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Abstract

We study the homogenization of an obstacle problem in a perforated domain, when the holes are periodically distributed and
have random shape and size. The main assumption concerns the capacity of the holes which is assumed to be stationary ergodic.
Crown Copyright © 2007 Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let (Ω, F , P ) be a given probability space. For every ω ∈ Ω and every ε > 0, we consider a domain Dε(ω)

obtained by perforating holes from a bounded domain D of R
n. We denote by Tε(ω) the set of the holes (we then

have Dε(ω) = D \ Tε(ω)). The goal of this paper is to study the asymptotic behavior as ε → 0 of the solution of the
following obstacle problem:

min

{∫
D

1

2
|∇u|2 dx −

∫
D

f udx;u ∈ H 1
0 (D), u � 0 a.e. in Tε(ω)

}
(1)

for some given function f (x) in L2(D).
This is a classical homogenization problem and the asymptotic behavior of the solutions strongly depends on the

properties of the set Tε(ω). This type of problems was first studied by L. Carbone and F. Colombini [2] in periodic
settings and then in more general frameworks by E. De Giorgi, G. Dal Maso and P. Longo [9], G. Dal Maso and
P. Longo [7] and G. Dal Maso [6]. Our main reference will be the papers of D. Cioranescu and F. Murat [4,5], in which
the particular case of a periodic repartition of holes is studied. More precisely, they take Tε(ω) = Tε (independent of ω)
given by

Tε =
⋃

k∈Zn

Baε (εk). (2)
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It is then proved that there exists a critical radius aε � ε such that the limiting problem is no longer an obstacle
problem, but a simple elliptic boundary value problem with a new term that takes into account the effect of the holes.
More precisely, in dimension n � 3, when aε = r0ε

n
n−2 then there exists a constant α0 > 0 such that u = limε→0 uε

solves

min

{∫
D

1

2
|∇u|2 + 1

2
α0u

2− dx −
∫
D

f udx; u ∈ H 1
0 (D)

}
,

where u− = max(0,−u).
Our goal is to generalize this result to the case where the holes are still located in small neighborhoods of lattice

points εZ
n but have random size and shape. More precisely, we assume that for any ε and ω, we can write

Tε(ω) =
( ⋃

k∈Zn

Sε(k,ω)

)
∩ D,

where the holes Sε(k,ω) satisfy, in particular,

Sε(k,ω) ⊂ Bε/2(εk) for all k ∈ Z
n.

Further assumptions concerning the sets Sε(k,ω) will be made in the next section (we can already point out the fact
that we will not exclude the case where Sε(k,ω) = ∅ for some k, thus allowing the fact that no holes may be present
at some lattice points). The proof of the main theorem, which is detailed in Section 3, relies on the construction of an
appropriate corrector. This construction is detailed in Sections 4 and 5, first in the case where the holes are balls of
random radii in dimension n � 2, then when no assumptions are made on the shape of the holes (in dimension n � 3
only).

2. Assumptions and main result

Let us now make precise the assumptions on the holes Sε(k,ω). The first assumption is mainly technical:

Assumption 1. There exists a (large) constant M such that for all k ∈ Z
n and a.e. ω ∈ Ω we have

Sε(k,ω) ⊂ BMεn/(n−2) (εk) if n � 3,

Sε(k,ω) ⊂ Bexp(−Mε−2)(εk) if n = 2

for ε small.

As mentioned in the introduction, the asymptotic behavior of the uε strongly depends on the size of the holes. The
critical size for which interesting phenomena is observed corresponds to finite, nontrivial capacity of the set Tε . More
precisely, we assume:

Assumption 2. For all k ∈ Z
n and a.e. ω ∈ Ω , there exists γ (k,ω) (independent of ε) such that

cap
(
Sε(k,ω)

) = εnγ (k,ω),

where cap(A) denote the capacity of a subset A of R
n (as defined below). Moreover, we assume that there exists a

constant γ̄ > 0:

γ (k,ω) � γ̄ for all k ∈ Z
n and a.e. ω ∈ Ω. (3)

We take the following definitions for the capacity of a subset A of R
n:

cap(A) = inf

{∫
n

|∇h|2 dx;h ∈ H 1(Rn), h � 1 in A, lim|x|→∞h(x) = 0

}
,

R
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in dimension n � 3 and

cap(A) = inf

{∫
B1

|∇h|2 dx;h ∈ H 1
0 (B1), h � 1 in A

}
,

in dimension n = 2 and for sets A ⊂ B1.
Finally, we need to make an assumption to ensure that some averaging process occurs as ε goes to zero:

Assumption 3. The process γ : Z
n × Ω �→ [0,∞) is stationary ergodic: There exists a family of measure-preserving

transformations τk : Ω → Ω satisfying

γ (k + k′,ω) = γ (k, τk′ω) for all k, k′ ∈ Z
n and ω ∈ Ω,

and such that if A ⊂ Ω and τkA = A for all k ∈ Z
n, then P(A) = 0 or P(A) = 1 (the only invariant set of positive

measure is the whole set).

Let us make a few remarks concerning those assumptions: First of all, we stress out the fact that the shape of the
holes Sε is left unspecified and may change with ε; Only the rescaled capacity γ (k,ω) is independent of ε. The first
assumption, which implies that the diameters of the holes decrease faster than ε, guarantees that the capacities of
neighboring sets separate at the limit (i.e. that cap(

⋃
Sε) ∼ ∑

cap(Sε)). And the choice of scaling for the capacity
guarantee that cap(Tε) remains bounded as ε goes to zero (since #{Zn ∩ ε−1D} � Cε−n). When n � 3, we have
cap(Br) = cnr

n−2, and so Assumption 2 implies that if Sε(k,ω) is a ball, then its radius is of the form r(k,ω)ε
n

n−2 .
In particular, we recover Cioranescu–Murat’s result in the periodic case. Finally, the hypothesis of stationarity is the
most general extension of the notions of periodicity and almost periodicity for a function to have some self-averaging
behavior.

Under those assumptions, we prove the following result:

Theorem 2.1. Assume that n � 3 and that Tε(ω) = ⋃
k∈Zn Sε(k,ω) satisfies Assumptions 1, 2 and 3 listed above.

Then there exists α0 � 0 such that when ε goes to zero, the solution uε(x,ω) of

min

{∫
D

1

2
|∇u|2 dx −

∫
D

f udx; u ∈ H 1
0 (D), u � 0 a.e. in Tε(ω)

}

converges weakly in H 1(D) and almost surely ω ∈ Ω to the solution ū(x) of the following minimization problem:

min

{∫
D

1

2
|∇u|2 + 1

2
α0u

2− − f udx; u ∈ H 1
0 (D)

}
,

where u−(x) = max(0,−u(x)).

Moreover, if there exists γ > 0 such that

γ (k,ω) � γ for all k ∈ Z
n and a.e. ω ∈ Ω,

then α0 > 0.
The same result holds when n = 2 in the case where the sets Sε(k,ω) are balls.

The general result (with holes of random shape) holds also in dimension n = 2. However, because the fundamental
solution of Laplace’s equation is different in that case, the proof is slightly different and more technical.

Note that the Euler–Lagrange equations for the minimization problems yield⎧⎪⎨
⎪⎩

−�uε = f in Dε,

uε(x) � 0 for x ∈ Tε,

uε(x) = 0 for x ∈ ∂D \ T

(4)
ε
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and { −�ū − α0ū− = f in D,

ū(x) = 0 for x ∈ ∂D.

As in Cioranescu–Murat [4,5], the proof of this result relies on the construction of an appropriate corrector. More
precisely, the key is the following result:

Proposition 2.2. Assume that n � 3 and that Tε(ω) = ⋃
k∈Zn Sε(k,ω) satisfies Assumptions 1, 2 and 3 listed above.

Then, there exists a nonnegative real number α0 and a function wε(x,ω) such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wε(x,ω) = 1 for x ∈ Tε(ω),

wε(x,ω) = 0 for x ∈ ∂D \ Tε(ω),

wε bounded in L∞(D)

wε(·,ω) → 0 H 1(D)-weak

for almost all ω ∈ Ω , and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all sequences vε(x) satisfying:⎧⎨
⎩

vε(x) � 0 for x ∈ Tε,

vε bounded in L∞(D),

vε → v in H 1(D)-weak
and for any φ ∈ D(D) such that φ � 0, we have:

lim
ε→0

∫
D

φ∇wε · ∇vεdx � −α0

∫
D

φv dx

with equality if vε(x) = 0 for x ∈ Tε.

(5)

The same result holds when n = 2 in the case where the sets Sε(k,ω) are balls.

Condition (5) may seem rather complicated, but it is exactly the property that will be needed to prove Theorem 2.1.
This condition is satisfied in particular if the Laplacian of wε is equal to α0 outside the holes as in the following
lemma:

Lemma 2.3. Let wε(x,ω) be a function satisfying⎧⎪⎨
⎪⎩

�wε = α0 in Dε(ω),

wε(x,ω) = 1 for x ∈ Tε(ω),

wε(x,ω) = 0 for x ∈ ∂D \ Tε(ω)

(6)

for almost all ω ∈ Ω , and

wε(·,ω) → 0 H 1(D)-weak a.s. ω ∈ Ω.

Then wε satisfies (5).
The same conclusion holds if we only have∫

Dε

|�wε − α0|dx → 0 a.s. ω ∈ Ω.

We will strongly rely on this lemma in the sequel. In particular, in the case where the holes are all balls of random
radii, we will construct wε by showing that for a critical α0, the unique solution of (6) converges to 0 in H 1 weak for
almost every ω.
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Proof of Lemma 2.3. Since ϕ = 0 on ∂D, we have:

−
∫
Dε

�wεϕvε dx =
∫
Dε

ϕ∇wε · ∇vε dx +
∫
Dε

∇ϕ · ∇wεvε dx −
∫

∂T ε∩D

wε
νϕvε dσ (x).

Since wε goes to zero in H 1(D)-weak and vε converges to v in L2(D)-strong, it is readily seen that the second term
in the right-hand side goes to zero as ε → 0. Furthermore, it is readily seen that wε � 1 and wε = 1 on Tε , and so
wε

ν � 0 on ∂Tε . Since vε � 0 on Tε and ϕ � 0, we deduce that

lim
ε→0

−
∫
Dε

�wεϕvε dx � lim
ε→0

∫
Dε

ϕ∇wε · ∇vε dx.

Finally, we have

lim
ε→0

∫
Dε

�wεϕvε dx = lim
ε→0

∫
Dε

α0ϕvε dx + lim
ε→0

∫
Dε

|�wε − α0|ϕvε dx

� lim
ε→0

∫
D

α0ϕvε dx

using the fact that vε is bounded in L∞. Hence we have

lim
ε→0

∫
Dε

ϕ∇wε · ∇vε dx � −
∫
D

α0ϕv dx.

It is now easy to check that all the inequalities becomes equalities whenever vε = 0 on Tε . �
The proof of Proposition 2.2 will occupy most of this paper. It will be split into two parts: In Section 4, we consider

the (simpler) case when the holes Sε(k,ω) are all balls of random radius. In Section 5, we will use this first result to
treat the general case (when the holes have unspecified shapes).

Before turning to this proof, we briefly give, in the next section, the proof of the main theorem.

3. Proof of Theorem 2.1

We introduce the initial and limit energies:

J(v) =
∫
D

1

2
|∇v|2 − f v dx

and

Jα(v) =
∫
D

1

2
|∇v|2 + 1

2
α0v

2− − f v dx.

With theses notations, we have that uε(x,ω) satisfies

J(uε) = inf
v∈Kε

J(v)

with Kε = {v ∈ H 1
0 (D);v � 0 a.e. in Tε} and standard estimates give the existence of a function ū(x,ω) such that

uε(·,ω) → ū(·,ω) in H 1
0 (D)-weak.

We now have to show that for almost every ω, ū(·,ω) satisfies:

Jα(ū) = inf
v∈H 1

0 (D)

Jα(v).

This will follow from two lemmas:
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Lemma 3.1. For any test function ϕ in D(D) we have

lim
ε→0

∫
D

|∇wε|2ϕ dx =
∫
D

α0ϕ dx.

Lemma 3.2. Let uε be any bounded sequence in H 1
0 (D) such that uε � 0 in Tε . If

uε ⇀ ū in H 1(D)-weak,

then

lim inf
ε→0

J(uε) � Jα(ū).

Proof of Theorem 2.1. For any v ∈ D(D), the function v + v−wε is nonnegative on Tε(ω) and is thus admissible for
the initial obstacle problem. In particular by definition of uε , we have

J(uε) � J(v + v−wε).

Next, we can expand J(v + v−wε) as follows:

J(v + v−wε) =
∫

1

2

[|∇v|2 + |∇v−|2wε2 + |v−|2|∇wε|2]dx

+
∫

[v−∇v−wε∇wε + ∇v∇v−wε + ∇vv−∇wε]dx −
∫

[f v + f v−wε]dx

and it is readily check that Lemma 3.1 and the weak convergence of wε to 0 in H 1(D) implies

lim
ε→0

J(v + v−wε) = Jα(v),

as soon as |v−|2 ∈ D(D). We deduce

Jα(v) � lim sup
ε→0

J(uε)

and so, using Lemma 3.2, we get:

Jα(v) � Jα(ū)

for all v ∈ D(D) such that |v−|2 ∈ D(D).
Finally, by approximating separately the positive and the negative parts, one can show that every function v ∈

H 1
0 (D) is the limit of a sequence of functions vk ∈ D(D) such that (vk)− ∈ D(D). Theorem 2.1 follows. �

Proof of Lemma 3.1. This is an immediate consequence of (5): Since 1 − wε = 0 in Tε we have

lim
ε→0

∫
ϕ∇wε · ∇(1 − wε)dx = lim

ε→0

∫
ϕ+∇wε · ∇(1 − wε)dx − lim

ε→0

∫
ϕ−∇wε · ∇(1 − wε)dx

= −
∫

α0ϕ+ dx +
∫

α0ϕ− dx

and so

lim
ε→0

−
∫

ϕ∇wε · ∇wε dx = −
∫

α0ϕ dx. �
Proof of Lemma 3.2. See Cioranescu and Murat [5], Proposition 3.1.
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4. Proof of Proposition 2.2: Balls of random radius

Throughout this section, we assume that the sets Sε(k,ω) are balls centered at εk. Since

cap(Br) =

⎧⎪⎨
⎪⎩

n(n − 2)ωnr
n−2 if n � 3,

− 2π

log r
if n = 2.

Assumption 2 becomes in this framework:

Sε(k,ω) = Baε(r(k,ω))(εk) for all k ∈ Z
n

with

aε(r) =
{

rεn/(n−2) if n � 3,

exp(−r−1ε−2) if n = 2,

and

r(k,ω) =
⎧⎨
⎩

(
γ (k,ω)

n(n − 2)ωn

)1/(n−2)

if n � 3,

γ (k,ω)/2π if n = 2.

In particular that the process

r : Zn × Ω �→ [0,∞)

is stationary ergodic and satisfies

r(k,ω) � r̄ for all k ∈ Z
n and a.e. ω ∈ Ω (7)

for some constant r̄ > 0. Without loss of generality, we can always assume that r̄ < 1/2 (so that there is no overlapping
of the holes for any ε < 1):

4.1. The auxiliary obstacle problem

After rescaling, we look for the corrector wε(x,ω) in the form

wε(x,ω) = ε2vε(x/ε,ω)

with vε(y,ω) solution to{
�v = α, in ε−1Dε, a.e. ω ∈ Ω,

v = ε−2 on
⋃

k∈Zn Bāε(k,ω)(k),

where

āε(r) =
{

rε2/(n−2) if n � 3,

ε−1 exp(−r−1ε−2) if n = 2,

and such that

ε2vε(x/ε) → 0 in H 1-weak.

One of the main tool in the proof is the fundamental solution of the Laplace equation, given by:

h(x) =

⎧⎪⎨
⎪⎩

1

n(n − 2)ωn

1

|x|n−2
if n � 3,

− 1
log |x| if n = 2.
2π
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In particular, we note that

h|∂Bāε(r(k,ω))(0) =

⎧⎪⎨
⎪⎩

1

n(n − 2)ωnrn−2
ε−2 if n � 3,

1

2π
(log(ε) + r−1ε−2) if n = 2,

so we expect the rescaled corrector vε(x,ω) to behave, near the hole Bā(k,ω)(k), like the function

hk(x) :=
⎧⎨
⎩ γ (k,ω)h(x − k) = r(k,ω)n−2

|x − k|n−2
, if n � 3,

γ (k,ω)h(x − k) = −r(k,ω) log |x − k| if n = 2,

where

γ (k,ω) =
{ (

r(k,ω)
)n−2

n(n − 2)ωn if n � 3,

2πr(k,ω) if n = 2.

Since hk satisfies

�hk = −γ (k,ω)δ(x − k),

we will construct vε(x,ω) by solving{
�v = α − ∑

k∈Zn∩A γ (k,ω)δ(x − k) in ε−1D,

v = 0 on ∂ε−1D.

The main issue is thus to find the critical α for which the solution of the above equation has the appropriate behavior
near x = k.

Following [3], this will be done by introducing the following obstacle problem, for every open set A ⊂ R
n and

α ∈ R:

v̄α,A(x,ω) = inf

{
v(x);�v � α −

∑
k∈Zn∩A

γ (k,ω)δ(x − k), v � 0 in A,v = 0 on ∂A

}
. (8)

Clearly, the function v̄α,A is solution of

�v = α −
∑

k∈Zn∩A

γ (k,ω)δ(x − k) (9)

whenever it is positive. Note that the function

hα,k(x) := α

2n
|x − k|2 + hk(x − k) (10)

=

⎧⎪⎨
⎪⎩

α

2n
|x − k|2 + r(k,ω)n−2

|x − k|n−2
, if n � 3,

α

2n
|x − k|2 − r(k,ω) log |x − k| if n = 2,

also satisfies

�hα,k(x) = α − γ (k,ω)δ(x − k).

It follows from (9) and the maximum principle that if B1(k) ⊂ A, then, for all x in B1(k) and for almost every ω in Ω ,
we have

v̄α,A(x,ω) �

⎧⎪⎨
⎪⎩

hα,k(x) − α

2n
− rn−2 if n � 3,

hα,k(x) − α

2n
if n = 2.

(11)
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4.2. Critical α

The purpose of this section is to prove that for a critical α, v̄α,A behaves like hα,k near Sε(k,ω). For that purpose,
we introduce the following quantity, which measures the size of the contact set:

m̄α(A,ω) = ∣∣{x ∈ A; v̄α,A(x,ω) = 0
}∣∣,

where |A| denotes the Lebesgue measure of a set A.
The starting point of the proof is the following lemma:

Lemma 4.1. The random variable m̄α is subadditive, and the process

Tkm(A,ω) = m(k + A,ω)

has the same distribution for all k ∈ Z
n.

Proof of Lemma 4.1. Assume that the finite family of sets (Ai)i∈I is such that

Ai ⊂ A for all i ∈ I,

Ai ∩ Aj = ∅ for all i �= j,∣∣∣∣A −
⋃
i∈I

Ai

∣∣∣∣ = 0

then v̄α,A is admissible for each Ai , and so v̄α,Ai
� v̄α,A. It follows that

{v̄α,A = 0} ∩ Ai ⊂ {v̄α,Ai
= 0}

and so

m̄α(A,ω) =
∑
i∈I

∣∣{v̄α,A = 0} ∩ Ai

∣∣ �
∑
i∈I

∣∣{v̄α,Ai
= 0}∣∣ =

∑
i∈I

m̄α(Ai,ω),

which gives the subadditive property. Assumption 3 then yields

Tkm(A,ω) = m(A,τkω)

which gives the last assertion of the lemma. �
Since m̄α(A,ω) � |A|, and thanks to the ergodicity of the transformations τk , it follows from the subadditive

ergodic theorem (see [8] and [1]) that for each α, there exists a constant �̄(α) such that

lim
t→∞

m̄α(Bt (0),ω)

|Bt(0)| = �̄(α) a.s.,

where Bt(0) denotes the ball centered at the origin with radius t . Note that the limit exists and is the same if instead
of Bt(0), we use cubes or balls centered at tx0 for some x0.

If we scale back and consider the function

w̄ε
α(y,ω) = ε2v̄α,B

ε−1 (ε−1x0)
(y/ε,ω) in B1(x0),

we deduce

lim
ε→0

|{y; w̄ε
α(y,ω) = 0}|
|B1| = �̄(α) a.s.

The next lemma summarizes the properties of �̄(α):

Lemma 4.2.

(i) �̄(α) is a nondecreasing functions of α.
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(ii) If α < 0, then �̄(α) = 0. Moreover, if the radii r(k,ω) are bounded from below, then �̄(α) = 0 for any α such that
α < n(n − 2) infk∈Zn r(k,ω)n−2 almost surely.

(iii) If α � 2nn(n − 2) supk∈Zn r(k,ω)n−2 (or α � 8r for n = 2) almost surely, then �̄(α) > 0.

Proof. (i) The proof follows immediately from the inequality

v̄α,A � v̄α′,A for any α,α′ such that α′ � α.

(ii) If α is negative, then the function α
2n

|x − x0|2 − α
2n

(tr)2, which is a sub-solution of (9), is positive in tBr(x0)

and vanishes along ∂(tBr(x0)) for any ball Br(x0) and for any t > 0. We deduce:

v̄α,tB >
α

2n
|x − x0|2 − α

2n
(tr)2 > 0 in tBr(x0)

for all t > 0. Therefore mα(tB,ω) = 0 for all t > 0, so �̄(α) = 0 for all α < 0.
Furthermore, if r(k,ω) is bounded below:

r(k,ω) � r > 0 for all k ∈ Z
n, a.e. ω ∈ Ω,

then, the function α
2n

|x − k|2 + rn−2

|x−k|n−2 − α
2n

− rn−2 is a sub-solution of (9) in B1(k) which vanishes on ∂B1(k) and

is strictly positive in B1(k) as long as α < n(n − 2)rn−2. As above, we deduce that mα(tB,ω) = 0 for all t > 0 and
for all α < n(n − 2)rn−2.

(iii) The function hα,k(x) = α
2n

|x − k|2 + rn−2

|x−k|n−2 is radially symmetric and reaches its minimum when

|x − k| = R(α, k) :=

⎧⎪⎪⎨
⎪⎪⎩

(
n(n − 2)r(k,ω)n−2

α

)1/n

when n � 3,(
2r(k,ω)

α

)1/2

when n = 2.

(12)

In particular, for α > 2nn(n − 2)r(k,ω)n−2 (or n � 8r(k,ω) when n = 2), we have R(α, k) < 1/2 and so the
function

gk(x) =
{

hα,k(x) − Dk in BR(α,k)(k),

0 in R
n \ BR(α,k)(k)

satisfies

�gk � α − γ (k,ω)δ(x − k) in C1(k),

and

gk = 0 in C1(k) \ B1/2(k),

where C1(k) denotes the cube of size 1 centered at k, and the constant Ck is chosen in such a way that gk and ∇gk

vanish along ∂BR(α,k):

D(α, k) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
α

2n

) n−2
n

r
2(n−2)

n

(
n − 2

2

) 2
n
(

n

n − 2

)
when n � 3,

r

2

(
1 − log

(
2r

α

))
when n = 2.

(13)

By definition of v̄α,tB , we deduce that

v̄α,tB(x) �
∑

k∈Zn∩tB

gk(x) in tB a.s.

In particular, this implies that v̄α,tB vanishes in tB \ ⋃
k∈Zn B1/2(k), and so

m̄α(tB,ω) � |C1| − |B1/2| = 1 − ωn

n
a.s.
|tB| |C1| 2
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We conclude

�̄(α) � 1 − ωn

2n
> 0. �

Using Lemma 4.2, we can define

α0 = sup
{
α; �̄(α) = 0

}
.

Note that α0 is finite under Assumption 3 (Lemma 4.2(iii)) and that α0 � 0 is strictly positive as soon as the r(k,ω)

are bounded from below almost surely by a positive constant (Lemma 4.2(ii)).
Our goal, in the rest of this section, is to show that the function

wε(x,ω) = inf

{
w(x);�w � α0 in D \ Tε,

w � 1 on Tε ∩ D

w = 0 on ∂D \ Tε

}
,

satisfies all the conditions of Proposition 2.2. For that purpose, we will introduce a series of intermediate functions.

4.3. Behavior of v̄α,ε−1A near the holes

We fix a bounded subset A of R
n and we denote by

v̄ε
α(x,ω) = v̄α,ε−1A(x,ω) (14)

the solutions of (8) defined in ε−1A. We also introduce the rescaled function

w̄ε
α(y,ω) = ε2v̄ε

α(y/ε,ω),

defined in A.
The key properties of v̄ε

α are given by the following lemma:

Lemma 4.3.

(i) For every α and for every k ∈ Z
n, we have

v̄ε
α(x) �

⎧⎪⎨
⎪⎩

hα,k(x) − α

2n
− rn−2 if n � 3,

hα,k(x) − α

2n
if n = 2

for all x ∈ B1(k) and almost everywhere ω ∈ Ω (where hα,k is defined by (10)).
(ii) For every α > α0, we have

v̄ε
α(x) � hα,k(x) + o(ε−2)

for all x ∈ B1/2(k) and almost everywhere ω ∈ Ω .

Since

hα,k|∂Bāε(r(k,ω))(0) =

⎧⎪⎨
⎪⎩

ε−2 + α0

2n

∣∣āε
(
r(k,ω)

)∣∣2 if n � 3,

ε−2 + α0

4

∣∣āε
(
r(k,ω)

)∣∣2 + r(k,ω) log ε if n = 2,

we deduce the following corollary:

Corollary 4.4.

(i) For every α and every k ∈ Z
n such that r(k,ω) > 0, we have

v̄ε
α(x) � ε−2 + o(1) on ∂Bāε(r(k,ω))(k) a.e. ω ∈ Ω
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and so

w̄ε
α(x) � 1 + o(ε2) on ∂Tε(ω) a.e. ω ∈ Ω

for all α.
(ii) For every α > α0 and every k ∈ Z

n, we have

v̄ε
α(x) � ε−2 + o(ε−2) on ∂Bāε(r(k,ω))(k) a.e. ω ∈ Ω

and so

w̄ε
α(x) � 1 + o(1) on ∂Tε(ω) a.e. ω ∈ Ω.

Proof of Lemma 4.3. (i) Immediate consequence of (11).
(ii) Preliminary: First of all since A is bounded, we have

A ⊂ BR(x0).

Without loss of generality, we can always assume that BR(x0) = B1(0). We then introduce

vε
α(x,ω) = v̄α,ε−1B1

(x,ω),

the solutions of (8) in Bε−1(0). It is readily seen that vε
α is admissible for (8) and thus

v̄ε
α(x,ω) � vε

α(x,ω) for all x ∈ ε−1A a.e. ω ∈ Ω.

It is thus enough to prove (ii) for vε
α .

We will need the following consequence of Lemma 4.1 (see [3] for the proof):

Lemma 4.5. For any ball Br(x0) ∈ B1(0), the following limit holds, a.s. in ω

lim
ε→0

|{vε
α(x,ω) = 0} ∩ Bε−1r (ε

−1x1)|
|Bε−1r |

= �̄(α).

Step 1: We can now start the proof: For any δ > 0, we can cover Bε−1 by a finite number N (� Cδ−n) of balls Bi

with radius δε−1 and center ε−1xi . Since α > α0, we have �̄(α) > 0. By Lemma 4.5, we deduce that for every i, there
exists εi such that if ε � εi , then∣∣{vε

α(x,ω) = 0
} ∩ Bi

∣∣ > 0 a.s. ω.

In particular, if ε � inf εi , then vε
α(yi) = 0 for some yi in Bi a.s. ω ∈ Ω . We now have to show that this implies that

vε
α remains small in each Bi as long as we stay away from the lattice points k ∈ Z

n. More precisely, we want to show
that

sup
Bi\⋃k∈Zn B1/4(k)

vε
α � Cδ2ε−2.

Step 2: Let η be a nonnegative function such that 0 � η(x) � 1 for all x, η(x) = 1 in B1/8 and η = 0 in R
n \ B1/4.

Then the function u = vε
α � η is nonnegative on 2Bi and satisfies

−C � �u � C,

where C is a universal constant depending only on n and r̄ . In particular, since Bi has radius δε−1, Harnack inequality
yields:

sup
Bi

u � C inf
Bi

u + Cα(δε−1)2.

Step 3: We need the following lemma:

Lemma 4.6. If �v � α in Br(y0), then

1

Br

∫
Br (y0)

v(x) dx � v(y0) + αC(n)r2,

where C(n) is a universal constant.
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Proof. We note that the function v(x) − α
2n

|x − y0|2 is super-harmonic in Br(y0). The lemma follows from the mean
value formula. �

Now, we recall that vε
α(yi) = 0 and �vε

α � α in B1/4(yi). So

1

B1/4

∫
B1/4(yi )

vε
α(x) dx � vε

α(yi) + αC(n).

In particular, we have

u(yi) �
∫

B1/4(yi )

vε
α(x) dx � C(α,n).

Step 4: Steps 2 and 3 yield

sup
Bi

u � C(α,n)
(
1 + α(δε−1)2)

and since �vε
α � 0 in Bi \ ⋂

k∈Zn{k}, we have:

vε
α(y) � 1

B1/8

∫
B1/8(y)

vε
α(x) dx � Cu(y)

for all y ∈ Bi \ ⋂
k∈Zn B1/4(k).

It follows that for every δ and for ε small enough, we have:

sup
B

ε−1 \⋃k∈Zn B1/4(k)

vε
α � Cδ2ε−2.

The definition of vε
α and the fact that hα,k � 0 on ∂B1/2 implies that

vε
α(x) � hα,k(x) + Cδ2ε−2 in B1/2(k)

for all k ∈ Z
n. �

4.4. Approximated corrector

We now want to use the function v̄ε
α , solution of the obstacle problem (8), to study the properties of the free solution

wε
0 of{

�wε
0 = α0 − ∑

k∈Zn∩D γ (k,ω)δ(x − εk) in D,

wε
0 = 0 on ∂D.

We define hε
α,k(x) = ε2hα,k(x/ε) for n � 3 and hε

α,k(x) = ε2hα,k(x/ε) + rε2 log ε for n = 2. We have:

hε
α,k(x) :=

⎧⎪⎪⎨
⎪⎪⎩

α0

2n
|x − εk|2 + εnr(k,ω)n−2

|x − εk|n−2
if n � 3,

α0

2n
|x − εk|2 − r(k,ω)ε2 log |x − εk| if n = 2.

We then prove:

Lemma 4.7. For every k ∈ Z
n, wε

0 satisfies

hε
α,k(x) − o(1) � wε

0(x) � hε
α,k(x) + o(1) ∀x ∈ Bε/2(εk) ∩ D a.e. ω ∈ Ω. (15)

In particular:

wε
0(x) = 1 + o(1) on ∂Tε ∩ D. (16)
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Proof. For every α, we denote by w̄ε
α the function

w̄ε
α(x) = ε2v̄α,ε−1D(x/ε),

defined in D and satisfying w̄ε
α = 0 on ∂D.

1. For every α > α0, we have

�(wε
0 − wε

α) � α0 − α

and wε
0 − wε

α = 0 on ∂D. This implies

wε
0(x0) − wε

α(x0) �
∫
D

G(x0, x)(α0 − α)dx,

where G(·, ·) is the Green function on D (�G = δx0 and G = 0 on ∂D). Note that we have

G(x0, x) � −h(x − x0) ∀x,x0 ∈ D,

and so

wε
0(x0) − wε

α(x0) � (α − α0)

∫
D

h(x − x0) dx.

We deduce

sup
D

(wε
0 − wε

α) �
{

C|D|1/(n−1)ρD|α − α0| if n � 3,

C|D|ρD logρD|α − α0| if n = 2,

with

ρD = inf{ρ;D ⊂ Bρ}.
Hence we have

wε
0 � wε

α + O(α − α0).

Using Lemma 4.3(ii) (since α > α0), we deduce:

wε
0 � hε

α,k(x) + O(α − α0) + o(1) ∀x ∈ Bε/2(εk) a.e. ω ∈ Ω

which gives the second inequality in (15).
2. Similarly, we observe that for every α � α0, we have

�(wε
α − wε

0) � α − α0 − α1{wε
α=0}.

Proceeding as before, we deduce that for n � 3,

sup
D

(wε
α − wε

0) � CρD

[|D|1/(n−1)(α0 − α) + Cα
∣∣{wε

α = 0}∣∣1/(n−1)]
and a similar inequality for n = 2. Using Lemma 4.3(i), we get

wε
0 � hε

α,k − o(ε2) − O(α0 − α) − Cα
∣∣{wε

α = 0}∣∣1/(n−1)
.

Finally, since

lim
ε→0

∣∣{wε
α = 0}∣∣ = 0

for all α � α0, and (15) follows. �
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4.5. Proof of Proposition 2.2

We are now in position to complete the proof of Proposition 2.2: We define

wε(x,ω) = inf

{
w(x);�w � α0 in D \ Tε,

w � 1 on Tε ∩ D

w = 0 on ∂D \ Tε

}
,

it is readily seen that⎧⎪⎨
⎪⎩

wε(x,ω) = 1 for x ∈ ∂Tε,

�wε(x,ω) = α0 for x ∈ D \ Tε,

wε(x,ω) = 0 for x ∈ ∂D \ Tε.

So in view of Lemma 2.3, we only have to show that wε → 0 in H 1(D)-weak as ε goes to zero. More precisely, we
will show that wε converges to zero in Lp strong and is bounded in H 1.

Strong convergence in Lp: First of all, (16) yields

wε
0(x) − o(1) � wε(x,ω) � wε

0(x) + o(1) ∀x ∈ Dε a.e. ω ∈ Ω,

which in turns imply (using Lemma 4.7 again):

hε
α,k(x) − o(1) � wε(x,ω) � hε

α,k(x) + o(1) ∀x ∈ Bε/2(εk) a.e. ω ∈ Ω. (17)

Next, a simple computation shows that

∫
Bε\Baε

|hε
α,k|p dx �

⎧⎨
⎩

Cεn(ε
2n

n−2 + ε2p) if n � 3,

Cε2ε2p(log ε)p if n = 2.

Since #{εZ
n ∩ D} � Cεn for all n, we deduce from (17) that

‖wε‖Lp �
{

C(ε
2n

p(n−2) + ε2) if n � 3,

Cε2(log ε) if n = 2.
(18)

In particular

wε → 0 in Lp-strong, for all p ∈ [1,∞).

Bound in H 1: First of all, a simple integration by parts together with the fact that wε = 1 on ∂Tε yields∫
Dε

|∇wε|2 dx � α0|D| +
∫

∂Tε

|∇wε|dσ(x),

where ∂Tε = ⋃
∂Sε(k,ω). So we need an estimate in ∇wε along ∂Sε(k,ω) = ∂Baε(r(k,ω)).

We consider the function

z(x) =
⎧⎨
⎩

wε(x) − hε
α,k(x) + α0

2n
r2εn/(n−2) when n � 3,

wε(x) − hε
α,k(x) + α0

2n
r2e2 ε−2

r when n = 2.

It satisfies⎧⎪⎨
⎪⎩

�z = 0 in B1/2(εk) \ Baε(r(k,ω))(εk),

z(x) = o(1) in B1/2(εk) \ Baε(r(k,ω))(εk),

z(x) = 0 along ∂Baε(r(k,ω))(εk),

and so

∣∣∇z(x)
∣∣ �

{
o(rn−2εnε− n(n−1)

n−2 ) = o
(
εnaε(r)−(n−1)

)
if n � 3,

o(ε2er−1ε−2
) = o

(
εnaε(r)−(n−1)

)
if n = 2.
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on ∂Baε(r(k,ω))(εk). It follows that

|∇wε| � ∣∣∇hε
α,k(x)

∣∣ + ∣∣∇z(x)
∣∣ � Cεnaε

(
r(k,ω)

)−(n−1)

along ∂Baε(r(k,ω))(εk),
We deduce∫

Dε

|∇wε|2 dx � α0|D| +
∫

∂Tε

|∇wε|dσ(x)

� α0|D| +
∑

k∈Zn∩ε−1D

∫
∂Baε(r(k,ω))(εk)

|∇wε|dσ(x)

� α0|D| + Cε−naε(r̄)n−1εnaε(r̄)−(n−1)

� C,

and the proof is complete. �
5. Proof of Proposition 2.2: General case

In this section, we treat the case where the sets Sε(k,ω) have unspecified shape, but satisfy Assumption 2:

cap
(
Sε(k,ω)

) = εnγ (k,ω).

Throughout this section we assume n � 3.
The proof makes use of the result of the previous section, after noticing that away from εk, the hole Sε(k,ω) is

equivalent to a ball of radius aε(r(k,ω)), where

aε(r) = rεn/(n−2), r(k,ω) =
(

γ (k,ω)

n(n − 2)ωn

)1/(n−2)

.

More precisely, we will rely on the following lemma:

Lemma 5.1. For any k ∈ Z
n and ω ∈ Ω , let ϕε

k(x,ω) be defined by

ϕε
k(x,ω) = inf

{
v(x);�v � 0,

{
v(x) � 1, ∀x ∈ Sε(k,ω)

lim|x|→∞ v(x) = 0

}
.

Then for any δ > 0, there exists Rδ such that∣∣ϕε
k(x,ω) − εnγ (k,ω)h(x − εk)

∣∣ � δεnh(x − εk)

for all x such that |x − εk| � aε(Rδ) and for all ε > 0.
Moreover, Rδ depends only on the constant M appearing in Assumption 1. In particular, Rδ is independent of k

and ω.

1. For a given δ > 0, Lemma 5.1 implies that for every k ∈ Z
n and ω ∈ Ω there exists a constant Rδ(k,ω) such that∣∣∣∣ϕε

k(x,ω) − εnr(k,ω)n−2

|x − εk|n−2

∣∣∣∣ � δ

(
r

Rδ

)n−2

in B2aε(Rδ) \ Baε(Rδ)(εk) (19)

for all ε > 0. Moreover, it is readily seen that for any R there exists ε1(R) such that

aε(R) � εσ /4 for all ε � ε1 (20)

for some σ > 1. Finally, we note that by definition of ϕε
k , we have∫

Rn

|∇ϕε
k |2 dx = cap

(
Sε(k)

) = εnγ (k,ω). (21)
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2. Next, let α0 and wε be the coefficient and corresponding corrector constructed in the previous section, and asso-
ciated with holes Sε of radius r(k,ω). Lemma 4.7 implies that for δ and R given, there exists ε2(δ,R) < ε1(R)

such that for all ε � ε2(δ,R), we have∣∣∣∣wε(x) − εnr(k,ω)n−2

|x − εk|n−2

∣∣∣∣ � δ

Rn−2
in Bε/2(εk), (22)

in dimension n � 3. Note that thanks to (20), Inequality (22) holds in particular in B2aε(R) \ Baε(R)(εk).

The corrector given by Proposition 2.2 will be constructed by gluing together the functions ϕε
k (near the holes

Sε(k)) and the function wε (away from the holes). The gluing will have to be done in a very careful way so that the
corrector satisfies all the properties listed in Proposition 2.2: For a given ε, we define δε to be the smallest positive
number such that (20) and (22) hold with δ = δε and R = Rδε . From the remarks above, we see that δε is well defined
as soon as ε is small enough (say smaller than ε2(1,R1)). Moreover, for any δ > 0, there exists ε0 = ε2(δ,Rδ) such
that

δε � δ ∀ε � ε0.

In particular

lim
ε→0

δε = 0.

From now on, we write

Rε = Rδε .

We are now ready to define the corrector w̄ε: Let ηε(x) be a function defined on D such that

ηε(x) = 1 on D \
⋃

k∈Zn

B2aε(Rε)(εk),

ηε(x) = 0 on
⋃

k∈Zn

Baε(Rε)(εk)

and satisfying

|∇ηε| � Caε(Rε)
−1 and |�ηε| � Caε(Rε)

−2

in B2aε(Rε) \ Baε(Rε)(k). We then define w̄ε(x,ω) in D by:

w̄ε(x,ω) = ηε(x)wε(x,ω) + (
1 − ηε(x)

) ∑
k∈Zn∩D

ϕε
k(x,ω)1Bε/2(εk)(x).

It satisfies

w̄ε(x,ω) =

⎧⎪⎨
⎪⎩

ϕε
k(x) in B2aε(Rε)(k) \ Sε(k) ∀k ∈ Z

n,

wε(x) in D \
⋃

k∈Zn

Baε(Rε).

To simplify the notations in the sequel, we denote

ϕε(x) :=
∑

k∈Zn∩D

ϕε
k(x,ω)1Bε/2(εk)(x).

The properties of w̄ε are summarize in the following lemma, which implies Proposition 2.2 with (5) instead of the
first equation:

Lemma 5.2. The function w̄ε satisfies

(i) w̄ε = 1 on Sε for any ε > 0.
(ii) w̄ε converges to zero as ε goes to zero in Lp(D) strong for all p ∈ [2,∞) and

‖w̄ε‖Lp � Cε
2n

p(n−2) ∀p � 2.
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(iii) w̄ε is bounded in H 1(D).
(iv) w̄ε satisfies (5).

Proof. (i) Immediate consequence of the definition of w̄ε since ϕε
k = 1 on Sε(k,ω).

(ii) Assumption 1 yields

ϕε
k(x,ω) � Cεnγ (k,ω)h(x − εk)

for all x such that |x − εk| � aε(M). Since ϕε
k � 1 in Baε(M)(εk), we deduce:∥∥(1 − ηε)ϕ

ε
∥∥p

Lp(Rn)
�

∑
k∈Zn∩ε−1D

‖ϕε
k1Bε/2(εk)‖p

Lp(
⋃

BR(k)a(ε))

�
∑

k∈Zn∩ε−1D

∫
Baε(M)(εk)

(
ϕε

k(x)
)p

dx + C
∑

k∈Zn∩ε−1D

∫
B2aε(Rε)(εk)

(
εnγ (k)h(x − εk)

)p
dx

�
∑

k∈Zn∩ε−1D

aε(M)n + Cγ̄
∑

k∈Zn∩ε−1D

εpn
(
aε(Rε)

)n−p(n−2)
.

Using (20) and the definition of a(ε), we deduce:∥∥(1 − ηε)ϕ
ε
∥∥p

Lp(Rn)
� Cε−nMnε

n2
n−2 + Cγ̄

∑
k∈Zn∩D

εpnεn−p(n−2)

� CMnε
2n

n−2 + Cγ̄
∑

k∈Zn∩D

εn+2p

� CMnε
2n

n−2 + Cγ̄ ε2p,

where 2p � 2n
n−2 if p � 2 and n � 3.

Using (18), it follows that

‖w̄ε‖Lp(D) � ‖wε‖Lp(D) + C
(
ε

2n
n−2

)1/p

� Cε
2n

p(n−2)

for all p � 2.
(iii) Next, we want to show that w̄ε is bounded in H 1(Dε). First, we note that in Bε/2(εk), we have:

∇w̄ε = ∇ηε(w
ε − ϕε

k) + ηε∇w̄ε
0 + (1 − ηε)∇ϕε

k , (23)

where the function ∇ηε is supported in B2aε(Rε)(εk) \ Baε(Rε)(εk) and satisfies

|∇ηε| � C
(
aε(R)

)−1
.

Since |wε − ϕε
k | � C δε

Rn−2
ε

in B2aε(Rε)(εk) \ Baε(Rε)(εk), we deduce∫
D

∣∣∇ηε(w
ε − ϕε)

∣∣2
dx �

∑
k∈εZn∩D

∫
B2aε(Rε)(εk)

∣∣∇ηε(w
ε − ϕε

k)
∣∣2

dx

�
∑

k∈εZn∩D

(
aε(Rε)

)n(
aε(Rε)

)−2 δ2
ε

R
2(n−2)
ε

�
∑

k∈εZn∩D

R−(n−2)
ε εnδ2

ε

� Cε−nεnδε = Cδε,

where we used the fact if ε is small enough, then δε < 1 and Rε � 1. Finally, since wε and ϕε are both bounded in H 1

(thanks to (21)), (23) implies

||∇w̄ε||L2 � C.
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(iv) Using Lemma 2.3, we only have to prove that

lim
ε→0

∫
Dε

|�w̄ε − α0|dx = 0.

We have:

�w̄ε = α − (1 − ηε)α + 2∇ηε · ∇(wε − ϕε) + �ηε(w
ε − ϕε) in Dε.

Moreover, (22) and (19) yield

|wε − ϕε
k | �

δε

Rn−2
ε

in B2aε(Rε) \ Baε(Rε),

and by definition of wε and ϕε
k , we have

�

(
wε − ϕε

k − α0

2n
|x − εk|2

)
= 0 in B4aε(R) \ Baε(Rε)/2.

Interior gradient estimates thus imply∣∣∇(wε − ϕε
k)

∣∣ � δε

Rn−2
ε

aε(Rε)
−1 + Caε(Rε)

in B2aε(Rε) \ Baε(Rε). We deduce (using (20)):∫
Dε

|�w̄ε − α|dx �
∫
Dε

(1 − ηε)α dx +
∫
Dε

|∇ηε|
∣∣∇(wε − ϕε)

∣∣dx +
∫
Dε

|�ηε||wε − ϕε|dx

�
∑

k∈εZn∩ε−1D

aε(Rε)
n +

∑
k∈εZn∩ε−1D

aε(Rε)
−1

∫
B2aε(Rε)\Baε(R)

∣∣∇(wε − ϕε
k)

∣∣dx

+
∑

k∈εZn∩ε−1D

aε(Rε)
−2

∫
B2aε(Rε)\Baε(R)

|wε
0 − ϕε

k |dx

� C
∑

k∈εZn∩ε−1D

aε(Rε)
n + C

∑
k∈εZn∩ε−1D

δε

Rn−2
aε(Rε)

−2(aε(R)
)n

� Cε−naε(Rε)
n + Cδε

∑
k∈εZn∩ε−1D

(
aε(Rε)

Rε

)n−2

� Cε(σ−1)n + Cδε.

It follows that

lim
ε→0

∫
Dε

|�w̄ε − α0|dx � Cδ

for any δ > 0, which gives the result. �
Appendix A. Proof of Lemma 5.1

We recall that n � 3 in this section. For any k ∈ Z
n, we define S̄ε(k) = ε− n

n−2 Sε(k). Then Assumption 2 yields:

cap
(
S̄ε(k)

) = γ (k) � γ̄ .

and Assumption 1 gives

S̄ε(k) ⊂ BM(k). (24)
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For the sake of simplicity, we take k = 0. We recall that h is defined by

h(x) = 1

n(n − 2)ωn

1

|x|n−2
.

Lemma 5.1 will be a consequence of the following lemma:

Lemma 5.3. Let ϕ be defined by

ϕ(x) = inf

{
v(x);�v � 0,

{
v(x) � 1, ∀x ∈ S̄ε(k,ω)

lim|x|→∞ v(x) = 0

}
.

Then for any δ > 0, there exists R, depending only on δ and M such that∣∣ϕ(x,ω) − γ h(x)
∣∣ � δh(x)

for all x such that |x| � R.

Proof. We recall that ϕ solves⎧⎨
⎩

�ϕ(x) = 0 for all x ∈ R
n \ S,

ϕ(x) = 1 for all x ∈ S,

lim|x|→∞ ϕ(x) = 0.

In particular, (24) and the maximum principle imply

ϕ(x) � Mn−2n(n − 2)ωnh(x) = Mn−2

|x|n−2
in R

n \ BM(0). (25)

Next, we observe that

0 = −
∫

Rn\S
ϕ�ϕ dx =

∫
Rn\S

|∇ϕ|2 dx −
∫
∂S

ϕϕν dσ(x)

and so ∫
Rn\S

|∇ϕ|2 dx =
∫
∂S

ϕϕν dσ(x) =
∫
∂S

ϕν dσ (x).

Moreover, for any R � M , we have

0 =
∫

BR\S
�ϕ dx =

∫
∂S

ϕν dσ (x) +
∫

∂BR

ϕν dσ (x).

We deduce:

γ =
∫

Rn\S
|∇ϕ|2 dx = −

∫
∂BR

ϕν dσ(x) for all R � M. (26)

We now introduce the function

Θ(x) = h

(
x

|x|2
)−1

ϕ

(
x

|x|2
)

= n(n − 2)ωn

1

|x|n−2
ϕ

(
x

|x|2
)

defined for x ∈ B1/M(0). A straightforward computation yields

�Θ = 0 in B1/M(0)

and (25) implies

Θ(x) � Mn−2n(n − 2)ωn in B1/M(0).
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A more delicate computation, making use of the mean formula for harmonic functions, gives∫
∂BR

ϕν dσ(x) = −Θ(0).

Hence (26) yields

Θ(0) = cap(S̄ε) = γ.

To conclude, we note that interior gradient estimates for harmonic functions imply the existence of a universal C

(depending only on M) such that∣∣Θ(x) − γ
∣∣ � C|x| for all |x| � 1/(2M).

Inverting back, we deduce∣∣ϕ(x) − γ h(x)
∣∣ � C

|x|h(x) for all |x| � 2M,

which yields the result. �
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