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Abstract

We consider the Laplace operator with Dirichlet boundary conditions on a planar domain and study the effect that performing
a scaling in one direction has on the spectrum. We derive the asymptotic expansion for the eigenvalues and corresponding eigen-
functions as a function of the scaling parameter around zero. This method allows us, for instance, to obtain an approximation for
the first Dirichlet eigenvalue for a large class of planar domains, under very mild assumptions.
© 2008 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The study of the spectrum of the Laplace operator on thin domains has received much attention in the mathematical
literature over the last few years. Apart from the connection to certain physical systems such as quantum waveguides,
this limit situation is also of interest as it may provide insight into certain questions related to the spectrum of the
Laplacian — see the recent paper by Friedlander and Solomyak [5] for some references on both counts.

The purpose of the present paper is to study this spectrum in the singular limit around a line segment in the plane.
More precisely, given a planar domain we consider its scaling in one direction, so that in the limit we have a line
segment orthogonal to this direction. In particular, and under mild smooth assumptions on the domain, we derive the
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Fig. 1. Graphs of the four-term asymptotic expansions obtained for the first eigenvalue of the lemniscate and the bean curve in Examples 2 and 3
presented in Section 5. The points are numerical approximations to the eigenvalue with an error not greater than 1075,

asymptotic expansion for the first Dirichlet eigenvalue thus showing that the coefficients in this series have a simple
explicit expression in terms of the functions defining the domain — see Theorem 2 below.

Due to the notorious lack of explicit expressions for Dirichlet eigenvalues of planar domains, this seems to be a
possible path towards obtaining information about such eigenvalues, and indeed it was one of the motivations behind
our work. As an example, consider the case of the family of ellipses centred at (1/2, 0) and with axes 1/2 and /2. In
this case Theorem 2 yields that

72 2 11 T 5
A1(8)=—2+—+3+ — 4+ = 8+(9(8 ), as e — 0, (1.1)
£ £ 2 3

thus complementing the asymptotic expansion for the first eigenvalue of ellipses around the disk derived by Joseph
in [6]. Further terms in the expansion may be obtained by means of Lemma 3.2. The graphs of the four-term asymptotic
expansions for two other examples, namely the lemniscate and the bean curve are shown in Fig. 1. For a discussion of
these and other examples, see the last section.

The advantages of our method are twofold. On the one hand, it does not require any a priori knowledge neither
of the eigenvalues nor of the eigenfunctions of a particular domain, as the perturbation is always made around the
singular case of the line segment. In the above example, for instance, Joseph’s method requires knowledge of the first
eigenvalue of the disk. This limits applications of the same type of argument to general examples. Furthermore, it is
not evident that even in cases where the eigenvalue of the unperturbed domain is known one can determine explicitly
the value of the coefficients of the perturbation around this domain in terms of known constants. This is illustrated
by the example in Section 5 in [6], where one of the coefficients in the expansion gives rise to a double series. On
the other hand, and by its own nature, our method is particularly suited to dealing with long and thin domains where
numerical methods will tend to have problems.

The fact that we consider a singular perturbation does pose, however, some difficulties. In order to understand these,
let us begin by observing that the behaviour of the asymptotic series obtained for the eigenvalues depends on what
happens at the point of the line segment where the vertical width is maximal, say x. More precisely, the coefficients
appearing in the expansion will depend on the value that the functions defining the domain and their derivatives take
at x, but not on what happens away from this point. This is not surprising, since it is in this region that the first
eigenfunction will tend to concentrate as the parameter goes to zero. In order to derive the asymptotics, we assumed
that there existed only one such point and that the domain was C* smooth in a small neighbourhood of x. While the
former condition may be somewhat relaxed, and a finite number of points of maximal height could, in principle, be
considered, if the latter condition is not satisfied then the powers appearing in the asymptotic series will actually be
different.

A first point is thus that the type of expansion obtained will depend on the local behaviour at x. To illustrate what
may happen, consider the following example studied by the second author using a different approach [3]. Let Tg be
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an obtuse isosceles triangle where the largest side is assumed to have fixed unit length, and where the equal angle S
approaches zero. In this case we have
2 4023, A3
rM(Tp) = % - T/; + O(ﬂ72/3) as B — 0,
where a} ~ —1.01879 is the first negative zero of the first derivative of the Airy function of the first kind. We thus see
that having the maximal width at a corner point introduces fractional powers in the expansion.

On the other hand, it can be seen from our results that what happens away from x does not influence the coefficients
appearing in the expansion in Theorems 1 and 2. Thus in the example given above for ellipses, changing the domain
outside a band containing the mid-region will yield precisely the same coefficients although the expression for the
first eigenvalue as a function of ¢ will certainly be different. This means that the series described in these theorems
cannot, in general, converge to the desired eigenvalue, and that there should exist a zail term which goes to zero faster
than any power of &, which our analysis does not allow us to recover. An interesting question is thus to determine
the nature of such a term and when can we ensure that the series expansion derived here is actually convergent to the
corresponding eigenvalue.

Note that although we address the same problem as in [5], both our approach and results are quite different from
those in that paper. In particular, we obtain the full asymptotic expansion for the eigenvalues and eigenfunctions.
Furthermore, the coefficients in these expansions are obtained as a simple explicit function of the value of the functions
involved and their derivatives at the point where the function H takes its maximum. Another difference is that we
consider a two-parameter set of eigenvalues, while the method used in [5] leads to a one-parameter set. On the other
hand, our approach required the function H to be smooth in a neighbourhood of this point, while the results in [5]
are more general in this respect, allowing for the existence of corners, for instance. We hope to be able to consider
this situation in a forthcoming paper. Furthermore, in [5] the authors actually prove convergence in the norm of the
resolvents, which is a stronger property than convergence of the eigenvalues and eigenfunctions.

The plan of the paper is as follows. In the next section we state the results in the paper. In Section 3 we prove
the general form of the asymptotic expansions for eigenvalues and eigenfunctions. The proof is split into two parts.
First we construct the asymptotics expansions formally. The main idea here is to use the ansatz of boundary layer
type which localizes in a vicinity of the point X mentioned above. After formal constructing, the formal expansions
are justified, i.e., the estimates for the error term are obtained. Here the main tool is Vishik—Lyusternik’s lemma.
Section 4 contains the study of the expansion for the first eigenvalue. This consists in identifying the eigenvalue which
corresponds to a positive eigenfunction, and then obtaining the explicit form of the terms in the expansion of the
eigenvalue. In the last section we consider some applications of our results to specific domains.

2. Statement of results

Let iy = hy(x1) € C[0, 1] be arbitrary functions and write H (x1) := hy(x1) + h_(x1) for x; in [0, 1]. We shall
consider the thin domain defined by

2 = {x: x1 €(0,1), —eh_(x1) <x3 < 8h+()€1)},

for which we assume that the function % attains its global maximum at a single point x € (0, 1), and that H(x1) > 0
for x1 € (0, 1). Note that the cases where either H(0) =0 or H(1) = 0 are not excluded. We also assume that the
functions A4 are infinitely differentiable in a small neighbourhood of x, say (x — 8, x + &). For the sake of brevity, in
what follows we shall write Hy := H (x) and denote by H; the ith derivative of H at x. In the same way we denote
the derivatives of 4_ by h;. We shall assume that there exists k >> 1 such that

H =0, i=1,...,2k—1, Hy, <0. (2.1)

Our aim is to study the asymptotic behaviour of the eigenvalues and the eigenfunctions of the Dirichlet Laplacian
—Ag‘p in £2,. Let x = x(t) € C**(R) be a non-negative cut-off function which equals one when |&; — x| < §/3 and
vanishes for |t — x| > /2. We denote .Qé =02 N{x: |t — x| < 8}.

The main results of the paper are contained in the following two theorems.
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Theorem 1. Under the above conditions, there exist eigenvalues A, ,,(¢), n,m € N, of the operator —AgF whose
asymptotic expansions as € goes to zero read as

o0
-2 (n, m) -2 i (n,m) . ._ 1
Aum(e) =& 2cg™ + ¢ i;;cnlCi . ni=eY, ai= T (2.2)
where
(n,m) _ w*n (n,m) _ A (n m) __ 0,
S = 02 Gk = Anms Cok+1 =
0
22n2 2 2.2
cmm n-hy _2m7n” Hopy (§2k+lw(n m )
2k+2 — n,m
+ H} Qk+ DIH; L®)
2m2n? Hoeyd | ka1 2 30 n*Hy o 2
~ DI &1 q>nm||L2(R)+61k7((2k)!)2H3 |&2 P |}, - (2.3)

Here Ay, and @, ,, are the eigenvalues and the associated orthonormalized in Ly (R) eigenfunctions of the operator

d? 2n2n2H2k
Grim -t 2z Mo o
d§; (2k)!H,

in Ly(R), 81 is the Kronecker delta, and wl("'m) € C®(R) N Ly (R) is the exponentially decaying solution to

2]T2n2H2k+1§12k+1
2k + D)!H;

(Gn - An,m)lp](n’m) =

n,m»

which is orthogonal to @, , in L2(R).
Given an eigenvalue hn m(€), let kn m (&) be the eigenvalues of —AD having the same asymptotic expansions

(2.2) as Aym(e), and k(l) (&) := An.m(e). Then there exists a linear combmatlon Yu.m(x, ) of the eigenfunctions
associated with )»f, m (&), whose asymptotic expansion reads as follows

VG 8) = xxn) Y _ 'y @), (2.4)

i=0
in the W21 (£2¢)-norm and W22(Q§/3)-n0rm, where

x| — X x2 +eh_(x1)

e@ f2= eH(x;)

o @) = Py EDsinwngy, " E) =" ) sinangs.

The remaining coefficients of the series (2.2), (2.4) are determined by Lemma 3.2.

& =

The second result gives explicit expressions for the first four non-vanishing terms in the asymptotic expansion of
the first eigenvalue in terms of the functions 24 and their derivatives at x in the case where H; is negative.

Theorem 2. For any N > 1 there exists 9 = e9(N) > 0 such that for ¢ < gq the first N eigenvalues are A1, (€),
m=1,...,N. These eigenvalues are simple, and the asymptotic expansions of the associated eigenfunctions are
given by (2.4), where 1,y stands for the corresponding eigenfunction. In particular, if k = 1, the lowest eigenvalue
will have the expansion

C(l’l) c(l’l)
+2—+c a, l)—}—c(l 1)8+0(82), as & — 0,
&

AL1(e) =

where
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LD T LD m(—Hy)'/?

0 - Hoz’ 2 Hg/z ’

C(l,l)_ﬂzh% _ 9H, 11H? N H,

T HZ 16Hy 144H ' 16H;’

L _ Hy”? <n%§_n%MHHJ@m2 83H} 19H}H, 155H{ = 29H}

¢ T a(-H)'"2\2m} 2HZH, 256HZ | 384H;  6912H | 384HoH,
9H, 13H3Hs TH; L _Hs +_n2H§ 2 Hoh3 nzhﬂn> 25
128Hy  576H;  768H; 192H»  6H?  2H; 2H] ‘

In the case of higher eigenvalues, which of the eigenvalues A, ,,(¢) corresponds to a given eigenvalue A, will
depend on the value of ¢. Furthermore, generally speaking, the eigenvalues given in Theorem 1 do not exhaust the
whole spectrum. Indeed, assume that the function H has a local maximum at a point X 7 x. Then one can reproduce the
proof of Theorem 1 and show that there exists an additional infinite two-parametric set of the eigenvalues associated
with X; the corresponding eigenfunctions are localized in a vicinity of X.

Let y := A1,2 — A1,1 denote the length of the first spectral gap. The above result allows us to obtain the first term in
the asymptotic expansion for y.

Corollary 2.1. Under the above hypothesis, the quantity ey (€) remains bounded as ¢ goes to zero. If k = 1, then
2m(—Hy)'/?

+0O0), ase—0.
H§/28

y(e) =

We remark that, in general, the spectral gap is unbounded when either the diameter or the area are kept constant,
the simplest example being that of a circular sector where the opening angle approaches zero. From the results for
obtuse isosceles triangles in [3] we know this to be the case also for one-parameter families of domains of the type
considered here. What this result shows is that under the conditions above the gap will remain bounded as ¢ goes to
zero if we keep the area fixed. To see this, it is sufficient to note that 2| = ¢|£21| and thus |£2;]y (¢) is also bounded.
In particular, this shows that regularity at the point of maximum height plays an important role in bounding the gap.
Note that this boundedness is not uniform on the domain. Also, if we fix the diameter instead of the area then the
gap will still go to infinity as ¢ goes to zero. For a sharp upper bound for the gap and a numerical study of the same
quantity, see [4,1], respectively.

3. Proof of Theorem 1

Let A and v, be an eigenvalue and an associated eigenfunction of —Agg, respectively. We construct the asymp-
totics for A, and v as the series

o oo
he=€le,  pe=cot Y nc, Y& =) i), 3.1)
i=2k i=0
where ¢; and v; are the coefficients and functions to be determined.

In what follows we will show that the function ¥, is exponentially small (with respect to ¢) outside [23 This
is why we are interested only in determining v; on 93 After passing to the variables &, the domain 93 becomes
(€1 |&1| <8n~!, 0 <& < 1}. As n — 0, the latter domain “tends” to the strip I7 := {£: 0 < & < 1}. This is why we
will consider the functions y; as defined on I1. The mentioned exponential decaying of the eigenfunction is implied
by the fact that all the coefficients 1; decay exponentially as |§;| — F00, in other words, we postulate the latter
for ;.

Having the made assumptions in mind, we rewrite the eigenvalue equation for i, considered in Q? in the vari-
ables &,

92 92 92 B]
—Ki1— —2K1» —Kzz——Kz—)Iﬂ = UeWe in 1, Y. =0 ondIl, 3.2)
( 087 0108 082 9 )T )
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where K;; = K;j(§1m, 62, 1), Ki = K; (511,52, 1), and

2k+1 ]’LL(}E +Z1) _ZzH/()Z +Zl)

K11(z, 1) = n*, Kix(z,m) = = ,
1z m=n 12(z,m) =n HG T2
Konte )_1+n2k+2(hL(az+zl)—zzH’(i+Z1))2
22 77] - hz()z_'_Zl) )

772k+2
Koz, = —————h' G+z2)HG+z21) =20 (X +z0)H (x +
2(z,m) hz(x+11)( E+zDHGE +21) x+z)H (x +21)

+20(H' G +21)° — 2H' G+ 20 HE +21)). (3.3)
Now we expand the coefficients K12, K27, and K7 into the Taylor series with respect to 1, taking into account (2.1),

e ¢]

KpGEn.&.m= Y. n'(PRE)+&015ED),

i=2k+1

Kn(Ein.&.m) =Hy >+ Y n' (P (61) +£05 (&) + EFRY (€1)),

i=2k
Ky em= Y 1 (PP &) +£05 @), (3.4)
i=2k+2

where Pliz, Pziz, Pzi, iu’ Qéz, Qé are certain polynomials with respect to &1, and, in particular,
ek _ M Qk+2) _ h2
P ~Hy’ Pyy ~H
0 0
2k41 2k+2 H»
o3 V=0, ¥ =-T2¢,
Hy
k) _ _2H2k$12k Qk+1) _ 2H2k+1§'2k+1
2 k) H 2 Qk+DIH;
2k+2 2 4k
pOk+) _  2Hoiag * N 3H; &, hi
(2k +2)!H; (QN2Hy  HE
Q(zk) Q(2k+1) Q(2k+2) R(Zk) R(2k+l) R%kJrZ) —0,

&1,

h H.

2k+2 2 2k+2 2

P2( ) , Q; ) _ . 3.5)
Hy Hy

We substitute (3.1) and (3.4) into (3.2) and evaluate the coefficients of the same powers of 75 taking into ac-
count (3.5). It leads us to the system of the boundary value problems,

1 0%y, . .
FSSZZ 4+coyi =0 in I, Yi=0 onadll, i=0,...,2k—1, (3.6)
1 82 2.2 32 2H 2k 82
L o SO S DV gy indT =0 onall, (3.7)
H € H. IEZ (2k)IH] 0E3
1 0%y, Vi ok 2HuEM 92y ok :
——Z—WZZ—Colﬁi=ci1ﬁo+w—lz+62k1lfi—2k——'l3 %2 +F; inll,
H} 9E] JE? Qk)IH  9&3
Yi=0 ondl, i>2k+1, (3.8)

where the functions v, 1; are assumed to decay exponentially as £, — 00, and
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0y i
Fi=2 Z (P &) + 605 En) 7, 5‘; + Z (P €1) +£05) &) +E R €n)— T
j=2k+1 =2k+1 &
) D Wi-j |
+ Z (P, 61) +£05"60) 5+ + Z cjVi-j-
=242 2 gt
Problems (3.6) can be solved by separation of variables. It gives the formulas for v;, i =0, ..., 2k — 1, and cy,
. 72n?
Vi (§) = W;(§1) sinnm &y, Co=?, neN, (3.9)
0

where i =0, ...,2k — 1, and the functions ¥; are to be determined. We can consider the problem (3.7) as posed on the

interval (0, 1) and depending on the parameter &;. Hence, this problem is solvable, if the right-hand side is orthogonal
to sinnm&s in L(0, 1) for each &1, where the scalar product is taken with respect to & . Evaluating this scalar product
and taking into account (3.9), we arrive at the equation

( d? 2n2n2H2k§12k
d? (k) H

The exponential decaying of 1 as |£1] — oo is possible, if the same is true for ¥,. Hence, ¥ is an eigenfunction
of G,, and therefore, ¢y is the corresponding eigenvalue. Thus, Yo = @, ,,,, and the formula (2.3) for ¢y is valid.

)lI/() =cu¥ inR. (3.10)

Lemma 3.1. The spectrum of G,, consists of infinitely many simple positive isolated eigenvalues A, . The associated
eigenfunctions are infinitely differentiable, and decay exponentially at infinity, namely,

B (1) = Caler| WA Te PP (14 0(1), ifk=1,
P (E1) = Caler| Fe B0 (1 0(), ik > 1.

The last formulas can be differentiated with respect to ;.
The equation (G, — Ay m)u = f, f € L2(R), is solvable if and only if

(fa (pn,m)Lz(R) =0. (311)

In this case, there is a unique solution u orthogonal to @, ,, in L2(R). If f € C*°(R) is an exponentially decaying
function satisfying

£ =0(l& P exp Y gy > 00, (3.12)

and this identity can be differentiated with respect to &1, then the solution u is infinitely differentiable and decays
exponentially,

1 _NA g k]
=O(l&11Pexp #TEIT) 1gy| — o0, (3.13)

where f is some number. This identity can be differentiated with respect to &1.

Proof. The statement on the eigenfunctions follows from [2, Chapter II, Section 2.3, Theorem 3.1, Section 2.4, Theo-
rem 4.6]. The solvability condition (3.11) is due to self-adjointness of G,,. Theorem 4.6 in [2, Chapter II, Section 2.4]
gives also the asymptotic behaviour of the fundamental system of Eq. (3.10). Using these formulas and representing
the solution u via Green function, one can easily prove (3.13). O

Taking into account (3.9), (3.10), we can rewrite (3.7) as
1 821ﬂ2k 72n? .
H2 962 T Yor =0 in [, Yor =0 ondIl.

Hence, the formula (3.9) is valid for ¥r» as well. In what follows, and for the sake of brevity we will write simply A
and @ instead of A, , and ¥, .
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Lemma 3.2. The problems (3.6)—(3.8) are solvable, and their solutions read as follows:
Vi) = YiE) + WiED)sinTngy, Y€)=y ¢ @6 (E), (3.14)
J
where the sum with respect to j is finite, ¢l.(’1j) € C*®(R) are exponentially decaying functions satisfying (3.13),
¢l(2]) € C®|[0, ] are orthogonal to sintn&, in Ly(0, 1) for each & € R and vanish on 911. As i =0, ..., 2k, the
functions W; are identically zero, while for i > 2k they solve the boundary value problems

~ ~ ~ i—1
1820 w2 - ok 2HuE 9% ;

- - Vi = - + Aok + Z cji—j+ F; — fisinmng in I,
H} 08  H} il (Qk)HS  0&; Pt
Ui =0 ondll, (3.15)
=~ i () () [ ] ) ) 22 U O Vi)
F=2 Y (P +&0Y ag 7% + Z (Py)) +£05%) +$2R22)3—2
j=2k+1 =2k+1 5
)
j= 2k+2 ‘§2
fi =2(F;, sinwn&) 1,0.x)- (3.17)

The functions ¥; € C*®°(R) satisfy (3.13), are orthogonal to ® in Ly(R) and solve the equations

(G = MW= fi+ Y ¢;¥-j+ci®. (3.18)
J=2k+1
The numbers c;, i > 2k + 1, are given by the formulas
¢i =—(fi» P)L,(R)- (3.19)

Proof. We prove the lemma by induction. The statement of the lemma for i = 0 follows from (3.9). This identity also
implies the formulas (3.14) fori =1, ..., 2k, where 1},' = (0, and ¥; are functions to be determined.

Assume that the statement of the lemma holds true for i < p, p > 2k + 1. Then, in view of (3.14), the right-hand
side in Eq. (3.8) can be rewritten as

p—1 27
. 0 Yp—ok ~
(c,,cb —(Gn =M+ Y c,-tp,,_j> sinTngy + —2= + Ay,

j=2k+1 08
~ -1
2H2k§2k 821// ok p . N
- L= > ci¥p i+ Fp. (3.20)
(2k)!Hy  0&5 Pt

The solvability condition of (3.8) is the orthogonality of this right-hand side to sinzné; in L2(0, 7) for each §; € R.
We write this condition, taking into account the orthogonality of v/, j < p, to sinwné, in L»(0, ), and the relation

32, N
( wpz % s SiH?TI’l%_Z) = —7'[2712(10],_2](, sin ﬂnsz)Lz(O’n) =0.
3 Ly(0.7)

This procedure leads us to (3.18). By Lemma 3.1, the solvability condition of (3.18) is exactly the formula (3.19), since
the functions ¥;_o, i < p, are orthogonal to @ in L;(IR). We choose the solution of this equation to be orthogonal to
@ in L>(R) and note that by the formula (3.14) for 11'71., i < p, the function f; satisfies (3.12). Hence, by Lemma 3.1,
the function ¥),_o satisfies (3.13). The formulas (3.14) and (3.20) yield that the right-hand side of the equation

in (3.8) with i = p can be represented as a finite sum ) j flglj €D f[g23 (&), where flgzj € C*[0, 1] are orthogonal

to sinTn&y in L,(0, ), while the functions f;lj). € C®(R) satisfy (3.12). This fact implies the formula (3.14) for
i=p. O
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Let us prove the remaining formulas in (2.3). It follows from (3.16), (3.5) that

F Zrnh d® cosmné + 2712”2H2k+1§12k+1 & sinmné (3.21)
2k+1 = FT 2 z .
+ Hy dg Qk + DIH;
Therefore,
27‘[2712H 2k+1
Faes = 2k+1$13 (3.22)
(2k + 1)!Hy

The eigenfunction @ is either odd or even with respect to &, due to the evenness of the potential in the operator G,,.
Thus, the function @2 is even, and this is why (f2k+1, @) ,®) = 0, proving the formula for cog41.
Employing (3.5), by direct calculation we check that

do 1
fora=—03 P — — 2222 PGH Vg — 222 PSP e — 3 0% e (3.23)

d&;
By integrating by parts we obtain

do 1 , 1
§1—. @ =—/§1d¢ =—z.

Now the formula (2.3) for ¢k follows from the last two identities and (3.5).
We proceed to the justification of the expansions (3.1). For any N > 7(k + 1) we denote

N N
Ven @) i=x @) D 0 i), peni=co+ y_nci, heni=g .
i=0 i=2k

Lemma 3.3. The pair Yo N, Le N satisfies the boundary value problem
_Awe,N Z)\e,Nl/fs,N‘i‘ge,N in §2, Iﬂs,N =0 onds2, (3.24)

and
N3
lge. N I Ly(20) = O(eFT77).

This lemma follows from the definition of the problems (3.6), (3.8), Lemma 3.2, and the exponential decaying of
Vi as |§1] — oo.
We can rewrite the problem (3.24) as

I,//zz,N = ()‘e,N + I)Aswe,N + Asgs,N7 (3.25)

where A, indicates the inverse of —A gs + 1. It is clear that the operator A; is self-adjoint, has a compact resolvent,
and satisfies the estimate || A, || < 1, uniformly in e. We rewrite (3.25) as

1 1
- =A — A .
on + 1 I;[fe,N swe,N + Sen + 1 e8e,N

It follows from Lemma 3.3 and the estimate | A¢|| < 1 that
—
< CNg 11
Ly (82¢)

1
— A
H hen + 1 ¢8e,N

where Cy are some constants. We apply Lemma 1.1 in [8, Chapter III, Section 1.1], where we let « = C N8%_7 (see
inequality (1.1) in [8, Chapter II, Section 1.1]). This lemma yields that given N for each ¢ there exists an eigenvalue
Ty () of A, such that

tn (&) — (142 n) | = O(e7173).
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Hence, there exists an eigenvalue x n(e) of —Agg such that

|An(e) = hen| < E;NE"N?_7, (3.26)

where Cy are some constants.

Let ex be a monotone sequence such that C Nsklﬁ < Cn_1 as ¢ < en. Given n and m corresponding to the series
(3.1) (see (3.9), (3.10)), we chose the eigenvalue A, (¢), letting A, () 1= iN(s) as ¢ € [ey, en+1). Employing
(3.26), one can check easily that the eigenvalue A, ;, satisfies (2.2).

For ¢ € [en, en+1), we employ Lemma 1.1 in [8, Chapter III, Section 1.1] once again, and we let in this lemma

N N
a=C Ne‘m_7, d=2C Nsm_4. It implies the existence of a linear combination v, ,, described in the statement of
the theorem such that

23

1¥nm — Ve Nl Ly, = O(eFT ) 3.27)

for each N.
We denote {1 :=x1, {2 :=x26 "1, 2:={¢: {1 € (0, 1), —h_({1) < o <hy (&)}, 2°:= 2N {¢: |6 — x| <8},

N Q) = Y (0, 8) — Yo (). (3.28)

Lemma 3.4. The relations
N N __ 7 ~ N __ T

IVUN Ly (2. = O( 205D 2), 1N w2 (2o = O(e20+072)

hold true.

Proof. Employing Lemma 3.3 and (3.27), (3.26), by integrating by parts one can easily check that
~ N __ 7
IVUN Ly, = O(e 7D 72), (3.29)
It follows from Lemma 3.3, the equation for ¥, y and (3.27), (3.26), (3.29) that the function
&) == xxD)Ynm(x, &) — Ye n(x)

satisfies the boundary value problem

CEENE 5
<2—+—>¢ ¢ inR2% Yy=0 ona’, (3.30)
8;1 8{2
where
N N _9 _N__3
181z, 28 = O(r‘l"+1 2)’ ||V¢||L2(m) = 0(8 2k+D ) (3.31)
Integrating by parts in the same way as in the proof of Lemma 7.1 in [7, Chapter 3, Section 7], one can check that
326 52 52 2 2 2
d a 0 d
/ ¢ ¢d§ /—¢( 9 _ ¢ )ds+/< ¢ )dg. (3.32)
act g3 i I\ ag o000, ) 081082
r 2

Here 1"‘S =028\ {¢: 1 = =8\ {¢: &1 =8}, v=1(s), v= (1, 1p) is the outward normal to I"® and s is the arc
length of I"?. Employing the identity

8_¢ =0 on F‘S,
0s

we continue the calculations

ap [ 9% 9%¢ ap 9 ¢ a¢p 0 a¢

\Vigz v ds=fvi———ds= [ vi——wvm—ds

o\ g} 296100 dv ds 002 v ds v
ré r rs

3\ > 1 3 (3>
= =) ds+ = —(==) 4
/”1v2<av> s+2/U1v28s(8v) y
re rs
1 3\ >
:5/‘(1)11)2—1);\)2)(%) d
1"6
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where ’ denotes the derivative with respect to s. The obtained formula implies that

% 3¢ . -
ds| < - ’
‘/ afl( 22 TR ) s‘ e 1013y sy + Ce Il )

where the constant C is independent of €. Hence, by (3.32),

326 32¢) I ) 3pan2
— = P —¢ —Ce™ ,
<8§12 385 ) Lys) 1100198 195y 1911 00,
82¢ 2 32¢ 2 32¢ 2
19cc 12, g0, = ‘—2 re +H nk .
A lep0y 1085 ILy29) §1082 |l 1,(02%)
Employing this estimate, we obtain
o NEA s 2 (%0 8% AR
”g”Lz(Q‘S) =¢ —2 +28 —2, _2 + —2
AT Ly (2%) AC; 085 S @8y 1085 iy %)

> et (1 =206 17 (@) — Ce 7 D117 09

Combining this estimate with (3.31), we complete the proof. O
The proven lemma implies the asymptotics (2.4).
4. Proof of Theorem 2

We begin by showing that for sufficiently small ¢ the first N eigenvalues are A; (), m =1,..., N.If h_ =0, this
statement follows from Theorem 1 and the arguments of Section 6.1 in [5]. If A_ is not identically zero, we cannot
apply directly the above mentioned results from [5], but it is possible to extend their proof to the case h_ % 0 with
minor changes. Below we list the required changes and refer to [5] for the detailed proof.

The first change is that in our case by the function £ in [5] one should mean H. Suppose for a while that H is
strictly positive. The space £, is defined as consisting of the functions

_ 2 . w(xp+eh_(x1))
¥(x) = x(x1),/ SHGD sin SHOD .

The function v(x) in the potential W, defined in [5, Eq. (1.5)] should be introduced as

72(H'(x1)>  Qrh’_(x1) — H'(x1))?
3H2(x1) 4H2(x1) )

v(xy) =

The number M, as in [5], should be Hy. The definition of the operators Q. and 68 remain the same as in [5], and
the operator H is our operator G,,. Under such changes Theorems 1.2, 1.3 in [5] remain true. Throughout the proofs
of these theorems the function sin h x should be replaced by sin %&‘1)@”)) and in all the integrals w.r.t. x; the
limits of the integrations are —eh_(x1), eh4(x1). The other arguments in the proofs of Theorems 1.2, 1.3 remain
unchanged. Thus, these theorems are valid for the case _ £ 0 under the additional assumption H > 0.

Employing the proven Theorems 1.2, 1.3 for the case #_ # 0 and proceeding as in [5, Section 6.1] one can check
that in the case H > 0 the eigenvalues Aj ,,(¢), m =1, ..., N, are the first eigenvalues of — AD for ¢ small enough.
We also conclude that these eigenvalues are simple. Thus, for eachm=1,..., N the elgenvalue M m (&) is the unique
eigenvalue of — AD having the asymptotics (2.2) for n = 1 and given m. Hence the linear combinations yy ,, intro-
duced in Theorem 1 are the eigenfunctions associated with the eigenvalues A1 ,,.

It remains to prove the formulas (2.5). In the case considered n = m = k = 1. The operator G is the harmonic
oscillator, and its eigenvalues and eigenfunctions are known explicitly. Namely,

91/46—05,2/2 B (= Hy)\/?

/4 = 32
T HO

A11=6, D111)= 4.1)
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The first identity proves the formula for cél’ D The formula for cgl’ D follows from (2.3).
It is easy to check by direct calculation that

1 72H
gD _ 3

i lgenﬁsm%f+a¢Lb
2 3 (1,D 11 7T2H3
let @il = 492° & 21w = 4804 HY “2

Now we substitute these identities into formula (2.3) for cp;4> and arrive at formula (2.5) for cf‘l’l).

To proceed further, we need the formulas for the coefficients of the series (3.4) up to the order r}ﬁ. They read as
follows,

6y hsHo—hiH; , 6) haHo—hiH3—3hyH 4
Py = 2 & Py = 2 &,
2H 6H;

H HyHy — 3H?
5 3 6 4 Hy
O =—gpbh OB =
Hy

2hih HoH
(). 2hih2 2 H3 5
P = it 2H} i 60H] i

H2

p6) . 45HyHa Ho — 180H; — HeH; + 30H2H0$6 | hshiHo — h2H> +h3Hy _,

2 360H; Hp b

2h1 HaE hiH; +2hoH H2E?

) _ 11381 © _ _mi3 27 5 ®) ©) 251

05 BT 0, = Tsl’ Ry =0, Ry =—>
0 0 0
h3Ho — 2h H: haHy — 5hoHy — 2h H

5) 30 1) (6) 4Ho 23 13 5

P2 ZT&, P2 = 2H2 51,
0 0

5 Hj 6 5H2 — H4Hy

Q( ) = Ho‘glv Q( )—ZZT%']Z- 4.3)
It follows from (3.15), (3.21), (3.22) that
- 1 .
U4 ®) = 3 Hoh (1 = 262)sinwéa. (4.4)
In view of (3.23), (3.5) we can also find the function 1112(1’1) explicitly,
2H2 ]TZE4

(LD _ 1 2 3

v = ( 648H3H2§1 SO g (9HsHy,Ho — |1 H{ Hy — 81H,)
9H; — 9H,yHyHy + 11H32H0$2 L 3 109H3 11H, ) 45
288 Hy H2 VT 1280 3456H20  128Hoo ) '

Now we use the formulas (2.5) for ¢V, i <4, and (3.5), (3.9), (3.16), (3.17), (4.1)~(4.5) and obtain

4H3 4p1. 67
T H. 51 T H3§1 3 5
f5=(— T —21HyHoH, + 189H5 + 11H3 H
1944 Hr HY 2592H2ng( 2 5 Ho)
i 3 2 3
_M(IOSHsmHzHo—l—1815H2H3—72H2H5H0_55H3 Ho)
513712 3 272142 2 2.9
m(snwz Hy — 576 °h1h2” + 81 HyHy Hy — 109H; Hyy)
&1

+ m(znzmhz 247 Hyh hy + 3H3Ha Hy + 12n2H§h1)>¢1,1. (4.6)
2
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The function f5 is odd with respect to &, and therefore, in view of (3.19) and evenness of @ 1, the formula (2.5) is
valid for cgl’l) . Employing the obtained identity for fs, we can solve explicitly Eq. (3.18) for l113(1’1):

q,(l,l):(_ wH o e[ H;
’ 34992HS0°" " 15552H H2

(7H3 Ho + 81H; — 9HsH Ho)

2&5

] 3 s .
eag00H 725 (205HS Ho = 315Hs Hy HoHo — 1305Hs H + 108Hs H3 Ho)

& 3 o
(4455 Hy Hy Hy Ho — 2515H3 Ho — 3375 Hs H3 — 1728 H3 Hs H
31104OH0H23( AR 310 3H; 5 Hs Ho)

§

312 2 3
* Toscsomzie 1 S0H3 Ho + 3915 Hats Haty + 14445 Ha s Ho

— 1728 Hs H3 Hi — 1036807 Hs h1hy + 518407121{;‘111))@],1.

We substitute the relation obtained, the formulas (2.5) for ¢V, i <5, (3.5), (3.9), (3.16), (3.17), (4.1)=(4.6) into

i

(3.19) and arrive at the formula (2.5) for cél’ D The proof is complete.
5. Examples

We shall now apply our results to obtain the expansion of the first eigenvalue for different domains, and compare
the values obtained with a numerical approximation. We are indebted to Pedro Antunes for carrying out the necessary
numerical computations.

We have chosen five examples illustrating several possibilities for the functions H, hy and h_. The first three
correspond to algebraic curves, namely the circle, the lemniscate and the bean curve. For these &, = h_, and the fit
between the four-term asymptotic expansion and the numerical approximation is very good: for the lemniscate and
the bean curve the error is always below 2% and for the disk the maximum error is around 5%.

The last two examples have i # h_, the second being non-convex. Here we see that the error may become much
larger — in the last example it can go up to 50%.

Example 1 (Disk). Consider the disk centred at (1/2,0) and radius 1/2 for which we have H(x1) = 2h4(x1) =
2h_(x1) = 2(x1 — xlz)l/z. The maximum of H occurs at x; = 1/2 and we obtain the expansion given by (1.1).
Comparing these results with those of Daymond referred to in [6] we see that the error up to & equals one is maximal
at one and is around five per cent.

Example 2 (Lemniscate). Consider the lemniscate defined by
2
(3 +33) =27 — 23
In this case we have

1 1 1/2
H(x)) =2hy(x)) =2h_(x)) = 2[—5 —x+ S+ 8xf)1/2:| ,

and the maximum of H is now situated at +/3/(2+/2). This yields

22 237 97 593 &Y
re) = = — = 0(£?), 0.
1(¢) 2 + . +24 (64\/§n+ 1 >8+ (8 ) as & —

Example 3 (Bean curve). As a third example we consider the quartic curve defined by x; (x| — 1)(xf + x%) + xg =0.
We now have

Hoxy) =20y (x1) =2k (x1) = @e)2[1 = xp + (1 —x) 21+ 3x) 2],
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The maximum of H is situated at x; = 2/3 and we obtain

72 3157 127 (24229 +5\/§n’
600157 164/3

Example 4 (Convex, with hy # h_). Let hy (x1) = sin(;rx1) and h_(x1) = 7 (1 —x1)/2, yielding H(x1) = sin(wx1) +
(1 — x1)/2, which has a maximum at x; = 1/3. The expression for the eigenvalue asymptotics now becomes
3672 633/472 ,[9Q27 4637 +1672) 19
V31208 | V31 2m) % [ 163vV3+2m)2 ﬁ}
13273 18077 54657%  17257x° 371452
( 4608 + 31/22304 + 1296 + 31/211664> (33 +2m)3/2

9
AL(e) =

2
@4‘74‘5 >8+O(8), ass—>0.

AL(e) =

(9(82), as ¢ — 0.

Example 5 (Non-convex). Let hy(x1) = 1 + sin(7wx1/2) and h_(x1) = Tn(l — x1)/4, yielding H(x;) =1 +
sin(7wx1/2) + 7w (1 — x1)/4, which has its global maximum on (0, 1) at x; =2/21. We have

0.210941  1.79692
ri(e) = 2 T

+4.35119 + 60.5706 + O(e?), ase — 0,
&

where, for simplicity, we only presented the numerical values of the coefficients.
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