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Abstract

We consider the defocusing quintic nonlinear Schrödinger equation in four space dimensions. We prove that any solution that 
remains bounded in the critical Sobolev space must be global and scatter. We employ a space-localized interaction Morawetz 
inequality, the proof of which requires us to overcome the logarithmic failure in the double Duhamel argument in four dimensions.
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1. Introduction

We consider the defocusing quintic nonlinear Schrödinger equation (NLS) in four space dimensions:{
(i∂t + �)u = |u|4u
u(0) = u0 ∈ Ḣ

3
2
x (R4),

(1.1)

with u : Rt × R4
x → C. The equation (1.1) is called Ḣ

3
2
x -critical because the rescaling that preserves the class of 

solutions, namely u(t, x) �→ λ
1
2 u(λ2t, λx), leaves invariant the Ḣ

3
2
x -norm of the initial data.

We prove that any solution to (1.1) that remains bounded in the critical Sobolev space, namely Ḣ
3
2
x (R4), must be 

global and scatter. In [29], we proved the analogous statement for (1.1) with the nonlinearity |u|pu for 2 < p < 4. In 
this paper, we treat the endpoint p = 4, where the techniques in [29] break down.

We start with some definitions. A function u : I ×R4 → C is a solution to (1.1) if it belongs to CtḢ
3
2
x (K ×R4) ∩

L12
t,x(K ×R4) for any compact K ⊂ I and obeys the Duhamel formula
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u(t) = ei(t−t0)�u(t0) − i

t∫
t0

ei(t−s)�(|u|4u)(s) ds

for each t, t0 ∈ I . We call I the lifespan of u. We call u a maximal-lifespan solution if it cannot be extended to any 
strictly larger interval. We call u global if I =R.

We define the scattering size of a solution u : I ×R4 → C by

SI (u) :=
∫∫

I×R4

|u(t, x)|12 dx dt.

If there exists t0 ∈ I such that S[t0,sup I )(u) = ∞ we say that u blows up forward in time. If there exists t0 ∈ I such 
that S(inf I,t0](u) = ∞ we say that u blows up backward in time.

If u is global and obeys SR(u) < ∞, then standard arguments show that u scatters, that is, there exist u± ∈ Ḣ
3
2
x (R4)

such that

lim
t→±∞‖u(t) − eit�u±‖

Ḣ
3
2

x (R4)

= 0.

Our main result is the following theorem.

Theorem 1.1. Suppose u : I ×R4 →C is a maximal-lifespan solution to (1.1) such that u ∈ L∞
t Ḣ

3
2
x (I ×R4). Then u

is global and scatters, with

SR(u) ≤ C
(‖u‖

L∞
t Ḣ

3
2

x (R×R4)

)
for some function C : [0, ∞) → [0, ∞).

The motivation for Theorem 1.1 comes from the global well-posedness and scattering results for the mass- and 
energy-critical NLS. In space dimension d , the equation (i∂t + �)u = ±|u|pu is mass-critical for p = 4

d
and energy-

critical for p = 4
d−2 . These cases are distinguished by the presence of a conservation law at the critical regularity. For 

the mass-critical case, the critical space is L2
x(R

d), and the conserved quantity is the mass:

M[u(t)] :=
∫
Rd

|u(t, x)|2 dx.

For the energy-critical case, the critical space is Ḣ 1
x (Rd), and the conserved quantity is the energy:

E[u(t)] :=
∫
Rd

1
2 |∇u(t, x)|2 ± 1

p+2 |u(t, x)|p+2 dx.

For the defocusing mass- and energy-critical NLS, arbitrary initial data in the critical space lead to global solutions 
that scatter; in the focusing case, scattering below the ‘ground state’ has been proven for all cases except the non-radial 
energy-critical problem in three dimensions [2,8–13,15,18,22,24,26,27,33,36–40]. A major obstacle to solving these 
problems was the lack of any monotonicity formulae (i.e. Morawetz estimates) that scale like the mass or energy. The 
key breakthrough was the induction on energy method of Bourgain [2]: by finding solutions that concentrate on a 
characteristic length scale (and hence break the scaling symmetry of the equation), the available Morawetz estimates 
can be brought back into the picture, despite their non-critical scaling. These ideas and techniques have been developed 
extensively in the setting of concentration compactness and minimal counterexamples, as in the pioneering work of 
Kenig and Merle [18].

A key ingredient for the mass- and energy-critical problems is the a priori uniform control over solutions in the 
critical Sobolev space afforded by conservation laws. For the case of NLS at ‘non-conserved critical regularity’, one 
has no such a priori control; however, the success of the techniques developed to treat the mass- and energy-critical 
problems suggests that this should be the only missing ingredient for a proof of global well-posedness and scattering. 
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Indeed, previous works have shown that critical Ḣ s
x -bounds imply scattering for NLS for a range of dimensions and 

nonlinearities [19,23,29–32,42]. In [29], the authors treated energy-supercritical nonlinearities in four space dimen-
sions, specifically, |u|pu for 2 < p < 4. In this paper, we address the endpoint p = 4.

1.1. Outline of the proof of Theorem 1.1

We argue by contradiction, supposing that Theorem 1.1 fails. As standard local well-posedness results (via 
Strichartz estimates and contraction mapping, cf. [4,5,25]) give global existence and scattering for sufficiently small 
initial data, we deduce the existence of a critical threshold, below which Theorem 1.1 holds but above which we can 
find solutions with arbitrarily large scattering size. By a limiting argument (see below), we deduce the existence of 
minimal counterexamples, that is, blowup solutions living at the threshold. As a consequence of minimality, these 
counterexamples have good compactness properties, specifically, almost periodicity modulo the symmetries of the 
equation.

Definition 1.2 (Almost periodic). A solution u : I × R4 → C to (1.1) is almost periodic (modulo symmetries) if 

u ∈ L∞
t Ḣ

3
2
x (I × R4) and there exist functions N : I → R+, x : I → R4, and C : R+ → R+ such that for t ∈ I and 

η > 0, ∫
|x−x(t)|> C(η)

N(t)

||∇| 3
2 u(t, x)|2 dx +

∫
|ξ |>C(η)N(t)

|ξ |3 |̂u(t, ξ)|2 dx < η.

We call N(·) the frequency scale, x(·) the spatial center, and C(·) the compactness modulus.

Remark 1.3. Equivalently, u : I ×R4 →C is almost periodic if and only if

{u(t) : t ∈ I } ⊂ {λ 1
2 f (λ(x + x0)) : λ ∈ (0,∞), x0 ∈R4, f ∈ K}

for some compact K ⊂ Ḣ
3
2
x (R4). From this, we can deduce that there also exists c : R+ → R+ such that

‖|∇| 3
2 u≤c(η)N(t)‖L∞

t L2
x(I×R4) < η. (1.2)

The first major step in the proof of Theorem 1.1 is the following.

Theorem 1.4 (Reduction to almost periodic solutions). If Theorem 1.1 fails, then there exists a maximal-lifespan 
solution u : I ×R4 →C to (1.1) that is almost periodic and blows up in both time directions.

As mentioned above, almost periodic solutions are constructed via a limiting argument as minimal blowup solu-
tions. The argument, which has its origin in work of Keraani [20,21], is now considered fairly standard in the field 
of dispersive equations at critical regularity [18,19,22–25,27,30,31,37]. The argument relies on three main ingredi-
ents: a linear profile decomposition for eit� [1,3,20,28,34], a stability theory for the nonlinear equation (similar to the 
local theory), and a decoupling statement for nonlinear profiles. Roughly speaking, decoupling means that one can 
solve the equation (approximately) by decomposing the initial data into profiles, evolving each profile by the nonlin-
ear equation, and then recombining the nonlinear profiles. This step relies essentially on an orthogonality property 
satisfied by the profiles. In the presence of a non-integer number of derivatives and/or non-algebraic nonlinearities, 
the decoupling step necessitates some additional technical arguments. By now, technology exists to treat a range of 
these situations [16,19,23,30,31]. The necessary arguments for our setting may be found in [23], which treats general 
energy-supercritical NLS. For a good introduction to concentration compactness techniques in the dispersive setting, 
we refer the reader to [25,41].

We next discuss some further properties of almost periodic solutions. First, the frequency scale obeys the following 
local constancy property (cf. [25, Lemma 5.18]).
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Lemma 1.5 (Local constancy). If u : I × R4 → C is a maximal-lifespan almost periodic solution, then there exists 
δ = δ(u) > 0 such that for t0 ∈ I we have

[t0 − δN(t0)
−2, t0 + δN(t0)

−2] ⊂ I,

with N(t) ∼u N(t0) for |t − t0| ≤ δN(t0)
−2.

In particular, modifying the compactness modulus by a multiplicative factor, we may divide the lifespan I into 
characteristic subintervals Jk on which we can take N(t) ≡ Nk for some Nk , with |Jk| ∼u N−2

k .

Lemma 1.5 provides information about the behavior of the frequency scale at blowup (cf. [25, Corollary 5.19]):

Corollary 1.6 (N(t) at blowup). Let u : I ×R4 → C be a maximal-lifespan almost periodic solution to (1.1). If T is 
a finite endpoint of I then N(t) �u |T − t |− 1

2 .

We can also relate the frequency scale to the Strichartz norms of an almost periodic solution.

Lemma 1.7. Let u : I ×R4 →C be a nonzero almost periodic solution to (1.1). Then∫
I

N(t)2 dt � ‖|∇| 3
2 u‖2

L2
t L

4
x
�

∑
M

‖|∇| 3
2 uM‖2

L2
t L

4
x
�u 1 +

∫
I

N(t)2 dt

To prove Lemma 1.7, we may adapt the proof of [25, Lemma 5.21], making use of the Strichartz estimate below 
(Proposition 2.3). Briefly, 

∫
I
N(t)2 dt counts the number of characteristic subintervals in I , while the Strichartz norm 

is ∼u 1 on each such subinterval.
We now refine the class of almost periodic solutions that we consider. By rescaling arguments as in [22,24,37], we 

can guarantee that the almost periodic solutions we consider do not escape to arbitrarily low frequencies on at least 
half of their maximal lifespan, say [0, Tmax). Using Lemma 1.5 to divide [0, Tmax) into characteristic subintervals Jk , 
we arrive at the following theorem.

Theorem 1.8 (Further reductions). If Theorem 1.1 fails, then there exists an almost periodic solution u : [0, Tmax) ×
R4 →C to (1.1) that blows up forward in time and satisfies

u ∈ L∞
t Ḣ

3
2
x ([0, Tmax) ×R4). (1.3)

Furthermore, we may write [0, Tmax) = ∪kJk , where

N(t) ≡ Nk ≥ 1 for t ∈ Jk, with |Jk| ∼u N−2
k . (1.4)

We classify u according to the following two scenarios:

Tmax∫
0

N(t)−3 dt < ∞ (rapid frequency-cascade solution), (1.5)

Tmax∫
0

N(t)−3 dt = ∞ (quasi-soliton solution). (1.6)

To complete the proof of Theorem 1.1, it therefore suffices to rule out the existence of almost periodic solutions as 
in Theorem 1.8.

The quantity appearing in (1.5) and (1.6) is related to the interaction Morawetz inequality, an a priori estimate for 
solutions to defocusing NLS introduced in [7]. We recall the estimate here in the four-dimensional setting: defining

M(t) =
∫∫

|u(t, y)|2∇a(x − y) · 2 Im(∇u(t, x)ū(t, x)) dx dy, a(x) = |x|,
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one can prove a lower bound for d
dt

M(t) and use the fundamental theorem of calculus to deduce the following 
(see [33], for example):∫

I

∫∫
R4×R4

|u(t, x)|2|u(t, y)|2
|x − y|3 dx dy dt � ‖u‖3

L∞
t L2

x(I×R4)
‖∇u‖L∞

t L2
x(I×R4). (1.7)

A scaling argument suggests that for almost periodic solutions to (1.1), one has

LHS (1.7) ∼u

∫
I

N(t)−3 dt,

which explains the appearance of this quantity in Theorem 1.8. In particular, we expect the interaction Morawetz 
inequality to preclude the possibility of almost periodic solutions satisfying (1.6). We make this heuristic precise in 
Section 5 by proving a space-localized interaction Morawetz inequality, which we then use to preclude quasi-solitons 
(see Proposition 5.13). We need space localization because (1.7) is not directly applicable in our setting; indeed, we 
do not control the H 1

x -norm of the solutions we consider. The proof of the space-localized Morwetz estimate contains 
the main difficulty in this paper compared to our previous work [29].

Spatial truncation in the standard Morawetz weight introduces error terms that must be controlled to arrive at a 
useful estimate. To achieve this, we first prove a ‘long-time Strichartz estimate’, Proposition 3.1, which gives control 
over frequency-localized almost periodic solutions. Such estimates first appeared in the work of Dodson [9], and 
have since appeared in [13,26,29,30,32,40]. In order to be useful for controlling Morawetz error terms, the long-time 
Strichartz estimate needs to exhibit enough gain in the frequency, where the exact gain needed depends on how far the 
critical regularity is from the scaling of the Morawetz inequality.

The strategy employed in our previous work [29] (which treated |u|pu for 2 < p < 4) breaks down at p = 4, 
essentially due to the failure of certain endpoint estimates (such as Sobolev embeddings involving L1

x); see [29, 
Remark 4.4] for a further discussion. This type of difficulty was already encountered by the authors of [26] in the 
setting of the energy-critical NLS in three dimensions. They were able to succeed by proving a ‘maximal’ Strichartz 
estimate, which allowed for control over the worst Littlewood–Paley piece at each point in time. A similar approach 
was also taken in [13]. As in [13,26], we are able to prove a maximal Strichartz estimate (Proposition 2.5) in order to 
exhibit sufficient gain in the long-time Strichartz estimate.

Another key ingredient in the proof of the Morawetz estimate is Proposition 2.6, which is a Strichartz-type estimate 
used to control error terms involving the mass of solutions over balls. Proposition 2.6 is similar to [29, Proposition 2.7], 
which we used in our previous work for exactly the same purpose. These estimates are modeled after [26, Proposi-
tion 3.2]; similar estimates also appear in [13]. The proof of Proposition 2.6, like the proofs of [29, Proposition 2.7]
and [26, Proposition 3.2], is based on the double Duhamel argument, which has its origin in [8]. It is in the estimation 
of mass over balls that we meet the main new difficulty compared to our previous work [29], as we now explain.

Recall that in [29], we treated nonlinearities |u|pu with 2 < p < 4. To control the mass over balls, we used [29, 
Proposition 2.7] and estimated the nonlinearity by decomposing it (roughly speaking) into low and high frequencies. 

We could estimate the low frequencies in the dual Strichartz space L2
t L

4
3
x ; however, to estimate the high frequencies 

required us to use a space of the form L2
t L

r
x for some 1 < r < 4

3 , where r ↓ 1 as p ↑ 4. For the details, we refer the 
reader to the proof of [29, (6.12)], especially the proof of (6.17) therein. The condition r > 1 was essential in the proof 
of [29, Proposition 2.7] to guarantee the convergence of the integrals appearing in the double Duhamel argument. For 
this reason, the approach in [29] broke down at p = 4.

In this paper, we treat the endpoint p = 4, and in order to control the mass over balls, we need to estimate the 
high frequency contribution of the nonlinearity in L2

t L
1
x . Because we are in four space dimensions, this leads to a 

logarithmic failure in the double Duhamel argument, as was already exhibited in [13]. In particular, as a replacement 
for [29, Proposition 2.7], we prove Proposition 2.6, which allows us to put a portion of the nonlinearity in L2

t L
1
x at the 

cost of a logarithmic loss.
In order to utilize Proposition 2.6 in the context of controlling Morawetz error terms, we need to rescale the 

Morawetz weight by a function of time. This is similar to the approach taken in [13]. Having the Morawetz weight 
depend on time leads to one new error term, which we handle by adapting arguments of Dodson [12,13]. In particular, 
we employ a ‘smoothing algorithm’ to produce a suitable rescaling function, which is closely related to the frequency 
scale function of the solution. See Section 5.2 for more details.
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Finally, we need to overcome the logarithmic loss that arises from the use of Proposition 2.6. We achieve this by 
using an appropriate Morawetz weight and exploiting the fact that (1.1) is energy-supercritical, as we now explain. 
To simplify the exposition, let us ignore the time-dependent rescaling (or, equivalently, consider a ‘true soliton’ with 
N(t) ≡ 1). Inspired by [26], we introduce a weight a such that a = |x| for |x| ≤ R and a is constant for |x| > ReJ , 
where R � 1 and J ∼ logR. In the intermediate region, a satisfies |∂k

r ar | �k J−1r−k . Some error terms do not require 
the use of Proposition 2.6, in which case the factor J−1 provides smallness. For terms requiring Proposition 2.6, the 
factor J−1 cancels the logarithmic loss; however, we still need to exhibit smallness. For very low frequencies, we 
can use almost periodicity, as in (1.2). For the remaining higher frequency terms, we use the fact that the error terms 
involve at most one derivative of the solution, while the equation (1.1) is energy-supercritical; in particular, we control 

the Ḣ
3
2
x -norm of the solution, and hence we can exhibit a gain by using Bernstein’s inequality.

In our previous work [29], we proved a space- and frequency-localized interaction Morawetz inequality; in partic-
ular, we proved an estimate for the high frequencies of the solution only. This introduced even more error terms, as the 
high frequencies alone do not solve (1.1). In this paper, we opt to work with a true solution, which reduces the total 
number of error terms. Of course, we still need to control the low frequencies in the error terms, but we expect the 
low frequencies to be relatively harmless due to (1.4). To control the low frequencies, we use the long-time Strichartz 
estimates along with the following proposition, which gives additional decay in the Lq

x-sense.

Proposition 1.9 (Additional decay, [29]). Suppose u : [0, Tmax) ×R4 → C is an almost periodic solution as in Theo-
rem 1.8. Then

u ∈ L∞
t L

q
x([0, Tmax) ×R4) for all 40

11 < q ≤ 8. (1.8)

To prove Proposition 1.9, one can argue exactly as in [29, Proposition 3.1] (in fact, the algebraic nonlinearity |u|4u
allows for some simplifications). We briefly sketch the ideas here. Defining

fq(N) := N
4
q
− 1

2 ‖uN‖L∞
t L

q
x ([0,Tmax)×R4) (4 < q < 8),

one uses the reduced Duhamel formula, Strichartz, the dispersive estimate, and a suitable decomposition of the non-

linearity to prove a recurrence relation for fq(N). Here N is chosen small enough to guarantee that the L∞
t Ḣ

3
2
x -norm 

of u≤N is small; this is possible because of (1.4). As fq is bounded (by Bernstein and (1.3)), one can combine the 
recurrence relation with an ‘acausal Gronwall inequality’ to deduce the bound

‖uN‖L∞
t L

q
x
�u N

(2− 8
q
)−

for 4 < q < 8 and N small. Interpolation with ‖uN‖L∞
t L2

x
�u N− 3

2 yields

‖uN‖
L∞

t L
40
11 +
x

� N0+

for N small, which implies the result. See [29, Section 3] for more details. This type of argument appears originally 
in [24], where it was combined with the double Duhamel argument (in dimensions d ≥ 5) to prove negative regularity.

The remaining scenario in Theorem 1.8, namely, that of rapid frequency-cascades, is comparatively simple. In 
particular, we use the long-time Strichartz estimate (Proposition 3.1) together with the following reduced Duhamel 
formula to show that such solutions are inconsistent with the conservation of mass.

Proposition 1.10 (Reduced Duhamel formula). Let u : [0, Tmax) ×R4 →C be an almost periodic solution to (1.1) as 
in Theorem 1.8. Then for any t ∈ [0, Tmax),

u(t) = lim
T ↗Tmax

i

T∫
t

ei(t−s)�
(|u|4u)

(s) ds

as a weak limit in Ḣ
3
2
x (R4).
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The reduced Duhamel formula is a robust consequence of almost periodicity; to prove it, one can adapt the proof 
of [25, Proposition 5.23].

We conclude the introduction by noting that while the techniques employed in this paper allow us to treat the 
endpoint missing from [29], proving the analogous result for nonlinearities |u|pu with p > 4 would likely require a 
significantly different strategy. Writing sc = 2 − 2

p
to denote the critical regularity, the difficulty of the case sc = 3

2

treated here compared to the case sc < 3
2 treated in [29] is that it is almost ‘too far’ from the scaling of the interaction 

Morawetz inequality, which scales like sc = 1
4 . We see this in the long-time Strichartz estimate, where we need to 

use the maximal Strichartz estimate and put a portion of the nonlinearity in L2
t L

1
x to get enough gain in frequency. 

Similarly, as described above, to control the Morawetz error terms involving mass over balls requires us to put a 
portion of the nonlinearity in L2

t L
1
x . As the case sc = 3

2 already requires the use of the endpoint L1
x , there is ‘nowhere 

left to go’ if we wish to consider sc > 3
2 . Thus, it seems that to treat this regime will require a new approach.

The rest of this paper is organized as follows. In Section 2, we set up notation and collect some useful lemmas, 
including the Strichartz estimates mentioned above. In Section 3, we prove the long-time Strichartz estimate. In 
Section 4, we preclude the possibility of rapid frequency-cascades. In Section 5, we prove the interaction Morawetz 
inequality and use it to preclude the possibility of quasi-solitons.

2. Notation and useful lemmas

For nonnegative X, Y , we write X � Y to denote X ≤ CY for some C > 0. If X � Y � X, we write X ∼ Y . 
Dependence on certain parameters will be indicated by subscripts; for example, X �u Y means X ≤ CY for some 
C = C(u). Dependence of the estimates on the ambient dimension will not be explicitly indicated. We write Ø(X) to 
denote a finite linear combination of terms that resemble X up to Littlewood–Paley projections, complex conjugation, 
and/or maximal functions.

We write Lq
t Lr

x(I ×R4) for the Banach space of functions u : I ×R4 →C equipped with the norm

‖u‖L
q
t Lr

x(I×R4) :=
(∫

I

‖u(t)‖q

Lr
x(R4)

dt

) 1
q

,

with the usual adjustments if q or r is infinite. When q = r , we write Lq
t L

q
x = L

q
t,x . We write ‖f ‖Lr

x
to denote 

‖f ‖Lr
x(R4). We write r ′ to denote the dual exponent to r , i.e. the solution to 1

r
+ 1

r ′ = 1.

We define the Fourier transform on R4 by

f̂ (ξ) = 1
(2π)2

∫
R4

e−ix·ξ f (x) dx.

For s ∈ R, we define |∇|s to be the Fourier multiplier operator with symbol |ξ |s , and we define the homogeneous 
Sobolev norm Ḣ s

x via ‖f ‖Ḣ s
x

= ‖|∇|sf ‖L2
x
.

2.1. Basic harmonic analysis

Let ϕ be a radial bump function supported on the ball {|ξ | ≤ 11
10 } and equal to 1 on the ball {|ξ | ≤ 1}. For N ∈ 2Z, 

we define the Littlewood–Paley projection operators by

P̂≤Nf (ξ) := f̂≤N(ξ) := ϕ(
ξ
N

)f̂ (ξ),

P̂>Nf (ξ) := f̂>N(ξ) := (
1 − ϕ(

ξ
N

)
)
f̂ (ξ),

P̂Nf (ξ) := f̂N (ξ) := (
ϕ(

ξ
N

) − ϕ(
2ξ
N

)
)
f̂ (ξ).

We also define

PN1<·≤N2 =
∑

N1<N≤N2

PN,

where here and throughout such sums are taken over N ∈ 2Z.
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The Littlewood–Paley operators commute with all other Fourier multiplier operators (such as derivatives and the 
free propagator), as well as the conjugation operation. These operators are self-adjoint and bounded on every Lr

x and 
Ḣ s

x space for 1 ≤ r ≤ ∞ and s ≥ 0. They also obey the following standard Bernstein estimates.

Lemma 2.1 (Bernstein estimates). For 1 ≤ r ≤ q ≤ ∞ and s ≥ 0,∥∥|∇|sP≤Nf
∥∥

Lr
x(R4)

� Ns
∥∥P≤Nf

∥∥
Lr

x(R4)
,∥∥P>Nf

∥∥
Lr

x(R4)
� N−s

∥∥|∇|sP>Nf
∥∥

Lr
x(R4)

,∥∥P≤Nf
∥∥

Lq(R4)
� N

4
r
− 4

q
∥∥P≤Nf

∥∥
Lr

x(R4)
.

We will also need the following fractional chain and product rules from [6].

Lemma 2.2 (Fractional calculus, [6]).

(i) Let s ≥ 0 and 1 < r, rj , qj < ∞ satisfy 1
r

= 1
rj

+ 1
qj

for j = 1, 2. Then∥∥|∇|s(fg)
∥∥

Lr
x
� ‖f ‖

L
r1
x

∥∥|∇|sg∥∥
L

q1
x

+ ∥∥|∇|sf ∥∥
L

r2
x

‖g‖
L

q2
x

.

(ii) Let G ∈ C1(C) and s ∈ (0, 1], and let 1 < r1 ≤ ∞ and 1 < r, r2 < ∞ satisfy 1
r

= 1
r1

+ 1
r2

. Then∥∥|∇|sG(u)
∥∥

Lr
x
� ‖G′(u)‖

L
r1
x

∥∥|∇|su∥∥
L

r2
x

.

2.2. Strichartz estimates

The free Schrödinger propagator eit� =F−1e−it |ξ |2F is given in physical space by

[eit�f ](x) = −1
16π2t2

∫
R4

e
i|x−y|2

4t f (y) dy.

It follows that ‖eit�f ‖L2
x
≡ ‖f ‖L2

x
and the following dispersive estimate holds:

‖eit�f ‖L∞
x (R4) � |t |−2‖f ‖L1

x(R4) for t �= 0.

Interpolation yields

‖eit�f ‖L
q
x(R4) � |t |−2+ 4

q ‖f ‖
L

q′
x (R4)

for 2 ≤ q ≤ ∞ and t �= 0.

These bounds imply the standard Strichartz estimates for eit� [14,17,35]. Arguing as in [8], one can also deduce a 
‘Besov’ version. In particular, we have the following estimates.

Proposition 2.3 (Strichartz, [8,14,17,35]). Let u : I ×R4 → C be a solution to (i∂t + �)u = F . Then for any t0 ∈ I

and any 2 ≤ q, q̃, r, ̃r ≤ ∞ satisfying 2
q

+ 4
r

= 2
q̃

+ 4
r̃

= 2, we have

‖u‖L
q
t Lr

x(I×R4) �
(∑

N

‖uN‖2
L

q
t Lr

x(I×R4)

) 1
2

� ‖u(t0)‖L2
x(R4) + ‖F‖

L
q̃′
t Lr̃′

x (I×R4)
.

As in [8,26], we use this Besov-type Strichartz estimate in order to access the L∞
x endpoint.

Lemma 2.4 (Endpoint estimate). For u : I ×R4 → C,

‖u‖L4
t L

∞
x (I×R4) � ‖|∇| 3

2 u‖
1
2
L∞

t L2
x(I×R4)

(∑
N

‖|∇| 3
2 uN‖2

L2
t L

4
x(I×R4)

) 1
4

.
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Proof. Using Bernstein and Cauchy–Schwarz, we estimate

‖u‖4
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t L
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,

where all space-time norms are over I ×R4. The result follows. �
We next record a ‘maximal’ Strichartz estimate as in [13,26].

Proposition 2.5 (Maximal Strichartz estimate). Let u : I × R4 → C be a solution to (i∂t + �)u = F + G. Then for 
any t0 ∈ I and 4 < q ≤ ∞, we have

‖ sup
N

N
4
q
−2‖PNu(t)‖L

q
x
‖L2

t
� ‖|∇|−1u(t0)‖L2

x
+ ‖|∇|−1F‖

L2
t L

4
3
x

+ ‖G‖L2
t L

1
x
,

where all space-time norms are over I ×R4.

Proof. Beginning with the Duhamel formula

u(t) = ei(t−t0)�u(t0) − i

t∫
t0

ei(t−s)�F (s) ds − i

t∫
t0

ei(t−s)�G(s) ds,

we estimate the first two terms via Bernstein followed by the L2
t L

4
x Strichartz estimate. For the last term, we argue as 

in [13]. For completeness, we include the details here.
We estimate the short-time piece via Bernstein and Strichartz. Letting M denote the Hardy–Littlewood maximal 

function,

N
4
q
−2

∫
|t−s|≤N−2
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q
x
ds � N2
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‖G(s)‖L1
x
ds �M(‖G(·)‖L1

x
)(t),

uniformly in N . For the long-time piece, we use the dispersive estimate, Bernstein, and the fact that q > 4 to estimate

N
4
q
−2

∫
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q
x
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8
q
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x
ds

�
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8
q
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M
−2+ 4

q
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x
ds

�
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N
8
q
−2

M
−1+ 4

q M(‖G(·)‖L1
x
)(t) �M(‖G(·)‖L1

x
)(t),

uniformly in N . The result now follows from the maximal function estimate. �
Finally, we record the following Strichartz-type estimate, which will play an important role in Section 5. This 

estimate is similar to [29, Proposition 2.7]; like that estimate, it is modeled after [26, Proposition 3.2]. In order to 
access the L2

t L
1
x endpoint, however, we must accept a logarithmic loss.
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Proposition 2.6 (Strichartz-type estimate). Let u : I ×R4 →C be a solution to (i∂t + �)u = F + G. Let n : I → R+
and λ : I →R+ satisfy λ(t) > n(t)−1. Then∫

I

sup
x∈R4

∫
|x−y|≤λ(t)

|u(t, y)|2 dy dt � ‖λ‖2
L∞

t

[‖u‖2
L∞

t L2
x
+ ‖F‖2
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4
3
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t
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1
x
+ ‖G‖2

L∞
t L

8
5
x

∫
I

n(t)−3 dt,

where all space-time norms are over I ×R4.

Proof. Defining the weight ω = ω(t, x, y) = e
− |x−y|2

λ(t)2 , it suffices to estimate∫
I

sup
x∈R4

‖u(t)‖2
L2(ω dy)

dt.

For this, we use the double Duhamel trick. That is, we write u in the form

u(t) =
3∑

j=1

aj (t) + b(t) =
3∑

j=1

cj (t) + d(t)

and use the following inequality, which is a consequence of Cauchy–Schwarz:

‖u(t)‖2
L2(ω dy)

�
3∑
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‖aj (t)‖2
L2(ω dy)

+
3∑
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‖cj (t)‖2
L2(ω dy)

+ |〈b(t), d(t)〉L2(ω dy)|.

With I = (t0, t1), we choose our decomposition of u as follows: first,

a1(t) = ei(t−t0)�u(t0) − i

t∫
t0

ei(t−s)�F (s) ds,

a2(t) = −i

t−λ(t)2∫
t0

ei(t−s)�G(s) ds, a3(t) = −i
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and similarly
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c2(t) = i

t1∫
t+λ(t)2
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t
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We first estimate

‖a1(t)‖2
L2(ω dy)

� ‖e
−|·|2
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L4
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y

uniformly in x, so that by Strichartz we have∫
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]
.

We can estimate the contribution of c1 in the same way.
Next, we estimate the long-time piece a2. We have

‖a2(t)‖2
L2(ω dy)

� ‖e
−|·|2
λ(t)2 ‖L1

y
‖a2(t)‖2
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y
� λ(t)4‖a2(t)‖2

L∞
y

uniformly in x. We now use the dispersive estimate to estimate
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y
�
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y
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Thus ∫
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L2(ω dy)
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L2

t L
1
x
.

We can estimate c2 similarly.
For the short-time piece a3, we use Strichartz and Hölder’s inequality to estimate

‖a3(t)‖2
L2(ω dy)
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uniformly in x, so that∫
I

sup
x∈R4
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L2(ω dy)
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L∞
t L

8
5
x

∫
I
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We can estimate c3 similarly.
We now turn to the inner product term. We recall the following estimate from [29, Proposition 2.7], which follows 

from the evaluation of some Gaussian integrals:

sup
x∈R4

‖eit�e
− |x−y|2

λ2 eis�‖L1
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y
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�
∑
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dτ
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y
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� log[n(t)λ(t)] |M(‖G(·)‖L1
y
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uniformly in x. Thus∫
I

sup
x∈R4

|〈b(t), d(t)〉L2(ω dy)|dt � ‖ log(nλ)‖L∞
t

‖G‖2
L2

t L
1
x
.

Collecting the estimates above, we complete the proof. �
3. Long-time Strichartz estimates

In this section we prove a long-time Strichartz estimate for almost periodic solutions to (1.1). Such estimates first 
appeared in the work of Dodson [9], and have since appeared in [13,26,29,30,32,40]. As in [13,26], the long-time 
Strichartz estimate we prove relies on the maximal Strichartz estimate (Proposition 2.5). We use these estimates in 
Section 4, in which we rule out rapid frequency-cascades, as well as in Section 5, in which we prove an interaction 
Morawetz estimate to rule out quasi-solitons.

For u : I ×R4 → C an almost periodic solution to (1.1) as in Theorem 1.8 and 4 < q ≤ ∞, let

A(N) := ( ∑
M≤N

‖|∇| 3
2 uM‖2

L2
t L

4
x(I×R4)

) 1
2 , (3.1)

Bq(N) := N
5
2 ‖ sup

M>N

M
4
q
−2‖uM(t)‖L

q
x(R4)‖L2

t (I ), (3.2)

K :=
∫
I

N(t)−3 dt ∼u

∑
Jk⊂I

N−5
k . (3.3)

The main result of this section is the following proposition.

Proposition 3.1 (Long-time Strichartz estimate). Let u be an almost periodic solution as in Theorem 1.8. Let I ⊂
[0, Tmax) be a compact time interval, which is a contiguous union of characteristic subintervals Jk. For any N > 0
and 4 < q ≤ ∞,

A(N) + Bq(N) �u 1 + N
5
2 K

1
2 . (3.4)

Furthermore, the implicit constant does not depend on I .

Remark 3.2. The proof that we give requires 4 < q < 8; cf. (3.7). As Bernstein implies Bq(N) � Br(N) for q > r , 
we can deduce the result for 8 ≤ q ≤ ∞ a posteriori.

The proof is by induction. The inductive step relies on the following lemma.

Lemma 3.3. Let 0 < η � 1 and 4 < q < 8. For any N > 0 we have

A(N) + Bq(N) �u 1 + C(η)N
5
2 K

1
2 + η[A(2N) + Bq(2N)]. (3.5)

Proof. We take space-time norms over I ×R4 unless stated otherwise.
To begin, note that for any decomposition |u|4u = F + G, we may apply the standard Strichartz estimate (Propo-

sition 2.3) to u≤N , the maximal Strichartz estimate (Proposition 2.5) to u>N , Bernstein, and (1.3) to deduce

A(N) + Bq(N) �u 1 + ‖|∇| 3
2 F‖

L2
t L

4
3
x

+ N
5
2 ‖G‖L2

t L
1
x
.

We choose c = c(η) as in (1.2) and write |u|4u = F + G, with
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F = Ø(u2
≤cN(t)u

2≤2Nu), G = Ø(u2
≤cN(t)u

2
>2Nu) + Ø(u2

>cN(t)u
3).

Using fractional calculus, Sobolev embedding, Lemma 2.4, (1.3), and (1.2), we first estimate

‖|∇| 3
2 (u2

≤cN(t)u
2≤2Nu)‖

L2
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4
3
x

� ‖u≤cN(t)‖L∞
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x
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x
‖|∇| 3
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4
x
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x
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x
‖|∇| 3

2 u‖L∞
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x
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L4
t L

∞
x

�u ηA(2N). (3.6)

Next, as 2 < q < 8 we have 4
q

− 2 < 0 < 4
q

− 1
2 . Thus, defining

S = {(M1,M2,M3) |M1 ≥ M2 ≥ M3, M2 > 2N}
and using Bernstein, Cauchy–Schwarz, and (1.3), we find

‖u2
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2
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t L
1
x
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L∞
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x
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x

� η2
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S
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x
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q
x
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4q
q−4
x

∥∥∥∥
L2

t

� η2
∥∥∥∥∑

S

M
− 3

2
1 M

4
q
− 1

2
3 ‖uM1(t)‖

Ḣ
3
2

x

‖uM2(t)‖L
q
x
‖uM3(t)‖

Ḣ
3
2

x

∥∥∥∥
L2

t

� η2
∥∥∥∥ sup

M>2N

M
4
q
−2‖uM(t)‖L

q
x

∑
M1≥M3

(
M3
M1

)
4
q
− 1

2 −‖uM1(t)‖
Ḣ

3
2

x

‖uM3(t)‖
Ḣ

3
2

x

∥∥∥∥
L2

t

� η2‖|∇| 3
2 u‖2

L∞
t L2

x
N− 5

2 Bq(2N) �u η2N− 5
2 Bq(2N). (3.7)

Finally, restricting attention to an individual characteristic subinterval Jk, we use Sobolev embedding, Bernstein, 
and (1.3) to estimate

‖u2
>cNk

u3‖L2
t L

1
x
� ‖u>cNk

‖2

L4
t L

16
5

x

‖u‖3
L∞

t L8
x
�u ‖|∇| 1

4 u>cNk
‖2

L4
t L

8
3
x

�u C(η)N
− 5

2
k ‖|∇| 3

2 u‖2

L4
t L

8
3
x

.

We now square and sum over Jk ⊂ I , using Lemma 1.7 and (3.3). We find

‖u2
>cN(t)u

3‖L2
t L

1
x
�u C(η)K

1
2 . (3.8)

Collecting our estimates, we complete the proof of Lemma 3.3. �
With Lemma 3.3 in place we can now prove Proposition 3.1.

Proof of Proposition 3.1. We proceed by induction. For the base case, take N ≥ supt∈I N(t). In this case, we first 
use Strichartz (Proposition 2.3) and Lemma 1.7 to estimate

[A(N)]2 �u 1 +
∫
I

N(t)2 �u 1 + N5K.

For Bq(N), we instead use the maximal Strichartz estimate (Proposition 2.5), Lemma 1.7, fractional calculus, 
and (1.3). We find

Bq(N) �u N
5
2
[‖|∇|−1u>N‖L∞

t L2
x
+ ‖|∇|−1P>N

(|u|4u)‖
L2

t L
4
3
x

]
�u 1 + ‖u‖4

L∞
t L8

x
‖|∇| 3

2 u‖L2
t L

4
x
�u 1 + N

5
2 K

1
2 .

If we now suppose that (3.4) holds at frequency 2N , then we can use Lemma 3.3 to show that (3.4) holds at 
frequency N , provided we choose η = η(u) sufficiently small. For the details of such an argument, one can refer to 
[29,30,32,40]. �
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We record here some consequences of Proposition 3.1 to be used in Section 5.

Corollary 3.4. Let u, I be as in Proposition 3.1, with K as in (3.3). Define

Phi = P
>K

− 1
5
, Plo = P≤K

− 1
5
, uhi = Phiu, ulo = Plou. (3.9)

Then

‖|∇| 3
2 ulo‖L3

t,x
+ ‖|∇| 3

2 ulo‖
L4

t L
8
3
x

+ ‖ulo‖L4
t L

∞
x
�u 1, (3.10)

‖ sup
M

M−2‖PMuhi‖L∞
x

‖2
L2

t
�u K, (3.11)

‖∇uhi‖
L12

t L
24
11
x

�u K
1
10 , (3.12)

‖Phi(u
2
lou

3)‖2

L2
t L

4
3
x

�u K
3
5 , ‖u2

hiu
3‖2

L2
t L

1
x
�u K, (3.13)

where all space-time norms are over I ×R4.

Proof. By Proposition 3.1 and the definition of Plo,

‖|∇| 3
2 ulo‖2

L2
t L

4
x
�

∑
M

‖|∇| 3
2 PMulo‖2

L2
t L

4
x
�u 1. (3.14)

Thus (3.10) follows from interpolation, (3.14), (1.3), and Lemma 2.4. The estimate (3.11) also follows immediately 
from Proposition 3.1 (with q = ∞) and the definition of Phi.

Next, by interpolation and Proposition 3.1,

‖∇uhi‖6

L12
t L

24
11
x

� ‖|∇|− 3
2 uhi‖L2

t L
4
x
‖|∇| 3

2 uhi‖5
L∞

t L2
x
�u

∑
N>K

− 1
5

‖|∇|− 3
2 uN‖L2

t L
4
x

�u

∑
N>K

− 1
5

N−3(1 + N5K)
1
2 �u K

3
5 ,

which implies (3.12).
For the first estimate in (3.13), we use Bernstein, estimate as in (3.6), and use Proposition 3.1. For the second 

estimate in (3.13), we estimate as in (3.7) and use Proposition 3.1. �
4. Preclusion of rapid frequency-cascades

In this section, we preclude the existence of almost periodic solutions as in Theorem 1.8 for which (1.5) holds. 
Throughout this section, we denote

K =
Tmax∫
0

N(t)−3 dt < ∞.

We will use the long-time Strichartz estimate (Proposition 3.1) and the reduced Duhamel formula (Proposition 1.10) 
to show that the existence of such solutions is inconsistent with the conservation of mass.

Note that (1.5) implies

lim
t→Tmax

N(t) = ∞. (4.1)

This is clear if Tmax = ∞, while if Tmax < ∞, this follows from Corollary 1.6.

Theorem 4.1 (No rapid frequency-cascades). There are no almost periodic solutions as in Theorem 1.8 such that (1.5)
holds.
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Proof. As K is finite, we can extend the conclusion of Proposition 3.1 to the whole interval [0, Tmax). Throughout 
the proof, all space-time norms are taken over [0, Tmax) ×R4. We proceed in three steps.

Step 1. We show that

‖uN<·≤1‖L∞
t L2

x
+ N− 3

2 A(N) �u 1 (4.2)

uniformly for 0 < N < 1, where A(N) is as in (3.1).
By (1.3), Bernstein, Proposition 3.1, and (1.5), the quantity appearing in (4.2) is finite for each N > 0:

‖uN<·≤1‖L∞
t L2

x
+ N− 3

2 A(N) �u N− 3
2
[
1 + N

5
2 K

1
2
]
< ∞. (4.3)

To begin, the reduced Duhamel formula (Proposition 1.10) and Strichartz imply

LHS (4.2) � ‖PN<·≤1
(|u|4u)‖

L2
t L

4
3
x

+ N− 3
2 ‖|∇| 3

2 P≤N

(|u|4u)‖
L2

t L
4
3
x

.

Now we let η > 0 and choose c = c(η) as in (1.2). To decompose the nonlinearity, we first write u = u≤cN(t) +
u>cN(t) and subsequently u = u≤N + uN<·≤1 + u>1. According to our notation, u≤N and uN<·≤1 are both Ø(u≤1). 
Thus,

|u|4u = Ø(u3u2
>cN(t)) + Ø(u3u2

>1) + Ø(u2u≤cN(t)u
2≤N) + Ø(uu≤cN(t)u

2≤1uN<·≤1).

First, Bernstein, (3.8), and (1.5) imply

‖PN<·≤1(u
3u2

>cN(t))‖
L2

t L
4
3
x

+ N− 3
2 ‖|∇| 3

2 P≤N(u3u2
>cN(t))‖

L2
t L

4
3
x

� (1 + N)‖u3u2
>cN(t)‖L2

t L
1
x
�u C(η)K

1
2 �u 1.

Second, using Bernstein, (1.2), (3.7), Proposition 3.1, and (1.5), we have

‖PN<·≤1(u
3u2

>1)‖
L2

t L
4
3
x

+ N− 3
2 ‖|∇| 3

2 P≤N(u3u2
>1)‖

L4
t L

4
3
x

� (1 + N)‖u3u2
>1‖L2

t L
1
x
� ‖u‖2

L∞
t L8

x
‖u2

>1u‖
L2

t L
4
3
x

�u 1 + K
1
2 �u 1.

Third, Bernstein, fractional calculus, Lemma 2.4, (1.2) and (1.3) give

‖PN<·≤1(u
2u≤cN(t)u

2≤N)‖
L2

t L
4
3
x

+ N− 3
2 ‖|∇| 3

2 P≤N(u2u≤cN(t)u
2≤N)‖

L2
t L

4
3
x

� N− 3
2 ‖u‖L∞

t L8
x
‖|∇| 3

2 u‖L∞
t L2

x
‖u≤cN(t)‖L∞

t L8
x
‖u≤N‖2

L4
t L

∞
x

+ N− 3
2 ‖u‖2

L∞
t L8

x
‖|∇| 3

2 u≤cN(t)‖L∞
t L2

x
‖u≤N‖2

L4
t L

∞
x

+ N− 3
2 ‖u‖3

L∞
t L8

x
‖u≤cN(t)‖L∞

t L8
x
‖|∇| 3

2 u≤N‖L2
t L

4
x
�u ηN− 3

2 A(N).

Finally, by Bernstein, Lemma 2.4, (1.3), (1.2), Proposition 3.1, and (1.5),

‖uu≤cN(t)u
2≤1uN<·≤1‖

L2
t L

4
3
x

+ N− 3
2 ‖|∇| 3

2 P≤N(uu≤cN(t)u
2≤1uN<·≤1)‖

L2
t L

4
3
x

� ‖u‖L∞
t L8

x
‖u≤cN(t)‖L∞

t L8
x
‖u≤1‖2

L4
t L

∞
x

‖uN<·≤1‖L∞
t L2

x

�u η(1 + K
1
2 )‖uN<·≤1‖L∞

t L2
x
�u η‖uN<·≤1‖L∞

t L2
x
.

Collecting our estimates, we find

LHS (4.2) �u 1 + ηLHS (4.2).

Choosing η sufficiently small and recalling (4.3), we recover (4.2).
We record here an important consequence of (4.2), namely

‖u‖L∞L2 �u 1. (4.4)

t x
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Indeed, sending N → 0 in (4.2) one can control the low frequencies, while Bernstein and (1.3) control the high 
frequencies.

Step 2. We upgrade (4.4) to

‖u≤N‖L∞
t L2

x
�u N for N > 0. (4.5)

First, the reduced Duhamel formula (Proposition 1.10) and Bernstein imply

‖u≤N‖L∞
t L2

x
� ‖P≤N

(|u|4u)‖
L2

t L
4
3
x

�N‖|u|4u‖L2
t L

1
x
.

Writing |u|4u = Ø(u3
≤1u

2) + Ø(u2
>1u

3), we then use Lemma 2.4, Bernstein, (1.3), (4.4), Proposition 3.1, (1.5) and 
(3.7) to estimate

‖u3
≤1u

2‖L2
t L

1
x
� ‖u≤1‖2

L4
t L

∞
x

‖u≤1‖L∞
t,x

‖u‖2
L∞

t L2
x
�u 1,

‖u2
>1u

3‖L2
t L

1
x
�u 1.

Step 3. We show ‖u(t)‖L2
x
≡ 0, contradicting that u is a blowup solution.

We first establish some negative regularity: Bernstein, (4.5) and (1.3) imply

‖|∇|− 1
2 u‖L∞

t L2
x
�u ‖|∇|− 1

2 u>1‖L∞
t L2

x
+

∑
N≤1

‖|∇|− 1
2 uN‖L∞

t L2
x

�u ‖|∇| 3
2 u‖L∞

t L2
x
+

∑
N≤1

N
1
2 �u 1. (4.6)

Given η > 0, we choose c = c(η) as in (1.2). Interpolating (4.6) with (1.2) yields

‖P≤cN(t)u‖L∞
t L2

x
�u η

1
4 .

On the other hand, Bernstein and (1.3) give

‖P>cN(t)u‖L∞
t L2

x
� [c(η)N(t)]− 3

2 ‖|∇| 3
2 u‖L∞

t L2
x
�u [c(η)N(t)]− 3

2 .

Choosing η small, sending t → Tmax , and recalling (4.1), we deduce that ‖u(t)‖L2
x
→ 0 as t → Tmax . By conservation 

of mass, it follows that ‖u(t)‖L2
x
≡ 0, as needed. �

5. Preclusion of quasi-solitons

In this section we preclude the possibility of almost periodic solutions to (1.1) such that (1.6) holds. Our main tool 
is a space-localized interaction Morawetz inequality (Proposition 5.13). To control the error terms, we rely first on 
the long-time Strichartz estimate (specifically, Corollary 3.4). We also use Proposition 2.6, which suffers a logarith-
mic loss (cf. Corollary 5.8 below). As explained in the introduction, we overcome this logarithmic loss by using an 
appropriate Morawetz weight and exploiting the energy-supercriticality of (1.1).

The main result of this section is the following theorem.

Theorem 5.1 (No quasi-solitons). There are no almost periodic solutions as in Theorem 1.8 such that (1.6) holds.

Throughout this section, we suppose u : [0, Tmax) × R4 → C is an almost periodic solution as in Theorem 1.8
such that (1.6) holds. We let I ⊂ [0, Tmax) be a compact time interval, which is a contiguous union of characteristic 
subintervals, and we denote

K :=
∫
I

N(t)−3 dt. (5.1)

By (1.6), we can make K arbitrarily large by choosing I sufficiently large inside [0, Tmax). Our goal is to prove an 
interaction Morawetz inequality for u on I × R4 that we can use to contradict (1.6). Specifically, we will prove that 
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for I ⊂ [0, Tmax) sufficiently large and any η > 0, we have K �u ηK . Choosing η = η(u) sufficiently small will then 
yield the contradiction K = 0.

As in (3.9), we define

Phi = P
>K

− 1
5
, Plo = P≤K

− 1
5
, uhi = Phiu, ulo = Plou. (5.2)

5.1. Setup

Given a weight a : I ×R4 → R and u as above, we define the interaction Morawetz action by

M(a; t) =
∫∫

R4×R4

|u(t, y)|2ak(t, x − y)2 Im[ū(t, x)uk(t, x)]dx dy, (5.3)

where subscripts denote spatial partial derivatives and repeated indices are summed.
A standard computation yields the following identity:

Proposition 5.2 (Interaction Morawetz identity).

d
dt

M(a; t) =
∫∫

|u(y)|2∂tak(x − y)2 Im(ūuk)(x) dx dy (5.4)

+
∫∫

4ajk(x − y)
[|u(y)|2 Re(ūkuj )(x) − Im(ūuj )(y) Im(ūuk)(x)

]
dx dy (5.5)

+
∫∫

|u(y)|2 4
3�a(x − y)|u(x)|6 dx dy (5.6)

+
∫∫

|u(y)|2(−��a)(x − y)|u(x)|2 dx dy, (5.7)

where here and below we suppress the dependence of functions on t .

For the standard interaction Morawetz estimate, introduced originally in [7], one takes a(x) = |x|. By proving lower 
bounds for d

dt
M and using the fundamental theorem of calculus, one can deduce (in dimensions four and higher)∫∫∫ |u(x)|2|u(y)|2
|x − y|3 dx dy dt � sup

t
|M(a; t)| � ‖u‖3

L∞
t L2

x
‖∇u‖L∞

t L2
x
.

This estimate is not directly applicable in our setting, since we do not control the H 1
x -norm of u. In order to make 

M(a; t) finite, we choose our weight to be of the form

a(t, x) = 1
n(t)

w(n(t)|x|), (5.8)

where w is a truncation of |x|. The need to rescale w by a function of t stems from the logarithmic failure in Propo-
sition 2.6. The most natural choice would be to rescale by the frequency scale function N(t); however, (5.4) would 
then involve N ′(t), over which we have no control. Instead, we follow the approach of [12,13], choosing n(t) to be 
the output of a ‘smoothing algorithm’ whose input is a function closely related to N(t).

The construction of the weight w is motivated by [26]. We need a few parameters, which we later choose in terms 
of K . We let R � 1 and J ∼ logR � 1. We let w be a smooth radial function, which we regard either as a function 
of x or r = |x|, that satisfies the following:

w(0) = 0, wr ≥ 0, wr =

⎧⎪⎨⎪⎩
1 r ≤ R

1 − 1
J

log( r
R

) Re < r ≤ ReJ−1

0 r > ReJ .

(5.9)

Thus w = |x| for |x| ≤ R and w is constant for |x| > ReJ . We fill in the regions where wr is not yet defined so that

|∂k
r wr |�k

1
J
r−k (5.10)

for all k ≥ 1, uniformly in all parameters.
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As ∇a has compact support and u ∈ L∞
t L4

x (cf. Proposition 1.9), we have the following bound by Young’s inequal-
ity and Sobolev embedding:

|M(a; t)| � ‖u(t)‖2
L4

x
‖∇a(t)‖L1

x
‖u(t)‖L8

x
‖∇u(t)‖

L
8
3
x

�u

(
ReJ

n(t)

)4
. (5.11)

5.2. Construction of n(t)

The construction of the function n(t) is motivated by the work of Dodson [12,13]. We proceed inductively. To get 
started, we define

n0(t) := ‖uhi(t)‖−2
L4

x
, (5.12)

where u is as above and uhi is as in (5.2). Recall from Proposition 1.9 that u ∈ L∞
t L4

x . The motivation for this choice 
of n0 stems from the estimation of (5.4), cf. (5.38) below.

We collect the key properties of n0 in the following lemma.

Lemma 5.3 (Properties of n0). For I sufficiently large inside [0, Tmax),

1 �u n0(t) �u N(t) uniformly for t ∈ I, (5.13)

|n′
0(t)| �u n0(t)

3 uniformly for t ∈ I, (5.14)∫
I

n0(t)
−3 dt �u K. (5.15)

Proof. As Proposition 1.9 gives u ∈ L∞
t L4

x , the first inequality in (5.13) holds. For the second inequality, it suffices 
to show

inf
t∈I

N(t)2‖uhi(t)‖4
L4

x
�u 1. (5.16)

To this end, first note that as u �≡ 0, we may use almost periodicity, (1.4), and Sobolev embedding to deduce

inf
t∈I

‖u(t)‖L8
x
� inf

t∈I
‖P≤CN(t)uhi(t)‖L8

x
�u 1

for C and K sufficiently large depending on u. In particular, recalling (1.6), this lower bound holds for I sufficiently 
large inside [0, Tmax). As Bernstein implies

‖P≤CN(t)uhi(t)‖8
L8

x
� ‖u≤CN(t)‖4

L∞
x

‖uhi(t)‖4
L4

x
�u N(t)2‖u(t)‖4

L8
x
‖uhi(t)‖4

L4
x
,

we deduce (5.16).
Next, using (1.1), integrating by parts, and using Sobolev embedding and (1.3), we can estimate∣∣ d

dt
‖uhi(t)‖4

L4
x

∣∣ ≤ ‖∇uhi(t)‖2

L
8
3
x

‖uhi(t)‖2
L8

x
+ ‖u(t)‖8

L8
x
�u 1,

from which (5.14) follows.
Finally, for (5.15), we define

S = {(N1, . . . ,N4) |K− 1
5 ≤ N1 · · · ≤ N4}

and use Bernstein, Cauchy–Schwarz, and Corollary 3.4 to estimate∫
I

n0(t)
−3 dt �

∫
I

[∑
S

‖uN1‖L∞
x

‖uN2‖L∞
x

‖uN3‖L2
x
‖uN4‖L2

x

] 3
2

dt

�
∥∥sup

M

M−2‖PMuhi‖L∞
x

∥∥2
L2

t
‖u‖

L∞
t Ḣ

3
2

x

∥∥∥∥∑
S

(
N1N2
N3N4

) 3
2 ‖uN3‖

Ḣ
3
2

x

‖uN4‖
Ḣ

3
2

x

∥∥∥∥ 3
2

L∞
t

�u ‖|∇| 3
2 u‖4

L∞
t L2

x
K �u K.

This completes the proof of Lemma 5.3. �
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From n0 we now construct a closely related function n1, which is piecewise-linear and hence simpler to work with. 
First, using (5.14), we take δ = δ(u) sufficiently small so that

1
2n0(t) ≤ n0(t

′) ≤ 2n0(t) whenever |t − t ′| ≤ δn0(t)
−2.

We now partition I into intervals J� = [t�, t�+1] ∩ I , where t0 = inf I and t�+1 = t� + δn0(t�)
−2. For each J�, define

k� = sup{k ∈ Z : inf
t∈J�

n0(t) ≥ 2k}.
By construction, the value of k� can change by at most 1 on adjacent intervals:

2k�

2k�+1
∈ { 1

2 ,1,2}.
We now define n1(t�) = 2k� , and we take n1 to be the linear interpolation between the t�. Between the final t� and 

sup I we take n1 to be constant. By construction and Lemma 5.3, n1 has the following properties.

Lemma 5.4 (Properties of n1). For I sufficiently large inside [0, Tmax),

n1(t) ∼ n0(t) uniformly for t ∈ I, (5.17)

|n′
1(t)| �u n1(t)

3 uniformly for t ∈ I, (5.18)∫
I

|n′
1(t)|

n1(t)6
dt �u K. (5.19)

We consider the quantity in (5.19) because it shows up when we estimate the error term (5.4); cf. (5.38) below. We 
now describe an algorithm as in the work of Dodson [12,13], which takes n1 as input and generates a sequence of 
functions nm. The algorithm increases the pointwise value of nm, but decreases the quantity in (5.19). We discuss this 
tradeoff in more detail below; cf. (5.27).

Definition 5.5 (Smoothing algorithm, [12,13]). Call t� a low point if there exist m1, m2 ≥ 1 such that

• n1(t�) = n1(t�−m) for 0 ≤ m < m1, and n1(t�) < n1(t�−m1),• n1(t�) = n1(t�+m) for 0 ≤ m < m2, and n1(t�) < n1(t�+m2).

We can define high points analogously.
If tk and tm are not themselves low points, but t� is a low point for all k < � < m, then we call [tk+1, tm−1] a 

valley. Note that a valley may consist of a single point. Also note that by construction, n1(tk) = n1(tm) = 2n1(t) for 
t ∈ [tk+1, tm−1].

Similarly, if tk and tm are not themselves high points, but t� is a high point for all k < � < m, then we call 
[tk+1, tm−1] a peak.

Note that peaks and valleys must alternate. If an interval J joins a peak to a valley (or vice versa), we call J a 
slope. Note that n1 is monotone on slopes.

We construct n2 from n1 by ‘filling in the valleys’. That is, if [tk+1, tm−1] is a valley, we set n2(t) = n1(tk) for 
t ∈ (tk, tm). For all other points, we set n2(t) = n1(t). We can similarly construct n3(t) from n2(t), and so on. This 
generates a sequence of functions nm(t).

The functions nm generated by the algorithm have the following properties.

Lemma 5.6 (Properties of nm). For I sufficiently large inside [0, Tmax),

1 �u n0(t) �u nm(t)�u 2mn0(t) uniformly for t ∈ I, (5.20)

n′
m(t) = 0 or nm(t) = n1(t), for t ∈ I (5.21)

|n′
m(t)| �u nm(t)3 uniformly for t ∈ I, (5.22)
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∫
I

n−3
m (t) dt �u K, (5.23)

∫
I

|n′
m(t)|

nm(t)6
dt �u 2−5mK + 1. (5.24)

Proof. Properties (5.20) and (5.21) follow by construction and (5.17). Similarly, as the algorithm decreases |n′
m(t)|

and increases nm(t) (as m increases), property (5.22) follows from (5.18). Property (5.23) follows from (5.20) and 
(5.15). It remains to verify (5.24).

As n′
m = 0 on peaks and valleys, to compute the integral in (5.24) it suffices to sum over slopes, on which nm is 

monotone. By the fundamental theorem of calculus, on any slope J we have∫
J

|n′
m(t)|

nm(t)6
dt = 1

5 [v−5 − p−5],

where v is the value of nm on the valley and p is the value of nm on the peak. As the construction of nm from nm−1 (i) 
decreases the total number of valleys (in the non-strict sense) and (ii) doubles the value on each valley, it follows that⋃

slopes J

∫
J

|n′
m(t)|

nm(t)6
dt ≤ 2−5

⋃
slopes J

∫
J

|n′
m−1(t)|

nm−1(t)6
dt.

Thus (5.24) follows from induction and (5.19). (The additional 1 on RHS (5.24) accounts for either end of I .) �
5.3. Choice of parameters

We discuss here how to choose the parameters in the definition of the weight a. First of all, take I large enough 
inside [0, Tmax) to satisfy the hypotheses of the lemmas of Section 5.2. We now fix a small parameter 0 < α � 1. In 
fact, α = 1

100 would suffice. The implicit constants below may depend on α.
Recalling the definition of K in (5.1), we choose R, m, and J satisfying

R ∼ Kα, eJ = Rα, 2m ∼u R
4
5 (1+α). (5.25)

We now define a as in (5.8). We choose w as in (5.9) and (5.10), and we take n(t) = nm(t), with m as in (5.25) and 
nm as constructed in Section 5.2.

Recall that by (1.6), we may make K arbitrarily large by taking I sufficiently large inside [0, Tmax). Note also that

J ∼ logR. (5.26)

The choice of m in (5.25) is motivated by the estimation of (5.4) in Lemma 5.7 below; cf. (5.38). By (5.20), nm

may increase with m, while, on the other hand, a = |x| only for |x| ≤ R
nm(t)

. We need a = |x| on a sufficiently large 

ball in order to get suitable lower bounds for 
∫
I

d
dt

M(t; a) dt . Using (5.25), (5.20), and (5.13), we get the following 
lower bound:

R
nm(t)

�u
R

1
5 − 4

5 α

N(t)
�u

Rα

N(t)
≥ c̃(u) Kα2

N(t)
, (5.27)

provided α is sufficiently small. In particular, if K is sufficiently large, we can guarantee a = |x| on a large enough 
ball. By ‘large enough’, we mean the following: for C(u) sufficiently large (and K sufficiently large depending on u), 
we can deduce the following lower bound:∫

|x−x(t)|≤ C(u)
N(t)

|uhi(t, x)|2 dx �u N(t)−3 uniformly for t ∈ [0, Tmax). (5.28)

Indeed, this is a consequence of almost periodicity and (1.4) (and a few applications of Hölder, Bernstein, and Sobolev 
embedding). For details, refer to [29, (7.3)]. With (5.27) in mind, we now take I possibly even larger inside [0, Tmax)
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to guarantee that

c̃(u)Kα2
> 2C(u). (5.29)

The fact that we can choose m both to control (5.38) satisfactorily and to satisfy (5.27) stems from the definition 
of n0 in (5.12) and the property (5.21) of nm; cf. (5.38) below.

Next, fix 0 < η � 1 to be chosen sufficiently small depending on u below. We choose I possibly even larger inside 
[0, Tmax) so that

(logK)−1 ≤ η. (5.30)

In particular, by construction,

1
J
� η. (5.31)

We next use (1.2) to choose c = c(η) > 0 sufficiently small that

‖|∇| 3
2 P≤cN(t)u‖L∞

t L2
x
≤ η. (5.32)

In what follows, we will use the following notation:

λj = λj (t) = Rej

nm(t)
for j = 0, . . . , J. (5.33)

Thus by construction, a(t, x) = |x| for |x| ≤ λ0(t) and a(t, x) is constant for |x| > λJ (t).
By (5.20), (5.13), (5.25), and (5.26), we may choose α sufficiently small and take I possibly even larger inside 

[0, Tmax) to guarantee

λj · cN(t) ≥ J
η

uniformly for j = 0, . . . J and t ∈ I. (5.34)

In the estimates below, we will encounter quantities of the form

(ReJ )�Kδ for some � ≥ 1 and δ ∈ (0,1).

By choosing α sufficiently small and using (5.30) and (5.25), we can guarantee that

(ReJ )�Kδ � K1−α � ηK (5.35)

for all combinations of �, δ appearing below. In particular, by (5.20) and (5.11), we have

sup
t∈I

|M(t;a)|�u ηK. (5.36)

5.4. Estimation of (5.4) through (5.7)

Having chosen parameters, we turn to estimating the terms appearing in Proposition 5.2.

Lemma 5.7 (Estimation of (5.4)).∣∣∣∣∫∫∫
|u(y)|2∂tak(x − y)2 Im ūuk(x) dx dy dt

∣∣∣∣�u ηK. (5.37)

Proof. Note that

∂tak(t, x) = wrr(nm(t)|x|)xkn
′
m(t).

Thus, by (5.10),

‖∂t∇a‖L1
x
� 1

J
(ReJ )4 |n′

m(t)|
nm(t)5 .

For the low frequency contributions, Proposition 1.9, Sobolev embedding, Corollary 3.4, (5.35), (5.22), and (5.23)
imply
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∣∣∣∣∫∫∫
|ulo(y)|2∂tak(x − y)2 Im ūuk(x) dx dy dt

∣∣∣∣
�

[‖u‖3

L∞
t L

72
19
x

‖∇ulo‖
L3

t L
24
5

x

+ ‖ulo‖L4
t L

∞
x

‖u‖2

L∞
t L

48
13
x

‖∇uhi‖
L12

t L
24
11
x

]‖∂t∇a‖
L

3
2
t L1

x

�u

[‖|∇| 3
2 ulo‖L3

t,x
+ K

1
10

]
(ReJ )4

(∫ ( |n′
m(t)|

nm(t)5

) 3
2

dt

) 2
3

�u K
1
10 (ReJ )4

(∫
I

nm(t)−3 dt

) 2
3

�u (ReJ )4K
23
30 �u ηK.

For the high frequency terms, we use the definition of n0 in (5.12). We also rely crucially on (5.24) and (5.17). 
Using (5.25), (5.31), and (5.35) as well,∣∣∣∣∫∫∫

|uhi(y)|2∂tak(x − y)2 Im ūuk(x) dx dy dt

∣∣∣∣
�

∫
I

‖uhi(t)‖2
L4

x
‖∂t∇a‖L1

x
‖u(t)‖L8

x
‖∇u(t)‖

L
8
3
x

dt

�u
1
J
(ReJ )4

∫
I

|n′
m(t)|

n0(t)nm(t)5
dt

�u
1
J
(ReJ )4(2−5mK + 1) �u ηK. (5.38)

This completes the proof of Lemma 5.7. �
Before turning to the other error terms, we combine Proposition 2.6 with Corollary 3.4 to deduce the following 

estimate, which inherits the logarithmic loss from Proposition 2.6.

Corollary 5.8. The following estimate holds:

sup
j≤J

∫
I

sup
x∈R4

∫
|x−y|≤λj

|uhi(t, y)|2 dy dt �u JK,

where λj is as in (5.33).

Proof. We apply Proposition 2.6 with n = nm, λ = λj , and u = uhi, choosing F = PhiØ(u2
lou

3) and G = Ø(u2
hiu

3).
First, by (5.20), (5.35), Bernstein, and Corollary 3.4, we have

‖λj‖2
L∞

t

[‖uhi‖2
L∞

t L2
x
+ ‖F‖2

L2
t L

4
3
x

]
�u (ReJ )2K

3
5 �u K.

Next, using (5.26) and Corollary 3.4,

sup
0≤j≤J

[1 + ‖ log(λjnm)‖L∞
t

]‖G‖2
L2

t L
1
x
�u JK.

Finally, by (1.3) and (5.23), we have

‖G‖2

L∞
t L

8
5
x

∫
I

nm(t)−3 dt �u K.

The result follows. �
We now turn to (5.5).
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Lemma 5.9 (Estimation of (5.5)). Define

�jk(x, y) = |u(y)|2 Re(ūkuj )(x) − Im(ūuj )(y) Im(ūuk)(x).

We estimate (5.5) in two pieces:∫∫∫
|x−y|≤λ0

ajk(x − y)�jk(x, y) dx dy dt ≥ 0, (5.39)

∣∣∣∣ ∫∫∫
|x−y|>λ0

ajk(x − y)�jk(x, y) dx dy dt

∣∣∣∣�u ηK. (5.40)

Proof. As ajk(x − y) = ajk(y − x), we may replace �jk by the hermitian matrix

�jk(x, y) = 1
2�jk(x, y) + 1

2�jk(y, x).

We have that �jk is a positive semi-definite quadratic form on R4, since

|ekej Im(ūuj )(y) Im(ūuk)(x)| ≤ 1
2 |u(x)|2|e · ∇u(y)|2 + 1

2 |u(y)|2|e · ∇u(x)|2
for any e ∈ R4. Recalling that a = |x| for |x| ≤ λ0, we see that ajk is positive semi-definite for |x| ≤ λ0. Thus (5.39)
follows.

In general, the eigenvalues of the Hessian of a are arr and ar

r
. By construction, we have ar ≥ 0 and |arr | � 1

J r
. 

Thus, to prove (5.40), it suffices to estimate∫
I

∫∫
λ0<|x−y|≤λJ

|∇u(x)|2|u(y)|2
J |x − y| dx dy dt. (5.41)

Taking c = c(η) as in (5.32), we have

(5.41) �
∫∫∫

λ0<|x−y|≤λJ

|∇u(x)|2|u(y)|2 − |∇uhi(x)|2|uhi(y)|2
|x − y| dx dy dt (5.42)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−1
j |P≤λ−1

j
∇uhi(x)|2|uhi(y)|2 dx dy dt (5.43)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−1
j |P

λ−1
j <·≤cN(t)

∇uhi(x)|2|uhi(y)|2 dx dy dt (5.44)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−1
j |P>cN(t)∇uhi(x)|2|uhi(y)|2 dx dy dt. (5.45)

We first use Corollary 3.4, Proposition 1.9, (5.20), (5.23), and (5.35) to estimate

(5.42) �
[‖∇ulo‖L4

t,x
‖∇u‖

L∞
t L

8
3
x

‖u‖L∞
t L8

x
‖u‖L∞

t L4
x

+ ‖∇u‖2

L∞
t L

8
3
x

‖ulo‖L4
t L

∞
x

‖u‖L∞
t L4

x

](∫
I

nm(t)−4 dt

) 3
4

(ReJ )3

�u

[‖|∇| 3
2 ulo‖

L4
t L

8
3
x

+ 1
]
K

3
4 (ReJ )3 �u ηK.

For (5.43), we let

S = {(N1, . . . ,N4, j) |K− 1
5 ≤ N1 ≤ · · · ≤ N4, N2 ≤ λ−1}
j
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and use Young’s inequality, Hölder’s inequality, Bernstein, Cauchy–Schwarz, and Corollary 3.4 to estimate

(5.43) � 1
J

∫
I

[
sup
M

M−2‖PMuhi‖L∞
x

]2 ∑
S

λ3
j

(N1N2)
2

(N3N4)
1
2
‖uN3‖

Ḣ
3
2

x

‖uN4‖
Ḣ

3
2

x

dt

�u
1
J
‖|∇| 3

2 u‖2
L∞

t L2
x
K �u ηK.

For (5.44), we use Bernstein, (5.32), and Corollary 5.8 to estimate

(5.44) � 1
J

∥∥∥∥ J∑
j=0

‖λ− 1
2

j P
λ−1

j <·≤cN(t)
∇uhi‖2

L2
x

∥∥∥∥
L∞

t

sup
j≤J

∫
I

sup
x∈R4

∫
|x−y|≤λj+1

|uhi(y)|2 dy dt

� ‖|∇| 3
2 P≤cN(t)u‖2

L∞
t L2

x
K �u ηK. (5.46)

We next turn to (5.45). In light of Corollary 5.8, it suffices to show that

J∑
j=0

‖λ− 1
2

j P>cN(t)∇uhi‖2
L∞

t L2
x
�u η. (5.47)

In fact, by Bernstein and (5.34), we have

‖λ− 1
2

j P>cN(t)∇uhi‖2
L2

x
� [λj cN(t)]−1‖|∇| 3

2 u‖2
L∞

t L2
x
�u

η
J

uniformly in j and t . Thus (5.47) follows. This completes the proof of Lemma 5.9. �
We next turn to (5.6).

Lemma 5.10 (Potential energy term). We estimate (5.6) as follows. First,∣∣∣∣∫∫∫
�a(x − y)

[|u(x)|6|u(y)|2 − |uhi(x)|6|uhi(y)|2]dx dy dt

∣∣∣∣�u ηK, (5.48)∫∫∫
|x−y|≤λ0

�a(x − y)|uhi(x)|6|uhi(y)|2 dx dy dt ≥ 0. (5.49)

Next, recalling �a = arr + 3
r
ar , we have∫∫∫

|x−y|>λ0

ar(x − y)

|x − y| |uhi(x)|6|uhi(y)|2 dx dy dt ≥ 0, (5.50)

∣∣∣∣ ∫∫∫
|x−y|>λ0

arr (x − y)|uhi(x)|6|uhi(y)|2 dx dy dt

∣∣∣∣�u ηK. (5.51)

Proof. First, by Corollary 3.4, Proposition 1.9, (5.20), (5.23), and (5.35), we have

(5.48) � ‖ulo‖L4
t L

∞
x

‖u‖7
L∞

t L7
x

(∫
I

nm(t)−4 dt

) 3
4

(ReJ )3 �u K
3
4 (ReJ )3 �u ηK.

Next, we have by construction that a = |x| for |x| ≤ λ0 and ar ≥ 0 for all x. Thus, (5.49) and (5.50) follow.
Finally, we turn to (5.51). By (5.10), it suffices to estimate∫

I

∫∫
λ0<|x−y|≤λJ

|uhi(x)|6|uhi(y)|2
J |x − y| dx dy dt. (5.52)

To this end, we proceed as in Lemma 5.9 and write
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(5.52) � 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−1
j |P≤λ−1

j
uhi(x)|6|uhi(y)|2 dx dy dt (5.53)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−1
j |P

λ−1
j <·≤cN(t)

uhi(x)|6|uhi(y)|2 dx dy dt (5.54)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−1
j |P>cN(t)uhi(x)|6|uhi(y)|2 dx dy dt, (5.55)

where c is as in (5.32).
For (5.53), we let

S = {(N1, . . . ,N6, j) |K− 1
5 ≤ N1 ≤ · · · ≤ N6 ≤ (λj )

−1, j = 0, . . . , J }.
Then by Young’s inequality, Hölder’s inequality, Bernstein, Cauchy–Schwarz, Corollary 3.4, and (5.31),

(5.53) � 1
J
‖u‖4

L∞
t L8

x

∫
I

∑
S

λ3
j‖uN1‖L∞

x
‖uN2‖L∞

x
‖uN5‖L4

x
‖uN6‖L4

x
dt

�u
1
J

∫
I

[
sup
M

M−2‖PMuhi‖L∞
x

]2 ∑
S

λ3
j

(N1N2)
2

(N5N6)
1
2
‖uN5‖

Ḣ
3
2

x

‖uN6‖
Ḣ

3
2

x

dt

�u
1
J
‖|∇| 3

2 u‖2
L∞

t L2
x
K �u ηK.

For (5.54) and (5.55), we first note the following consequence of Sobolev embedding:

‖uhi(t)‖6
L6

x
� ‖uhi(t)‖2

L4
x
‖uhi(t)‖4

L8
x
�u ‖∇uhi(t)‖2

L2
x
.

Thus we can estimate (5.54) as we did (5.44); cf (5.46). Similarly, we can estimate (5.55) as we did (5.45). This 
completes the proof of Lemma 5.10. �

Finally, we turn to (5.7).

Lemma 5.11 (Mass–mass term). We estimate the contribution of (5.7) in three pieces:∫∫∫
|x−y|≤λ0

−��a(x − y)|uhi(x)|2|uhi(y)|2 dx dy dt ≥ 0, (5.56)

∣∣∣∣∫∫∫
��a(x − y)

[|u(x)|2|u(y)|2 − |uhi(x)|2|uhi(y)|2]dx dy dt

∣∣∣∣�u ηK, (5.57)∣∣∣∣ ∫∫∫
|x−y|>λ0

��a(x − y)|uhi(x)|2|uhi(y)|2 dx dy dt

∣∣∣∣�u ηK. (5.58)

Remark 5.12. The term appearing in (5.56) will give the left-hand side of the interaction Morawetz inequality in 
Proposition 5.13.

Proof. As a = |x| for |x| ≤ λ0, we have −��a = 3|x|−3 in this region. Thus (5.56) holds.
For (5.57), we use the fact that ∂yk

a(t, x − y) = −∂xk
a(t, x − y) and integrate by parts. Specifically, writing

L(x, y) = |u(x)|2|u(y)|2 − |uhi(x)|2|uhi(y)|2
and integrating by parts, we are left to estimate
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∫∫∫
|x−y|≤λJ

∣∣∂yk
∂xk

L(x, y)
∣∣

|x − y| dx dy dt.

However, expanding L(x, y) and applying the derivatives, this term can be seen to be a sum of the types of terms 
already estimated when dealing with (5.42). Thus (5.57) holds.

For (5.58), we again proceed as in Lemma 5.9. In particular,

(5.58) � 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−3
j |P≤λ−1

j
uhi(x)|2|uhi(y)|2 dx dy dt (5.59)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−3
j |P

λ−1
j <·≤cN(t)

uhi(x)|2|uhi(y)|2 dx dy dt (5.60)

+ 1
J

J∑
j=0

∫∫∫
λj <|x−y|≤λj+1

λ−3
j |P>cN(t)uhi(x)|2|uhi(y)|2 dx dy dt, (5.61)

where c is as in (5.32).
For (5.59), define

S = {(N1, . . . ,N4, j) |K− 1
5 ≤ N1 ≤ N2 ≤ N3 ≤ N4, N2 ≤ (λj )

−1, j = 0, . . . , J }.
By Young’s inequality, Hölder’s inequality, Bernstein, Cauchy–Schwarz, Corollary 3.4, and (5.31),

(5.59) � 1
J

∫
I

∑
S

λj‖uN1‖L∞
x

‖uN2‖L∞
x

‖uN3‖L2
x
‖uN4‖L2

x
dt

� 1
J

∫
I

[
sup
M

M−2‖PMuhi‖L∞
x

]2 ∑
S

λj
(N1N2)

2

(N3N4)
3
2
‖uN3‖

Ḣ
3
2

x

‖uN4‖
Ḣ

3
2

x

dt

�u
1
J
‖u‖2

L∞
t Ḣ

3
2

x

K �u ηK.

We can now estimate (5.60) and (5.61) by proceeding just as we did (5.44) and (5.45). In particular, the estimation 
of (5.60) relies on Bernstein and (5.32), while the estimation of (5.61) relies on Bernstein and (5.34). This completes 
the proof of (5.11). �
5.5. Interaction Morawetz inequality

We now collect our estimates to deduce the following interaction Morawetz inequality.

Proposition 5.13 (Interaction Morawetz). Suppose u : [0, Tmax) ×R4 → C is an almost periodic solution to (1.1) as 
in Theorem 1.8 such that (1.6) holds.

Let I ⊂ [0, Tmax) be a compact time interval, which is a contiguous union of characteristic subintervals. Define K
as in (5.1) and uhi as in (5.2).

Let 0 < η � 1. For I sufficiently large inside [0, Tmax),∫
I

∫∫
|x−y|≤ 2C(u)

N(t)

|uhi(x)|2|uhi(y)|2
|x − y|3 dx dy dt �u ηK, (5.62)

where C(u) is as in (5.28). The implicit constant does not depend on I .

Proof. We set up the interaction Morawetz action M(t; a) as in Section 5.1, constructing the rescaling function n(t)

as in Section 5.2 and choosing parameters as in Section 5.3. By the fundamental theorem of calculus and (5.36), we
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have ∫
I

d
dt

M(t;a)dt �u ηK.

We now recall the identity in Proposition 5.2 and collect the estimates in Lemma 5.7 and Lemmas 5.9–5.11. Holding 
on to the term appearing in (5.56), we deduce∫

I

∫∫
|x−y|≤λ0

|uhi(x)|2|uhi(y)|2
|x − y|3 dx dy dt �u ηK. (5.63)

Using the definition of λ0 in (5.33), as well as (5.27) and (5.29), we deduce (5.62). �
We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose u : [0, Tmax) × R4 → C is an almost periodic solution as in Theorem 1.8 such that 
(1.6) holds. Let I , K , η, and C(u) be as in Proposition 5.13. By (5.28),∫

I

∫∫
|x−y|≤ 2C(u)

N(t)

|uhi(x)|2|uhi(y)|2
|x − y|3 dx dy dt �u

∫
I

N(t)3
( ∫
|x−x(t)|≤ C(u)

N(t)

|uhi(x)|2 dx

)2

dt

�u

∫
I

N(t)−3 dt �u K. (5.64)

Combining (5.62) and (5.64) yields

K �u ηK.

We now choose η = η(u) sufficiently small to deduce K = 0, which is a contradiction. This completes the proof of 
Theorem 5.1. �
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[23] R. Killip, M. Visan, Energy-supercritical NLS: critical Ḣ s -bounds imply scattering, Commun. Partial Differ. Equ. 35 (6) (2010) 945–987, 

MR2753625.
[24] R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math. 132 (2) (2010) 

361–424, MR2654778.
[25] R. Killip, M. Visan, Nonlinear Schrödinger equations at critical regularity, Clay Math. Proc. 17 (2013) 325–437, MR3098643.
[26] R. Killip, M. Visan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE 5 (4) (2012) 

855–885, MR3006644.
[27] R. Killip, M. Visan, X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE 

1 (2) (2008) 229–266, MR2472890.
[28] F. Merle, L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not. (8) 

(1998) 399–425, MR1628235.
[29] C. Miao, J. Murphy, J. Zheng, The defocusing energy-supercritical NLS in four space dimensions, J. Funct. Anal. 267 (6) (2014) 1662–1724, 

MR3237770.
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