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Abstract

Given a probability measure μ on the n-torus T
n and a rotation vector P ∈ Rn, we ask whether there exists a minimizer to

the integral
∫
Tn |∇φ + P |2 dμ. This problem leads, naturally, to a class of elliptic PDE and to an optimal transportation (Monge–

Kantorovich) class of problems on the torus. It is also related to higher dimensional Aubry–Mather theory, dealing with invariant
sets of periodic Lagrangians, and is known as the “weak-KAM theory”.

Résumé

Etant donnés une mesure μ sur le tore n-dimensionnel T
n et un vecteur de rotation P ∈ Rn, on étudie la question de l’existence

d’un minimiseur pour l’intégrale
∫
Tn |∇φ + P |2 dμ. Ce problème conduit naturellement à une classe d’équations aux dérivées

partielles elliptiques et à une classe de problèmes de transport optimal (Monge–Kantorovich) sur le tore. Il est aussi lié à la théorie
d’Aubry–Mather en dimension supérieure, qui traite les ensembles invariants pour des Lagrangiens périodiques, connue sous le
nom de théorie KAM faible.

Keywords: Monge–Kantorovich; Optimal mass transport; Periodic Lagrangian; Effective Hamiltonian; Rotation vector; Dirichlet functional;
KAM theory

1. Overview

1.1. Motivation

Consider the functional

Hε
P (u) := ε2

2

∫
Tn

∣∣∇u + iε−1Pu
∣∣2

dx − G
(|u|) (1.1)

where T
n := R

n mod Z
n is the flat n-torus, P ∈ R

n a prescribed, constant vector, u ∈ W1,2(Tn;C) is normalized via∫
Tn |u|2 dx = 1 and G is convex (possibly nonlocal) functional of |u|. A critical point u of Hε

P can be considered as a
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periodic function on R
n. The function

u0(x) = eiP ·x/εu(x) (1.2)

is considered as a function on R
n as well.

Examples.

(i) G(|u|) = − ∫
Tn Ξ(x)|u|2 dx where Ξ is a smooth potential on T

n. A critical point of (1.1) is an eigenvalues
problem of the Schrödinger operator HP := −ε2(∇ + iP )2 + 2Ξ on the torus. The substitution (1.2) leads to a
Bloch state

−ε2�u0 + 2Ξu0 + Eu0 = 0 on R
n. (1.3)

(ii) Self-focusing nonlinear Schrödinger equation. Here G(|u|) = ∫
Tn |u|σ where 2 < σ < 2(2 +n)/n. An extremum

u of Hε
P with this choice is given by the nonlinear eigenvalue problem for u0 on R

n:

ε2�u0 + σ |u0|σ−1u0 = Eu0. (1.4)

(iii) The choice

G
(|u|) := sup

V ∈C1(Tn)

(
−

∫
Tn

1

2γ
|∇V |2 − V

(|u|2 − 1
))

dx,

leads to the Schrödinger Poisson system (see, e.g. [1,14,26]) for attractive (gravitational) field. Again, u0 solves

−ε2�u0 − V u0 = E(P )u0

where V is a periodic function on R
n solving �V + γ (|u0|2 − 1) = 0.

In addition to the (rather obvious) spectral asymptotic questions, there are additional motivations for the study of
this problem, as described below.

The short wavelength limit of the reduced wave equation in a periodic lattice is described as

�u0 + ε−2N(x)u0 = 0,

where N(x) is the (ε independent) periodic function representing the refraction index of the lattice and ε → 0 stands
for the wavelength. See, e.g. [21]. Suppose one can measure the intensity |u0| and the direction P̂ := P /|P | of the
carrier wavenumber of an electromagnetic wave u0(x) = eiP ·xu(x) in this lattice (here, again, u is periodic). Then N

can be recovered from

N ≡ 1

2
|∇φ + P̂ |2 (1.5)

where φ is the minimizer of F(ρ, P̂ ) for a normalized ρ = |u0|2 (see (1.6) below). Alternatively, suppose we need to
design a lattice for a prescribed electromagnetic intensity |u0|2 and wave propagation P̂ . Then (1.5) is the solution as
well!

1.2. The effective Hamiltonian

Note that, in cases (i)–(iii), I referred to critical points of Hε
P . If one looks at minimizers of this functional, or even

critical points of finite (ε-independent) Morse index, then one may expect singular limits as ε → 0. However, there is
a formal way to obtain nonsingular limits of these equations as ε → 0 as follows:

Substitute the WKB anzatz (see [15]) uε := √
ρ eiφ/ε in (1.1), where φ ∈ C1(Tn) and ρ ∈ C1(Tn) is nonnegative

function satisfying
∫

Tn ρ = 1. Then

lim
ε→0

Hε
P (uε) = 1

2

∫
n

|∇φ + P |2ρ(x)dx − G
(|ρ|1/2).
T
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Now, define

F(ρ,P ) := 1

2
inf

φ∈C1(Tn)

∫
Tn

|∇φ + P |2ρ(x)dx (1.6)

and

HG(ρ,P ) := F(ρ,P ) − G
(|ρ|1/2). (1.7)

Note that F is concave as a function of ρ for fixed P ∈ R
n. Then we can (at least formally) look for the maximizer of

HG(·,P ) over the set of densities ρ ∈ L1(Tn;R+). It is the asymptotic energy spectrum H associated with Hε
P :

ĤG(P ) := sup
ρ

{
HG(ρ,P ); ρ ∈ L

1(
T

n;R
+)

,

∫
Tn

ρ = 1

}
. (1.8)

The pair (φ,ρ) which realizes the minimum (resp. maximum) of F (resp. ĤG(·,P )) corresponds to an asymptotic
critical point of Hε

P and verifies the Euler–Lagrange equations:

∇ · [ρ(∇φ + P )
] = 0, (1.9)

1

2
|∇φ + P |2 − Gρ = E (1.10)

on T
n, where Gρ is the Frèchet derivative of ρ → G(|ρ|1/2) and E is a Lagrange multiplier corresponding to the

constraint
∫

Tn ρ = 1.
Of particular interest is the linear case (1.3). Here (1.7), (1.8) are reduced into

HΞ(ρ,P ) := F(ρ,P ) +
∫
Tn

Ξρ, (1.11)

ĤΞ (P ) := sup
ρ

{
HΞ(ρ,P ); ρ � 0,

∫
Tn

ρ = 1

}
(1.12)

and (1.10) takes the form of the Hamilton–Jacobi equation on the torus:

1

2
|∇φ + P |2 + Ξ = E (1.13)

which is independent of ρ and so is decoupled from (1.9).
Suppose now there exists a maximizer ρ0 of (1.12). Multiply (1.13) by ρ0 and integrate over T

n to obtain

E = F(ρ0,P ) +
∫
Tn

Ξρ0 := ĤΞ (P ). (1.14)

In particular, the Lagrange multiplier E is identical to the asymptotic energy spectrum ĤΞ (P ). An important point
to be noted, at this stage, is that the asymptotic spectrum is in the oscillatory domain of the periodic Schrödinger
equation, that is ĤΞ (P ) � maxTn Ξ necessarily holds for any P ∈ R

n, and ĤΞ (P ) > maxTn Ξ if |P | is sufficiently
large (see Proposition 4.1).

The function ĤΞ = ĤΞ (P ) defined in (1.14) is considered by Evans and Gomes [5,6] as the Effective Hamiltonian
corresponding to

hΞ(p,x) = |p|2/2 + Ξ(x).

If ψ(x,P ) := φ(x) is a solution of the Hamilton–Jacobi equation (1.13) corresponding to a given P , then a canonical
change of variables

p = ∇xψ + P ; �X = ∇P ψ + x

reduces the Hamiltonian equation to an integrable system defined by the Hamiltonian ĤΞ , that is, P is a cyclic variable
and hence a constant of motion.
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In general, such a solution does not exist for any P ∈ R
n. However, (1.12) suggests a way to define the effective

Hamiltonian ĤΞ without the assumption that (1.13) is solvable. We note, at this stage, that (1.12) seems to be the dual
of

ĤΞ (P ) = inf
φ∈C∞(Tn)

sup
x∈Tn

hΞ (∇φ + P , x) (1.15)

which was suggested by Gomes and Oberman [9] as a numerical tool for evaluating ĤΞ .

1.3. Objectives

As we shall see below, the supremum in (1.12) is not attained in L
1(Tn), in general, but in the set M of Borel

probability measures on T
n. This, together with (1.11), motivates us to extend the domain of F in (1.6) from the set of

nonnegative densities in L
1(Tn) to M. Similarly, the functional HΞ (1.11) is extended to M as well. Our first object

is

I. to define a generalized minimizer φ of F .

The effective Hamiltonian plays a major rule in the weak KAM theory. See [7,10,17,19,22] among other references.
For the convenience of the reader we review the fundamentals of the weak KAM theory and Mather measures in
Section 2. Our second object is

II. to relate the functional HΞ to the weak KAM theory. In particular, to relate the generalized minimizer φ of F to
the minimal Mather measure.

An excellent reference to the Monge–Kantorovich theory of optimal transportation is the book of Villani [23]. The
relation between M-K theory and the weak KAM theory was suggested in [4] and further elaborated in a series of
publications, among which [11,16,3]. Essentially, it relates the minimal (Mather) measures of a given Lagrangian to a
measure which minimizes a certain optimal transportation plan. The third object of this paper is

III. to approximate F and HΞ by an optimal transportation functions FT and HΞ,T , respectively.

Finally, we use the suggested functionals to establish an alternative to (1.15) for the evaluation of ĤΞ (P ):

IV. Establish a combinatorial search algorithm for evaluation of ĤΞ (P ) to any degree of approximation.

2. Lagrangian dynamics on the torus

2.1. The Aubrey–Mather theory and minimal orbits

Let

L(p, x) := |p|2
2

− Ξ(x), (2.1)

a Lagrangian function defined on R
n × R

n where the potential Ξ which is 1-periodic in all the variables x =
(x1, . . . , xn). For a given orbit (x(t),p(t)) of the associated Euler–Lagrange equation

ẋ = p; ṗ + ∇xΞ = 0, (2.2)

a rotation vector J ∈ R
n is assigned to this orbit provided the limit

J = lim|t |→∞ t−1x(t) (2.3)

exists. As a trivial example, consider the x-independent Lagrangian where Ξ ≡ 0. Since p is a constant of motion
and ẋ = p, the rotation vector is defined for each orbit via J = p. For general Ξ the rotation vector is not defined
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for any orbit, in general. The object of the classical KAM theory (see, e.g. [10]) is the study of small perturbation
of an integrable system, e.g. for Lagrangians of the form (2.1) where the potential Ξ is small. In particular, it studies
families of solutions of such systems which preserve the rotation vector.

In the eighties, Aubry [2] and Mather [18] (see also [20]) discovered that Lagrangian flows which induce a mono-
tone, symplectic twist maps on a two-dimensional annulus, possess orbits of any given rotation number (in the twist
interval), even if the corresponding Lagrangian is not close to an integrable one. The characterization of these orbits is
variational: They are minimizers of the Lagrangian action with respect to any local variation of the orbit. In general,
they are embedded in invariant tori of the Lagrangian flow.

There is still another approach to invariant tori of Lagrangian/Hamiltonian systems. An invariant Lagrangian torus
can be obtained as a solution of the corresponding Hamilton–Jacobi equation as follows: Suppose there exists, for
some P ∈ Rn, solution φ ∈ C1,1(Rn) which is 1-periodic in each of the coordinates xj of x = (x1, . . . , xn), for

1

2

∣∣∇φ(x) + P
∣∣2 + Ξ(x) = E, E ∈ R.

Then the graph of the function (x,P +∇φ(x)) represents an invariant torus of the Lagrangian flow associated with L

[17]. The projection on x of any orbit in this invariant set is obtained by a solution of the system

ẋ = P + ∇φ(x). (2.4)

In the case n = 2 the rotation vector J ∈ R
2 is defined as in (2.3) for any such orbit, given by (2.4).

2.2. Weak KAM and minimal invariant measures

For dimension higher than 2, there are counter-examples: There exists a Lagrangian system on the 3-dimensional
torus, induced by a metric on this torus, for which there are no minimal geodesics, save for a finite number of rotation
vectors [12]. Moreover, it is not known that the limit (2.3) exists for any orbit of (2.4), if n > 2. Hence, an extension
of Aubry–Mather theory to higher dimensions is not a direct one. If, however, we replace the notion of an orbit by
an invariant measure, then it is possible to extend the Aubry–Mather theory to higher dimensions. The relaxation of
orbits to invariant measures (and the corresponding minimal orbits to minimal invariant measures) leads to the “weak
KAM theory”.

Let ML be the set of all probability measures on the tangent bundle T
n × R

n which are invariant with respect to
the flow induced by the Lagrangian L. The rotation vector α : ML → R

n is

α(ν) :=
∫

Tn×Rn

p dν(x,p), (2.5)

and, for any α ∈ R
n, the set of all MJ

L ⊂ ML corresponds to all ν ∈ ML for which α(ν) = J .
A minimal measure associated with a rotation vector α is defined by

νJ = arg min
ν∈MJ

L

∫
Tn×Rn

Ldν ∈ MJ
L. (2.6)

Its dual representation is given by minimizing the Lagrangian LP := L(p, x) − P · p over the whole set of invariant
measures1 ML. The measure νP ∈ ML is called a Mather measure if

νP = arg min
ν∈ML

∫
Tn×Rn

LP dν ∈ ML. (2.7)

These minimal measures are relaxations of minimal invariant orbits of the Aubry–Mather theory. Their properties
and the geometry of their supports are the fundamental ingredients of the developing weak KAM theory. For further
details, see [19,17,7] or consult [22] for applications and further references.

1 Note that ν is an invariant measure of L if and only if it is an invariant measure of LP .
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It should be stressed, however, that the investigation of the functional F (3.1) carried in the present paper is not
restricted to minimal (Mather) measures. In fact, Mather measures (and their T

n projections) are defined only for
smooth enough Lagrangian systems which allow the existence of dynamics, e.g. (2.1) where Ξ ∈ C1,1(Tn). Since we
are motivated, between other things, by quantum dynamics and wave equation, we must assume much less, e.g. the
Schrödinger equation (1.3) is well posed if the potential Ξ is only continuous.

3. An overview of the main results

3.1. List of symbols and definitions

(1) T
n = R

n/Z
n the n-dimensional flat torus. It is parameterized by x = (x1, . . . , xn) mod Z

n. The Euclidian distance
‖x − y‖Tn on T

n is defined as minz∈Zn |x − y − z|, where x, y ∈ R
n and | · | is the Euclidian norm on R

n.
(2) Tn × Rn is the tangent bundle of Tn, that is, Tn × Rn := Rn × Tn. A vector in Rn is denoted by a bold letter,

e.g. v. The same symbol will also define a vector field, that is, a section in T
n × R

n, e.g. v = v(x).
(3) M(D) stands for the set of all probability normalized Borel measures μ on some metric space D, subjected to

the dual topology of C(D): |μ| := supφ∈C(D),|φ|∞=1

∫
D

φ dμ. We denote M := M(Tn) as the set of all such
measures on the torus T

n.
(4) A Borel map S : D1 → D2 induces a map S# : M(D1) → M(D2), as follows: S#μ(A) := μ(S−1(A)) for any

Borel set A ∈ D2. S#μ is called the push-forward of μ ∈ M(D1) into M(D2).
(5) π : T

n × R
n → T

n is the projection (natural embedding) of T
n in T

n × R
n, namely π(x,p) = x for (x,p) ∈

T
n × R

n. In particular, π# : M(Tn × R
n) → M so μ = π#ν ∈ M is the T

n marginal of ν ∈ M(Tn × R
n).

(6) MT := C([0, T ], M). An element μ̂ ∈ MT is denoted by μ̂ := μ(t), 0 � t � T . For any μ1,μ2 ∈ M, the
set MT (μ1,μ2) ⊂ M is defined as all μ̂ ∈ MT for which μ(0) = μ1,μ(T ) = μ2. If μ1 = μ2 ≡ μ we denote

MT (μ) := MT (μ,μ).
(7) M(2) := M(Tn × T

n) and Πi : T
n × T

n → T
n the projection on the i factor, i = 1,2. For μ1 ∈ M, μ2 ∈ M

define M(2)(μ1,μ2) as the set of all σ ∈ M(2) for which Πi,#σ = μi , i = 1,2. M(2)(μ) := M(2)(μ,μ).
(8) C1(Tn) is the set of all C1 smooth functions on T

n.
(9) Recall the definition of a subgradient of a function h : B → R defined on a Banach space B: For b ∈ B ,

∂bh := {
b∗ ∈ B∗, h(b′) � h(b) + 〈b′ − b, b∗〉 for any b′ ∈ B

}
.

3.2. F and its generalized minimizers

There is a close relation between the minimal (Mather) measures described in Section 2 and the minimizer of the
function F defined in (1.6), where ρ is the density of the T

n marginal of a minimal measure.
In general, however, there are no smooth densities to the marginals of minimal measures on T

n. Motivated by this,
we extend the definition of F to the set M of all probability Borel measures on T

n:

F(μ,P ) := 1

2
inf

φ∈C1(Tn)

∫
Tn

|∇φ + P |2 dμ (3.1)

and

F ∗(μ,J ) := sup
P∈Rn

[
P · J − F(μ,P )

]
(3.2)

its convex dual on R
n.

The first question we address is the existence of minimizers of (3.1) for a general measure μ ∈ M. Evidently, there
is no sense of solutions to the elliptic problem (1.9) for such μ. Our first result, given in Theorem 4.1, indicates the
existence and uniqueness of a minimizer in a generalized sense (see Definition 4.2 below). In Theorem 4.2 we discuss
the relation between these minimizers and the solutions of the elliptic problem (1.9).
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3.3. The effective Hamiltonian

The second question concerns the maximizers of (1.14), extended to the entire set M. Let

ĤΞ (P ) := sup
μ∈M

[
F(μ,P ) +

∫
Tn

Ξ dμ

]
, (3.3)

where Ξ ∈ C(Tn). Theorem 4.3 relates the generalized minimizers of Theorem 4.1 to the minimal (Mather) measure
associated with the Lagrangian (2.1) corresponding to P via (2.7). It claims that, if Ξ ∈ C1,1(Tn), then the gener-
alized solution of F(μ,P ) corresponding to μ which maximizes (3.3) is, indeed, a Mather measure associated with
the Lagrangian (2.1). In this sense, the weak minimizers of Theorem 4.1 can be considered as generalized Mather
measures for Lagrangians with only continuous potentials.

3.4. On the continuity of F

The third question addressed is the continuity property of F with respect to μ. It is rather easy to observe that F is
convex in P on R

n, and concave in μ on M. These imply that F is continuous on R
n, but only upper-semi-continuous

in the natural topology of M, which is the weak-∗ topology induced by C∗(Tn). That is, if μj → μ in C∗(Tn), then

lim
j→∞F(μj ,P ) � F(μ,P ) (3.4)

holds. In general, there is no continuity of F over M with the C∗ topology.

Examples.

(1) For any atomic measure μ = ∑
miδxi

∈ M, we can easily verify that F(μ,P ) ≡ 0 for any P ∈ R
n. In particular,

if μN is a sequence of empirical measures: μN := N−1 ∑N
i=1 δxi

satisfying μN → μ ∈ M in C∗(Tn), then the
inequality in (3.4) is strict whenever F(μ,P ) > 0.

(2) Let n = 1, so T
n is reduced to the circle S

1. Suppose μ ∈ M(S1) admits a smooth density μ(dx) = ρ(x)dx. If
ρ > 0 on S

1 then the continuity equation (1.9) reduces to a constant j = ρ(φx + P). This implies

F(μ,P ) = 1

2

∫
S1

ρ|φx + P |2 dx = j2

2

∫
S1

ρ−1 dx (3.5)

as well as∫
S1

ρ−1 dx =
∫
S1

j−1(φx + P)dx = P

j
�⇒ j = P

( ∫
S1

ρ−1 dx

)−1

.

Substitute in (3.5) to obtain

F(μ,P ) = |P |2
2

( ∫
S1

ρ−1 dx

)−1

.

In particular,
∫

S1 ρ−1 dx = ∞ iff F(μ,P ) = 0 for P �= 0. Any sequence μj (dx) = ρj (x) dx satisfying∫
S1 ρ−1

j = ∞ which converges in C∗(S1) to μ(dx) = ρ(x)dx satisfying ρ ∈ C1(S1), ρ > 0 on S1, is an example
of strict inequality in (3.4).



528 G. Wolansky / Ann. I. H. Poincaré – AN 26 (2009) 521–545
3.5. Lagrangian mappings

In Theorem 4.4 we show that F can be approximated, as a function on M, by a weakly continuous function
FT (·,P ) which satisfies FT (μ,P ) → F(μ,P ) as T → 0, for any μ ∈ M. For this, we represent an extension of F

to orbits μ̂ : [0, T ] → M , μ̂|(t) = μ(t) ∈ M, t ∈ [0, T ], given by

F(μ̂,P , T ) := 1

T
inf

φ∈C1
0 (Tn×(0,T ))

T∫
0

∫
Tn

[
∂φ

∂t
+ 1

2
|∇xφ + P |2

]
dμ(t) dt,

and set FT (μ,P ) as the supremum of F(μ̂,P , T ) over all such orbits satisfying μ(0) = μ(T ) = μ. It is shown that
FT (μ,P ) = |P |2/2 − DT P (μ)/(2T 2) where DP (μ) is defined by the optimal Monge–Kantorovich transport plant
from μ to itself, subjected to the cost function c(x, y) := ‖x − y − P‖2

Tn , where ‖ · ‖Tn is the Euclidian metric
on Tn. As an example, consider the case μ = δx0 for some x0 ∈ Tn. Then DP (δx0) = |{P }|2, where {·} stands for the
fractional part {P } := P mod Z

n. So

FT (δx0 ,P ) = |P |2/2 − ∣∣{PT }∣∣2
/
(
2T 2).

If T is sufficiently small so {T P } = T P then FT (δx0 ,P ) = 0.

3.6. Combinatorial search for the minimal measure

Our last object is to suggest an alternative to the numerical algorithm for the calculation of the effective Hamiltonian
based on (1.15), introduced in [9]. We take an advantage of the following facts

(i) An optimal transportation functional (such as FT (μ,P )) are continuous in the weak topology of M.
(ii) The set of empirical measures is dense in the set of all measures M.

(iii) On the set of empirical measures of a fixed number of sampling points j , an optimal transportation problem is
reduced to a finite combinatorial problem on the set of permutation on {1, . . . , j } (Birkhoff’s theorem).

Applying (i)–(iii) to the result of Theorem 4.4, we obtain a discrete, combinatorial algorithm for evaluating the effec-
tive Hamiltonian ĤΞ (P ). This is summarized in Theorem 4.6.

4. Detailed description of the main results

4.1. Minimizers of the Dirichlet functional over the n-torus

Let us recall the definition, for P ∈ R
n, J ∈ R

n and μ ∈ M:

F(μ,P ) := 1

2
inf

φ∈C1(Tn)

∫
Tn

|∇φ + P |2 dμ, (4.1)

F ∗(μ,J ) := sup
P∈Rn

[
P · J − F(μ,P )

]
. (4.2)

Let also E a function on M × R
n × C1(Tn) defined as

E (μ,J , φ) := 1

2

{∣∣∣∣J −
∫
Tn

∇φ dμ

∣∣∣∣2

−
∫
Tn

|∇φ|2 dμ

}
. (4.3)

Next, we consider the notion of weak solution of (1.9), corresponding to the minimizer of (4.1):
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Definition 4.1.

(1) The set Λ ⊂ M(Tn × R
n) consists of all probability measures ν(dx dp) for which∫

Tn×Rn

p · ∇θ(x) dν = 0 ∀θ ∈ C1(
T

n
)

and
∫

Tn×Rn

|p|2 dν < ∞.

(2) Given μ ∈ M, the set Λμ ⊂ Λ of liftings of μ is composed of all ν ∈ Λ for which π#ν = μ.
(3) For each J ∈ R

n, the set ΛJ
μ is defined as all ν ∈ Λμ which satisfies∫

Tn×Rn

p dν = J .

Remark 4.1. The set Λμ is never empty. Indeed, ν = δ
p
0 ⊗ μ ∈ Λμ for any μ ∈ M. However, the set ΛJ

μ can be
empty. For example, if F(μ,P ) = 0 for all P ∈ R

n then ΛJ
μ = ∅ for any J �= 0.

Definition 4.2. For given P ∈ R
n, ν ∈ Λμ is a weak solution of F(μ,P ) provided∫

Tn×Rn

[ |p|2
2

− p · P
]

dν �
∫

Tn×Rn

[ |p|2
2

− p · P
]

dξ ∀ξ ∈ Λμ.

The existence and uniqueness of weak solution is described in Theorem 4.1 below.

Theorem 4.1. For any μ ∈ M and P ∈ R
n, there exists a unique weak solution ν ∈ Λμ of F(μ,P ). Moreover,

F(μ,P ) = −
∫

Tn×Rn

[ |p|2
2

− p · P
]

dν, (4.4)

and

F ∗(μ,J ) = 1

2
inf

ν∈Λ
J
μ

∫
Tn×Rn

|p|2 dν, (4.5)

where the RHS of (4.5) is attained for the weak solution of F(μ,P ), provided 2 J ∈ ∂P F(μ,P ).
If μ(dx) = ρ(x)dx where ρ ∈ C1(Tn) and ρ > 0 on T

n, then a weak solution ν of F(μ,P ) takes the form
ν(dx dp) = δ

p
P+∇φ(x)

⊗ ρ(x)dx where φ is the classical solution of the elliptic equation

∇[
ρ(∇xφ + P )

] = 0 on T
n. (4.6)

Remark 4.2. Eq. (4.6) is strongly elliptic equation if ρ > 0, so it has a unique (up to a constant), classical solution.
See, e.g. [8].

Remark 4.3. As a by-product we obtain the relation

F ∗(μ,J ) = inf
φ∈C1(Tn)

E (μ,J , φ),

see Lemma 5.1(3).

Example 1. If μ(dx) = αρ(x)dx + (1 − α)δx0 then the weak solution associated with P ∈ R
n is

ν = δ
p
P+∇φ ⊗ αρ(x)dx + (1 − α)δ

p
0 ⊗ δx0,

where φ is the classical solution of (4.6).

2 The existence of a subgradient of F with respect to P , among other results, is stated and proved in Lemma 5.1, Section 5.2.
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We may observe that F is concave on M for fixed P ∈ R
n. In particular, it is upper-semi-continuous in the C∗

topology of M:

lim
n→∞F(μn,P ) � F(μ,P ) (4.7)

whenever μn → μ in C∗(Tn).

Example 2. If μn is an atomic measure then F(μn,P ) = 0 for any P ∈ R
n. In particular, if μn = n−1 ∑n

j=1 δ
x

(n)
j

is a

sequence of empirical measures approximating μ ∈ M then the LHS of (4.7) is identically zero.

In Theorem 4.2 and Corollary 4.1 we demonstrate that, in an appropriate sense, any weak solution is a limit of
classical ones.

Theorem 4.2. If limμj = μ in the C∗(Tn) and

lim
j→∞F(μj ,P ) = F(μ,P ) (4.8)

holds, then there exists a subsequence of weak solutions νj of F(μj ,P ) along which

lim
j→∞νj = ν (4.9)

holds in C∗(Tn × R
n), where ν is a weak solution of F(μ,P ).

Moreover, there exists a sequence of smooth measures μj = ρj dx so that ρj ∈ C∞(Tn) and ρj > 0 on T
n, for

which (4.8) holds for any P ∈ R
n.

Corollary 4.1. The weak solution of F(μ,P ) is the weak limit

lim
j→∞ δp−P−∇φj

dp ⊗ ρj dx = ν

where φj are the solutions of

∇ · (ρj (∇φj + P )
) = 0

and μj = ρjdx → μ as guaranteed by Theorem 4.2.

Definition 4.3. Given a continuous function Ξ ∈ C(Tn),

Ĥ ∗
Ξ(J ) := sup

μ∈M

∫
Ξ dμ − F ∗(μ,J ). (4.10)

Likewise

ĤΞ (P ) := sup
μ∈M

∫
Ξdμ + F(μ,P ). (4.11)

Lemma 4.1. Ĥ ∗
Ξ is the negative of the convex dual of ĤΞ with respect to Rn. Than is: Ĥ ∗

Ξ(J ) = − supP∈Rn{P · J −
ĤΞ (P )}.

Proposition 4.1. ĤΞ (P ) � maxTn Ξ and Ĥ ∗
Ξ(J ) � maxTn Ξ hold for any P ,J ∈ R

n. If |P | (resp. |J |) is large
enough, then the inequality is strong.

Open problem. Is ĤΞ (P ) > maxTn Ξ for any P �= 0?

Lemma 4.2. For any Ξ ∈ C(Tn) P ∈ R
n there exists μ0 ∈ M verifying the maximum in (4.11). There exists

J ∈ ∂P F(μ0,Ξ) ⊂ ∂P ĤΞ (·) for which μ0 verifies the maximum in (4.10).
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We end this section by stating the connection between maximizers of ĤΞ and Ĥ ∗
Ξ and the minimal invariant

measures of the weak-KAM theory:

Theorem 4.3. If Ξ is smooth enough (say, Ξ ∈ C2(Tn)) and ν is a Mather measure (2.7) of the Lagrangian
L = |p|2/2 − Ξ(x) − p · P on Tn × Rn and μ = π#ν then ν is weak solution of F(μ,P ), and is a maximizer of
ĤΞ (P ) in (4.11).

Moreover, ν verifies (2.6) where J is the rotation number α(ν) given by (2.5).

4.2. Extension to time dependent measures

We now extend the definition of F and F ∗ to the set of M-valued orbits on the interval [0, T ].
Define, for3 μ̂ ∈ MT

F (μ̂,P , T ) := 1

T
inf

φ∈C1
0 (Tn×(0,T ))

T∫
0

∫
Tn

[
∂φ

∂t
+ 1

2
|∇xφ + P |2

]
dμ(t) dt. (4.12)

Let also E a function on MT × R
n × C1

0(Tn × (0, T )) defined as:

E (μ̂,J , φ,T ) :=
{

1

2

∣∣∣∣∣J − 1

T

T∫
0

∫
Tn

∇φ dμ(t) dt

∣∣∣∣∣
2

− 1

T

T∫
0

∫
Tn

(
φt + 1

2
|∇φ|2

)
dμ(t) dt

}
. (4.13)

The analog of Definition 4.1 is

Definition 4.4.

(1) The set Λ̂T ⊂ MT consists of all orbits of probability measures ν̂ : [0, T ] → M(Tn × R
n), ν̂|(t) := ν(t) ∈

M(Tn × R
n), for which

T∫
0

∫
Tn×Rn

(
θt + p · ∇xθ(x, t)

)
dν(t) dt = 0 ∀θ ∈ C1

0

(
T

n × (0, T )
)

and

T∫
0

∫
Tn×R

|p|2 dν(t) dt < ∞.

(2) Given μ̂ ∈ MT , the set Λ̂T ,μ̂ ⊂ Λ of liftings of μ̂ is composed of all ν̂ ∈ Λ̂T for which π#ν̂ = μ̂, that is, π#ν(t) =
μ(t) for any t ∈ [0, T ].

(3) For each J ∈ R
n, the set Λ̂J

T ,μ̂
is defined as all ν̂ ∈ Λ̂T ,μ̂ which satisfies

T −1

T∫
0

∫
Tn×Rn

p dν(t) dt = J .

Definition 4.5. For given P ∈ R
n, ν̂ ∈ Λ̂T ,μ̂ is a weak solution of F(μ̂,P , T ) provided

T∫
0

∫
Tn×Rn

[ |p|2
2

− p · P
]

dν(t) dt �
T∫

0

∫
Tn×Rn

[ |p|2
2

− p · P
]

dξ(t) ∀ξ̂ ∈ Λ̂μ̂.

The T -orbit analogue of Theorem 4.1 is

3 See point (6) in Section 3.1.
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Proposition 4.2. For any μ̂ ∈ MT and P ∈ R
n, there exists a unique weak solution ν̂(0) ∈ Λ̂T ,μ̂ of F(μ̂,P , T ).

Moreover,

F(μ̂,P , T ) = − 1

T

T∫
0

∫
Tn×Rn

[ |p|2
2

− p · P
]

dν
(0)
(t) dt = − inf

ν̂∈Λ̂T ,μ̂

1

T

T∫
0

∫
Tn×Rn

[ |p|2
2

− p · P
]

dν(t) dt. (4.14)

The Legendre transform of F(μ̂,P , T ) with respect to P is

F ∗(μ̂,J , T ) = sup
φ∈C1

0 (Tn×(0,T ))

E (μ̂,J , φ) = 1

T
inf

ν̂∈Λ̂J
T ,μ̂

T∫
0

∫
Tn×Rn

[ |p|2
2

− p · P
]

dν(t) dt, (4.15)

where the RHS of (4.15) is attained for the weak solution of F(μ̂,P , T ), provided J ∈ ∂P F(μ̂,P , T ).
If μ(t)(dx) = ρ(x, t) dx where ρ ∈ C1

0(Tn ×(0, T )) and ρ > 0 on T
n ×[0, T ] then a weak solution ν̂ of F(μ̂,P , T )

takes the form ν(t) = δp−P−∇φ(x,t) dp ⊗ ρ(x, t) dx where φ is the classical solution of the elliptic equation

∇x

[
ρ(∇xφ + P )

] = −ρt . (4.16)

Definition 4.6. Given μ1,μ2 ∈ M, P ∈ R
n and Ξ ∈ C(Tn), define4

HΞ,T (μ1,μ2,P ) := sup
μ̂∈MT (μ1,μ2)

[
1

T

T∫
0

∫
Tn

Ξ dμ(t) dt + F(μ̂,P , T )

]
. (4.17)

Likewise, for any J ∈ R
n:

H ∗
Ξ,T (μ1,μ2,J ) := sup

μ̂∈MT (μ1,μ2)

[
1

T

T∫
0

∫
Tn

Ξ dμ(t) dt − F ∗(μ̂,J , T )

]
. (4.18)

If μ1 = μ2 ≡ μ ∈ M then HΞ,T (μ,P ) := HΞ,T (μ,μ,P ) and H ∗
Ξ,T (μ,J ) := H ∗

Ξ,T (μ,μ,J ). If Ξ ≡ 0, set
FT (μ,P ) := H0,T (μ,P ) and F ∗

T (μ,J ) := −H ∗
0,T (μ,J ).

Proposition 4.3. For any Ξ ∈ C(Tn), P ∈ R
n and μ1,μ2 ∈ M there exists an orbit μ̂ ∈ M(μ1,μ2) realizing (4.17).

Likewise, for any J ∈ R
n there exists an orbit μ̂ ∈ M(μ1,μ2) realizing (4.18).

Proposition 4.4. For any T > 0, Ξ ∈ C(Tn), P ∈ R
n and μ ∈ M,

HΞ,T (μ,P ) �
∫
Tn

Ξ dμ + F(μ,P ), (4.19)

but

sup
μ∈M

HΞ,T (μ,P ) = ĤΞ (P ) := sup
μ∈M

∫
Tn

Ξ dμ + F(μ,P ) ∀T > 0, (4.20)

and the maximizer of ĤΞ (P ) (4.11) is the same as the maximizer of HΞ,T (μ,P ) for any T > 0.

4.3. Optimal transportation

Recall the definition of the action associated with the Lagrangian (2.1): AΞ
P : T

n × T
n × R → R:

AΞ
P (y, x,T ) = inf

x(·)

{
1

T

T∫
0

( |ẋ − P |2
2

− Ξ
(
x(s)

))
ds; x(0) = y, x(t) = x

}
. (4.21)

4 Recall Section 3.1(6).
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Definition 4.7. For P ∈ R
n, μ1,μ2 ∈ M define5 the Monge–Kantorovich distance with respect to the action AΞ :

DT
P (μ1,μ2,Ξ) := min

σ∈M(2)(μ1,μ2)

∫
Tn

AΞ
P (x, y,T ) dσ (x, y). (4.22)

If μ1 = μ2 ≡ μ ∈ M we denote

DT
P (μ,Ξ) := min

σ∈M(2)(μ)

∫
Tn

AΞ
P (x, y,T ) dσ (x, y). (4.23)

Example 4.1. If Ξ ≡ 0 then A0
P (y, x,T ) = ‖x − y − T P‖2/(2T 2), where ‖ · ‖ is the Euclidian metric on T

n. In
particular

DT
P (μ) := DT

P (μ,0) = min
σ∈M(2)(μ)

1

2T 2

∫
Tn

‖x − y − T P‖2 dσ(x, y). (4.24)

Proposition 4.5. For any μ1,μ2 ∈ M, Ξ ∈ C(Tn), P ∈ R and T > 0

HΞ,T (μ1,μ2,P ) = |P |2
2

− DT
P (μ1,μ2,Ξ).

In particular

HΞ,T (μ,P ) = |P |2
2

− DT
P (μ,Ξ). (4.25)

Lemma 4.3. DT
P : M × C(Tn) → R is continuous in both the weak C∗ topology of M and in the sup topology

of C(Tn).

Proposition 4.6. For any μ ∈ M, Ξ ∈ C(Tn), P ∈ R

lim
T →0

HΞ,T (μ,P ) =
∫
Tn

Ξ dμ + F(μ,P ). (4.26)

As a corollary to (4.26) and Lemma 4.3, evaluated for Ξ = 0, we obtain

Theorem 4.4. The functional HΞ,T (Definition 4.6) is continuous on M with respect to the C∗ topology. In addition

lim
T →0

HΞ,T (μ,P ) = HΞ(μ,P )

for any μ ∈ M, P ∈ R
n.

By Definition 4.6 and Theorem 4.4

Corollary 4.2.

lim
T →0

FT (μ,P ) = F(μ,P )

for any μ ∈ M, P ∈ R
n.

5 Recall Section 3.1(7).
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4.4. A combinatorial search algorithm

Next, Birkhoff’s theorem implies

Lemma 4.4. Given x1, . . . , xj ∈ T
n. For μj := j−1 ∑j

1 δxi
,

DT
P (μj ,Ξ) = min

σ∈Πj

j∑
i=1

AΞ
P (xi, xσ(i), T )

where Πj is the set of all permutations of {1, . . . , j}. In particular

DT
P (μj ) = 1

2T 2
min
σ∈Πj

j∑
i=1

‖xi − xσ(i) − T P‖2.

By Proposition 4.5, Theorem 4.4, Corollary 4.2 and Lemma 4.4 we obtain the following algorithm for evaluation
of HΞ(μ,P ) and F(μ,P ):

Theorem 4.5. Let μj := j−1 ∑j

i=1 δ
x

(j)
i

is a sequence of measures converging C∗ to μ ∈ M. Then

lim
T →0

lim
j→∞DT

P (μj ,Ξ) = |P |2
2

− HΞ(μ,P ). (4.27)

In particular

lim
T →0

lim
j→∞

1

2T 2
min
σ∈Πj

j∑
i=1

∥∥x
(j)
i − x

(j)

σ (i)
− T P

∥∥2 = |P |2
2

− F(μ,P ).

We may use now Theorem 4.5 to evaluate the effective Hamiltonian ĤΞ (P ). In fact, we do not need to take the
limit T → 0, as shown below:

Definition 4.8. Given j ∈ N, let

DT
P (j,Ξ) := min

x1,...,xj ∈Tn
min
σ∈Πj

j∑
i=1

AΞ
P (xi, xσ(i), T )

where Πj as defined in Lemma 4.4.

Theorem 4.6. For any Ξ ∈ C(Tn), P ∈ R
n and T > 0,

ĤΞ (P ) = |P |2
2

− lim
j→∞DT

P (j,Ξ). (4.28)

5. Proof of the main results

5.1. Duality

The key duality argument for minimizing convex functionals under affine constraints is summarized in the follow-
ing proposition. This is a slight generalization of Proposition 4.1 in [24]. The proof is sketched in the appendix of this
paper. See also [25]).

Proposition 5.1. Let C a real Banach space and C∗ its dual. Let Z a subspaces of C. Let h ∈ C∗. Let Z∗ ⊂ C∗ given
by the condition z∗ ∈ Z∗ iff 〈z∗ − h, z〉 = 0 for any z ∈ Z. Let F : C∗ → R ∪ {∞} a convex function and

E := inf∗ ∗ F (c∗). (5.1)

c ∈Z
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Then

sup
z∈Z

inf
c∗∈C∗

[
F (c∗) − 〈c∗ − h, z〉] � E, (5.2)

and if A0 := {c∗ ∈ C∗; F (c∗) � E} is compact (in the ∗-topology of C∗), then there is an equality in (5.2).
In particular, E < ∞ if and only if Z∗ �= ∅. In this case there exists z∗ ∈ Z∗ for which E = F (z∗).

Remark 5.1. The case E < ∞ does not implies, in general, the existence of z ∈ Z realizing (5.2).

5.2. An auxiliary result

Lemma 5.1.

(1) F is convex on Rn as function of P and concave on M as function of μ.
(2) F ∗ is convex on both R

n (as a function of J ) and M.
(3) F ∗(μ,J ) = infφ∈C1(Tn) E (μ,J , φ).

(4) The sub-gradients ∂P F(μ, ·) and ∂J F ∗(μ, ·) are nonempty convex cones in R
n for any μ ∈ M and P ∈ R

n (resp.
J ∈ R

n) and satisfies P ∈ ∂J F ∗(μ, ·) iff J ∈ ∂P F(μ, ·).
(5) F is upper-semi-continuous in the C∗ topology of M for any P ∈ R

n, and F ∗ is lower-semi-continuous for the
same topology for nay J ∈ R

n.

In particular, from point (5) of this lemma:

Corollary 5.1. If x0 ∈ T
n and μn → δx0 then limn→∞ F(μn,P ) = F(δx0 ,P ) = 0.

Proof of Lemma 5.1. Concavity of F on M is a result of its definition as a n infimum of functionals over this convex
set. The strict convexity on R

n follows from its quadratic dependence:

|P 1 + ∇φ1|2
2

+ |P 2 + ∇φ2|2
2

�
∣∣∣∣P 1 + P 2

2
+ ∇φ1 + ∇φ2

2

∣∣∣∣2

,

holds for any P 1,P 2 ∈ R
n and any φ1, φ2 ∈ C1(Tn). If φ1 approximates the maximizer of F(μ,P 1) (resp. φ2 ap-

proximates the maximizer of F(μ,P 2)), then integrating the above inequality with respect to μ yields

F(μ,P 1) + F(μ,P 2) �
∫
Tn

∣∣∣∣P 1 + P 2

2
+ ∇φ1 + ∇φ2

2

∣∣∣∣2

dμ � 2F

(
μ,

P 1 + P 2

2

)
.

The same arguments apply to F ∗. In addition, from (4.1), (4.2)

F ∗(μ,J ) = sup
P∈Rn

[
P · J − F(μ,P )

] = sup
φ∈C1(Tn)

{
sup

P∈Rn

[
P · J − 1

2

∫
Tn

|P + ∇φ|2 dμ

]}
,

and from

E (μ,J , φ) = sup
P∈Rn

[
P · J − 1

2

∫
Tn

|P + ∇φ|2 dμ

]
we obtain (3). (4)–(6) follow from (1)–(2). �
5.3. Proof of Theorem 4.1

We now apply Proposition 5.1 as follows:
Let C the space of all continuous functions on T

n × R
n, equipped with the norm

‖q‖ := sup
n n

{ |q(x,p)|
1 + |p|

}
.

(x,p)∈T ×R
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Define

Z := {
p · ∇xφ, φ ∈ C1(

T
n
)}

. (5.3)

The dual space C∗ contains the set M(Tn × R
n) of finite Borel measures on T

n × R
n which admit a finite first

moment. If ν ∈ C∗ is such a measure then the duality relation is given by

〈ν, q〉 =
∫

Tn×Rn

q dν ∀q ∈ C.

Given a probability measure μ ∈ M, define

Fμ(ν) =
{∫

Tn×Rn(|p|2/2 − P · p) dν if ν ∈ M(Tn × R
n) ∩ C∗ and satisfies ν(dx,R

n) = μ(dx),

∞ otherwise

(recall Definition 4.1). Evidently, Fμ is a convex function on C∗. Note also that the set A0 := {c∗; Fμ(c∗) < E} ⊂ C∗
is compact for any E < ∞ by Prokhorov theorem.

Lemma 5.2. ν ∈ Z∗ and Fμ(ν) < ∞ if and only if ν ∈ Λμ.

Substitute this Fμ for F in (5.1) where h ≡ 0 it follows that

E = inf
ν∈Λμ

∫
Tn×Rn

(|p|2/2 − P · p)
ν(dx). (5.4)

On the other hand

inf
c∗∈C∗ F (c∗) − 〈c∗, z〉 = inf

ν∈C∗

∫
Tn×Rn

(
1

2
|p|2 − p · (∇xφ + P )

)
dν

= inf
ν∈Λμ

1

2

∫
Tn×Rn

|p − P − ∇xφ|2 dν − 1

2

∫
Tn

|∇xφ + P |2 dμ. (5.5)

We choose ν = δ
p

(P+∇xφ) ⊗ μ, so the first term in (5.5) is zero. Then

sup
z∈Z

inf
c∗∈C∗ F (c∗) − 〈c∗, z〉 = sup

φ∈C1(Tn)

[
−1

2

∫
Tn

|∇xφ + P |2 dμ

]
:= −F(μ,P ) (5.6)

where F as defined in (4.1). The last part of Proposition 5.1 implies the existence of a weak solution ν ∈ Λμ of
F(μ,P ).

To show the uniqueness of the weak solution, note that any Borel measure ν on T
n × R

n whose T
n marginal is

μ can be written as ν(dx dp) = μ(dx)Qx(dp) where Qx is a Borel probability measure on Rn defined for μ-a.e.
x ∈ T

n. If ν satisfies Definition 4.2, then Qx = δ
p
v where v(x) := ∫

Rn pQx(dp) is a Borel vector filed, defined μ-a.e.
If there are ν1 �= ν2 which realize the minimum in Definition 4.2 and v1,v2 the corresponding vector fields, then

F(μ,P ) = 1

2

∫
Tn

|v1|2 dμ = 1

2

∫
Tn

|v2|2 dμ

implies

1

2

∫
Tn

∣∣∣∣v1 + v2

2

∣∣∣∣2

dμ < F(μ,P ),

unless v1 = v2 μ-a.e., which contradicts the minimality of ν1 and ν2.
From (5.6) it follows that the Legendre transform of the function F(μ, ·) is
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F ∗(μ,J ) = sup
P∈Rn

sup
φ∈C1(Tn)

[
P · J − 1

2

∫
Tn

|∇xφ + P |2 dμ

]

= sup
φ∈C1(Tn)

sup
P∈Rn

[
P · J − 1

2

∫
Tn

|∇xφ + P |2 dμ

]
= sup

φ∈C1(Tn)

E (μ,J , φ) (5.7)

where E as defined in (4.3).
To prove the last part, note that ν0 := ρ(x)dx ⊗ δ(p−∇ψ−P ) dp ∈ Λμ whenever ψ is the solution of (4.6). Indeed,

by (4.6) and integration by parts∫
Tn×Rn

∇φ · p dν0 =
∫
Tn

∇φ · (P + ∇ψ)ρ(x)dx =
∫
Tn

φ∇ · [(P + ∇ψ)ρ(x)
]
dx = 0 (5.8)

for any φ ∈ C1(Tn). Hence, (5.4) implies

E �
∫

Tn×Rn

(|p|2/2 − P · p)
dν0 = 1

2

∫
Tn

|∇ψ + P |2ρ(x)dx − P ·
∫
Tn

(∇ψ + P )ρ(x) dx. (5.9)

However, ψ realizes the infimum in (4.1), so (5.4), (5.6) and Proposition 5.1 imply

E = −1

2

∫
Tn

|∇ψ + P |2ρ(x)dx

which, together with (5.9), imply∫
Tn

|∇ψ + P |2ρ(x)dx − P ·
∫
Tn

(∇ψ + P )ρ(x) dx � 0.

However, (5.8) with φ = ψ implies the equality above, hence the equality in (5.9) as well. In particular, ν0 mini-
mizes (5.4).

5.4. Proof of Theorem 4.2

First, the sequence {νj } is tight in M(Tn × R
n) since T

n is compact and
∫

Tn×Rn |p|2 dνj are uniformly bounded.
By Prokhorov theorem it follows that the weak limit νj → ν ∈ M(Tn × R

n) exists (for a subsequence). Also, ν ∈ Λμ

since the condition given in Definition 4.1 is preserved under the weak-∗ convergence.
Next

− lim
j→∞F(μj ,P ) = lim

j→∞

∫
Tn×Rn

(|p|2/2 − P · p)
dνj �

∫
Tn×Rn

(|p|2/2 − P · p)
dν

� inf
ξ∈Λμ

∫
Tn×Rn

(|p|2/2 − P · p)
dξ = −F(μ,P ). (5.10)

By assumption (4.8) it follows that the equality folds in (5.10). In particular, ν is the weak solution of F(μ,P ).
To prove the second part, let ηε ∈ C∞(Tn) a sequence of positive mollifiers on T

n satisfying limε→0 ηε = δ(·), and
με = ηε ∗ μ. Then με(dx) = ρε(x) dx where ρε ∈ C∞(Tn) are strictly positive on T

n and

lim
ε→0

με = μ.

Next, let ν be a weak solution of F(μ,P ) and νε = ηε ∗ ν. If ν = μ(dx)νx(dp) and q = q(p) any ν measurable
function, then q̃(x) := ∫

Rn q(p)νx(dp) is μ measurable and∫
n n

q(p) dν =
∫
n

q̃(x)μ(dx)
T ×R T
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while ∫
Tn×Rn

q(p) dνε =
∫

Tn×Rn

∫
Tn

dxηε

(|y − x|)μ(dy)νy(dp)q(p)

=
∫
Tn

∫
Tn

ηε

(|x − y|)dxμ(dy)q̃(y) =
∫
Tn

dxμ(dy)q̃(y) =
∫

Tn×Rn

q(p) dν (5.11)

for any ν-measurable function q on R
n. Then∫

Tn×Rn

∇θ · p dνε(x) =
∫

Tn×Rn

∇(ηε ∗ θ) · p dν(x) = 0

for any θ ∈ C∞(Tn) hence νε ∈ Λμε .
Define

vε(x) = ρ−1
ε (x)

∫
Rn

p dνε(x, dp), x ∈ T
n.

Then vε ∈ C∞(Tn) and ∇ · (ρεvε) = 0. Let φε be the unique solution of the elliptic equation

∇ · (ρε[∇φε + P ]) = 0. (5.12)

Define

ν̂ε(dx dp) := ρε(x) dx ⊗ δ(p−P−∇φε) dp.

Then (5.12) implies, as in (5.8), that ν̂ε ∈ Λμε . By (4.4) and (5.11) and the second part of Theorem 4.1

−F(μ,P ) :=
∫

Tn×Rn

(|p|2/2 − P · p)
dν =

∫
Tn×Rn

(|p|2/2 − P · p)
dνε

�
∫

Tn×Rn

(|p|2/2 − P · p)
dν̂ε = −F(με,P ), (5.13)

hence

lim
ε→0

F(με,P ) � F(μ,P ) (5.14)

for any P ∈ R
n. But, since F is concave in μ via Lemma 5.1 it follows that there is an equality in (5.14).

5.5. Proof of Lemma 4.1

Since F is convex on R
n for fixed μ and concave on M for fixed P we may use the Min–Max theorem [13] to

obtain

Ĥ ∗
Ξ(J ) = sup

μ∈M
inf

P∈Rn

[ ∫
Tn

Ξ dμ + F(μ,P ) − P · J
]

= inf
P∈Rn

{
sup

μ∈M

[ ∫
Tn

Ξ dμ + F(μ,P )

]
− P · J

}
= − sup

P∈Rn

{
P · J − ĤΞ (P )

}
. (5.15)

5.6. Proof of Proposition 4.1

Let Ξ(x0) = maxTn Ξ(x). Let μn → δx0 . By Lemma 5.1(5), we obtain the weak inequality for the r.h.s. of (4.11)
defining ĤΞ (P ). To obtain the strong inequality use, e.g., the uniform Lebesgue measure μ = dx on T

n. Then the
minimizer φ of F (4.1) verifies ∇ · (∇φ + P ) = 0, that is, �φ = 0 on T

n which implies ∇φ ≡ 0. Hence F(dx,P ) =
|P |2/2. We obtain the strong inequality if |P |2/2 + ∫

n Ξ > maxTn Ξ . The proof for Ĥ ∗ is analogous.

T
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5.7. Proof of Lemma 4.2

The existence of a maximizer μ of (4.10) follows from the lower-semi-continuity of F ∗ (hence of H ∗
Ξ ) with respect

to the C∗ topology of M, as claimed in Lemma 5.1(5).
Let

HΞ(μ,P ) :=
∫

Ξ dμ + F(μ,P ), H ∗
Ξ(μ,J ) :=

∫
Ξ dμ − F ∗(μ,J ). (5.16)

Then, by Definition 4.3, ĤΞ (P ) = HΞ(μ0,P ) � HΞ(μ,P ) for any μ ∈ M, and Ĥ ∗
Ξ(J ) = sup

μ∈M H ∗
Ξ(μ,J ). By

Lemma 4.1

ĤΞ (P ) − Ĥ ∗
Ξ(J ′) � P · J ′

holds for any J ′ ∈ R
n, and the equality above takes place if and only if J ′ = J ∈ ∂P ĤΞ (·). Hence

HΞ(μ0,P ) − H ∗
Ξ(μ,J ′) � P · J ′ (5.17)

holds for any μ ∈ M and any J ′ ∈ R
n. The equality holds if and only if J ′ = J ∈ ∂P ĤΞ (·) and μ which verifies the

maximum of H ∗
Ξ(·,J ). From (5.16), (5.17)

F(μ0,P ) + F ∗(μ,J ′) +
∫
Tn

Ξ(dμ0 − dμ) � P · J ′. (5.18)

Let now μ = μ0. Then (5.18) implies

F(μ0,P ) + F ∗(μ0,J
′) � P · J ′, (5.19)

and, if there is an equality in (5.19) for some J ′, then J ′ ∈ ∂P ĤΞ (·). However, we know, by definition of F ∗ as the
Legendre transform of F with respect to P , that there is, indeed, an equality in (5.19) provided J ′ ∈ ∂P F(μ0, ·). This
verifies ∂P F(μ0, ·) ⊂ ∂P ĤΞ .

5.8. Proof of Theorem 4.3

Assume ν ∈ ML is a Mather measure on T
n × R

n. Theorem 5.1.2 of [7] implies the existence of a conjugate pair
φ+ � φ− ∈ Lip(Tn) where the domain φ+ = φ− contains the projected Mother set which, in turn, contains the support
of the projection μ of ν on T

n. In addition, Corollary 4.2.20 of [7] implies that either functions satisfies

1

2
|∇φ + P |2 + Ξ � E, (5.20)

and for some E ∈ R, with an equality on the projected Mather set (in particular, on the support of μ).
We show that μ is also a maximizer of ĤΞ (P ) (4.11).
Let φ be either φ+ or φ−. Let ηε ∈ C∞(Tn) nonnegative mollifier function on T

n, supported in the ball |x| < ε and
satisfying

∫
Tn ηε = 1. Let φε := φ ∗ ηε . Then φε ∈ C∞(Tn) and ∇φε = ηε ∗ ∇φ. The Jensen’s inequality implies that

ηε ∗ |∇φ + P |2 �
∣∣∇φε + P

∣∣2
, (5.21)

so, by (5.20), (5.21)

1

2

∣∣∇φε + P
∣∣2 + Ξ � E + Ξ − ηε ∗ Ξ.

Given δ > 0, there exists ε > 0 for which |Ξ − ηε ∗ Ξ | < δ on Tn. Hence

1

2

∣∣∇φε + P
∣∣2 + Ξ � E + δ.

So, for any μ̃ ∈ M:

E + δ �
∫
n

(
1

2

∣∣∇φε + P
∣∣2 + Ξ

)
dμ̃ � F(μ̃,P ) +

∫
n

Ξ dμ̃ = ĤΞ (P ),
T T
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where the second inequality follows from the definition (4.1) of F(μ,P ) and from φε ∈ C1(Tn). Since δ > 0 can be
arbitrarily small it follows that ĤΞ (P ) � E. Hence μ = π#ν is, indeed, a maximizer of ĤΞ (4.11).

Finally, if J = α(ν) then J ∈ ∂P ĤΞ and the last part of the theorem follows from Lemma 4.2.

5.9. Proof of Proposition 4.2

The proof is analogous to this of Theorem 4.1, utilizing Proposition 5.1. We only sketch the new definitions in-
volved, generalizing those given in the proof of Theorem 4.1 to the time periodic case.

Let C to be the space of all continuous functions on T
n × R

n × [0, T ], equipped with the norm

‖q‖ := sup
(x,p,t)∈Tn×Rn×[0,T ]

{ |q(x,p, t)|
1 + |p|

}
.

Define

Z := {
φt + p · ∇xφ, φ ∈ C1

0

(
T

n × (0, T )
)}

. (5.22)

The dual space C∗ contains the set MT of M-valued orbits on [0, T ] of bounded first moment. If ν̂ ∈ C∗ is such an
orbit then the duality relation is given by

〈ν̂, q〉 :=
T∫

0

∫
Tn×Rn

q dν(t) dt ∀q ∈ C.

Given an orbit μ̂ ∈ MT , define

Fμ̂(ν̂, T ) :=
∫

Tn×Rn×[0,T ]

(|p|2/2 − P · p)
dν(t) dt

if ν̂ ∈ MT

(
T

n × R
n × [0, T ]) ∩ C∗ and ν(t)

(
dx,R

n
) = μ(t)(dx) a.e.,

Fμ̂(ν̂, T ) = ∞ otherwise. (5.23)

The rest of the proof is equivalent to this of Theorem 4.1.

5.10. Proof of Proposition 4.3

First we note that FT (μ,P ) � 0 for any μ ∈ M and P ∈ R
n. Indeed, by Theorem 4.2:

FT (μ,P ) � F(μ,P ) � 0. (5.24)

Let μ̂(n) be a maximizing sequence of (4.17). By (4.14) and (5.24) it follows that there exists C > 0 for which

1

T

T∫
0

∫
Tn×Rn

( |p|2
2

− p · P
)

dν
(n)
(t) dt � C (5.25)

where ν̂(n) are the weak solutions corresponding to μ̂(n).
Let

‖μ̂‖2
T := − inf

φ∈C1(Tn×[0,T ])

T∫
0

(
φt + 1

2
|∇xφ|2

)
dμ(t) dt.

We recall form [24] that

‖μ̂‖2
T = 1

2
inf

ν̂∈Λ̂μ̂

T∫ ∫
n n

|p|2 dν(t) dt. (5.26)
0 T ×R
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Moreover, Lemma 2.2 in [24] implies that the set {μ̂ ∈ Λ̂μ̂; ‖μ̂‖T < C} is uniformly bounded in the 1/2-Hölder norm
with respect to the Wasserstein metric:

W1(μ1,μ2) := sup
φ∈C1(Tn),|∇φ|�1

∫
Tn

φ(x)(dμ1 − dμ2) = inf
σ∈M(2)(μ)

∫
Tn

∫
Tn

|x − y|T dσ,

(recall points (i) and (vi) in list of symbols). Since The W1-Wasserstein metric is a metrization of the weak topology of
measures on compact domains, it follows (see Corollary 2.1 in [24]) that the set {μ̂ ∈ Λ̂μ̂; ‖μ̂‖T < C} is pre-compact
in the topology of C([0, T ];C∗(Tn)).

Next, since |p|2/2 − P · p � |p|2/4 − |P |2 it follows from (5.25) and (5.26) that

C � 1

T
inf

ν̂∈Λ̂
μ̂(n)

T∫
0

∫
Tn

( |p|2
2

− P · p
)

dν(t) dt � 1

2T

∥∥μ̂(n)
∥∥2

T
− |P |2.

Hence, the limit

μ̂ = lim
n→∞ μ̂(n) ∈ Λ̂μ̂

exists in the weak topology of C∗([0, T ];C∗(Tn)), along a subsequence of the maximizing sequence. Moreover, μ̂ is
a maximizer of (4.17) by concavity of F(μ̂,P , T ) with respect to μ̂.

5.11. Proof of Proposition 4.4

The inequality (4.19) follows directly from (4.17), upon substituting the constant orbit μ̂ ≡ μ(t) ≡ μ for t ∈ [0, T ].
To verify (4.20) we use (4.14) to write

sup
μ∈M

HΞ,T (μ,P ) = sup
ν̂∈Λ̂T

1

T

T∫
0

∫
Tn×Rn

{
Ξ −

[ |p|2
2

− p · P
]}

dν(t) dt. (5.27)

But, the RHS of (5.27) is unchanged if we replace ν̂ by ν := T −1
∫ T

0 dν(t). Moreover, ν ∈ Λ since Definition 4.4 is

reduced to Definition 4.1 for θ(x, t) → θ(x) := T −1
∫ T

0 θ(x, t) dt . Hence (5.27) is reduced into

sup
μ∈M

HΞ,T (μ,P ) = sup
ν∈Λ

∫
Tn×Rn

{
Ξ −

[ |p|2
2

− p · P
]}

dν,

which yields (4.20) via (4.14).

5.12. Proof of Lemma 4.3

The lower-semi-continuity of DT
P with respect to C∗(M) follows from the dual formulation

DT
P (μ) = sup

ψ1,ψ2

( ∫
Tn

ψ1 dμ +
∫
Tn

ψ2 dμ

)
where the supremum above is taken over all pairs ψ1,ψ2 ∈ C(Tn) verifying ψ2(y) + ψ1(x) � AΞ

P (x, y,T ) for any
x, y ∈ Tn. For details, see [23, Chapter 1].

The upper-semi-continuity follows directly from definition (4.23). Indeed, let σj ∈ M(2)(μ) verifies (4.23) for
μi ∈ M and μj → μ in C∗(M), then the sequence σj is compact in the set M(Tn × T

n) in the weak topology. Let
σ be a limit of this sequence. Then σ ∈ M(2)(μ), and

DT
P (μ) �

∫
Tn

AΞ
P (x, y,T ) dσ = lim

j→∞

∫
Tn

AΞ
P (x, y,T ) dσj = lim

j→∞DΞ
P (μj ).

The continuity of DΞ
T with respect to Ξ in the C0(Tn) topology is verified by the continuous dependence of AΞ

T

on Ξ .
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5.13. Proof of Proposition 4.5

Definition 4.6 of ĤT corresponds to Definition 3.1 of L in [24]. In addition, Definition 3.3 [24] of K corresponds
to (4.22). Then, Proposition 4.6 is a result of the identity L(μ1,μ2) = K(μ1,μ2), which follows from the Main
Theorem of [24].

In fact, the extended Lagrangian L is defined, in [24], for a Lagrangian L = |p|2/2 − Ξ(x), i.e. for P = 0, but the
proof of the Main Theorem in [24] can be extended to L = |P − p|2/2 − Ξ in a direct way.

5.14. Proof of Proposition 4.6

Since ĤT (μ,P ,Ξ) �
∫
Ξ dμ + F(μ,P ) by Definition 4.6, it follows from Proposition 4.5 that

|P |2
2

− DT
P (μ,Ξ) �

∫
Tn

Ξ dμ + F(μ,P ).

Thus, we only need to show that

lim
T →0

DT
P (μ,Ξ) � |P |2

2
−

∫
Tn

Ξ dμ − F(μ,P ).

We may reduce to the case Ξ ≡ 0, hence we need to verify

lim
T →0

|P |2
2

− DT
P (μ) � F(μ,P ). (5.28)

Indeed, from (4.21), (4.22) we observe

lim
T →0

DT
P (μ,Ξ) = −

∫
Tn

Ξ dμ + lim
T →0

DT
P (μ).

If σT verifies the minimum in (4.22), then

DT
P (μ) = 1

2T 2

∫
Tn

∫
Tn

‖y − x + PT ‖2 dσT (x, y) � |P |2
2

. (5.29)

Let

G := {
(x, y) ∈ T

n × T
n; ‖y − x‖∞ � 1/3

}
,

where ‖x‖∞ is the metric on T
n defined as minz∈Z |x − z|∞. Then, for sufficiently small T , ‖y − x + PT ‖2 � 1/16

for (x, y) ∈ G so from (5.29)∫ ∫
G

dσT (x, y) � 16T 2|P |2. (5.30)

Let Bn ⊂ R
n be the unite box −1/2 � xi � 1/2, i = 1, . . . , n. Let φ ∈ C0(T

n × T −1Bn/3). Extend φ to a function in
C0(T

n × T −1Bn) by φ(x,p) = 0 if p ∈ T −1Bn − T −1Bn/3. Further, extend φ into a function on T
n × R

n as a T −1

periodic function in p, that is, φ is a function on T
n × (Tn/T ). Set

y = x + pT , φ̂(x, y) := φ

(
x,

y − x

T

)
.

Then φ̂ ∈ C(Tn × T
n). Given σT which verifies the minimum in (4.22), we define a corresponding measure νT on

T
n × R

n, supported in T
n × (Bn/(3T )), as follows: For any φ ∈ C0(T

n × Bn/(3T )),∫
n

∫
n

φ(x,p) dνT (x,p) =
∫
n

∫
n

φ̂(x, y) dσT (x, y). (5.31)
T B /(3T ) T T
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By (5.30) we obtain

1 �
∫
Tn

∫
Rn

dνT � 1 − 16T 2|P |2. (5.32)

We now verify that

lim
T →0

νT = ν0 ∈ Λμ (5.33)

(see Definition 4.1(2)). First, we show that the sequence of measures on T
n × R

n is tight. For this, we use (5.31) with
φ(x,p) = |p − P |2 · 1Bn/(3T )(p) and (5.29) to obtain

1

2

∫
Tn

∫
Rn

|p − P |2 dνT <
|P |2

2
.

This, and (5.32), imply that the limit (5.33) is a probability measure on T
n ×R

n, that is ν0 ∈ M(Tn ×R
n). Moreover,

ν0(dx,R
n) = μ(dx). To show that ν0 ∈ Λμ, we proceed as follows: Let q ∈ C∞(R+) satisfies:

(i) q ∈ C∞(R+).
(ii) q(s) = 1 for 0 � s � 1/3.

(iii) q(s) = 0 for 2/5 � s � 1/2.
(iv) q(1/2 − s) = q(1/2 + s) for any s ∈ [0,1/2].
(v) q(s) � 1 for s ∈ [0,1].

(vi) q(s + 1) = q(s) for all s ∈ R
+.

Let

Q(p) = ΠN
1 q

(|pi |
)

for p = (p1, . . . , pn) ∈ R
n, QT (p) = Q(T p).

Given ψ ∈ C1(Tn), set φ
(1)
T (x,p) = ψ(x + pT )QT (p) and φ

(2)
T (x,p) = ψ(x)QT (p) if p ∈ Bn/(3T ), φT = 0 other-

wise. Then, by (5.31)∫
Tn

∫
Rn

φ
(1)
T (x,p)dνT (x,p) =

∫
Tn

∫
Tn

Q(y − x)ψ(y)dσT (x, y)

=
∫
Tn

∫
Tn

ψ(y)dσT (x, y) +
∫
Tn

∫
Tn

(
Q(y − x) − 1

)
ψ(y)dσT (x, y)

=
∫
Tn

ψ(y)dμ(y) +
∫
Tn

∫
Tn

(
Q(y − x) − 1

)
ψ(y)dσT (x, y). (5.34)

The same argument applies also to φ(2) and yields∫
Tn

∫
Rn

φ(2)(x,p)dνT (x,p) =
∫
Tn

ψ(x)dμ(x) +
∫
Tn

∫
Tn

(
Q(y − x) − 1

)
ψ(x)dσT (x, y). (5.35)

However, Q(y − x) − 1 = 0 on the set G so, by (5.30)∫
Tn

∫
Tn

(
Q(y − x) − 1

)
ψ(x)dσT (x, y) =

∫
Tn

∫
Tn

(
Q(y − x) − 1

)
ψ(y)dσT (x, y) � 16T 2|P |2|ψ |∞. (5.36)

Subtract (5.35) from (5.34), divide by T and let T → 0 and use (5.36) to obtain

0 = lim
T →0

∫
Tn

∫
Rn

φ(2)(x,p) − φ(1)(x,p)

T
dνT (x,p)

= lim
T →0

∫
n

∫
n

QT (p)
ψ(x + T p) − ψ(x)

T
dνT (x,p) =

∫
n

∫
n

∇ψ · p dν0(x,p), (5.37)
T R T R
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which implies for any ψ ∈ C1(Tn), hence ν0 ∈ Λμ as claimed.
Let now consider

∫
Tn QT (p)|p − P |2 dνT . By (5.31)

1

2

∫
Tn

∫
Bn/(3T )

QT (p)|p − P |2 dνT (x,p) = 1

2
T −2

∫
Tn

∫
Tn

Q(x − y)‖x − y − T P ‖2 dσT (x, y). (5.38)

Since σT is a minimizer of (4.24) and QT � 1, it follows that

1

2
T −2

∫
Tn

∫
Tn

Q(x − y)‖x − y − T P ‖2 dσT (x, y) � DT
P (μ). (5.39)

On the other hand, νT is supported on Bn/(3T ) by definition, so

1

2

∫
Tn

∫
Bn/(3T )

QT (p)|p − P |2 dνT (x,p) = 1

2

∫
Tn

∫
Rn

|p − P |2 dνT (x,p). (5.40)

On the other hand

lim
T →0

∫
Tn

∫
Rn

|p − P |2 dνT (x,p) �
∫
Tn

∫
Rn

|p − P |2 dν0(x,p). (5.41)

From(5.38)–(5.41) we obtain

1

2

∫
Tn

∫
Rn

|p − P |2 dν0(x,p) � lim
T →0

DT
P (μ),

hence

lim
T →0

[ |P |2
2

− DT
P (μ)

]
� −

∫
Tn

∫
Rn

( |p|2
2

− P · p
)

dν0(x,p). (5.42)

Since we already proved that ν0 ∈ Λμ, then Theorem 4.1 and (5.42) verify (5.28).

5.15. Proof of Theorem 4.6

To prove (4.28) we use (4.20) and (4.25) together with

lim
j→∞DT

P (j,Ξ) = min
μ∈M

DT
P (μ,Ξ). (5.43)

To establish (5.43) note, first, that DT
P (j,Ξ) � inf

μ∈M DT
P (μ,Ξ) for any j by definition, so it is enough to establish

the inequality

lim sup
j→∞

DT
P (j,Ξ) � inf

μ∈M
DT

P (μ,Ξ).

Let now {μj } be a sequence of empirical measures, where, for each j , μj contains exactly j atoms, and so that
μ = limj→∞ μj in C∗. Then DT

P (μj ,Ξ) � DT
P (j,Ξ) by definition, while limj→∞ DT

P (μj ,Ξ) = DT
P (μ,Ξ) by

Lemma 4.3.
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