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Abstract

In [8], the first author proposed a strengthening of Onsager’s conjecture on the failure of energy conservation for incompressible 
Euler flows with Hölder regularity not exceeding 1/3. This stronger form of the conjecture implies that anomalous dissipation will 
fail for a generic Euler flow with regularity below the Onsager critical space L∞

t B
1/3
3,∞ due to low regularity of the energy profile.

The present paper is the second in a series of two papers whose results may be viewed as first steps towards establishing the 
conjectured failure of energy regularity for generic solutions with Hölder exponent less than 1/5. The main result of this paper 
shows that any non-negative function with compact support and Hölder regularity 1/2 can be prescribed as the energy profile of an 
Euler flow in the class C1/5−ε

t,x . The exponent 1/2 is sharp in view of a regularity result of Isett [8]. The proof employs an improved 
greedy algorithm scheme that builds upon that in Buckmaster–De Lellis–Székelyhidi [1].
© 2016 
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1. Introduction

The present work concerns the construction of Hölder continuous solutions to the incompressible Euler equations 
on R ×R

3 and on R ×T
3

∂tv
l + ∂j (v

j vl) + ∂lp = 0

∂j v
j = 0

(E)

with a prescribed, possibly rough energy profile. As we consider solutions with fractional regularity, what we mean by 
a solution to (E) is a continuous velocity field v :R ×T

3 → R
3 and pressure p : R ×T

3 →R that together satisfy (E)
in the sense of distributions.
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The main result of the paper is the following Theorem:

Theorem 1.1 (Euler flows with prescribed energy profile). Let α < 1/5, let I ⊆ R be a bounded open interval, and 
let ē(t) ≥ 0 be any non-negative function with compact support in I which belongs to the class ē(t) ∈ C

γ
t for some 

γ > 2α
1−α

. Then:

1. There exists a weak solution (v, p) to the incompressible Euler equations in the class v ∈ Cα
t,x(R × T

3) with 
support contained in

suppv ∪ suppp ⊆ I ×T
3

such that the energy profile of v is equal to 
∫
T3 |v|2(t, x)dx = ē(t) for all t ∈ R.

2. Moreover, one may choose a one parameter family of solutions (vA, pA), 0 ≤ A ≤ 1, with the above properties 
such that the energy profile of vA is equal to 

∫
T3 |vA|2(t, x)dx = Aē(t) and such that ‖vA‖Cα

t,x
→ 0 as A → 0.

The assumption that e(t) is at least 2α/(1 − α)-Hölder is sharp in view of a regularity result in [8], which states 
that the energy profile of an Euler flow in the class v ∈ L∞

t Cα
x , 0 < α ≤ 1/3, belongs to the class e(t) ∈ C

2α/(1−α)
t . 

We remark that our arguments also allow one to achieve an energy profile that does not have compact support provided 
the norm ‖e‖C

γ
t

= supt |e(t)| + supt sup|�t |�=0
|e(t+�t)−e(t)|

|�t |γ is finite. Furthermore, the proof of Theorem 1.1 extends 
easily to the nonperiodic setting (cf. Theorem 3.2 below).

Theorem 1.1 on solutions with prescribed rough energy profiles builds upon works [5,4,1], which exhibit solutions 
whose energy profiles can be any given smooth, strictly positive function on a closed interval [0, T ]. These results 
show in particular that for any α < 1/5 it is possible to construct solutions with Cα

t,x regularity whose energy profiles 
are strictly increasing or strictly decreasing (which we expect to be nongeneric solutions, as in Conjecture 1 of [6]). 
Theorem 1.1 improves on these results by obtaining sharp regularity for the energy profile, and by removing the 
restriction of having a strictly positive lower bound on the desired energy profile.

To achieve these improvements, we develop a more delicate greedy algorithm for choosing the energy increments 
at each stage of the iteration, and develop a sharper form of the Main Lemma in the iteration that allows us to execute 
this algorithm. A quadratic commutator estimate akin to the one used in the proof of energy conservation in [3,2] (as 
well as the proof of the 2α/(1 − α)-Hölder estimate for the energy profile in [8]) plays a key role in the proof. Our 
proof is also greatly simplified by the fact that we are able to achieve an exponential (rather than double-exponential) 
growth of frequencies in the iteration. This simplification is available thanks to improvements used to localize the 
construction in [6].

Our motivation for pursuing Theorem 1.1 extends from a strengthening of Onsager’s conjecture proposed in [8], 
which states that a generic Euler flow in the class CtC

α
x , 0 < α ≤ 1/3 will have an energy profile of the minimal 

regularity allowed by the equation. We refer to [6] for a thorough discussion.

2. The Main Lemma

In this section, we present the Main Lemma that is responsible for the proof of Theorem 1.1. The purpose of this 
lemma is to describe precisely the result of one step of the convex integration procedure. Theorem 1.1 follows from 
iteration of this Lemma as we will explain in Section 3.

We start by recalling the Euler–Reynolds system introduced in [5]. A vector field vl , scalar field p and symmetric 
tensor field Rjl are said to be an Euler–Reynolds flow if (v, p, R) together satisfy the following PDE in the sense of 
distributions.

∂tv
l + ∂j (v

j vl) + ∂lp = ∂jR
jl

∂j v
j = 0

(1)

We will consider Euler–Reynolds flows on the domain R × M where M may be either a torus M = T
3 or 

M =R
3.

The Main Lemma of the iteration summarizes how, given an initial Euler–Reynolds flow (v, p, R) satisfying certain 
estimates, it is possible to perturb the velocity field and pressure to obtain a new Euler–Reynolds flow (v1, p1, R1)
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with stress tensor Rjl

1 much smaller than the initial Rjl . To state the Main Lemma, we recall the notion of frequency 
and energy levels for Euler–Reynolds flows introduced in Sections 9 and 10 of [7].

Definition 2.1. Let L ≥ 1 be a fixed integer. Let � ≥ 2, and let ev and eR be positive numbers with eR ≤ ev . Let 
(v, p, R) be a solution to the Euler–Reynolds system on R × M. We say that the frequency and energy levels of 
(v, p, R) are below (�, ev, eR) (to order L in C0 = C0

t,x(R ×M)) if the following estimates hold.

||∇kv||C0 ≤ �ke1/2
v k = 1, . . . ,L (2)

||∇kp||C0 ≤ �kev k = 1, . . . ,L (3)

||∇kR||C0 ≤ �keR k = 0, . . . ,L (4)

||∇k(∂t + v · ∇)R||C0 ≤ �k+1e1/2
v eR k = 0, . . . ,L − 1 (5)

Here ∇ refers only to derivatives in the spatial variables.

Our Main Lemma is based on the Main Lemma in Section 10 of [7] but also keeps track of how the support of the 
approximate solution enlarges after the addition of a correction. The following definition will be useful for keeping 
track of the support of the iteration, which is governed by the geometry of the flow map of the velocity field v.

Definition 2.2 (v-Adapted Eulerian cylinder). Let �s = �s(t, x) be the flow map associated to a vector field v. Given 
τ, ρ > 0 and a point (t0, x0) of the space–time R × M, we define the v-adapted Eulerian cylinder Ĉv(τ, ρ; t0, x0)

centered at (t0, x0) with duration 2τ and base radius ρ > 0 to be

Ĉv(τ, ρ; t0, x0) := {
�s(t0, x0) + (0, h) : |s| ≤ τ, |h| ≤ ρ

}
(6)

In other words, Ĉv(τ, ρ; t0, x0) is the union of spatial balls of radius ρ about the trajectory of (t0, x0) along the flow 
of v for t ∈ [t0 − τ, t0 + τ ].

Similarly, if S ⊆R ×M is a set, we define

Ĉv(τ, ρ;S) :=
⋃

(t0,x0)∈S

Ĉv(τ, ρ; t0, x0) (7)

With these definitions in hand, we can state the Main Lemma.

Lemma 2.1 (The Main Lemma). Suppose that L ≥ 2. Let K be the constant in Section 7.3 of [7], and let M ≥ 1 be a 
constant. There exist constants C0, C > 1, which depend only on M and L, such that following holds:

Let (v, p, R) be any solution of the Euler–Reynolds system on R ×M whose frequency and energy levels are below 
(�, ev, eR) to order L in C0.

Define the time-scale θ = �−1e
−1/2
v , let N be any positive number obeying the bound N ≥

(
ev

eR

)3/2
and define the 

dimensionless parameter b =
(

ev

eRN

)1/2
.

Let e(t, x) : R ×M →R≥0 be any non-negative function which satisfies the lower bound

e(t, x) ≥ KeR for all (t, x) ∈ Ĉv(θ,�−1; suppR) (8)

(using the notation of Definition 2.2) and whose square root satisfies the estimates

||∇k(∂t + v · ∇)re1/2||C0 ≤ M�k(b−1�e1/2
v )re

1/2
R 0 ≤ r ≤ 1, 0 ≤ k + r ≤ L (9)

Then there exists a solution (v1, p1, R1) of the Euler–Reynolds system of the form v1 = v + V , p1 = p + P whose 
frequency and energy levels are below

(�′, e′
v, e

′
R) = (C0N�,eR,b−1 e

1/2
v e

1/2
R

N
) (10)

to order L in C0, and such that the following are satisfied:
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The correction V = v1 − v is of the form V = ∇ × W and can be guaranteed to obey the bounds

||V ||C0 ≤ Ce
1/2
R (11)

||∇V ||C0 ≤ CN�e
1/2
R (12)

||(∂t + vj ∂j )V ||C0 ≤ Cb−1�e1/2
v e

1/2
R (13)

||W ||C0 ≤ �−1N−1e
1/2
R (14)

‖∇W‖C0 ≤ Ce
1/2
R (15)

||(∂t + vj ∂j )W ||C0 ≤ Cb−1N−1e1/2
v e

1/2
R (16)

The correction to the pressure P = p1 − p0 satisfies the estimates

||P ||C0 ≤ CeR (17)

||∇P ||C0 ≤ CN�eR (18)

||(∂t + v · ∇)P ||C0 ≤ Cb−1�e1/2
v eR (19)

The energy of the correction can be prescribed locally up to errors bounded uniformly in t by∣∣∣∣∣∣
∫
M

|V |2(t, x)ψ(x)dx −
∫
M

e(t, x)ψ(x)dx

∣∣∣∣∣∣ ≤ b−1 e
1/2
v e

1/2
R

N

(
‖ψ‖L1 + �−1‖∇ψ‖L1

)
(20)

for any smooth test function ψ(x) ∈ C∞
c (M). (In (20), we mean L1 = L1(M).)

Finally, the space–time supports of V , P and R1 are also contained in

suppV ∪ suppP ∪ suppR1 ⊆ Ĉv(bθ,�−1; supp e) (21)

Lemma 2.1 is very similar to the Main Lemma in [6], but with a few differences that will be important for the proof 
of Theorem 1.1.

1. The lemma allows for an additional loss of a factor b−1 in the cost of the advective derivative in the estimate (9).
2. There is a loss of a factor of b−1 in the estimate (20).
3. The implicit constants in the estimates (14) and (20) have been normalized to 1.
4. There is a gain of a factor of b in the time scale for the enlargement of support in (21).

In the following section, we explain the modifications of the proof of the Main Lemma in [6] that lead to Lemma 2.1. 
We note that the proof of the Main Lemma in [6], which considers only the case of M = R

3, extends easily to the 
case of M = T

3; the only alteration required is to use a partition of unity in space that is spatially periodic.

2.1. Modifying the proof of the Main Lemma in [6]

The proof of Lemma 2.1 is identical to the proof of the Main Lemma in [6] in the sense that every choice of 
parameter in the argument is left unchanged. The only differences in the proof are due to the inferior bound (9) on the 
advective derivative of the energy increment, which leads to worse estimates for a few terms in the argument that we 
will list here. Ultimately, the reason we are allowed to relax the bound on the advective derivative is that the cost of 
the advective derivative in (9) coincides with the inverse of the time scale in the construction:

τ−1 ∼ b−1�e1/2
v (22)

In particular, there is no room here to allow for a bound which is any worse than (9) without losing regularity. It is 
therefore necessary to check a few of the estimates to make sure that the proof goes through with straightforward 
modifications. Here we list the necessary modifications in the proof of [6].

• All choices of parameters in the construction (εv, εx, εt , τ, ρ, λ) are exactly the same. In particular, we have 
τ = ab�−1e

−1/2
v for some constant a chosen sufficiently small.
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• The fact that the bound (21) on the support of the iteration gains a factor of b can be observed from inspecting the 
bound [6, Equation 122] on the support of the stress. The time scale in this estimate is bounded by, say, 3τ , which 
is smaller than b�−1e

−1/2
v when the small constant a in the definition of τ is chosen appropriately.

• The constants in the estimates (14) and (20) can be made arbitrarily small by taking the constant Bλ in the 
construction to be sufficiently large when these terms are estimated. Here we have normalized these constants to 
be equal to 1.

• The choice of εt = cN−1�−1e
−1/2
R for the time scale for the mollification along the flow made in [6, Equation 115]

leads to a worse estimate on the error ‖e1/2 − ẽ1/2‖C0 made in mollifying the energy increment. Namely, the bound 
[6, Equation 118] loses a factor of b−1, and is replaced instead by

‖e1/2 − ẽ1/2‖C0 ≤ b−1 e
1/2
v

100N
(23)

• The loss of b−1 in (23) ultimately leads to the loss of b−1 in (20) when bounding the error for prescribing the 
energy increment. Namely, this estimate introduces a b−1 in the estimate of line [6, Equation 161].

• The bound on the first advective derivative of ẽ1/2 also worsens by a factor of b−1. As a result, the estimates in 
[6, Proposition 8.3] incur a loss of b−1, and the estimate [6, Equation 153] must be replaced by

e
1/2
R ‖D(a,r)ẽ1/2‖C0 + ‖D(a,r)Rε‖C0 ≤ Ca�

aeR(b−1�e1/2
v )(r≥1)(N�e

1/2
R )(r≥2)N(a+1−L)+/L (24)

Here we use the notation (r ≥ 1) and (r ≥ 2) to represent indicator functions. The reason that the second advective 
derivative incurs a cost of ε−1

t = N�e
1/2
R , is that this estimate arises from differentiating the kernel used to mollify 

in time along the flow.
• The inferior bound in (24) affects the bounds for the advective derivatives of the amplitudes vI stated in [6, 

Proposition 8.4]. These bounds take on the same pattern as the estimate (24), as now all of the worst terms occur 
when the advective derivatives fall on the factor of ẽ1/2. In particular, the first advective derivative incurs the same 
cost of τ−1 ∼ b−1�e

1/2
v , but now the second advective derivative gives a greater cost of (N�e

1/2
R ). The estimates 

that replace [6, Equations 154–155] are:

‖D(a,r)vI‖C0 ≤ Ca�
ae

1/2
R τ−(r≥1)(N�e

1/2
R )(r≥2)N(a+1−L)+/L (25)

‖D(a,r)δvI‖C0 ≤ CaB
−1
λ N−1�ae

1/2
R τ−(r≥1)(N�e

1/2
R )(r≥2)N(a+2−L)+/L (26)

Note that the only difference compared to [6, Equations 154–155] lies in the bound on the second advective 
derivative.

• The only point in the argument at which the second advective derivative estimate is used comes in estimating the 
advective derivative of transport term Qjl

T . The main term in Qjl
T is given by the parametrix in [6, Section 9.1]

Q
jl
T =

∑
I

1

iλ
eiλξI q(∇ξI )[(∂t + vj

ε ∂j )v
l
I ] + Lower order terms

As in [6, Section 9.1], we must estimate the cost of taking an advective derivative for this term. According to 
the estimate (25), the cost of taking a further advective derivative is no longer τ−1 as in [6], but rather is given 

by ε−1
t = c−1N�e

1/2
R . This cost is exactly the cost of 

∣∣∣ D̄
∂t

∣∣∣ � �′(e′
v)

1/2 = CN�e
1/2
R that must be verified for the 

advective derivative in order to conclude the proof of Lemma 2.1.

Having explained the modifications necessary to prove Lemma 2.1, we now explain how Lemma 2.1 can be applied 
to establish Theorem 1.1.

3. Prescribing the energy profile

In this Section, we show how our method can be applied to produce solutions with a prescribed energy profile, and 
we present a proof of Theorem 1.1. Here we outline our presentation of the proof.

To simplify our exposition, we start by proving a variant of Theorem 1.1 that illustrates the main ideas of our 
algorithm in the simplest case. This proof is carried out in Section 3.1. In Section 3.8, we then explain how the 
construction can be modified to handle the nonperiodic setting.
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3.1. Prescribing the energy profile

In this Section, we establish a simplified version of Theorem 1.1 on prescribing the energy profile of solutions 
by repeated application of Lemma 2.1. Here we consider only the problem of prescribing the energy profile for a 
solution with regularity approaching 1/5. In Section 3.5, we explain how to modify the argument to obtain solutions 
with regularity strictly below 1/5, and to achieve solutions that are Cα

t,x perturbations of the 0 solution. In Section 3.8
below we explain how to modify the argument to prescribe the energy profile in the nonperiodic setting.

The construction explained in this section involves the introduction of several parameters which must be chosen 
in a particular logical order. We provide a summary of this construction and the logical structure of the choice of 
parameters in Section 3.6 below.

The theorem we establish in this Section is the following:

Theorem 3.1 (Periodic Euler flows with prescribed energy profile). Let α < α∗ ≤ 1/5 and let I ⊆R be a bounded open 
interval. Let ē(t) ≥ 0 be any non-negative function with compact support in I which belongs to the class ē(t) ∈ C

γ
t for 

γ = 2α∗
1−α∗ . Then there exists a weak solution (v, p) to the Euler equations in the class v ∈ Cα

t,x(R ×T
3) with compact 

support in I ×T
3 such that the energy profile of v is given by∫

T3

|v|2(t, x)dx = ē(t), t ∈R (27)

We will give the proof for the case α∗ = 1/5 (in which case γ = 1/2), since this case is most closely related to 
the proof of [6, Theorem 1.1], and the cases α∗ < 1/5 can be handled similarly. We will outline how to handle the 
more general case in Section 3.7 below, where we will also explain how to obtain a one parameter family of solutions 
tending to 0 in Cα

t,x as in the statement of Theorem 1.1.
Theorem 3.1 is proved by iterating Lemma 2.1. The solution (v, p) stated in Theorem 3.1 will be obtained as a 

uniform limit of a sequence of solutions (v(k), p(k), R(k)) to the Euler–Reynolds equations, beginning with the trivial 
solution (0, 0, 0).

The sequence of Euler–Reynolds flows (v(k), p(k), R(k)) will have frequency-energy levels below certain values 
(�(k), ev,(k), eR,(k)) which are chosen to satisfy iteration rules of the form

�(k+1) = C0Z
5/2�(k) (28)

ev,(k+1) = eR,(k) (29)

eR,(k+1) = eR,(k)

Z
(30)

These solutions are obtained by repeatedly applying Lemma 2.1 with a choice of N = Z5/2 and a parameter M which 
will be specified later. Recall from [6, Section 11.4] that, for α < 1/5 and Z sufficiently large depending on α and 
the constants in the statement of Lemma 2.1, this choice of parameters leads to convergence of (v(k), p(k)) in the 
Cα

t,x × C2α
t,x norm to a weak solution to the Euler equations. The choice of a large parameter Z corresponds in the 

context of the construction to a choice of a rapid frequency and time scale in the first stage of the iteration (see 
Equation (42) below), and also to a large ratio between consecutive frequencies in the whole iteration. We remark that 
the power Z5/2 appearing in the iteration rules (28)–(30) corresponds to taking α∗ = 1/5.

In specifying the construction, it will be helpful to introduce the parameters

b =
(

e
1/2
v

e
1/2
R N

)1/2

(k)

= Z−1

θ(k) = �−1
(k)e

−1/2
v,(k) , τ̂k = b�−1

(k)e
−1/2
v,(k)

(31)

in order to distinguish the important time scales in the iteration. The time scale θ(k) corresponds to the natural time 
scale of motion for the flow of the velocity field v(k), whereas the time scale τ̂k corresponds up to a constant to the 
more rapid time scale employed in the time cutoffs of the construction.
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To keep a perspective on the relative magnitude of the parameters, we point out that the iteration rules (28)–(30)
and Equation (31) imply (neglecting powers of C0)

�(k) ∼ Z5k/2�(0),
ev,(k)

Z
= eR,(k) = eR,(0)

Zk
,

θ(k) ∼ Z−2kθ(0),
θ(k)

Z
= τ̂k ∼ Z−2kτ̂0.

Later on it will turn out that eR,(0) = supt ē(t) is bounded independent of Z, while we will choose �(0) ≥
(Z1− 3γ

2 e
−1− γ

2
R,(0)

)1/γ according to equation (42) below. These choices and (31) dictate the small initial time scales 
θ(0) and τ̂0.

Along the way, we will keep track of the time supports of the solutions and errors, by defining a sequence of sets 
I(k) ⊆ I such that the following claims hold

Claim 1 (Growing supports). For all k ≥ 0, we have

suppv(k) ∪ suppp(k) ∪ suppR(k) ⊆ I(k) ×T
3. (32)

I(k) ⊆ I(k+1) (33)

To fully specify the iteration, we must construct the functions e(k)(t, x) which prescribe the energy increment 
at each stage of the iteration, and specify the parameters of the construction, including the initial frequency energy 
levels (�(0), ev,(0), eR,(0)) for the base case of the iteration and the parameter Z. Since we are considering the case of 
spatially periodic solutions, we may consider energy increments e(k)(t) which depend only on the variable t .

Our goal in choosing the energy increments is to ensure that the solution (v, p) constructed in the limit has energy 
profile given by ē(t). Since the approximate solutions v(k)(t) converge uniformly to the limiting solution, it suffices 
to show that the energy profiles of the approximate solutions

Ek(t) :=
∫
T3

|v(k)|2(t, x)dx (34)

converge pointwise to the desired energy profile ē(t) as k → ∞. This convergence will be obtained by ensuring that 
the inductive Claims 2 and 3 below hold throughout the iteration. In order to state these claims, we introduce the 
following notation, which will be used in the remainder of the paper.

Definition 3.1. Given any set J ⊆ R and any τ̄ ∈R≥0, we define

I (τ ;J ) := {t + �t ∈ R : t ∈ J, |�t | ≤ τ }. (35)

Claim 2 (There is always room to add more energy where the error is supported). For every k ≥ 0 and t ∈R, we have

ē(t) − Ek(t) ≥ 0. (36)

Moreover, for all t ∈ I (2θ(k); I(k)), we have

ē(t) − Ek(t) ≥ 3KeR,(k) (37)

where K is the constant in the lower bound (8) of Lemma 2.1.

Claim 3 (The energy threshold is nearly saturated). There is an absolute constant M such that the upper bound

sup
t

|ē(t) − Ek(t)| ≤ MeR,(k) (38)

holds uniformly.

Note that Claim 3 implies the uniform convergence of Ek(t) → ē(t) as k → ∞. The condition (37) is required for 
continuing the iteration; this condition is present to ensure that one can construct an energy increment compatible with 
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the conditions (8) and (9) while condition (38) is maintained. Thus, the proof of Theorem 3.1 reduces to specifying 
an iteration in which Claims 2–3 remain satisfied.3

We now explain our rule for specifying the iteration. Our construction will involve choosing two large constants 
(Y and Z), which will be chosen in alphabetical order during the course of the proof. First, we define a sequence of 
“gaps”

�Ek = YeR,(k+1) = Y
eR,(k)

Z
(39)

with Y some constant to be chosen later on. Our goal is to choose an energy increment e(k)(t) which ensures that the 
number �Ek is a lower bound for the gap in the energy profile (ē(t) − Ek+1(t)) ≥ �Ek which remains after stage k
of the iteration on the support of the error.

According to conditions (8), (9) and (38), we should choose at each stage an energy increment e(k)(t) which will 
nearly saturate the energy threshold, but we must leave a gap of size (ē − e(k) − Ek) ∼ eR,(k+1) on the support of 
the error to ensure we can continue the iteration in the next stage. A sensible first guess for the energy increment we 
desire would be the function

ê(k)(t) = (ē(t) − Ek(t) − �Ek)+ (40)

(Recall that we use the notation y+ = max{y, 0}.) The key calculation that motivates this choice is given in Sec-
tion 3.4.2 below.

The problem with this guess is that the function ê(k) is only Lipschitz, whereas Lemma 2.1 requires control over 
derivatives of the square root e1/2

(k) (t). We therefore modify the function ê1/2
(k) by prescribing an energy profile of the 

form

e
1/2
(k) (t) = (ē − Ek − �Ek)

1/2
+ ∗ ητ̂k

= ê
1/2
(k) ∗ ητ̂k

(41)

The function ητ̂k
here denotes a standard, non-negative mollifying kernel in the time variable with support in the 

interval suppητ̂k
⊆ {|t | ≤ τ̂k}. The number τ̂k is the timescale of the construction defined in (31). For intuition, one 

can picture the formula (41) graphically in the case Ek = 0 as shifting the graph of ē(t) downwards by an amount �Ek , 
taking a square root and then averaging over translates in t by a width less than τ̂k .

We will see during the course of the proof that the Cγ
t regularity of ē will be essential for verifying that the assump-

tions (8), (9) can be carried on during the iteration. Without sufficient regularity for the function ē, the regularized 
function e(k) may be a poor approximation to the desired energy increment (40). One must also worry that the time 
mollification in (41) may cause the energy profile of the approximate solutions to exceed the energy threshold if the 
regularity of ē is too low.

3.2. Prescribing the energy increment: the base case

We initialize the construction by taking our Euler–Reynolds flow to be (v(0), p(0), R(0)) = (0, 0, 0). For the initial 
set of times containing the support of the iteration, we take I(0) = ∅ to be the empty set. We must now choose the 
initial frequency energy levels (�(0), ev,(0), eR,(0)). For the initial energy level eR,(0) we take eR,(0) = supt∈R ē(t). 
This choice and the Ansatz (29)–(30) dictate our choice of ev,(0) = ZeR,(0). Observe that these choices guarantee that 
Claims 2–3 and the containment (32) hold at the stage k = 0.

During the course of the iteration (see Line (60) below), we will have to show that the quotient

Q(k) = |τ̂k|γ
eR,(k+1)

remains uniformly bounded, independent of the choices of Y and Z. We remark that this point is the reason for the 
numerology γ = 2α∗

1−α∗ . With this motivation, we choose �(0) to achieve the inequality Q(0) ≤ 1. Recall from (31) that 

τ̂0 = b�−1
(0)e

−1/2
v,(0) = Z−3/2�−1

(0)e
−1/2
R,(0) and eR,(1) = 1

Z
eR,(0). The goal Q(0) ≤ 1 is therefore accomplished by choosing 

a value �(0) such that

3 We point out that the Claims 2–3 are also carried along the iteration in the schemes for prescribing energy in [5,4,1]. The difference in this 
respect is that these papers assume a strictly positive lower bound on ē(t), and the lower bound (37) is assumed to hold everywhere.
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�(0) ≥
(

Z1− 3γ
2 e

−1− γ
2

R,(0)

)1/γ

(42)

We have now specified the initial frequency energy levels (up to the specification of Z), but we are not quite ready to 
proceed with the iteration by applying Lemma 2.1. Namely, we want to apply Lemma 2.1 with the choice of energy 
increment e(k)(t) defined by (41). However, in order to apply Lemma 2.1, we are required to specify the constant M
in the upper bounds (9) for the energy profile, which turns out to depend on the choice of Y . Once we have determined 
the value of Y (which is accomplished in Section 3.4 below), we will be able to apply Lemma 2.1 for a specified value 
of M . In particular, the constant C0 in the iteration rule (28) comes from Lemma 2.1 and depends on the value of Y .

In Section 3.3 below, we continue the proof of Theorem 3.1 by verifying that our choice of energy increment e(k)(t)

defined by (41) remains for all indices k an admissible choice of energy function in Lemma 2.1 for the sequence of 
frequency energy levels dictated by (28)–(30). In the process, we specify the sequence I(k) and verify that Claims 2–3
hold with this choice of energy increment e(k)(t), provided the function ē(t) has sufficient regularity.

3.3. Prescribing the energy increment: admissibility of the energy function

In this Section, we define the sequence I(k), and we verify that the energy function defined in (41) is always an 
admissible choice of energy function for applying Lemma 2.1.

For k ≥ 0, we define I(k+1) to be4

I(k+1) := I (2τ̂k; {t ∈R : ē(t) − Ek(t) ≥ �Ek}). (43)

In what follows, we will assume that the constant Y has already been chosen so that Claim 2 holds, and also that 
Claim 3 is satisfied for a specified constant M .

With the assumptions that Y has already been chosen and that Claim 3 is satisfied for a specified constant M , 
we obtain the following bounds on the square root of the energy increment:∥∥∥∥(

d

dt

)r

e
1/2
(k)

∥∥∥∥
C0

t

≤ A(b−1�e1/2
v )r [MeR,(k)]1/2, 0 ≤ r ≤ 2 (44)

Indeed, at the level r = 0, we have

‖e1/2
(k) ‖C0 ≤ ‖(ē − Ek − �Ek)

1/2
+ ‖C0 ≤ ‖ē − Ek‖1/2

C0 ≤ M
1/2

e
1/2
R,(k)

using our induction hypothesis Equation (38). The estimates for higher derivatives follow by differentiating the mol-
lifier in the definition (41) of e1/2

(k) .

Here A is some absolute constant, but we have not yet specified M, which will turn out to depend on our choice 
of Y . We postpone these choices for Section 3.4.

The estimate (44) specifies the value of M = AM
1/2

with which we may apply Lemma 2.1. To conclude that the 
function e1/2

(k) is admissible, we must also verify the lower bound (8) on the set t ∈ I (θ(k); I(k)).
For stage k = 0, the lower bound (8) is vacuous. To see that the lower bound holds at later stages, we first establish 

a lower bound for the function (ē − Ek − �Ek)+ on a slightly larger set of times. Namely, for any t ′ ∈ I (2θ(k); I(k)), 
we have a lower bound

ē(t ′) − Ek(t
′) ≥ 3KeR,(k)

by Claim 2. We now impose the requirement

Z ≥ 2

K
Y (45)

to ensure the bound �Ek = Y
Z

eR,(k) ≤ 1
2KeR,(k) for �Ek defined in (39). We now have that

(e(t ′) − Ek(t
′) − �Ek)+ = (e(t ′) − Ek(t

′) − �Ek) ≥ 2KeR,(k) (46)

4 We remark that in principle the set I(k+1) is allowed to be empty.
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for all t ′ ∈ I (2θ(k); I(k)). As a consequence, we have for t ′ ∈ I (2θ(k); I(k))

(e(t ′) − Ek(t
′) − �Ek)

1/2
+ ≥ (2KeR,(k))

1/2. (47)

From this lower bound, we obtain the desired lower bound

e
1/2
(k) (t) ≥ (2KeR,(k))

1/2, t ∈ I (θ(k); I(k)) (48)

for the function e1/2
(k) = (e − Ek − �Ek)

1/2
+ ∗ ητ̂k

because the time scale τ̂k in the mollification is smaller than θ(k), 

and because the kernel in the mollification is non-negative with integral equal to 1. Since suppR(k) ⊆ I(k) × T
3 by 

Claim 2, it follows that our choice of e(k)(t) is admissible for Lemma 2.1.
To conclude the proof, we now verify Claims 1, 2 and 3. In the process, we will specify the constants Y and M .

3.4. Verification of Claims 1–3

In the following Section, we verify that Claims 1–3 hold during the iteration given the choice of energy function 
in (41) and the choice of I(k) defined in (43). In the process, we explain the choice of the constants Y and M (which 
are required to be independent of the constants in Lemma 2.1, and also must be independent of the parameter Z). In 
this proof, we will therefore say that a constant C is universal if it is independent of Y , M and Z, and we will use the 
letter Ĉ to denote constants which are universal. Some of the constants here will depend (in an increasing manner) on 
the homogeneous Hölder seminorm of ē, which we denote by

‖ē‖Ċ
γ
t

= sup
t

sup
�t �=0

|ē(t + �t) − ē(t)|
|�t |γ

Our starting point is to prove an estimate on the control of the energy profile that will be used at several points in the 
verification of Claims 1–3.

The main estimate on the energy gap Claims 2–3 require us to control the difference ē(t) − Ek+1(t). Our main tool 
for estimating this difference is the following Lemma.

Lemma 3.1. We have an approximation

ē(t) − Ek+1(t) = ē(t) − Ek(t) − (ē(t) − Ek(t) − �Ek)+ + O((1 + ‖ē‖Ċ
γ
t
)eR,(k+1)) (49)

where the constant in the O( ) is universal.

Proof. The starting point for establishing this control is the following calculation:

Ek+1(t) = Ek(t) +
∫
T3

(|v(k) + V(k)|2(t, x) − |v(k)|2(t, x))dx (50)

= Ek(t) +
∫
T3

|V(k)|2(t, x)dx + 2
∫
T3

v(k) · V(k)(t, x)dx (51)

For the last term, Lemma 2.1 gives an estimate∣∣∣∣∣∣∣
∫
T3

v(k) · V(k)dx

∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∫
T3

∇ × v(k) · W(k)dx

∣∣∣∣∣∣∣ (52)

≤ Ĉ(�(k)e
1/2
v,(k))(N

−1
(k) �

−1
(k)e

1/2
R,(k)) (53)

≤ Ĉb2eR,(k) = ĈbeR,(k+1) = Ĉ

Z
eR,(k+1) (54)

Note that the constant here can be made smaller than 1 if Z is larger than some universal constant.
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For the second term, Lemma 2.1 gives a bound∣∣∣∣∣∣∣
∫
T3

|V(k)|2(t, x)dx −
∫
T3

e(k)(t)dx

∣∣∣∣∣∣∣ ≤ b−1
e

1/2
v,(k)e

1/2
R,(k)

N(k)

(55)

≤ eR,(k+1) (56)

We assume here for simplicity that our torus T3 has unit volume. Note that both the estimates above use the remark 
in Lemma 2.1 on the universality of the constants in (14) and (20).

Combining these estimates, (51) gives

Ek+1 = Ek + e(k)(t) + O(eR,(k+1)) (57)

where the constant in the O(·) notation is universal.
The proof of Lemma 3.1 concludes by applying the following Lemma, which gives an estimate for how well the 

smoothed out energy increment

e(k)(t) = [(ē − Ek − �Ek)
1/2
+ ∗ ητ̂k

]2

approximates the desired energy increment ẽ(k)(t).

Lemma 3.2. There is a universal constant Ĉ such that

‖e(k)(t) − (ē − Ek − �Ek)+‖C0
t
≤ Ĉ

(
‖ē‖Ċ

γ
t
|τ̂k|γ + �(k)e

1/2
v,(k)eR,(k)|τ̂k|

)
(58)

For now we postpone the proof of Lemma 3.2, which is based on the commutator estimate of [3], and the following 
bound on the derivative of the energy profile of the approximate solution

‖ d

dt
Ek‖C0

t
≤ Ĉ�(k)e

1/2
v,(k)eR,(k) (59)

We will return to the proof of Lemma 3.2 in Section 3.5.
Lemma 3.1 now follows from Lemma 3.2 if we can estimate the right hand side of (58) by O(eR,(k+1)). For the 

second term in (58), recalling |τ̂k| = b�−1
(k)e

−1/2
v,(k) and eR,(k+1) = Z−1eR,(k) = beR,(k) gives

�(k)e
1/2
v,(k)eR,(k)|τ̂k| = eR,(k+1)

For the first term in (58), we want to estimate

|τ̂k|γ = Q(k)eR,(k+1)

Q(k) = |τ̂k|γ
eR,(k+1)

(60)

For k = 0, we established the inequality Q(0) ≤ 1 in line (42). For larger values of k we can decide whether Q(k)

increases in size by calculating

Q(k+1) = (C
−γ

0 Z−2γ Z)Q(k) (61)

Here C0 > 1 is the large constant in Lemma 3.1 for the gain in the frequency level. Recalling now that γ = 1
2 , we see 

that Q(k+1) ≤ Q(k) ≤ 1 for all k, which concludes the proof of Lemma 3.1. �
Given Lemma 3.1, we are now in a position to verify Claims 1, 2 and 3. We start by verifying Claims 1 and 2, 

which will require us to fix our choice of Y .
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3.4.1. Verifying Claims 1 and 2
We now check that Claims 1 and 2 hold provided the constants Y and Z are chosen appropriately. Our proof of 

Claims 1 and 2 will proceed by induction, and it will be necessary to couple these claims together in the argument in 
order to close the induction. For simplicity, we will suppress the dependence of constants on the norm ‖ē‖Ċ

γ
t

in what 
follows.

Let k ≥ 0. To confirm Claims 1 and 2, we must verify that

ē(t) − Ek+1(t) ≥ 0 for t ∈ R, (62)

ē(t) − Ek+1(t) ≥ 3KeR,(k+1) for t ∈ I (2θ(k+1); I(k+1)), (63)

suppv(k+1) ∪ suppp(k+1) ∪ suppR(k+1) ⊆ I(k+1) ×T
3, (64)

I(k) ⊆ I(k+1) (65)

hold under the induction hypothesis that (62)–(65) hold for k replacing k + 1. In the base case of the iteration (i.e. 
k + 1 = 0), the requirements (62)–(64) are satisfied trivially, as I(0) = ∅ and E0(t) = 0, while the containment (65)
imposes no restriction. We now consider the case k + 1 > 0.

Recall that in (43), we defined

I(k+1) = I (2τ̂k; {t ∈ R : ē(t) − Ek(t) ≥ �Ek}).
We begin by checking the containment (65). Let t0 be an element of I(k). By inequality (63) for k, we have that 

ē(t0) − Ek(t0) ≥ 3KeR,(k). Recalling that �Ek = YeR,(k+1) = Y
eR,(k)

Z
, we have that t0 ∈ I(k+1) as long as we impose 

the condition (45) on our choice of Z, which implies Z ≥ 2K−1Y ≥ (3K)−1Y . Assuming this restriction, we have 
that I(k) ⊆ I(k+1).

We next verify the containment (64) for k + 1. Observe that the definition of I(k+1) implies

I (τ̂k; supp e(k)) ×T
3 ⊆ I(k+1) ×T

3, (66)

where e(k) is defined by e1/2
(k) (t) := (ē(t) − Ek(t) − �Ek)

1/2 ∗ ητ̂k
. By the containment (21) of Lemma 2.1, the con-

tainment (66), and recalling our choice of τ̂k , we obtain

suppR(k) ⊆ I(k+1) ×T
3, suppV(k) ∪ suppP(k) ⊆ I(k+1) ×T

3. (67)

From the definition of (v(k+1), p(k+1)) = (v(k) + V(k), p(k) + P(k)), it follows that (64) holds for k + 1.
We now prove that (62) holds for k + 1 under the assumption that (63) holds for k + 1. From the definition of 

v(k+1) = v(k) + V(k) and the containment (67), it follows that

ē(t) − Ek+1(t) = ē(t) − Ek(t) ≥ 0 for t /∈ I(k+1), (68)

since t /∈ I(k+1) implies that Ek+1(t) =
∫ |v(k) + V(k)|2(t, x) dx = ∫ |v(k)|2(t, x)dx = Ek(t). Under the assumption 

that (63) holds for k + 1, we also have the inequality (62) for t ∈ I(k+1), which confirms (62) for k + 1.
To complete proof of Claims 1 and 2, it only remains to establish (63) for k + 1, for an appropriate choice of Y

(independent of k, of course). First observe that for t ∈ I(k+1), we have by Lemma 3.1

ē(t) − Ek+1(t) = �Ek + O(eR,(k+1)) ≥ (Y − C)eR,(k+1), (69)

where C ≥ 0 is a constant independent of k. Now let t ∈ I (2θ(k+1); I(k+1)). Writing t in the form t = t ′ + �t where 
t ′ ∈ I(k+1) and |�t | ≤ 2θ(k+1), we have

ē(t) − Ek+1(t) = ē(t ′) − Ek+1(t
′) + (ē(t) − ē(t ′)) − (Ek+1(t) − Ek+1(t

′))

≥
(
Y − C − 2γ ‖ē‖Ċ

γ
t

θ
γ

(k+1)

eR,(k+1)

− Ĉ�(k+1)e
1/2
v,(k+1)2θ(k+1)

)
eR,(k+1)

where we used (69), Hölder continuity of ē and (59) on the last line. We bound the last term from below by 
−2ĈeR,(k+1), recalling the identity θ(k+1) = �−1

(k+1)e
−1/2
v,(k+1). The third term is bounded by

θ
γ

/eR,(k+1) = Zγ−1Q(k+1) ≤ 1,
(k+1)
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which follows from the iteration rules, the definitions (31) and (60) of θ(k) and Q(k), the choices of Z ≥ 1, Q(0) ≤ 1, 
and the fact that γ − 1 = − 1

2 < 0. From these estimates we arrive at

ē(t) − Ek+1(t) ≥ (Y − C − 2γ ‖ē‖Ċ
γ
t

− 2Ĉ)eR,(k+1) for t ∈ I (2θ(k+1); I(k+1)) (70)

Choosing Y ≥ C + 2γ ‖ē‖Ċ
γ
t

+ 2Ĉ + 3K , the desired statement (63) follows.

3.4.2. Verifying the upper bound Claim 3
We now verify the upper bound in Claim 3 for stage k + 1, and in the process we specify the constant M for this 

upper bound. This estimate follows quickly from Lemma 3.1 now that the constant Y has already been chosen and we 
have the lower bound ē(t) − Ek+1(t) ≥ 0 from Claim 2. The proof splits into two cases. In the first case, we consider 
t for which ē(t) − Ek − �Ek ≥ 0. In this case, Lemma 3.1 gives

ē(t) − Ek+1(t) = ē − Ek − (ē − Ek − �Ek)+ + O(eR,(k+1)) (71)

= �Ek + O(eR,(k+1)) = YeR,(k+1) + O(eR,(k+1)) (72)

where the constant in the O( ) notation is universal. In particular, we have (38) on this set.
For other values of t , we have an upper bound ē(t) − Ek < �Ek . In this case, Lemma 3.1 gives the same upper 

bound

ē(t) − Ek+1(t) = ē − Ek − (ē − Ek − �Ek)+ + O(eR,(k+1)) (73)

≤ �Ek + O(eR,(k+1)) = YeR,(k+1) + O(eR,(k+1)) (74)

Recalling that the constant in the O( ) notation is universal, the above bound depends only on Y .
We now choose the constant M in Claim 3 depending on Y such that the estimates (72)–(74) hold. This choice 

of M together with the estimate (44) now determine the constant M in our applications of Lemma 2.1.
With this bound, we have established Claim 3, which concludes our proof of Theorem 3.1. The last remaining 

detail is to establish the Lemma 3.2, which had been used in the proof of Lemma 3.1. We accomplish this step in 
Section 3.5 below.

3.5. Proof of Lemma 3.2

In this Section, we complete the proof of Theorem 3.1 by establishing Lemma 3.2.
The main idea is to decompose the difference into two terms

e(k)(t) − (ē − Ek − �Ek)+ = TI + TII (75)

TI = [(ē − Ek − �Ek)
1/2
+ ∗ ητ̂k

]2 − (ē − Ek − �Ek)+ ∗ ητ̂k
(76)

TII = (ē − Ek − �Ek)+ ∗ ητ̂k
− (ē − Ek − �Ek)+ (77)

We can then establish the estimate of Lemma 3.2 for each term individually using the estimates

|ē(t + �t) − ē(t)| ≤ ‖ē‖Ċ
γ
t
|�t |γ

|Ek(t + �t) − Ek(t)| ≤ Ĉ�(k)e
1/2
v,(k)eR,(k)|�t | (78)

To obtain the second estimate involving Ek in (78), we apply an observation in [1], which is that this bound can be 
obtained from the Euler–Reynolds equations in the same way that one usually proves conservation of energy for Euler.

d

dt
Ek = d

dt

∫
T3

|v(k)|2(t, x)dx =
∫
T3

v(k),l∂jR
jl

(k)dx (79)

= −
∫
T3

∂j v(k),lR
jl

(k)dx (80)

The desired bound for the term TII
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‖TII‖C0
t
≤ Ĉ

(
‖ē‖Ċ

γ
t
|τ̂k|γ + �(k)e

1/2
v,(k)eR,(k)|τ̂k|

)
(81)

now follows easily from (78), where Ĉ is some constant depending on the volume of the torus T3.
We now show that the bounds in (78) also imply the same estimate for the term TI . The main idea is to view the 

difference TI as a quadratic commutator term as in the well-known commutator estimate of [3] (i.e. the term can be 
written in the form f ∗ ηεg ∗ ηε − (fg) ∗ ηε for the appropriate functions f and g and the appropriate mollifying 

kernel ηε). Setting ê1/2
(k) (t) = (ē(t) − Ek(t) − �Ek)

1/2
+ , this commutator structure allows us to write the term TI as

TI =
∫
R

(
ê

1/2
(k) (t + τ) − ητ̂k

∗ ê
1/2
(k) (t)

)2
ητ̂k

(τ )dτ (82)

We first estimate the integrand of (82) pointwise at each fixed value of τ ∈R. We begin with the elementary inequality

|(y + �y)
1/2
+ − (y)

1/2
+ | ≤ |�y|1/2 for all y,�y ∈ R.

Taking y = ē(t) + Ek(t) − �Ek and y + �y = ē(t + τ) + Ek(t + τ) − �Ek in the above inequality, we apply the 
bounds in (78) to obtain the estimate

|ê1/2
(k) (t + τ) − ê

1/2
(k) (t)| ≤ Ĉ1/2

(
‖ē‖Ċ

γ
t
|τ |γ + �(k)e

1/2
v,(k)eR,(k)|τ |

)1/2

for all τ ∈ R. From the above estimate on the modulus of continuity of ê1/2
(k) and the containment suppητ̂k

⊆ {τ ∈
R : |τ | ≤ τ̂k}, it is now straightforward to estimate the integrand of (82) pointwise, and to obtain the desired 
bound (81) for the term TI . This bound concludes the proof of Lemma 3.2.

3.6. Proof of Theorem 3.1: summary

In this Section, we summarize the proof of Theorem 3.1, and clarify the logical order in which the parameters 
involved in proving these claims are chosen. What we have shown in Sections 3.2–3.5 above is the following statement:

Proposition 3.1 (Summary of the iteration). Given a positive number α < α∗ = 1/5, an open interval I ⊆ R, a com-
pactly supported, non-negative function ē(t) ∈ C

γ
t (I ), γ = 2α∗

1−α∗ = 1
2 , and a real number B > 0 that bounds the 

Hölder semi-norm ‖ē‖Ċ
γ
t

from above, there exist:

• Non-negative constants M, C0 and Z;
• A sequence of parameters (�(k), ev,(k), eR,(k)), �(k) ≥ 2, ev,(k), eR,(k) ≥ 0;
• A sequence of Euler–Reynolds flows (v(k), p(k), R(k));
• A sequence of subsets I(k) ⊆ I ,

such that

• The iteration rules (28)–(30) relating (�(k), ev,(k), eR,(k)), C0 and Z hold for all k ≥ 0.
• The frequency energy levels of (v(k), p(k), R(k)) are below (�(k), ev,(k), eR,(k)) to order 2 in C0.
• The sequence (v(k), p(k)) converges in Cα

t,x × C2α
t,x(I ×T

3) to a solution of incompressible Euler.
• The containment suppv(k) ∪ suppp(k) ∪ suppR(k) ⊆ I(k) ×T

3 holds as stated in (32).
• The containment I(k) ⊆ I(k+1) holds as stated in (33) for all k ≥ 0.
• For Ek(t) = 1

2

∫
T3 |v(k)|2(t, x)dx, the inequalities (36), (37) and (38) which relate the functions ē(t), Ek(t) to the 

sets I(k) and the parameters M , Z, and (�(k), ev,(k), eR,(k)) hold for all k ≥ 0.

The proof of Proposition 3.1 involves the introduction of a parameter Y which is used to define the energy in-

crements e(k)(t) during the iteration. We also define a parameter b = Z−1 and time scales θ(k) = �−1
(k)

e
−1/2
v,(k)

and 

τ̂k = Z−1�−1e
−1/2 for ease of notation.
(k) v,(k)
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In the base case of the iteration (Section 3.2), we choose the initial Euler–Reynolds flow to be (v(0), p(0), R(0)) =
(0, 0, 0), and I(0) = ∅, while the initial energy level eR,(0) is chosen to depend only on the norm ‖ē(t)‖C0

t
. At this 

point the parameters (�(0), ev,(0)) remain unspecified as they will depend on the choice of Z. The reason for this 
dependence is that we desire a sharp time scale in the first stage of the iteration, and this goal is accomplished by 
taking a large value of Z.

The parameter Y appearing in (39) is the next parameter specified. This parameter is chosen at the end of Sec-
tion 3.4.1. The choice of Y depends only on: certain universal constants C and Ĉ appearing in Lemma 3.1 and 
Section 3.5 where Lemma 3.2 is proven; the universal constant K from the construction; and the upper bound 
(B above) for the Ċγ

t Hölder semi-norm of ē.
The constant M in Claim 3 is the next parameter to be specified. This constant depends on the parameter Y and the 

other absolute constants from the Lemmas in Section 3.4. The choice of M is made in Section 3.4.2. With the constant 
M determined, the sequence of upper bounds

∥∥∥∥(
d

dt

)r

e
1/2
(k)

∥∥∥∥
C0

t

≤ A(Z�(k)e
1/2
v,(k)

)r [MeR,(k)]1/2, 0 ≤ r ≤ 2 (83)

stated on the right hand side of (44) are fully determined up to the choice of Z and the determination of C0. (In this 

equation, we have substituted Z for b−1 in order to distinguish the b in the definition of τ̂k and the parameter 
(

e
1/2
v

e
1/2
R N

)
appearing in Lemma 2.1.)

We choose C0 to be the constant whose existence is asserted by Lemma 2.1 with L = 2 and M = AM
1/2

.
With C0 chosen, it is possible to determine the appropriate choice of Z subject to some requirements. First, Z

is sufficiently large depending on α, C0 and other absolute constants to ensure Cα
t,x × C2α

t,x convergence of the se-
quence (v(k), p(k)). More precisely, Z is chosen sufficiently large so that the sequence of bounds on the Cα

t,x × C2α
t,x

norms of the corrections which result from the iteration will be summable. Furthermore, Z satisfies the requirements 
Z ≥ 2K−1Y coming from (45).

With the constants C0 and Z determined, the full sequence of parameters (�(k), ev,(k), eR,(k)) along with the time 
scales θ(k), τ̂k are determined by induction according to the iteration rules (28)–(30), and the initial choice of ev,(0) =
ZeR,(0) and �(0) made in (42). The energy increment e1/2

(0)
(t) = (ē(t) − YeR,(0))

1/2
+ ∗ ητ̂0 for initializing the iteration 

has also been determined (it is possible that e(0)(t) = 0). The set I(1) := I (2τ̂0; {t ∈ R : ē(t) ≥ Y
Z

eR,(0)}) has also been 
determined according to (43) (it is possible that I(1) is empty).

With these parameters, we generate a sequence of Euler–Reynolds flows (v(k), p(k), R(k)) by repeated application 
of Lemma 2.1. This iteration simultaneously generates a function e(k)(t) and a set I(k) ⊆ R associated to each Euler 
Reynolds flow (v(k), p(k), R(k)) according to the formulas (41) and (43). The assumption that ē has compact support 
in I together with inequality (37) imply by induction that I(k) ⊆ I for all k ≥ 0. Lemma 2.1 is applied in each stage 
choosing L = 2 and the parameter M to be the constant AM . In each stage, we take5 N = Z5/2, and define the energy 
increment e(k)(t) according to (41).

Our choices of parameters have been made such that both N = Z5/2 and e(k)(t) defined in (43) are admissible 
according to the requirements N ≥ (ev,(k)/eR,(k))

3/2, (8) and (9). The requirement N ≥ (ev,(k)/eR,(k))
3/2 follows 

by induction from the parameter evolution rules. To verify the estimates in (9), we must check that the factor of Z

appearing in the right hand side of inequality (83) is no larger than the loss of the factor b−1 =
(

e
1/2
v

e
1/2
R N

)−1/2

(k)

allowed 

by the Lemma. From the parameter evolution rules, it follows by induction that this factor is equal to Z for all k. 
It follows by induction that the admissibility condition (9) is satisfied for all indices k under the assumption that 
inequality (83) holds. In Section 3.3, we verify that the inequality (83) holds for the sequence of functions e(k)(t)

using the inductive Claim 3. In Section 3.3, we also verify the required lower bound (8) of Lemma 2.1 using the 
inductive Claims 1–2.

5 We remark that in principle N could be allowed to depend on the stage k, as was the case in [7].
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3.7. Extending Theorem 3.1 to Theorem 1.1

Having concluded the proof of Theorem 3.1, we outline how our argument above extends to establish the additional 
statements in Theorem 1.1. We address the additional technical issues involved in the nonperiodic case in Section 3.8.

We first observe that the ideas of our proof of the case γ = 1
2 in Theorem 3.1 can be extended to give solutions 

v ∈ Cα
t,x with prescribed energy profiles ē ∈ C

γ
t having lower regularity 0 < α < α∗ ≤ 1/5, γ = 2α∗

1−α∗ . To achieve this 

result, one can state a variant of Lemma 2.1 where the stress is reduced at an inferior rate of e′
R = b−β e

1/2
v e

1/2
R

N
for some 

β ≥ 1, and the number b−1 is replaced by b−β in all of the estimates. One must also replace the smallness factor b in 
the enlargement of the time support by the smaller factor bβ . In this case, the same argument establishes Theorem 3.1
with lesser regularity. The crucial point at which the exponent γ = 2α∗

1−α∗ comes into play is in the estimate (61), where 
we estimate the difference between the smoothed out energy increment and the desired energy increment. As β tends 
to infinity, the threshold α∗ for the Hölder regularity tends to 0, as does γ = 2α∗

1−α∗ . In the opposite direction, if one 
assumes the same lemma but with 0 ≤ β ≤ 1, then the threshold α∗ would tend to 1/3 while the required regularity 
γ = 2α∗

1−α∗ would tend to 1.
Next, we observe that our solutions with prescribed energy profiles in the class Cγ

t become arbitrarily small in the 
Cα

t,x topology if α < α∗ and γ = 2α∗
1−α∗ when we consider a one-parameter family of energy profiles tending to 0 as 

in the statement of Theorem 1.1. To check this observation, consider the algorithm in the proof of Theorem 3.1, and 
apply this algorithm to an energy profile

ēA(t) = Aē(t) (84)

where A ≤ 1 is some constant. Note that the choice of the constants Y , M and Z in our algorithm do not depend 
on A, but rather depend only on the desired regularity α and possibly on an upper bound for the Ċγ

t semi-norm 
of ē (see Section 3.1). Recall also that the bounds on the Cα

t,x norms of the corrections V(k) decrease exponentially 
by a certain factor for all indices k ≥ 0 thanks to the choice of the parameter Z. Thus, to check that the algorithm 
produces a solution that is arbitrarily small in Cα

t,x as A tends to 0, the key point is to check that the size of the initial 
correction V(0) becomes arbitrarily small in Cα

t,x as the parameter A tends to 0.
To check that this smallness holds, recall from [6, Section 11.4] that the correction obeys the estimate

‖V(0)‖Cα
t,x

≤ C(N(0)�(0))
αe

1/2
R,(0) (85)

The constant C here is universal. The parameters N(0) and �(0) both depend on Z, but we can ignore this dependence 
since Z is fixed. What we consider here is the dependence on A. Recall from Section 3.2 that eR,(0) is propor-
tional to ‖Aē‖C0 , and is therefore proportional to A. The initial frequency level is chosen in Section 3.2 to have size 

�(0) ∼ e
− 1

γ
− 1

2
R,(0) . Our estimate (85) therefore scales as

‖V(0)‖Cα
t,x

� A
1
2 −α( 1

γ
+ 1

2 )

with an implied constant depending on the choices of Y, M and Z. The above bound tends to 0 as A → 0 provided 
γ > 2α

1−α
. Thus, the initial correction V(0), and furthermore the sum of all corrections 

∑∞
k=0 V(k), may be made arbi-

trarily small in Cα
t,x by applying our algorithm to the energy profile Aē(t) with A small and ē ∈ C

γ
t .

Remark. From this calculation, we can view our Theorem 1.1 as providing some evidence for the conjecture in [8]
that irregularity of the energy profile is characteristic of generic solutions to Euler with Hölder regularity strictly 
below 1/3. Here we have shown that, within the range of exponents α < 1/5 and γ > 2α

1−α
, Euler flows which are 

arbitrarily small perturbations of 0 in Cα
t,x can have energy profiles that fail to have Cγ regularity in time. In view 

of [6, Theorem 1.1], it is very likely that our methods show that solutions with such irregular energy profiles can 
approximate any sufficiently smooth solution to Euler in Cα

t,x . We are optimistic that the method of convex integration 
can be extended to make statements about generic Euler flows, at least those with regularity below 1/5.
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3.8. Prescribing the energy profile: the nonperiodic setting

In this Section, we describe how to modify the proof of Theorem 1.1 to construct a Hölder continuous weak solution 
to the Euler equations with a prescribed energy profile in the non-periodic setting. Our main result in this setting is as 
follows.

Theorem 3.2 (Nonperiodic Euler flows with prescribed energy profile). Let α < α∗ ≤ 1/5 and let U be a non-empty 
open subset of R3. Let I ⊆R be a bounded open interval and let ē(t) ≥ 0 be any non-negative function with compact 
support in I which belongs to the class ē(t) ∈ C

γ
t for γ = 2α∗

1−α∗ . Then:

1. There exists a weak solution (v, p) to the Euler equations in the class v ∈ Cα
t,x(R × R

3) with support contained 
in

suppv ∪ suppp ⊆ I × U (86)

such that the energy profile of v is given by∫
R3

|v|2(t, x)dx = ē(t), t ∈R (87)

2. Moreover, one may choose a one parameter family of solutions (vA, pA), 0 ≤ A ≤ 1 with the above properties 
such that the energy profile of vA is equal to 

∫
R3 |vA|2(t, x)dx = Aē(t) and such that ‖vA‖Cα

t,x
→ 0 as A → 0.

Proof. Unless otherwise stated, we employ the same notation as in the proof of Theorem 3.1.
We begin with some initial reductions of the theorem. As before, we will only consider the case α∗ = 1/5 and 

γ = 1/2 of the first statement. Extension of this special case to the full statement of Theorem 3.2 proceeds exactly as 
in Section 3.7.

Furthermore, in order to simplify the proof, we will produce a weak solution (v, p) to the Euler equations in 
Cα

t,x(R ×R
3) supported in the space–time cylinder

supp (v,p) ⊆ supp ē × B(2;0), (88)

where B(2; 0) ⊆ R
3 is simply the closed ball of radius 2 centered at the origin. By making straightforward modifi-

cations to the argument below, one can also arrange for the solutions of Theorem 3.2 (v, p) to have spatial supports 
contained in an arbitrarily small open subset U ⊆R

3, as asserted in (86).
Beginning with the trivial solution (v(0), p(0), R(0)) = (0, 0, 0), we will construct a sequence of solutions 

(v(k), p(k), R(k)) to the Euler–Reynolds equations that obeys the following properties:

1. Each solution (v(k), p(k), R(k)) has frequency-energy levels below (�(k), ev,(k), eR,(k)), which evolves under the 
iteration rules (28)–(30); recall that these rules ensure that (v(k), p(k)) converges to a weak solution to the Euler 
equations in Cα

t,x × C2α
t,x for 0 < α < α∗ = 1/5.

2. In addition to keeping track of the time support of the Euler–Reynolds flows (v(k), p(k), R(k)), we now need to 
take into account their supports in space. We will construct sets I(k) ⊆ R, B(k) ⊆ R

3 so that for each k, we have 
the space–time support condition

suppv(k) ∪ suppp(k) ∪ suppR(k) ⊆ I(k) × B(k) (89)

and B(k) ⊆R
3 is an open ball satisfying

B(k) ⊆ B(k+1) ⊆ B(2;0). (90)

The last property ensures that the limiting Euler flow (v, p) obeys (88).
3. Finally, the energy profiles Ek(t) converge pointwise to ē(t) as k → ∞, i.e.,

Ek(t) :=
∫
R3

|v(k)|2(t, x) dx → ē(t) as k → ∞. (91)

This property achieves the desired energy prescription (87).
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As before, we construct the sequence (v(k), p(k), R(k)) via iteration of Lemma 2.1. To this end, we need to choose:

• The initial space–time set I(0) × B(0).
• The initial frequency-energy levels (�(0), ev,(0), eR,(0)).
• The iteration factor Z.
• The energy increment ̃e(k)(t, x) and the space–time set I(k) × B(k) for each k ≥ 0.

We set

I(0) = ∅, B(0) = B(1;0) (92)

Similarly as before, we then take

eR,(0) = A′

|B(1;0)| max
t∈I

ē(t), ev,(0) = ZeR,(0), (93)

where A′ > 0 is an absolute constant that will be specified in (103) below. The iteration factor Z will be chosen so 
that

Z ≥ C
2α
5ε

0 , Z ≥ (2C−1
0 )2/5, (94)

where C0 > 1 is the constant arising in the iteration rule (28). The first condition, which coincides with [6, Sec-
tion 11.4], ensures that the resulting Euler flow (v, p) belongs to C1/5−ε

t,x × C
2/5−2ε
t,x . The second condition will be 

used to control the growth of B(k) defined in (97). We emphasize, however, that the value of Z will be fixed only later. 
Similarly, for �(0), we require

�(0) ≥ max{100, (Z1− 3γ
2 e

−1− γ
2

R,(0) )1/γ }, (95)

but its actual value will be fixed after Z has been chosen. The frequency-energy levels (�(k), ev,(k), eR,(k)) for k ≥ 1
are determined by the iteration rules (28)–(30). Note that by (94), (95) and the iteration rules (see also the proof of (61)
before), we have

Q(k) := |τ̂k|γ
eR,(k+1)

≤ Q(0) ≤ 1. (96)

Now it only remains to specify the space–time sets I(k) × B(k) and the energy density ̃e(k)(t, x). We need ̃e(k)(t, x)

to be admissible in the sense that (8), (9) are satisfied with (�(k), ev,(k), eR,(k)) as specified above. On the other hand, 
we need to ensure that the desired properties (89), (90) and (91) hold with our choice of I(k) × B(k) and ̃e(k)(t, x).

Here, our strategy is to essentially reduce the proof to that of Theorem 3.1. We proceed recursively: Under the 
assumption that I(k) × B(k), v(k), p(k), R(k) have been constructed so that (v(k), p(k), R(k)) has frequency-energy level 
below (�(k), ev,(k), eR,(k)) and (89) is satisfied, we construct appropriate I(k+1) × B(k+1) and ẽ(k). First, we define 
B(k+1) as

B(k+1) := B(10�−1
(k);B(k)) for k ≥ 0 (97)

where B(ρ; S) := {x + �x : x ∈ S, |�x| ≤ ρ}. Since B(0) = B(1; 0), note that each B(j) is a closed ball centered at 
the origin as well; we will denote the radius of B(j) by r(j). By the second condition in (94), (95) and the iteration 
rules, (90) follows. Next, as in the proof of Theorem 3.1, we set

e
1/2
(k) (t) = (ē(t) − Ek(t) − �Ek)

1/2
+ ∗ ητ̂k

(98)

where the gap �Ek now takes the form6

�Ek = YeR,(k+1)|B(k)|, (99)

and Y is a constant to be chosen later. We then take the energy density ̃e1/2
(k) (t, x) to be of the form

6 This definition is exactly analogous to (39), as we assumed |T3| = 1 before.
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ẽ
1/2
(k) (t, x) = e

1/2
(k) (t)χ(k)(x) (100)

where χ(k)(x) is a smooth non-negative function on R3 that obeys

suppχ(k) ⊆ B(5�−1
(k);B(k)), (101)

B(2�−1
(k);B(k)) ⊆ {x ∈R

3 : χ(k)(x) = χ(k)(0)}, (102)∫
χ(k)(x) = 1, |∇mχ(k)| ≤ A′ �m

(k)

|B(k)| for 0 ≤ m ≤ 2, (103)

for some absolute constant A′ > 0. To construct such a function χ(k)(x), consider a smooth radial function η(r) which 
equals 1 on {r ≤ r(k) + 2�−1

(k)} and vanishes on {r ≥ r(k) + 5�−1
(k)}, and then normalize χ(k)(x) = cη(|x|) so that ∫

χ(k) = 1. Finally, the set I(k+1) is defined as

I(k+1) = I (2τ̂k; {t ∈ R : ē(t) − Ek(t) ≥ �Ek}) for k ≥ 0, (104)

where we recall the notation I (τ; J ) = {t + �t : t ∈ J, |�t | ≤ τ }.
The Ansatz (100) reduces the question of admissibility of the energy density ̃e(k)(t, x) to that of the energy profile 

e(k)(t), which we have dealt with in the proof of Theorem 3.1. Indeed, note that

Ĉv(k)
(θ(k),�

−1
(k); suppR(k)) ⊆ I (θ(k); I(k)) × B(�−1

(k);B(k))

which follows from suppv(k) ∪ suppR(k) ⊆ I(k) ×B(k) (i.e., (89) for k) and by the definition of Eulerian cylinders (see 
Definition 2.2). Hence, the desired lower bound (8) follows (using (102)) once we prove the bound e(k)(t)χ(k)(0) ≥
2KeR,(k) for t ∈ I (θ(k); I(k)). Using (103), we can further reduce (8) to the following lower bound on e(k)(t):

e(k)(t) ≥ 2K|B(k)|
A′ eR,(k), t ∈ I (θ(k); I(k)). (105)

Next, by (101) and (102), we have

suppv(k) ∩ supp∇χ(k) = ∅, (106)

which implies

∇m(∂t + v(k) · ∇)r ẽ
1/2
(k) (t, x) = (

d

dt
)re

1/2
(k) (t)∇mχ(k)(x). (107)

Hence, by (103), the desired upper bound (9) for ̃e1/2
(k) (t, x) with L = 2 follows once M is chosen to be such that

‖( d

dt
)re

1/2
(k) ‖C0

t
≤ M

A′ (b
−1�(k)ev,(k))

re
1/2
R,(k), 0 ≤ r ≤ 1. (108)

Repeating the arguments in the proof of Theorem 3.1, the following analogues of Claims 1, 2 and 3 can be estab-
lished using induction (note that (93) ensures that these claims hold for k = 0):

Claim 4 (Growing supports). For all k ≥ 0, we have

suppv(k) ∪ suppp(k) ∪ suppR(k) ⊆ I(k) × B(k) (109)

I(k) ⊆ I(k+1) (110)

B(1,0) ⊆ B(k) ⊆ B(k+1) ⊆ B(2,0) (111)

Claim 5 (There is always room to add more energy where the error is supported). For every t ∈R, we have

ē(t) − Ek(t) ≥ 0. (112)

Moreover, for t ∈ I (2θ(k); I(k)), we have

ē(t) − Ek(t) ≥ 3K

A′ eR,(k)|B(k)|, (113)

where K is the constant in the lower bound (8) of Lemma 2.1, A′ is the constant in (103).
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Claim 6 (The energy threshold is nearly saturated). There is an absolute constant M such that the upper bound

sup
t

|ē(t) − Ek(t)| ≤ MeR,(k)|B(k)| (114)

holds uniformly.

We remark that the factors of |B(k)| on the right-hand sides of (113) and (114) ensure that these estimates are 
dimensionally correct; note that in (37) and (38), we had |T3| = 1. The presence of the factor |B(k)| does not cause any 
significant modification of the proof, as |B(k)| is bounded from below and above by absolute constants by construction, 
i.e., |B(1; 0)| ≤ |B(k)| ≤ |B(2; 0)|. The absolute constant A′ > 0 in (113) does not introduce any difficulty as well. 
It is in the proof of these claims that the constant Y > 0 in (99) is fixed, and the iteration constant Z is required to be 
even larger depending on Y . We omit the routine modifications.

We are now ready to conclude the proof of Theorem 3.2. Arguing as in the proofs of (48) and (44), the desired 
estimates (105) and (108) (with a constant M > 0 independent of k) for e(k)(t) follow from Claims 4, 5 and 6 once 
Z is chosen to be sufficiently large. Hence Lemma 2.1 (with L = 2) can be applied to (v(k), p(k), R(k)) to produce 
(v(k+1), p(k+1), R(k+1)) with frequency-energy levels below (�(k+1), ev,(k+1), eR,(k+1)). The support property (89) for 
(v(k+1), p(k+1), R(k+1)) follows from (21), and (91) is a quick consequence of (114). �
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