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Abstract

In [J.-Y. Chemin, I. Gallagher, On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Annales
Scientifiques de l’École Normale Supérieure de Paris, in press] a class of initial data to the three dimensional, periodic, incom-
pressible Navier–Stokes equations was presented, generating a global smooth solution although the norm of the initial data may
be chosen arbitrarily large. The aim of this article is twofold. First, we adapt the construction of [J.-Y. Chemin, I. Gallagher, On
the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Annales Scientifiques de l’École Normale
Supérieure de Paris, in press] to the case of the whole space: we prove that if a certain nonlinear function of the initial data is small
enough, in a Koch–Tataru [H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations, Advances in Mathematics 157
(2001) 22–35] type space, then there is a global solution to the Navier–Stokes equations. We provide an example of initial data
satisfying that nonlinear smallness condition, but whose norm is arbitrarily large in C−1. Then we prove a stability result on the
nonlinear smallness assumption. More precisely we show that the new smallness assumption also holds for linear superpositions
of translated and dilated iterates of the initial data, in the spirit of a construction in [H. Bahouri, J.-Y. Chemin, I. Gallagher, Re-
fined Hardy inequalities, Annali di Scuola Normale di Pisa, Classe di Scienze, Serie V 5 (2006) 375–391], thus generating a large
number of different examples.

Keywords: Navier–Stokes equations; Global wellposedness

1. Introduction

1.1. On the global wellposedness of the Navier–Stokes system

We consider the three dimensional, incompressible Navier–Stokes system in R3,

(NS)

⎧⎨⎩
∂tu − �u + u · ∇u = −∇p,

divu = 0,

u|t=0 = u0.
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Here u is a three-component vector field u = (u1, u2, u3) representing the velocity of the fluid, p is a scalar denoting
the pressure, and both are unknown functions of the space variable x ∈ R3 and of the time variable t ∈ R+. We have
chosen the kinematic viscosity of the fluid equal to one for simplicity – a comment on the dependence of our results
on viscosity is given further down in this introduction.

It is well known that (NS) has a global, smooth solution if the initial data is small enough in the scale invariant

space Ḣ
1
2 , where we recall that Ḣ s is the set of tempered distributions f with Fourier transform f̂ in L1

loc(R
3) and

such that

‖f ‖Ḣ s
def=

(∫
R3

|ξ |2s
∣∣f̂ (ξ)

∣∣2
dξ

) 1
2

is finite. We recall that the scaling of (NS) is the following: for any positive λ, the vector field u is a solution associated
with the data u0 if uλ is a solution associated with u0,λ, where

uλ(t, x) = λu
(
λ2t, λx

)
and u0,λ(x) = λu0(λx).

The result in Ḣ
1
2 is due to H. Fujita and T. Kato in [10] (see also [22] for a similar result, where the smallness of u0

is measured by ‖u0‖L2‖∇u0‖L2 ). Since then, a number of works have been devoted to proving similar wellposedness
results for larger classes of initial data; one should mention the result of T. Kato [17] where the smallness is measured
in L3 (see also [15]) and the result of M. Cannone, Y. Meyer and F. Planchon (see [4]) where the smallness is measured

in the Besov space Ḃ
−1+ 3

p
p,∞ . Let us recall that, for positive σ ,

‖u‖Ḃ−σ
p,r

def=∥∥t
σ
2
∥∥S(t)u

∥∥
Lp

∥∥
Lr(R+, dt

t
)

where S(t) = et� denotes the heat flow. The importance of this result can be illustrated by the following example: if φ

is a function in the Schwartz space S(R3), let us introduce the family of divergence free vector fields

φε(x) = cos

(
x3

ε

)
(∂2φ,−∂1φ,0).

Then, for small ε, the size of ‖φε‖Ḃ−σ
p,r

is εσ .
Let us also mention the result by H. Koch and D. Tataru in [18] where the smallness is measured in the

space BMO−1, defined by

‖u‖BMO−1
def= ‖u‖

Ḃ−1∞,∞ + sup
x∈R3

R>0

R− 3
2

( ∫
P(x,R)

∣∣S(t)u(y)
∣∣2

dy dt

) 1
2

,

where P(x,R) = [0,R2] × B(x,R) and B(x,R) denotes the ball of radius R centered at zero.
As observed by H. Koch and D. Tataru, this norm seems to be the ultimate norm for the initial data for which

the classical Picard’s iterative scheme can work. Indeed the first iterate, S(t)u0 must be in L2 locally in R+ × R3.
In particular, S(t)u0 must be in L2([0,1] × B(0,1)). Then considering the norm of the space must be invariant by
translation as well as by the scaling of the equation, we get the norm ‖ · ‖BMO−1 . Moreover, let us notice that we have

sup
x∈R3

R>0

R− 3
2

( ∫
P(x,R)

∣∣S(t)u(y)
∣∣2

dy

) 1
2

�
∥∥S(t)u

∥∥
L2(L∞)

and thus ‖u‖
Ḃ−1∞,∞ � ‖u‖BMO−1 � ‖u‖

Ḃ−1
∞,2

.

Moreover the space Ċ−1 = Ḃ−1∞,∞ seems to be optimal independently of the method of resolution, due to the
following argument (see [1] for instance). Let B be a Banach space continuously included in the space S ′ of tempered
distributions on R3. Let us assume that, for any (λ, a) ∈ R+

	 × R3,∥∥f
(
λ(· − a)

)∥∥ = λ−1‖f ‖B.

B
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Then we have that |〈f, e−|·|2〉| � C‖f ‖B . By dilation and translation, we deduce that

‖f ‖Ċ−1 = sup
t>0

t
1
2
∥∥S(t)f

∥∥
L∞ � C‖f ‖B.

We have proved that any Banach space included in S ′, translation invariant and which has the right scaling is included
in Ċ−1.

Let us point out that none of the results mentioned so far are specific to the Navier–Stokes equations, as they do
not use the special structure of the nonlinear term in (NS).

Our aim in this paper is to go beyond the smallness condition on the initial data and to exhibit arbitrarily large initial
data in Ċ−1 which generate a unique, global solution. We refer among others to [9,11,13,16,19,20,23] or [24] where
different types of examples are provided. This was also performed in [8] in the periodic case, where we presented
a new, nonlinear smallness assumption on the initial data, which may hold despite the fact that the data is large.
That result uses the structure of the nonlinear term, as it is based on the fact that the two dimensional Navier–Stokes
equation is globally well posed.

The first theorem of this paper consists in a result of global existence under a nonlinear smallness hypothesis (The-
orem 1 below). The proof consists mainly in introducing an idea of [6] in the proof of the Koch and Tataru Theorem.
The nonlinear smallness hypothesis is, roughly speaking, that the first iterate S(t)u0 · ∇S(t)u0 is exponentially small
with respect to u0.

Then we exhibit an example of a family of initial data with very large Ċ−1 norm which satisfies the nonlinear
smallness hypothesis. This example fits the structure of the nonlinear term u · ∇u.

Then, we study the stability of this nonlinear smallness condition, but not in the usual sense of a perturbation by a
small vector field. This problem of a small perturbation was solved by I. Gallagher, D. Iftimie and F. Planchon in [13]
and by P. Auscher, S. Dubois and P. Tchamitchian in [1].

Our purpose is different. Once constructed an initial data generating a global solution, we want to generate a large
family of global solutions that may not be close to the one we start with, in the Ċ−1 norm. This is done with a fractal
type transform (see the forthcoming Definition 1.3). Roughly speaking, this is the linear superposition of an arbitrarily
large number of dilated and translated iterates of the initial data, and we will see that the initial data so-transformed
still satisfies the nonlinear smallness assumption. That of course enables one to construct a very large class of initial
data satisfying that smallness assumption; the transformation is based on a construction of [2].

1.2. Definitions

Before presenting more precisely the results of this paper, let us give some definitions and notation. We shall be
using Besov spaces, which are defined equivalently using the Littlewood–Paley decomposition or the heat operator.
As both definitions will be useful in the following, we present them both in the next definition.

Definition 1.1. Let ϕ ∈ S(R3) be such that ϕ̂(ξ) = 1 for |ξ | � 1 and ϕ̂(ξ) = 0 for |ξ | > 2. Define, for j ∈ Z, the

function ϕj (x)
def= 23j ϕ(2j x), and the Littlewood–Paley operators Sj

def= ϕj ∗· and �j
def= Sj+1 −Sj . Let f be in S ′(R3).

Then f belongs to the homogeneous Besov space Ḃs
p,q(R3) if and only if

• The partial sum
∑m

−m �jf converges towards f as a tempered distribution;

• The sequence εj
def= 2js‖�jf ‖Lp belongs to �q(Z).

In that case

‖f ‖Ḃs
p,q

def=
(∑

j∈Z

2jsq‖�jf ‖q
Lp

) 1
q

and if s < 0, the one has the equivalent norm

‖f ‖Ḃs
p,q

∼ ∥∥t−
s
2
∥∥S(t)f

∥∥
Lp

∥∥
Lq(R+; dt

t
)
. (1.1)
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Let us notice that the above equivalence comes from the inequality, proved for instance in [6],∥∥S(t)�ja
∥∥

Lp � Ce−C−122j t‖�ja‖Lp . (1.2)

Note that the following Sobolev-type continuous embeddings hold:

Ḃs1
p1,q1

⊂ Ḃs2
p2,q2

, as soon as s1 − d

p1
= s2 − d

p2
with p1 � p2 and q1 � q2.

We shall denote by P the Leray projector onto divergence free vector fields

P = Id−∇�−1 div .

Before stating the first result of this paper, let us introduce the following space.

Definition 1.2. We shall denote by E the space of functions f in L1(R+; Ḃ−1
∞,1) such that∑

j∈Z

2−j
∥∥∥∥�jf (t)

∥∥
L∞

∥∥
L2(R+;tdt)

< ∞

equipped with the norm

‖f ‖E
def= ‖f ‖

L1(R+;Ḃ−1
∞,1)

+
∑
j∈Z

2−j
∥∥∥∥�jf (t)

∥∥
L∞

∥∥
L2(R+;t dt)

.

Let us remark that, for any homogeneous function σ of order 0 smooth outside 0, we have

∀p ∈ [1,∞], ∥∥σ(D)�jf
∥∥

Lp � C‖�jf ‖Lp .

Thus the Leray projection P onto divergence free vectors fields maps continuously E into E.

1.3. Statement of the results

1.3.1. Global existence results
The first result we shall prove is a new global wellposedness result, under a nonlinear smallness assumption on the

initial data.

Theorem 1. There is a constant C0 such that the following result holds. Let u0 ∈ Ḣ
1
2 (R3) be a divergence free vector

field. Suppose that∥∥P
(
S(t)u0 · ∇S(t)u0

)∥∥
E

� C−1
0 exp

(−C0‖u0‖4
Ḃ−1

∞,2

)
. (1.3)

Then there is a unique, global solution to (NS) associated with u0, satisfying

u ∈ Cb

(
R+; Ḣ 1

2
) ∩ L2(R+; Ḣ 3

2
)
.

Remark. For the sake of simplicity, we state the theorem for initial data in Ḣ
1
2 , but it obviously works for initial data

in Ḃ−1
∞,2.

The proof of Theorem 1 is given in Section 2 below; it consists in writing the solution u (which exists for a short
time at least), as u = S(t)u0 +R and in proving a global wellposedness result for the perturbed Navier–Stokes equation
satisfied by R, under assumption (1.3). While the proof follows the lines of that of Koch and Tataru (see [18]), a small
modification of classical Picard’s argument is needed to control the linear term, which is not small.

In fact, the main point of the paper is to exhibit examples of applications of this theorem which go beyond the
assumption of smallness of ‖u0‖Ḃ−1

∞,2
. The problem we have to solve is the construction of large initial data u0 such

that a quadratic functional, namely P(S(t)u0 · ∇S(t)u0) is small. This demands a careful use of the structure of this
quadratic functional.
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The situation here is different from our previous work (see [8]), devoted to the periodic case, where the structure
of the equation was used through the fact that the bidimensional Navier–Stokes equation is globally wellposed.

Now let us state the theorem that ensures that Theorem 1 is relevant.

Theorem 2. Let φ ∈ S(R3) be a given function, and consider two real numbers ε and α in ]0,1[. Define

ϕε(x) = (− log ε)
1
5

ε1−α
cos

(
x3

ε

)
φ

(
x1,

x2

εα
, x3

)
.

There is a constant C > 0 such that for ε small enough, the smooth, divergence free vector field

u0,ε(x) = (
∂2ϕε(x),−∂1ϕε(x),0

)
satisfies

C−1(− log ε)
1
5 � ‖u0,ε‖Ḃ−1∞,∞ � C(− log ε)

1
5 ,

and ∥∥S(t)u0,ε · ∇S(t)u0,ε

∥∥
E

� Cε
α
3 (− log ε)

2
5 . (1.4)

Thus for ε small enough, the vector field u0,ε generates a unique, global solution to (NS).

The proof of Theorem 2 is the purpose of Section 3.

Remark. One can also write this example in terms of the Reynolds number of the fluid: let Re > 0 be the Reynolds
number, and define the rescaled velocity field v(t, x) = νu(νt, x) where ν = 1/Re. Then v satisfies the Navier–Stokes
equation

∂tv + P(v · ∇v) − ν�v = 0

and Theorem 2 states the following: the vector field

v0,ν(x) = (− logν)
1
5 cos

(
x3

ν

)(
(∂2φ)

(
x1,

x2

να
, x3

)
, να(−∂1φ)

(
x1,

x2

να
, x3

))
satisfies

‖v0,ν‖Ḃ−1∞,∞ ∼ Cν(− logν)
1
5

and generates a global solution to the Navier–Stokes equations if ν is small enough. Compared with the usual theory of
global existence for the Navier–Stokes equations, we have gained a (power of a) logarithm in the smallness assumption
in terms of the viscosity, since classically one expects the initial data to be small with respect to ν.

1.3.2. Stability results
The second aim of this paper is to give some stability properties of global solutions. It is known since [13] that any

initial data in Ḃ
−1+ 3

p
p,∞ giving rise to a unique global solution is stable: a small perturbation of that data also generates

a global solution (see [1] for the case of BMO−1). Here we present a stability result where the perturbation is as large
as the initial data but has a special form: it consists in the superposition of dilated and translated duplicates of the
initial data, in the spirit of profile decompositions of P. Gérard (see [14]). This transform is a version of the fractal
transform used in [2] in the study of refined Sobolev and Hardy inequalities. Let us be more precise and define the
transformation. We shall only be considering compactly supported initial data for this study, and up to a rescaling we
shall suppose to simplify that the support of the initial data is restricted to the unit cube Q of R3 centered at 0.

Definition 1.3. Let X = (x1, . . . , xK) be a set of K distinct points in R3. For Λ ∈ 2N, let us define

TΛ,X

{ S ′ → S ′
f �→ TΛ,Xf

def= ∑
J∈{1,...,K} T J

Λf
with T J

Λf (x)
def= Λf (Λ(x − xJ )).
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It can be noted that this is a generalization of the fractal transformation T k studied in [2].
The next statement is quite easy to prove: it shows that this transformation on the initial data preserves global

wellposedness, as soon as the scaling parameter Λ is large enough (the threshold Λ being unknown as a function
of the initial data). The theorem following that statement gives a quantitative approach to that stability: if the initial
data u0 satisfies the smallness assumption (1.3) of Theorem 1, then so does TΛ,Xu0 as soon as Λ is large enough (the
threshold being an explicit function of norms of u0).

More precisely we have the following results.

Proposition 1.1. Let u0 be a divergence free vector field in Ḣ
1
2 (R3) generating a unique, global solution to the

Navier–Stokes equations and X be a finite sequence of distinct points. There is Λ0 > 0 such that, for any Λ � Λ0, the
vector field TΛ,Xu0 also generates a unique, global solution.

Remarks.

• Using the global stability of global solutions proved in [13], a global solution associated to an initial data in Ḣ
1
2

is always in L∞(R+; Ḣ 1
2 ) ∩ L2(R+; Ḣ 3

2 ).
• As the proof of that result in Section 4.1 will show (see Proposition 4.1), Proposition 1.1 can be generalized to

the case where the vector field u0 is replaced by any finite sequence of vector fields in Ḣ
1
2 generating a global

solution.
• As we shall see in the proof of Theorem 3 stated below, the functions TΛ,Xu0 and u0 have essentially the same

norm in Ċ−1.

Now let us state the quantitative stability theorem, in particular in the case of an initial data satisfying the as-
sumptions of Theorem 1. In order to avoid excessive heaviness, we shall assume from now on that the initial data
is compactly supported, and after scaling, supported in the unit cube Q = ]− 1

2 , 1
2 [d . We shall consider sequences X

such that

inf
(J,J ′)∈{1,...,K}2

J �=J ′

{
d(xJ , xJ ′);d(

xJ , cQ
)}

� δ > 0. (1.5)

We shall prove the following theorem.

Theorem 3. Let u0 be a smooth Ḣ
1
2 divergence free vector field, compactly supported in the cube Q. Suppose that u0

satisfies (1.3) in the following slightly looser sense: there is η ∈]0,1[ such that∥∥P
(
S(t)u0 · ∇S(t)u0

)∥∥
E

� C−1
0 exp

(−C0
(‖u0‖Ḃ−1

∞,2
+ η

)4) − η. (1.6)

Then there is a positive Λ0 (depending only on η,K, δ,‖u0‖Ḣ−1 and ‖u0‖Ḃ−3∞,∞ ) such that for any Λ � Λ0, the vector

field TΛ,Xu0 satisfies (1.3) and in particular generates a global solution to (NS). Moreover, for all r in [1,∞],
‖u0‖Ḃ−1∞,r

− η � ‖TΛ,Xu0‖Ḃ−1∞,r
� ‖u0‖Ḃ−1∞,r

+ η.

Remarks.

• The factor η appearing in (1.6) means that u0 must not saturate the nonlinear smallness assumption (1.3) of
Theorem 1.

• The proof of this theorem is based on the fact that the Besov norm of index −1 as well as ‖P(S(t)u0 ·∇S(t)u0)‖E

are invariant under the action of TΛ,X , up to some small error terms.

As a conclusion of this introduction, let us state the following result, which describes the action of TΛ,X on the
family u0,ε introduced in Theorem 2.
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Theorem 4. Let u0,ε be the family introduced in Theorem 2. For any K and δ, a constant Λ0 exists, which is indepen-
dent of ε, such that the following result holds. For any family X and any Λ � Λ0, there is a global smooth solution
of (NS) with initial data TΛ,Xu0,ε .

Remark. Let us point out that as opposed to Proposition 1.1, Theorem 3 (or rather Lemmas 4.1 and 4.2 which are
the key to its proof) provides precise bounds on Λ0 so that the constant Λ0 appearing in Theorem 4 may be chosen
independently of ε.

2. Proof of Theorem 1

2.1. Main steps of the proof

Let us start by remarking that in the case when u0 is small then there is nothing to be proved, so in the following
we shall suppose that ‖u0‖Ḃ−1

∞,2
is not small, say ‖u0‖Ḃ−1

∞,2
� 1.

We follow the method introduced by H. Koch and D. Tataru in [18] in order to look for the solution u under the

form uF + R, where uF (t)
def= S(t)u0. Let us denote by Q the bilinear operator defined by

Q(a, b)(t)
def= −1

2

t∫
0

S(t − t ′)P
(
a(t ′) · ∇b(t ′) + b(t ′) · ∇a(t ′)

)
dt ′.

Then R is the solution of

(MNS) R = Q(uF ,uF ) + 2Q(uF ,R) + Q(R,R).

To prove the global existence of u, we are reduced to proving the global wellposedness of (MNS); that relies on the
following easy lemma, the proof of which is omitted.

Lemma 2.1. Let X be a Banach space, let L be a continuous linear map from X to X, and let B be a bilinear map
from X × X to X. Let us define

‖L‖L(X)
def= sup

‖x‖=1
‖Lx‖ and ‖B‖B(X)

def= sup
‖x‖=‖y‖=1

∥∥B(x, y)
∥∥.

If ‖L‖L(X) < 1, then for any x0 in X such that

‖x0‖X <
(1 − ‖L‖L(X))

2

4‖B‖B(X)

,

the equation

x = x0 + Lx + B(x, x)

has a unique solution in the ball of center 0 and radius
1−‖L‖L(X)

2‖B‖B(X)
·

Let us introduce the functional space for which we shall apply the above lemma. We define the quantity

U(t)
def=∥∥uF (t)

∥∥2
L∞ + t

∥∥uF (t)
∥∥4

L∞ ,

which satisfies
∞∫

0

U(t) dt � C‖u0‖2
Ḃ−1

∞,2
+ C‖u0‖4

Ḃ−1
∞,4

� C‖u0‖4
Ḃ−1

∞,2
(2.1)

recalling that we have supposed that ‖u0‖Ḃ−1 � 1 to simplify the proof.

∞,2
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For all λ � 0, let us denote by Xλ the set of functions on R+ × R3 such that

‖v‖λ
def= sup

t>0

(
t

1
2
∥∥vλ(t)

∥∥
L∞ + sup

x∈R3

R>0

R− 3
2

( ∫
P(x,R)

∣∣vλ(t, y)
∣∣2

dy

) 1
2
)

< ∞, (2.2)

where

vλ(t, x)
def= v(t, x) exp

(
−λ

t∫
0

U(t ′) dt ′
)

while P(x,R) = [0,R2]×B(x,R) and B(x,R) denotes the ball of R3 of center x and radius R. Let us point out that,
in the case when λ = 0, this is exactly the space introduced by H. Koch and D. Tataru in [18], and that for any λ � 0
we have due to (2.1),

‖v‖λ � ‖v‖0 � C‖v‖λ exp
(
Cλ‖u0‖4

Ḃ−1
∞,2

)
. (2.3)

From Lemmas 3.1 and 3.2 of [18] together with the above equivalence of norms, we infer that∥∥Q(v,w)
∥∥

λ
� C‖v‖λ‖w‖λ exp

(
Cλ‖u0‖4

Ḃ−1
∞,2

)
. (2.4)

Theorem 1 follows from the following two lemmas.

Lemma 2.2. There is a constant C > 0 such that the following holds. For any nonnegative λ, for any t � 0 and
any f ∈ E, we have∥∥∥∥∥

t∫
0

S(t − t ′)f (t ′) dt ′
∥∥∥∥∥

λ

� C‖f ‖E.

Lemma 2.3. Let u0 ∈ Ḃ−1
∞,2 be given, and define uF (t) = S(t)u0. There is a constant C > 0 such that the following

holds. For any λ � 1, for any t � 0 and any v ∈ Xλ, we have∥∥Q(uF , v)(t)
∥∥

λ
� C

λ
1
4

‖v‖λ.

End of the proof of Theorem 1. Let us apply Lemma 2.1 to Eq. (MNS) satisfied by R, in a space Xλ. We choose λ

so that according to Lemma 2.3,∥∥Q(uF , ·)(t)∥∥L(Xλ)
� 1

4
·

Then according to Lemma 2.1, there is a unique solution R to (MNS) in Xλ as soon as Q(uF ,uF ) satisfies∥∥Q(uF ,uF )
∥∥

Xλ
� 1

16‖Q‖B(Xλ)

.

But (2.4) guarantees that

‖Q‖B(Xλ) � C exp
(
Cλ‖u0‖4

Ḃ−1
∞,2

)
,

so it is enough to check that for some constant C,∥∥Q(uF ,uF )
∥∥

Xλ
� C−1 exp

(−Cλ‖u0‖4
Ḃ−1

∞,2

)
.

By Lemma 2.2, this is precisely condition (1.3) of Theorem 1, so under assumption (1.3), there is a unique, global
solution R to (MNS), in the space Xλ. This implies immediately that there is a unique, global solution u to the

Navier–Stokes system in Xλ. The fact that u belongs to Cb(R+; Ḣ 1
2 ) ∩ L2(R+; Ḣ 3

2 ) is then simply an argument of
propagation of regularity (see for instance [21]). �
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2.2. Proof of Lemma 2.2

Thanks to (2.3), it is enough to prove Lemma 2.2 for λ = 0.
Let us start by proving that

∫ t

0 S(t − t ′)f (t ′) dt ′ belongs to L2(R+;L∞); that will give in particular the boundedness
of the second norm entering in the definition of Xλ.

Using (1.2), we get∥∥∥∥∥
t∫

0

�j S(t − t ′)f (t ′) dt ′
∥∥∥∥∥

L∞
� C

t∫
0

e−C−122j (t−t ′)∥∥�jf (t ′)
∥∥

L∞ dt ′.

Young’s inequality then gives∥∥∥∥∥
t∫

0

�j S(t − t ′)f (t ′) dt ′
∥∥∥∥∥

L2(R+;L∞)

� C2−j‖�jf ‖L1(R+;L∞),

thus the series (�j

∫ t

0 S(t − t ′)f (t ′) dt ′)j∈Z converges in L2(R+;L∞), and∥∥∥∥∥
t∫

0

S(t − t ′)f (t ′) dt ′
∥∥∥∥∥

L2(R+;L∞)

� C‖f ‖E.

This implies in particular that

sup
x∈R3

R>0

R− 3
2

( ∫
P(x,R)

∣∣∣∣∣
t∫

0

(
S(t − t ′)f (t ′)

)
(y) dt ′

∣∣∣∣∣
2

dy

) 1
2

� C‖f ‖E. (2.5)

The second part of the norm defining ‖ · ‖Xλ in (2.2) is therefore controlled by the norm of f in E.
To estimate the first part of that norm, let us write that for any t � 0 and any j ∈ Z,

t
1
2 �j

t∫
0

S(t − t ′)f (t ′) dt ′ = G
(1)
j (t) + G

(2)
j (t) with

G
(1)
j (t)

def= t
1
2

t
2∫

0

S(t − t ′)�jf (t ′) dt ′ and

G
(2)
j (t)

def= t
1
2

t∫
t
2

S(t − t ′)�jf (t ′) dt ′.

Using again (1.2) we have, since t � 2(t − t ′),

∥∥G
(1)
j (t)

∥∥
L∞ � C

t
2∫

0

(t − t ′)
1
2 2j e−C−122j (t−t ′)2−j

∥∥�jf (t ′)
∥∥

L∞ dt ′

� 2−j‖�jf ‖L1(R+;L∞).

In order to estimate ‖G(2)
j (t)‖L∞ , let us write, since t � 2t ′,

∥∥G
(2)
j (t)

∥∥
L∞ � C

t∫
e−C−122j (t−t ′)t ′

1
2
∥∥�jf (t ′)

∥∥
L∞ dt ′.
0
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Using the Cauchy–Schwarz inequality, we get∥∥G
(2)
j (t)

∥∥
L∞ � C2−j

∥∥t
1
2 �jf (t)

∥∥
L2(R+;L∞)

.

Then using (2.5) and summing over j ∈ Z concludes the proof of Lemma 2.2. �
2.3. Proof of Lemma 2.3

We have (see for instance [18] or [7]) that

Q(v,w)(t, x) =
t∫

0

∫
R3

k(t − t ′, y)v(t ′, x − y)w(t ′, x − y)dy dt ′

= k 	 (vw)(t, x) with
∣∣k(τ, ζ )

∣∣ � C

(
√

τ + |ζ |)4
·

The proof relies now mainly on the following proposition.

Proposition 2.1. Let u0 ∈ Ḃ−1
∞,2 be given, and define uF (t) = S(t)u0. There is a constant C such that the following

holds. Consider, for any positive R and for (τ, ζ ) ∈ R+ × R3, the following functions:

K
(1)
R (τ, ζ )

def= 1|ζ |�R

1

|ζ |4 and K
(2)
R (τ, ζ )

def= 1|ζ |�R

1

(
√

τ + |ζ |)4
·

Then for any λ � 1 and any R > 0,∥∥e−λ
∫ t

0 U(t ′) dt ′K(1)
R 	 (uF v)

∥∥
L∞([0,R2]×R3)

� C

λ
1
2 R

‖v‖λ. (2.6)

Moreover, for any λ � 1 and any R > 0,∥∥e−λ
∫ t

0 U(t ′) dt ′K(2)
R 	 (uF v)

∥∥
L∞([R2,2R2]×R3)

� C

λ
1
4 R

‖v‖λ. (2.7)

Proof of Proposition 2.1. Let us write that

V
(1)
λ (t, x)

def= e−λ
∫ t

0 U(t ′) dt ′ ∣∣K(1)
R 	 (uF v)(t, x)

∣∣
�

t∫
0

∫
cB(0,R)

1

|y|4 e−λ
∫ t
t ′ U(t ′′) dt ′′∥∥uF (t ′, ·)∥∥

L∞
∣∣vλ(t

′, x − y)
∣∣dt ′ dy.

By the Cauchy–Schwarz inequality and by definition of U , we infer that

V
(1)
λ (t, x) �

( t∫
0

∫
cB(0,R)

1

|y|4 e−2λ
∫ t
t ′ U(t ′′) dt ′′∥∥uF (t ′, ·)∥∥2

L∞ dt ′ dy

) 1
2
( t∫

0

∫
cB(0,R)

1

|y|4
∣∣vλ(t

′, x − y)
∣∣2

dt ′ dy

) 1
2

�
(

C

λR

) 1
2
( t∫

0

∫
cB(0,R)

1

|y|4
∣∣vλ(t

′, x − y)
∣∣2

dt ′ dy

) 1
2

. (2.8)

Now let us decompose the integral on the right on rings; this gives



J.-Y. Chemin, I. Gallagher / Ann. I. H. Poincaré – AN 26 (2009) 599–624 609
t∫
0

∫
cB(0,R)

1

|y|4
∣∣vλ(t

′, x − y)
∣∣2

dt ′ dy =
∞∑

p=0

t∫
0

∫
B(0,2p+1R)\B(0,2pR)

1

|y|4
∣∣vλ(t

′, x − y)
∣∣2

dt ′ dy

� 1

R

∞∑
p=0

2−p+3(2p+1R
)−3

×
t∫

0

∫
B(0,2p+1R)

∣∣vλ(t, x − y)
∣∣2

dt dy.

As t � R2 and p is nonnegative, we have

t∫
0

∫
cB(0,R)

1

|y|4
∣∣vλ(t

′, x − y)
∣∣2

dt ′ dy � C

R

∞∑
p=0

2−p
(
2p+1R

)−3
∫

P(x,2p+1R)

∣∣vλ(t, z)
∣∣2

dt dz

� C

R

∞∑
p=0

2−p sup
R′>0

1

R′3

∫
P(x,R′)

∣∣vλ(t, z)
∣∣2

dt dz.

By definition of ‖ · ‖λ, we infer that
t∫

0

∫
cB(0,R)

1

|y|4
∣∣vλ(t

′, x − y)
∣∣2

dt ′ dy � C

R
‖v‖2

λ.

Then, using (2.8), we conclude the proof of (2.6).
In order to prove the second inequality, let us observe that

e−λ
∫ t

0 U(t ′) dt ′ ∣∣(K(2)
R 	 (uF v)

)
(t, x)

∣∣ � K(21)
R (t, x) + K(21)

R (t, x) with

K(22)
R (t, x)

def=
t
2∫

0

∫
B(0,R)

1

(
√

t − t ′ + |y|)4
e−λ

∫ t
t ′ U(t ′′) dt ′′∥∥uF (t ′, ·)∥∥

L∞
∣∣vλ(t

′, x − y)
∣∣dt ′ dy,

K(22)
R (t, x)

def=
t∫

t
2

∫
B(0,R)

1

(
√

t − t ′ + |y|)4
e−λ

∫ t
t ′ U(t ′′) dt ′′∥∥uF (t ′, ·)∥∥

L∞
∣∣vλ(t

′, x − y)
∣∣dt ′ dy.

Using the Cauchy–Schwarz inequality, as t ∈ [R2,2R2] and t � 2(t − t ′), we infer that

K(21)
R (t, x) �

( t
2∫

0

∫
B(0,R)

1

(
√

t − t ′ + |y|)8
e−2λ

∫ t
t ′ U(t ′′) dt ′′∥∥uF (t ′, ·)∥∥2

L∞ dt ′ dy

) 1
2

×
( t

2∫
0

∫
B(0,R)

∣∣vλ(t
′, x − y)

∣∣2
dt ′ dy

) 1
2

� C

λ
1
2

( ∫
B(0,R)

dy

(R + |y|)8

) 1
2
( t

2∫
0

∫
B(0,R)

∣∣vλ(t
′, x − y)

∣∣2
dt ′ dy

) 1
2

� C

(tλ)
1
2

R− 3
2

( R2∫ ∫ ∣∣vλ(t
′, x − y)

∣∣2
dt ′ dy

) 1
2

,

0 B(0,R)
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so that

K
(21)
R (t, x) � C

(tλ)
1
2

‖v‖λ. (2.9)

In order to estimate K(22)
R , let us write that

K(22)
R (t, x) �

t∫
t
2

∫
R3

1

(
√

t − t ′ + |y|)4
e−λ

∫ t
t ′ U(t ′′) dt ′′∥∥uF (t ′, ·)∥∥

L∞
∥∥vλ(t

′, ·)∥∥
L∞ dt ′ dy

� C‖v‖λ

t∫
t
2

1√
t − t ′

e−λ
∫ t
t ′ U(t ′′) dt ′′ ‖uF (t ′, ·)‖L∞

t ′ 1
2

dt ′.

By definition of U and using the fact that t � 2t ′, Hölder’s inequality implies that

K(22)
R (t, x) � C

t
1
2

‖v‖λ

( t∫
0

e−4λ
∫ t
t ′ U(t ′′) dt ′′ t ′

∥∥uF (t ′, ·)∥∥4
L∞ dt ′

) 1
4

� C

λ
1
4 t

1
2

‖v‖λ.

Together with (2.9), this concludes the proof of the proposition. �
From this proposition, we infer immediately the following corollary. This corollary proves directly one half of

Lemma 2.3, as it gives a control of Q(uF , v) in the first norm out of the two entering in the definition of Xλ.

Corollary 2.1. Under the assumptions of Proposition 2.1, we have

t
1
2 e−λ

∫ t
0 U(t ′) dt ′∥∥Q(uF , v)(t, ·)∥∥

L∞ � C

λ
1
4

‖v‖λ.

Proof of Corollary 2.1. Let us write that

k 	 (uF v) (t, x) = k 	 (uF 1cB(x,2
√

t )v) (t, x) + k 	 (uF 1B(x,2
√

t)v) (t, x).

From Proposition 2.1, we infer that

e−λ
∫ t

0 U(t ′) dt ′ ∣∣k 	 (uF 1cB(x,2
√

t )v)(t, x)
∣∣ � e−λ

∫ t
0 U(t ′) dt ′K(1)

2
√

t
	

(|uF 1B(x,2
√

t )v|)(t, x)

� C

(tλ)
1
2

‖v‖λ.

Moreover, thanks to Proposition 2.1, we have also

e−λ
∫ t

0 U(t ′) dt ′ ∣∣k 	 (uF 1B(x,2
√

t )v)(t, x)
∣∣ � e−λ

∫ t
0 U(t ′) dt ′K(2)

2
√

t
	

(|uF |1B(x,2
√

t )|v|) (t, x)

� C

λ
1
4 t

1
2

‖v‖λ.

This proves the corollary. �
In order to conclude the proof of Lemma 2.3, let us estimate ‖k 	 (uF v)‖L2(P (x,R)), for an arbitrary x ∈ R3. Let us

write that

k 	 (uF v) = k 	 (uF 1cB(x,2R)v) + k 	 (uF 1B(x,2R)v).
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Observing that, for any y ∈ B(x,R), we have∣∣k 	 (uF 1cB(x,2R)v)(t, y)
∣∣ � CK

(1)
R 	

(|uF |1cB(x,2R)|v|)(t, y),

and using inequality (2.6) of Proposition 2.1, we get

e−λ
∫ t

0 U(t ′) dt ′∥∥k 	 (uF 1cB(x,2R)v)
∥∥

L∞(P (x,R))
� C

λ
1
2 R

‖v‖λ.

As the volume of P(x,R) is proportional to R5, we infer that∥∥k 	 (uF vλ)
∥∥

L2(P (x,R))
� C

λ
1
2

R
3
2 ‖v‖λ.

The following inequality is easy and classical, so its proof is omitted.∥∥e−λ
∫ t

0 U(t ′) dt ′ Q(uF , v)(t)
∥∥

L2([0,T ]×R3)
� C

λ
1
2

‖vλ‖L2([0,T ]×R3).

We deduce that∥∥e−λ
∫ t

0 U(t ′) dt ′k 	 (uF 1B(x,2R))v
∥∥

L2(P (x,R))
�

∥∥e−λ
∫ t

0 U(t ′) dt ′k 	 (uF 1B(x,2R)v)
∥∥

L2([0,R2]×R3)

� C

λ
1
2

‖1B(x,2R)vλ‖L2([0,R2]×R3)

� C

λ
1
2

‖vλ‖L2(P (x,2R)).

This concludes the proof of Lemma 2.3. �
3. Proof of Theorem 2

In this paragraph we shall check that the vector field u0,ε introduced in Theorem 2 satisfies the nonlinear smallness

assumption of Theorem 1, and we shall also show that its Ḃ−1∞,∞ norm is equivalent to (− log ε)
1
5 . Let us start by

proving the following lemma.

Lemma 3.1. Let f ∈ S(R3) be given and σ ∈]0,3(1 − 1
p
)[. There is a constant C > 0 such that for any ε ∈]0,1[,

the function

fε(x)
def= ei

x3
ε f

(
x1,

x2

εα
, x3

)
satisfies, for all p � 1,

‖fε‖Ḃ−σ
p,1

� Cε
σ+ α

p and ‖fε‖Ḃ−σ∞,∞ � C−1εσ .

Proof. Let us recall that

‖fε‖Ḃ−σ
p,1

=
∑
j∈Z

2−jσ ‖�jfε‖Lp .

We shall start by estimating the high frequencies, defining a threshold j0 � 0 to be determined later on. We have∑
j�j0

2−jσ ‖�jfε‖Lp � C2−j0σ ‖fε‖Lp

� C2−j0σ ε
α
p ‖f ‖Lp . (3.1)

On the other hand, we have
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�jfε(x) = 23j

∫
R3

h
(
2j (x − y)

)
fε(y) dy

= 23j

∫
R3

h
(
2j (x − y)

)
ei

y3
ε f

(
y1,

y2

εα
, y3

)
dy,

so noticing that ei
y3
ε = (−iε∂3)

N(ei
y3
ε ), we get for any N ∈ N,

�jfε(x) = (iε)N 23j
N∑

�=0

C�
N

∫
ei

y3
ε ∂�

3

(
h
(
2j (x − y)

))
∂N−�

3 f

(
y1,

y2

εα
, y3

)
dy.

Young’s inequality enables us to infer that

2−jσ ‖�jfε‖Lp � CεN 2j (3−σ) min

(
N∑

�=0

2j (�−3)ε
α
p ,

N∑
�=0

2j (�− 3
p
)
εα

)
.

So, choosing N large enough and since σ < 3(1 − 1
p
), we get∑

j�j0

2−jσ ‖�jfε‖Lp �
∑
j�0

2−jσ ‖�jfε‖Lp +
∑
j�0

2−jσ ‖�jfε‖Lp

� C
∑
j�0

2−j (σ+3(1− 1
p

))
εN+α + C

∑
0�j�j0

2j (N−σ)ε
N+ α

p

� CεN+α + C2j0(N−σ)ε
N+ α

p . (3.2)

Finally choosing 2−j0 = ε in (3.1) and (3.2) ends the proof of the bound on ‖fε‖Ḃ−σ
p,1

.

In order to bound from below ‖fε‖Ḃ−σ∞,∞ , let us first observe that, as the space of smooth compactly supported
functions is dense in S and the Fourier transform is continuous on S . Thus, for any positive η, a function g ex-
ists, the Fourier transform of which is smooth and compactly supported such that, denoting as before gε(x) =
ei

x3
ε g(x1,

x2
εα , x3),

‖fε − gε‖Ḃ−σ∞,∞ � ηεσ and ‖f − g‖L∞ � η. (3.3)

As the support of the Fourier transform of g is included in the ball B(0,R) for some positive R, that of g(x1, ε
−αx2, x3)

is included in the ball B(0,Rε−α). Then the support of F gε is included in the ball B(ε−1(0,0,1), ε−αR). This ball is
included in ε−1 C for some ring C . Thanks to (1.1) we shall use the heat flow. Let us write that

‖gε‖Ḃ−σ∞,∞ ∼ sup
t>0

t
σ
2
∥∥S(t)gε

∥∥
L∞

� Cεσ
∥∥S

(
ε2)gε

∥∥
L∞ .

For any function h such that the support of ĥ is included in ε−1 C , we have∥∥F −1(eε2|ξ |2h
)∥∥

L∞ � C‖h‖L∞ .

Applied with h = S(ε2)gε , this inequality gives

‖gε‖L∞ � C
∥∥S

(
ε2)gε

∥∥
L∞ and thus ‖gε‖Ḃ−σ∞,∞ � C−1εσ ‖gε‖L∞ = C−1εσ ‖g‖L∞ .

Now let us write that

‖fε‖Ḃ−σ∞,∞ � ‖gε‖Ḃ−σ∞,∞ − ηεσ

� C−1εσ
(‖f ‖L∞ − 2η

)
.

This ends the proof of the lemma. �
This enables us to infer immediately the following corollary.
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Corollary 3.1. A constant C exists such that, for any p � 1, we have

‖u0,ε‖Ḃ−1
p,1

� Cε
α
p (− log ε)

1
5 and ‖u0,ε‖Ḃ−1∞,∞ � C−1(− log ε)

1
5 .

The last verification to be made is the nonlinear assumption (1.4). It is based on the following lemma.

Lemma 3.2. There is a constant C such that the following result holds. Let f and g be in Ḃ−1
∞,2 ∩ Ḣ−1. Then we have∥∥P

(
S(t)f S(t)g

)∥∥
E

� C
(‖f ‖

Ḃ−1
∞,2

‖g‖
Ḃ−1

∞,2

) 2
3
(‖f ‖Ḣ−1‖g‖Ḣ−1

) 1
3 .

Proof. As the Leray projection P is continuous on E, it is enough to prove the lemma without P. Using Bernstein’s
estimate, we get that∥∥�j

(
S(t)f S(t)g

)∥∥
L∞ � C23j

∥∥S(t)f S(t)g
∥∥

L1 .

Then, using the Cauchy–Schwarz inequality, we infer that

Ej
def= ∥∥�j

(
S(t)f S(t)g

)∥∥
L1(R+;L∞)

+ ∥∥t
1
2 �j

(
S(t)f S(t)g

)∥∥
L2(R+;L∞)

� C23j
(∥∥S(t)f

∥∥
L2(R+;L2)

+ ∥∥t
1
2 S(t)f

∥∥
L∞(R+;L2)

)∥∥S(t)g
∥∥

L2(R+;L2)
.

So using (1.1), we deduce that

Ej � C23j‖f ‖Ḣ−1‖g‖Ḣ−1 . (3.4)

Let us observe that we also have

Ej � C
(∥∥S(t)f

∥∥
L2(R+;L∞)

+ ∥∥t
1
2 S(t)f

∥∥
L∞(R+;L∞)

)∥∥S(t)g
∥∥

L2(R+;L∞)

� C‖f ‖
Ḃ−1

∞,2
‖g‖

Ḃ−1
∞,2

.

Using this estimate for high frequencies and (3.4) for low frequencies, we get, for any j0 in Z,∥∥S(t)f S(t)g
∥∥

E
=

∑
j

2−jEj

� C

(
‖f ‖Ḣ−1‖g‖Ḣ−1

∑
j�j0

22j + ‖f ‖
Ḃ−1

∞,2
‖g‖

Ḃ−1
∞,2

∑
j�j0

2−j

)
� C

(‖f ‖Ḣ−1‖g‖Ḣ−122j0 + ‖f ‖
Ḃ−1

∞,2
‖g‖

Ḃ−1
∞,2

2−j0
)
.

Choosing j0 such that

23j0 ∼
‖f ‖

Ḃ−1
∞,2

‖g‖
Ḃ−1

∞,2

‖f ‖Ḣ−1‖g‖Ḣ−1

gives the result. �
Finally we are ready to prove estimate (1.4). Note that the proof relies heavily on the special structure of the

nonlinear term in the system. We indeed start by remarking that there is no derivative in the third direction since u0,ε

does not have a third component. Then denoting uF (t) = S(t)u0,ε , we have by an easy computation and with the
notation as in Lemma 3.1,

u1
F ∂1u

1
F + u2

F ∂2u
1
F = 1

ε2
(− log ε)

2
5 S(t)fεS(t)gε and

u1
F ∂1u

2
F + u2

F ∂2u
2
F = 1

ε2−α
(− log ε)

2
5 S(t)f̃εS(t)g̃ε,

where f , f̃ , g and g̃ are smooth functions. The result follows immediately using Lemma 3.2 and Corollary 3.1
together with the fact that the Leray projection onto divergence free vector fields maps continuously E into E.
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4. Stability results

In this section we shall prove Proposition 1.1, as well as Theorems 3 and 4 stated in the introduction. The proof of
Proposition 1.1 is rather easy and is given for the sake of completeness in the next section. The proof of Theorem 3 is
the object of Section 4.2 below. Finally Theorem 4 is an easy consequence of the methods developed in the proof of
Theorem 3 and is postponed to the end of Section 4.2.

4.1. Proof of Proposition 1.1

Proposition 1.1 is an immediate consequence of the following more general result.

Proposition 4.1. Let X = (x1, . . . , xK) be a family of K distinct points, and (u0,1, . . . , u0,K) a family of diver-

gence free vector fields in Ḣ
1
2 , each generating a unique, global solution to the Navier–Stokes equations. Then there

is Λ0 > 0 such that for any Λ � Λ0, the vector field

u0,Λ
def=

∑
J∈{1,...,K}

T J
Λ(u0,J )

also generates a unique, global solution to the Navier–Stokes equations.

Proof. The proof of that result is similar to methods of [3] concerning profile decompositions (see [12] for the case
of the Navier–Stokes equations). Let us denote by uJ the solution of (NS) associated with u0,J , and define

uΛ,J (t, x) = ΛuJ

(
Λ2t,Λ(x − xJ )

)
,

which solves (NS) with data u0,Λ,J = T J
Λ(u0,J ). Then we define the solution uΛ of (NS) with data u0,Λ, which

a priori exists only for a short time. We can decompose

uΛ =
∑

J∈{1,...,K}
uΛ,J + RΛ = u

(1)
Λ + RΛ,

and RΛ solves the following perturbed Navier–Stokes equation

∂tRΛ − �RΛ + P(RΛ · ∇RΛ) + P
(
u

(1)
Λ · ∇RΛ

) + P
(
RΛ · ∇u

(1)
Λ

) = FΛ

with initial data zero, and where

FΛ = −P
∑
J �=J ′

uΛ,J · ∇uΛ,J ′ .

It is not difficult to prove (see for instance [12], Proposition A.2) that RΛ is globally defined and unique

in L∞(R+; Ḣ 1
2 ) ∩ L2(R+; Ḣ 3

2 ) under the condition that

‖FΛ‖
L2(

R+;Ḣ− 1
2

) � C−1
0 exp

(−C0
∥∥u

(1)
Λ

∥∥4
L4(R+;Ḣ 1)

)
, (4.1)

so let us compute ‖FΛ‖
L2(R+;Ḣ− 1

2 )
and ‖u(1)

Λ ‖L4(R+;Ḣ 1).

As mentioned in the introduction, any global solution belongs to L4(R+; Ḣ 1). Thus, by definition of u
(1)
Λ , we have∥∥u

(1)
Λ

∥∥
L4(R+;Ḣ 1)

�
∑

J∈{1,...,K}
‖uΛ,J ‖L4(R+;Ḣ 1).

Using a scaling argument, we infer∥∥u
(1)
Λ

∥∥
L4(R+;Ḣ 1)

�
∑

J∈{1,...,K}
‖uJ ‖L4(R+;Ḣ 1)

� K sup
J∈{1,...,K}

CJ with (4.2)

CJ
def= ‖uJ ‖ ∞ + ˙ 1 + ‖uJ ‖

2 + ˙ 3 .

L (R ;H 2 ) L (R ;H 2 )
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In order to estimate ‖FΛ‖
L2(R+;Ḣ− 1

2 )
, let us start by noticing that FΛ is bounded uniformly in Λ in the space

L
4
3 (R+;L2), by a constant depending on K and on the initial data. Indeed Hölder’s inequality and Sobolev embed-

dings give

‖uΛ,J · ∇uΛ,J ′‖
L

4
3 (R+;L2)

� ‖uΛ,J ‖L4(R+;L6)‖∇uΛ,J ′‖L2(R+;L3)

� C‖uΛ,J ‖L4(R+;Ḣ 1)‖∇uΛ,J ′ ‖
L2(R+;Ḣ 1

2 )
,

so that by scale invariance

‖FΛ‖
L

4
3 (R+;L2)

� C‖uJ ‖L4(R+;Ḣ 1)‖∇uJ ′‖
L2(R+;Ḣ 1

2 )

� CK2 sup
J,J ′

(CJ CJ ′).

So by interpolation it is enough to prove that

lim
Λ→∞‖FΛ‖L4(R+;Ḣ−1) = 0. (4.3)

Let J �= J ′ be two integers in {1, . . . ,K}, and let ε > 0 be given. There exists a positive R and two vector fields ψε

and ϕε in D(R × B(0,R)) such that

‖ψε − uJ ‖L4(R+;Ḣ 1) + ‖ϕε − uJ ′ ‖L4(R+;Ḣ 1) � ε.

The support of TΛ,J ψε (resp. TΛ,J ′ϕε) is included in the ball B(xJ ,RΛ−1) (resp. B(xJ ,RΛ−1)). Thus we have

Λ � 4δ−1R �⇒ TΛ,J ψεTΛ,J ′ϕε = 0. (4.4)

Then Sobolev embeddings as above give the estimate∥∥uJ ⊗ (ϕε − uJ ′)
∥∥

L4(R+;L2)
+ ∥∥(ψε − uJ ) ⊗ ϕε

∥∥
L4(R+;L2)

� C
(‖uJ ‖

L∞(R+;Ḣ 1
2 )

‖ϕε − uJ ′ ‖L4(R+;Ḣ 1) + ‖ϕε‖
L∞(R+;Ḣ 1

2 )
‖ψε − uJ ‖L4(R+;Ḣ 1)

)
,

so that, using the scaling,∥∥uΛ,J ⊗ (TΛ,J ′ϕε − uJ ′)
∥∥

L4(R+;L2)
+ ∥∥(TΛ,J ψε − uJ ) ⊗ TΛ,J ′ϕε

∥∥
L4(R+;L2)

� C(CJ + CJ ′)ε. (4.5)

Using (4.4), it follows that for Λ large enough,

‖FΛ‖L4(R+;Ḣ−1) � CK2ε sup
J∈{1,...,K}

CJ ,

and (4.3) is proved. Plugging together that estimate with (4.2) gives (4.1) for Λ large enough, and Proposition 4.1 is
proved. �
4.2. Proof of Theorems 3 and 4

Before starting the proofs, let us make a few comments on the transformation TΛ,X and state its main properties.
In all that follows, we shall consider only the action of TΛ,X on functions compactly supported in Q. First, one can
notice that if the family X of points satisfies (1.5), then if Λ � 4δ−1,

suppT J
Λf ⊂ QJ

Λ

def={
x

∣∣ d(x, xJ ) � Λ−1} ⊂ QJ
δ

def=
{
x

∣∣∣ d(x, xJ ) � 1

4
δ

}
.

This implies immediately that

‖TΛ,Xf ‖Lp = Λ
1− 3

p K
1
p ‖f ‖Lp . (4.6)

Then let us state the following two lemmas, which are crucial for the proof of Theorem 3 and will be proved in
Section 4.2.2.
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Lemma 4.1. Let K � 1 be an integer and δ > 0 a real number. There is a constant CK,δ such that the following results
hold. Let r be in [1,∞] and consider a family X as in Definition 1.3. Then for any real number Λ in 2N greater
than 4δ−1 and for any f ∈ D(Q), we have

‖f ‖
Ḃ−1∞,r

− CK,δΛ
−2‖f ‖

Ḃ−3∞,∞ � ‖TΛ,Xf ‖
Ḃ−1∞,r

� ‖f ‖
Ḃ−1∞,r

+ CK,δΛ
−2‖f ‖

Ḃ−3∞,∞ .

Moreover the following estimate holds, where the constant C is universal:
‖TΛ,Xf ‖Ḣ−1 � C

√
KΛ− 3

2 ‖f ‖Ḣ−1 . (4.7)

Remark. Let us point out that L1 is continuously included in Ḃ−3∞,∞.

Lemma 4.2. Let K � 1 be an integer and δ > 0 a real number. There is a constant CK,δ such that the following
results hold. Consider a family X as in Definition 1.3. Then for any real number Λ in 2N greater than 4δ−1 and for
all divergence free vector fields f and g in D(Q), we have∥∥P

(
S(t)TΛ,Xf · ∇S(t)TΛ,Xg

)∥∥
E

�
∥∥P

(
S(t)f · ∇S(t)g

)∥∥
E

+ CK,δΛ
−3‖f ‖Ḣ−1‖g‖Ḣ−1 .

4.2.1. End of the proof of Theorem 3
Let us consider a vector field u0 ∈ D(Q) satisfying (1.6) for some η ∈]0,1[. We know from Lemma 4.1 that for

any r ∈ [1,∞] and any η ∈]0,1[, for any Λ greater than some Λ0 (depending on K and δ only), we have

‖u0‖Ḃ−1∞,r
− η � ‖TΛ,Xu0‖Ḃ−1∞,r

� ‖u0‖Ḃ−1∞,r
+ η. (4.8)

Next let us consider the smallness condition (1.3). By Lemma 4.2 we know that as soon as Λ0 is large enough, then
for any Λ � Λ0,∥∥P

(
S(t)TΛ,Xu0 · ∇S(t)TΛ,Xu0

)∥∥
E

�
∥∥P

(
S(t)u0 · ∇S(t)u0

)∥∥
E

+ η.

So we infer that∥∥P
(
S(t)TΛ,Xu0 · ∇S(t)TΛ,Xu0

)∥∥
E

� C−1
0 exp

(−C0
(‖u0‖Ḃ−1

∞,2
+ η

)4)
� C−1

0 exp
(−C0‖TΛ,Xu0‖4

Ḃ−1
∞,2

)
due to (4.8). So Theorem 3 is proved, up to the proof of Lemmas 4.1 and 4.2 which is the object of the coming
section. �
4.2.2. The properties of TΛ,X

In this section, we are going to prove the properties of the transformation TΛ,X required in the proof of Theorem 3,
namely Lemmas 4.1 and 4.2. Before starting the proofs, let us give some more notation and prove preliminary results
which will be used many times in the rest of this section.

We define

Q̃δ =
⋃

J∈{1,...,K}
Q̃J

δ , where Q̃J
δ

def=
{
x

∣∣∣ d
(
x,QJ

δ

)
� 1

32
δ

}
, (4.9)

and we notice that this is a disjoint reunion.
The proof of Lemmas 4.1 and 4.2 relies on the fact that the Littlewood–Paley theory is almost local. More precisely,

let us recall Lemma 9.2.2 of [5].

Lemma 4.3. For any positive integer N and any real number r , a constant CN exists such that the following result
holds. Let F be a closed subset of R3 and u a distribution in Ḃr∞,∞ supported in F ; then for any couple (j, h)

in Z × R+ such that 2j h is greater than 1, we have

‖�ju‖L∞(cFh) � CN2−jr
(
2j h

)−N‖u‖Ḃr∞,∞,

where Fh = {x ∈ R3 | d(x,F ) � h}.
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From this lemma, we deduce the following corollary.

Corollary 4.1. Let K , δ and X be as in Definition 1.3 and let M ∈ N be given. There is a constant CM (depending
only on M) such that the following holds. For any Λ � 4δ−1, for any distribution f in Ḃ−3∞,∞, compactly supported
in Q and for any J ∈ {1, . . . ,K}, one has the following estimates:

∀j ∈ Z,
∥∥�jT

J
Λf

∥∥
L∞(cQ̃J

δ )
� CMδ−(M+3)Λ−22−jM‖f ‖

Ḃ−3∞,∞ . (4.10)

Moreover there is a universal constant C such that for any positive R,

‖f ‖
Ḃ−1∞,r

�
∥∥(

2−j‖�jf ‖L∞(QR)

)
j

∥∥
�r + CR−2‖f ‖

Ḃ−3∞,∞, (4.11)

where QR = {x ∈ R3 | d(x,Q) � R}.

Proof. The first inequality is obvious when j is negative or when 2j δ � 1. Indeed we have the scaling property

�j

(
f

(
Λ(· − xJ )

))
(x) = (�j−log2 Λf )

(
Λ(x − xJ )

)
, (4.12)

so that for any s ∈ R,∥∥f
(
Λ(· − xJ )

)∥∥
Ḃs∞,∞ = Λs‖f ‖Ḃs∞,∞ .

Thus let us assume that 2j and 2j δ are greater than 1. Using Lemma 4.3, we get∥∥�jT
J
Λf

∥∥
L∞(cQ̃J

δ )
� CM23j

(
2j δ

)−M∥∥T J
Λf

∥∥
Ḃ−3∞,∞

� CM2−j (M−3)δ−MΛ−2‖f ‖
Ḃ−3∞,∞ .

In order to prove the second inequality, let us note that, thanks to the triangle inequality and to the fact that ‖ · ‖�r �
‖ · ‖�1 , we have for any integer j0,

‖f ‖
Ḃ−1∞,r

�
∥∥(

2−j‖�jf ‖L∞(QR)

)
j

∥∥
�r +

∑
j<j0

2−j‖�jf ‖L∞(R3) +
∑
j�j0

2−j‖�jf ‖L∞(cQR).

Lemma 4.3 claims in particular that, if 2jR � 1,

‖�jf ‖L∞(cQR) � CR−3‖f ‖
Ḃ−3∞,∞ .

Thus, if j0 is such that 2j0R � 1, we have, by definition of the norm of Ḃ−1∞,∞,

‖f ‖
Ḃ−1∞,r

�
∥∥(

2−j‖�jf ‖L∞(QR)

)
j

∥∥
�r +

( ∑
j<j0

22j + R−3
∑
j�j0

2−j

)
‖f ‖

Ḃ−3∞,∞

�
∥∥(

2−j‖�jf ‖L∞(QR)

)
j

∥∥
�r + (

22j0 + 2−j0R−3)‖f ‖
Ḃ−3∞,∞ .

Choosing 2j0 ∼ R−1 gives the result. �
4.2.3. Proof of Lemma 4.1

We shall start by proving the second inequality, namely that

‖TΛ,Xf ‖
Ḃ−1∞,r

� ‖f ‖
Ḃ−1∞,r

+ CK,δΛ
−2‖f ‖

Ḃ−3∞,∞ . (4.13)

Let us start with low frequencies. We can write that∑
j<0

2−j‖�jTΛ,Xf ‖L∞ �
∑
j<0

2−j
∑
J

∥∥�jT
J
Λf

∥∥
L∞

�
∑(∑

22j

)∥∥T J
Λf

∥∥
Ḃ−3∞,∞ .
J j<0
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Using the scaling equality (4.12) we get that∑
j<0

2−j‖�jTΛ,Xf ‖L∞ � KΛ−2‖f ‖
Ḃ−3∞,∞ . (4.14)

Now let us concentrate on the high frequencies. Recalling the definition given in (4.9), let us start by considering the
case when x /∈ Q̃δ . Using Inequality (4.10) of Corollary 4.1, we can write (choosing M = 0)

‖�jTΛ,Xf ‖L∞(cQ̃δ)
�

∑
J

∥∥�jT
J
Λf

∥∥
L∞(cQ̃δ)

� CKδ−3Λ−2‖f ‖
Ḃ−3∞,∞ .

Then we infer that∑
j�0

2−j‖�jTΛ,Xf ‖L∞(cQ̃δ)
� CKδ−3Λ−2‖f ‖

Ḃ−3∞,∞ . (4.15)

Now let us consider the case when x ∈ Q̃δ . We can write

‖�jTΛ,Xf ‖L∞(Q̃δ)
� sup

J

‖�jTΛ,Xf ‖L∞(Q̃J
δ ),

and let us fix some J ∈ {1, . . . ,K}. We recall that

TΛ,Xf = T J
Λf +

∑
J ′ �=J

T J ′
Λ f,

and let us start with the estimate of TΛ,Xf − T J
Λf . We have∥∥�j

(
TΛ,Xf − T J

Λf
)∥∥

L∞(Q̃J
δ )

�
∑
J ′ �=J

∥∥�jT
J ′
Λ f

∥∥
L∞(cQ̃J ′

δ )
.

Using Inequality (4.10) of Corollary 4.1, we get that∥∥�j

(
TΛ,Xf − T J

Λf
)∥∥

L∞(cQ̃J
δ )

� CKδ−3Λ−2‖f ‖
Ḃ−3∞,∞ .

Thus we infer∑
j�0

2−j
∥∥�j

(
TΛ,Xf − T J

Λf
)∥∥

L∞(Q̃J
δ )

� CKδ−3Λ−2‖f ‖
Ḃ−3∞,∞ . (4.16)

Now let us examine the term ‖T J
Λf ‖L∞(Q̃J

δ ). From (4.12) we get∥∥(
1j�02−j

∥∥�jT
J
Λf

∥∥
L∞(Q̃J

δ )

)
j

∥∥
�r � Λ

∥∥(
1j�02−j‖�j−log2 Λf ‖L∞(R3)

)
j

∥∥
�r

� ‖f ‖
Ḃ−1∞,r

.

Once noticed that ‖ · ‖�r � ‖ · ‖�1 , we plug together that estimate with (4.14), (4.15) and (4.16) to conclude the proof
of (4.13).

Let us bound from below ‖TΛ,Xf ‖
Ḃ−1∞,r

. As ‖g‖L∞(Q̃δ)
= supJ ‖g‖L∞(Q̃J

δ ), we have

‖TΛ,Xf ‖
Ḃ−1∞,r

�
∥∥(

2−j‖�jTΛ,Xf ‖L∞(Q̃δ)

)
j

∥∥
�r

�
∥∥(

2−j sup
J

‖�jTΛ,Xf ‖L∞(Q̃J
kδ)

)
j

∥∥
�r

�
∥∥(

2−j‖�jTΛ,Xf ‖
L∞(Q̃

J0
δ )

)
j

∥∥
�r

for some J0 in {1, . . . ,K}. Using the fact that ‖ · ‖�r � ‖ · ‖�1 , we can write that

‖TΛ,Xf ‖
Ḃ−1∞,r

�
∥∥(

2−j
∥∥�jT

J0
Λ f

∥∥
L∞(Q̃

J0
δ )

)
j

∥∥
�r −

∑
j<0

2−j
∥∥�jT

J0
Λ f

∥∥
L∞(Q̃

J0
δ )

−
∑

2−j
∥∥�j

(
TΛ,Xf − T

J0
Λ f

)∥∥
L∞(Q̃

J0
δ )

.

j�0
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Using (4.14) and (4.16), we infer that

‖TΛ,Xf ‖
Ḃ−1∞,r

�
∥∥(

2−j
∥∥�jT

J0
Λ,Xf

∥∥
L∞(Q̃

J0
δ )

)
j

∥∥
�r − CK,δΛ

−2‖f ‖
Ḃ−3∞,∞ . (4.17)

By scaling and translation, we have∥∥(
2−j

∥∥�jT
J0
Λ,Xf

∥∥
L∞(Q̃

J0
k )

)
j

∥∥
�r = ∥∥(

2−j‖�jf ‖L∞(QΛ,δ)

)
j

∥∥
�r

where QΛ,δ is the cube of size 2Λδ. Using (4.11) with R = 2δΛ and (4.17), we infer that

‖TΛ,Xf ‖
Ḃ−1∞,r

� ‖f ‖
Ḃ−1∞,r

− CK,δΛ
−2‖f ‖

Ḃ−3∞,∞ .

This concludes the proof of the first part of the lemma.

Now let us prove the second part of the lemma, namely estimate (4.7) on the Ḣ−1 norm. Let f ∈ D(Q) be given.

Stating fm
def= −F −1(iξm|ξ |−2f̂ ), we can write

f =
3∑

m=1

∂mfm with ‖f ‖Ḣ−1 ∼
3∑

m=1

‖fm‖L2 .

Let us recall that

‖TΛ,Xf ‖Ḣ−1 = sup
g∈D(Q)
‖g‖

Ḣ1 �1

∫
R3

TΛ,Xf (x)g(x) dx.

Let χ ∈ D(Q) be equal to one on the support of g. We have∫
R3

TΛ,Xf (x)g(x) dx = Λ
∑
J

∫
R3

f
(
Λ(x − xJ )

)
g(x)dx

= Λ−2
∑
J

∑
m

∫
R3

∂mfm(x)g
(
Λ−1x + xJ

)
dx,

so after an integration by parts and a change of variables again, we infer that∫
R3

TΛ,Xf (x)g(x) dx = −Λ−3
∑
J

∑
m

∫
R3

χ(x)fm(x)(∂mg)
(
Λ−1x + xJ

)
dx

= −Λ−1
∑
m

∫
R3

TΛ,X(χfm)(x)∂mg(x)dx.

In particular we get that

‖TΛ,Xf ‖Ḣ−1 � CΛ−1
∑
m

∥∥TΛ,X(χfm)
∥∥

L2

� CΛ−1
∑
m

‖fm‖L2Λ
− 1

2
√

K

� CΛ− 3
2
√

K‖f ‖Ḣ−1,

and the result is proved.

4.2.4. Proof of Lemma 4.2
First, we observe that

S(t)TΛ,Xf · ∇S(t)TΛ,Xg =
3∑

∂�

(
S(t)TΛ,Xf �S(t)TΛ,Xg

)
, (4.18)
�=1
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so using Bernstein’s inequalities, we can write

Ej
def= ∥∥�j

(
S(t)TΛ,Xf · ∇S(t)TΛ,Xg

)∥∥
L1(R+;L∞)

+ ∥∥t
1
2 �j

(
S(t)TΛ,Xf · ∇S(t)TΛ,Xg

)∥∥
L2(R+;L∞)

� C24j
(∥∥S(t)TΛ,Xf

∥∥
L2(R+;L2)

∥∥S(t)TΛ,Xg
∥∥

L2(R+;L2)
+ ∥∥t

1
2 S(t)TΛ,Xf

∥∥
L∞(R+;L2)

∥∥S(t)TΛ,Xg
∥∥

L2(R+;L2)

)
� C24j‖TΛ,Xf ‖Ḣ−1‖TΛ,Xg‖Ḣ−1 .

Using Lemma 4.1, we get

Ej � C24jKΛ−3‖f ‖Ḣ−1‖g‖Ḣ−1 .

We therefore infer a bound on the low frequencies:∑
j�0

2−j Ej � CKΛ−3‖f ‖Ḣ−1‖g‖Ḣ−1 . (4.19)

The high frequencies are more delicate to estimate. Let us write that

S(t)TΛ,Xf · ∇S(t)TΛ,Xg = HΛ,X(t) + KΛ,X(t) with

HΛ,X(t)
def=

∑
J �=J ′

3∑
�=1

∂�

(
S(t)T J

Λf �S(t)T J ′
Λ g

)
and KΛ,X(t)

def=
∑
J

3∑
�=1

∂�

(
S(t)T J

Λf �S(t)T J
Λg

)
.

We observe that

B
J,J ′
Λ,X(f,g)

def= ∂�

(
S(t)T J

Λf �S(t)T J ′
Λ g

)
= 1

(4πt)3

∫
R6

∂x�
exp

(
−|x − y|2 + |x − z|2

4t

)
T J

Λf (y)T J ′
Λ g(z) dy dz

= 1

(4πt)3

∫
R6

2x� − y� − z�

2t
exp

(
−|x − y|2 + |x − z|2

4t

)
T J

Λf (y)T J ′
Λ g(z) dy dz.

Due to the distance between xJ and xJ ′ , one gets that a smooth bounded function (as well as all its derivatives) χ

on R exists such that χ vanishes identically near 0 and such that

B
J,J ′
Λ,X(f,g)(t, x) = 1

(4πt)3

∫
R6

Θδ(t, x, y, z)T J
Λf (y)T J ′

Λ g(z) dy dz with

Θδ(t, x, y, z)
def= 1

t
1
2

χ
(
Cδ

(|x − y|2 + |x − z|2))2x� − y� − z�

2t
exp

(
−|x − y|2 + |x − z|2

4t
1
2

)
·

As we have

‖a ⊗ b‖Ḣ−2(R6) � ‖a‖Ḣ−1(R3)‖b‖Ḣ−1(R3), (4.20)

we infer, using the scaling, that∥∥B
J,J ′
Λ,X(f,g)(t, ·)∥∥

L∞ � 1

(4πt)3
sup
x∈R3

∥∥Θδ(t, x, ·)∥∥
Ḣ 2(R6)

∥∥T J
Λf

∥∥
Ḣ−1(R3)

∥∥T J ′
Λ g

∥∥
Ḣ−1(R3)

� 1

(4πt)3
sup
x∈R3

∥∥Θδ(t, x, ·)∥∥
Ḣ 2(R6)

Λ−3‖f ‖Ḣ−1(R3)‖g‖Ḣ−1(R3).

It is obvious that∣∣∇2Θδ(t, x, y, z)
∣∣ � C

3 e− δ
Ct exp

(
−|x − y|2 + |x − z|2

8t

)

t 2
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and thus that∥∥B
J,J ′
Λ,X(f,g)(t, ·)∥∥

L∞ � C

t3
Λ−3e− δ

Ct ‖f ‖Ḣ−1(R3)‖g‖Ḣ−1(R3).

We immediately infer, since ‖�j Pa‖L∞ � C‖�ja‖L∞ , that∑
j�0

2−j
(‖�j PHΛ,X‖L1(L∞) + ∥∥t

1
2 �j PHΛ,X

∥∥
L2(L∞)

)
� CδΛ

−3‖f ‖Ḣ−1‖g‖Ḣ−1 . (4.21)

Now let us consider the term KΛ,X . To start with, let us write∥∥�j PKΛ,X(t, ·)∥∥
L∞(R3)

�
∥∥�j PKΛ,X(t, ·)∥∥

L∞(Q̃δ)
+ ∥∥�j PKΛ,X(t, ·)∥∥

L∞(cQ̃δ)

� sup
J

∥∥�j PKΛ,X(t, ·)∥∥
L∞(Q̃J

δ )
+ ∥∥�j PKΛ,X(t, ·)∥∥

L∞(cQ̃δ)
.

By definition of KΛ,X , and denoting �̃j = �j P, we get∥∥�j PKΛ,X(t, ·)∥∥
L∞(R3)

� sup
J

∥∥�j P
(
S(t)T J

Λf ∇S(t)T J
Λg

)∥∥
L∞(R3)

+ sup
J

∥∥∥∥�̃j

∑
J ′ �=J

∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ,Xg

)∥∥∥∥
L∞(Q̃J

δ )

+
∑
J ′

∥∥�̃j ∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ g

)∥∥
L∞(cQ̃δ)

� sup
J

∥∥�j P
(
S(t)T J

Λf ∇S(t)T J
Λg

)∥∥
L∞(R3)

+ sup
J

∑
J ′ �=J

∥∥�̃j ∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ,Xg

)∥∥
L∞(Q̃J

δ )

+
∑
J ′

∥∥�̃j ∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ,Xg

)∥∥
L∞(cQ̃δ)

� sup
J

∥∥�j P
(
S(t)T J

Λf ∇S(t)T J
Λg

)∥∥
L∞(R3)

+
∑
J ′

∥∥�̃j ∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ,Xg

)∥∥
L∞(cQ̃J ′

δ )
.

By translation and scaling we infer that∥∥�j PKΛ,X(t, ·)∥∥
L∞(R3)

� Λ
∥∥�j−log2 ΛP

(
S(t)f ∇S(t)g

)∥∥
L∞(R3)

+
∑
J ′

∥∥�̃j ∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ,Xg

)∥∥
L∞(cQ̃J

δ )
.

By definition of S(t), we have, for some h̃ ∈ S(R3),

BJ ′
Λ,j (f, g)(t, x)

def= �̃j ∂�

(
S(t)T J ′

Λ f �S(t)T J ′
Λ,Xg

)
(t, x)

= 23j

(4πt)3

∫
R9

h̃
(
2j (x − x′)

)
∂x′

�
exp

(
−|x′ − y|2 + |x′ − z|2

4t

)
T J ′

Λ f (y)T J ′
Λ g(z) dx′ dy dz.

Now if x is in cQ̃J ′
δ and y in Q̃J ′

δ , one gets that a smooth bounded function (as well as all its derivatives) χ on R exists
such that χ vanishes identically near 0 and has value 1 outside a ball centered at the origin, and such that
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BJ ′
Λ,j (f, g) = B

J ′,1
Λ,j (f, g) + B

J ′,2
Λ,j (f, g) with

B
J ′,1
Λ,j (f, g)(t, x)

def= 23j

(4πt)3

∫
R9

h̃
(
2j (x − x′)

)
χ

(
Cδ|x − x′|2)

× ∂x′
�

exp

(
−|x′ − y|2 + |x′ − z|2

4t

)
T J ′

Λ f (y)T J ′
Λ g(z) dx′ dy dz and

B
J ′,2
Λ,j (f, g)(t, x)

def= 23j

(4πt)3

∫
R9

h̃
(
2j (x − x′)

)
χ

(
Cδ|x′ − y|2)

× ∂x′
�

exp

(
−|x′ − y|2 + |x′ − z|2

4t

)
T J ′

Λ f (y)T J ′
Λ g(z) dx′ dy dz.

By integration by parts, we get that

B
J ′,1
Λ,j (f, g)(t, x) = 23j

∫
R9

∂x′
�

(
h̃
(
2j (x − x′)

)
χ

(
Cδ|x − x′|2))(S(t)T J ′

Λ f
)
(x′)

(
S(t)T J ′

Λ g
)
(x′) dx′.

By the Leibnitz formula we have,

23j ∂x′
�

(
h̃
(
2j (x − x′)

)
χ

(
Cδ|x − x′|2)) = 24j (∂x�

h)
(
2j (x − x′)

)
χ

(
Cδ|x − x′|2)

+ 23j h̃
(
2j (x − x′)

)
2Cδ

(
x� − x′

�

)
χ ′(Cδ|x − x′|2).

Using the properties of the function χ , we infer∣∣23j ∂x′
�

(
h̃
(
2j (x − x′)

)
χ

(
Cδ|x − x′|2))∣∣ � Cδh

(
2j (x − x′)

)
for some bounded function h. Thus, by integration, we infer that∥∥B

J ′,1
Λ,j (f, g)(t, ·)∥∥

L∞ � Cδ

∥∥S(t)T J ′
Λ f

∥∥
L2

∥∥S(t)T J ′
Λ g

∥∥
L2 .

By definition of Besov spaces, we deduce that∥∥B
J ′,1
Λ,j (f, g)

∥∥
L1(L∞)

+ ∥∥t
1
2 B

J ′,1
Λ,j (f, g)

∥∥
L2(L∞)

� Cδ

∥∥T J ′
Λ f

∥∥
Ḣ−1

∥∥T J ′
Λ g

∥∥
Ḣ−1 .

By scaling, we infer that∥∥B
J ′,1
Λ,j (f, g)

∥∥
L1(L∞)

+ ∥∥t
1
2 B

J ′,1
Λ,j (f, g)

∥∥
L2(L∞)

� CδΛ
−3‖f ‖Ḣ−1‖g‖Ḣ−1 . (4.22)

In order to estimate B
J ′,2
Λ,j (f, g), let us write

B
J ′,2
Λ,j (f, g)(t, x) = 1

(4πt)3

∫
R6

Θδ,j (t, x, y, z)T J ′
Λ f (y)T J ′

Λ (z) dy dz with

Θδ,j (t, x, y, z)
def= 23j

t
1
2

∫
R3

h̃
(
2j (x − x′)

)
χ

(
Cδ|x′ − y|2) × 2x′

� − y� − z�

2t
1
2

exp

(
−|x′ − y|2 + |x′ − z|2

4t

)
dx′.

Using (4.20), the definition of the Besov norm and the scaling property, we deduce that∥∥B
J ′,2
Λ,j (f, g)(t, ·)∥∥

L∞ � sup
x∈R3

∥∥∇2
y,zΘδ,j (t, x, ·, ·)∥∥

L2(R6)

∥∥T J ′
Λ f

∥∥
Ḣ−1

∥∥T J ′
Λ g

∥∥
Ḣ−1

� sup
x∈R3

∥∥∇2
y,zΘδ,j (t, x, ·, ·)∥∥

L2(R6)
Λ−3‖f ‖Ḣ−1‖g‖Ḣ−1 .

A straightforward computation shows that

sup
3

∥∥∇2
y,zΘδ,j (t, x·, ·)∥∥

L2(R6)
� Cδ

3 e− δ
Ct .
x∈R t 2
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Thus, we get that∥∥B
J ′,2
Λ,j (f, g)

∥∥
L1(L∞)

+ ∥∥t
1
2 B

J ′,2
Λ,j (f, g)

∥∥
L2(L∞)

� CδΛ
−3‖f ‖Ḣ−1‖g‖Ḣ−1 .

Using (4.19), (4.21) and (4.22) we infer that∥∥P
(
S(t)TΛ,Xf ∇S(t)TΛ,Xg

)∥∥
E

�
∑
j

2−jΛ
(∥∥�j−log2Λ

PS(t)f ∇S(t)g
∥∥

L1(L∞)

+ ∥∥t
1
2 �j−log2Λ

PS(t)f ∇S(t)g
∥∥

L2(L∞)

) + CK,δΛ
−3‖f ‖Ḣ−1‖g‖Ḣ−1

�
∥∥P

(
S(t)f ∇S(t)g

)∥∥
E

+ CK,δΛ
−3‖f ‖Ḣ−1‖g‖Ḣ−1 .

That ends the proof of Lemma 4.2.

4.2.5. Proof of Theorem 4
The proof is straightforward: in order to apply Theorem 3, we define η > 0 and we need to find Λ0 uniform in ε so

that, according to Lemmas 4.1 and 4.2, the following two conditions are satisfied:

Λ−3
0 Cδ,K‖u0,ε‖2

Ḣ−1 = η and Λ−2
0 Cδ,K‖u0,ε‖Ḃ−3∞,∞ = η.

Due to Corollary 3.1 this is trivially possible as soon as α > 0.
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