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Abstract

We study a mathematical model describing the dynamics of dislocation densities in crystals. This model is expressed as a 1D
system of a parabolic equation and a first order Hamilton–Jacobi equation that are coupled together. We examine an associated
Dirichlet boundary value problem. We prove the existence and uniqueness of a viscosity solution among those assuming a lower-
bound on their gradient for all time including the initial time. Moreover, we show the existence of a viscosity solution when we
have no such restriction on the initial data. We also state a result of existence and uniqueness of entropy solution for the initial
value problem of the system obtained by spatial derivation. The uniqueness of this entropy solution holds in the class of bounded-
from-below solutions. In order to prove our results on the bounded domain, we use an “extension and restriction” method, and we
exploit a relation between scalar conservation laws and Hamilton–Jacobi equations, mainly to get our gradient estimates.

Résumé

Nous étudions un modèle mathématique décrivant la dynamique de densités de dislocations dans les cristaux. Ce modèle s’écrit
comme un système 1D couplant une équation parabolique et une équation de Hamilton–Jacobi du premier ordre. Nous examinons
un problème de Dirichlet associé. On montre l’existence et l’unicité d’une solution de viscosité dans la classe des fonctions ayant
un gradient minoré pour tout temps ainsi qu’au temps initial. De plus, on montre l’existence d’une solution de viscosité sans
cette condition sur la donnée initiale. On présente également un résultat d’existence et d’unicité d’une solution entropique pour
le problème d’évolution obtenu par dérivation spatiale. L’unicité de cette solution entropique a lieu dans la classe des solutions
minorées. Pour montrer nos résultats sur le domaine borné, on utilise une méthode de « prolongement et restriction », et on profite
essentiellement d’une relation entre les lois de conservation scalaire et les équations de Hamilton–Jacobi, pour obtenir des contrôles
du gradient.
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1. Introduction

1.1. Physical motivation

A dislocation is a defect, or irregularity within a crystal structure that can be observed by electron microscopy.
The theory was originally developed by Vito Volterra in 1905. Dislocations are a non-stationary phenomena and
their motion is the main explanation of the plastic deformation in metallic crystals (see [24,15] for a recent and
mathematical presentation).

Geometrically, each dislocation is characterized by a physical quantity called the Burgers vector, which is respon-
sible for its orientation and magnitude. Dislocations are classified as being positive or negative due to the orientation
of its Burgers vector, and they can move in certain crystallographic directions.

Starting from the motion of individual dislocations, a continuum description can be derived by adopting a formu-
lation of dislocation dynamics in terms of appropriately defined dislocation densities, namely the density of positive
and negative dislocations. In this paper we are interested in the model described by Groma, Czikor and Zaiser [14],
that sheds light on the evolution of the dynamics of the “two type” densities of a system of straight parallel disloca-
tions, taking into consideration the influence of the short range dislocation–dislocation interactions. The model was
originally presented in R

2 × (0, T ) as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂θ+

∂t
+ b · ∂

∂r

[
θ+

{
(τsc + τeff) − AD

b
θ+ + θ− · ∂

∂r
(θ+ − θ−)

}]
= 0,

∂θ−

∂t
− b · ∂

∂r

[
θ−

{
(τsc + τeff) − AD

b
θ+ + θ− · ∂

∂r
(θ+ − θ−)

}]
= 0.

(1.1)

Where T > 0, r = (x, y) represents the spatial variable, b is the Burgers vector, θ+(r, t) and θ−(r, t) denote the densi-
ties of the positive and negative dislocations respectively. The quantity A is defined by the formula A = μ/[2π(1−ν)],
where μ is the shear modulus and ν is the Poisson ratio. D is a non-dimensional constant. Stress fields are represented
through the self-consistent stress τsc(r, t), and the effective stress τeff(r, t). ∂

∂r denotes the gradient with respect to the
coordinate vector r. An earlier investigation of the continuum description of the dynamics of dislocation densities has
been done in [13]. However, a major drawback of these investigations is that the short range dislocation–dislocation
correlations have been neglected and dislocation–dislocation interactions were described only by the long-range term
which is the self-consistent stress field. Moreover, for the model described in [13], we refer the reader to [8,9] for a
one-dimensional mathematical and numerical study, and to [3] for a two-dimensional existence result.

In our work, we are interested in a particular setting of (1.1) where we make the following assumptions:

(a1) the quantities in Eqs. (1.1) are independent of y,
(a2) b = (1,0), and the constants A and D are set to be 1,
(a3) the effective stress is assumed to be zero.

Remark 1.1. (a1) gives that the self-consistent stress τsc is null; this is a consequence of the definition of τsc (see [14]).

Assumptions (a1)–(a3) permit rewriting the original model as a 1D problem in R × (0, T ):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ+
t (x, t) −

(
θ+(x, t)

(
θ+
x (x, t) − θ−

x (x, t)

θ+(x, t) + θ−(x, t)

))
x

= 0,

θ−
t (x, t) +

(
θ−(x, t)

(
θ+
x (x, t) − θ−

x (x, t)

θ+(x, t) + θ−(x, t)

))
x

= 0.

(1.2)

Let, unless otherwise stated, I denotes the open and bounded interval,

I = (0,1),

of the real line. We examine an associated Dirichlet problem that we are going to give an idea of its physical derivation
in the forthcoming arguments of this subsection.
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To illustrate some physical motivations of the boundary value problem that we are going to study, we consider
a constrained channel deforming in simple shear (see [14]). A channel of width 1 in the x-direction and infinite
extension in the y-direction is bounded by walls that are impenetrable for dislocations. The motion of the positive
and negative dislocations corresponds to the x-direction. This is a simplified version of a system studied by Van der
Giessen and coworkers [5], where the simplifications stem from the fact that:

• only a single slip system is assumed to be active, such that reactions between dislocations of different type need
not be considered;

• the boundary conditions reduce to “no flux” conditions for the dislocation fluxes at the boundary walls.

The mathematical formulation of this model, as expressed in [14], is the system (1.2) posed on

IT = I × (0, T ).

We consider an integrated form of (1.2) and we let:

ρ±
x = θ±, θ = θ+ + θ−, ρ = ρ+ − ρ− and κ = ρ+ + ρ−, (1.3)

in order to obtain, for special values of the constants of integration, the following system of PDEs in terms of ρ and κ :{
κtκx = ρtρx in IT ,

κ(x,0) = κ0(x) in I,
(1.4)

and {
ρt = ρxx in IT ,

ρ(x,0) = ρ0(x) in I,
(1.5)

where T > 0 is a fixed constant. Enough regularity on the initial data will be given in order to impose the physically
relevant condition:

κ0
x � |ρ0

x |. (1.6)

This condition is natural: it indicates nothing but the positivity of the dislocation densities θ±(x,0) at the initial time
(see (1.3)).

In order to formulate heuristically the boundary conditions at the walls located at x = 0 and x = 1, we note that the
dislocation fluxes at the walls must be zero, which requires that

Φ︷ ︸︸ ︷
∂x(θ

+ − θ−) = 0, at x = 0 and x = 1. (1.7)

Rewriting system (1.2) in a special integrated form in terms of ρ, κ and Φ , we get

κt = (ρx/κx)Φ and ρt = Φ. (1.8)

Using (1.7) and (1.8), we can formally deduce that ρ and κ are constants along the boundary walls. Therefore, this
paper focuses attention on the study of the following coupled Dirichlet boundary value problems:{

κtκx = ρtρx, in IT ,

κ(x,0) = κ0(x), in I,

κ(0, t) = κ(0,0) and κ(1, t) = κ(1,0), ∀t ∈ [0, T ],
(1.9)

and {
ρt = ρxx, in IT ,

ρ(x,0) = ρ0(x), in I,

ρ(0, t) = ρ(1, t) = 0, ∀t ∈ [0, T ].
(1.10)

Besides (1.6), there is a second natural assumption concerning ρ0 and κ0 that has to do with the balance of the physical
model that starts with the same number of positive and negative dislocations. In other words, if n+ and n− are the
total number of positive and negative dislocations respectively at t = 0 then:

ρ0(1) − ρ0(0) =
1∫
ρ0

x(x) dx =
1∫ (

θ+(x,0) − θ−(x,0)
)
dx = n+ − n− = 0, (1.11)
0 0
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this shows that ρ0(1) = ρ0(0) and this is what appears in (1.10).

1.2. Main results

In this paper, we show the existence and uniqueness of a viscosity solution κ of (1.9) in the class of all Lips-
chitz continuous viscosity solutions having special “bounded from below” spatial gradients. However, we show the
existence of a Lipschitz continuous viscosity solution of (1.9) when this restriction is relaxed.

Let I be a certain interval of R. Denote Lip(I) by:

Lip(I) = {f :I �→ R; f is a Lipschitz continuous function}.
We prove the following theorems:

Theorem 1.2 (Existence and uniqueness of a viscosity solution). Let T > 0 and ε > 0 be two constants. Take

κ0 ∈ Lip(I ),

and ρ0 ∈ C∞
0 (I ) satisfying:

κ0
x � Gε(ρ

0
x) a.e. in I, (1.12)

where

Gε(x) =
√

x2 + ε2. (1.13)

Given the solution ρ of the heat equation (1.10), there exists a viscosity solution κ ∈ Lip(ĪT ) of (1.9), unique among
those satisfying:

κx � Gε(ρx) a.e. in ĪT . (1.14)

Theorem 1.3 (Existence of a viscosity solution, case ε = 0). Let T > 0, κ0 ∈ Lip(I ) and ρ0 ∈ C∞
0 (I ). If the condition

(1.6) is satisfied a.e. in I , and if ρ is the solution of (1.10), then there exists a viscosity solution κ ∈ Lip(ĪT ) of (1.9)

satisfying:
κx � |ρx |, a.e. in ĪT . (1.15)

Remark 1.4. In the limit case where ε = 0, we remark that having (1.15) was intuitively expected due to the positivity
of the dislocation densities θ+ and θ−. This reflects in some way the well-posedness of the model (1.2) of the dynamics
of dislocation densities. We also remark that our result of existence of a solution of (1.9) under (1.15) still holds if we
start with κ0

x = ρ0
x = 0 on some sub-intervals of I . In other words, we can imagine that we start with the probability

of the formation of no dislocation zones.

A relation between scalar conservation laws and Hamilton–Jacobi equations will be exploited to get almost all
our gradient controls of κ . This relation, that will be made precise later, will also lead to a result of existence and
uniqueness of a bounded entropy solution of the following equation:⎧⎪⎨

⎪⎩
θt =

(
ρxρxx

θ

)
x

in QT = R × (0, T ),

θ(x,0) = θ0(x) in R,

(1.16)

where ρ is the solution of the initial value problem:{
ρt = ρxx in QT ,

ρ(x,0) = ρ0(x) in R.
(1.17)

Eq. (1.16) is deduced formally by taking a spatial derivation of (1.4). The uniqueness of this entropy solution is always
restricted to the class of bounded entropy solutions with a special lower-bound.
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Remark 1.5. The above result of existence and uniqueness of entropy solution for the initial value problem (1.16) is
shown in the case I = R. This also leads to a result of existence and uniqueness for the original problem (1.2). We will
just present the statements of these results without going into the proofs. However, we refer the interested reader to
[17, Theorem 1.3, Corollary 1.4] for the details. We also present, at the end of Section 4 of this paper, some viscosity
results in the case I = R.

Entropy results (case of the real space R).

Theorem 1.6 (Existence and uniqueness of an entropy solution). Let T > 0. Take θ0 ∈ L∞(R) and ρ0 ∈ C∞
0 (R) such

that,

θ0 �
√

(ρ0
x)2 + ε2 a.e. in R,

for some constant ε > 0. Then, given ρ the solution of (1.17), there exists an entropy solution θ ∈ L∞(Q̄T ) of (1.16),
unique among the entropy solutions satisfying:

θ �
√

ρ2
x + ε2 a.e. in Q̄T .

Corollary 1.7 (Existence and uniqueness for problem (1.2)). Let T > 0 and ε > 0. Let θ+
0 and θ−

0 be two given
functions representing the initial positive and negative dislocation densities respectively. If the following conditions
are satisfied:

(1) θ+
0 − θ−

0 ∈ C∞
0 (R),

(2) θ+
0 , θ−

0 ∈ L∞(R),

together with,

θ+
0 + θ−

0 �
√

(θ+
0 − θ−

0 )2 + ε2 a.e. in R,

then there exists a solution (θ+, θ−) ∈ (L∞(QT ))2 to the system (1.2), in the sense of Theorem 1.6, unique among
those satisfying:

θ+ + θ− �
√

(θ+ − θ−)2 + ε2 a.e. in Q̄T .

1.3. Organization of the paper

The paper is organized as follows. In Section 2, we start by stating the definition of viscosity and entropy solutions
with some of their properties. In Section 3, we introduce the essential tools used in the proof of the main results.
Section 4 is devoted to the proof of Theorems 1.2 and 1.3. We also present, at the end of this section, some further
results in the case I = R, namely Theorems 4.2 and 4.3. Finally, Appendix A is an appendix containing a sketch of
the proof to the classical comparison principle of scalar conservation laws adapted to our case with low regularity.

2. Definitions and preliminaries

The reader will notice throughout this section that all the results are valid in the case of working on the real space R,
and not on a bounded interval I as it is expected. Indeed, this is due to the fact that the technique of the proof that we
use depends mainly on extending the problem to the whole space where we can exploit all the forthcoming results of
this section. This will be made more clear in the following sections.

Recall that QT = R × (0, T ). We will deal with two types of equations:

1. Hamilton–Jacobi equation:{
ut + F(x, t, ux) = 0 in QT ,

u(x,0) = u0(x) in R,
(2.1)
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2. Scalar conservation laws:{
vt + (F (x, t, v))x = 0 in QT ,

v(x,0) = v0(x) in R,
(2.2)

where

F : R × [0, T ] × R → R,

(x, t, u) �→ F(x, t, u)

is called the Hamiltonian for the Hamilton–Jacobi equations and the flux function for the scalar conservation laws.
This function is always assumed to be continuous, while additional and specific regularity will be given when needed.

Remark 2.1. The major part of this work concerns a Hamiltonian/flux function of a special form, namely:

F(x, t, u) = g(x, t)f (u), (2.3)

where such forms often arise in problems of physical interest including traffic flow [26] and two-phase flow in porous
media [12].

2.1. Viscosity solution: definition and properties

Definition 2.2 (Viscosity solution: non-stationary case).

(1) A function u ∈ C(QT ;R) is a viscosity sub-solution of

ut + F(x, t, ux) = 0 in QT , (2.4)

if for every φ ∈ C1(QT ), whenever u − φ attains a local maximum at (x0, t0) ∈ QT , then

φt (x0, t0) + F
(
x0, t0, φx(x0, t0)

)
� 0.

(2) A function u ∈ C(QT ;R) is a viscosity super-solution of (2.4) if for every φ ∈ C1(QT ), whenever u − φ attains
a local minimum at (x0, t0) ∈ QT , then

φt (x0, t0) + F
(
x0, t0, φx(x0, t0)

)
� 0.

(3) A function u ∈ C(QT ;R) is a viscosity solution of (2.4) if it is both a viscosity sub- and super-solution of (2.4).
(4) A function u ∈ C(Q̄T ;R) is a viscosity solution of the initial value problem (2.1) if u is a viscosity solution of

(2.4) and u(x,0) = u0(x) in R.

It is worth mentioning here that if a viscosity solution of a Hamilton–Jacobi equation is differentiable at a certain
point, then it solves the equation there (see for instance [1]).

Definition 2.3 (Viscosity solution: stationary case). Let Ω be an open subset of R
n and let F :Ω × R × R

n �→ R be a
continuous mapping. A function u ∈ C(Ω;R) is a viscosity sub-solution of

F
(
x,u(x),∇u(x)

) = 0 in Ω, (2.5)

if for any continuously differentiable function φ : Ω �→ R and any local maximum x0 ∈ Ω of u − φ, one has

F
(
x0, u(x0),∇φ(x0)

)
� 0.

Similarly, if at any local minimum point x0 ∈ Ω of u − φ, one has

F
(
x0, u(x0),∇φ(x0)

)
� 0,

then u is a viscosity super-solution. Finally, if u is both a viscosity sub-solution and a viscosity super-solution, then u

is a viscosity solution.

We say that u is a viscosity solution of the Dirichlet problem (2.5) with u = ζ ∈ C(∂Ω) if:
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(1) u ∈ C(Ω̄),
(2) u is a viscosity solution of (2.5) in Ω ,
(3) u = ζ on ∂Ω .

In fact, this definition is used for interpreting solutions of (1.9) in the viscosity sense. For a better understanding of the
viscosity interpretation of boundary conditions of Hamilton–Jacobi equations, we refer the reader to [1, Section 4.2].

Now, we will proceed by giving some results concerning viscosity solutions of (2.1). In order to have existence and
uniqueness, the Hamiltonian F will be restricted to the following conditions:

(F0) F ∈ C(R × [0, T ] × R);
(F1) for each R > 0, there is a constant CR such that:∣∣F(x, t,p) − F(y, t, q)

∣∣ � CR

(|p − q| + |x − y|) ∀(x, t,p), (y, t, q) ∈ Q̄T × [−R,R];
(F2) there is a constant CF such that for all (t,p) ∈ [0, T ] × R and all x, y ∈ R, one has:∣∣F(x, t,p) − F(y, t,p)

∣∣ � CF |x − y|(1 + |p|).
We use these conditions to write down some well-known results on viscosity solutions.

Theorem 2.4. Under (F0), (F1) and (F2), if u0 ∈ UC(R), then (2.1) has a unique viscosity solution u ∈ UCx(Q̄T )

(see [7, Section 1] for the precise definition of UC(R), UCx(Q̄T ), and for the proof of this theorem).

Remark 2.5. In the case where the Hamiltonian has the form:

F(x, t, u) = g(x, t)f (u),

the following conditions:
(V0) f ∈ C1

b(R;R), (V1) g ∈ Cb(Q̄T ;R) and (V2)gx ∈ L∞(Q̄T ),

imply (F0)–(F2) together with the boundedness of the Hamiltonian.

The next proposition reflects the behavior of viscosity solutions under additional regularity assumptions on u0 and F .

Proposition 2.6 (Additional regularity of the viscosity solution). Let F = gf satisfy (V0)–(V2). If u0 ∈ Lip(R) and
u ∈ UCx(Q̄T ) is the unique viscosity solution of (2.1), then u ∈ Lip(Q̄T ) (see [16, Theorem 3]).

Remark 2.7. It is worth mentioning that the space Lipschitz constant of the function u depends on C, where C appears
in (F1) for p = q , and on the Lipschitz constant γ of the function u0. While the time Lipschitz constant depends on
the bound of the Hamiltonian.

2.2. Entropy solution: definition and properties

Definition 2.8 (Entropy sub-/super-solution). Let F(x, t, v) = g(x, t)f (v) with g,gx ∈ L∞
loc(QT ;R) and f ∈

C1(R;R). A function v ∈ L∞(QT ;R) is an entropy sub-solution of (2.2) with bounded initial data v0 ∈ L∞(R)

if it satisfies:∫
QT

[
ηi

(
v(x, t)

)
φt (x, t) + Φ

(
v(x, t)

)
g(x, t)φx(x, t) + h

(
v(x, t)

)
gx(x, t)φ(x, t)

]
dx dt

+
∫
R

ηi

(
v0(x)

)
φ(x,0) dx � 0, (2.6)

∀φ ∈ C1
0(R × [0, T );R+), for any non-decreasing convex function ηi ∈ C1(R;R), Φ ∈ C1(R;R) such that:

Φ ′ = f ′η′
i , and h = Φ − f η′

i . (2.7)
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An entropy super-solution of (2.2) is defined by replacing in (2.6) ηi with ηd ; a non-increasing convex function. An
entropy solution is defined as being both entropy sub- and super-solution. In other words, it verifies (2.6) for any
convex function η ∈ C1(R;R).

Entropy solutions were first introduced by Kružkov [19] as the only physically admissible solutions among all weak
(distributional) solutions to scalar conservation laws. These weak solutions lack the fact of being unique for it is easy
to construct multiple weak solutions to Cauchy problems (2.2) (see for instance [21]). The next definition concerns
classical sub-/super-solution to scalar conservation laws. This kind of solutions are easily shown to be entropy sub-
/super-solutions.

Definition 2.9 (Classical solution to scalar conservation laws). Let F(x, t, v) = g(x, t)f (v) with g,gx ∈ L∞
loc(QT ;R)

and f ∈ C1(R;R). A function v ∈ W 1,∞(QT ) is said to be a classical sub-solution of (2.2) with v0(x) = v(x,0) if it
satisfies

vt (x, t) + (
F

(
x, t, v(x, t)

))
x

� 0 a.e. in QT . (2.8)

Classical super-solutions are defined by replacing “�” with “�” in (2.8), and classical solutions are defined to be
both classical sub- and super-solutions.

We move now to some classical results on entropy solutions.

Theorem 2.10 (Kružkov’s Existence Theorem). Let F , v0 be given by Definition 2.8, and the following conditions
hold:

(E0) f ∈ C1
b(R), (E1) g, gx ∈ Cb(Q̄T ) and (E2) gxx ∈ C(Q̄T ),

then there exists an entropy solution v ∈ L∞(QT ) of (2.2) (see [19, Theorem 4]).

In fact, Kružkov’s conditions for existence were given for a general flux function (see [19, Section 4] for details).
However, in Subsection 5.4 of the same paper, a weak version of these conditions, that can be easily checked in
the case F(x, t, v) = g(x, t)f (v) and (E0)–(E2), is presented. Furthermore, uniqueness follows from the following
comparison principle.

Theorem 2.11 (Comparison Principle). Let F be given by Definition 2.8 with f satisfying (E0), and g satisfies,

(E3) g ∈ W 1,∞(Q̄T ).

Let u, v ∈ L∞(QT ) be two entropy sub-/super-solutions of (2.2) with initial data u0, v0 ∈ L∞(R) such that, u0(x) �
v0(x) a.e. in R, then

u(x, t) � v(x, t) a.e. in Q̄T .

The proof of this theorem can be adapted from [11, Theorem 3] with slight modifications. However, for the sake of
completeness, we will present a sketch of the proof in Appendix A.

At this stage, we are ready to present a relation that sometimes holds between scalar conservation laws and
Hamilton–Jacobi equations in one-dimensional space.

2.3. Entropy–viscosity relation

Formally, by differentiating (2.1) with respect to x and defining v = ux , we see that (2.1) is equivalent to the scalar
conservation law (2.2) with v0 = u0

x and the same F . This equivalence of the two problems has been exploited in order
to translate some numerical methods for hyperbolic conservation laws to methods for Hamilton–Jacobi equations.
Moreover, several proofs were given in the one-dimensional case. The usual proof of this relation depends strongly on
the known results about existence and uniqueness of the solutions of the two problems together with the convergence
of the viscosity method (see [6,20,23]). Another proof of this relation could be found in [4] via the definition of
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viscosity/entropy inequalities, while a direct proof could also be found in [18] using the front tracking method. The
case of a Hamiltonian of the form (2.3) is also treated even when g(x, t) is allowed to be discontinuous in the (x, t)

plane along a finite number of (possibly intersected) curves (see [25]). In our work, the above stated relation will be
successfully used to get some gradient estimates on κ . To be more specific, we write down the precise statement of
this relation: for every Hamiltonian/flux function F = gf and every u0 ∈ Lip(R), let

E V = {
(V0), (V1), (V2), (E0), (E1), (E2), (E3)

}
,

in other words,

E V =

∣∣∣∣∣∣∣∣∣

The set of all conditions on f and g ensuring the

existence and uniqueness of a Lipschitz continuous viscosity

solution u ∈ Lip(Q̄T ) of (2.1), and of an entropy

solution v ∈ L∞(QT ) of (2.2), with v0 = u0
x ∈ L∞(R).

(2.9)

Theorem 2.12 (A link between viscosity and entropy solutions). Let F = gf with g ∈ C2(Q̄T ), u0 ∈ Lip(R) and E V
satisfied. Then,

v = ux a.e. in QT .

Remark 2.13. In the multidimensional case this one-to-one correspondence no longer exists, instead the gradient
v = ∇u satisfies formally a non-strict hyperbolic system of conservation laws (see [23,20]).

3. Main tools

Before proceeding with the proof of our main theorems, we have to introduce some essential tools that are the core
of the “extension and restriction” method that we are going to use. For every ε > 0, we build up an approximation
function fε ∈ C1

b(R) of the function 1
x

defined by:

fε(x) =

⎧⎪⎨
⎪⎩

1

x
if x � ε,

2ε − x

ε2 + ε2(x − ε)2
otherwise.

(3.1)

The function κ0 given by (1.2) is extended to the real line R as follows:

κ̂0(x) =

⎧⎪⎨
⎪⎩

κ0(x) if x ∈ [0,1],
(‖ρ0

x‖L∞(I ) + ε)(x − 1) + κ0(1) if x � 1,

(‖ρ0
x‖L∞(I ) + ε)x + κ0(0) if x � 0,

(3.2)

where ρ0 is defined in Theorem 1.2. Notice that κ̂0 ∈ Lip(R). Let ρ be the unique solution of the classical heat
equation (1.10), we will extend the function ρ to Q̄T and we will extract some of the properties of its extension.

Extension of ρ over R × [0, T ].
Consider the function ρ̂ defined on [0,2] × [0, T ] by:

ρ̂(x, t) =
{

ρ(x, t) if (x, t) ∈ ĪT ,

−ρ(2 − x, t) otherwise,
(3.3)

this is just a C1 antisymmetry of ρ with respect to the line x = 1. The continuation of ρ̂ to R × [0, T ] is made by
spatial periodicity of period 2. Always denote ρ̂0 ∈ C∞(R) by:

ρ̂0(x) = ρ̂(x,0). (3.4)

A simple computation yields, for (x, t) ∈ (1,2) × (0, T ):

ρ̂t (x, t) = −ρt (2 − x, t) and ρ̂xx(x, t) = −ρxx(2 − x, t),
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and hence it is easy to verify that ρ̂|[1,2]×[0,T ] solves (1.10) with I replaced with the interval (1,2) and ρ0 replaced
with its symmetry with respect to the point x = 1; the boundary conditions are unchanged and the regularity of the
initial condition is conserved. To be more precise, we write down some useful properties of ρ̂.

Regularity properties of ρ̂. Let r and s are two positive integers such that s � 2. From the construction of ρ̂ and the
above discussion, we get the following:

(i) ρ̂t and ρ̂x are in C(R × [0, T ]),
(ii) ρ̂ = 0 on Z × [0, T ],
(iii) ρ̂t = ρ̂xx on (R \ Z) × (0, T ),

(iv) ‖∂r
t ∂s

x ρ̂(·, t)‖L∞(R) � C, ∀t ∈ [0, T ],
(3.5)

where C is a certain constant and the limitation s � 2 comes from the spatial antisymmetry. These conditions are valid
thanks to the way of construction of the function ρ̂ and to the maximum principle of the solution of the heat equation
on bounded domains (see [2,10]).

Let

ĝ(x, t) = −ρ̂t (x, t)ρ̂x(x, t). (3.6)

From the above discussion, it is worth noticing that this function is a Lipschitz continuous function in the x-variable.
Consider the initial value problem defined by:{

ut + ĝfε(ux) = 0 in QT ,

u(x,0) = κ̂0(x) in R.
(3.7)

This is a Hamilton–Jacobi equation with a Hamiltonian Fε ∈ C(Q̄T × R) defined by:

Fε(x, t, u) = ĝ(x, t)fε(u).

From the regularity of ρ̂ and fε , we can directly see that (V0)–(V2) are all satisfied. Moreover, since κ̂0 is a Lipschitz
continuous function, we get the following proposition as a direct consequence of Theorem 2.4 and Proposition 2.6.

Proposition 3.1. There exists a unique viscosity solution κ̂ ∈ Lip(Q̄T ) of (3.7).

The following lemmas will be used in the proof of Theorems 1.2 and 1.3.

Lemma 3.2 (Entropy sub-solution). The function Gε(ρ̂x) is an entropy sub-solution of{
wt + (ĝfε(w))x = 0 in QT ,

w(x,0) = w0(x) in R,
(3.8)

where the function Gε is given by (1.13), and w0(x) = Gε(ρ̂
0
x(x)).

Proof. It is easily seen that Gε(ρ̂x) ∈ W 1,∞(QT ) and that the function Gε verifies:

(G1) Gε(x) � ε > 0, (G2) G
′′
ε � 0 and (G3) Gε(x)G′

ε(x) = x.

Define for a.e. (x, t) ∈ QT , the scalar-valued quantity B by:

B(x, t) = ∂t

(
Gε

(
ρ̂x(x, t)

)) + ∂x

(
Fε

(
x, t,Gε

(
ρ̂x(x, t)

)))
.

From (G1) and (G3), we have fε(Gε(ρ̂x)) = 1/Gε(ρ̂x) and we observe that:

B = G′
ε(ρ̂x)ρ̂xt − ∂x

(
ρ̂t ρ̂x

Gε(ρ̂x)

)

= G′
ε(ρ̂x)ρ̂xt − ρ̂xt ρ̂x + ρ̂t ρ̂xx

Gε(ρ̂x)
+ G′

ε(ρ̂x)ρ̂xx ρ̂t ρ̂x

G2
ε(ρ̂x)

= Gε(ρ̂x)ρ̂x ρ̂xt − Gε(ρ̂x)ρ̂x ρ̂xt − Gε(ρ̂x)ρ̂t ρ̂xx + G′
ε(ρ̂x)ρ̂xx ρ̂t ρ̂x

G2
ε(ρ̂x)

= −ρ̂2
xx(Gε(ρ̂x) − G′

ε(ρ̂x)ρ̂x)

G2(ρ̂ )
.

ε x
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Hence, we get:

B = −ρ̂2
xxG

′′
ε (ρ̂x),

where the condition (G2) gives immediately that

B � 0 a.e. on QT .

This proves that Gε(ρ̂x) is a classical sub-solution of Eq. (3.8) and therefore an entropy sub-solution. �
Lemma 3.3 (Entropy super-solution). Take 0 < ε < 1. Let c1 and c2 be two positive constants defined respectively by:

c1 = ‖ρ̂xx‖2
L∞(QT ) + ‖ρ̂x‖L∞(QT )‖ρ̂tx‖L∞(QT ) and c2 = (‖κ0

x‖L∞(I ) + 1
)2

.

Then the function S̄ defined on QT by:
S̄(x, t) = √

2c1t + c2 (3.9)

is an entropy super-solution of (3.8) with w0(x) = S̄(x,0) = ‖κ0
x‖L∞(I ) + 1.

Proof. We remark that S̄ ∈ W 1,∞(QT ), and for every (x, t) ∈ QT we have:

S̄(x, t) � √
c2 = ‖κ0

x‖L∞(I ) + 1 � ε,

and hence fε(S̄(x, t)) = 1/S̄(x, t). The regularity of the function S̄ permits to inject it directly into the first equation
of (3.8), thus we have for a.e. (x, t) ∈ QT :

S̄t −
(

ρ̂t ρ̂x

S̄

)
x

= c1√
2c1t + c2

− ρ̂2
xx + ρ̂x ρ̂tx√
2c1t + c2

= c1 − (ρ̂2
xx + ρ̂x ρ̂tx)√

2c1t + c2
� 0,

which proves that S̄ is an entropy super-solution of (3.8).

Lemma 3.4 (Differentiability property). Let u(x, t) be a differentiable function with respect to (x, t) a.e. in QT . Define
the set M by:

M = {
x ∈ R; u is differentiable a.e. in {x} × (0, T )

}
,

then M is dense in R.

Indeed, we have even that the set R \ M is of Lebesgue measure zero, and this can be easily shown using some
elementary integration arguments.

Lemma 3.5. Let c̄ be an arbitrary real constant and take ψ ∈ Lip(I ;R) satisfying:
ψx � c̄ a.e. in I.

If ζ ∈ C1(I ;R) is such that ψ − ζ has a local maximum or local minimum at some point x0 ∈ I , then

ζx(x0) � c̄.

Proof. Suppose that ψ − ζ has a local minimum at the point x0; this ensures the existence of a certain r > 0 such that

(ψ − ζ )(x) � (ψ − ζ )(x0) ∀x; |x − x0| < r.

We argue by contradiction. Assuming ζx(x0) < c̄ leads, from the continuity of ζx , to the existence of r ′ ∈ (0, r) such
that

ζx(x) < c̄ ∀x; |x − x0| < r ′. (3.10)

Let y0 be a point such that |y0 − x0| < r ′ and y0 < x0. Reexpressing (3.10), we get

(ζ − c̄x)x(x) < 0 ∀x ∈ (y0, x0),
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and hence
x0∫

y0

[
(ψ − c̄x)x(x) − (ζ − c̄x)x(x)

]
dx > 0,

which implies that

(ψ − ζ )(x0) > (ψ − ζ )(y0),

and hence a contradiction. We remark that the case of a local maximum can be treated in a similar way. �
In the next lemma, we show that the spatial derivative of the function κ̂ given by Proposition 3.1 is an entropy

solution of (3.8). The reader can easily notice that this result would be a trivial consequence of Theorem 2.12 if the
function ĝ is sufficiently regular, which is not the case here. The following lemma shows that a similar result holds in
the case ĝ ∈ W 1,∞(Q̄T ).

Lemma 3.6. The function κ̂x ∈ L∞(QT ) (κ̂ is given by Proposition 3.1) is an entropy solution of (3.8) with initial
data w0 = κ̂0

x ∈ L∞(R).

Proof. Let g̃ be an extension of the function ĝ on R
2 defined by:

g̃(x, t) =
⎧⎨
⎩

ĝ(x, t) if (x, t) ∈ Q̄T ,

ĝ(x, T ) if t > T ,

ĝ(x,0) if t < 0.

(3.11)

Consider a sequence of mollifiers ξn in R
2 and let g̃n = g̃ ∗ ξn. Remark that, from the standard properties of the

mollifier sequence, we have g̃n ∈ C∞(R2) and:

g̃n → ĝ uniformly on compacts in Q̄T , (3.12)

and

g̃n
x → ĝx in L

p

loc(QT ), 1 � p < ∞, (3.13)

together with the following estimates:

‖∂r
t ∂s

x g̃
n‖L∞(Q̄T ) � ‖∂r

t ∂s
x ĝ‖L∞(Q̄T ) for r, s ∈ N, r + s � 1. (3.14)

Now, take again the Hamilton–Jacobi equation (3.7) with ĝ replaced with g̃n:{
ut + g̃nfε(ux) = 0 in R × (0, T ),

u(x,0) = κ̂0(x) in R,
(3.15)

and notice that the above properties of the function g̃n enters us into the framework of Theorem 2.12. Thus, we have
a unique viscosity solution κ̃n ∈ Lip(Q̄T ) of (3.15) with initial condition κ̂0 whose spatial derivative κ̃n

x ∈ L∞(QT )

is an entropy solution of the corresponding derived equation with initial data κ̂0
x . From Remark 2.7 and (3.14), we

deduce that the sequence (κ̃n)n�1 is locally uniformly bounded in W 1,∞(Q̄T ) and that:

‖κ̃n
x ‖L∞(QT ) � ‖κ̂0

x‖L∞(R) + T ‖ĝx‖L∞(QT )‖fε‖L∞(R). (3.16)

Moreover, from (3.12), we use again the Stability Theorem of viscosity solutions [1, Theorem 2.3], and we obtain:

κ̃n → κ̂ locally uniformly in Q̄T . (3.17)

Back to the entropy solution, we write down the entropy inequality (see Definition 2.8) satisfied by κ̃n
x :∫ (

η(κ̃n
x )φt + Φ(κ̃n

x )g̃nφx + h(κ̃n
x )g̃n

xφ
)
dx dt +

∫
η(κ̂0

x )φ(x,0) dx � 0, (3.18)
QT R
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where η, Φ , h and φ are given by Definition 2.8. Taking (3.16) into consideration, we use a property of bounded
sequences in L∞(QT ) (see [11, Proposition 3]) that guarantees the existence of a subsequence (call it again κ̃n

x ) so
that, for any function ψ ∈ C(R;R),

ψ(κ̃n
x ) → Uψ weak-� in L∞(QT ). (3.19)

Furthermore, there exists μ ∈ L∞(QT × (0,1)) such that:

1∫
0

ψ
(
μ(x, t, α)

)
dα = Uψ(x, t), for a.e. (x, t) ∈ QT . (3.20)

Applying (3.19) with ψ replaced with η, Φ and h respectively, and using (3.20), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(κ̃n
x (·)) →

1∫
0

η
(
μ(·, α)

)
dα weak-� in L∞(QT ),

Φ
(
κ̃n
x (·)) →

1∫
0

Φ
(
μ(·, α)

)
dα weak-� in L∞(QT ),

h
(
κ̃n
x (·)) →

1∫
0

h
(
μ(·, α)

)
dα weak-� in L∞(QT ).

(3.21)

This, together with (3.12), (3.13) permits to pass to the limit in (3.18) in the distributional sense, hence we get:

∫
QT

1∫
0

(
η
(
μ(·, α)

)
φt + Φ

(
μ(·, α)

)
ĝφx + h

(
μ(·, α)

)
ĝxφ

)
dx dt dα +

∫
R

η(κ̂0
x )φ(x,0) dx � 0. (3.22)

In [11, Theorem 3], the function μ satisfying (3.22) is called an entropy process solution. It has been proved to be
unique and independent of α. Although this result in [11] was for a divergence-free function ĝ ∈ C1(Q̄T ), we remark
that it can be adapted to the case of any function ĝ ∈ W 1,∞(Q̄T ) (see for instance Remark 4.4 and the proof of
[11, Theorem 3]). Using this, we infer the existence of a function z ∈ L∞(QT ) such that:

z(x, t) = μ(x, t, α), for a.e. (x, t, α) ∈ QT × (0,1), (3.23)

hence, z is an entropy solution of (3.8). We now make use of (3.23) and we apply equality (3.20) for ψ(x) = x to
obtain,

z = weak-� lim
n→∞ κ̃n

x in L∞(QT ). (3.24)

From (3.24) and (3.17) we deduce that,

z(x, t) = κ̂x(x, t) a.e. in QT ,

which completes the proof of Lemma 3.6. �
4. Proof of Theorems 1.2 and 1.3

In this section, we will present the proof of our main results and we will end up by stating some results in the case
I = R.

4.1. Proof of Theorem 1.2

We claim that κ = κ̂|Ī is the required solution.

T
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Boundary conditions. In order to recover the boundary conditions, given by (1.9), on ∂I × [0, T ], we proceed as
follows. Let M be the set defined by Lemma 3.4 and let x ∈ M . For every t ∈ [0, T ], we write:

∣∣κ̂(x, t) − κ̂(x,0)
∣∣ �

t∫
0

∣∣κ̂s(x, s)
∣∣ds �

t∫
0

∣∣Fε

(
x, s, κ̂x(x, s)

)∣∣ds �
t∫

0

(∣∣Fε

(
0, s, κ̂x(x, s)

)∣∣ + C|x|)ds.

In these inequalities, we have used the fact that κ̂ is a Lipschitz continuous viscosity solution of (3.7) and hence
it verifies the equation in QT at the points where it is differentiable (see for instance [1]). Also, we have used the
condition (F1) with p = q and CR = C; a constant independent of R. Now from (3.5)(ii), we deduce that:∣∣Fε

(
0, s, κ̂x(x, s)

)∣∣ = ∣∣ρ̂x(0, s)ρ̂t (0, s)fε

(
κ̂x(x, s)

)∣∣ = 0, for a.e. s ∈ (0, t),

and hence we get∣∣κ̂(x, t) − κ̂(x,0)
∣∣ � C|x|t. (4.1)

Since M is a dense subset of R (see Lemma 3.4), we pass to the limit in (4.1) as x → 0 and the equality

κ(0, t) = κ(0,0) = κ0(0) ∀t ∈ [0, T ]
holds. Similarly, we can verify that κ(1, t) = κ(1,0) = κ0(1) for all t ∈ [0, T ].

Inequality (1.14). We show a lower-bound estimate of κ̂x . A result of a lower-bound gradient estimate for first-order
Hamilton–Jacobi equations was done in [22, Theorem 4.2]. However, this result holds for Hamiltonians F(x, t, u) that
are convex in the u-variable, using only the viscosity theory techniques. This is not the case here, and in order to obtain
our lower-bound estimate, we need to use the viscosity/entropy theory techniques. In particular, we have the following:
the extension κ̂0 of κ0 outside the interval I is a linear extension of slope ‖ρ0

x‖L∞(I ) + ε. This, together with (1.12)
and (3.4) give:

κ̂0
x �

√
(ρ̂0

x)2 + ε2 = Gε(ρ̂
0
x), a.e. in R. (4.2)

From Lemma 3.6, we know that κ̂x is an entropy solution of (3.8). Also, from Lemma 3.2, we know that G(ρ̂x) is an
entropy sub-solution of (3.8). Since (4.2) holds, we use the Comparison Theorem 2.11 to get,

κ̂x �
√

ρ̂2
x + ε2 = Gε(ρ̂x), a.e. in Q̄T ,

and hence

κx � Gε(ρx), a.e. in ĪT .

The function κ is a viscosity solution of (1.9). Since κ is the restriction of κ̂ on ĪT , κ̂0 and ρ̂ have their automatic
replacements κ0 and ρ respectively on this subdomain. Hence, it is clear that κ ∈ Lip(ĪT ) is a viscosity solution of:⎧⎨

⎩
κt + gfε(κx) = 0 in IT ,

κ(x,0) = κ0(x) in I,

κ(0, t) = κ0(0) and κ(1, t) = κ0(1) ∀0 � t � T ,

(4.3)

where g(x, t) = −ρt (x, t)ρx(x, t). Let us show that κ is a viscosity solution of (1.9). Consider a test function
φ ∈ C1(IT ) such that κ −φ has a local minimum at some point (x0, t0) ∈ IT . Proposition 2.6, together with inequality
(1.14) gives that

κ(·, t0) ∈ Lip(I ) and κx(·, t0) � ε a.e. in I.

We make use of Lemma 3.5 with ψ(·) = κ(·, t0) and ζ(·) = φ(·, t0) to get,

φx(x0, t0) � ε. (4.4)

Since κ is a viscosity super-solution of

κt − ρtρxfε(κx) = 0 in IT ,
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we have

φt (x0, t0) − ρt (x0, t0)ρx(x0, t0)fε

(
φx(x0, t0)

)
� 0.

However, from (4.4), we get

φt (x0, t0)φx(x0, t0) − ρt (x0, t0)ρx(x0, t0) � 0,

and hence κ is a viscosity super-solution of

κtκx = ρxρxx in IT . (4.5)

In the same way, we can show that κ is a viscosity sub-solution of (4.5) and hence a viscosity solution.
Uniqueness among solutions verifying (1.14). We argue by contradiction. Since the function

H(x, t, u) = g(x, t)fε(u) ∈ C(ĪT × R)

satisfies for a fixed t ∈ (0, T ):∣∣H(x, t, u) − H(y, t, u)
∣∣ � C

(|x − y|(1 + |u|))
for every x, y ∈ (0,1) and u ∈ R, we use [1, Theorem 2.8] to show that κ is the unique viscosity solution of (4.3).
Suppose that κ1 ∈ Lip(ĪT ) is another viscosity solution of (1.9) verifying (1.14) and κ1 �= κ . It is easy to show, from
Lemma 3.5, that such a function is again a viscosity solution of (4.3) and hence a contradiction. �
4.2. Proof of Theorem 1.3

Let 0 < ε < 1 be a fixed constant. Define κ0,ε ∈ Lip(I ) by:

κ0,ε(x) = κ0(x) + εx, x ∈ (0,1). (4.6)

From (1.6), it is clear that for a.e. x ∈ I we have: κ
0,ε
x � Gε(ρ

0
x), and hence from Theorem 1.2, there exists a vis-

cosity solution κε ∈ Lip(ĪT ) of (1.9), unique among those satisfying (1.14). We will extract a subsequence of κε that
converges, in a suitable space, to the desired solution. Uniform bounds for the space/time gradients of κε will play an
important role in the determination of our subsequence.

Remark 4.1. It is worth noticing that the function κε is obtained from the restriction of the function κ̂ε ∈ Lip(Q̄T )

on ĪT (see the announcement of the proof of Theorem 1.2). From Lemma 3.6, we know that κ̂ε
x is an entropy solution of

(3.8) with initial condition w0 = κ̂ε
x (x,0) where κ̂ε(x,0) is given by (3.2) with κ0 replaced by κ0,ε . Since κ̂ε

x (x,0) �
S̄(x,0), S̄ given by (3.9), we use Lemma 3.3 together with Theorem 2.11 to get: κ̂ε

x � S̄ � C(T ) a.e. inQ̄T , and hence:

κε
x � C(T ) a.e. in ĪT . (4.7)

In order to obtain an ε-uniform upper-bound for κε
t , we use directly the equation satisfied by κε , namely:

κε
t κε

x − ρtρx = 0 in IT , (4.8)

and inequality (1.14) to get:

|κε
t | � ‖ρ0

xx‖L∞(I ) a.e. in ĪT . (4.9)

From (4.7) and (4.9), we obtain the boundedness of the sequence κε in the space W 1,∞(ĪT ), and hence by Ascoli’s
Theorem, there exists a subsequence of κε that converges to κ ∈ Lip(ĪT ) locally uniformly.

We claim that κ is the required solution.
Existence on IT . Since κε → κ locally uniformly and since the Hamiltonian of (4.8) is independent of ε; indeed,

for X = (x, t), the Hamiltonian can be written as:

Hε(X,∇u) = utux − ρt (X)ρx(X),

we use the Stability Theorem (see [1, Theorem 2.3]) to conclude that κ is a viscosity solution of the limit equation:

κtκx = ρtρx in IT .
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Initial and boundary conditions. From (4.6), it is easy to see that κ0,ε → κ0 uniformly on I . Moreover, Theorem 1.2
guarantees that:

κε(0, t) = κ0,ε(0) = κ0(0), (4.10)

and

κε(1, t) = κ0,ε(1) = κ0(1) + ε, (4.11)

for all t ∈ [0, T ]. From (4.10), (4.11) and the pointwise convergence, up to a subsequence, of κε to κ , we deduce that

κ(0, t) = lim
ε→0

κε(0, t) = κ0(0), ∀t ∈ [0, T ], (4.12)

and

κ(1, t) = lim
ε→0

κε(1, t) = lim
ε→0

(
κ0(1) + ε

) = κ0(1) ∀t ∈ [0, T ]. (4.13)

Therefore, the initial and the boundary conditions are recovered.
Inequality (1.15). From (1.14), we have, for (x, t) and (y, t) close enough,

κε(y, t) − κε(x, t)

y − x
�

∣∣ρx(x, t)
∣∣ − δ,

and hence, by the continuity of ρx , we obtain

κε
x (y, t) �

∣∣ρx(x, t)
∣∣ − δ for y ∈ (x − r, x + r), r = r(δ).

Therefore

κx � |ρx | − δ ∀δ > 0,

and the inequality follows. �
At this stage, it is worth mentioning that the case of posing the problems (1.4) and (1.5) on the real line R instead

of the bounded interval I (call these new problems (1.4′) and (1.5′) respectively), leads to similar results that can
be proved along the same principles (we refer the interested reader to [17, Theorem 1.2, Theorem 1.6]). Let us just
mention that this case is slightly less technical and the results that can be shown are:

Theorem 4.2 (Existence and uniqueness of a viscosity solution). Let T > 0. Take κ0 ∈ Lip(R) and ρ0 ∈ C∞
0 (R) as

initial data that satisfy:
κ0
x �

√
(ρ0

x)2 + ε2 a.e. in R,

for some constant ε > 0. Then, given the solution ρ of the heat equation (1.5′), there exists a viscosity solution
κ ∈ Lip(Q̄T ) of (1.4′), unique among the viscosity solutions satisfying:

κx �
√

ρ2
x + ε2 a.e. in Q̄T .

Theorem 4.3 (Existence of a viscosity solution, case ε = 0). Let T > 0, κ0 ∈ Lip(R) and ρ0 ∈ C∞
0 (R). If the condition

(1.6) is satisfied a.e. in R, and ρ is the solution of (1.5′), then there exists a viscosity solution κ ∈ Lip(Q̄T ) of (1.4′)
satisfying:

κx � |ρx | a.e. in Q̄T .
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Appendix A. Sketch of the proof of Theorem 2.11

We will work on a variant of the entropy inequality (see for instance [19,11]) satisfied by u and its analogue satisfied
by v. We write down these inequalities for clarity:

1. u(x, t) satisfies:∫
QT

[(
u(x, t) − k

)+
φt (x, t) + sgn+(

u(x, t) − k
)(

f
(
v(x, t)

) − f (k)
)
g(x, t)φx(x, t)

− sgn+(
u(x, t) − k

)
f (k)gx(x, t)φ(x, t)

]
dx dt +

∫
R

(
u0(x) − k

)+
φ(x,0) dx � 0, (A.1)

2. v(y, s) satisfies:∫
QT

[(
v(y, s) − k

)−
φs(y, s) + sgn−(

v(y, s) − k
)(

f
(
v(y, s)

) − f (k)
)
g(y, s)φy(y, s)

− sgn−(
v(y, s) − k

)
f (k)gy(y, s)φ(y, s)

]
dy ds +

∫
R

(
v0(y) − k

)−
φ(y,0) dy � 0, (A.2)

where a± = 1
2 (|a|±a) and sgn±(x) = 1

2 (sgn(x)±1). We use the dedoubling variable technique of Kružkov (see [19])
and following the same steps of [11, Theorem 3], taking into consideration the new modifications arising from the
fact that we are dealing with sub-/super-entropy solutions and the fact that g ∈ W 1,∞(Q̄T ) is not a gradient-free
function. The proof can be divided into three steps. Denote Br by Br = {x ∈ R; |x| � r} for any r > 0, F±(u, v) =
sgn±(u − v)(f (u) − f (v)),

y∞ = ‖y‖L∞(QT ) for every y ∈ L∞(QT ) (A.3)

and

Mf = max
|x|�max(u∞,v∞)

∣∣f ′(x)
∣∣. (A.4)

In step 1, we prove that the initial conditions u0, v0 satisfy for any a > 0:

lim
τ→0

1

τ

τ∫
0

∫
Ba

(
u(x, t) − u0(x)

)+
dx dt = 0, (A.5)

lim
τ→0

1

τ

τ∫
0

∫
Ba

(
v(x, t) − v0(x)

)−
dx dt = 0, (A.6)

respectively.
In step 2, The following relation between u and v is shown:∫

QT

[(
u(x, t) − v(x, t)

)+
ψt + F+(

u(x, t), v(x, t)
)
g(x, t)ψx

]
dx dt � 0, (A.7)

for every ψ ∈ C1
0(R × (0, T );R+).

After that, we define A(t) for 0 < t < min(T , a
ω
) and ω = g∞Mf , by:

A(t) =
∫

Ba−ωt

(
u(x, t) − v(x, t)

)+
dx. (A.8)

In step 3, we show that A is non-increasing a.e. in (0,min(T , a
ω
)) and we deduce that

u(x, t) � v(x, t) a.e. in QT .
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Step 1: Proof of (A.5), (A.6). This is similar to Step 1 in [11, Theorem 3]. In fact, let a > 0 and τ ∈ R such that
0 < τ < T . Consider the test function

φ(x, t) = ψ(x)ξn(x − y)γ (t) where γ (t) =
{

τ − t

τ
if 0 � t � τ,

0 if t > τ,
(A.9)

and ψ ∈ C∞
0 (R) such that ψ(x) = 1, ∀x ∈ Ba . Let y be a Lebesgue point of u0. Upon plugging the test function φ

and the constant k = u0(y) into (A.1); integrating the resulting relation over R with respect to y, we get similar terms
to that in [11] with | · |, sgn(·) and μ(x, t, α) replaced by (·)+, sgn+(·) and u(x, t) respectively. However, the fact that
our g is not a divergence-free function adds a new term which is:

T3nτ = −
τ∫

0

∫
R2

sgn+(
u(x, t) − u0(y)

)
f

(
u0(y)

)
gx(x, t)γ (t)ψ(x)ξn(x − y)dx dy dt, (A.10)

and can be treated in exactly the same way as T2nτ (see Step 1 [11, Theorem 3] for the details).
Step 2: Proof of (A.7). We follow Step 2 of [11, Theorem 3]. Taking regularizations of ψ , it suffices to show (A.7)

for ψ ∈ C∞
0 (QT ;R+). We may assume without loss of generality that there is some c > 0 such that ψ(x, t) = 0 for

t ∈ (0, c)∪(T −c,T ). For n > 1
c
, let ξn be the usual mollifier sequence in R and consider the test function φ(x, t, y, s)

defined for (x, t), (y, s) ∈ QT by:

φ(x, t, y, s) = ψ

(
x + y

2
,
t + s

2

)
ξn(x − y)ξn(t − s).

Fix (y, s) ∈ QT a Lebesgue point of v, and (x, t) ∈ QT a Lebesgue point of u. We plug, on one hand, the test
function φ(·, ·, y, s) and the constant k = v(y, s) into (A.1); integrate the resulting relation over QT with respect to
(y, s). And on the other hand, we plug the test function φ(x, t, ·, ·) and the constant k = u(x, t) into (A.2); integrate the
resulting relation over QT with respect to (x, t). Upon performing the necessary change of variables, and making some
elementary identity transformations in the integrands (which consist of adding and subtracting identical functions and
arranging similar terms), we get:

X n
1 + X n

2 + X n
3 + X n

4 � 0, (A.11)

where X n
1 and X n

2 are same as X1n and X2n from [11] with ν(x, t, α), μ(x, t, α) and F replaced by u, v and F+
respectively. Thus, it is easy to see that:

X n
1 →

∫
QT

(
u(x, t) − v(x, t)

)+
ψt(x, t) dx dt as n → ∞, (A.12)

and

X n
2 →

∫
QT

F+(
u(x, t), v(x, t)

)
g(x, t)ψx(x, t) dx dt as n → ∞. (A.13)

The remaining terms X n
3 and X n

4 can be written as follows:

X n
3 =

∫
Q4

F+(
u(x+, t+), v(x−, t−)

)(
g(x+, t+) − g(x−, t−)

)
ψ(x, t)nξ ′(y)ξ(s) dx dt dy ds, (A.14)

X n
4 =

∫
Q4

sgn+(
u(x+, t+) − v(x−, t−)

)[
f

(
u(x+, t+)

)
gx(x

−, t−)

− f
(
v(x−, t−)

)
gx(x

+, t+)
]
ψ(x, t)ξ(y)ξ(s) dx dt dy ds, (A.15)

where x+ = x + y
2n

, x− = x − y
2n

, t+ = t + s
2n

and t− = t − s
2n

, taken for simplicity. These two terms will be treated

independently. At this point, it is worth mentioning that we will frequently use the following lemma from [20]:
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Lemma A.1. If Γ ∈ Lip(R) satisfies |Γ (u) − Γ (v)| � C0|u − v|, then the function

H(u,v) = sgn+(u − v)
(
Γ (u) − Γ (v)

)
satisfies |H(u,v) − H(u′, v′)| � C0(|u − u′| + |v − v′|) (see [19, Lemma 3]).

We now study the two terms X n
3 and X n

4 . From the fact that g ∈ W 1,∞(Q̄T ), we remark that for a.e. (x, t, y, s) ∈
QT × QT , we have:

g(x−, t−) − g(x+, t+) = gx(x
−, t−)(−y/n) + gt (x

−, t−)(−s/n) + o

(
1

n

)
.

We also remark that the term gx(x
+, t+) in X n

4 could be replaced by gx(x
−, t−), since this adds a term that approaches

0 as n becomes large. This term will be omitted throughout what follows and we denote the new X n
4 by X̃ n

4 . From
these two remarks, we rewrite X n

3 and X̃ n
4 to get:

X n
3 =

∫
Q4

sgn+(
u(x+, t+) − v(x−, t−)

)(
f

(
u(x+, t+)

) − f
(
v(x−, t−)

))
× (

ygx(x
−, t−) + sgt (x

−, t−)
)
ψ(x, t)ξ ′(y)ξ(s) dx dt dy ds + L(n), (A.16)

where L(n) → 0 as n → ∞, and

X̃ n
4 =

∫
Q4

sgn+(
u(x+, t+) − v(x−, t−)

)(
f

(
u(x+, t+)

) − f
(
v(x−, t−)

))
× gx(x

−, t−)ψ(x, t)ξ(y)ξ(s) dx dt dy ds. (A.17)

The term L(n) will also be omitted for simplification and we denote the new X n
3 by X̃ n

3 . Let X n
34 = X̃ n

3 + X̃ n
4 , hence:

X n
34 =

X 1n
34︷ ︸︸ ︷∫

Q4

F+(
u(x+, t+), v(x−, t−)

)
gx(x

−, t−)ψ(x, t)
(
yξ(y)ξ(s)

)
y
dx dt dy ds

+

X 2n
34︷ ︸︸ ︷∫

Q4

F+(
u(x+, t+), v(x−, t−)

)
gt (x

−, t−)ψ(x, t)
(
sξ(y)ξ(s)

)
y
dx dt dy ds . (A.18)

In X 1n
34 and X 2n

34 , the term ψ(x, t) could be replaced by ψ(x−, t−), for this also adds a term getting small when
n → ∞. We keep the same notations for X 1n

34 and X 2n
34 . Since yξ(y)ξ(s) is a compactly supported smooth function in

Q4, we have:∫
Q4

F+(
u(x−, t−), v(x−, t−)

)
gx(x

−, t−)ψ(x−, t−)
(
yξ(y)ξ(s)

)
y
dx dt dy ds = 0. (A.19)

Moreover, since F+(u, v) is Lipschitz, we obtain:∣∣∣∣X 1n
34 −

∫
Q4

F+(
u(x−, t−), v(x−, t−)

)
gx(x

−, t−)ψ(x−, t−)
(
yξ(y)ξ(s)

)
y
dx dt dy ds

∣∣∣∣
� Mf (gx)

∞ψ∞
∫

Kψ

∫
B2

1

∣∣u(x+, t+) − u(x−, t−)
∣∣dx dt dy ds, (A.20)

where Kψ is the support of ψ . Therefore, by the Lebesgue Differentiation/Dominated Theorems, we deduce that the
right-hand side of (A.20) tends to 0 as n → ∞, hence we have:

X 1n
34 → 0 as n → ∞. (A.21)
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In a similar way we can show that X 2n
34 → 0 as n → ∞. Passing to the limit as n → ∞ in (A.11) yields (A.7), which

concludes the proof of step 2.
Step 3: u(x, t) � v(x, t) a.e. in QT . Following Step 3 of [11, Theorem 3], always taking into consideration the

slight differences that are now clear from steps 1 and 2, we reach the following: if t1 and t2 are two Lebesgue points
of the function A such that 0 < t1 < t2 < min(T , a

ω
), one have:

A(t1) � A(t2).

We move now to the goal of step 3. Using some elementary identities, we calculate for a.e. (x, t) ∈ QT :(
u(x, t) − v(x, t)

)+ �
(
u(x, t) − u0(x)

)+ + (
v(x, t) − v0(x)

)− + (
u0(x) − v0(x)

)+
.

Since u0(x) � v0(x) a.e. in R, we get for a.e. (x, t) ∈ QT :(
u(x, t) − v(x, t)

)+ �
(
u(x, t) − u0(x)

)+ + (
v(x, t) − v0(x)

)−
. (A.22)

Using (A.22) for τ ∈ (0, T ), we get:

1

τ

τ∫
0

A(t) dt � 1

τ

τ∫
0

∫
Ba

(
u(x, t) − v(x, t)

)+
dx dt

� 1

τ

τ∫
0

∫
Ba

(
u(x, t) − u0(x)

)+
dx dt + 1

τ

τ∫
0

∫
Ba

(
v(x, t) − v0(x)

)−
dx dt. (A.23)

From (A.5), (A.6) and the passage to the limit as τ → 0 in (A.23), we deduce that,

1

τ

τ∫
0

A(t) dt → 0 as τ → 0. (A.24)

Thus, since A is a.e. non-increasing on (0, τ ), and A(t) � 0 for a.e. t ∈ (0,min(T , a
ω
)), one then has

A(t) = 0 for a.e. t ∈
(

0,min

(
T ,

a

ω

))
.

Since a is arbitrary, we deduce that,

u(x, t) � v(x, t) a.e. in QT .

�
Remark 4.4. In [11], the entropy process solution μ(x, t, α) was proved to be independent of α for a divergence-free
function g ∈ C1(Q̄T ). However, for the case of a general non-divergence-free function g ∈ W 1,∞(Q̄T ), same result
can be shown by adapting the same proof as in [11, Theorem 3] taking into account the slight modifications that could
be deduced from the proof of Theorem 2.11. More precisely, the treatment of the two terms X n

3 and X n
4 in Step 2.
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