{kτ [λn +
(

b̄νi

λn

)− 1
2

(M1 + �η̄)(1 + l)]}.

Now we are ready to estimate the first integral on (2.48):

b̄−1/2(M1 + �η̄)(1 + l) ·

·
0∫

−(N+1)τ

(|νis|−1/2 + λ
1/2
n+1)e

λn+1s‖yτ (s) − y(s)‖bds

≤ l[(M1 + �η̄)
(
b̄λnνi

)− 1
2 sup

y+z∈A
‖φ(y) − z‖b + τβ1λ

−1
n ]

+ τβ2b̄
− 1

2 (M1 + �η̄)(1 + l)(γ ν
− 1

2
i + 1)λ

− 1
2

n+1.

Combining the previous estimate with (2.48), we have

‖F τ
Nφ(y0) − z0‖b ≤

≤ l[(M1 + �η̄)
(
b̄νiλn

)− 1
2 sup

y+z∈A
‖φ(y) − z‖b + τβ1λ

−1
n ]

+ τβ2b̄
− 1

2 (M1 + �η̄)(1 + l)(γ ν
− 1

2
i + 1)λ

−1/2
n+1

+ (M1 + �η̄)b̄− 1
2 (γ ν

− 1
2

i + 1)λ
− 1

2
n+1 sup

y+z∈A
‖φ(y) − z‖b

+ 2b̄− 1
2 (M0 + η̄ρ0)

[νi(N + 1)τ ]− 1
2 + λ

1/2
n+1

λn+1
e−λn+1(N+1)τ , (2.49)

which is the (2.47). �
In the next theorem we give an estimate on the number n of modes to yield an exponential approximation of MN

of the attractor, for N large.

Theorem 3. Suppose that the hypothesis (2.36) and (2.37) of Theorem 1 hold and that (2.33) and (2.34) of Lemma 1
hold. Assume, moreover, that the sequence τN satisfies
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χ ≤ τN(N + 1) ≤ δ1

(M1 + �η̄)

(
b̄νi

λn

)1/2

, (2.50)

for all N ∈N; where χ is any fixed constant less then δ1. There exists a constant δ3 such that if n is fixed by

λn ≥ max (δ2, δ3) , (2.51)

then the approximate inertial manifolds MN , constructed in Theorem 1, satisfy

dV (A,MN) ≤ 4b̄−1/2(M0 + η̄ρ0)
1

λ
1/2
n+1

e−λn+1χ , (2.52)

for N sufficiently large.

Proof. Using the expression (2.47) in the previous Lemma, we have �N+1 ≤ μ�N + σN , where

μ = b̄
1
2 (M1 + �η̄)

[
l(λnνi)

− 1
2 + (γ ν

− 1
2

i + 1)λ
− 1

2
n+1

]
, (2.53)

and

σN = τN

⎡⎣β1lλ
−1
n + β2b̄

− 1
2 (M1 + �η̄)(1 + l)

(γ ν
− 1

2
i + 1)

λ
1
2
n+1

⎤⎦
+ 2b̄− 1

2 (M0 + η̄ρ0)
[νi(N + 1)τN ]− 1

2 + λ
1
2
n+1

λn+1
e−λn+1(N+1)τN . (2.54)

Iterating, we obtain �N ≤ μN�0 + ∑N−1
0 σN−j−1μ

j , with �0 = supu0∈A ‖z0‖b. By (2.16), (2.21), (2.13):

‖z‖b ≤ b̄− 1
2 (M0 + |f |b + η̄ρ0)(γ ν

−1/2
i + 1)λ

−1/2
n+1 . (2.55)

Using (2.50) we obtain:

N−1∑
0

σN−j−1ξ
j = 2b̄− 1

2 (M0 + η̄ρ0)
1

λ
1/2
n+1

e−λn+1χ

(
N−1∑

0

ξj

)

+
⎡⎣β1lλ

−1
n + β2b̄

− 1
2 (M1 + �η̄)(1 + l)

(γ ν
− 1

2
i + 1)

λ
1
2
n+1

⎤⎦(
N−1∑

0

τN−j−1ξ
j

)
,

for N ≥ (τNνi)
−1 and supposing that μ ≤ 1

2 , we have

N−1∑
0

σN−j−1μ
j = 4b̄− 1

2 (M0 + η̄ρ0)
1

λ
1/2
n+1

e−λn+1χ (2.56)

+ 2

⎡⎣β1lλ
−1
n + β2b̄

− 1
2 (M1 + �η̄)(1 + l)

(γ ν
− 1

2
i + 1)

λ
1
2
n+1

⎤⎦ sup
0≤j≤N−1

τN−j−1.

Combining (2.55) and (2.56) we obtain that

dV (A,MN) ≤ 2−N b̄− 1
2 (M0 + η̄ρ0 + |f |b)(γ ν

−1/2
i + 1)λ

−1/2
n+1

+ 4b̄− 1
2 (M0 + η̄ρ0)

1

λ
1/2
n+1

e−λn+1χ (2.57)

+ 2

⎡⎣β1lλ
−1
n + β2b̄

− 1
2 (M1 + �η̄)(1 + l)

(γ ν
− 1

2
i + 1)

λ
1
2

⎤⎦ sup
0≤j≤N−1

τN−j−1.
n+1
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Moreover, from (2.50) yields that τN → 0 as N → ∞, hence from (2.57) we obtain (2.52) for N → ∞. To complete 
the proof we determine λn in such a way that the previous estimates are satisfied. Choosing λn ≥ δ2, we can write 

l = 6 
(

1
2 + supn

(
νiλn+1

λn

) 1
2
)

, as given in (2.39). In this way, if λn ≥ max (δ2, δ3) with

δ3 ≥ 4
(M1 + �η̄)2

b̄

[(
3 + 6 sup

n

(
νiλn+1

λn

) 1
2
)

ν
− 1

2
i +

(
γ ν

− 1
2

i + 1

)]2

, (2.58)

then condition μ ≤ 1
2 is satisfied and the proof is complete. �

3. Unbounded domain: asymptotic L2 decay

In this section we consider � = R2, we suppose that the force term f is time dependent and f ∈ L1
(
[0,+∞) ,

L2
b(R

2)
)
. Now the equations under consideration are as follows

∂u

∂t
+ u · ∇u + ∇p + ηu = b−1∇ · [νb(∇u + (∇u)T − I∇ · u)] + f, (3.1a)

∇ · (bu) = 0, (3.1b)

u(x, t = 0) = u0, (3.1c)

where x ∈ R2, ν is the viscosity and we denote by 0 < νi = infR2 ν, η is a smooth strictly positive function and b(x)

represents the bottom topography of the basin satisfying

0 < bi ≤ b(x) ≤ bs.

The Fourier splitting method, will be used to establish the asymptotic L2-decay of the weak solutions to the shallow 
water model with varying bottom topography.

3.1. Mathematical settings

We denote by L2
b(R

2) the weighted L2(R2) space with scalar product and norm defined by

(u,v)b =
∫
R2

bu · vdx, ‖u‖2
b,2 =

∫
R2

b |u|2 dx,

and ‖·‖p will denote the usual norm in Lp(R2). We also use the following notation for our spaces

H =
{
u : u ∈ L2

b

(
R2

)
, ∇ · (bu) = 0

}
, (3.2)

V =
{
u : u ∈ H 1

b

(
R2

)
, ∇ · (bu) = 0

}
, (3.3)

and

Vo =
{
u : u ∈ H 1

b

(
R2

)
∩ S′ (R2

)
, ∇ · (bu) = 0

}
, (3.4)

where S 
(
R2

)
is the Schwartz class of smooth, rapidly decreasing functions.

A function u(x, t) ∈ Cw ([0,∞) ,H) if u ∈ L∞ ([0,∞) ,H) and (u,φ)b is continuous with respect to time t ≥ 0, 
for all φ ∈ H ′.

As usual, the Fourier transform of an integral function v(x) ∈ L2
(
R2

)
is v̂(ξ) = ∫

R2 v(x)e−ix·ξ dx.
A weak solution u of problem (3.1a)–(3.1c) is a function belonging to Cw ([0, T ] ,H) ∩ L2 ([0, T ] ,Vo) for each 
T > 0, satisfying the integral relation
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(u(t),φ(t))b +
t∫

0

{
−

(
u,

∂φ

∂t

)
b

+

+ ν
((

∇u + (∇u)T − I∇ · u
)

:
(
∇φ + (∇φ)T − I∇ · φ

))
b
+

+ (ηu,φ)b + (u · ∇u,φ)b
}
dτ =

t∫
0

(φ,f )b dτ + (u0,φ(0))b ,

for all t ≥ s ≥ 0 and for every smooth vector fields

φ ∈ C ([0 , +∞) ,V ) ∩ C1 ([0 , +∞) ,H) .

It is easy to prove the following two Propositions where, respectively, the strong energy inequality and the gener-
alized energy inequality are given for a weak solution of (3.1a)–(3.1c).

Proposition 1. Let u0 ∈ L2(R2) and f ∈ L1
(
[0,+∞) ,L2

b(R
2)

)
. Then, for every T > 0, there exists a unique weak 

solution u(x, t) ∈ Cw ([0, T ] ,H)∩L2 ([0, T ] ,Vo) of system (3.1a)–(3.1c), which satisfies the following strong energy 
inequality:

bi ‖u(t)‖2
2 + 2νibi

t∫
s

‖∇u(τ )‖2
2 dτ ≤ bs ‖u(s)‖2

2 + 2

t∫
s

(u,f )b dτ, (3.5)

for almost all s ≥ 0 including s = 0 and all t ≥ s ≥ 0.

Proof. The existence and uniqueness of a weak solution to problem (3.1a)–(3.1c) satisfying the strong energy in-
equality (3.5) follows by an application of the standard Galerkin technique (see [45]). �

Let u(x, t) = (u1(x, t), u2(x, t)) be a vector function and ψ(x, t) be a scalar function. In the sequel we use the 
notation

ψ ′ = ∂tψ, ψ ∗ u = (ψ ∗ u1,ψ ∗ u2) , (3.6)

where the convolution is calculated with respect to the x variable.

Proposition 2. Let u0 ∈ L2(R2) and f ∈ L1
(
[0,+∞) ,L2

b(R
2)

)
. Let Z ∈ C1 [0,∞) with Z(t) ≥ 0, and ψ(t) ∈

C1
(
[0,∞) ;S (

R2
))

be arbitrary functions. Let u be a weak solution of system (3.1a)–(3.1c), then the following 
generalized energy inequality holds:

Z(t)bi ‖ψ(t) ∗ u(t)‖2
2 ≤ bsZ(s)‖ψ(s) ∗ u(s)‖2

2

+ bs

t∫
s

Z′(τ )‖ψ(τ) ∗ u(τ )‖2
2 dτ

+ 2

t∫
s

Z(τ)
(
ψ ′(τ ) ∗ u(τ ),ψ(τ) ∗ u(τ )

)
b
dτ (3.7)

− 2νibi

t∫
s

Z(τ)‖ψ(τ) ∗ ∇u(τ )‖2
2 dτ

+ 2

t∫
s

Z(τ)
[
(u · ∇u,ψ ∗ ψ ∗ u)b (τ )

]
dτ + 2

t∫
s

Z(τ) (ψ ∗ u,f )b dτ.

for almost all s ≥ 0 including s = 0 and all t ≥ s ≥ 0.
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Proof. To prove the generalized energy inequality (3.7) one can follow [21,35]. �
We give two preliminary Lemmas which are consequence of the generalized energy inequality (3.7).

Lemma 4. Let u be a weak solution of (3.1a)–(3.1c) satisfying the generalized energy inequality (3.7) of Lemma 1. 
Then for every ϕ ∈ S(R2), we have:

bi ‖ϕ ∗ u(t)‖2
2 ≤ bs

∥∥∥e
νi bi

b
(t−s)�ϕ ∗ u(s)

∥∥∥2

2

+ 2

t∫
s

[(
u · ∇u, e2

νi bi
b

(t−τ)�(ϕ ∗ ϕ) ∗ u
)

b
(τ )

]
dτ

+ 2

t∫
s

(
e

νi bi
b

(t−τ)�ϕ ∗ u(s),f
)

b
dτ, (3.8)

for almost all s ≥ 0 including s = 0 and all t ≥ s ≥ 0.

Proof. Apply (3.7) with Z(t) = 1 and ψ = e
νi bi

b
(t+δ−τ)�ϕ and let δ → 0 (see [21,35]). �

Lemma 5. Let Z(t) ∈ C1 [0,+∞) with Z(t) ≥ 0. Let u be a weak solution of (3.1a)–(3.1c) satisfying the generalized 
energy inequality (3.7) of Lemma 2. Then for every ϕ ∈ S(R2), we have:

Z(t)bi ‖u(t) − ϕ ∗ u(t)‖2
2 ≤ bsZ(t)‖u(s) − ϕ ∗ u(s)‖2

2 (3.9)

+ bs

t∫
s

Z′(τ )‖u(τ ) − ϕ ∗ u(τ )‖2
2 dτ − 2biνi

t∫
s

Z(τ)‖∇u(τ ) − ϕ ∗ ∇u(τ )‖2
2 dτ

+ 2

t∫
s

Z(τ)
[
(u · ∇u, ϕ ∗ ϕ ∗ u − 2ϕ ∗ u)b (τ )

]
dτ + 2

t∫
s

(u − ϕ ∗ u,f )b ,

for almost s ≥ 0 including s = 0 and all t ≥ s ≥ 0.

Proof. Apply (3.7) with ψ = ζn − ϕ, with ζn(x) = n−1ζ(x/n) is a smooth and compactly supported approximation 
of the Dirac measure, and let n → ∞ (see [21,35]). �
3.2. Non-uniform decay

We now state the main theorem of the section:

Theorem 4. Let u0 ∈ L2(R2) and f ∈ L1
(
[0,+∞) ,L2

b(R
2)

)
. Let u be a weak solution of problem (3.1a)–(3.1c), 

then

lim
t→+∞‖u‖2 = 0. (3.10)

Proof. The proof is based on ideas of [21,35]:
We decompose the L2-norm of the Fourier transform of the weak solution u as follows

‖u(t)‖2 = ∥∥û(t)
∥∥

2 ≤ ∥∥ϕ̌û(t)
∥∥

2 + ∥∥(1 − ϕ̌
)
û(t)

∥∥
2 , (3.11)

where ϕ̌(ξ) = e−|ξ |2 is the inverse Fourier Transform of ϕ(x) = 1

4π
e− |x|2

4 , the fundamental solution of the heat equa-

tion at t = 1. We estimate separately the low frequencies and the high energy frequencies terms in (3.11).
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Low frequencies term estimate: Using Plancherel identity and (3.8), we have

bi

∥∥ϕ̌û(t)
∥∥2

2 = bi ‖ϕ ∗ u(t)‖2
2 ≤ bs

∥∥∥e
νi bi

b
(t−s)�ϕ ∗ u(s)

∥∥∥2

2

+ 2

t∫
s

∣∣∣(u · ∇u, e2
νi bi

b
(t−τ)�ϕ ∗ ϕ ∗ u

)
b
(τ )

∣∣∣dτ

+ 2

t∫
s

(
e

νi bi
b

(t−τ)�ϕ ∗ u(s),f
)

b
dτ.

Using (see [45]) the Schwarz, Hölder and Young inequalities and the Gagliardo–Nirenberg interpolation inequality, 
we have∣∣∣(u · ∇u, e2

νi bi
b

(t−τ)�ϕ ∗ ϕ ∗ u
)

b
(τ )

∣∣∣ ≤ C ‖u‖4 ‖∇u‖2

∥∥∥e2
νi bi

b
(t−s)�ϕ ∗ ϕ ∗ u

∥∥∥
4

≤ C

∥∥∥e2
νi bi

b
(t−s)�ϕ ∗ ϕ

∥∥∥
1
‖∇u‖2 ‖u‖2

4

≤ C

∥∥∥e2
νi bi

b
(t−s)�ϕ ∗ ϕ

∥∥∥
1
‖∇u‖2

2 ‖u‖2 .

It is easy to prove (see [49]) that there exists a constant κ = κ(u0, f ) such that∣∣(u,f )b
∣∣ ≤ κ ‖f ‖b,2 , and

∣∣∣(e
νi bi

b
(t−τ)�ϕ ∗ u,f

)
b

∣∣∣ ≤ κ ‖f ‖b,2 . (3.12)

From the strong energy inequality (3.5) we have that

‖u(t)‖2
2 ≤ ‖u0‖2

2 + 2κ

t∫
0

‖f ‖b,2 dτ. (3.13)

Hence∥∥ϕ̌û(t)
∥∥2

2 ≤ bs

bi

∥∥∥e
νi bi

b
(t−s)�ϕ ∗ u(s)

∥∥∥2

2

+ C

bi

⎛⎝‖u0‖2
2 + 2κ

+∞∫
0

‖f ‖b,2 dτ

⎞⎠
1
2 +∞∫

s

‖∇u‖2
2 dτ

+ 2
κ

bi

+∞∫
s

‖f ‖b,2 dτ.

By the Lebesgue dominated convergence theorem, it follows that, as t → +∞,∥∥∥e
νi bi

b
(t−s)�ϕ ∗ u(s)

∥∥∥2

2
≤

∥∥∥eνi(t−s)�ϕ ∗ u(s)

∥∥∥2

2
=

=
∥∥∥e−νi (t−s)ξ2

ϕ̌û(s)

∥∥∥2

2
→ 0, (3.14)

for each s ≥ 0, since ϕ̌û(s) ∈ L2(R2).

Since 

+∞∫
0

‖∇u‖2
2 dτ < ∞ by the strong energy inequality (3.5) and 

+∞∫
0

‖f ‖b,2 dτ < ∞ by hypothesis, the quanti-

ties 

+∞∫
‖∇u‖2

2 dτ and 

+∞∫
‖f ‖b,2 dτ are small for s suitable large, then 

∥∥ϕ̌û(t)
∥∥

2 → 0 as t → 0.
s s
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High frequencies term estimate: Use Corollary (3.9) with ϕ̌(ξ) = e−|ξ |2 , and Z(t) determined below. Consider a 
function G(t) ≥ 0, to be determined below, and apply the Fourier splitting method to the first two terms in (3.9):

t∫
s

Z′(τ )‖u(τ ) − ϕ ∗ u(τ )‖2
2 dτ − 2bs

t∫
s

Z(τ)‖∇u(τ ) − ϕ ∗ ∇u(τ )‖2
2 dτ

=
t∫

s

Z′(τ )

∫
|ξ |>G

∣∣(1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ

− 2

t∫
s

Z(τ)

∫
|ξ |>G

bs

∣∣|ξ | (1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ

+
t∫

s

Z′(τ )

∫
|ξ |≤G

∣∣(1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ

− 2

t∫
s

Z(τ)

∫
|ξ |≤G

bs

∣∣|ξ | (1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ.

Choose

Z(t) = (1 + t)α and G2 = α

2bs(t + 1)
, (3.15)

with α > 0 fixed, then Z(t) and G(t) satisfies the following equation:

Z′(t) − 2bsZ(t)G2(t) = 0.

Hence the last equation is reduced to

t∫
s

Z′(τ )

∫
|ξ |>G

∣∣(1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ

− 2

t∫
s

Z(τ)

∫
|ξ |>G

bs

∣∣|ξ | (1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ

≤
t∫

s

(
Z′ − 2bsZG2

) ∫
|ξ |>0

∣∣(1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ = 0.

As 
∣∣1 − ϕ̌(ξ)

∣∣ ≤ |ξ |2, then for small |ξ | we have

t∫
s

Z′(τ )

∫
|ξ |≤G

∣∣(1 − ϕ̌(ξ)
)
û(ξ , τ )

∣∣2 dξdτ ≤

≤ C ‖u0‖
t∫

s

Z′(τ )G4(τ )dτ ≤ C

t∫
s

(1 + τ)α−3 dτ.

The last two terms in (3.9) can be simplified denoting by χ = ϕ ∗ϕ−2ϕ, and combining (see [45]) the Schwarz, the 
Hölder and the Young inequalities, the Gagliardo–Nirenberg interpolation inequality, and the strong energy inequality 
(3.13),
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t∫
s

Z(τ)
∣∣(u · ∇u, ϕ ∗ ϕ ∗ u − 2ϕ ∗ u)b (τ )

∣∣dτ =

=
t∫

s

Z(τ)
∣∣(u · ∇u, χ ∗ u)b (τ )

∣∣dτ ≤
t∫

s

Z(τ)‖u‖4 ‖∇u‖2 ‖χ ∗ u‖4 dτ

≤ C ‖χ‖1

t∫
s

Z(τ)‖u‖2
4 ‖∇u‖2 dτ ≤ C ‖χ‖1

t∫
s

Z(τ)‖u‖2 ‖∇u‖2
2 dτ

≤ C ‖χ‖1

⎛⎝‖u0‖2
2 + 2κ

+∞∫
0

‖f ‖b,2 dτ

⎞⎠
1
2 t∫

s

Z(τ)‖∇u‖2
2 dτ,

and
t∫

s

Z(τ) (ϕ ∗ u,f )b dτ ≤ κ

t∫
s

Z(τ)‖f ‖b,2 dτ.

Combining the previous estimates yields

∥∥(1 − ϕ̌
)
û(t)

∥∥2
2 ≤ bsZ(s)

biZ(t)

∥∥(1 − ϕ̌
)
û(s)

∥∥2
2 + C

Z(t)

t∫
s

(1 + τ)α−3dτ

+ 1

Z(t)

⎛⎝C

t∫
s

Z(τ)‖∇u‖2
2 dτ + κ

t∫
s

Z(τ)‖f ‖b,2 dτ

⎞⎠ .

We compute the lim sup as t → +∞ for fixed s > 0.

Since Z(t) = (1 + t)α for some α > 0, it follows that 
Z(s)

Z(t)
→ 0 when t → +∞. Moreover we have that

lim sup
t→+∞

1

(t + 1)α

t∫
s

(1 + τ)α−3dτ = 0.

As 
Z(τ)

Z(t)
≤ 1 for τ ∈ [0, t], then

lim sup
t→+∞

∥∥(1 − ϕ̌
)
û(t)

∥∥2
2 ≤ C

+∞∫
s

‖∇u(τ )‖2
2 dτ + 2κ

+∞∫
s

‖f ‖b,2 dτ, (3.16)

hence lim supt→+∞
∥∥(1 − ϕ̌

)
û(t)

∥∥2
2 d = 0, for s sufficiently large. �

3.3. Uniform decay

In this section we want to prove the uniform rate of decay for the solutions of the viscous shallow water equations 
(3.1a)–(3.1c).

We suppose for simplicity, that ν is a constant, then (3.1a)–(3.1c) can be written as:

∂u

∂t
+ u · ∇u + ηu + ∇p = ν

b
∇ · [b(∇u + (∇u)T − I∇ · u)] + f , (3.17)

∇ · (bu) = 0, (3.18)

u(x, t = 0) = u0. (3.19)
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Suppose that the force term f satisfies the following properties:

f = Dg, whereD is any first order derivative (3.20)

and g ∈ L∞ (
[0 , +∞) ,L1(R2)

)
,

‖f ‖2 ≤ κ(e + t)−2. (3.21)

In particular we prove the following theorem:

Theorem 5. Suppose that u0 ∈ L2(R2) ∩L1(R2) and let u be the weak solution of the viscous shallow water equations 
(3.17)–(3.19). Suppose that f satisfies (3.20) and (3.21), then

‖u‖2 ≤ C (log(e + t))−1/2 , (3.22)

with C a constant which depends on f , b, η and u0.

Before establishing the proof of the theorem, we give three preliminary lemmas:

Lemma 6. (Lp − Lq )-type estimate: Let us consider u0 ∈ Lq ∩ L2, with 1 ≤ q < 2, then

‖e−[
Abν−ηI

]
tu0‖2 ≤ Ct−(1/q−1/2)(‖u0‖2 + ‖u0‖q). (3.23)

Proof. The proof follows from the well-known (Lp − Lq ) type estimate for the linear heat equation and observing 
that

(Abνu,u)b ≡ −‖∇u‖2
2 ≡ (�u,u), (3.24)

then, denoting with u(t) = e−[
Abν−ηI

]
tu0 we have:

‖e−[
Abν−ηI

]
tu0‖2

2 ≤ ‖u0‖2
2 + C

t∫
0

(Abνu,u)bdτ − C inf |η|
t∫

0

‖u‖2
2dτ

≤ ‖u0‖2
2 + C

t∫
0

‖∇u‖2
2dτ

≤ C‖e�tu0‖2
2. �

Lemma 7. Suppose that u0 ∈ L2(R2) ∩ L1(R2) and that f satisfies (3.20) and (3.21). Then the weak solution u of 
the viscous shallow water equations (3.17)–(3.19) satisfies the following a priori estimate:

t∫
0

‖u(τ )‖4
2dτ ≤ C(e + t)−1, (3.25)

where C is a constant which depends on u0, η, f and b.

Proof. From Lemma 6, we have that

‖u‖2 ≤ C‖e−[
Abν−ηI

]
tu0‖2 + C

t∫
0

‖e−[
Abν−ηI

]
(t−τ)P (u · ∇u)‖2dτ

+ C

t∫
‖e−[

Abν−ηI
]
(t−τ)P (f ,u)‖2dτ
0
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≤ Ct−1/2‖u0‖1 + C

t∫
0

(t − τ)−1/2‖u · ∇u‖1dτ + C

t∫
0

(t − τ)−1/2‖f u‖1dτ

≤ C(e + t)−1/2‖u0‖1 + C

t∫
0

(t − τ)−1/2‖u‖2‖∇u‖2dτ +

+ C

t∫
0

(t − τ)−1/2‖u‖2‖f ‖2dτ (3.26)

Consider the generalized Young’s inequality [37,20] for convolution:
if f ∈ Lp and g ∈ Lq,w , with 1 < p, q, r < ∞ and p−1 + r−1 = 1 + q−1 then

‖f � g‖q ≤ Cp,r‖f ‖p‖g‖r,w, (3.27)

where the Lr,w is the weak Lr space with norm ‖g‖r,w + supt (t
rμ{x : g(x) > t})1/r .

Now, let q = 4 and 1 + 1
q

= 1
2 + q+2

2q
, and applying (3.27) to (3.26):⎡⎣ t∫

0

‖u(τ )‖q

2dτ

⎤⎦1/q

≤ C‖u0‖1(e + t)1/q−1/2

+ C

⎡⎣ t∫
0

(‖u(τ )‖2‖∇u(τ )‖2)
2q

q+2 dτ

⎤⎦
q+2
2q

+ C

⎡⎣ t∫
0

(‖u(τ )‖2‖f (τ )‖2)
2q

q+2 dτ

⎤⎦
q+2
2q

≤ C‖u0‖1(e + t)1/q−1/2 + C

⎡⎣ t∫
0

‖u(τ )‖q

2dτ

⎤⎦
1
q
⎡⎣ t∫

0

‖∇u(τ )‖2
2dτ

⎤⎦
1
2

+ C

⎡⎣ t∫
0

‖u(τ )‖q

2dτ

⎤⎦
1
q
⎡⎣ t∫

0

‖f ‖2
2dτ

⎤⎦
1
2

≤ C‖u0‖1(e + t)1/q−1/2 + C(1 + ‖u0‖2)

⎡⎣ t∫
0

‖u(τ )‖q

2dτ

⎤⎦
1
q

,

and assuming that C(1 + ‖u0‖2) ≤ 1/2, we have (3.25). �
Lemma 8. Suppose that u0 ∈ L2(R2) ∩ L1(R2) and that f satisfies (3.20) and (3.21). Then the weak solution u of 
the viscous shallow water equations (3.17)–(3.19) satisfies the following a priori estimate:

|û(ξ, t)| ≤ ‖u0‖1 + C|ξ |t + C(1 + |ξ |)
t∫

0

‖u(τ )‖2dτ

+ C(1 + |ξ |)
t∫

0

‖u(τ )‖2
2dτ. (3.28)
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Proof. Write the viscous shallow water equations in the following way.

∂u

∂t
= ν�u + G(u) + f ,

∇ · (bu) = 0,

where

G(u) = −u · ∇u − ηu − ∇p + ν
∇b

b

(
∇u + (∇u)T − ∇ · uI

)
.

Hence

û = e−|ξ |2t û0 +
t∫

0

e−|ξ |2(t−s)
(
P̂ (G) + P̂f

)
ds, (3.29)

where P is the projection form L2
b in H .

By assumption f = Dg where D is any first order derivative and g ∈ L∞ (
[0,+∞) ,L1(R2)

)
, hence

|P̂f | ≤ C|ξ |.
We prove later that

|P̂ (G)| ≤ C(1 + |ξ |)(‖u(t)‖2
2 + ‖u(t)‖2), (3.30)

where C is a constant which depends on b. Using (3.30) in (3.29) and integrate in time (3.29), we have

|û(ξ, t)| ≤ |û(ξ,0)| + C|ξ |t + C(1 + |ξ |)
t∫

0

‖u(τ )‖2dτ + C(1 + |ξ |)
t∫

0

‖u(τ )‖2
2dτ,

which is (3.28). To complete the proof, we finally show that (3.30) holds,

|P̂ (G)| ≤ C(1 + |ξ |)(‖u(t)‖2
2 + ‖u(t)‖2).

Using (3.18)

| ̂P(u · ∇u)| ≤
∣∣∣∣∫ ∇ · (u ⊗ u)eiξ ·xdx

∣∣∣∣ +
∣∣∣∣∫ u

∇b

b
· ueiξ ·xdx

∣∣∣∣
≤ |ξ |‖u ⊗ u‖1 + ‖u∇b

b
· u‖1

≤ |ξ |‖u‖2
2 + C‖u‖2

2 ≤ C(1 + |ξ |)‖u(t)‖2
2,

and ∣∣∣∣∣ ̂
P

[∇b

b

(∇u + (∇u)T − ∇ · uI
)]∣∣∣∣∣ ≤

∣∣∣∣∫ ∇
(∇b

b
· u

)
eiξ ·xdx

∣∣∣∣ +

+ 2

∣∣∣∣∫ ∇
(∇b

b

)
ueiξ ·xdx

∣∣∣∣ +
∣∣∣∣∫ ∇ ·

(∇b

b
⊗ u

)
eiξ ·xdx

∣∣∣∣ +

+
∣∣∣∣∫ (

∇ · ∇b

b

)
ueiξ ·xdx

∣∣∣∣ +
∣∣∣∣∫ ∇ ·

(
u ⊗ ∇b

b

)
eiξ ·xdx

∣∣∣∣
≤ |ξ |

(
‖∇b

b
· u‖1 + ‖∇b

b
⊗ u‖1 + ‖u ⊗ ∇b

b
‖1

)
+

+ ‖
(

∇ · ∇b

b

)
u‖1 + ‖∇

(∇b

b

)
u‖1

≤ C(1 + |ξ |)‖u(t)‖2.
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Finally

|P̂ (ηu)| =
∣∣∣∣∫ ηueiξ ·xdx

∣∣∣∣ ≤ ‖η‖2‖u(t)‖2 ≤ C‖u(t)‖2. �
We are now in the position to give the proof of the main theorem of this section:

Proof. Taking the scalar product of (3.17) with u and using Plancherel’s theorem, we have

d

dt

∫
R2

|û(ξ, t)|2dξ +
∫
R2

|ξ |2|û(ξ, t)|2dξ ≤ |(f ,u)b|.

For the second term∫
R2

|ξ |2|û(ξ, t)|2dξ ≥
∫

G(t)c

|ξ |2|û(ξ, t)|2dξ

≥ g2(t)

∫
G(t)c

|û(ξ, t)|2dξ

= g2(t)

∫
R2

|û(ξ, t)|2dξ − g2(t)

∫
G(t)

|û(ξ, t)|2dξ

where G(t) = {
ξ ∈R2 : |ξ | < g(t)

}
and g ∈ C ([0,∞] ;R+) which can be determinate later.

Then

d

dt

∫
R2

|û(ξ, t)|2dξ + g2(t)

∫
R2

|û(ξ, t)|2dξ ≤ g2(t)

∫
G(t)

|û(ξ, t)|2dξ + (f ,u)b,

and by Lemma 7 we have

d

dt

∫
R2

|û(ξ, t)|2dξ + g(t)2
∫
R2

|û(ξ, t)|2dξ ≤

≤ 2πg2(t)

g(t)∫
0

⎡⎣‖u0‖1 + Crt + C(1 + r)

t∫
0

‖u(τ )‖2dτ

+ C(1 + r)

t∫
0

‖u(τ )‖2
2dτ

⎤⎦2

rdr + |(f ,u)b|,

and by Hölder inequality it is possible to write as:

d

dt

∫
R2

|û(ξ, t)|2dξ + g(t)2
∫
R2

|û(ξ, t)|2dξ ≤

≤ 2πg2(t)

g(t)∫
0

⎡⎢⎣‖u0‖2
1 + Cr2t2 + C(1 + r2)t

3
2

⎡⎣ t∫
0

‖u(τ )‖4
2dτ

⎤⎦
1
2

+

+ C(1 + r2)t

t∫
0

‖u(τ )‖4
2dτ

⎤⎦ rdr + |(f ,u)b|.

Integrating in time, we have:



752 V. Sciacca et al. / Ann. I. H. Poincaré – AN 34 (2017) 731–757
e2
∫ t

0 g2(s)ds‖u(t)‖2
2 ≤ ‖u0‖2

2 +

+ 2π‖u0‖2
1

t∫
0

e2
∫ t

0 g2(s)dsg4(s)ds

+ 2πC

t∫
0

e2
∫ t

0 g2(s)dsg6(s)s2ds

+ C

t∫
0

e2
∫ t

0 g2(s)ds(g4(s) + g6(s))s
3
2

⎡⎣ s∫
0

‖u(τ )‖4
2dτ

⎤⎦
1
2

ds

+ C

t∫
0

e2
∫ t

0 g2(s)ds(g4(s) + g6(s))s

⎡⎣ s∫
0

‖u(τ )‖4
2dτ

⎤⎦ds

+
t∫

0

e2
∫ t

0 g2(s)ds |(f ,u)b|ds.

To obtain a basic estimate, we take

g2(t) = 1

(e + t) log(e + t)
,

e2
∫ t

0 g2(s)ds = [
log(e + t)

]2
,

then
t∫

0

e2
∫ t

0 g2(s)dsg4(s)ds ≤ C

t∫
0

1

(e + s)2
ds ≤ C,

t∫
0

e2
∫ t

0 g2(s)dsg6(s)s2ds ≤ C

t∫
0

s2

(e + s)3 log(e + s)
ds ≤ C log (log(e + t)) ,

t∫
0

e2
∫ t

0 g2(s)dsg6(s)s
3
2

⎡⎣ s∫
0

‖u(τ )‖4
2dτ

⎤⎦
1
2

ds ≤

≤ C

t∫
0

s2‖u0‖2
2

(e + s)3 log(e + s)
ds ≤ C log (log(e + t)) ,

t∫
0

e2
∫ t

0 g2(s)dsg6(s)s

⎡⎣ s∫
0

‖u(τ )‖4
2dτ

⎤⎦ds ≤

≤ C

t∫
0

s2‖u0‖4
2

(e + s)3 log(e + s)
ds ≤ C log (log(e + t)) ,

and using Lemma 8:

t∫
e2

∫ t
0 g2(s)dsg4(s)s

3
2

⎡⎣ s∫
‖u(τ )‖4

2dτ

⎤⎦
1
2

ds ≤

0 0
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≤ C

t∫
0

s
3
2

(e + s)
5
2

ds ≤ C log(e + t),

t∫
0

e2
∫ t

0 g2(s)dsg4(s)s

⎡⎣ s∫
0

‖u(τ )‖4
2dτ

⎤⎦ds ≤ C

t∫
0

s

(e + s)3
ds ≤ C.

Finally, using the hypothesis (3.21) on f the last term is

t∫
0

e2
∫ t

0 g2(s)ds |(f ,u)b|ds ≤ C

t∫
0

[
log(e + s)

]2 ‖f ‖2‖u‖2ds

≤ C‖u0‖2

t∫
0

log2(e + s)

(e + s)2
ds ≤ C

Hence[
log(e + t)

]2 ‖u(t)‖2
2 ≤ C

[
1 + log (log(e + t)) + log(e + t)

]
,

and the theorem is proved. �
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Appendix A. Technical lemmas

In this section we present some Lemmas that we have used in section 2 to prove the existence of the AIMs. We 
begin proving the estimates (2.13)–(2.15) for the continuous linear semigroup {e−Abνt }t≥0 associated to the equation

du

dt
+ Abνu = 0. (A.1)

Lemma 9. Let Pn and Qn be the projection operator defined in (2.12), and λn the n-th eigenvalue of Abν , then

|e−Abν tQn|L(H,V ) ≤ b
− 1

2

(
(νi t)

− 1
2 + λ

1
2
n+1

)
e−λn+1t , t > 0,

|(I + τAbν)Pn|L(V ) ≤ (1 + τλn) ≤ eτλn,

|I |L(PnH,PnV ) ≤
(

bνi

λn

)−1/2

.

Proof. In the proof we shall use the notation introduced in (2.12). The second inequality derives from the obvious 
estimate
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τ
‖Abνy‖2

b

‖y‖2
b

≤ τλ2
n, (A.2)

while the third inequality is a simple consequence of the estimate

‖y‖2
b

|y|2b
≤ 1

bνi

(Abνy,y)b

|y|2b
≤ 1

bνi

λn, (A.3)

that can be easily proved using coercivity (2.10). To prove the first inequality, we compute the L2
b-scalar product 

between the Qn-projection of equation (A.1) and Abνz; therefore, using coercivity (2.10), one can obtain

1

2

d

dt
‖z‖2

b + λn+1‖z‖2
b ≤ 0, (A.4)

which gives

|e−tAbν Qn|L(V ) ≤ exp(−λn+1t). (A.5)

Analogously one can derive

|z|2b ≤ |z0|2b exp(−2λn+1t). (A.6)

Now consider the Qn-projected energy estimate, and multiply times exp(2λn+1t). One readily derives:

d

dt

(
exp(2λn+1t)|z|2b

)
+ 2νib exp(2λn+1t)‖z‖2

b ≤ 2λn+1 exp(2λn+1t)|z|2b
that, integrated in time, gives

2νib

t∫
0

exp(2λn+1s)‖z‖2
bds ≤ |z0|2b + 2λn+1

t∫
0

exp(2λn+1s)|z|2bds. (A.7)

From (A.6), we obtain

t∫
0

exp(2λn+1s)|z|2bds ≤
t∫

0

|z0|2bds ≤ t |z0|2b,

that, together with (A.7), gives

t∫
0

exp(2λn+1s)‖z‖2
bds ≤ 1

b
|z0|2b

(
1

νi

+ λn+1t

)
. (A.8)

From (A.4), after multiplication times t , using the Gronwall lemma, and with the help of (A.8), one gets

t‖z‖2
b ≤ 1

b
|z0|2b

(
1

νi

+ λn+1t

)
exp(−2λn+1t).

The above estimate can be written as

|e−tAbν Qn|L(H,V ) ≤ 1

b
1/2

((
1

tνi

)1/2

+ λ
1/2
n+1

)
e−λn+1t

which concludes the proof. �
We now want to prove that the operator Bθ : V → H , defined in (2.19), is bounded and Lipschitz. We first give two 

preliminary Lemmas.
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Lemma 10. Let u ∈ D(Abν), then there exist three constants χ1, χ2 and χ3 such that the following inequalities hold:

‖u‖2
H 2

b (�)
≤ χ1|Abνu|2b, (A.9)

|u|L∞(�) ≤ χ2|u|1/2
b |Abνu|1/2

b , (A.10)

|u|L∞(�) ≤ χ3b
−1/2
i ‖u‖b

(
1 + log

|Abνu|2b
λ1‖u‖2

b

)1/2

. (A.11)

Proof. The (A.9) is the regularity of the Stokes problem related to the elliptic operator Abν and was proved in [29].
The second inequality is the analogous of the classical Agmon inequality [1]. It comes from the interpolation 

inequality

|u|L∞(�) ≤ χ |u|1/2‖u‖1/2
H 2 ,

and from (A.9). The last inequality is the Brezis–Gallouet inequality [4] adapted to our case. Following [4], one can 
show that there exists κ > 0 such that, for any R > 0

|u|L∞(�) ≤ κ2b
−1/2
i

(
‖u‖b[log(1 + R)]1/2 + ‖u‖H 2

b (�)(1 + R)−1
)

. (A.12)

The proof is completed choosing 1 + R = |Abνu|2b
λ1‖u‖2

b

, and using (2.16) and (A.9). The constant χ3 is given by:

χ3 = max{κ2, κ2χ1λ1ρ
2
1}. � (A.13)

Next Lemma shows, for the solutions of (2.9), the existence in L∞(�) of an absorbing set:

Lemma 11. Let r > 0, and suppose uin satisfies |uin|b ≤ r . Let u be a solution of (2.9) with initial datum uin ∈
V

⋂
H 2

b . Then there exist a time t(r) and ρ2 = ρ2(�, |f|b, ν̄, ‖uin‖b, r), such that

|u|L∞(�) ≤ ρ2, for t ≥ t(r). (A.14)

Proof. Taking the L2
b norm of (2.9) we get

|Abνu|b ≤
∣∣∣∣du

dt

∣∣∣∣
b

+ |B(u)|b + |f |b + |ηu|b

≤
∣∣∣∣du

dt

∣∣∣∣
b

+ Cχ2|u|1/2
b |Abνu|1/2

b ‖u‖b + |f |b + supη |u|b,

where we have used (A.10). Applying Young inequality, we have:

|Abνu|b ≤ 2

∣∣∣∣du

dt

∣∣∣∣
b

+ C2χ2
2 |u|b‖u‖2

b + 2|f |b + 2 supη |u|b.

Now take t ≥ t0(r) + 2α so that, in the above estimate, both (2.16) and (2.17) can be used. One immediately gets:

|Abνu|b ≤ 4

α
ρ1 + C2χ2

2 ρ0ρ
2
1 + 2|f |b + 2ρ0 supη ≡ ρ̃2. (A.15)

The above bound can be inserted in the Brezis–Gallouet inequality (A.11) and one obtains the desired result (A.14)
with ρ2 given by

ρ2 = χ3ρ1

(
1 +

∣∣∣∣∣log
ρ̃2

2

λ1

∣∣∣∣∣ +
∣∣∣logρ2

1

∣∣∣)1/2

(A.16)

and ρ̃2 defined in (A.15). �
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Lemma 12. There exist two constants M0 and M1 (the explicit expressions are given in the proof) such that for every 
u, v ∈ V results:

|Bθu|b ≤ M0 (A.17)

|Bθu − Bθv|b ≤ M1‖u − v‖b. (A.18)

Proof. Suppose that ‖u‖b ≤ ρ1 (if ‖u‖b ≥ ρ1 then Bθu = 0) and consider

|B(u,u)|b ≤ C‖u‖b|u|L∞(�) ≤ Cρ1(|Pnu|L∞(�) + |Qnu|L∞(�)).

Applying (A.11) and (A.14), we obtain (A.17) with M0 given by:

M0 = ρ1C

(
ρ1χ3b

−1/2
i

(
1 + log

C′λn

λ1

)1/2

+ ρ2

)
,

where the constant C′ expresses the continuity of the operator A1/2
bν from V to H , i.e. |A1/2

bν u|2b ≤ C′‖u‖2
V .

Passing to the proof of (A.18), we denote by Lθ the Lipschitz constant of the function θ .

|Bθ(u) − Bθ(v)|b
≤

∣∣∣∣θ (‖u‖b

ρ1

)
− θ

(‖v‖b

ρ1

)∣∣∣∣ |B(u)|b +
∣∣∣∣θ (‖v‖b

ρ1

)∣∣∣∣ |B(u) − B(v)|b

≤ M0

ρ1
Lθ |‖u‖b − ‖v‖b| + |B(u,u − v)|b + |B(u − v,v)|b

≤ M0

ρ1
Lθ‖u − v‖b + |B(u,u − v)|b + |B(u − v,v)|b

≤ M0

ρ1
Lθ‖u − v‖b + C‖u − v‖b|u|L∞(�) + C‖v‖b|u − v|L∞(�).

Using (A.11), (A.14), (A.15) and (A.16) in the above expression we obtain the desired (A.18) with

M1 ≡ M0

ρ1
Lθ + Cρ2 + C

χ3

b
1/2
i

ρ1

(
1 +

∣∣∣∣∣log
2ρ̃2

2

λ1

∣∣∣∣∣ +
∣∣∣log 2ρ2

1

∣∣∣)1/2

. �
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