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Abstract

We deal with the existence of solutions for the quasilinear problem

(Pλ)

⎧⎨
⎩

−�pu = λuq−1 + up∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary, N � p2, 1 < p � q < p∗, p∗ = Np/(N − p), λ > 0 is a parameter.

Using Morse techniques in a Banach setting, we prove that there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), (Pλ) has at least
P1(Ω) solutions, possibly counted with their multiplicities, where Pt (Ω) is the Poincaré polynomial of Ω . Moreover for p � 2
we prove that, for each λ ∈ (0, λ∗), there exists a sequence of quasilinear problems, approximating (Pλ), each of them having at
least P1(Ω) distinct positive solutions.

Résumé

On s’interesse à l’existence de solutions pour l’équation quasi-linéaire

(Pλ)

⎧⎨
⎩

−�pu = λuq−1 + up∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

où Ω est un domaine de R
N avec frontière régulière, N � p2, 1 < p � q < p∗, p∗ = Np/(N − p), λ > 0 est un paramètre.

Par des techniques de la théorie de Morse dans le cadre des espaces de Banach, un démontre l’existence de λ∗ > 0 tel que,
pour tout λ ∈ (0, λ∗), (Pλ) possède au moins P1(Ω) solutions, considerées avec leur multiplicité, où P1(Ω) est le polynôme de
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Poincaré de Ω . En outre, pour p � 2, on démontre que, pour tout λ ∈ (0, λ∗), il existe une suite de problèmes quasi-linéaires qui
approchent (Pλ), chacun desquels a au moins P1(Ω) solutions positives différentes.
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1. Introduction

Let us consider the quasilinear elliptic problem

(Pλ)

⎧⎨
⎩

−�pu = λuq−1 + up∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary, N � p2, 1 < p � q < p∗, p∗ = Np/(N − p), λ > 0 is

a parameter.
The first striking result, in the case p = 2, is due to Pohozaev [30] who proved that if Ω is starshaped with respect

to some point and λ = 0, then (Pλ) has no solution. Some years later, in the celebrated paper [9], Brezis and Nirenberg
showed that if N � 4 and p = q = 2, problem (Pλ) has a solution for any λ ∈ (0, λ1) where λ1 is the first eigenvalue
of −� with Dirichlet boundary condition on Ω (cf. [2]) and no solution when λ � λ1 or λ � 0 and Ω is starshaped.
Moreover they proved that when N = 3, p = q = 2, Ω is the ball in R

N , then problem (Pλ) has a solution if and only
if λ ∈ ( λ1

4 , λ1). The paper [9] stimulated a vast amount of research on this subject.
The quasilinear critical problem (Pλ) was considered by Azorero and Peral in [3]. They showed that if N � p2,

and p = q , then (Pλ) has a solution for any λ ∈ (0, λ1), where λ1 denotes the first eigenvalue of p-Laplace operator
−�p with Dirichlet boundary condition on Ω , no solutions when λ � λ1 or λ � 0 and Ω is starshaped. The same
results are obtained by Guedda and Veron in [23] with a different approach.

Moreover in [3] (see also [4]) Azorero and Peral proved that when q ∈ (p,p∗), N � p2, (Pλ) has a solution for
any λ > 0.

The first multiplicity result for (Pλ) has been achieved by Rey in [31] in the semilinear case. Precisely Rey proved
that if N � 5, p = q = 2, for λ small enough (Pλ) has at least cat(Ω) solutions, where cat(Ω) denotes the Ljusternik–
Schnirelmann category of Ω in itself. This result, as Rey wrote in the introduction of the paper [31], was suggested
by the fact that the number of solutions to (Pλ) is related to the properties of the Green’s function of Ω . Precisely
in [32], he has showed that if N � 4, p = q = 2, and uλ is a solution of (Pλ), which concentrates around a point x0

as λ → 0, then x0 is a critical point of the Robin’s function, the regular part of the Green’s function. Conversely if
N � 5, p = q = 2, any nondegenerate critical point x0 of the Robin’s function generates a family of solutions of (Pλ),
concentrating around x0 as λ → 0.

Throughout a different approach, based on some ideas introduced by Benci and Cerami in [6], Lazzo obtained
in [24] the same result of Rey [31], under the weaker condition N � 4. Really, for p = q = 2, in [28], Passaseo
improved the results in [31,24] proving that if Ω is not contractible, (Pλ) has at least cat(Ω)+1 solutions. Furthermore
Passaseo showed that the number of solutions of (Pλ) is not related to the topology of Ω , but to the topology of a
domain Ω̃ which differs from Ω by a set of small capacity. For instance if Ω is obtained by Ω̃ cutting off a set of
small capacity, then problem (Pλ) has at least cat(Ω̃) + 1 distinct solutions, for λ small, even if the domain Ω is
contractible in itself.

Recently in [1], Alves and Ding have proved a multiplicity result for the quasilinear problem (Pλ), in the spirit
of the papers [31,24]. They showed that if N � p2 and 2 � p � q < p∗, then there exists λ∗ > 0 such that for each
λ ∈ (0, λ∗) problem (Pλ) has at least cat(Ω) solutions.

In this work we aim to obtain a better information on the number of solutions of problem (Pλ), for small value of
parameter λ, via the Morse theory and the domain topology. We recall the following definitions.

© 2007 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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Definition 1.1. Let K be a field. For any B ⊂ A ⊂ R
n, we denote Pt (A,B) the Poincaré polynomial of the topological

pair (A,B), defined by

Pt (A,B) =
+∞∑
k=0

dimHk(A,B)tk,

where Hk(A,B) stands for the kth Alexander–Spanier relative cohomology group of (A,B), with coefficient in K;
we also set Hk(A) = Hk(A,∅) and Pt (A) = Pt (A,∅) is called the Poincaré polynomial of A.

Definition 1.2. Let X be a Banach space and f be a C1 functional on X. Let K be a field. Let u be a critical point
of f , c = f (u), and U be a neighborhood of u. We call

Cq(f,u) = Hq
(
f c ∩ U,

(
f c \ {u}) ∩ U

)
the qth critical group of f at u, q = 0,1,2, . . . , where f c = {v ∈ X: f (v) � c}, Hq(A,B) stands for the qth
Alexander–Spanier cohomology group of the pair (A,B) with coefficients in K. By the excision property of the
singular cohomology theory the critical groups do not depend on a special choice of the neighborhood U .

Definition 1.3. We denote Pt (f, u) the Morse polynomial of f in u, defined by

Pt (f, u) =
+∞∑
k=0

dimCk(f,u)tk.

We call the multiplicity of u the number P1(f,u) ∈ N ∪ {+∞}.

In the past years the relations between the topological properties of the domain and the multiplicity of solutions
to semilinear elliptic problems have been largely investigated. We mention the celebrated paper [7] where Benci and
Cerami estimated the number of solutions of the semilinear elliptic problem

(Sλ)

{−λ�u + u = f (u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary, N � 3, λ > 0 is a parameter, f : R+ → R is a C1,1

function with f (0) = f ′(0) = 0, having a subcritical growth at infinity. By means of Morse techniques, they showed
that the number of positive solutions of problem (Sλ), counted with their multiplicities, depends on the topology of Ω ,
actually on Pt (Ω), the Poincaré polynomial of Ω .

The functional analytic setting, when (Sλ) is set up, is a Hilbert space. The multiplicity is exactly one, if the solution
is nondegenerate in the classical sense given in a Hilbert space, namely the second derivative of the associated Euler
functional in the solution is an isomorphism between the Hilbert space and its dual. The nondegeneracy condition is
generally verified via the perturbation results in [26], which guarantee that each isolated critical point can be resolved
in a finite number of nondegenerate critical points of a C1 locally approximating functional. Let us emphasize that the
perturbation results in [26] rely on a infinite dimensional version of Sard’s Theorem, due to Smale [34] so that they
need the Fredholm properties of the second derivates in the critical points.

In our work, we obtain a first result, which correlates the topological properties of the domain and the number of
solutions of (Pλ), counted with their multiplicities.

Theorem 1.4. Assume that N � p2, 1 < p � q < p∗, p∗ = Np/(N − p). There exists λ∗ > 0 such that, for any
λ ∈ (0, λ∗), (Pλ) has at least P1(Ω) solutions, possibly counted with their multiplicities.

As showed in [7], the application of the Morse theory yields better results than the application of Ljusternik–
Schnirelman theory for topologically rich domain. For example if Ω is obtained by an open contractible domain
cutting off k holes, we derive that the number of solutions of (Pλ) is affected by k, even if the category of Ω is 2 (see
Remark 3.11 and also [7]).
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Theorem 1.4 assures P1(Ω) distinct solutions, if one is able to interpret the multiplicity for a solution of (Pλ). For
this reason, we need a deep insight into this notion. In the present work we consider the case p � 2. In this context, the
variational setting of the quasilinear problem (Pλ) is the Banach space W

1,p

0 (Ω), which is not Hilbert for p �= 2. The
Euler functionals associated to problem (Pλ) are C2, but several conceptual difficulties arise in order to perform a local
Morse theory and perturbation results like in [26]. Firstly all the solutions of (Pλ) are degenerate in the classic sense,
as W

1,p

0 (Ω) is not isomorphic to its dual space (cf. [19]). Moreover, denoting by Iλ the Euler functional associated
to (Pλ), we lack the Fredholm properties of I ′′

λ in its critical points, so that the perturbation results in [26] cannot be
applied. As far as we know, there are no kind of results in the spirit of the paper by Rey [32].

As in [15], we introduce the following weaker notion of nondegeneracy.

Definition 1.5. Let A be an open subset of W
1,p

0 (Ω) and g :A → R be a C2 functional. We say that a critical point u

of g is nondegenerate if g′′(u) is injective from W
1,p

0 (Ω) to its dual W−1,p′
(Ω).

We remark that the above notion of nondegeneracy coincides with the usual one if the space is Hilbert and the
operator is Fredholm. This is not our case, when p > 2. We emphasize that in 1969 Smale, as written by Uhlenbeck
in [38], conjectured that injectivity is enough for developing Morse theory in some Banach settings.

Using the above notion of nondegeneracy, we give a sharp interpretation of the multiplicity of a critical point of (Pλ)

in terms of approximating elliptic problems. This result is contained in Theorem 5.1. We remark that this approach
is new also for the case p = 2. Indeed the perturbation results by Marino and Prodi [26] furnish an interpretation of
the multiplicity in terms of C1 locally approximating functional, which cannot be, in general, the Euler functional of
some semilinear problem.

Using the result in Theorem 5.1, we prove the following multiplicity results. In what follows, we say that ∂Ω

satisfies the interior sphere condition if for each x0 ∈ ∂Ω there exists a ball BR(x1) ⊂ Ω such that BR(x1) ∩ ∂Ω =
{x0}.

Theorem 1.6. Assume that ∂Ω satisfies the interior sphere condition and that N � p2, 2 < p � q < p∗, p∗ =
Np/(N − p). There exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), either (Pλ) has at least P1(Ω) distinct solutions or,
if not, for any sequence (αn), with αn > 0, αn → 0, there exists a sequence (fn) with fn ∈ C1(Ω), ‖fn‖C1 → 0 such
that problem

(Pn)

⎧⎨
⎩

−div
((|∇u|2 + αn

)(p−2)/2∇u
) = λuq−1 + up∗−1 + fn in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

has at least P1(Ω) distinct solutions, for n large enough.

Theorem 1.7. Assume that ∂Ω satisfies the interior sphere condition and that N � 4, 2 � q < 2∗, 2∗ = 2N/(N − 2).
Then there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), either (Pλ) has at least P1(Ω) distinct solutions or, if not,
there exists a sequence (fn) with fn ∈ C1(Ω), ‖fn‖C1 → 0 such that problem

(Ln)

⎧⎨
⎩

−�u = λuq−1 + up∗−1 + fn in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

has at least P1(Ω) distinct solutions, for n large enough.

Theorems 1.6 and 1.7 are quantitative results which give an interpretation to the number of solutions of (Pλ). The
proofs of these theorems rely on the construction of an approximating functional to Iλ, having only nondegenerate
critical points in the sense introduced in Definition 1.5. For nondegenerate critical points of the approximating func-
tional, we are able to compute the critical groups, which are topological objects, in terms of differential notions, like
the Morse index (see Theorem 4.2), so that the multiplicity of a nondegenerate critical point is exactly one. By The-
orem 2.4 it follows that the Morse polynomial Pt (Iλ, u0) (see Definition 1.3) can be computed in terms of the sum
of the Morse polynomials of the approximating functional in each critical point and a partially controlled remainder
term.
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We remark that the idea of combining the Splitting Theorem and Sard’s Lemma, in the finite dimensional case,
can be traced back to Chang [10] in the special case of a C2 functional, defined on a Hilbert space, having an isolated
critical point.

Perturbations results in Morse theory for quasilinear problem having a right-hand side subcritically at infinity are
obtained in [17,14] (see also [13,20]).

Concerning multiplicity results of nontrivial solutions (not necessarily positive) for some critical quasilinear prob-
lem, we quote [33,29]. Finally we mention a recent result by Degiovanni and Lancelotti [21], where the existence of
a nontrivial solution (not necessarily positive) for the critical problem (Pλ) is proved for any λ > λ1, λ �= λm, where
(λm) is a suitable sequence of eigenvalues of −�p .

Throughout the paper we use the following notations:

(1) ‖ · ‖ denotes the usual norm both in W
1,p

0 (Ω) and in W−1,p(Ω);

(2) ‖ · ‖1,2 denotes the usual norm in W
1,2
0 (Ω);

(3) ‖ · ‖∞ denotes the usual norm in L∞(Ω);
(4) | · |r denotes the usual norm in Lr(Ω);
(5) ‖ · ‖C1 and ‖ · ‖C2 denote the usual norms in C1(W

1,p

0 (Ω)) and C2(W
1,p

0 (Ω));

(6) 〈·,·〉 :W−1,p′
(Ω) × W

1,p

0 (Ω) → R denotes the duality pairing;
(7) d(·,·) denotes the distance function in each metric space;
(8) Mr denotes {v ∈ W

1,p

0 (Ω): d(v,M) < r}, where M ⊂ W
1,p

0 (Ω) and r > 0;

(9) f c = {v ∈ W
1,p

0 (Ω): f (v) � c}, f b
a = {v ∈ W

1,p

0 (Ω): a � f (v) � b}, int(f b
a ) = {v ∈ W

1,p

0 (Ω): a < f (v) < b}.

2. Some abstract recalls in Morse theory

We need to recall some useful definitions and results (cf. [11,12,35]).

Definition 2.1. Let X be a Banach space and f be a C1 functional on X. Let C be a closed subset of X. A sequence
(un) in C is a Palais–Smale sequence for f if ‖f (un)‖ � M uniformly in n, while f ′(un) → 0 as n → +∞.

We say that f satisfies (P .S.) on C if any Palais–Smale sequence in C has a strongly convergent subsequence.
Let c ∈ R. We say that f satisfies (P .S.)c if any sequence (un) in X, such that f (un) → c and f ′(un) → 0 as

n → +∞, has a strongly convergent subsequence.

Definition 2.2. Let X be a Banach space and f be a C2 functional on X. If u is a critical point of f , the Morse index
of f in u is the supremum of the dimensions of the subspaces of X on which f ′′(u) is negative definite. It is denoted
by m(f,u). Moreover, the large Morse index of f in u is the sum of m(f,u) and the dimension of the kernel of f ′′(u).
It is denoted by m∗(f,u).

Next theorem is a topological version of the classical Morse relation (cf. Theorem 4.3 in [11]).

Theorem 2.3. Let X be a Banach space and f be a C1 functional on X. Let a, b ∈ R be two regular values for f , with
a < b. If f satisfies the (P .S.)c condition for all c ∈ (a, b) and u1, . . . , ul are the critical points of f in f −1(a, b),
then

+∞∑
q=0

(
l∑

j=1

dimCq(f,uj )

)
tq = Pt (f

b, f a) + (1 + t)Q(t), (2.1)

where Q(t) is a formal series with coefficients in N ∪ {+∞}.

We point out that the above series are formal, as (2.1) means that the coefficients (possibly +∞) of each tq are the
same on both sides of the equality.

In order to obtain a multiplicity result of solutions to problem (Pλ) via Morse relations, we recall an abstract
theorem, proved in [14] (see also [5] and [11]).
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Theorem 2.4. Let A be a open subset of a Banach space X. Let f be a C1 functional on A and u ∈ A be an isolated
critical point of f . Assume that there exists an open neighborhood U of u such that U ⊂ A, u is the only critical point
of f in U and f satisfies the Palais–Smale condition in U .
Then there exists μ̄ > 0 such that, for any g ∈ C1(A,R) such that

• ‖f − g‖C1(A) < μ̄,

• g satisfies the Palais–Smale condition in U ,
• g has a finite number {u1, u2, . . . , um} of critical points in U ,

we have
m∑

j=1

Pt (g, uj ) = Pt (f, u) + (1 + t)Q(t),

where Q(t) is a formal series with coefficients in N ∪ {+∞}.

3. The topological result

Assume that N � p2 and 1 < p � q < p∗, p∗ = pN/(N −p). Standard arguments prove that the solutions of (Pλ)

correspond to the critical points of the C1 functional Iλ :W 1,p

0 (Ω) → R defined by setting

Iλ(u) = 1

p

∫
Ω

|∇u|p dx − λ

q

∫
Ω

(u+)q dx − 1

p∗

∫
Ω

(u+)p
∗
dx. (3.1)

We introduce the Nehari manifolds

Σλ = {
u ∈ W

1,p

0 (Ω) \ {0}: 〈I ′
λ(u),u〉 = 0

}
.

Suitably modifying the proof of [7, Lemma 2.2], it is easy to show that, for any λ > 0, Σλ is a 1-codimensional
submanifold of W

1,p

0 (Ω), as it is C1-diffeomorphic to{
u ∈ W

1,p

0 (Ω): ‖u‖ = 1
} \ {

u ∈ W
1,p

0 (Ω): u � 0 a.e.
}
.

Moreover, each nontrivial critical point of Iλ is a nonnegative function which belongs to Σλ.
We state some results, which are proved in [3,4,1].
As usually, we denote by S the best Sobolev constant of the embedding W

1,p

0 (Ω) ↪→ Lp∗
(Ω) given by

S = inf{‖u‖p: u ∈ W
1,p

0 (Ω), |u|p∗ = 1}.

Lemma 3.1. Let N � p2. Then Iλ satisfies the (P .S.)c condition for all c ∈ (0, SN/p

N
).

Theorem 3.2. Let N � p2. Iλ possesses the mountain-pass geometry (M.P., for short), is bounded from below on Σλ

and inf Iλ(Σλ), which we denote by cλ, is the M.P. level, i.e.

cλ
def= inf Iλ(Σλ) = inf

v �=0
max
t�0

Iλ(tv).

Moreover cλ is decreasing in λ and limλ→0 cλ = SN/p

N
.

Up to translations, we may assume that 0 ∈ Ω . Moreover, in what follows, we fix r > 0 such that
Br (0) = {x ∈ R

n: d(x,0) < r} ⊂ Ω and the sets

Ω+
r = {

x ∈ R
n: d(x,Ω) < r

}
, Ω−

r = {
x ∈ Ω: d(x, ∂Ω) > r

}
are both homotopically equivalent to Ω .

Further, we consider the space

W
1,p

(Br) = {
u ∈ W

1,p(
Br (0)

)
: u(x) = u

(|x|)}
0,rad 0
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and set

Iλ,rad(u) = 1

p

∫
Br (0)

|∇u|p dx − λ

q

∫
Br (0)

(u+)q dx − 1

p∗

∫
Br (0)

(u+)p
∗
dx ∀u ∈ W

1,p

0,rad(Br),

Σrad = {
u ∈ W

1,p

0,rad(Br) \ {0}: 〈
I ′

rad(u),u
〉 = 0

}
,

mr(λ) = inf Irad(Σrad).

Theorem 3.3. Using the previous notations, mr(λ) is the M.P. level of Irad, i.e.

mr(λ) = inf
{

max
t�0

Irad(tu): u ∈ W
1,p

0,rad(Br), u �= 0
}
.

Moreover mr(λ) is decreasing in λ and limλ→0 mr(λ) = SN/p

N
.

Remark 3.4. Once fixed r > 0, we can repeat the same construction for any 	 ∈ (0, r), defining the levels m	(λ). If
m	(λ) is a critical level for any 	 ∈ (0, r), then Theorem 1.4 is proved. So we can suppose that mr(λ) is not a critical
level for Iλ.

We define the continuous map β :Σλ → R
N by setting

β(u) =
∫
Ω

x(u+(x))p
∗
dx∫

Ω
(u+(x))p

∗
dx

.

Lemma 3.5. There exists λ∗ > 0 such that if λ ∈ (0, λ∗), u ∈ Σλ and Iλ(u) � mr(λ), then β(u) ∈ Ω+
r .

Proof. By way of contradiction, let {λn} and {un} be such that λn → 0, un ∈ Σλn , Iλn(un) � mr(λn) and β(un) /∈ Ω+
r .

Since limλ→0 mr(λ) = limλ→0 cλ = SN/p

N
,

lim
n→+∞ Iλn(un) = SN/p

N
. (3.2)

From un ∈ Σλn and Iλn(un) � mr(λn), we have that ‖un‖ is bounded and hence λn|u+
n |q → 0.

Consequently, as un ∈ Σλn and (3.2) holds, we get

lim
n→+∞‖un‖p = lim

n→+∞|u+
n |p∗

p∗ = SN/p. (3.3)

Defining wn = un/|u+
n |p∗ , we see that |w+

n |p∗ = 1 and, by (3.3), limn→+∞ ‖wn‖p = S.
Furthermore, the functions w̃n(x) = w+

n (x) satisfy

|w̃n|p∗ = 1 and ‖w̃n‖p → S.

Let us introduce the following notation

D1,p(Rn) =
{
u ∈ Lp∗

(Rn):
∂u

∂xi

∈ Lp(Rn) for i = 1, . . . ,N

}
.

By Lemma 3.1 in [1], there is {εn} in R
+ and {yn} in R

N , such that εn → 0, yn → y ∈ Ω and vn(x) =
ε
(N−p)/p
n w̃n(εnx + yn) → v in D1,p(RN), with v(x) > 0.

Considering φ ∈ C∞
0 (RN) such that φ(x) = x in Ω , we infer

β(un) =
∫
Ω

x(u+
n (x))p

∗
dx∫

Ω
(u+

n (x))p
∗
dx

=
∫

RN

φ(x)
(
w̃n(x)

)p∗
dx =

∫
RN

φ(εnz + yn)
(
vn(z)

)p∗
dz.

Moreover, by Lebesgue Theorem,∫
N

φ(εnx + yn)
(
vn(x)

)p∗
dx → y ∈ Ω,
R
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so that limn→∞ β(un) = y ∈ Ω , in contradiction with β(un) /∈ Ω+
r . �

By Theorem 3.3, for each λ > 0 we can consider vλ ∈ Σλ,rad, such that Iλ,rad(vλ) = mr(λ). Let us introduce
γ :Ω−

r → I
mr(λ)
λ ∩ Σλ defined by

γ (y)(x) =
{

vλ(x − y) if x ∈ Br(y),

0 otherwise.

Note that γ is continuous and, as vλ is radial,

β ◦ γ (y) = y ∀y ∈ Ω−
r . (3.4)

So we get the following result.

Lemma 3.6. There exists λ∗ > 0 such that if λ ∈ (0, λ∗), then

dimHk(I
mr(λ)
λ ∩ Σλ) � dimHk(Ω).

Proof. Let λ∗ be as in Lemma 3.5. We denote by γ k and βk the homomorphisms induced by γ and β respectively
between the kth cohomology groups, i.e.

Hk(Ω+
r )

βk

−→ Hk(I
mr (λ)
λ ∩ Σλ)

γ k

−→ Hk(Ω−
r ).

Since, from (3.4), γ k ◦ βk = idk and Ω+
r is homotopically equivalent to Ω , the assert follows. �

From now on, for any b � a, we will denote (Iλ)
b
a simply by I b

a .

Lemma 3.7. I−1
λ {a} is a deformation retract of Ib

a \ Σλ, for any a ∈ (0, cλ) and b � a.

Proof. Let C = W
1,p

0 (Ω) \ (Σλ ∪ {0}). For any u ∈ C, the function

t ∈ [0,+∞) −→ Iλ(tu)

has one maximum point θu, and θu �= 1 since tu ∈ Σλ if and only if t = θu.
Adapting the proof of [7, Lemma 2.2], we infer that u → θu is continuous, so that A = {u ∈ C: θu < 1} and

B = {u ∈ C: θu > 1} are open sets and I b
a \ Σλ ⊂ A ∪ B .

Let u ∈ I b
a \ Σλ. If u ∈ A, let δ(u) be the only value t � 1 such that Iλ(tu) = a.

The function δ : I b
a ∩ A → R is continuous. In fact, let F : (0,+∞) × A → R be defined by F(t, u) = Iλ(tu) − a

and u0 ∈ I b
a ∩ A. Let t0 � 1 be such that F(t0, u0) = 0. Since θu0 < 1 while t0 � 1, we get that t0u0 /∈ Σλ and

∂F

∂t
(t0, u0) = 〈

I ′
λ(t0u0), u0

〉 �= 0,

so, by the Implicit Function Theorem, δ is continuous.
Analogously, if u ∈ B , let δ(u) be defined as the only t ∈ (0,1] such that Iλ(tu) = a, so that the function

δ : I b
a ∩ B → R is continuous too.

Now let H : [0,1] × (I b
a \ Σλ) → W

1,p

0 (Ω) be defined by H(t,u) = (tδ(u) + 1 − t)u. The proof is completed, as
we see immediately that:

• H is continuous;
• H(0, u) = u ∀u;
• Iλ(H(1, u)) = a ∀u;
• H(t,u) ∈ I b

a \ Σλ ∀t, ∀u;
• H(t,u) = u ∀u ∈ I−1

λ {a} ∀t . �
We now give a technical lemma (see [7, Lemma 5.3] for the proof).
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Lemma 3.8. Let M be a manifold and N ⊂ M be a closed oriented submanifold of codimension d . If W is a subset
of N closed in N , then

Pt (M, M \ W) = td Pt (N , N \ W).

Proposition 3.9. If a ∈ (0, cλ) and b � a is a noncritical level for Iλ, then

Pt (I
b
λ , I a

λ ) = t Pt (I
b
a ∩ Σλ).

Proof. If we set M = int(I b
a ), N = M ∩ Σλ and W = N , from Lemma 3.8 we get

Pt

(
int(I b

a ), int(I b
a ) \ Σλ

) = t Pt

(
int(I b

a ) ∩ Σλ

)
. (3.5)

Furthermore, a and b being not critical values for Iλ, we have

Pt (I
b
a , I b

a \ Σλ) = Pt

(
int(I b

a ), int(I b
a ) \ Σλ

)
and Pt (I

b
a ∩ Σλ) = Pt

(
int(I b

a ) ∩ Σλ

)
. (3.6)

So, since

Pt (I
b
λ , I a

λ ) = Pt

(
I b
a , I−1

λ (a)
)
,

the assert comes by (3.5), (3.6) and Lemma 3.7. �
Corollary 3.10. There exists λ∗ > 0 such that if λ ∈ (0, λ∗) and a ∈ (0, cλ), then

Pt (I
mr (λ)
λ , I a

λ ) = t
(

Pt (Ω) + Zλ(t)
)
,

where Zλ(t) is a polynomial with nonnegative integer coefficients.

Proof. Let λ∗ be as in Lemma 3.6 and let us fix λ ∈ (0, λ∗) and a ∈ (0, cλ).
By Remark 3.4, we can assume that mr(λ) is a noncritical value for Iλ, so the assert derives from Lemma 3.6 and

Proposition 3.9. �
Proof of Theorem 1.4. Let λ∗ be chosen in accordance with Corollary 3.10 and λ ∈ (0, λ∗). Let uj (1 � j � m) be the

critical points of I in the strip (I )
mr (λ)
a , where a ∈ (0, cλ). Since I satisfies (P .S.)c condition for all c ∈ (0, SN/p/N)

(see Lemma 3.1), the global Morse relation (2.1) gives

+∞∑
k=0

akt
k =

+∞∑
k=0

dimHk(Imr(λ), I a)tk + (1 + t)Qλ(t), (3.7)

where ak = ∑m
j=1 dimCk(fλ,uj ) and Qλ(t) is a formal series with coefficients in N ∪ {+∞}. Corollary 3.10 implies

+∞∑
k=0

akt
k = t

(
Pt (Ω) + Zλ(t)

) + (1 + t)Qλ(t)

whence, for t = 1, we get

m∑
j=1

P1(I, uj ) = P1(Ω) + Zλ(1) + 2Qλ(1). (3.8)

Since both Zλ(1) and Qλ(1) have nonnegative coefficients, problem (Pλ) has at least P1(Ω) positive solutions, each
counted with its own multiplicity. �
Remark 3.11. If we consider Ω = A \ ⋃k

i=1 Ci , where A and Ci (i = 1,2, . . . , k) are contractible, open, smooth and
bounded nonempty sets in R

n, Ci ⊂ A for any i = 1,2, . . . , k and Ci ∩Cj = ∅ for any i �= j , Theorem 1.4 guarantees
that (Pλ) has at least k + 1 solutions, each counted with its own multiplicity.
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4. Nondegeneracy and local Morse theory

Theorem 1.4 assures that problem (Pλ) has at least P1(Ω) solutions, which can be distinct or, if not, counted with
their multiplicities. However the evaluation of the multiplicity of a critical point is not easy, in general.

In a Hilbert space, the local behavior of the functional near a critical point is quite clear if the critical point is
nondegenerate and computing the critical groups of a nondegenerate critical point is possible via its Morse index.
Successively, Gromoll and Meyer generalized these ideas in order to compute the critical groups of an isolated critical
point u, possibly degenerate, having finite Morse index, if the second derivative of the functional in u is a Fredholm
operator. The generalized Morse lemma is a basic tool for computing the critical groups and the theory of Fredholm
operators provides a natural setting for this lemma. Moreover we emphasize that such critical groups estimates seem
to require a Hilbert space structure.

We remark that when p �= 2, several conceptual difficulties arise for developing a local Morse theory for Iλ. Firstly,
all the critical points of Iλ are degenerate in the classical sense given in Hilbert spaces, as the Banach space W

1,p

0 (Ω)

is not isomorphic to its dual space. Moreover the second derivative of Iλ in each critical point is not Fredholm, so that
the (generalized) Morse Lemma does not hold, and relations between differentiable notions, like Morse index, and
critical groups are not available in general. Our idea is to perform an approximation of Iλ in terms of functionals on
W

1,p

0 (Ω), for which we are able to develop a local Morse theory.
In what follows, we assume that p � 2. In this case it is standard to check that Iλ is a C2 functional. If p = q = 2

the functional Iλ is not C2, nevertheless this case can be easily covered just by replacing Iλ with the functional

Ĩλ(u) = 1

2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

u2 dx − 1

2∗

∫
Ω

(u+)2∗
dx.

In the sequel of the work we will simply refer to Iλ, as all the arguments analogously work for Ĩλ.
For any 2 � p � q < p∗, α � 0 we consider the following C2 functionals

Tα :W 1,p

0 (Ω) → R, Tα(u) = 1

p

∫
Ω

(
α + |∇u|2)p/2 − λ

q

∫
Ω

(u+)q dx − 1

p∗

∫
Ω

(u+)p
∗

(4.1)

which approximate Iλ in C1(A) for α → 0, if A is a bounded subset of W
1,p

0 (Ω). For p = q = 2 we replace Tα with

T̃α :W 1,p

0 (Ω) → R, T̃α(u) = 1

2

∫
Ω

(
α + |∇u|2) − λ

2

∫
Ω

u2 dx − 1

2∗

∫
Ω

(u+)2∗
. (4.2)

Moreover we consider a functional Jα :W 1,p

0 (Ω) → R of the type

Jα(u) = Tα(u) −
∫
Ω

f u

with f ∈ C1(Ω). For p = q = 2 we set Jα = T̃α − ∫
Ω

f u.
We begin to establish that, for any α � 0, Jα satisfy a local Palais–Smale condition on each level. It can be proved

reasoning as in Lemma 3.2 of [18]. For reader’s convenience, we sketch the proof.

Lemma 4.1. Assume p � 2. There exists R > 0 such that, for any fixed α � 0, f ∈ C1(Ω) and any u ∈ W
1,p

0 (Ω), the

functional Jα satisfies (P .S.) condition on BR(u) = {v ∈ W
1,p

0 (Ω): ‖v − u‖ � R}.

Proof. For convenience we fix α � 0 and denote Jα = J . Fixing R ∈ (0, SN/p2

2 ), if (um) ⊂ BR(u) is a sequence such

that J ′(um) → 0, then (um) is bounded, thus converges to some ū ∈ BR(u), weakly in W
1,p

0 (Ω) and strongly in each

Lr(Ω), with r < p∗. Moreover, arguing as in Lemma 3.1 in [27], one can prove that (α + |∇um|2) p−2
2 ∇um converges

to (α + |∇ū|2) p−2
2 ∇ū weakly in Lp/(p−1)(Ω) and a.e. in Ω .
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Therefore, for any z ∈ W
1,p

0 (Ω),〈
J ′(ū), z

〉 = lim
m→+∞

〈
J ′(um), z

〉 = 0

so that ū is a critical point and, in particular,〈
J ′(um),um

〉 − 〈
J ′(ū), ū

〉 = o(1). (4.3)

Using [8] (cf. [35]), we have that∣∣(um − ū)+
∣∣p∗
p∗ = ∣∣(um)+

∣∣p∗
p∗ − ∣∣(ū)+

∣∣p∗
p∗ + o(1). (4.4)

Moreover arguing as in Lemma 3.2 in [18] we can infer that∫
Ω

(
α + |∇um − ∇ū|2) p−2

2 |∇um − ∇ū|2 dx

=
∫
Ω

(
α + |∇um|2) p−2

2 |∇um|2 dx −
∫
Ω

(
α + |∇ū|2) p−2

2 |∇ū|2 dx + o(1). (4.5)

From (4.3), (4.4) and (4.5) we deduce∫
Ω

|∇um − ∇ū|p dx −
∫
Ω

|um − u|p∗
dx �

∫
Ω

(
α + |∇um − ∇ū|2) p−2

2 |∇um − ∇ū|2 dx −
∫
Ω

(
(um − ū)+

)p∗
dx

= 〈
J ′(um),um

〉 − 〈
J ′(ū), ū

〉 + o(1) = o(1). (4.6)

Denoting a = lim supm→+∞ ‖um − ū‖p , by (4.6) and the definition of S we have

a � lim sup
m→+∞

∫
Ω

|um − ū|p∗ � S−p∗/pap∗/p.

Therefore, if a > 0, this implies a � SN/p , hence

SN/p � a � lim sup
m→+∞

(‖um − u‖ + ‖u − ū‖)p � (2R)p < SN/p

which is absurd. Therefore it must be a = 0 and thus um strongly converges to ū in W
1,p

0 (Ω). �
Now we state two results concerning critical group computations via Morse index. For the proofs, we refer the

reader to Theorems 1.3 and 1.4 of [18] (see also [16]).

Theorem 4.2. Let p > 2 and α > 0. Let u ∈ W
1,p

0 (Ω) be a nondegenerate (in the sense of Definition 1.5) critical
point of Jα . Then the Morse index m(Jα,u) is finite and

Cj (Jα,u) ∼= K if j = m(Jα,u), (4.7)

Cj (Jα,u) = {0} if j �= m(Jα,u). (4.8)

Theorem 4.3. Let p > 2 and α > 0. Let u ∈ W
1,p

0 (Ω) be an isolated critical point of Jα . Then m(Jα,u) and m∗(Jα,u)

are finite and

Cj (Jα,u) = {0} for any j � m(Jα,u) − 1 and j � m∗(Jα,u) + 1.

Moreover, dimCj (Jα,u) < ∞ for any j ∈ N.

Remark 4.4. For p = 2 Theorems 4.2 and 4.3 hold for the functional Jα , as consequence of classical results in Morse
theory, based on Morse Lemma. We refer to Theorem 4.1 and Corollary 5.1 in [11].
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5. Interpretation of the multiplicity

This section is devoted to prove the following result, which furnishes an interpretation of the multiplicity for each
solution of (Pλ).

Theorem 5.1. Assume that ∂Ω satisfies the interior sphere condition and that N � p2, 2 � p � q < p∗, p∗ =
pN/(N − p). Let us fix λ > 0. If u0 is an isolated positive solution to (Pλ) having multiplicity m = P1(Iλ, u0) > 1
and N is an open set such that u0 is the only solution to (Pλ) in N , then for any sequence (αn), with αn > 0 and
αn → 0, there exists a sequence (fn) ⊂ C1(Ω) such that ‖fn‖C1 → 0 and problem

(Pn)

⎧⎨
⎩

−div
((|∇u|2 + αn

)(p−2)/2∇u
) = λuq−1 + up∗−1 + fn in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

has at least m distinct solutions in N , for n large enough.

Remark 5.2. Taking into account Remark 4.4, it follows that if p = 2, Theorem 5.1 still holds, if αn � 0 for any
n ∈ N.

Let R > 0 be defined by Lemma 4.1. Let us consider A = N ∩ BR(u0) and U an open neighborhood of u0 such
that U ⊂ A. Let μ > 0 be defined by Theorem 2.4 in correspondence of Iλ, u0, A and U . Let (αn) be a sequence such
that αn > 0 and αn → 0, so that ‖Iλ − Tαn‖C1(A) < μ if n is sufficiently large. We can suppose that Tαn has a finite
number of critical points in U , otherwise we simply choose fn = 0.

Let us denote by u1, . . . , uj the critical points of Tαn in U . For simplicity, we omit the dependence of u1, . . . , uj

(and their related objects) from n. Let mi be the multiplicity of each ui . By Theorem 2.4 j � 1 and

j∑
i=1

mi � m. (5.1)

If j � m, then we can choose again fn = 0, while, if j < m, there is at least one i ∈ {1, . . . , j} such that mi � 2
and we really need to introduce fn.

In order to do that we give the following result.

Theorem 5.3. There are V and W subspaces of W
1,p

0 (Ω), r > 0, 	 ∈ (0, r) such that

(1) W
1,p

0 (Ω) = V ⊕ W ;
(2) V ⊂ C1(Ω) is finite dimensional;
(3) V and W are orthogonal in L2(Ω);
(4) for any M > 0 there exist r0 > 0 and C > 0 such that if z ∈ W

1,p

0 (Ω) ∩ L∞(Ω), ‖z‖∞ � M and ‖z − ui‖ < r0
for some i ∈ {1, . . . , j}, then〈

T ′′
αn

(z)w,w
〉
� C‖w‖2

1,2 ∀w ∈ W ;
(5) for any i ∈ {1, . . . , j} and v ∈ V ∩ B	(0) there exists one and only one w̄i = w̄i(v) ∈ W ∩ Br(0) such that〈

T ′
αn

(ui + v + w̄i),w
〉 = 0 ∀w ∈ W. (5.2)

Moreover, denoting by Ui = ui + (V ∩ B	(0)) + (W ∩ Br(0)), for any i ∈ {1, . . . , j} Ui ⊂ U and Ui1 ∩ Ui2 = ∅ if
i1 �= i2.

Proof. In the case p = 2, the proof follows by standard arguments. We focus on the case p > 2. Arguing as in [18],
for any i = 1, . . . , j we introduce a Hilbert space, depending on the critical point ui , in which W

1,p

0 (Ω) is embedded,
so that a suitable splitting can be obtained.
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Precisely, set bi(x) = ∇ui(x), let Hi be the closure of C∞
0 (Ω) under the scalar product

(v,w)i =
∫
Ω

[(
αn + ∣∣bi(x)

∣∣2)(p−2)/2
(∇v|∇w) + (p − 2)

(
αn + ∣∣bi(x)

∣∣2)(p−4)/2(
bi(x) | ∇v

)(
bi(x) | ∇w

)]
dx.

Since ui ∈ C1,α(Ω), with α ∈ (0,1), it follows that bi(x) ∈ C0,α(Ω) and the norm ‖ · ‖i induced by (·,·)i is equivalent
to the usual norm of W

1,2
0 (Ω). Hence Hi is isomorphic to W

1,2
0 (Ω) and the embedding W

1,p

0 (Ω) ↪→ Hi is continuous.
Denoting by 〈·,·〉 :H ∗

i × Hi → R the duality pairing in Hi , T ′′
α (ui) can be extended to the operator Li :Hi → H ∗

i

defined by setting

〈Liv,w〉 = (v,w)i + 〈Kiv,w〉
where 〈Kiv,w〉 = −λ

∫
Ω

(q −1)(ui)
q−2vw−(p∗ −1)

∫
Ω

(ui)
p∗−2vw, for any v,w ∈ Hi . Li is a compact perturbation

of the Riesz isomorphism from Hi to H ∗
i . Since Li is a Fredholm operator in Hi , we can consider the natural splitting

Hi = H−
i ⊕ H 0

i ⊕ H+
i

where H−
i ,H 0

i ,H+
i are, respectively, the negative, null and positive spaces, according to the spectral decomposition

of Li in L2(Ω).
Since ui ∈ C1(Ω), we can deduce from standard regularity theory (see Theorems 8.15, 8.24 and 8.29 in [22])

that H−
i ⊕ H 0

i ⊂ C1,α(Ω). Consequently, we get the splitting W
1,p

0 (Ω) = Vi ⊕ Wi where Wi = H+
i ∩ W

1,p

0 (Ω) and
Vi = H−

i ⊕ H 0
i ⊂ C1(Ω) is finite dimensional. Moreover Vi and Wi are orthogonal in L2(Ω).

Now we set

V = V1 + V2 + · · · + Vj and W =
j⋂

i=1

Wi.

In [18] Lemma 4.3 gives (4), while Lemma 4.6 assures that for any i ∈ {1, . . . , j} there are ri > 0, 	i ∈ (0, ri) such
that for any v ∈ Vi ∩ B	i

(0) there exists one and only one w̄i = w̄i(v) ∈ Wi ∩ Bri (0) which verifies〈
T ′

αn
(ui + v + w̄i),w

〉 = 0 ∀w ∈ Wi.

It is easy to see that this result still holds replacing Vi with V and Wi with W , so that, choosing r and 	 suitably small,
also (5) is completely proved. �

Moreover, reasoning as in [17, Lemma 2.2] we infer the following result.

Proposition 5.4. For any i = 1, . . . , j , let us introduce the maps

ψi :V ∩ B	(0) → W ∩ Br(0), φi = V ∩ B	(0) → R

where ψi(v) is the only element w̄i ∈ W ∩ Br(0) satisfying (5.2) and φi(v) = Tαn(ui + v + ψi(v)). The map φi is C2

and, for any v ∈ V ∩ B	(0), z1, z2 ∈ V〈
φ′

i (v), z1
〉 = 〈

T ′
αn

(
ui + v + ψi(v)

)
, z1

〉
(5.3)〈

φ′′
i (v)z1, z2

〉 = 〈
T ′′

αn

(
ui + v + ψi(v)

)(
z1 + ψi

′(v)z1
)
, z2

〉
. (5.4)

Furthermore φi
′′(v) is an isomorphism if and only if T ′′

αn
(ui + v + ψi(v)) is injective.

Proof. For p = 2 the result is well-known. We assume p > 2. Firstly we show that for any fixed v ∈ V ∩ B	(0), we
have ψi(v) ∈ C1(Ω) and the map ψi :V ∩ B	(0) → W is C1 with respect to the norm ‖ · ‖1,2.

Indeed, from Lemma 4.4 in [18] we know that zv = ui + v + ψi(v) ∈ L∞(Ω) and ‖zv‖∞ is bounded from above,
uniformly with respect to v. By [36,37], we can infer that zv ∈ C1(Ω), and thus ψi(v) ∈ C1(Ω), as V ⊂ C1(Ω).

Moreover, in consequence of the regularity results in [23], we have that ‖ψi(v)‖C1(Ω) is bounded from above by a

suitable constant. Therefore there exists a constant R1 > 0 such that ‖ui + v +ψi(v)‖C1 � R1 for any v ∈ V ∩B	(0).
Now, fixed R2 > R1, let us consider a nonincreasing C∞ function ω : [0,+∞) → R such that ω(t) = 1 if t ∈ [0,R1],
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ω(t) = 0 if t � R2. By a suitable choose of R2, we can build a function θ : RN → R such that θ(ξ) = 1
2 |ξ |2 +

ω(|ξ |)( 1
p
(αn + |ξ |2)p/2 − 1

2 |ξ |2) is strictly convex in R
N . Moreover we consider the function G : [0,+∞) → R

defined by G(t) = ω(t)(− λ
q

tq − 1
p∗ tp

∗
) and we can introduce the following C2 functional

F(u) =
∫
Ω

θ(∇u)dx +
∫
Ω

G(u+) dx ∀u ∈ W
1,2
0 (Ω).

We underline that for any u ∈ C1(Ω) with ‖u‖C1 � R1, we have

F(u) = Tαn(u), F ′(u)|
W

1,p
0 (Ω)

= T ′
αn

(u), F ′′(u)|
(W

1,p
0 (Ω))2 = T ′′

αn
(u). (5.5)

Now, denoting by H+ = ⋂j

i=1 H+
i , we have that W

1,2
0 (Ω) = V ⊕ H+. So applying the Implicit Function The-

orem to the map B : (V ∩ B	(0)) × H+ → (H+)∗ given by B(v,w) = F ′(ui + v + w)|H+ , we can infer that
ψi :V ∩ B	(0) �→ W is C1 with respect to ‖ · ‖1,2. Now by (5.5), it follows that φi is a C1 functional. By the chain
rule, we infer (5.3), as F ′(ui + v + ψi(v))|H+ = 0 and ψ ′

i (v)(z) ∈ W . This shows that φi is also a C2 functional and,
again by the chain rule, (5.4) derives.

In order to complete the proof, fix v ∈ V ∩ B	(0) and suppose that φ′′
i (v) is an isomorphism. By contradiction, if

T ′′
αn

(ui + v + ψi(v)) is not injective, there exists z̄ ∈ W
1,p

0 (Ω), z̄ �= 0 such that〈
T ′′

αn

(
ui + v + ψi(v)

)(
z + ψ ′

i (v)(z)
)
, z̄

〉 = 0 ∀z ∈ V. (5.6)

Let us write z̄ as v̄ + w̄ with v̄ ∈ V and w̄ ∈ W . For any fixed w ∈ W , the function v ∈ V ∩ B	(0) �→
〈T ′

αn
(ui + v + ψi(v),w〉 ∈ R is constantly equal to zero. Hence by (5.4) and (5.6), we deduce 〈φ′′

i (v)v̄, z〉 = 0 for
any z ∈ V , so that v̄ = 0 and z̄ ∈ W . By (4) of Theorem 5.3 z̄ = 0 which is a contradiction. In a similar way we can
deduce that if T ′′

αn
(ui + v + ψi(v)) is injective, then φ′′

i (v) is an isomorphism. �
From the previous result we get a crucial implication of the nondegeneracy notion.

Corollary 5.5. If u is a nondegenerate critical point of Tα , then u is isolated.

Proof of Theorem 5.1. Let {e1, . . . , el} be an L2-orthonormal basis of V , where l = dimV . For any v′ ∈ V ′ we
introduce Lv′ :W 1,p

0 (Ω) → R the functional defined by

Lv′(u) =
∫
Ω

fv′udx, where fv′ =
l∑

k=1

〈v′, ek〉ek.

Let μi be defined by Theorem 2.4 relatively to Tαn, ui, A and Ui , for any i = 1, . . . , j , and μ be equal to
min{μ1, . . . ,μj }. Let ε > 0 be such that ‖Lv′ ‖C1(A) < μ/j if v′ ∈ V ′ and ‖v′‖V ′ � ε.

Denoting by ε1 = min{ε,1/n}, by Sard’s Lemma there exists v′
1 ∈ V ′ such that ‖v′

1‖V ′ < ε1 and if φ′
1(v) = v′

1 then
φ′′

1 (v) is an isomorphism. Moreover there is β1 > 0 such that if v′ ∈ V ′, ‖v′‖V ′ � β1 and φ′
1(v) = v′

1 + v′ then φ′′
1 (v)

is an isomorphism.
Analogously, for i = 2, . . . , j , there exist βi > 0, εi = min{ε1, β1/(j − 1), . . . , βi−1/(j − i + 1)} and v′

i ∈ V ′ such
that ‖v′

i‖V ′ < εi and if v′ ∈ V ′, ‖v′‖V ′ � βi and φ′
i (v) = v′

1 + · · · + v′
i + v′ then φ′′

i (v) is an isomorphism.
So it is sufficient to choose

fn =
j∑

i=1

l∑
k=1

〈v′
i , ek〉ek =

j∑
i=1

fv′
i
.

In fact, solutions to

(Pn)

⎧⎨
⎩

−div
((|∇u|2 + αn

)(p−2)/2∇u
) = λuq−1 + up∗−1 + fn in Ω,

u > 0 in Ω,
u = 0 on ∂Ω



S. Cingolani, G. Vannella / Ann. I. H. Poincaré – AN 26 (2009) 397–413 411
are critical points of the functional

Tn = u ∈ W
1,p

0 (Ω) �→ Tαn(u) −
∫
Ω

fnudx ∈ R.

Denoting by Ki = {u ∈ Ui : T ′
n(u) = 0}, we will see that any u ∈ Ki is nondegenerate, hence, by Theorem 4.2 (see

also Remark 4.4) P1(u,Tn) = 1. Moreover as ‖Tn − Tαn‖C1(A) < μ, Theorem 2.4 and (5.1) assure that

j∑
i=1

∑
u∈Ki

P1(u,Tn) �
j∑

i=1

mi � m

so that (Pn) has at least m distinct solutions.
Let us prove that the critical points of Tn in U1 ∪ · · · ∪ Uj are nondegenerate.
Firstly observe that

∫
Ω

fnw dx = 0 ∀w ∈ W and
∫
Ω

fnv dx =
j∑

i=1

〈v′
i , v〉 ∀v ∈ V. (5.7)

If ū ∈ Ki there exists (v̄, w̄) ∈ V × W such that ū = ui + v̄ + w̄.
By (5.7), for any w ∈ W〈

T ′
αn

(ui + v̄ + w̄),w
〉 = 〈

T ′
n(ū),w

〉 = 0

so that w̄ = ψi(v̄).
By construction φ′

i (v̄) = v′
1 + · · · + v′

i + v′, where v′ = v′
i+1 + · · · + v′

j and ‖v′‖V ′ < βi , so that φ′′
i (v̄) is an

isomorphism and, by Proposition 5.4, ū is nondegenerate.
Therefore for n large enough, there exist at least u1

n, . . . , u
m
n solutions of the equation in (Pn). We remain to prove

that ui
n are positive i = 1, . . . ,m. Firstly we notice that for any i = 1, . . . , k, ui

n tends to u0 in W
1,p

0 (Ω) as n → +∞.
Moreover since V ⊂ C1,α(Ω), the regularity results in [23,25] assure that the solutions ui

n are uniformly bounded
in C1,α(Ω), and then, up to subsequence, ui

n converges in C1(Ω) to u0 > 0 as n → +∞. By the Strong Maximum
Principle (see Lemma 3.4 in [22] for p = 2 and Theorems 1 and 5 in [39] for p > 2), we know that ∂u0

∂ν
(x0) > 0 being

x0 ∈ ∂Ω , ν is the interior normal of x0. This implies ui
n > 0 on Ω , for n sufficiently large. �

Proof of Theorem 1.6. Let λ∗ > 0 be defined by Theorem 1.4 and λ ∈ (0, λ∗). By Theorem 1.4, problem (Pλ) has
at least P1(Ω) solutions, possibly counted with their multiplicities. If (Pλ) has less than P1(Ω) distinct positive
solutions, this means, in particular, that Iλ has a finite number of critical points u1, . . . , uk , having multiplicities
m̃i � 1, where 1 � k < P1(Ω) and

k∑
i=1

m̃i � P1(Ω). (5.8)

If k = 1, then m̃1 � P1(Ω) and the thesis follows from Theorem 5.1.
Let us consider the case 1 < k. Let R > 0 be defined by Lemma 4.1. For any i = 1, . . . , k, ui is isolated, so let

γi ∈ (0,R) be such that Iλ has not critical points other than ui in Bγi
(ui). Denoting by Ui = Bγi

(ui), let μ̄i be defined
by Theorem 2.4 relatively to Ui and Ai = BR(ui). Moreover we call A = ⋃k

i=1 Ai and μ̄ = min{μ̄1, . . . , μ̄k}.
Let (αn) be a sequence such that αn > 0, αn → 0, so that ‖Iλ − Tαn‖C1(A) < μ, if n is sufficiently large.

We can suppose that Tαn has a finite number of critical points in U = ⋃k
i=1 Ui , otherwise we simply choose fn = 0.

Let us denote by u1, . . . , uj the critical points of Tαn in U , and by m1, . . . ,mj their multiplicities. By Theorem 2.4
and by (5.8) we have

j∑
mi �

k∑
m̃i � P1(Ω). (5.9)
i=1 i=1
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We immediately see that, if j � P1(Ω), then we can choose again fn = 0, while, if j < P1(Ω), there is at least
one i ∈ {1, . . . , j} such that mi � 2 and we really need to introduce fn.

At this point, reasoning as in the proof of Theorem 5.1, we build a function fn ∈ C1(Ω) such that ‖fn‖C1 → 0 and

(Pn)

⎧⎨
⎩

−div
((|∇u|2 + αn

)(p−2)/2∇u
) = λuq−1 + up∗−1 + fn in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

has at least P1(Ω) distinct positive solutions. �
Proof of Theorem 1.7. Taking into account Remarks 4.4 and 5.2, one can derive Theorem 1.7, arguing as in the proof
of Theorem 1.6. �
Acknowledgement

The authors would like to thank Prof. Marco Degiovanni for some useful discussions and comments.

References

[1] C.O. Alves, Y.H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279
(2003) 508–521.

[2] A. Anane, Simplicite et isolation de la premiere valeur du p-Laplacien avec poids, C. R. Acad. Sci. Paris Sér I Math. 305 (1987) (2003)
725–728.

[3] J.G. Azorero, I. Peral, Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Comm. Partial Differential Equations 12
(1987) 1389–1430.

[4] J.G. Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponents or with a symmetric term, Trans. Amer. Math.
Soc. 323 (1991) 77–895.

[5] V. Benci, A new approach to the Morse–Conley theory and some applications, Ann. Mat. Pura Appl. 158 (1991) 231–305.
[6] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational

Mech. Anal. 114 (1991) 79–93.
[7] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial

Differential Equations 2 (1994) 29–48.
[8] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc. 88 (1983)

486–490.
[9] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36

(1983) 437–477.
[10] K.C. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math. 34 (1981) 693–712.
[11] K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.
[12] K.C. Chang, Morse theory in nonlinear analysis, in: A. Ambrosetti, K.C. Chang, I. Ekeland (Eds.), Nonlinear Functional Analysis and Appli-

cations to Differential Equations, World Scientific, Singapore, 1998.
[13] S. Cingolani, M. Degiovanni, Nontrivial solutions for p-Laplace equations with right hand side having p-linear growth at infinity, Comm.

Partial Differential Equations 30 (2005) 1191–1203.
[14] S. Cingolani, M. Lazzo, G. Vannella, Multiplicity results for a quasilinear elliptic system via Morse theory, Commun. Contemp. Math. 7

(2005) 227–249.
[15] S. Cingolani, G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. H. Poincaré Anal.

Non Linéaire 20 (2003) 271–292.
[16] S. Cingolani, G. Vannella, Morse index computations for a class of functionals defined in Banach spaces, in: D. Lupo, C. Pagani, B. Ruf

(Eds.), Nonlinear Equations: Methods, Models and Applications, Bergamo 2001, in: Progr. Nonlinear Differential Equations Appl., vol. 54,
Birkhäuser, Boston, 2003, pp. 107–116.

[17] S. Cingolani, G. Vannella, Marino–Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in
Banach spaces, Ann. Mat. Pura Appl. 186 (2007) 157–185.

[18] S. Cingolani, G. Vannella, Morse index and critical groups for p-Laplace equations with critical exponents, Mediterr. J. Math. 3 (2006)
495–512.

[19] M.M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1973.
[20] M. Degiovanni, S. Lancelotti, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity, Ann. Inst.

H. Poincaré Anal. Non Linéaire 24 (2007) 907–919.
[21] M. Degiovanni, S. Lancelotti, in preparation.
[22] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998.
[23] M. Guedda, L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. T.M.A. 13 (1989) 879–902.



S. Cingolani, G. Vannella / Ann. I. H. Poincaré – AN 26 (2009) 397–413 413
[24] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l’exposant critique de Sobolev, C. R. Acad. Sci. Paris
Sér. I Math. 314 (1992) 61–64.

[25] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203–1219.
[26] A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. U.M.I. (4) 11 (Suppl.) 3 (1975) 1–32.
[27] E.S. Noussair, C.A. Swanson, Y. Jianfu, Quasilinear elliptic problems with critical exponents, Nonlinear Anal. T.M.A. 20 (1993) 285–301.
[28] D. Passaseo, Multiplicity of positive solutions for the equation �u + λu + u2∗−1 = 0 in noncontractible domains, Topol. Methods Nonlinear

Anal. 2 (1993) 343–366.
[29] K. Perera, E.A.B. Silva, p-Laplacian problems with critical Sobolev exponents, Nonlinear Anal. 66 (2007) 454–459.
[30] S.I. Pohozaev, Eigenfunctions for the equations �u + λf (u) = 0, Soviet Math. Dokl. 6 (1965) 1408–1411.
[31] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (1989) 1241–1249.
[32] O. Rey, The role of Green’s function in a nonlinear equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1–52.
[33] E.A.B. Silva, M. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré

Anal. Non Linéaire 20 (2) (2003) 341–358.
[34] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965) 861–866.
[35] M. Struwe, Variational Methods, third ed., Springer-Verlag, Berlin, 1998.
[36] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126–150.
[37] P. Tolksdorf, On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Partial Differential

Equations 8 (1983) 773–817.
[38] K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972) 430–445.
[39] J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191–202.


	Multiple positive solutions for a critical quasilinear equation  via Morse theory
	Existence de plusieurs solutions positives d'une équation quasi-linéaire avec exposant critique par la théorie de Morse
	Introduction
	Some abstract recalls in Morse theory
	The topological result
	Nondegeneracy and local Morse theory
	Interpretation of the multiplicity
	Acknowledgement
	References


