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Abstract

We consider the Dirichlet problem for the p-Laplacian evolution equation, ut = �pu, where p > 2, posed in an exterior domain
in RN , with zero Dirichlet boundary condition and with integrable and nonnegative initial data. We are interested in describing the
influence of the holes of the domain on the large time behaviour of the solutions. Such behaviour varies depending on the relative
values of N and p. We must distinguish between the behaviour near infinity of space (outer analysis), and near the holes (inner
analysis). We obtain that the outer analysis is given in all cases by certain self-similar solutions and the inner analysis is given by
quasi-stationary states. Logarithmic corrections to exact self-similarity appear in the critical case N = p, which is mathematically
more interesting. In this first paper we treat only the cases N > p and N = p, the case N < p will be considered in a companion
work.
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1. Introduction and description of results

In this work we study the asymptotic behaviour of the solutions of the parabolic p-Laplacian equation in an exterior
domain with Dirichlet boundary conditions. More precisely, let G ⊂ RN be a bounded open set with smooth boundary
(of class C2,α) and let Ω = RN \ G. We think of G as the “holes”. We assume moreover that Ω is connected, which
implies no essential loss of generality for our purposes. Thus, we consider the following problem:

⎧⎨
⎩

ut = �pu, (x, t) ∈ Ω × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

u(x,0) = u0(x), x ∈ Ω,

(1.1)
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where p > 2. On the initial data we make the assumptions that u0 ∈ L1(Ω) and it is nonnegative in Ω . For most
of the paper we also assume that u0 has compact support in Ω . This p-Laplacian equation and its variants have
been intensively studied in the last decades, on the one hand because it is a relevant example of nonlinear parabolic
equation of degenerate type which leads to a very interesting and highly nontrivial theory, like the well-posedness and
regularity questions described in DiBenedetto’s book [4]; on the other hand, because it is one of the basic models on
nonlinear diffusion appearing in applications that range from non-Newtonian fluids to image processing, see references
in Chapter 11 of [18]. As it is well known, the p-Laplacian equation has the property of finite propagation speed for
p > 2, hence for any time t > 0 the solutions with such initial data remain compactly supported in Ω and this
behaviour gives rise to a free boundary, which is the surface of separation between the region where u > 0 and the
region where u = 0.

We are interested in describing the influence of the holes of the domain on the large time behaviour of the solutions.
For a complete study of the asymptotic behaviour in an exterior domain, one has to perform two different steps in the
analysis, typical of the technique of matched asymptotics. First, the outer analysis gives the asymptotic rates and
profiles of the solutions in the far field near infinity. Afterwards, one has to perform the inner analysis of the problem,
which means studying what happens in the region near the holes (more precisely in bounded subdomains).

In this paper we will analyze the asymptotic behaviour of general solutions of the p-Laplacian equations only in
dimension N � p, the remaining case 1 � N < p being considered in a companion paper, [12], since it has special
features that take space to develop. As we will show, there exists a difference too between the cases N > p and the
limit case N = p, where the results and the techniques used in the proofs are more involved and mathematically more
interesting. No such division into ranges occurs for the p-Laplacian equation posed in the whole space or in a bounded
domain, beyond the basic requirement that p > 2 that implies finite propagation speed. Therefore, the present division
reflects the varying influence of the holes.

1.1. Preliminaries

In order to describe the asymptotic behaviour, we need to introduce some preliminary facts and results concerning
the parabolic p-Laplacian equation. A very important class of solutions of the p-Laplacian equation consists of the
so-called source-type solutions, which are very similar to the ZKB solutions of the porous medium equation. They
have the form

BC(x, t) = t−αFC(y), (1.2)

where y = xt−β and

FC(y) = (
C − k|y| p

p−1
) p−1

p−2
+ . (1.3)

The function FC is called the profile of the source-type solution, and the exponents α and β are the self-similarity
exponents. In our case they have the values

α = N

N(p − 2) + p
, β = 1

N(p − 2) + p
(1.4)

and the parameter k is also known, k = ((p − 2)/p)β
1

p−1 . The constant C is a free parameter, that gives the height of
the solution. We thus have a whole one-parameter family of solutions of the same type. We remark that the source-type
solutions we have introduced satisfy the conservation law∫

RN

BC(x, t) dx = constant

for all times. For convenience we call this integral the total mass of the solution, MC . This is justified when we think
of the equation as nonlinear diffusion of a substance with density u. It is also easy to see that the source-type solutions
have as initial trace a Dirac mass, which is MCδ(x). Moreover, the connection between the free parameter C and the
mass MC is given by

MC = dCγ , (1.5)
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where γ = (p−1)N
p(p−2)α

and

d = NωN

∞∫
0

(
1 − ky

p
p−1

) p−1
p−2
+ yN−1 dy.

For more details about the properties of the source-type solutions, the reader may consult the book [18]. On the other
hand, it is proved in [11] that there exist many other self-similar solutions of the form

U(x, t) = t−αF (ξ), ξ = xt−β (1.6)

having a compactly supported profile F .
Let us examine next some scaling invariance properties of the solutions of the p-Laplacian equation. Starting from

an arbitrary solution u of the p-Laplacian equation, we consider the family of scaled versions of u:

uλ(x, t) = λαu
(
λβx,λt

)
. (1.7)

Then, by a straightforward calculation, one can check that starting from a solution u of the p-Laplacian equation, we
produce an entire family of solutions of the same equation that are zoomed versions of the initial one. We remark that
all the self-similar solutions of the form (1.6) enjoy the nice property of being invariant to the scaling above.

We now introduce the weak formulation of the p-Laplace equation. Let QT = Ω × (0, T ].

Definition 1.1. A function u ∈ C((0, T ] : W 1,p

0 (Ω))∩L∞(QT ) is a weak solution of problem (1.1) on [0,T] if for any
test function Φ ∈ C2,1(QT ) with compact support in QT and Φ = 0 on ∂Ω × (0, T ], it satisfies the integral identity

∫
Ω

u(x, t)Φ(x, t) dx =
t∫

0

∫
Ω

(
u(x, s)Φs(x, s) − |∇u|p−2∇u(x, s) · ∇Φ(x, s)

)
dx ds +

∫
Ω

u0(x)Φ(x,0) dx (1.8)

for any t ∈ [0, T ]. We say that u is a weak solution of (1.1) on [0,∞) if there is a weak solution in the sense above on
[0, T ] for any T > 0.

The definitions of weak sub- and supersolution follow as usual, by replacing in Definition 1.1 the equality by
the corresponding inequalities � or � and considering only nonnegative test functions. We will also introduce the
local weak solutions, i.e. weak solutions referred only to the equation, without considering the initial and boundary
condition.

Definition 1.2. A function u ∈ C((0, T ] : W 1,p

0 (Ω)) ∩ L∞(QT ) is a local weak solution of problem (1.1) on [0, T ] if
for any test function Φ ∈ C2,1(QT ) with compact support in QT , it satisfies the integral identity

T∫
0

∫
Ω

(
u(x, t)Φt (x, t) − |∇u|p−2∇u(x, t) · ∇Φ(x, t)

)
dx dt = 0. (1.9)

The existence and uniqueness of solutions of the p-Laplacian equation has been widely investigated; a good ref-
erence is the book [4], where also the optimal regularity is studied. It can be showed that the nonnegative bounded
weak solutions of the p-Laplacian equation are such that u, |∇u| ∈ Cα(Q′) for some α > 0 and Q′ ⊂ Q, where
Q = Ω × (0,∞).

We will often use in the text the notation u(t) for the function u(t)(x) = u(x, t). We will denote by Pu the positivity
set of u and by Γ (t) = ∂Pu(t) \ ∂Ω the free boundary of u at time t .

1.2. Outline of results

We will describe in few words the main results of this work, in the two different cases N > p and N = p.

Case N > p. We prove by a scaling argument that the outer analysis is given by the profile of a particular source-type
solution, of the form (1.6) and with the exponents given by (1.4). We calculate the constant C0 that identifies the
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profile inside the family FC and prove that the rescaled function v(x, t) = tαu(x, t) converges to FC0 uniformly in
outer sets of the form |x| � δ. We point out that there seems to be no conservation law from which the asymptotic
constant C0 may be derived a priori

For the inner analysis, we make a different scaling and we prove that v(x, t) converges to a stationary state, which
is related to the unique solution of the following exterior Dirichlet problem:⎧⎨

⎩
�pH = 0 in Ω,

H = 0 on ∂Ω,

H → 1 uniformly as |x| → ∞,

(1.10)

by multiplying it by a constant C > 0. To find this constant we use the technique of matched asymptotics and this
will lead us also to a global formulation of the result. The study is performed in Section 2 and the main results are
Theorem 2.1 for the outer analysis and Theorem 2.2 for the inner analysis. The global formulation is expressed by
Theorem 2.3.

Case N = p. The analysis of this borderline case is more involved, and we use further techniques from dynamical
systems. This makes it mathematically more interesting. The asymptotic profile will be similar to the one of a source-
type solution, but we have to introduce a logarithmic correction in order to insure that the total mass disappears in the
end. We will get a profile of the form

U(x, t) = t−α

(
C(t) − k

( |x|
tβ

) p
p−1

) p−1
p−2

+
, (1.11)

where the dependence of the “free parameter” in time is given by

C(t) = C0(log t)
− p−2

(p−1)2 . (1.12)

Here the self-similarity exponents become

α = 1

p − 1
, β = 1

p(p − 1)
.

We deduce that in the critical case, the solution decays in time like C1(t log t)−1/(p−1) and its support expands like
|x| ∼ C2t

β(log t)−(p−2)/p(p−1). Using (1.5), this gives a mass variable in time with the law M(t) = C/log(t). We
prove that the outer asymptotic behaviour of general solutions is given by a profile of this type. The inner analysis
is relatively similar to that of the preceding case and uses also the general idea of matched asymptotics. The study
is performed in Section 3 and the main results are Theorem 3.1 for the outer analysis and Theorem 3.2 for the inner
analysis. The global formulation is expressed by Theorem 3.3.

1.3. Precedents

A complete study of the asymptotic behaviour of the p-Laplacian equation posed in the whole space was done by
Kamin and Vázquez in [15]. There are a number of works on the problem of evolution in a domain with holes when
the equation is the linear heat equation or the porous medium equation. In the case of the linear heat equation the
analysis is made easier by the possibility of using integral representation of the solutions, cf. Ishige [13] and [14].
In the case of the porous medium equation, the asymptotic behaviour in the whole space is well known cf. [16,20],
while the asymptotic behaviour for the Dirichlet problem with zero boundary condition in domains with holes was
treated by Brandle at al. [2] and by Gilding and Gonzerkiewicz in [9] and [10]. In comparison with these works, the
absence of a conservation law makes the asymptotic analysis in the p-Laplacian case more involved. On the other
hand, Quirós and Vazquez [17] had treated the case of non-homogeneous boundary conditions and showed that the
asymptotical results are quite different.

2. Case of large dimensions, N > p

The analysis is divided into outer and inner analysis. The former follows the outline of the proof of paper [2] for
the porous medium equation, hence we will be rather sketchy. We will devote more effort to the inner analysis and the
critical case N = p.
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2.1. Sub- and supersolutions. Outer analysis

In this subsection we describe some appropriate sub- and supersolution that will have the same decay in time as
the general solution. The construction is based on the source-type solutions presented above, but with some necessary
changes.

2.1.1. Supersolutions
As supersolutions, we will consider the Barenblatt functions BC already defined, with a certain delay in time,

UC,τ (x, t) = BC(x, t + τ), τ > 0. It is well known that they are weak solutions of the p-Laplace equation and they
become supersolutions for the problem (1.1), since they are positive on the boundary of the hole ∂G. Moreover, by
well-known comparison arguments, for any compactly supported solution u of the p-Laplacian equation, there exist
constants C,τ > 0 such that u(x, t) � BC(x, t + τ) at any time. We recall that the parameter C > 0 is related to the
constant mass MC of the Barenblatt function by

C = c(p,N)M
p(p−2)

p−1 β
.

2.1.2. Subsolutions
Defining subsolutions is more involved, and we will follow a general idea of construction that has been used in

the paper [2] for the porous medium equation. We remark that the Barenblatt functions, although they have a good
behaviour at infinity, cannot be used as subsolutions of the boundary value problem, since they are positive on ∂G.
The idea we follow is to consider another local subsolution, which is good near the hole, and then to combine them.
A good starting point is to consider a function with separated variables, whose x-part is the fundamental solution of
the p-Laplace operator, and the part in t has the expected decay. We define:

U(x, t) = Ct−α

(
1 −

(
R

|x|
)N−p

p−1
)

+
. (2.1)

By choosing R such that G ⊂ B(0,R), we get the desired behaviour of H near ∂G. To combine these functions, we
assume a delay in time τ > 0 in order to avoid problems at t = 0 and we change H in order to be dominated by the
Barenblatt function far from the hole. We set:

Uτ (x, t) = C(t)(t + τ)−α

(
1 −

(
R

|x|
)N−p

p−1 − a
(|x| − r)4+
(t + τ)l

)
+
, (2.2)

BC0,τ (x, t) = (t + τ)−α

(
C0 − k

( |x|
(t + τ)β

) p
p−1

) p−1
p−2

+
, (2.3)

where R, r , a, C0 and l are positive parameters, which are free for the moment. We observe that both subsolutions
have free boundaries and we denote by R1(t) and R2(t) the radii of their free boundaries. We choose C(t) = K(1 +
(t + τ)−σ ), where σ > 0. We remark that

maxBC0,τ = C
(p−1)/(p−2)

0 (t + τ)−α, ∀t > 0,

and obviously

maxUτ � K
(
1 + (t + τ)−σ

)
(t + τ)−α

(
1 −

(
R

r

)(N−p)/(p−1))
.

We choose r > R and we can insure that maxBC0,τ � maxUτ at |x| = r by choosing K sufficiently large. In this way
the two subsolutions will intersect each other in a point r∗(t) depending on time and after that intersection we insure
that the Barenblatt subsolution dominates and r∗(t) � R1(t). Now we can finally define our family of subsolutions:

VC0,τ (x, t) =
⎧⎨
⎩

0, if |x| < R or |x| > R2(t),

Uτ (x, t) if R � |x| � r∗(t),
B if r∗(t) � |x| � R (t).

(2.4)
C0,τ 2
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It is easy to check that VC0,τ is a subsolution for sufficiently large times t > t0 > 0, provided 0 < σ < l − 1. The next
technical result, whose proof follows exactly the same lines as the proof of Lemma 3.1 in [2], shows that this rather
complicated construction is good for our purposes.

Proposition 2.1. For any solution u(x, t) of (1.1), there exists a choice of the parameters C0, τ , a, R, r and a time
t0 > 0 such that for any time t > t0 and x ∈ Ω we have VC0,τ (x, t) � u(x, t).

With these constructions, we can pass to the study of the outer analysis.

Theorem 2.1. For N > p, if u is a weak solution of the problem (1.1), there exists a constant C0 > 0 such that

lim
t→∞ tα

∣∣u(x, t) − BC0(x, t)
∣∣ = 0 (2.5)

uniformly far from the hole, i.e. on sets of the form {|x| � δtβ}, where δ > 0 is sufficiently small.

Proof. We follow the general program proposed by one of the authors in [19] for studying the asymptotic behaviour
of the nonlinear diffusion problems. This program has four different steps: in the first step we consider the family
of rescaled solutions uλ and we obtain compactness estimate for it. As a consequence, there exists a limit point u∞
of uλ. In the second step we prove that any limit point is a Barenblatt function. In the third step we prove that the
convergence along subsequences is uniform on compact sets.

The proof of the first three steps is very similar to that of Theorem 2.1 in [2]. Let us remark only here that, since
the hole shrinks to the point x = 0 after rescaling and passing to the limit λ → ∞, a possible bounded singularity may
develop at x = 0 for the limit solution, but when N > p this singularity is removable, which allows us to work as in
the whole space. This fact makes also an important difference between the cases N > p and N � p, where the hole,
even reduced to only one point, has its influence. We dare ask the reader to verify these assertions by consulting the
calculations of [2].

Summing up, we obtain from the compactness estimates that the sequence of rescaled versions of u converges
along a sequence of times tk → ∞ to a weak solution U of the p-Laplace equation, defined in RN × (0,∞), which
lies between two Barenblatt functions with zero delay. This means that the initial trace has to be a nonnegative measure
supported at x = 0, hence a multiple of the Dirac delta. By the uniqueness theorem of [15], U equals BC0(x, t) for
some C0 > 0.

We still have to prove the independence of the limit w.r.t. the subsequence of times. Since the conservation law
used in [2] does not hold in our case, we will prove differently this last step. From the previous steps, we already have
that u(x, tk) ∼ BC0(x, tk) as k → ∞ on some subsequence of time. Suppose that there exists two subsequences tk,1
and tk,2 such that

lim
k→∞ tαk,1

∣∣u(x, tk,1) − BC1(x, tk,1)
∣∣ = 0 (2.6)

and

lim
k→∞ tαk,2

∣∣u(x, tk,2) − BC2(x, tk,2)
∣∣ = 0 (2.7)

uniformly on sets of type {x ∈ Ω: |x| � δt
β

k,1}, resp. {x ∈ Ω: |x| � δt
β

k,2}, δ > 0, where C1, C2 are positive constants.
Let M(t) = ∫

Ω
u(x, t) dx be the mass at time t . It is well known that, since we have homogeneous Dirichlet

boundary conditions, the mass is decreasing in time. Hence, there exists M = limt→∞ M(t). The explicit lower bound
(subsolution) implies that this asymptotic mass M > 0. With this information we can identify the limit U . Indeed, we
pass to the limit in the relations (2.6) and (2.7), but in the renormalized variable y = xtβ . In this variable, these two
relations are written as∣∣utk,1(y,1) − BC1(y,1)

∣∣ → 0,
∣∣utk,2(y,1) − BC2(y,1)

∣∣ → 0, (2.8)

with pointwise convergence in RN and uniform convergence in sets of the form {|y| � δ} with δ > 0 small. By
integrating in y in (2.8) and using the dominated convergence theorem, we obtain that the mass of the Barenblatt
solutions BC1(·,1) and BC2(·,1) is the same, i.e. M = MC1 = MC2 . This implies C1 = C2, hence we have a unique
limit independent on the subsequence. �
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We remark that this argument does not allow for a quantitative estimates concerning the mass lost in the evolution.
We only obtain the correct decay in time and the profile.

2.2. An elliptic a priori bound

In this part, we present an a priori bound for the solutions of the inhomogeneous Dirichlet problem for the
p-Laplace operator. This result will be useful in the study of the inner behaviour of the general solutions of the
evolution equation.

Lemma 2.1. Let Ω ⊂ RN be a bounded domain, f ∈ C(Ω) ∩ L∞(Ω) and u ∈ C1(Ω) ∩ C(Ω) be the solution of the
Dirichlet problem:{

�pu = f in Ω,

u = 0 on ∂Ω.
(2.9)

Then there exists a constant C > 0, independent on the diameter of Ω , such that

|u| � Cd
p

p−1

(
sup
Ω

|f |
) 1

p−1
in Ω, (2.10)

where d = diam(Ω).

Proof. Suppose for example that Ω lie in the slab 0 < x1 < d , otherwise we arrive to this situation by a translation
and a rotation. We rescale in order to pass to a domain with diameter one, by setting

û(y) = u(dy), y ∈ Ω1, (2.11)

where Ω1 = 1
d
Ω , hence obviously diam(Ω1) = 1 and Ω1 lies in the slab 0 < x1 < 1. The Dirichlet problem for u

transforms into{
�pû = dpf in Ω1,

û = 0 on ∂Ω1.
(2.12)

Denote by f̂ = dpf . We will obtain in what follows an a priori bound for the problem (2.12). In order to prove this
estimate, we use the following comparison principle which is a consequence of a Picone-type inequality and can be
found in detail in [1] (see also [3]):

Lemma 2.2. Let g be a nonnegative continuous function such that g(u)/up−1 is a decreasing function. If u, v ∈
C1(Ω) ∩ C(Ω) are such that{−�pv � g(v), v > 0 in Ω, v � 0 on ∂Ω,

−�pu � g(u), u � 0 in Ω, u = 0 on ∂Ω,
(2.13)

then u � v in Ω .

We apply the previous lemma for our function û and the function v defined by

v(x) = (
eK − eKx1

)(
sup
Ω1

|f̂ |
) 1

p−1
.

We remark that v satisfies the assumptions of the lemma, and that

−�pv = KpeK(p−1)x1 sup
Ω1

|f̂ |.

On the other hand, we have −�pû = −f̂ � supΩ1
|f̂ |, hence we take the constant supΩ1

|f̂ | as the function g in
Lemma 2.2. Since û does not satisfy the nonnegativity assumption, we define

Ω1,+ = {
x ∈ Ω1: û(x) > 0

}
, Ω1,− = {

x ∈ Ω1: û(x) < 0
}
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and we apply Lemma 2.2 twice, for û+ = max{û,0} in Ω1,+, and for û− = −min{0, û} in Ω1,−. Here the conditions
of the lemma are all satisfied and it is enough to choose the number K in the definition of v such that KpeK(p−1)x1 > 2,
for all x ∈ Ω1. From Lemma 2.2 we obtain the estimate

|û| � C
(

sup
Ω1

|f̂ |
) 1

p−1

in Ω1. Rephrasing this result, we obtain (2.10), with a constant C independent of the diameter, as stated. �
Remark. For p = 2, we obtain an improvement of the result for the Poisson equation, presented as Theorem 3.7 in
the book [8].

We are ready to prove the result that is needed in the sequel.

Proposition 2.2. If u ∈ C1(Ω) ∩ C(Ω) satisfies{ |�pu| � ε in Ω,

|u| � ε on ∂Ω,
(2.14)

then |u| � Cdp/(p−1)ε1/(p−1) + ε in Ω , where d is the diameter of Ω and C > 0 is a constant independent on the
diameter of Ω .

Proof. We rescale as before and, using the same notations, we choose in the proof of Lemma 2.1 the function v =
v0 + sup∂Ω1

|û|, where v0(x) = (eK − eKx1)(supΩ1
|f̂ |) 1

p−1 . After rephrasing, we obtain the general a priori bound

|u| � Cd
p

p−1

(
sup
Ω

|f |
) 1

p−1 + sup
∂Ω

|u|. (2.15)

where C > 0 does not depend on d . Using this estimate, the corollary follows easily. �
2.3. Inner analysis

In this section we will study the asymptotic behaviour of the solutions of the p-Laplacian equation near the holes.
We start with some formal calculations in order to guess the correct asymptotic behaviour. Set v = tαu. Then, the
function v satisfies the equation

�pv = t−pβ(tvt − αv). (2.16)

If we suppose for the moment that the terms in the right-hand side converge to 0 as t → ∞, then the limit of v is
expected to be a solution of the following problem:{

�pv = 0 in Ω,

v = 0 on ∂Ω.
(2.17)

Let Φp be the solution of the stationary problem:⎧⎨
⎩

�pΦp = 0 in Ω,

Φp = 1 in ∂Ω,

Φp → 0 as |x| → ∞ uniformly,

(2.18)

and set Hp = 1 − Φp . The existence and uniqueness of Φp can be easily established, since in a radial domain we
have the explicit expression, and for a general exterior domain it can be proved by approximation with an expanding
sequence of bounded domains and comparison with radial sub- and supersolutions. Moreover, all the solutions of the
problem (2.17) are of the form CHp for some constant C.

In order to find the correct constant C we will use the idea of matched asymptotics, taking into account the result
that we have for the outer behaviour. The general principle of this technique is that the outer limit of the inner
expansion should coincide with the inner limit of the outer expansion. Since

lim
∣∣tαu(x, t) − tαBC0(x, t)

∣∣ = 0, ∀x ∈ Ω,

t→∞
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and

lim
t→∞

∣∣tαu(x, t) − CHp(x)
∣∣ = 0 ∀x ∈ Ω,

and the convergence in both cases is uniform on compact sets, it formally follows that the unique possibility is
C = C

(p−1)/(p−2)

0 .

In what follows we prove rigourously that the inner behaviour is given by the stationary state C
(p−1)/(p−2)

0 Hp(x),
where C0 is the constant giving the outer behaviour of the solution u. For this, we first change the scale of time, by
setting τ = log t and w(x, τ) = v(x, t) = eατ u(x, eτ ). Consider the time averages:

WT (x, τ ) = 1

T

τ+T∫
τ

w(x, s) ds.

Proposition 2.3. For any ε > 0 and T > 0, there exists a constant δ = δ(ε, T ) > 0 and a large time τin = τin(ε, δ, T )

such that for any τ � τin we have

∣∣WT (x, τ ) − C

p−1
p−2
0 Hp(x)

∣∣ � ε, (2.19)

for all x with |x| � δeβτ .

Proof. From the outer limit result, we deduce that for any δ > 0 and ε > 0, there exists a time τ0 = τ0(δ, ε) such that

FC0(δ) − ε � w(x, τ) � FC0(δ) + ε, (2.20)

for all τ � τ0 and |x| = R(τ), where R(τ) = δeτβ . Recall the notation FC from (1.3).
Set Ωτ = Ω ∩ B(0,R(τ)) and g = w|∂B(0,R(τ)). Replacing the change of variable τ = log t in (2.16), one obtains:

�pw(x, τ) = e−τpβ(wτ − αw). (2.21)

We also remark that the solution w(x, τ) of (2.21) is positive for τ � τ0 sufficiently large, hence it is in C1,α(Ωτ )

at any time τ � τ0. This regularity allows us to make all the calculations above in a rigourous manner and to use
Proposition 2.2.

The key idea is to consider the function

Φ(x, τ) = 1

T

τ+T∫
τ

w(x, s) ds − C

p−1
p−2
0 Hp(x) (2.22)

and to derive estimates on Φ in order to arrive to the conditions of Proposition 2.2. For the beginning we remark that,
in weak sense, it holds:⎧⎨

⎩
�pΦ = 1

T

∫ τ+T

τ
e−spβ(ws − αw)ds in Ωτ ,

Φ = 0 on ∂Ω ∩ ∂Ωτ ,

Φ = h on ∂Ωτ ∩ ∂B(0,R(τ)),

(2.23)

where we regard τ as a frozen coefficient for the moment and we use (2.21). Here

h(x, τ ) = 1

T

τ+T∫
τ

g(x, s) ds − C

p−1
p−2
0 Hp(x),

for |x| = R(τ). It follows that FC0(δ) − ε � 1
T

∫ τ+T

τ
g(x, s) ds � FC0(δ) + ε or, equivalently,

FC0(δ) − C

p−1
p−2
0 Hp(x) − ε � h(x, τ ) � FC0(δ) − C

p−1
p−2
0 Hp(x) + ε,

hence |h(x, τ )| � |FC0(δ) − C
(p−1)/(p−2)

0 Hp(x)| + ε, for all x with |x| = R(τ). We use next the following estimate:

∣∣FC0(δ) − C

p−1
p−2

Hp(x)
∣∣ �

∣∣(C0 − kδp/(p−1)
) p−1

p−2
+ − C

p−1
p−2

∣∣ + ∣∣C p−1
p−2 − C

p−1
p−2

Hp(x)
∣∣. (2.24)
0 0 0 0
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Since Hp(x) → 1 uniformly as |x| → ∞, for any ε > 0 and δ > 0 one can choose τin = τin(ε, δ, T ) sufficiently large

such that |C
p−1
p−2
0 (1 − Hp(x))| � ε

2 for all x with |x| = δeβτ . On the other hand, there exists δ = δ(ε, T ) > 0 such

that |(C0 − kδp/(p−1))(p−1)/(p−2) − C
(p−1)/(p−2)

0 | � ε
2 . From these it follows that |h(x, τ )| � 2ε, for all x such that

|x| = δeβτ . Consequently, we obtain the estimate on the boundary:∣∣Φ(x, τ)
∣∣ � 2ε, ∀x ∈ ∂Ωτ . (2.25)

We remark from the previous estimates that the dependence of δ on ε satisfies limε→0 δ(ε) = 0. Hence, by enlarging
τin we can obtain δ as small as we want.

Next we want to estimate |�pΦ| in Ωτ . We start by an integration by parts:

1

T

τ+T∫
τ

e−spβws ds = 1

T
e−(τ+T )pβw(x, τ + T ) − 1

T
e−τpβw(x, τ ) + 1

T

τ+T∫
τ

pβe−spβw ds.

It follows that

�pΦ(x, τ) = 1

T
e−τpβ

(
e−Tpβw(x,T + τ) − w(x, τ)

) + 1

T
(p − N)β

τ+T∫
τ

e−spβw ds

� 1

T
e−τpβ

(
e−Tpβw(x,T + τ) − w(x, τ)

)
, (2.26)

since N > p. Using the uniform boundedness of w on ∂Ωτ with bounds which are independent of time, and Eq. (2.21)
satisfied by w, we deduce that w is uniformly bounded in Ωτ . This implies

�pΦ(x, τ) � e−τpβC (2.27)

for all τ � τin sufficiently large and x ∈ Ωτ , where C > 0 is a constant independent on τ . On the other hand, we
need an estimate from below, which in view of the last inequalities, will follow from an estimate of the integral term
Ψ (x, τ) = 1

T
(p − N)β

∫ τ+T

τ
e−spβw ds. But this estimate follows easily since w � 0 and w is uniformly bounded

near the hole. Enlarging C, we finally obtain:∣∣�p(Φ)
∣∣ � e−τpβC (2.28)

in Ωτ . From (2.28), (2.25) and Proposition 2.2, we obtain that∣∣Φ(x, τ)
∣∣ � Cδp/(p−1)C1/(p−1) + 2ε, ∀x ∈ Ωτ , (2.29)

where C > 0 is a constant which does not depend on τ . Hence, by choosing δ small, for τ � τin very large, we obtain
the estimate (2.19). �

We now have to pass from the convergence of the time averages to the convergence of the functions w to the
stationary state. The following theorem completes the result:

Theorem 2.2. For any ε > 0, there exists δ = δ(ε) > 0 and a sufficiently large time tin = tin(ε, δ) such that

∣∣tαu(x, t) − C

p−1
p−2
0 Hp(x)

∣∣ � ε, (2.30)

for all t � tin and for all x ∈ Ω with |x| � δtβ .

Proof. We argue by contradiction and suppose that there exists (xn, τn)n (using the previous notations) enjoying the
properties:

τn → ∞,
|xn|
δeβτn

→ 0, w(xn, τn) � C

p−1
p−2
0 Hp(xn) + ε.

Using the essential fact that wτ � −Cw for some positive C, proved in [5], and integrating, we obtain

w(xn, τn + h) � w(xn, τn)e
−Ch �

(
C

p−1
p−2

Hp(xn) + ε
)
e−Ch.
0
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Integrating in h in the previous inequality and performing the same calculations as in [2], we arrive to the inequality

WT (xn, τn) �
(
C

p−1
p−2
0 Hp(xn) + ε

)1 − e−CT

CT
� C

p−1
p−2
0 Hp(xn) + ε

2
,

for T sufficiently small. This is a contradiction with Proposition 2.3. �
2.4. Global formulation

In this paragraph we gather the results of Theorems 2.1 and 2.2 in a global approximation result. The global
approximant should be such that the Barenblatt solution dominates near infinity.

Theorem 2.3. Let u be the solution of problem (1.1) and let

U(x, t) = (
BC0(x, t) − t−αC

p−1
p−2
0

(
1 − Hp(x)

))
+, (2.31)

where C0 is the constant that appears in the previous sections. Then,

lim
t→∞ tα

∣∣u(x, t) − U(x, t)
∣∣ = 0 (2.32)

uniformly for x ∈ Ω . Moreover, we have:

lim
t→∞

∥∥u(x, t) − U(x, t)
∥∥

L1(Ω)
= 0. (2.33)

Both (2.32) and (2.33) can be extended to the whole class of solutions with initial data u0 ∈ L1(Ω).

Proof. (i) We work first with compactly supported data. Using the obvious inequality:

tα
∣∣u(x, t) − U(x, t)

∣∣ �
∣∣tαu(x, t) − C

p−1
p−2
0 Hp(x)

∣∣ + ∣∣C p−1
p−2
0 − tαBC0(x, t)

∣∣
and Theorem 2.2, we obtain the desired uniform convergence in sets of the form {|x| � δtβ}. On the other hand, we
can write similarly:

tα
∣∣u(x, t) − U(x, t)

∣∣ � tα
∣∣u(x, t) − BC0(x, t)

∣∣ + ∣∣C p−1
p−2
0

(
1 − Hp(x)

)∣∣.
Using Theorem 2.1 and the uniform convergence of Hp to 1 at infinity, we obtain the uniform convergence in the
complementary sets, {|x| � δtβ}.

We remark that there is a constant C > 0 such that u(x, t) = 0 for all x ∈ Ω with |x| � Ctβ because it is bounded
above by a Barenblatt solution. The same happens to U of course. The convergence in L1 follows easily by integration
on the set {x ∈ Ω: |x| � Ctβ}.

(ii) Let us consider next initial data in L1. In order to obtain the uniform convergence result, we perform an
analysis by approximation from below following the ideas in [20]. Consider a compactly supported approximation ũ0
of u0, such that ‖u0 − ũ0‖L1(Ω) � ε, ε > 0, sufficiently small. Fix a radius r larger than the radius of the support of
BC0(x,1). For 1/2 < t < 1, the solution ũλ converges uniformly to BC0(x, t) for |x| � r . Using the L1–L∞ smoothing
effect described in Chapter 11 of [18], we deduce that uλ converges uniformly to BC0 in the region |x| � r and for
1/2 < t < 1. In the outer region, the mass of uλ is very small. The proof ends by applying to the function uλ in the set
|x| � r the same L1–L∞ smoothing effect and deducing that ‖uλ‖∞ is as small as we want at later times in the outer
region. �
Remark. We have:

tα
∣∣BC0(x, t) − t−αC

p−1
p−2
0 Hp(x)

∣∣ �
∣∣tαBC0(x, t) − C

p−1
p−2
0

∣∣ + ∣∣C p−1
p−2
0

(
1 − Hp(x)

)∣∣ � ε

for δ = δ(ε) > 0 small and 1/δ � |x| � δtβ with t sufficiently large. It appears in this way an overlapping region.
Indeed, in the region of Ω where 1/δ � |x| � δtβ for t � tin > 0, the outer and the inner behaviour hold at the same
time.
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We end this section with a consequence of the previous analysis concerning the evolution of the supports for
compactly supported solutions. We introduce the following notations

r+(t) = max
x∈Γ (t)

|x|, r−(t) = min
x∈Γ (t)

|x|, R(t) = C∗tβ, (2.34)

where C∗ = (C0/k)(p−1)/p . Here Γ (t) is the free boundary of u at time t and R(t) is the free boundary of the
Barenblatt profile BC0 at time t .

Corollary. In the conditions of Theorem 2.3, we have

lim
t→∞

r±(t)

R(t)
= 1.

Proof. The proof is very similar to that of Corollary 4.3 in [2] and we present it briefly. The lower part of the estimate
follows easily from the uniform convergence in the renormalized variable y in sets of the form |y| � δ > 0 and the
uniform positivity of the Barenblatt profile FC0 in sets of the form |y| � C∗ − ε, for all ε > 0. We obtain the estimate
r−(t)/R(t) � (1 − ε) for t > t (ε) sufficiently large.

For the assertion about r+, we use the mass analysis. Since the limit mass of u is MC0 , for any ε > 0, there exists
t0 > 0 such that M(t) < MC0+ε , for all t > t0. We compare u with the solution ū of the p-Laplacian equation posed
in the whole space, with initial data

ū(x, t0) =
{

u(x, t0), x ∈ Ω,

0, x ∈ G.

We obtain that r+(t) � r̄+(t). Using the asymptotic behaviour in the whole space [15], we derive that r+(t)/R(t) �
1 + ε, for all t > tε sufficiently large. The proof ends with the trivial inequality r−(t) � r+(t) and the estimate of
r−(t)/R(t) already proved. �
3. Critical case N = p

The case N = p provides an important difference with the previous case in the general theory of the p-Laplacian,
since the fundamental solution of the equation is C|x|−(N−p)/(p−1) for N > p and log |x| for N = p. In this way, the
dimension N = p corresponds to the case N = 2 for the usual Laplacian. On the other hand, the hole starts to play an
important role. Indeed, by performing the rescaling as before, we arrive at a solution with a singularity at x = 0, but
this singularity is no more removable. In the proofs, we will suppose that p is an integer and the problem has physical
sense. In radial variables any dimension makes sense theoretically, but the proofs are perfectly similar, since all the
profiles that we use for comparison are radial.

3.1. Formal derivation of the logarithmic correction

In this part we follow an idea of [10] based on some formal calculations using a weighted integral. The rigourous
proof will be different, but this calculation helps us to conjecture the correct asymptotic profile. For this calculation,
we need to pass to the radial variables and consider the problem (in any dimension N � p):⎧⎪⎨

⎪⎩
ut = (p − 1)|ur |p−2r

1−N
p−1 ∂

∂r
(r

N−1
p−1 ur), if (r, t) ∈ (1,∞) × [0,∞),

u(1, t) = 0, ∀t > 0,

u(r,0) = u0(r), ∀r ∈ (0,∞),

(3.1)

where u0 is compactly supported and bounded. Similarly to the usual convolution with the Green kernel, we define
the following weighted integral for the Barenblatt solutions of (3.1):

Z : [1,∞) × (0,∞) → R, Z(r, t) =
∞∫
r

k(x, r)BC(x, t) dx (3.2)

where the kernel k is given by the fundamental solution:
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k(x, r) =
{

xp−1rp−N(xN−p − rN−p)/(N − p), if N > p,

x log(x/r), if N = p.
(3.3)

Our goal in this subsection is to calculate the behaviour when t → ∞ of Z(r, t) and to remark what are the differences
that appears when passing from N > p to N = p. We first calculate it for N > p. We have:

Z(r, t) = 1

N − p

∞∫
r

xp−1rp−N
(
xN−p − rN−p

)
t−α

(
C − k(x/tβ)

p
p−1

) p−1
p−2
+ dx

= 1

N − p

∞∫

r/tβ

(
yN−1rp−N − yp−1tpβ−α

)(
C − ky

p
p−1

) p−1
p−2
+ dy.

Since α = Nβ and N > p, it follows that pβ − α < 0, hence

lim
t→∞Z(r, t) = rp−N

N − p

∞∫
0

yN−1(C − ky
p

p−1
) p−1

p−2
+ dy < ∞.

This follows from the fact that the asymptotic profile is the Barenblatt and the weighted integral should have a finite
limit as t → ∞, obtained by cancelling the time from the independent integral in y. This also should pass in the case
N = p if we want to obtain the correct profile. Let us pass to the case N = p and calculate the same integral:

Z(r, t) =
∞∫
r

xp−1 log
x

r
t−α

(
C − k

(
x/tβ

) p
p−1

) p−1
p−2
+ dx

=
∞∫

r/tβ

yp−1t (p−1)β t−α log
ytβ

r

(
C − ky

p
p−1

) p−1
p−2
+ tβ dy

=
∞∫

r/tβ

yp−1 log
ytβ

r

(
C − ky

p
p−1

) p−1
p−2
+ dy.

We remark that limt→∞ Z(r, t) = ∞, for any r > 1, with logarithmic rate. For the divergence we introduce in the
calculation a correction of logarithmic type, in order to compensate and obtain a finite limit. It is convenient to insert
this correction into the form of the Barenblatt solution. Let us consider

BC(x, t) = t−α

(
C(log t)γ − k

(
x

tβ

) p
p−1

) p−1
p−2

+
.

Analyzing the previous calculation of Z(r, t), in order to compensate, we need to set γ = − p−2
(p−1)2 . In order to avoid

the problems with the singularity of the logarithmic part, we will permit a delay in time T > 0. Hence, we conjecture
that the outer asymptotic behaviour of solutions in the case N = p is given by a function from the family:

UT (x, t;C) = (t + T )−α

(
C

(
log(t + T )

)− p−2
(p−1)2 − k

( |x|
(t + T )β

) p
p−1

) p−1
p−2

+

= [
(t + T ) log(t + T )

]− 1
p−1

(
C − k

( |x|
(t + T )β

) p
p−1

log(t + T )
p−2

(p−1)2

) p−1
p−2

+
, (3.4)

where in this case

α = 1

p − 1
, β = 1

p(p − 1)
, k = p − 2

p

(
1

p(p − 1)

) 1
p−1

,

see [18]. In the following sections we will prove this claim.
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A convenient way of visualizing the corrected asymptotic behaviour is in terms of the mass. In our case

M(t) =
∫
Ω

UT (x, t;C)dx = C

log t
. (3.5)

In fact, we see that the logarithmic correction we introduce is exactly the inverse of the number γ which connects the
“free parameter” of a general Barenblatt solution and its mass, see (1.5). A similar expression of mass decay happens
in other critical cases, see [7] and [10]. Contrary to the latter case, here we do not have an exact conservation law to
obtain the precise decay and the constant. Hence, we have to use a different technique.

3.2. Subsolutions

The construction of subsolutions of (1.1) is technical and follows the same idea as in the first section. Our profiles
UT are indeed subsolutions of the equation, but not for the boundary-value problem (1.1), since they do not vanish on
the boundary of the hole. We have to combine these profiles with other profiles that are compactly supported, vanish
on the boundary of Ω and dominate near the hole. We consider the family of profiles

HT (x, t) = A(t + T )
(
(T + t) log(T + t)

)− 1
p−1

(
log

(|x| − r0
) − a(|x| − r1)+

(T + t)l

)
+
, (3.6)

where A(t + T ) = K(1 + (t + T )−σ ) and the parameters a, r0, r1, K , l and σ are free to choose.
The idea is to intersect UT and HT with the correct angle, i.e. such that the profile UT dominates far from the hole.

We ask that maxUT � maxHT . But

maxUT �
(
(T + t) log(T + t)

)− 1
p−1 C

p−1
p−2

and

maxHT � HT (r1) = (
(T + t) log(T + t)

)− 1
p−1 K

(
1 + (t + T )−σ

)
log(r1 − r0),

hence it is enough to choose K such that K log(r1 − r0) = 2C(p−1)/(p−2) and r1 > r0.
Denote by R1(t) the radius of the interface of HT and by R2(t) the radius of the interface of UT . Then R1(t) is the

unique solution of the equation

a(r − r1) = (T + t)l log(r − r0) (3.7)

with r > r1 and

R2(t) =
(

C

k

) p−1
p

(t + T )β log(t + T )
− p−2

p(p−1) . (3.8)

We choose C and T such that R2(t) > R1(t), for all t > 0. Then there exists r∗(t) such that 1 < r∗(t) < R1(t) < R2(t),
for all t > 0, such that HT and UT intersect at a distance r∗(t). We define

VT (x, t;C) =
⎧⎨
⎩

0 if |x| < 1 + r0 or |x| > R2(t),

HT (x, t) if 1 + r0 � |x| � r∗(t),
UT (x, t;C) if r∗(t) � |x| � R2(t).

(3.9)

It follows by direct calculation, taking into account that �p log |x| = 0, that VT (x, t;C) is indeed a subsolution. The
next technical result shows that these subsolutions are good.

Proposition 3.1. For any solution u of (1.1), there exists a time t0 > 0 large and a choice of the parameters C, T , a,
r0, r1, l such that VT (x, t;C) � u(x, t), for all x ∈ Ω and t � t0.

Proof. Step 1: Show that there exists a time t0 > 0 and a choice of the parameters such that VT (x, t0;C) � u(x, t0),
∀x ∈ Ω .

Take t0 > 0 such that Int(suppu(·, t0)) is large enough (by well-known results, it enlarges as time passes). Choose
r0, r1 such that the annulus Wr0,r1(0) ⊂ Int(suppu(·, t0)). Then choose the constant C measuring the height of
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the subsolution VT such that VT lies below u at time t0. To choose the delay T , we ask that suppVT (·, t0;C) =
Wr0+1,R2(t0)(0) ⊂ suppu(·, t0). Choose R2(t0) and r1 such that r1 < R2(t0) = ξ+(t0)−ε < ξ+(t0) and r1 < ξ+(t0)−2ε,
where ξ+(t0) = sup{r > 0: B(0, r) ⊂ suppu(·, t0)}. From this choice, we find T as the solution of the equation

(
C

k

) p−1
p

(T + t0)
1

p(p−1) log(T + t0)
− p−2

p(p−1) = ξ+(t0) − ε. (3.10)

In order to have a unique solution of (3.10), we have to increase again the time t0 such that log t0 � (p − 2). Then the
function h(T ) = (T + t0) log(T + t0)

2−p is increasing and the uniqueness of the solution is obvious. The choice of a

comes from the condition R1(t0) < R2(t0).
Step 2: For any t � t0, VT (x, t;C) � u(x, t) for all x ∈ Ω . To do this, we use well-known arguments of comparison,

starting from t = t0 as initial time. Since the subsolution and the solution are separate, the only thing that we have
to prove is that the above construction can be done, i.e. R1(t) < R2(t), for all t > t0. We use the standard procedure:
let g(t) = R2(t) − R1(t). Then g(t0) > 0 and suppose there exists a first time t1 > t0 such that g(t1) = 0. Then
R2(t1) = R1(t1) and g′(t1) � 0.

On the other hand, g′(t1) = R′
2(t1) − R′

1(t1). By differentiating in (3.8), we obtain

R′
2(t1) = β

t1 + T

log(t1 + T ) − (p − 2)

log(t1 + T )
R2(t1).

To obtain R′
1(t1), we differentiate in Eq. (3.7) and from a straightforward calculation and taking into account that

R1(t1) = R2(t1), we have:

g′(t1) = 1

t1 + T

(
βR2(t1)

log(t1 + T ) − (p − 2)

log(t1 + T )
− la(R2(t1) − r1)(R2(t1) − r0)

a(R2(t1) − r1) − (t1 + T )l

)

= 1

(t1 + T )[a(R2(t1) − r1) − (t1 + T )l]
[
a

(
β

log(t1 + T ) − (p − 2)

log(t1 + T )
− l

)
R2(t1)

2

+
(

(t1 + T )l + la(r1 + r0) − aβr1
log(t1 + T ) − (p − 2)

log(t1 + T )

)
R2(t1) − r1r0la

]
.

By enlarging the initial time t0 (hence at the same time t1) and choosing l < β , we obtain that g′(t1) > 0, in contra-
diction with the assumptions on t1. Hence R1(t) < R2(t), for all t > t0. �
3.3. Continuous rescaling and supersolutions

In this section we will prove that indeed the functions UT (x, t;C) obtained formally are the correct asymptotic
profiles of the general nonnegative solutions of the p-Laplacian equation in dimension N = p. The main difficulty is
that the profile UT (x, t;C) is not a self-similar solution of the equation, but a subsolution, hence we cannot use the
classical comparison techniques that hold only for solutions.

Justified by the previous comments, we replace the comparison technique by the technique of continuous rescaling,
see [6] or [20]. We set:

η = x(t + T )−β log(t + T )
p−2

p(p−1) , τ = log(t + T ), v(η, τ ) = (
(t + T ) log(t + T )

) 1
p−1 u(x, t). (3.11)

The main difference between this scaling and the one of the first section is that the zoom factor change continuously
with time. This justifies the name of continuous rescaling. The generality of this technique comes from the fact that
the zoom factors may be changed from problem to problem and in this way the method is very flexible. Moreover, in
general after a good time-dependent rescaling the resulting equation is simpler than the initial one.

In our case, we obtain the new equation satisfied by v:

vτ = �pv + βη · ∇v + αv − p − 2

p(p − 1)τ
η · ∇v + 1

p − 1
τ

− p−2
p−1 v, (3.12)

that we will call in the sequel as the perturbed equation. We associate its autonomous counterpart, which is:

vτ = �pv + βη · ∇v + αv, (3.13)
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and will be called the limit equation. By these transformations, the profiles UT (x, t;C) transforms into the family

FC(η) = (
C − k|η| p

p−1
) p−1

p−2 , (3.14)

which are stationary solutions of the limit equation (3.13).
On the other hand, we need some a priori estimates on the general solutions of the p-Laplacian equation. Since

we already have enough subsolutions, we need to construct supersolutions that can be compared with any solution, in
order to bound the solutions also from above. The construction of a supersolution is rather technical and is given in
the next

Proposition 3.2. For any C > 0 sufficiently large, there exists a choice of the free parameters γ , d , b and q < 0 such
that the following profile:

UT (x, t;C) = (
(T + t) log(T + t)

)− 1
p−1

(
C − k

( |x|
(T + t)β

log(t + T )
p−2

p(p−1) + d

log(t + T )γ

) p
p−1

×
(

1 + b

log(t + T )γ

) pq
p−1

) p−1
p−2

+
(3.15)

is a supersolution for the p-Laplacian equation in Ω .

Proof. The proof consists on a very long calculation. In any case, it seems much easier checking it on the rescaled
Eq. (3.12), since the profile U changes into the following simpler form:

v+(η, τ ) =
(

C − k

(
|η| + d

τγ

) p
p−1

(
1 + b

τγ

) pq
p−1

) p−1
p−2

+
. (3.16)

The supersolution condition becomes

0 � kp

p − 2

(
|η| + d

τγ

) 1
p−1

(
1 + b

τγ

) pq
p−1 −1 1

τγ+1

(
gd + b|η| + 2bd

τγ

)

+ C

[
pβ

(
1 + b

τγ

)pq

+ β

(
1 + b

τγ

)pq
(p − 1)d

|η|τγ
− α − 1

p − 1
τ

− p−2
p−1

]

+ 1

p − 1
τ

− p−2
p−1 k

(
|η| + d

τγ

) p
p−1

(
1 + b

τγ

) pq
p−1

+ pkβ

(
|η| + d

τγ

) p
p−1

(
1 + b

τγ

) pq
p−1

(
1 −

(
1 + b

τγ

)pq)

− kβ

(
|η| + d

τγ

) p
p−1

(
1 + b

τγ

) pq
p−1 +pq

(p − 1)d

|η|τγ

+
(

β − p − 2

p(p − 1)τ

)
β

1
p−1

(
|η| + d

τγ

) 1
p−1

(
1 + b

τγ

) pq
p−1 |η|

− β
p

p−1

(
|η| + d

τγ

) 1
p−1

(
1 + b

τγ

) pq
p−1 +pq

.

We will prove this complicated inequality by separating it into two parts:
(a) This is the part with the free parameter C characterizing the profile. The inequality that we prove is:

C

[
pβ

(
1 + b

τγ

)pq

+ β

(
1 + b

τγ

)pq
(p − 1)d

|η|τγ
− α − 1

p − 1
τ

− p−2
p−1

]
� 0. (3.17)

The main fact is that all these inequalities make sense in the positive part of the profile (3.16), in the rest being trivial.
For that, we have to consider that η is bounded, more precisely

|η| �
(

C
) p−1

p
(

1 + b

γ

)−q

,

k τ



R.G. Iagar, J.L. Vázquez / Ann. I. H. Poincaré – AN 26 (2009) 497–520 513
hence fixing C > 0, one can choose any number γ < (p − 2)/(p − 1), q < 0 and d sufficiently large in order to hold
the inequality from (a) at any time τ > τ0 > 0 fixed. This is rather easy to achieve.

(b) The inequality formed with the rest of the terms can be a little simplified and written on the form

0 � kp

(p − 1)τ 1+γ

(
d + β|η| + 2bd

τγ

)
+ 1

p − 1
τ

− p−2
p−1 k

(
|η| + d

τγ

)(
1 + b

τγ

)

− kβ

(
|η| + d

τγ

)(
1 + b

τγ

)pq
(p − 1)d

|η|τγ
+ pkβ

(
|η| + d

τγ

)(
1 + b

τγ

)(
1 −

(
1 + b

τγ

)pq)

+
(

β − p − 2

p(p − 1)τ

)
β

1
p−1 |η|

(
1 + b

τγ

)
− β

1
p−1

(
1 + b

τγ

)pq+1

.

We compare one by one the terms with plus and the terms with minus in the preceding inequality. We have to make a
different analysis depending on the values of |η|. If |η| is very small, then we encounter a difficulty in compensating
the term with minus where we divide by |η|. But in this case we will not separate the two inequalities. We remark that
this term comes from the term

−β

(
C − k

(
|η| + d

τγ

) p
p−1

(
1 + b

τγ

) pq
p−1

)(
1 + b

τγ

)
(p − 1)d

|η|τ
obtained after calculating �pv+ and simplifying. Since |η| is small (for example |η| < 1), for C sufficiently large we
can make a decomposition of this terms by dividing C and letting C/2 in the expression above and introducing only
C/2 in the corresponding part of the inequality (3.17). In this way, the term in part (b) is compensated directly, by the
remaining term with C/2, and in (a) we have only to replace d by 2d .

If |η| > 1, by comparing one by one the terms in the inequality in part (b), we find that it is enough to choose
the parameters b and q such that |q|p2b > (p − 1)d , where d is already chosen from (a), and q < 0. With this, the
proposition is proven. �

The usefulness of this construction, which is very general (we show in fact that for any C > 0 we can construct
such a supersolution) is illustrated in the following result:

Proposition 3.3. For any solution u of the p-Laplacian equation in Ω , there exists a constant C > 0 and a delay
T > 0 sufficiently large such that

u(x, t) � UT (x, t;C) (3.18)

in the notations introduced above.

Proof. Let u0(x) = u(x,0) be the initial value of the solution. There exist a delay T > 0 and a constant C > 0 such
that the function UT (x, t;C) has the following two properties:

(I) suppu0 ⊂ suppUT (x,0;C);
(II) On suppu0, we have: u0(x) � UT (x,0;C).

We say in this case that u and UT are separated at time t = 0. Since u is a solution of the equation and UT is a
supersolution and they are separated at the initial time, a well-known comparison result says that u(x, t) � UT (x, t;C)

for all x ∈ Ω and for any time t > 0. On the other hand, we have:

UT (x, t;C) �
(
(T + t) log(T + t)

)− 1
p−1

(
C − k|x| p

p−1
(
log(t + T )

) p−2
(p−1)2

(
1 + b

(logT )γ

) pq
p−1

) p−1
p−2

+

�
(
(T + t) log(T + t)

)− 1
p−1

(
CT − k|x| p

p−1
(
log(t + T )

) p−2
(p−1)2

) p−1
p−2
+

= UT (x, t;CT ),

where CT = C(1 + b
γ )−pq/(p−1). �
(logT )
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This result, together with the one about subsolutions, shows that the family UT is sufficient to control all the
solutions u.

3.4. Outer analysis

It will always be given by some profile of the form (3.4), depending on the initial data of the problem. The conver-
gence will be uniform away from the hole and with a specified rate. But let us first state precisely the main result of
this subsection.

Theorem 3.1. Let u(x, t) be the unique weak solution of (1.1) with initial data u0 ∈ L1(Ω), nonnegative and com-
pactly supported, in dimension N = p. Then there exists a constant C0 depending on u0 and a delay in time T such
that

lim
t→∞(t log t)

1
p−1

∣∣u(t) − UT (·, t;C)
∣∣ = 0, (3.19)

with uniform convergence in any set of the form {|x| � δλ(t)}, where δ > 0 is sufficiently small and

λ(t) = tβ(log t)
− p−2

p(p−1) , β = 1

p(p − 1)
.

Proof. The idea of this proof is to apply the S-theorem (see [6] or [7]) in order to identify all the possible asymptotic
limits of the solutions of (3.12) as solutions of (3.13). In order to do this we need some uniform boundedness and
compactness estimates for the orbits (v(τ ))τ∈R. To obtain that, the decisive argument is Proposition 3.3, since it
translates the estimates from the orbit v(τ) to some particular orbits with explicit formulas, more precisely, we have

v(τ) �
(
C − k|η| p

p−1
) p−1

p−2
+ . (3.20)

From (3.20) and the fact that the profiles (C − k|η|p/(p−1))
(p−1)/(p−2)
+ are stationary and bounded uniformly in

Lq(RN), for all q ∈ [1,∞], we deduce similar uniform boundedness estimates for the orbits v(τ). The compactness
estimates are easily obtained, by introducing in the energy estimates the dominating profiles.

By introducing (3.20) in the definition of a weak solution for Eq. (3.12), we also remark that, due to the stationary
character of the dominating profiles, the terms in the perturbation go to 0 and in the end we remain with the weak
formulation of (3.13).

On the other hand, the stability assumption of the S-theorem is clearly satisfied by the family (FC)C>0, since it is
stationary. Hence, we may form the ω-limit of the orbit of v, which is

ω(v) = {
f ∈ L1(RN

)
: there exists τj → ∞, v(η, τj ) → f (η)

}
,

where the convergence is taken in Lq -norm, for any q ∈ [1,∞). The assumption f ∈ L1(RN) make sense, since from
the change of variables we remark that limτ→∞ Ω(τ) = RN \{0}. Then we may consider, by passing to a subsequence,
that the convergence in the definition of ω(v) holds also weakly in W 1,p(RN).

We multiply Eq. (3.12) by any test function Φ ∈ C∞
0 (Ω) and we integrate in space and in time in (τ1, τ2), where

τ2 = τ1 + T , T > 0 fixed. We obtain the weak formulation of Eq. (3.12):

∫

Ω(τ2)

(
v(τ2) − v(τ1)

)
Φ dx = −

τ2∫
τ1

∫

Ω(τ)

|∇v|p−2∇v · ∇Φ dx dτ

+
τ2∫

τ1

∫

Ω(τ)

[(
β − p − 2

p(p − 1)τ

)
η · ∇vΦ + 1

p − 1

(
1 − τ

− p−2
p−1

)
vΦ

]
dx dτ.

We pass to the limit in this weak formulation with τ1 → ∞ and T fixed. Hence τ2 → ∞ and from the boundedness
estimates, the terms with τ disappear in the limit. On the other hand, the left-hand side goes to 0. From the right-hand
side it remains:

T

∫
N

|∇v|p−2∇v · ∇Φ dx + βT

∫
N

η · ∇vΦ dx + αT

∫
N

vΦ dx = 0,
R R R
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which is the weak formulation of the elliptic counterpart of Eq. (3.13). Passing to the limit is rigourously justified by
the uniform estimates we have, in particular that in W 1,p . We deduce that any f ∈ ω(v) is a weak stationary solution
of Eq. (3.13).

We have now to identify the limit as one of the profiles FC given by (3.14). For the beginning, we have to study
the elliptic equation

�pv + βη · ∇v + αv = 0 (3.21)

satisfied by the elements of ω(v). We start with the problem of the asymptotic behaviour of solutions of the evolution
p-Laplacian equation posed in the whole RN . It is well known that the asymptotic profiles are given by the Barenblatt
solutions given by (1.2)–(1.3) (see for example [15]). On the other hand, if we use in this case the time-adapted
rescaling, by setting

η = xt−β, τ = log t, v(η, τ ) = tαu(x, t), (3.22)

after the transformation we arrive to Eq. (3.13). Following the ideas of the similar result in [6] (where it is presented
for the Porous Medium Equation), we have the following

Lemma 3.1. The profiles FC can be characterized as the unique nonnegative stationary solutions of Eq. (3.13) such
that f ∈ L1(RN) and f ∈ W 1,p(RN).

Proof. Any other stationary solution f can be taken as initial data for Eq. (3.13). From the general asymptotic
behaviour result (see [15]) the corresponding solution of (3.13) converges to the unique Barenblatt solution BC with
the same mass as f . On the other hand, by defining u(x, t) = t−αf (xt−β), we obtain a solution of the p-Laplacian
equation converging to f in the time-adapted rescaling. By uniqueness of the limit we obtain f = FC . �

Using the previous lemma, we obtain that all the elements of ω(v) are of type FC for some C > 0, and the range of
constants C is bounded above and below, using the corresponding sub- and supersolutions we have constructed. We
still have to prove that there exists in the limit only one profile of this type, i.e. a unique constant C. We postpone this
part of the proof after the study of regularity.

We prove now the uniform convergence to every profile in the ω-limit. In order to do this, we go again to Eq. (3.12)
and we study the regularity of its solutions. We know that the orbits v(τ) are uniformly bounded in all the spaces Lq

with q ∈ [1,∞]. On the other hand, we can write (3.12) in the following way:

vτ − div
(
a(η, τ, v,∇v)

) = b(η, τ, v,∇v), (3.23)

where

a(η, τ, v,∇v) = |∇v|p−2∇v +
(

β − p − 2

p(p − 1)τ

)
ηv (3.24)

and

b(η, τ, v,∇v) = 1

p − 1

(
τ

− p−2
p−1 + p − 2

τ

)
v. (3.25)

Using the uniform estimates that we have on v(τ), it is very easy to show that the functions a and b satisfy the
structure conditions required in Theorem 1.1 from Chapter 3 of the book [4] and that the estimates are uniform at
infinity, since v(τ) are uniformly bounded by compactly supported stationary profiles. This, together with the Arzela–
Ascoli Theorem, implies that all the elements of ω(v) are achieved as uniform limits on subsequences.

3.4.1. Mass analysis
In order to finish, we prove now the uniqueness of the limit profile. We already know that ω(v) = {FC : C− � C �

C+}, these bounds coming from comparison with the subsolutions and the supersolutions constructed above. Define

m(τ) =
∫
N

v(η, τ ) dη. (3.26)
R
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Then m(FC) is increasing in C and v(τj ) → FC uniformly for some subsequence τj → ∞ if and only if m(τj ) →
m(FC). We argue by contradiction and suppose that there exist C1 < C2 such that m(τj ) → m(FC1) and m(τ ′

j ) →
m(FC2) on two subsequences τj → ∞ and τ ′

j → ∞ as j → ∞. Then, for any C ∈ (C1,C2), since m(τ) is bounded

and continuous, there exists a subsequence τ̃j → ∞ such that m(τ̃j ) → C and v(τ̃j ) → FC uniformly in RN . Hence,
all the points in (C1,C2) are limit points of m(τ) and this function has a very oscillatory character as τ → ∞. By a
simple calculus fact, for any C ∈ (C1,C2) we may suppose not only that v(τ̃j ) → FC uniformly, but also that

∂

∂τ
m(τ̃j ) � 0, (3.27)

by passing to a subsequence if necessary.
On the other hand, using (3.12), we calculate:

∂

∂τ
m(τ) =

∫

Ω(τ)

�pv dη + τ
− p−2

p−1

∫

Ω(τ)

(
1

p − 1
v − p − 2

(p − 1)τ 1/(p−1)
v

)
dη

= 1

p − 1
τ

− p−2
p−1

[(
1 − p − 2

τ 1/(p−1)

)
m(τ) + (p − 1)τ

p−2
p−1

∫

∂Ω(τ)

|∇v|p−2∇v · ν dσ(η)

]
, (3.28)

where ν is the outward normal vector to the boundary of Ω(τ). Since the uniform limits of v(τ) along subsequences
are only profiles from the family FC , it is easy to see that

(p − 1)τ
p−2
p−1

∫

∂Ω(τ)

|∇v|p−2∇v · ν dσ(η) → 0 as τ → ∞,

hence

lim
j→∞ τ̃

p−2
p−1
j

∂

∂τ
m(τ̃j ) = 1

p − 1
m(FC) > 0 (3.29)

in contradiction with (3.27). This contradiction shows that ω(v) contains only one element, i.e. ω(v) = {FC} for some
C depending only on the initial data u0 and the domain Ω .

Since ω(v) has only one element FC , we find that v(τ) → FC uniformly as τ → ∞, far from 0, i.e. in sets of the
form {|η| � δ}. Rephrasing the result in the initial variables, we obtain (3.19) far from the hole G, more precisely in
sets of the form {|x| � δtβ(log t)−(p−2)/p(p−1)}, as stated. �
3.5. Inner analysis

In this subsection we study the inner behaviour of the solutions of (1.1) posed in dimension N = p. We will try to
use the same ideas as in the case N < p: deduction of the profile by formal calculations, then the rigourous proof. It
appears an important difference in the rescaling we do: since we have a logarithmic correction of the type M(t)/ log t

in the expression of the mass, and at the same time we expect to obtain in the limit a stationary solution, we have to
compensate it with the logarithmic part.

Following the previous comments, we set w̄(x, t) = t1/(p−1)(log t)p/(p−1)u(x, t). We deduce the equation satisfied
by w̄:

�pw̄ = t
− 1

p−1 (log t)
p(p−2)

p−1

(
tw̄t − p + log t

(p − 1) log t
w̄

)
. (3.30)

Suppose for a moment that the terms in the right-hand side go to 0, i.e.

lim
t→∞ t

− 1
p−1 (log t)

p(p−2)
p−1

(
tw̄t − p + log t

(p − 1) log t
w̄

)
= 0.

Then the asymptotic limit of w̄ is expected to be a solution of the problem (2.17). As it is well known, all the solutions
of this problem tend to infinity with a logarithmic rate as |x| → ∞ and they have the general form CHp , where Hp is
the unique solution of (2.17) having in addition the property that lim|x|→∞ Hp(x)/(log |x|) = 1 uniformly.
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We have to use again the method of matched asymptotics in order to find the precise constant C. For this, we use
the outer analysis result

lim
t→∞(t log t)

1
p−1

∣∣u(x, t) − UT (x, t;C0)
∣∣ = 0,

uniformly for all x ∈ Ω with |x| � δtβ(log t)−(p−2)/p(p−1), where we denote in this section by C0 the constant
corresponding to u. On the other hand, by our formal calculation, we expect

lim
t→∞

∣∣∣∣ w̄(x, t)

log t
− CHp(x)

log t

∣∣∣∣ = 0

uniformly in sets of the form {|x| � δtβ(log t)−(p−2)/(p−1)p}, with δ > 0 small. By comparing the two limits in the
curve |x| = δtβ(log t)−(p−2)/p(p−1), we obtain that

C = 1

β
C

p−1
p−2
0 . (3.31)

In what follows we will prove rigourously that the inner behaviour is given by the quasi-stationary state
C

(p−1)/(p−2)

0 Hp(x)/β log t . For this, we use the same strategy as in Section 1 and change the scale of time by setting
τ = log t . Define w(x, t) = w̄(x, t)/ log t , which in the new variables is w(x, τ) = eτ/(p−1)τ 1/(p−1)u(x, eτ ). Consider
the time average:

WT (x, τ ) = 1

T

τ+T∫
τ

w(x, s) ds.

Proposition 3.4. For any ε > 0 and T > 0, there exists a constant δ = δ(ε, T ) > 0 and a large time τin = τin(ε, δ, T )

such that for any τ � τin we have∣∣∣∣WT (x, τ ) − C
(p−1)/(p−2)

0 Hp(x)

βτ

∣∣∣∣ � ε, (3.32)

for all x with |x| � δeτβτ−(p−2)/p(p−1).

Proof. The proof is very similar to that of Proposition 2.3. The main idea is to consider the function

Φ(x, τ) = 1

T

τ+T∫
τ

w(x, s) ds − C
(p−1)/(p−2)

0 Hp(x)

βτ
(3.33)

and to derive estimates on it in order to apply Proposition 2.2. We obtain that

�pΦ = 1

T

τ+T∫
τ

(
se−s

)−1/(p−1)
(

sws − 1 + s

p − 1
w

)
in Ωτ (3.34)

and the boundary conditions

Φ = 0 on ∂Ω ∩ ∂Ωτ , Φ = h on ∂Ω ∩ ∂B
(
0,R(τ)

)
, (3.35)

where Ωτ = Ω ∩ B(0,R(τ)), R(τ) = δeτβτ−(p−2)/p(p−1) and

h(x, τ ) = 1

T

τ+T∫
τ

g(x, s) ds − C
(p−1)/(p−2)

0 Hp(x)

βτ
.

By performing a similar analysis as in the proof of Proposition 2.3, we find that for any ε > 0 and δ > 0, there exists
a delay τ0 = τ0(ε, δ) such that∣∣Φ(x, τ)

∣∣ � Cδp/(p−1) + 3ε, ∀τ > τ0,

where C > 0 is a constant independent of time. By choosing δ small and τ > τ0, we obtain the estimate (3.32). �
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Passing from the convergence of time averages to the convergence of the function itself is very similar to that in
the case N > p. We obtain the main inner behaviour result:

Theorem 3.2. For any ε > 0, there exists δ = δ(ε) > 0 and a time tin = tin(ε, δ) sufficiently large, such that∣∣∣∣(t log t)
1

p−1 u(x, t) − C
(p−1)/(p−2)

0 Hp(x)

β log t

∣∣∣∣ � ε, (3.36)

for all t � tin and for all x ∈ Ω with |x| � δtβ(log t)−(p−2)/p(p−1).

3.6. Global formulation

In this last subsection we group the results of Theorems 3.1 and 3.2 in a global approximation result, as we have
done in Section 2. Before stating the result, we have to modify the profile Hp in the outer region, by defining

Ψ (x, t) =
{

Hp(x)/β log t if |x| � δtβ(log t)−(p−2)/p(p−1),

Hp(δtβ(log t)−(p−2)/p(p−1)x/|x|)/β log t if |x| � δtβ(log t)−(p−2)/p(p−1).

In this way, we obtain that in the outer region {|x| � δtβ(log t)−(p−2)/p(p−1)} the modified function Ψ converges
uniformly to 1. We are ready to state the global approximation theorem.

Theorem 3.3. Let u be the unique solution of the problem (1.1) in dimension N = p and

V (x, t) = (
UT (x, t;C0) − (t log t)

− 1
p−1 C

p−1
p−2
0

(
1 − Ψ (x, t)

))
+, (3.37)

where C0 and T are the constants that appear in the outer analysis. Then

lim
t→∞(t log t)

1
p−1

∣∣u(x, t) − V (x, t)
∣∣ = 0, (3.38)

uniformly for x ∈ Ω . Moreover, we have:

lim
t→∞ log t

∥∥u(x, t) − V (x, t
)‖L1(Ω) = 0. (3.39)

Both (3.38) and (3.39) can be extended to the whole class of solutions with initial data u0 ∈ L1(Ω).

Proof. (i) Similarly as in the proof of Theorem 2.3, for compactly supported data, we obtain the uniform convergence
result (3.38) from the inequalities:

(t log t)
1

p−1
∣∣u(x, t) − V (x, t)

∣∣ �
∣∣(t log t)

1
p−1 u(x, t) − C

p−1
p−2
0 Ψ (x, t)

∣∣ + ∣∣C p−1
p−2
0 − (t log t)

1
p−1 UT (x, t;C0)

∣∣
and

(t log t)
1

p−1
∣∣u(x, t) − V (x, t)

∣∣ � (t log t)
1

p−1
∣∣u(x, t) − UT (x, t;C0)

∣∣ + ∣∣C p−1
p−2
0

(
1 − Ψ (x, t)

)∣∣
and the results of Theorem 3.2, resp. Theorem 3.1.

We remark that there is a constant C such that u(x, t) = 0 for all x ∈ Ω with |x| � Cδtβ(log t)−(p−2)/p(p−1), since
u is bounded above by the supersolution we construct. The same happens to the global approximant V . Using the
previous convergence result, for ε > 0 and t � t (ε) large enough, we have:∫

Ω

∣∣u(x, t) − V (x, t)
∣∣ log t dx � log t (t log t)

− 1
p−1 ε

(
Cδtβ(log t)−(p−2)/p(p−1)

)p = Cpε,

giving the convergence in L1-norm. This extends by standard density arguments to the whole class of solutions with
initial data in L1(Ω).

(ii) We consider initial data in L1 and we perform an analysis by approximation as in Section 2. Choose a compactly
supported initial data ũ0 such that the corresponding solution satisfies:

lim log t
∥∥u(t) − ũ(t)

∥∥
L1 = 0.
t→∞
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We use this approximation and a very similar analysis to that in Subsection 2.4 to complete the result. Let us remark
that the time decay from the smoothing effect (see [18, Theorem 11.3]) is sufficient due to the logarithmic extra-term
which appears in (3.39), which compensates (log t)1/(p−1) from the time scale in this case. �
Remark. It appears an overlapping region, where the outer and the inner behaviour hold at the same time. In strong
contrast with the result in Section 2, in the critical case this overlapping region is very thin and consists in the points
x ∈ Ω such that

lim|x|→∞
Hp(x)

β log t
= 1,

hence it is a thin layer around the curve |x| = δtβ , with a narrowness of type o(log t).

We end this section with the study of the evolution of the supports for compactly supported solutions. Recall the
notations r+(t), r−(t) and R(t) introduced in (2.34). We have the following result:

Corollary. In the conditions of Theorem 3.3,

lim
t→∞

r±(t)

R(t)
= 1.

Proof. The lower estimate follows from the uniform convergence of u in the rescaled variable η in sets of the form
|η| � δ > 0 and the uniform positivity of the profile FC0 in sets of the form |y| � C∗ − ε. For the assertion on r+(t),
we use a similar analysis in the renormalized variable η as in the proof of the similar result in Section 2. There is a
difference that we explain next. Consider the solution ū of the p-Laplacian equation posed in the whole space, with
initial data

ū(x, t0) =
{

u(x, t0), x ∈ Ω,

0, x ∈ G,

for a sufficiently large time t0. We compare u and ū, but in the renormalized variables η and τ , where we transform
u using the rescaling (3.11) and ū using the rescaling (3.22). We deduce that in the new time τ holds r+(τ ) � r̄+(τ ).
We rephrase the result using the rescaling (3.11) for both solutions and, using the asymptotic result in the whole
space [15], we obtain the upper estimate for r+(t). �
4. Comments and open problems

1. Nonconnected domains. The assumption of connectedness is not an essential restriction. If the domain is not
connected, every connected component is treated separately. The bounded connected components follow the behaviour
of bounded domains with size u = O(t−1/(p−2)) as t → ∞, as described in [20], Chapter 20. Assuming that there is
a unique unbounded component containing a neighbourhood of infinity, the behaviour in that component is described
by the results of the present paper.

2. Critical case of porous medium flow. Our method for proving the inner behaviour settles also the similar case
for the porous medium equation (there critical means N = 2 for every m > 1). The outer behaviour for the critical
case of the porous medium equation was done in [10], where it is proved that the outer asymptotic profile is again a
logarithmic correction of the Barenblatt solution:

UT (x, t;C0) = (
(t + T ) log(t + T )

)− 1
m

(
C0 − k

( |x|
(t + T )β

)2(
log(t + T )

)m−1
m

) 1
m−1

+
, β = 1

2m
.

Using the technique of matched asymptotics and estimates which are very similar to those of Theorem 3.3, we deduce
an analogous result for the inner behaviour in the porous medium equation case:

Theorem. For any ε > 0, there exists δ = δ(ε) > 0 and a time tin = tin(ε, δ) sufficiently large, such that:∣∣∣∣(t log t)
1
m u(x, t) − C

1/(m−1)

0 H(x)m

β log t

∣∣∣∣ � ε,

for all t � tin and for all x ∈ Ω such that |x| � δtβ(log t)−(m−1)/m.
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Here, H(x) is the solution of the corresponding stationary problem{
�(Hm) = 0 in Ω,

H = 0 on ∂Ω,

with the additional property that lim|x|→∞ H(x)m/ log |x| = 1 uniformly in Ω .

3. Application to the linear case, p = 2. In the linear case p = 2, a partial inner behaviour in the exterior of a ball
is described in [14]. In this particular case, our results coincide with those of that paper in N � 3. Since [14] treats
only asymptotic behaviour in fixed compact sets, in dimension N = 2 a logarithmic improvement of the decay rate is
proved. This improvement follows also easily in our case in a fixed compact set, but not in the general inner behaviour.
Moreover, by treating both inner and outer behaviour in sets with time-dependent boundaries, our methods and results
are more general.

4. Open problem: quantitative estimates for the mass. A precise estimate of the mass M(t) at any moment of
time is still missing. In the porous medium case, due to a conservation law, a precise estimate was obtained in [2],
Corollary 4.2. In our case, there seems to be no conservation law, and this makes more difficult to obtain a relation
between the initial mass of the solution and M(t).
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