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Abstract

In the analysis of the long-time behavior of two-dimensional incompressible viscous fluids, Oseen vortices play a major role as
attractors of any homogeneous solution with integrable initial vorticity [T. Gallay, C.E. Wayne, Global stability of vortex solutions
of the two-dimensional Navier–Stokes equation, Commun. Math. Phys. 255 (1) (2005) 97–129]. As a first step in the study of the
density-dependent case, the present paper establishes the asymptotic stability of Oseen vortices for slightly inhomogeneous fluids
with respect to localized perturbations.

Résumé

Les tourbillons d’Oseen occupent une place majeure dans la description du comportement asymptotique en temps des fluides
bidimensionnelles incompressibles et visqueux, en tant qu’attracteurs de toute solution homogène de vorticité initiale intégrable
[T. Gallay, C.E. Wayne, Global stability of vortex solutions of the two-dimensional Navier–Stokes equation, Commun. Math.
Phys. 255 (1) (2005) 97–129]. Première étape dans l’analyse du cas inhomogène, cet article établit la stabilité asymptotique des
tourbillons d’Oseen, vis-à-vis de perturbations localisées, en tant que fluides à densité variable.
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0. Introduction

In this paper we consider the motion of a weakly inhomogeneous incompressible viscous fluid in the two-
dimensional Euclidean space. We can describe the fluid by the pair (ρ,u), ρ = ρ(t, x) ∈ R+ being the density field
and u = u(t, x) ∈ R2 the velocity field. The evolution we consider here is governed by the density-dependent incom-
pressible Navier–Stokes equations:
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⎧⎪⎨⎪⎩
∂tρ + (u · ∇)ρ = 0,

∂tu + (u · ∇)u = 1

ρ
(�u − ∇p),

divu = 0

(1)

where p = p(t, x) ∈ R is the pressure field, which is determined (up to a constant) by the incompressibility condition
which yields the elliptic equation:

div

(
1

ρ
∇p

)
= div

(
1

ρ
�u − (u · ∇)u

)
. (2)

Alternatively, we can represent the fluid motion using the vorticity field ω = curlu ∈ R rather than the velocity.
Note that, in the two-dimensional context, curl(f1, f2) stands for ∂1f2 − ∂2f1. Therefore the evolution equations for
(ρ,ω) become⎧⎨⎩

∂tρ + (u · ∇)ρ = 0,

∂tω + (u · ∇)ω = div

(
1

ρ

(∇ω + ∇⊥p
)) (3)

where p is again determined by (2), and u is recovered from ω via the Biot–Savart law:

u(x) = 1

2π

∫
R2

(x − y)⊥

|x − y|2 ω(y)dy (4)

for x ∈ R2, with (z1, z2)
⊥ = (−z2, z1). We also denote u = KBS � ω, where KBS is the Biot–Savart kernel: KBS(x) =

1
2π

x⊥
|x|2 . Without loss of generality, we assume throughout the present paper that the viscosity of the fluid is equal to

one.
We refer to the monograph [12] for a general presentation of the available mathematical results on incompressible

Navier–Stokes equations. We also mention the work of B. Desjardins on the global existence of weak solutions [4,3],
and, closer to the spirit of the present paper, the work of R. Danchin on well-posedness in Besov spaces [1]. Let us
emphasize that both Danchin and Desjardins work with the velocity formulation (1) and do not assume the density ρ

to be bounded away from zero. In more physical terms, they allow for regions of (almost complete) vacuum, which
create technical difficulties.

In contrast, not only shall we not allow the density to be close to zero but we shall only consider weakly inhomoge-
neous fluids, namely we shall assume that the density ρ is close to a positive constant which, without loss of generality,
we take equal to one. Remark that if the initial density is constant in space, i.e. if the fluid is initially homogeneous,
then the density remains equal to this constant for all subsequent times. Therefore, in such a case, system (1) reduces
to the usual incompressible Navier–Stokes equations. Moreover, since div(∇⊥p) = 0, the pressure term disappears
from system (3) which thus reduces to

∂tω + (u · ∇)ω = �ω. (5)

Again, a wealth of information on the Cauchy problem for the homogeneous incompressible Navier–Stokes equa-
tions can be found in [12] or [10]. Concerning the long-time behavior of the solutions of the vorticity equation (5),
the work of Th. Gallay and C.E. Wayne has revealed the important role played by a family of explicit self-similar
solutions, Oseen vortices, given by ρ ≡ 1, u = αuG and ω = αωG, where α ∈ R is a parameter and

ωG(t, x) = 1

t
G

(
x√
t

)
, uG(t, x) = 1√

t
vG

(
x√
t

)
with

G(ξ) = 1

4π
e−|ξ |2/4, vG(ξ) = 1

2π

ξ⊥

|ξ |2
(
1 − e−|ξ |2/4).

For the Oseen vortex (1, αωG), the quantity |α| is actually its Reynolds number. If the initial vorticity ω0 is integrable,
it is proved in [8] that the corresponding solution of (5) converges to αωG in L1-norm as t → ∞, where α := ∫

R2 ω0.
Moreover, it was shown in [5,6] that αωG is the unique solution of the vorticity equation (5) with initial data αδ0. Note
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also that uG is not square integrable, since |vG(ξ)| ∼ 1
|ξ | as |ξ | → ∞, which means that Oseen vortices are not finite

energy solutions in the sense of Leray [11]. More generally, when dealing with incompressible flows of integrable
vorticity and non-zero global circulation, one needs to consider infinite energy solutions.

Even though the homogeneous incompressible Navier–Stokes equations provide a good model in many situations,
all real fluids are, at least slightly, inhomogeneous and it is therefore important and relevant, both from a practical
and theoretical point of view, to investigate whether the predictions of the homogeneous model are meaningful for the
density-dependent model, especially in the weakly inhomogeneous regime. The goal of this paper is to address this
question in the particular case of Oseen vortices. These explicit solutions persist in the density-dependent case if we
assume ρ ≡ 1, and it is therefore natural to ask whether they play there the same role as in the homogeneous case.
While the general answer to this question is unknown, we treat here one important aspect: are Oseen vortices stable
solutions for the density-dependent incompressible Navier–Stokes equations? In other words, does the theory predicts
that these self-similar solutions may be observed?

Before stating what we mean exactly by stability, let us recall an important property of the Navier–Stokes equations:
scaling invariance. For any λ > 0, if (ρ(t, x),ω(t, x)) is a solution of (3), so is

Dλ(ρ,ω) = (
ρ
(
λ2t, λx

)
, λ2ω

(
λ2t, λx

))
.

Correspondingly, the velocity field u(t, x) and the pressure p(t, x) are rescaled into λu(λ2t, λx) and λ2p(λ2t, λx).
As is easily verified, Oseen vortices are self-similar, in the sense that Dλ(1, αωG) = (1, αωG), for any α ∈ R and any
λ > 0. To study these solutions, it is therefore more convenient to rewrite (3) in self-similar variables. Following [7],
we set

(τ, ξ) :=
(

ln t,
x√
t

)
. (6)

Motivated by scaling invariance, we will work with new quantities (r,w, v,Π) related to the former by

r(τ, ξ) = ρ
(
eτ , eτ/2ξ

)
, v(τ, ξ) = eτ/2u

(
eτ , eτ/2ξ

)
,

w(τ, ξ) = eτω
(
eτ , eτ/2ξ

)
, Π(τ, ξ) = eτp

(
eτ , eτ/2ξ

)
.

(7)

Then the corresponding evolution equations for (r,w) are⎧⎪⎪⎨⎪⎪⎩
∂τ r +

((
v − 1

2
ξ

)
· ∇

)
r = 0,

∂τw +
((

v − 1

2
ξ

)
· ∇

)
w − w = div

(
1

r

(∇ω + ∇⊥Π
)) (8)

where again v is obtained from w by the Biot–Savart law and ∇Π by solving

div

(
1

r
∇Π

)
= div

(
1

r
�v − (v · ∇)v

)
. (9)

By construction, Oseen vortices correspond to stationary solutions of (8) of the form (1, αG), where α is any real
number. We prescribe initial data for the original equations at t = 1 rather than at t = 0, hence at τ = 0 for the new
equations.

In order to state our main result, we now write down the evolution equations for a perturbation of an Oseen vortex.
Given α ∈ R, we work with new quantities (b, w̃) related to the former by b = 1

r
− 1 and w̃ = w − αG. The evolution

equations for (b, w̃) are⎧⎪⎨⎪⎩ ∂τ b +
((

v − 1

2
ξ

)
· ∇

)
b = 0,

∂τ w̃ − (L − αΛ)w̃ + (ṽ · ∇)w̃ = div
(
b
(∇w + ∇⊥Π

)) (10)

where

Lf = �f + 1

2
ξ · ∇f + f,

Λf = vG · ∇f + (K � f ) · ∇G.

(11)

BS
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Here ṽ is obtained from w̃ by the Biot–Savart law, w and v are recovered by

w = αG + w̃, v = αvG + ṽ, (12)

and ∇Π is obtained by solving

div
(
(1 + b)∇Π

) = div
(
(1 + b)�v − (v · ∇)v

)
. (13)

Let us point out that, thanks to the linearity of the Biot–Savart law, we both have v = KBS � w and ṽ = KBS � w̃.
Note that L is the usual Fokker–Planck type operator which generates the evolution corresponding to the heat

equation in self-similar variables. On the other hand, Λ is the non-local first-order operator resulting from the lin-
earization around w = G of the transport term of (8). More precisely, if ṽ = KBS � w̃ and (v,w) satisfies (12), then
v · ∇w = αΛw̃ + ṽ · ∇w̃, since vG ⊥ ∇G.

Before stating our result of stability, we introduce the function spaces and the norms that we will encounter through-
out the present paper. For 1 � p � ∞, we denote by Lp(R2) the usual Lp-space and by |f |p the usual Lp-norm of
a function f : R2 → R or f : R2 → R2. Similarly, for s ∈ R, we denote by Hs(R2) the usual Sobolev space and by
|f |Hs the corresponding norm. Sobolev norms will be convenient to specify the regularity of our perturbations, but
we also need weighted norms to describe the localization properties. Indeed, even in the homogeneous case, we know
that it is impossible to get a convergence rate in time if we do not assume that the perturbations decay sufficiently fast

at infinity in space (see [8]). Instead of using polynomial weights as in [8], we choose here the Gaussian weight G− 1
2 ,

which is more restrictive but naturally related to the Oseen vortices and has several technical advantages. For instance,

on the Hilbert space L2
w(R2) := {f | G− 1

2 f ∈ L2(R2)}, the linear operators L and Λ become respectively symmetric
and skew-symmetric. More generally, we shall use the weighted Lp-space defined as follows, for any 1 � p � +∞,

Lp
w(R2) := {

f
∣∣ G− 1

2 f ∈ Lp
(
R2)} (14)

with corresponding norms |f |w,p := |G− 1
2 f |p .

We are now able to state the main result of this paper:

Theorem 1. Let α ∈ R, 0 < s < 1 and 0 < γ < 1
2 . There exist ε0 > 0 and K > 0 such that, for any 0 < ε < ε0, if

1. b0 belongs to L2
w(R2) ∩ L∞

w (R2) ∩ Hs+2(R2) with |b0|w,2 � ε, |b0|w,∞ � ε, and G−1/2∇b0 belongs to Lq(R2)

for some q > max(4, 2
s
),

2. w̃0 belongs to L2
w(R2) ∩ Hs(R2) with |w̃0|w,2 � ε and

∫
R2 w̃0 = 0,

then there exists a unique solution (b, w̃) of (10) with initial data (b0, w̃0) such that

1. b ∈ L∞
loc(R

+;Hs+2(R2)),

2. G− 1
2 b ∈ L∞(R+;L2(R2) ∩ L∞(R2)), G− 1

2 ∇b ∈ L∞
loc(R

+;Lq(R2)),
3. w̃ ∈ L∞

loc(R
+;Hs(R2)) ∩ L2

loc(R
+;Hs+1(R2)),

4. G− 1
2 w̃ ∈ L∞(R+;L2(R2)) ∩ L2(R+;L2(R2)), G− 1

2 ∇w̃ ∈ L2(R+;L2(R2)), G− 1
2 |ξ |w̃ ∈ L2(R+;L2(R2)).

Moreover this solution satisfies |w̃(τ )|w,2 � Kεe−γ τ , for any τ > 0.

Theorem 1 shows that Oseen vortices, which are self-similar solutions of the density-dependent Navier–Stokes
equations, are stable with respect to small localized perturbations of the density and the vorticity. It is very important
to note that we do not make any smallness assumption on the parameter α ∈ R so that we do treat Oseen vortices with
arbitrarily high Reynolds numbers |α|. However, unlike in the homogeneous case [8], we are not able to consider large
perturbations of the vorticity, due to the lack of appropriate Lyapunov functions for the density-dependent system, and
unfortunately, in Theorem 1, the allowed size ε0 of the perturbations is a decreasing function of the Reynolds number
|α| tending to zero as |α| goes to infinity.

Without loss of generality, we assume in Theorem 1 and throughout this paper that the vorticity perturbation w̃ has
zero average. Indeed, if w = αG+ w̄ with w̄ small and δ := ∫

2 w̄ �= 0, one can always rewrite w = (α+δ)G+ w̃ with
R



L.M. Rodrigues / Ann. I. H. Poincaré – AN 26 (2009) 625–648 629
w̃ small and
∫

R2 w̃ = 0. This zero-mean condition is preserved under the evolution defined by (10) and is necessary to
show that w̃(τ ) converges to zero as τ → ∞, i.e. to obtain an asymptotic stability result for the vorticity.

To make this asymptotic stability more concrete, we express it now in the original variables. Under the assumptions
of Theorem 1, if (ρ,ω) is the solution of (3) defined by (7) with w = αG + w̃ and r = 1

1+b
, then the vorticity ω(t, x)

satisfies

t
1
2
∣∣e |x|2

8t
(
ω(t) − αωG(t)

)∣∣
2 � C

tγ
, t � 1.

Moreover this implies

t
1− 1

p
∣∣ω(t) − αωG(t)

∣∣
p

� Cp

tγ
,

t
1
2 − 1

q
∣∣u(t) − αuG(t)

∣∣
q

� Cq

tγ

for any 1 � p � 2, 2 < q < +∞, t � 1. Note that self-similarity implies |ωG(t)|p = Ct
−(1− 1

p
) and |uG(t)|p =

Ct
−( 1

2 − 1
q
). In contrast, since the density perturbation 1

ρ
− 1 is just transported by the divergence-free velocity field u,

formally it remains constant in law, thus in any Lp-norm.
The rest of the paper is organized as follows. In a preliminary section, we collect estimates on the Biot–Savart

kernel, thus on the velocity in terms of the vorticity, and on the pressure. In the second section, we establish various
estimates for the solution of a linearized density equation. Similarly, in the third one, we study a linearized vorticity
equation. The final section is devoted to the proof of Theorem 1.

However there is another underlying structure that the reader may find useful to keep in mind. Indeed, to establish
the existence part of Theorem 1, following [1], we build a sequence of solutions of a linearization of (10). In order
to show the convergence of this sequence, we will use local-in-time estimates in Sobolev norms for solutions of
this linearized system. To be more precise, in a first step, we establish global estimates for solutions of the linearized
system, which control the density in weighted Lp spaces and the vorticity in H 1. In a second step, we use the previous
results to prove first global estimates of the density in H 2−ε (with a loss of regularity), then local estimates of the
vorticity in Hs+1, and finally local estimates of the density in Hs+2. Then we use these results to establish the
existence and uniqueness parts of the theorem via estimates on differences of two solutions. In both second section
and third section, where we study the linearized density and vorticity equations, we shall clearly indicate which
estimates are needed for the first step and the second step respectively.

Let us make clear that the global estimates show decay in time and enable us to keep some quantities small, leading
to stability, whereas the local estimates are only used to show the existence for all time of a unique solution, allowing
growth in time but precluding blow-up in a finite time. It should also be emphasized that since we consider infinite
energy solutions even the existence for small time was unknown. Actually, concerning local existence, one should also
note that the localization of the vorticity necessary to obtain a decay rate is also useful to get low regularity estimates
of the velocity field as provided by inequality (21) below.

In what follows, the original (and physical) time will never appear again, so for notational convenience henceforth
we use the letter t to denote the rescaled time τ .

1. Preliminaries

If f is integrable over R2, we define its Fourier transform to be the function f̂ defined for any η ∈ R2 by

f̂ (η) =
∫
R2

f (ζ )eiη·ζ dζ.

Concerning function spaces, we will also need the following convention. For any σ ∈ R, we denote by Ḣ σ (R2)

the usual homogeneous Sobolev space on R2 equipped with |f |Ḣ σ := |Iσ f |2, where I := (−�)
1
2 .
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1.1. Biot–Savart kernel

The goal of this subsection is to enable us to estimate the velocity in terms of the vorticity. For this purpose, we
collect here some estimates on v in terms of w when v is obtained from w by the Biot–Savart law. Recall that, in this
case, for almost every ξ ∈ R2,

v(ξ) = 1

2π

∫
R2

(ξ − η)⊥

|ξ − η|2 w(η)dη (15)

where (x1, x2)
⊥ = (−x2, x1), that is v = KBS � w, where KBS is the Biot–Savart kernel KBS(x) = 1

2π
x⊥
|x|2 . Also note

that in terms of Fourier transform, (15) becomes

v̂(η) = iη⊥

|η|2 ŵ(η). (16)

Most of these estimates are already known, but for the sake of completeness we try to give proofs rather than references
whenever this is not too long.

The following proposition gathers estimates in Lp-spaces.

Proposition 1.

1. Let 1 < p < 2 < q < +∞ be such that 1 + 1
q

= 1
2 + 1

p
. There exists C > 0 such that, if w belongs to Lp(R2),

then (15) defines a v in Lq(R2) and

|v|q � C|w|p. (17)

2. Let 1 � p < 2 < q � +∞ and 0 < θ < 1 be such that θ
p

+ 1−θ
q

= 1
2 . There exists C > 0 such that, if w belongs to

Lp(R2) ∩ Lq(R2), then (15) defines a v in L∞(R2) and

|v|∞ � C|w|θp|w|1−θ
q . (18)

3. Let 1 < p < +∞. There exists C > 0 such that, if w belongs to Lp(R2) and v is defined from w by (15), then ∇v

belongs to Lp(R2) and

|∇v|p � C|w|p. (19)

In addition, in all cases, we have divv = 0 and curlv = w.

Let us emphasize that we do not estimate v in L2(R2). Indeed, one can easily derive from (16) that to make v

square integrable one must assume that w has zero circulation, that is
∫

R2 w = 0. This would exclude Oseen vortices.

Proof. Part 1 follows from a Young-like inequality called Hardy–Littlewood–Sobolev inequality (see for instance
Theorem V.1 in [13]). Indeed, KBS is weakly L2 but not square integrable.

Part 2 is trivial when w ≡ 0. If not, we remark that from Hölder’s inequalities, we obtain∣∣v(ξ)
∣∣ � 1

2π

∫
{|η|�R}

∣∣w(ξ − η)
∣∣ 1

|η| dη + 1

2π

∫
{|η|�R}

∣∣w(ξ − η)
∣∣ 1

|η| dη

� C|w|qR
1− 2

q + C|w|p 1

R
2
p

−1
,

for almost every ξ ∈ R2 and any R > 0. Aiming to optimize this inequality, we choose R = (
|w|p
|w|q )β with β = 1−θ

2/p−1 =
θ

1−2/q
and derive (18).

Part 3 holds since differentiating (15) yields that ∇v is obtained from w by a singular integral kernel of Calderón–
Zygmund type (see Theorem II.3 in [13]). �
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The following proposition gathers estimates in Sobolev spaces.

Proposition 2.

1. Let s ∈ R. There exists C > 0 such that, if w belongs to Ḣ s−1(R2), then, if v is defined by (15), v belongs to
Ḣ s(R2) and

|v|Ḣ s � C|w|Ḣ s−1 . (20)

2. Let 0 < s < 1. There exists C > 0 such that, if (1+|ξ |)w belongs to L2(R2), then, if v is defined by (15), v belongs
to Ḣ s(R2) and

|v|Ḣ s � C
∣∣(1 + |ξ |)w∣∣

2. (21)

Proof. Part 1 is a direct consequence of the Fourier formulation (16).
Part 2 is thus reduced to estimate |w|Ḣ s−1 . If 0 < s < 1, we note that

|w|2
Ḣ s−1 = C

∫
R2

|ŵ(ξ)|2
|ξ |2(1−s)

dξ � C

∫
|ξ |�1

|ŵ(ξ)|2
|ξ |2(1−s)

dξ + C

∫
|ξ |�1

∣∣ŵ(ξ)
∣∣2

dξ.

The second term of the right member is dominated by |w|22. Choosing p such that p > 2
s

and applying first Hölder’s
inequalities then Sobolev’s embeddings, we obtain for the first term∫

|ξ |�1

|ŵ(ξ)|2
|ξ |2(1−s)

dξ � C|ŵ|2p � C|ŵ|2
H 1 .

Finally, gathering every piece yields

|w|2
Ḣ s−1 � C|ŵ|2

H 1 + C|w|22 � C
∣∣(1 + |ξ |)w∣∣2

2.

This concludes the proof. �
1.2. Pressure estimates

Keeping in mind Eq. (13), we gather some estimates for a solution Π of the following equation:

div
(
(1 + b)∇Π

) = divF. (22)

We begin with estimates in Lp-spaces.

Proposition 3.

1. Let 1 < p < +∞. There exist C > 0 and κ > 0 such that if F belongs to Lp(R2) and b to L∞(R2) with κ|b|∞ < 1,
then (22) has a unique solution Π (up to a constant) such that ∇Π belongs to Lp(R2), and

|∇Π |p � C

1 − κ|b|∞ |F |p. (23)

2. Let 1 < p � +∞ and 1 < q, r < +∞ be such that 1
r

= 1
p

+ 1
q

. There exist C > 0 and κ > 0 such that if F belongs

to Lq(R2) and, for i = 1,2, bi belongs to L∞(R2) ∩ Lp(R2) with κ|bi |∞ < 1 and Πi solves

div
(
(1 + bi)∇Πi

) = divF,

then ∇(Π2 − Π1) belongs to Lr(R2) and∣∣∇(Π2 − Π1)
∣∣
r
� C

(1 − κ|b|∞)2
|b2 − b1|p|F |q . (24)
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Proof. To prove part 1 we want to obtain ∇Π , the solution of (22), in terms of F as a perturbation of Leray projectors.
Let P be the Leray projector, that is the projector on divergence-free vector fields along gradients, and let Q = I − P.
Remark that QF gives the solution ∇Π of (22) when b ≡ 0. Now we can rewrite (22) as

div∇Π = div(F − b∇Π)

then ∇Π = Q(F − b∇Π) thus (I + Qb)∇Π = QF . Since Q is continuous on Lp , there exists κ > 0 such that

|Qbf |p � κ|b|∞|f |p
for f ∈ Lp(R2). Thus, if κ|b|∞ < 1, I + Qb is invertible on Lp , and

∇Π = (I + Qb)−1QF (25)

gives the unique solution, with the expected bound.
To prove part 2 reminding (25) we write

∇Π1 = (I + Qb2)
−1(I + Qb2)(I + Qb1)

−1QF,

∇Π2 = (I + Qb2)
−1(I + Qb1)(I + Qb1)

−1QF

then subtracting and factorizing yields

∇(Π2 − Π1) = (I + Qb2)
−1Q(b1 − b2)(I + Qb1)

−1QF.

Now the continuity of the operator Q on Lr reduces (24) to an estimate on |(b1 − b2)(I + Qb1)
−1QF |r . At last

applying first Hölder’s inequalities then the continuity on Lq concludes the proof. �
In order to estimate solutions of (22) in Sobolev spaces, we first state some useful commutator estimates of Kato–

Ponce type (see [9]). Let us recall that I = (−�)
1
2 .

Lemma 1. Let 0 < s � 1 and σ > 1.

1. There exists C > 0 such that if I sf belongs to L2(R2) and g to Hσ (R2), then I s(fg) − f I sg belongs to L2(R2)

and ∣∣I s(fg) − f I sg
∣∣
2 � C

∣∣I sf
∣∣
2|g|Hσ . (26)

2. There exists C > 0 such that if I sf belongs to Hσ (R2) and g to L2(R2), then I s(fg) − f I sg belongs to L2(R2)

and ∣∣I s(fg) − f I sg
∣∣
2 � C

∣∣I sf
∣∣
Hσ |g|2. (27)

Proof. Let us first note that there exists C > 0 such that

|ĥ|1 � C|h|Hσ ,

for any h in Hσ (R2). This comes applying Hölder’s inequalities to∫
R2

∣∣ĥ(η)
∣∣dη =

∫
R2

1

(1 + |η|2) σ
2

(
1 + |η|2) σ

2
∣∣ĥ(η)

∣∣dη.

Therefore in order to prove the lemma it is sufficient to establish∣∣I s(fg) − f I sg
∣∣
2 � C

∣∣I sf
∣∣
2|ĝ|1, (28)∣∣I s(fg) − f I sg

∣∣
2 � C

∣∣Î sf
∣∣
1|g|2. (29)

Now set h = I s(fg) − f I sg. We have

ĥ(η) = 1

(2π)2

∫
2

(|η|s − |η − ζ |s)f̂ (ζ )ĝ(η − ζ ) dζ
R
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for almost every η ∈ R2. Thanks to the following basic fact:∣∣|η|s − |η′|s∣∣ � |η − η′|s , 0 < s � 1, (30)

for η,η′ ∈ R2, we obtain∣∣ĥ(η)
∣∣ � 1

(2π)2

∫
R2

|ζ |s∣∣f̂ (ζ )
∣∣ ∣∣ĝ(η − ζ )

∣∣dζ.

At last depending on how we apply Young’s inequalities we obtain either (28) or (29). �
We now state the announced estimates in Sobolev norms.

Proposition 4. Let 0 < s < 1 and σ > 1. There exists C > 0 and κ > 0 such that if F belongs to Hs(R2), b to L∞(R2)

with κ|b|∞ < 1 and I sb belongs to Hσ (R2), then, if Π solves (22), I s∇Π belongs to L2(R2) and∣∣I s∇Π
∣∣
2 � C

1 − κ|b|∞
(∣∣I sF

∣∣
2 + 1

1 − κ|b|∞
∣∣I sb

∣∣
Hσ |F |2

)
. (31)

Proof. Applying I s to (22) and commuting b and I s yields

div
(
(1 + b)∇I sΠ

) = div
([

b, I s
]∇Π

) + div
(
I sF

)
.

Applying then (23) to this equation we obtain∣∣I s∇Π
∣∣
2 � C

1 − κ|b|∞
(∣∣I sF

∣∣
2 + ∣∣[b, I s

]∇Π
∣∣
2

)
.

Now using first (27) then applying (23) once again yields∣∣[b, I s
]∇Π

∣∣
2 � C

∣∣I sb
∣∣
Hσ |∇Π |2 � C

1 − κ|b|∞
∣∣I sb

∣∣
Hσ |F |2.

Gathering everything leads to (31). �
2. Density equation

In this section, we gather information on the following linearization of the density equation:

∂tb +
((

ν − 1

2
ξ

)
· ∇

)
b = 0 (32)

where ν̃ is a divergence-free vector-field, α ∈ R and ν = αvG + ν̃. By linearization, we mean that we do not assume
that ν̃ is obtained from a solution w̃ of the vorticity equation in (10), which involves b.

Actually in the cases we will consider ν − 1
2ξ generates a flow since ∇ν̃ belongs to L2

loc(R
+;L∞(R2)) (and

ν̃ belongs to L∞
loc(R

+;L∞(R2)). Thus our point is not to prove the existence of a solution to (32) but to establish
bounds for such a solution.

We begin with estimates in Lp-spaces, weighted or not. We recall that L
p
w(R2) for 1 � p � ∞ is the weighted

space defined in (14). The next proposition is the density part of the announced first step of the proof.

Proposition 5. Let T > 0. Assume that ν̃ is a divergence-free vector field belonging to L2(0, T ;L∞(R2)). Then b, the
solution of (32) with initial data b0, satisfies

1. for any 1 � p � +∞, provided b0 ∈ Lp(R2),∣∣b(t)
∣∣
p

� |b0|pe
− t

p , for 0 < t < T ; (33)

2. for any 1 � p � +∞, provided G− 1
2 b0 ∈ Lp(R2),∣∣b(t)

∣∣
w,p

� |b0|w,pe
− t

p e
1
8

∫ t
0 |ν̃(s)|2∞ ds, for 0 < t < T . (34)
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Proof. In order to prove part 1 for 1 � p < +∞, multiply (32) by sgn(b)|b|p−1, where sgn is the usual sign function,
and integrate by parts to obtain

d

dt
|b|pp = −

∫
R2

((
ν − 1

2
ξ

)
· ∇

)
|b|p = −|b|pp

since divν = 0 and div ξ = 2. Integrating gives (33) in this case. The case p = +∞ follows letting p go to infinity.
To prove the weighted part of the proposition for 1 � p < +∞, start as in the former and obtain

d

dt
|b|pw,p = −

∫
R2

G− p
2

((
ν − 1

2
ξ

)
· ∇

)
|b|p =

∫
R2

G− p
2

(
p

4
ξ ·

(
ν − 1

2
ξ

)
− 1

)
|b|p

since ∇G− p
2 = G− p

2
p
4 ξ . Now, since ξ ⊥ vG(ξ), we have

ξ ·
(

ν(ξ) − 1

2
ξ

)
= ξ · ν̃(ξ ) − 1

2
|ξ |2 � 1

2

∣∣ν̃(ξ)
∣∣2

hence

d

dt
|b|pw,p �

(
−1 + p

8
|ν̃|2∞

)
|b|pw,p.

Again integrating achieves the proof for finite p and the case p = +∞ follows letting p go to infinity. �
The next proposition corresponds to the density part of the announced second step: local-in-time estimates in

Sobolev norms. In order to prove some part of it we will need the following commutator lemma.

Lemma 2. Let s � 1 and σ > 1. There exists C > 0 such that if I sf belongs to L2(R2) and g to Hσ (R2), then
I s(fg) − f I sg belongs to L2(R2) and∣∣I s(fg) − f I sg

∣∣
2 � C

∣∣I sf
∣∣
2|g|Hσ + C|∇f |Hσ

∣∣I s−1g
∣∣
2. (35)

Proof. The proof is essentially the same as Lemma 1’s except that here (30) is replaced by∣∣|ζ |s − |ζ ′|s∣∣ � C|ζ − ζ ′|(|ζ − ζ ′|s−1 + |ζ ′|s−1), for ζ, ζ ′ ∈ R2. (36)

Note that we could have obtained, as in Lemma 1, various estimates depending on the way we apply Young’s inequal-
ities. �
Proposition 6. Let T > 0.

1. Let 0 < s � 2 and 0 < ε < s. Assume ν̃ is a divergence-free vector field with ∇ν̃ ∈ L1(0, T ;H 1(R2)). Then there
exists CT > 0 independent of ν̃ such that, for any initial data b0 ∈ Hs(R2), any solution b ∈ L∞(0, T ;Hs−ε(R2))

of (32) satisfies

∣∣b(t)
∣∣
Hs−ε � CT |b0|Hs exp

((
CT

t∫
0

∣∣∇ν(τ )
∣∣
H 1 dτ

)2)
, for 0 � t � T . (37)

2. Let s > 2. Assume ν̃ is a divergence-free vector field with ∇ν̃ ∈ L1(0, T ;Hs−1(R2)). Then (32) has a unique
solution b ∈ L∞(0, T ;Hs(R2)), for any initial data b0 ∈ Hs(R2). Moreover there exists C > 0 independent of b0
and ν̃ such that b satisfies

∣∣b(t)
∣∣
Hs � C|b0|Hs e

s−1
2 t exp

(
C

t∫
0

∣∣∇ν(τ )
∣∣
Hs−1 dτ

)
, for 0 � t � T . (38)
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Proof. We refer to Theorem 0.1 in [2] for the first part of the proposition. Let us only add that here we apply the
former theorem with σ = s, ε = ε and p = r = p2 = r2 = 2.

To prove the second part, we start computing [I s,
ξ
2 ] · f = − s

2I s−2 divf , for any vector field f . Thus applying I s

to Eq. (32) and commuting yield

∂t I
sb +

((
ν − 1

2
ξ

)
· ∇

)
I sb = s

2
I sb − [

I s, ν
] · ∇b.

Then multiplying by I sb and integrating lead to

1

2

d

dt

∣∣I sb
∣∣2
2 − s − 1

2

∣∣I sb
∣∣2
2 = −

∫
R2

I sb
[
I s, ν

] · ∇b

since divν = 0. Now use Cauchy–Schwarz’ inequality and apply Lemma 2 (with σ = s − 1) to get

1

2

d

dt

∣∣I sb
∣∣2
2 − s − 1

2

∣∣I sb
∣∣2
2 � C|∇ν|Hs−1 |b|2Hs .

At last combine the former with 1
2

d
dt

|b|22 + 1
2 |b|22 � 0 to obtain

1

2

d

dt
|b|2Hs − s − 1

2
|b|2Hs � C|∇ν|Hs−1 |b|2Hs

which yields (38) by a mere integration. �
The last estimate we state for the linearized transport equation (32) is intended to be used for the proofs of the

convergence of our iterative scheme and of the uniqueness of our solutions. Indeed we estimate the difference of two
solutions of equations of type (32).

Proposition 7. Let T > 0. Assume that, for i = 1,2, ν̃i is a divergence-free vector field belonging to
L2(0, T ;W 1,∞(R2)). If, for i = 1,2, bi is a solution of

∂tbi +
((

νi − 1

2
ξ

)
· ∇

)
bi = 0,

where νi = αvG + ν̃i , with initial data b0, then b1 and b2 satisfy

1. provided that G− 1
2 ∇b0 belongs to Lp(R2), for some 1 � p � +∞,∣∣∇bi(t)

∣∣
w,p

� |∇b0|w,pe
−t ( 1

p
− 1

2 )
e

1
8

∫ t
0 |ν̃i (s)|2∞ dse

∫ t
0 |∇νi (s)|∞ ds (39)

for i = 1,2 and 0 � t � T ;

2. provided that G− 1
2 b0 belongs to Lp(R2) and G− 1

2 ∇b0 belongs to Lq(R2), for some 1 � p < q � +∞,

∣∣(b2 − b1)(t)
∣∣
w,p

� e
1
8

∫ t
0 |ν̃2(s)|2∞ ds sup

0�s�t

∣∣∇b1(s)
∣∣
q

t∫
0

∣∣(ν̃2 − ν̃1)(s)
∣∣
r
ds (40)

for 0 � t � T , where r is such that 1
p

= 1
q

+ 1
r
.

Proof. In order to prove the first part of the proposition, we start differentiating the equation for b1 to get for j = 1,2,

∂t ∂j b1 +
((

ν1 − 1

2
ξ

)
· ∇

)
∂j b1 = −∂j ν1 · ∇b1 + 1

2
∂j b1.

From this, following the proof of (34), we obtain for j = 1,2,

d |∂j b1|pw,p �
(

−1 + p + p |ν̃1|2∞
)

|∂j b1|pw,p + p|∇ν1|∞|∇b1|pw,p.

dt 2 8
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Now combining the inequalities for j = 1,2 and integrating lead to (39).
Then to prove part 2 observe that b2 − b1 satisfies

∂t (b2 − b1) +
((

ν2 − 1

2
ξ

)
· ∇

)
(b2 − b1) = −(ν̃2 − ν̃1) · ∇b1.

Now following again the proof of (34) yields

d

dt
|δb|pw,p �

(
−1 + p

8
|ν̃2|2∞

)
|δb|pw,p + p|δb|p−1

w,p |∇b1|w,q |ν̃2 − ν̃1|r
where δb = b2 − b1. It is now straightforward to derive (40). �
3. Vorticity equation

As announced, we now study a linearization of the vorticity equation:

∂t w̃ − (L − αΛ)w̃ + (ν̃ · ∇)w̃ = div
(
b
(∇w + ∇⊥Π

))
(41)

where L and Λ are as in (11), b is a real function, ν̃ is a divergence-free vector field, α ∈ R,

ṽ = KBS � w̃, v = αvG + ṽ,

w = αG + w̃, ν = αvG + ν̃,

and ∇Π is obtained by solving

div
(
(1 + b)∇Π

) = div
(
(1 + b)�v − (ν · ∇)v

)
. (42)

Remind that we always assume
∫

R2 w̃0 = 0.

3.1. Weighted estimate

In this subsection we establish a global-in-time estimate in weighted L2-spaces.

Proposition 8. Let α ∈ R, K0 > 0. There exist ε0 > 0 and C > 0 such that if b is a real function and ν̃ a divergence-
free vector field such that

1. for 0 < t < T , for any 1 � p � +∞, 2 � q � +∞,∣∣b(t)
∣∣
p

� |b0|pe
− t

p ,
∣∣b(t)

∣∣
w,q

� |b0|w,qe
− t

q eK0

2. for 0 < t < T ,

∣∣ν̃(t)
∣∣
8 � K0,

t∫
0

|ν̃|2∞ � 1

24

3. and

|b0|w,4 � ε0, |b0|w,∞ � ε0

then any solution w̃ ∈ L∞(0, T ;L2
w(R2)) of (41), with initial data w̃0 ∈ L2

w(R2), satisfies, for any 0 < t < T ,

∣∣w̃(t)
∣∣2
w,2 + C

t∫
0

(|w̃|2w,2 + |∇w̃|2w,2 + ∣∣|ξ |w̃∣∣2
w,2

)
� 2|w̃0|2w,2 + C|α||b0|w,4. (43)
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Note that the assumptions on b corresponds to the first proposition of the previous section. Note also that once
α and K0 are fixed, since L2

w is embedded in any Lp , 1 � p � 2, and H 1 is embedded in any Lq , 2 � q < ∞,
inequalities (18) and (43) enable us to make

∫ t

0 |ṽ|2∞ as small as we want provided we take w̃0 and b0 small enough.
At last note that the proposition enables us to bound

∫ t

0 |∇ṽ|2
H 1 , which can be used in (37).

Proof. Our strategy is to multiply (41) by G−1w̃ and integrate to bound d
dt

|w̃|2w,2. In what follows, we examine each

term arising once multiplied by G−1w̃ and integrated on R2.
• Let us emphasize first that (41) preserves

∫
R2 w̃. Hence

∫
R2 w̃ = 0.

Let L := G− 1
2 (−L)G

1
2 . A direct calculation shows that L = −� + |ξ |2

16 − 1
2 is a harmonic oscillator with spectrum

{0, 1
2 ,1, 3

2 , . . .}. Moreover 0 is a simple eigenvalue with eigenvector G
1
2 . In particular, if f belongs to the domain of L

with
∫

R2 G
1
2 f = 0, then

∫
R2 f Lf � 1

2 |f |22. Coming back to L, we obtain: if G− 1
2 w̃ belongs to the domain of L with∫

R2 w̃ = 0, then, for any 0 < γ < 1
2 ,∫

R2

G−1w̃Lw̃ � −1

2
(1 − γ )|w̃|2w,2 + γ

∫
R2

G−1w̃Lw̃

thus integrating by part from the formula for L∫
R2

G−1w̃Lw̃ � −1

2
(1 − 2γ )|w̃|2w,2 − γ

(∣∣∇(
G− 1

2 w̃
)∣∣2

2 +
∣∣∣∣ |ξ |

4
w̃

∣∣∣∣2

w,2

)
and expanding∫

R2

G−1w̃Lw̃ � −1

2
(1 − 2γ )|w̃|2w,2 − γ

(
|∇w̃|2w,2 + 2

∣∣∣∣ |ξ |
4

w̃

∣∣∣∣2

w,2
+ 2

∫
R2

G−1∇w̃ · ξ

4
w̃

)
hence∫

R2

G−1w̃Lw̃ � −1

2
(1 − 2γ )|w̃|2w,2 − γ

(
1

3
|∇w̃|2w,2 + 1

2

∣∣∣∣ |ξ |
4

w̃

∣∣∣∣2

w,2

)
. (44)

• Recalling that Λw̃ = vG · ∇w̃ + ṽ · ∇G, we obtain∫
R2

G−1w̃Λw̃ = 0. (45)

Indeed, from vG(ξ) ⊥ ξ and ∇G−1 = − ξ
2 G−1, we derive∫

R2

G−1w̃vG · ∇w̃ = −1

2

∫
R2

G−1 ξ

2
· vGw̃2 = 0.

And, on the other hand, using the identity η⊥ · ξ = −ξ⊥ · η and the explicit formula (15) for the Biot–Savart law, we
derive∫

R2

G−1w̃ṽ · ∇G = −
∫
R2

w̃(ξ)ṽ(ξ) · ξ

2
dξ

= − 1

4π

∫ ∫
R2×R2

w̃(ξ)
(ξ − η)⊥ · ξ

|ξ − η|2 w̃(η) dη dξ

= 1

4π

∫ ∫
2 2

w̃(ξ)
η⊥ · ξ

|ξ − η|2 w̃(η) dη dξ
R ×R
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= − 1

4π

∫ ∫
R2×R2

w̃(ξ)
ξ⊥ · η

|ξ − η|2 w̃(η) dη dξ

= −
∫
R2

G−1w̃ṽ · ∇G.

Thus
∫

R2 G−1w̃ṽ · ∇G = 0.
• Using Hölder’s inequalities, we also obtain∣∣∣∣ ∫

R2

G−1w̃ν̃ · ∇w̃

∣∣∣∣ � 6|ν̃|2∞|w̃|2w,2 + 1

24
|∇w̃|2w,2. (46)

• Integrating by part, we obtain∫
R2

G−1w̃ div(b∇w̃) = −
∫
R2

G−1b|∇w̃|2 − 1

2

∫
R2

G−1bw̃ξ · ∇w̃

then, using Hölder’s inequalities and the fact that |b(t)|∞ � |b0|∞,∣∣∣∣ ∫
R2

G−1w̃ div(b∇w̃)

∣∣∣∣ � 5

4
|b0|∞|∇w̃|2w,2 + 1

4
|b0|∞

∣∣|ξ |w̃∣∣2
w,2. (47)

• In the same way, since |b(t)|2 � |b0|2e− t
2 , we have∣∣∣∣ ∫

R2

G−1w̃ div(b∇G)

∣∣∣∣ =
∣∣∣∣1

2

∫
R2

bξ · ∇w̃ + 1

4

∫
R2

bw̃|ξ |2
∣∣∣∣ � C|b0|2e− t

2
(|∇w̃|w,2 + |w̃|w,2

)
thus ∣∣∣∣ ∫

R2

G−1w̃ div(b∇G)

∣∣∣∣ � C|b0|2
(
e−t + |∇w̃|2w,2 + |w̃|2w,2

)
. (48)

• Finally, integrating by part, using Hölder’s inequalities and applying inequality (23), we obtain, for b0 small enough
in L∞,∣∣∣∣ ∫

R2

G−1w̃ div
(
b∇⊥Π

)∣∣∣∣ =
∣∣∣∣1

2

∫
R2

G−1bw̃ξ · ∇⊥Π +
∫
R2

G−1b∇w̃ · ∇⊥Π

∣∣∣∣
� C

1 − κ|b0|∞
(∣∣|ξ |w̃∣∣

w,2 + |∇w̃|w,2
)(|b0|w,∞eK0

∣∣(1 + b)�ṽ
∣∣
2

+ |b0|w,4e
K0e− t

4
∣∣α(1 + b)�vG − (ν · ∇)v

∣∣
4

)
.

Now, on one hand, since |b(t)|∞ � |b0|∞, estimate (20) yields∣∣(1 + b)�ṽ
∣∣
2 � C

(
1 + |b0|∞

)|∇w̃|2.
On the other hand, similarly, we have∣∣(1 + b)�vG

∣∣
4 � C

(
1 + |b0|∞

)
.

At last, Hölder’s inequalities, estimate (19) and Sobolev’s embeddings yields∣∣(ν · ∇)v
∣∣
4 � C

(|α| + |ν̃|8
)(|α| + |w̃|8

)
� C

(|α| + |ν̃|8
)(|α| + |w̃|H 1

)
.

Taking this into account yields when κ|b0|∞ � 1

2
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∣∣∣∣ ∫
R2

G−1w̃ div(b∇⊥Π)

∣∣∣∣ � e− t
2 C|α|eK0 |b0|w,4

(
1 + |α| + |ν̃|8

)2

+ |w̃|2w,2 CeK0 |b0|w,4
(
1 + |α| + |ν̃|8

)2

+ |∇w̃|2w,2CeK0
(|b0|w,∞ + |b0|w,4

(
1 + |α| + |ν̃|8

))
+ ∣∣|ξ |w̃∣∣2

w,2CeK0
(|b0|w,∞ + |b0|w,4

(
1 + |α|)). (49)

It only remains to us to gather everything after setting γ = 1
4 in (44) and integrate in time in order to obtain, when

κ|b0|∞ � 1
2 ,

∣∣w̃(t)
∣∣2
w,2

(
1 − 12

t∫
0

|ν̃|2∞
)

+ C

t∫
0

|w̃|2w,2

(
1 − eK0 |b0|w,4

(
1 + |α| + |ν̃|8

)2)

+ C

t∫
0

|∇w̃|2w,2

(
1 − eK0

(|b0|w,∞ + |b0|w,4
(
1 + |α| + |ν̃|8

)))

+ C

t∫
0

∣∣|ξ |w̃∣∣2
w,2

(
1 − eK0

(|b0|w,∞ + |b0|w,4
(
1 + |α|)))

� |w̃0|2w,2 + C|α||b0|w,4e
K0

(
1 + |α| + |ν̃|8

)2

which yields the proposition since
∫ t

0 |ν̃|2∞ � 1
24 . �

3.2. Sobolev estimate

In this subsection we prove a local-in-time estimate in Sobolev norms for solutions of Eq. (41). Remind that

I = (−�)
1
2 .

Proposition 9. Let 0 < s < 1, 1 + s < s′ < 2, 1 < s′′ < 2 − s and α ∈ R. There exists ε0 > 0 and, for K > 0, there
exists C > 0 such that if b is a real function and ν̃ a divergence-free vector field such that

sup
[0,T ]

|b|∞ � |b0|∞ � ε0, sup
[0,T ]

|b|
Hs′ � K,

sup
[0,T ]

|w̃|2 � K,

T∫
0

|w̃|2w,2 � K,

T∫
0

|∇w̃|22 � K,

T∫
0

|ν̃|2∞ � K,

sup
[0,T ]

∣∣I s ν̃
∣∣
2 � ε0,

T∫
0

∣∣I s ν̃
∣∣2
Hs′′ � K,

then any solution w̃ ∈ L∞(0, T ; Ḣ s(R2)) of (41), with initial data w̃0 ∈ Ḣ s(R2), satisfies for any 0 < t < T ,

∣∣I sw̃(t)
∣∣2
2 + C

t∫
0

∣∣I s∇w̃
∣∣2
2 � CeCt

(∣∣I sw̃0
∣∣2
2 + K

)
. (50)
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Note that (33) and (37) can provide us the validity of the assumptions on b, and (43) both the validity of the
assumptions on w̃ and, thanks to estimates (18), (20) and (21), the validity of estimates on ν̃ when ν̃ = ṽ. Conversely
(50) can be used in (38), again when ν̃ = ṽ.

Proof. We choose σ such that 1 < σ < 1 + s, s + σ < s′ and σ < s′′. The only role of σ is to make clearer our use of
commutator estimates (26) and (27).

Our strategy is to apply I s to (41), then multiply by I sw̃ and estimate each term arising, in order to bound d
dt

|I sw̃|22.
• First we compute the commutator [I s, L] = s

2I s and obtain∫
R2

I sw̃ I s Lw̃ = −
∫
R2

∣∣∇I sw̃
∣∣2 + 1 + s

2

∫
R2

∣∣I sw̃
∣∣2 (51)

since integrating by parts yields
∫

R2 f Lf = − ∫
R2 |∇f |2 + 1

2

∫
R2 |f |2.

• On one hand, we have∫
R2

I sw̃ I s
((

vG · ∇)
w̃

) =
∫
R2

I sw̃
(
vG · ∇)

I sw̃ +
∫
R2

I sw̃
([

I s, vG
] · ∇)

w̃

with, integrating by parts,∫
R2

I sw̃
(
vG · ∇)

I sw̃ = 1

2

∫
R2

(
vG · ∇)∣∣I sw̃

∣∣2 = 0

and, using Hölder’s inequalities and inequality (27),∣∣∣∣ ∫
R2

I sw̃
([

I s, vG
] · ∇)

w̃

∣∣∣∣ � C
∣∣I sw̃

∣∣
2

∣∣I svG
∣∣
Hσ |∇w̃|2.

On the other hand, we have∫
R2

I sw̃ I s
(
(ṽ · ∇)G

) =
∫
R2

I sw̃ (ṽ · ∇)I sG +
∫
R2

I sw̃
([

I s, ṽ
] · ∇)

G

with, using Hölder’s inequalities,∣∣∣∣ ∫
R2

I sw̃ (ṽ · ∇)I sG

∣∣∣∣ � C
∣∣I sw̃

∣∣
2|ṽ|∞

∣∣∇I sG
∣∣
2

and, using both Hölder’s inequalities and inequality (26),∣∣∣∣ ∫
R2

I sw̃
([

I s, ṽ
] · ∇)

G

∣∣∣∣ � C
∣∣I sw̃

∣∣
2

∣∣I s ṽ
∣∣
2|∇G|Hσ .

Using estimate (21) and estimate (18) combined with Sobolev’s embeddings, we derive∣∣∣∣ ∫
R2

I sw̃ I sΛw̃

∣∣∣∣ � C
(|w̃|2w,2 + |∇w̃|22

)
. (52)

• In the same way, we have∫
R2

I sw̃ (ν̃ · ∇)I sw̃ = 0

and, applying Hölder’s inequalities and inequality (26),∣∣∣∣ ∫
2

I s∇w̃ · ([I s, ν̃
]
w̃

)∣∣∣∣ � C
∣∣I s∇w̃

∣∣
2

∣∣I s ν̃
∣∣
2|w̃|Hσ
R
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thus, since 0 � σ � 1 + s,∣∣∣∣ ∫
R2

I sw̃ I s
(
(ν̃ · ∇)w̃

)∣∣∣∣ � C
∣∣I s ν̃

∣∣
2

∣∣I s∇w̃
∣∣2
2 + C

∣∣I s ν̃
∣∣
2|w̃|22. (53)

• Integrating by parts yields∫
R2

I sw̃ I s div(b∇w̃) = −
∫
R2

b
∣∣I s∇w̃

∣∣2 −
∫
R2

I s∇w̃
[
I s, b

]∇w̃.

Applying (27), we derive∣∣∣∣ ∫
R2

I sw̃ I s div(b∇w̃)

∣∣∣∣ �
(|b0|∞ + ε

)∣∣I s∇w̃
∣∣2
2 + C

ε
|b|2

Hs+σ |∇w̃|22 (54)

where ε > 0 is intended to be chosen small enough.
• Similarly,∣∣∣∣ ∫

R2

I sw̃ I s div(b∇G)

∣∣∣∣ �
(|b0|∞ + ε

)∣∣I s∇w̃
∣∣2
2 + C

(
|b0|∞ + 1

ε
|b|2

Hs+σ

)
. (55)

• First, integrating by parts yields∫
R2

I sw̃ I s div
(
b∇⊥Π

) = −
∫
R2

I s∇w̃ · bI s∇⊥Π −
∫
R2

I s∇w̃ · ([I s, b
]∇⊥Π

)
with, using Hölder’s inequalities,∣∣∣∣ ∫

R2

I s∇w̃ · bI s∇⊥Π

∣∣∣∣ �
∣∣I s∇w̃

∣∣
2|b0|∞

∣∣I s∇Π
∣∣
2

and, using Hölder’s inequalities and inequality (27),∣∣∣∣ ∫
R2

I s∇w̃ · ([I s, b
]∇⊥Π

)∣∣∣∣ � C
∣∣I s∇w̃

∣∣
2|b|Hs+σ |∇Π |2.

Besides, on one hand, estimate (23) applied to Eq. (42) and Hölder’s inequalities imply

|∇Π |2 � C
(|α| + |α|2 + |�ṽ|2 + |α||∇ṽ|2 + |ν̃|∞|∇ṽ|2 + |α||ν̃|∞

)
thus with estimates on Biot–Savart kernel

|∇Π |2 � C
(|α| + |α||ν̃|∞ + |α|2 + (|α| + |ν̃|∞

)|w̃|2 + |∇w̃|2
)
.

On the other hand, estimate (31) applied to (42) and Hölder’s inequalities imply∣∣I s∇Π
∣∣
2 � C

(|b|Hs+σ |∇Π |2 + ∣∣I s
(
(1 + b)�v

)∣∣
2 + ∣∣I s(ν · ∇)v

∣∣
2

)
with, commuting I s and b thanks to (27), after some calculation,∣∣I s

(
(1 + b)�v

)∣∣
2 � C|b|Hs+σ

(|α| + |∇w̃|2
) + C

(
1 + |b0|∞

)(|α| + ∣∣I s∇w̃
∣∣
2

)
and, in the same way, commuting I s and ν,∣∣I s

(
(ν · ∇)v

)∣∣
2 � C

(|α| + ∣∣I s ν̃
∣∣
Hσ

)(|α| + |w̃|2
) + C

(|α| + |ν̃|∞
)(|α| + ∣∣I sw̃

∣∣
2

)
.

Therefore, gathering these inequalities,
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∣∣∣∣ ∫
R2

I sw̃ I s div
(
b∇⊥Π

)∣∣∣∣ � C
∣∣I sw̃

∣∣2
2|b0|∞

(|α|2 + |ν̃|2∞
) + C

∣∣I s∇w̃
∣∣2
2

(|b0|∞ + ε
)

+ C|b|2
Hs+σ

(
1

ε
+ |b0|∞

)(|α|2 + |α|2|ν̃|2∞ + |α|4 + (|α|2 + |ν̃|2∞
)|w̃|22 + |∇w̃|22

)
+ C|b0|∞

(|α|2(1 + |b0|2∞ + |α|2 + |ν̃|2∞
)

+ (|α|2 + ∣∣I s ν̃
∣∣2
Hσ

)(|α|2 + |w̃|22
) + |b|2

Hs+σ

(|α|2 + |∇w̃|22
))

. (56)

Putting all these points together and integrating yields

∣∣I sw̃
∣∣2
2 + C

t∫
0

∣∣I s∇w̃
∣∣2
2

(
1 − |b0|∞

(
1 + |α|) − sup

[0,t]

∣∣I s ν̃
∣∣
2

)

�
∣∣I sw̃0

∣∣2
2 + C

t∫
0

∣∣I sw̃
∣∣2
2

(
1 + |b0|∞|ν̃|2∞ + |α|

(
1 + |b0|∞

t∫
0

|ν̃|2∞|α||b0|∞
))

+ C

t∫
0

|ν̃|2∞
(
|b0|∞|α|2 +

(
|α|2 + sup

[0,t]
|w̃|22

)(
1 + |b0|∞

)
sup
[0,t]

|b|2
Hs+σ

)

+ C

t∫
0

|∇w̃|22
(
|α| + (

1 + |b0|∞
)

sup
[0,t]

|b|2
Hs+σ

)

+ C

t∫
0

|w̃|2w,2

(
|α| + |α|2|b0|∞ + sup

[0,t]
∣∣I s ν̃

∣∣
2 + |α|2(1 + |b0|∞

)
sup
[0,t]

|b|2
Hs+σ

)

+ C

t∫
0

∣∣I s ν̃
∣∣2
hσ |b0|∞

(
|α|2 + sup

[0,t]
|w̃|22

)
+ Ct |α|(1 + |α|3)(1 + |b0|∞

)(
1 + sup

[0,t]
|b|2

Hs+σ

)
.

A Gronwall-type argument achieves the proof. �
3.3. Estimate for convergence

We now establish an estimate on the difference of two solutions of equations of type (41), intending to prove
convergence of our iterative scheme and uniqueness of solutions of (10).

For i = 1,2, consider

∂t w̃i − (L − αΛ)w̃i + (ν̃i · ∇)w̃i = div
(
bi

(∇wi + ∇⊥Πi

))
(57)

where L and Λ are as in (11), bi , Ω̃i are real functions, α ∈ R,

ṽi = KBS � w̃i, ν̃i = KBS � Ω̃i,

vi = αvG + ṽi , νi = αvG + ν̃i ,

wi = αG + w̃i, Ωi = αG + Ω̃i,

and ∇Πi is obtained by solving

div
(
(1 + bi)∇Πi

) = div
(
(1 + bi)�vi − (νi · ∇)vi

)
. (58)

Note that we choose to write ν̃ = KBS � Ω̃ to stress the symmetry of the hypotheses on Ω̃ and w̃.
In what follows for concision’s sake we denote δf = f2 − f1 for any functions f1, f2.
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Proposition 10. Let α ∈ R, K > 0, σ > 2, 0 < η < s < 1 and max( 2
η
,4) < p < +∞. There exists ε0 > 0 and, for

K ′, T > 0, there exists C > 0 such that if w̃1, w̃2 satisfy (57) with

1. |b0|w,4 � ε0, |b0|w,∞ � ε0;
2. for 0 < t < T , for i = 1,2, for any 1 � r � +∞,∣∣bi(t)

∣∣
r
� |b0|re− t

r ,
∣∣bi(t)

∣∣
w,r

� K|b0|w,re
− t

r ;
3. for 0 < t < T , for i = 1,2, |bi(t)|Hσ � K ′;
4. for 0 < t < T , for i = 1,2,

∣∣Ω̃i(t)
∣∣2
w,2 +

t∫
0

∣∣∇Ω̃i

∣∣2
w,2 � ε0,

∣∣Ω̃i(t)
∣∣
Hs +

t∫
0

|∇Ω̃i |2Hs � K ′,

5. for 0 < t < T , for i = 1,2,

∣∣w̃i(t)
∣∣2
w,2 +

t∫
0

|∇w̃i |2w,2 � ε0,

∣∣w̃i(t)
∣∣
Hs +

t∫
0

|∇w̃i |2Hs � K ′

then for 0 < t < T ,

∣∣δw̃(t)
∣∣2
w,2 + C

t∫
0

|δw̃|2w,2 + ∣∣∇(δw̃)
∣∣2
w,2 + ∣∣|ξ |(δw̃)

∣∣2
w,2

� C

t∫
0

(
1 + |w̃1|2w,p + |∇w̃1|2Hη

)(|δb|2w,p + |δΩ̃|2w,2

)
. (59)

Proof. Combining (60) for i = 1,2, we derive

∂t (δw̃) − (L − αΛ)(δw̃) + (ν̃2 · ∇)(δw̃) − div
(
b2

(∇(δw̃) + ∇⊥Π
))

= −(
(δν̃) · ∇)

w̃1 + div
(
(δb)∇w1

) + div
(
b2∇⊥R

) + div
(
b2∇⊥(δS)

) + div
(
(δb)∇⊥Π1

)
(60)

with Π , R, S1 and S2 obtained by solving⎧⎨⎩
div

(
(1 + b2)∇Π

) = div
(
(1 + b2)�(δṽ) − (ν̃2 · ∇)(δν̃)

)
,

div
(
(1 + b2)∇R

) = div
(−α(vG · ∇)(δṽ) + (δb)�ṽ1 − (

(δν̃) · ∇)
ṽ1

)
,

div
(
(1 + bi)∇Si

) = div
(
(1 + b1)�v1 − (ν1 · ∇)v1

)
, for i = 1,2.

Note that Π2 = Π + R + S2 and Π1 = S1.
Our strategy is again to multiply (60) by G−1(δw̃), integrate on R2 and estimate each term arising to bound

d
dt

|δw̃|2w,2. We deal with each term coming from the left member of equality (60) as we did in the linearized vorticity
equation (41). Let us only show how to deal with the other terms.

First of all, let us emphasize that |Gr∇(Gr ′
f )|2 is controlled by |∇f |2 + ||ξ |f |2 provided that r + r ′ = − 1 .
2 w,2 w,2 2
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• First integrating by parts and applying Hölder’s inequalities, we obtain∣∣∣∣ ∫
R2

G−1(δw̃)div
(
w̃1(δν̃)

)∣∣∣∣ �
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣
2

∣∣G− 1
2 w̃1

∣∣
p
|δν̃|q

where 2 < q < +∞ is such that 1
p

+ 1
q

= 1
2 . Then using (17)∣∣∣∣ ∫

R2

G−1(δw̃)div
(
w̃1(δν̃)

)∣∣∣∣ � ε
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣2
2 + C

ε
|w̃1|2w,p|δΩ̃|2w,2 (61)

where ε is intended to be chosen small enough.
• Similarly, with the same q , we also have∣∣∣∣ ∫

R2

G−1(δw̃)div
(
(δb)∇w1

)∣∣∣∣ �
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣
2

∣∣G− 1
2 (δb)

∣∣
p
|∇w1|q

thus using Sobolev’s embeddings∣∣∣∣ ∫
R2

G−1(δw̃)div
(
(δb)∇w1

)∣∣∣∣ � ε
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣2
2 + C

ε
|∇w1|2Hη |δb|2w,p (62)

where ε is again intended to be chosen small enough.
• In quite the same way, we obtain∣∣∣∣ ∫

R2

G−1(δw̃)div
(
b2∇⊥R

)∣∣∣∣ � C
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣
2|b0|w,∞|∇R|2.

With pressure estimate (23), estimate on Biot–Savart law (17), Hölder’s inequalities and Sobolev’s embeddings we
can derive∣∣∣∣ ∫

R2

G−1(δw̃)div
(
b2∇⊥R

)∣∣∣∣ � ε
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣2
2 + C

ε
|b0|2w,∞|∇w̃1|2Hη |δb|2p

+ C

ε
|α||b0|2w,∞|δw̃|22 + C

ε
|b0|2w,∞|w̃1|2w,2|δΩ̃|2w,2 (63)

where ε is once again intended to be chosen small enough.
• Using estimate (24) instead of estimate (23) and inequalities (17) and (19), since 1

p
< 1

2 − 1
p

, we can obtain∣∣∣∣ ∫
R2

G−1(δw̃)div
(
b2∇⊥(δS)

)∣∣∣∣ � ε
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣2
2

+ C

ε
|b0|2w,∞|δb|2p

[|∇w1|2Hη + |Ω1|2w,2|w1|2w,p

]
(64)

where ε is still intended to be chosen small enough.
• At last, integrating by parts and applying Hölder’s inequalities, we have∣∣∣∣ ∫

R2

G−1(δw̃)div
(
(δb)∇⊥Π1

)∣∣∣∣ �
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣
2|δb|w,p

∣∣∇⊥Π1
∣∣
q

where 2 < q < +∞ is again such that 1
p

+ 1
q

= 1
2 . Again with pressure estimate (23), estimates on Biot–Savart law

(17) and (19), Hölder’s inequalities and Sobolev’s embeddings we can derive∣∣∣∣ ∫
R2

G−1(δw̃)div
(
(δb)∇⊥Π1

)∣∣∣∣ � ε
∣∣G 1

2 ∇(
G−1(δw̃)

)∣∣2
2 + C

ε
|δb|2w,p

[|∇w1|2Hη + |Ω|2w,2|w1|2w,p

]
(65)

where ε is once again intended to be chosen small enough.
Gathering everything and integrating yield (59). �
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4. Main results

We now use our various estimates to derive our main results.

4.1. Existence and uniqueness

Before proving a result of existence and uniqueness of solution of Eqs. (10), we state a lemma that will make a link
between norm estimates and convergence of the iterative scheme.

Lemma 3. Let T > 0 and 1 < p � +∞. Let (fk) be a sequence in L∞(0, T ;R+), and (gk) a bounded sequence in
Lp(0, T ;R+) be such that for 0 < t < T and k ∈ N,

fk+1(t) �
t∫

0

fkgk.

Then (fk) is uniformly summable, namely, for 0 < t < T ,∑
k�0

fk(t) � CT .

Proof. Using Hölder inequalities and iterating yield fk(t) � KCk( tk

k! )
1− 1

p , where C is a bound for (gk) in
Lp(0, T ;R+). �

We can now prove the existence and uniqueness parts of Theorem 1.

Proof. Existence. We build a sequence ((bk, w̃k))k∈N∗ such that, for any k ∈ N∗,⎧⎪⎨⎪⎩ ∂tbk+1 +
((

vk − 1

2
ξ

)
· ∇

)
bk+1 = 0,

∂t w̃k+1 − (L − αΛ)w̃k+1 + (ṽk · ∇)w̃k+1 = div
(
bk

(∇wk+1 + ∇⊥Πk+1
))

where L and Λ are as in (11), (ṽk) is obtained from (w̃k) by the Biot–Savart law,

vk = αvG + ṽk, wk = αG + w̃k, for k ∈ N∗,

and (∇Πk) is obtained by solving, for any k ∈ N∗,

div
(
(1 + bk)∇Πk+1

) = div
(
(1 + bk)�vk+1 − (vk · ∇)vk+1

)
with initial data (b0, w̃0). For k = 0, we solve the system with ṽk(t) ≡ 0 and bk(t) ≡ 0.

Let us show how we propagate bounds on (bk, w̃k).
Step 1. Fix K0 > 0 and choose ε0 > 0 small enough. We can propagate

1. for any 1 � p � +∞, 2 � q � +∞, thanks to Proposition 5,∣∣bk(t)
∣∣
p

� |b0|pe
− t

p ,
∣∣bk(t)

∣∣
w,q

� |b0|w,qe
− t

q eK0

and thanks to Proposition 8,

∣∣w̃k(t)
∣∣2
w,2 + CK0

t∫
0

(|w̃k|2w,2 + |∇w̃k|2w,2 + ∣∣|ξ |w̃k

∣∣2
w,2

)
� CK0

(|w̃0|2w,2 + |b0|w,4
)

which provides us, thanks to Proposition 1 and Sobolev’s embeddings,



646 L.M. Rodrigues / Ann. I. H. Poincaré – AN 26 (2009) 625–648
|ṽk|8 � C|w̃k| 8
5

� C|w̃k|w,2 � K0,

t∫
0

|ṽk|2∞ � C

t∫
0

(|w̃k|2w,2 + |∇w̃k|22
)
� min

(
1

24
,K0

)
.

Step 2. Again choosing ε0 small enough independently of t and using Proposition 2 we can obtain, when 0 < s < 1
and 1 < s′′ < 2 − s,

t∫
0

|∇vk|H 1 � C

(
t + t

1
2

( t∫
0

|∇ṽk|2H 1

) 1
2
)

� C

(
t +

t∫
0

|w̃k|2H 1

)
,

∣∣I s ṽk(t)
∣∣
w,2 � C

∣∣w̃k(t)
∣∣
w,2 � CK0ε0,

t∫
0

∣∣I s ṽk

∣∣2
Hs′′ � C

t∫
0

(|w̃k|2w,2 + |∇w̃k|22
)
� K0

and propagate, for 0 < t < T ,

1. when 1 + s < s′ < 2, thanks to Proposition 6,∣∣bk(t)
∣∣
Hs′ � CK0,T ;

2. and thanks to Proposition 9,

∣∣I sw̃k(t)
∣∣2
2 + C

t∫
0

∣∣I s∇w̃k

∣∣2
2 � CK0,T

which provides us, for 0 < t < T ,

t∫
0

|∇vk|Hs+1 � C

(
t +

t∫
0

(|w̃k|22 + ∣∣I s∇w̃k

∣∣2
2

))
� CK0,T

thus, thanks to Proposition 6, for 0 < t < T ,∣∣bk(t)
∣∣
Hs+2 � CK0,T .

Step 3. We now prove the convergence of the scheme. Set (δb)k = bk+1 − bk and (δw̃)k = w̃k+1 − w̃k . Choose
max(4, 2

s
) < p < q . Propositions 7 and 10 give us, for T > 0, for any 0 < t < T and any k ∈ N∗,

∣∣(δb)k+1(t)
∣∣2
w,p

+ ∣∣(δw̃)k+1(t)
∣∣2
w,2 � CT

t∫
0

(
1 + |w̃k|2w,p + |∇w̃k|2Hη

)(∣∣(δb)k
∣∣2
w,p

+ ∣∣(δw̃)k
∣∣2
w,2

)
(66)

for some 0 < η < s such that 2
η

< p < +∞.

Now in order to apply Lemma 3 with fk = |(δb)k|2w,p + |(δw̃)k|2w,2, remark that

– since (G− 1
2 w̃k) is bounded in L∞(R+;L2(R2)) and (∇(G− 1

2 w̃k)) in L2(R+;L2(R2)), (G− 1
2 w̃k) is bounded in

Lr(R+;Lp(R2)), for some 2 < r < +∞, by interpolation and Sobolev embeddings,
– since (w̃k) is bounded in L∞(R+;L2(R2)) ∩ L2(0, T ;Hs+1(R2)), (∇w̃k) is bounded in Lr ′

(0, T ;Hη(R2)) for
some 2 < r ′ < +∞, by interpolation.

Thus (bk) converges in L
p
w(R2) and (w̃k) in L2

w(R2), locally uniformly in time. This implies at once that (bk) and
(w̃k) also converges in L2(R2). Now by interpolation
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– since (bk) is bounded in Hs+2(R2), (bk) converges in Hη′
(R2), for any 0 < η′ < s + 2,

– since (w̃k) is bounded in Hs(R2), (w̃k) converges in Hη′′
(R2), for any 0 < η′′ < s.

These properties enable us to take the limit in the sequence of equations.
Note that we recover the regularity on the limit by a mere application of Fatou’s lemma.
Uniqueness. We obtain a bound similar to (66) for the difference of two solutions. Then Gronwall lemma gives the

result. �
4.2. Asymptotic behavior

We now state the asymptotic part of Theorem 1. Note that under the hypotheses of Theorem 1, the following
assumptions are fulfilled.

Theorem 2. Let α ∈ R. For any 0 < γ < 1
2 , there exist ε0 > 0 and K,K ′ > 0 such that if (b, w̃) is a solution of (10)

with initial data (b0, w̃0), such that

|b0|w,2 � ε0, |b0|w,∞ � ε0,

and for t > 0, |w̃(t)|2w,2 + ∫ t

0 |∇w̃|2w,2 � ε0,∣∣b(t)
∣∣
w,2 � |b0|w,2e

− t
2 ,

∣∣b(t)
∣∣
w,∞ � K|b0|w,∞,

then, for t > 0, |w̃(t)|w,2 � K ′e−γ t (|w̃0|w,2 + |b0|w,2).

Proof. Let 0 < γ < γ ′ < 1
2 . Let us reformulate (44):∫

R2

G−1w̃Lw̃ � −γ ′|w̃|2w,2 −
(

1

2
− γ ′

)(
1

3
|∇w̃|2w,2 + 1

2

∣∣∣∣ |ξ |
4

w̃

∣∣∣∣2

w,2

)
. (67)

Then we deal with the other terms of the vorticity equation as we did to obtain estimate (43), except for the pressure
term and∣∣∣∣ ∫

R2

G−1w̃ṽ · ∇w̃

∣∣∣∣ � C|w̃|w,2
(|w̃|2w,2 + |∇w̃|2w,2

)
(68)

obtained thanks to estimate (18) and Sobolev’s embeddings.
We treat the pressure term as follows:∣∣∣∣ ∫

R2

G−1w̃ div
(
b∇⊥Π

)∣∣∣∣ � C
∣∣G 1

2 ∇(G−1w̃)
∣∣
2

∣∣G− 1
2 b∇⊥Π

∣∣
2

with ∣∣b∇⊥Π
∣∣
w,2 � C

(|b0|w,2e
− t

2
∣∣α(1 + b)�vG − α2(vG · ∇)

vG
∣∣∞

+ |b0|w,∞
∣∣(1 + b)�ṽ − α

((
vG · ∇)

ṽ + (ṽ · ∇)vG
) − (ṽ · ∇)ṽ

∣∣
2

)
and |(1 + b)�ṽ|2 � C(1 + |b0|w,∞)|∇w̃|2∣∣(vG · ∇)ṽ

∣∣
2 � C

∣∣vG
∣∣∞|w̃|2,∣∣(ṽ · ∇)vG

∣∣
2 � C

∣∣∇vG
∣∣
4|ṽ|4 � C|w̃|w,2,∣∣(ṽ · ∇)ṽ

∣∣
2 � C|ṽ|∞|∇ṽ|2 � C

(|w̃|w,2 + |∇w̃|2
)|w̃|2.

This yields

1

2

d

dt

(|w̃|2w,2

) + γ |w̃|2w,2 + C
(|∇w̃|2w,2 + ∣∣|ξ |w̃∣∣2

w,2

)
� C|b0|2w,2e

−t (69)

which integrating gives our result, since 2γ < 1. �
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