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Abstract

We consider hyperbolic and partially hyperbolic diffeomorphisms on compact manifolds. Associated with invariant foliation of
these systems, we define some topological invariants and show certain relationships between these topological invariants and the
geometric and Lyapunov growths of these foliations. As an application, we show examples of systems with persistent non-absolute
continuous center and weak unstable foliations. This generalizes the remarkable results of Shub and Wilkinson to cases where the
center manifolds are not compact.
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1. Introduction

Let M be an n-dimensional compact Riemannian manifold. Let f ∈ Diff r (M) be a Cr diffeomorphism on M ,
r � 1. We will also consider volume-preserving diffeomorphisms in our examples. Let W be a k-dimensional foliation
of M with C1 leaves. We say that the foliation is invariant under f , if f maps leaves of W to leaves. We first define
volume growth of f on leaves. We will also assume that the leaves are orientable. For any x ∈ M , let W(x) be the leaf
through x and let Wr(x) be the k-dimensional disk on W(x) centered at x, with radius r .

For most of the paper we will assume that the leaves of W have uniform exponential growth under the iterates of f ,
i.e., there are constants λ > 1 and C > 0 such that∥∥df n

x v
∥∥ � Cλn‖v‖

for all x ∈ M , all v ∈ TxW(x) and all n ∈ N, where W(x) is the leaf of W through the point x.
Examples of these expanding foliations can be found in hyperbolic and partially hyperbolic diffeomorphisms.

A map f ∈ Diff r (M) is said to be partially hyperbolic if there is an invariant splitting of the tangent bundle of M ,
T M = Es ⊕Ec ⊕Eu, with at least two of them non-trivial, and there exist α > α′ > 1, β > β ′ > 1 and C > 0, D > 0,
C′ > 0, D′ > 0 such that
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(1) Eu is uniformly expanding:∥∥Df k(vu)
∥∥ � Cαk‖vu‖, ∀vu ∈ Eu, k ∈ N,

(2) Es is uniformly contracting:∥∥Df k(vs)
∥∥ � Dβ−k‖vs‖, ∀vs ∈ Es, k ∈ N,

(3) Eu dominates Ec, and Ec dominates Es :

D′(β ′)−k‖vc‖ �
∥∥Df k(vc)

∥∥ � C′(α′)k‖vc‖, ∀vc ∈ Ec, k ∈ N.

We remark that in some papers it is allowed that the bounds for the expansion rates depend on the points.
The unstable distribution Eu is integrable and it integrates to the unstable foliation. The unstable foliation of a hy-

perbolic or partially hyperbolic diffeomorphism is certainly uniformly expanding. Likewise, the stable distribution Es

of a hyperbolic or partially hyperbolic diffeomorphism can be integrated to obtain the stable foliation which is uni-
formly expanding for f −1.

The growth rate of an uniformly expanding foliation can be measured in several different ways. We first define the
geometric growth rate. This is related to the volume growth used by Yomdin and Newhouse for the study of entropy
of diffeomorphisms (see [12,4]). The difference is that we consider only k-dimensional disks on the leaves of the
foliation. Let

χ(x, r) = lim sup
n→∞

1

n
log Vol

(
f n

(
Wr(x)

))
.

χ(x, r) measures the volume growth of the disc of radius r in W(x) centered at x. Let

χ = χ(r) = sup
x∈M

χ(x, r).

Then, χ is the maximum volume growth rate of the foliation W under f .

Lemma 1.1. The volume growth χ of the foliation W is independent of r and of the Riemannian metric on M .

Proof. Let r, r ′ > 0. For any x ∈ M , because Wr(x) is compact, there exist y1, y2, . . . , yl ∈ Wr(x) such that

Wr(x) ⊂
l⋃

i=1

Wr ′(yi).

Then

Vol
(
f n

(
Wr(x)

))
�

l∑
i=1

Volf n
((

Wr ′(yi)
))

,

so

χ(x, r) � max
1�i�l

χ(yi, r
′) � χ(r ′).

This holds for every x ∈ M , so χ(r) � χ(r ′). In the same way one can prove that χ(r ′) � χ(r) so

χ(r) = χ(r ′), ∀r, r ′ > 0,

so χ is independent of r .
Now suppose that we have another Riemannian metric on M , the volume of a disk D with respect to this new

metric is denoted Vol′(D), and the volume growth of Wr(x) with respect to this new metric is denoted χ ′(x, r). There
exist a constant C > 0 such that

C−1 Vol(D) � Vol′(D) � C Vol(D), ∀D ⊂ M.

Then

log Vol(f n(Wr(x))) − logC � log Vol′(f n(Wr(x))) � log Vol(f n(Wr(x))) + logC
n n n n n
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so

χ(x, r) = χ ′(x, r),

which means that the volume growth is independent of the Riemannian metric. �
The geometric growth is hard to compute and its dependence on the points and on the map itself is not very

clear. We will define a topological growth rate for the foliation. This will depend on the homology that the invariant
foliation carries and the action induced by f on the homology. Typically this topological growth will be much easier to
compute and it is a local constant for maps in Diff r (M). It turns out, as we will show, the geometric growth χ(x, r) and
topological growth are the same for foliations carrying certain homological information. As a consequence, χ(x, r) is
independent of x and r and remains the same under small perturbations. We will define this homological invariant
using De Rahm currents.

The third type of growth rate for an invariant foliation is measured by the Lyapunov exponents in the tangent
spaces of the leaves of the foliations. The Lyapunov exponents are positive in the leaves of an expanding foliation.
We can integrate, over the manifold, the sum of all Lyapunov exponents in the leaves and we call this integral the
Lyapunov growth. We will show that, if the foliation is absolutely continuous, the Lyapunov growth is smaller than
the geometric growth. As a consequence, if the Lyapunov growth is larger than the geometric growth, then the foliation
must be singular.

Shub and Wilkinson showed some remarkable examples where the center foliations, whose leaves are circles, per-
sistently fail to be absolutely continuous in some partially hyperbolic volume preserving diffeomorphisms (see [10]).
Moreover, every center leaf intersects a full measure set in a set of measure zero. They call these types of foliations
pathological. Using our results, we will give examples of persistent pathological foliations with non-compact center
leaves.

In Section 2 we define the topological growth of a foliation, we discuss about some properties and we show how
to relate it to the volume growth in some situations. In Section 3 we talk about the Lyapunov growth and relate it to
the volume growth in the case of absolutely continuous foliations. Section 4 contains the examples of non-absolutely
continuous foliations.

As another application of the homological invariants we defined here, Hua, Saghin and Xia proved certain conti-
nuity properties of topological entropy for partially hyperbolic diffeomorphisms, see [3].

2. Topological growth of a foliation

In this section, we will define the topological growth of a foliation. For this we will associate some homologies
to the foliation and then we will analyze the action of f∗ on these homologies. The natural objects used to define
homologies of foliations are the closed currents supported on the foliation (see [5,11]). This approach was used for
example in the study of entropy of axiom A diffeomorphisms (see [9,7]). Here we will restrict our attention to some
specific currents supported on the foliation, which are related to the dynamics of f .

Let W be a k-dimensional foliation of M , invariant under f . For any positive integer n, any x ∈ M and r > 0, we
define the dynamical currents Cn(x, r):

Cn(x, r)(ω) = 1

Vol(f n(Wr(x)))

∫
f n(Wr (x))

ω,

for any k-form ω on M . These currents depend on x and r . Also they depend on the Riemannian metric on M . The
currents Cn(x, r) are uniformly bounded so there must be subsequences with weak limits. Let C be such a limit, i.e.,
we have a sequence ni → ∞ such that for any k-form ω we have limi→∞ Cni

(x, r)(ω) = C(ω).
A current C is said to be closed if for any exact k-form ω = dα, we have C(ω) = C(dα) = 0. If C is closed, it has

a homology class [C] = hC ∈ Hk(M,R). This homology class is non-trivial if there exist a closed k-form ω such that
C(ω) �= 0.

We would like to investigate the conditions under which the sub-sequential limits of the currents Cn(x, r) are
closed. In general, Cn(x, r) itself is not closed. From Stokes’ theorem, we have:
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Cn(x, r)(ω) = 1

Vol(f n(Wr(x)))

∫
f n(Wr (x))

dα

= 1

Vol(f n(Wr(x)))

∫
∂f n(Wr (x))

α

= 1

Vol(f n(Wr(x)))

∫
∂Wr(x)

(f ∗)nα.

If the above sequence approaches zero as n → ∞, then every sub-sequential limit of the currents Cn(x, r) is
closed. In many situations, the volume growth of f n(Wr(x)) is larger than the lower dimensional volume growth of
its boundary. One of them is when the foliation W is one-dimensional:

Proposition 2.1. Suppose the one-dimensional foliation W is invariant under f and uniformly expanded by it. Then
every limit of the sequence Cn(x, r) is closed.

Proof. Let ω = dα be an exact 1-form on M . Then α is a 0-form, or a real valued function on M and hence∫
∂Wr(x)

(f ∗)nα is the difference of that function evaluated at the two end points of f n(Wr(x)) and therefore it is
uniformly bounded. On the other hand, W is uniformly expanded by f , so

lim
n→∞ Vol

(
f n

(
Wr(x)

)) = ∞
thus Cn(x, r)(ω) → 0 as n → ∞ and consequently all the limit currents are closed. �

If the foliation W is one-dimensional, there is also an intuitive way to see the limit currents of Cn(x, r), related to
the Schwartzmann asymptotic cycles (see [8]). In this case f n(Wr(x)) is just a C1 curve on the manifold, oriented
with the same orientation of W . One can join the endpoints with another C1 curve of length smaller or equal to
the diameter of M , denoted ln, to get a piecewise C1 closed curve, denoted by dn. We will use the notation |γ | for
the length of a piecewise C1 curve γ . Now let hn = [dn]

|dn| ∈ H1(M,R) be the homology class of dn divided by the
length of dn. Here hn will depend of course of the choice of the curve ln and the Riemannian metric on M . However
asymptotically Cn(x, r)(ω) is like (hn, [ω]) if the foliation W is uniformly expanding:(

hn, [ω]) = 1

|dn|
∫
dn

ω

= 1

Vol(f n(Wr(x))) + |ln|
( ∫

f n(Wr (x))

ω +
∫
ln

ω

)

= Vol(f n(Wr(x)))

Vol(f n(Wr(x))) + |ln|Cn(x, r)(ω) + 1

Vol(f n(Wr(x))) + |ln|
∫
ln

ω.

But because W is expanded by f we get that limn→∞ Vol(f n(Wr(x))) = ∞, and |ln| is uniformly bounded, so

lim
n→∞

Vol(f n(Wr(x)))

Vol(f n(Wr(x))) + |ln| = 1,

lim
n→∞

1

Vol(f n(Wr(x))) + |ln|
∫
ln

ω = 0,

and from this we get:

lim
n→∞

(
hn, [ω]) = lim

n→∞Cn(x, r)(ω).

This means that the homologies of the (closed) limit currents of Cn(x, r) are exactly the limits of the homologies hn.
Another situation when the limit currents are closed is when we have some convenient uniform bounds for the

expansion rates on W :
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Proposition 2.2. Suppose the k-dimensional foliation W is invariant under f and the following condition holds:

sup
vk−1∈Λk−1T W

‖f N∗ vk−1‖
‖vk−1‖ < inf

vk∈ΛkT W

‖f N∗ vk‖
‖vk‖

for some natural number N > 0. Then every limit current of Cn(x, r) is closed.

Proof. For n = aN + b, n,a, b,∈ N, we have the following inequalities:

Vol
(
f n

(
Wr(x)

)) =
∫

Wr(x)

Jacf n|Wr(x) =
∫

Wr(x)

Jacf aN+b|Wr(x)

� C1 Vol
(
Wr(x)

) ·
(

inf
vk∈ΛkT W

‖f N∗ vk‖
‖vk‖

)a

:= C1 Vol
(
Wr(x)

)
βa

1 ;
Vol

(
∂f n

(
Wr(x)

)) =
∫

∂Wr(x)

Jacf n|∂Wr(x) =
∫

∂Wr(x)

Jacf aN+b|∂Wr(x)

� C2 Vol
(
∂Wr(x)

) ·
(

sup
vk−1∈Λk−1T W

‖f N∗ vk−1‖
‖vk−1‖

)a

:= C2 Vol
(
∂Wr(x)

)
βa

2 ,

for some C1,C2 > 0, and then for the exact form ω = dα we get:

∣∣Cn(x, r)(ω)
∣∣ =

∣∣∣∣ 1

Vol(f n(Wr(x)))

∫
∂f n(Wr (x))

α

∣∣∣∣
� C

Vol(∂f n(Wr(x)))

Vol(f n(Wr(x)))
� C′

(
β2

β1

)a

for some C,C′ > 0. But from the hypothesis we have β1 > β2, so

lim
n→∞

∣∣Cn(x, r)(ω)
∣∣ = 0,

and all the limit currents are closed. �
We remark that the condition in Proposition 2.2 is an open condition, it is verified also for small perturbations of f

and W . This is for example the case when f is close to a linear map on the torus T
n and W is any of the expanding

foliations close to the linear one. We will consider this case in more details later.

Definition 2.3. We say that a k-dimensional invariant foliation W carries a non-trivial homology hC ∈ Hk(M,R) if
for some x ∈ M , r > 0 the currents Cn(x, r) defined above have a closed sub-sequential limit C and hC = [C] �= 0.

We say that a k-dimensional invariant foliation W carries a unique non-trivial homology (up to rescale) if for all
x ∈ M , r > 0, all sub-sequential limits of the currents Cn(x, r) are closed and their homologies are unique up to scalar
multiplication and are uniformly bounded away from zero.

We remark that there is no natural size for the currents supported on a foliation or for the homologies of the closed
ones. So the homology can be unique only up to rescale, because its size depends on the Riemannian metric.

A closed current is non-trivial if there is a closed k-form ω such that C(ω) �= 0. The homology class of a non-trivial
closed current is non-trivial. One way to show that the closed current C is non-trivial is to show that there is a closed
k-form ω such that ω is non-degenerate on W , i.e. ω is non-degenerate on TxW(x) for any x ∈ M .

Proposition 2.4. Suppose C is a limit current of Cn(x, r) which is also closed, and there exist a closed k-form ω

which is non-degenerate on the k-dimensional foliation W . Then C is non-trivial, i.e. [C] �= 0.
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Proof. When we have a non-degenerate k-form on the leaves of W , by compactness of the manifold, there exists
a constant c > 0 such that∣∣∣∣

∫
D

ω

∣∣∣∣ � c Vol(D)

for any disk D on the leaves of W , and therefore∣∣Cn(x, r)(ω)
∣∣ = 1

Vol(f n(Wr(x)))

∣∣∣∣
∫

f n(Wr (x))

ω

∣∣∣∣ � c.

This implies that C(ω) � c > 0, or C is non-trivial. �
We remark that actually one can see from the proof that if there is a closed form non-degenerate on the foliation,

then the set of homologies carried by the foliation must be bounded away from zero. The next proposition discusses
the homologies carried by an invariant expanding foliation.

Proposition 2.5. Let W be an expanding invariant foliation, let Hx,r ⊂ Hk(M,R) be the set of homologies of the
closed limit currents of Cn(x, r), and let

H =
⋃

x∈M,r>0

Hx,r ⊂ Hk(M,R)

be the set of homologies carried by W . Then

(1) Hx,r is closed and bounded and RHx,r is invariant under

f∗ :Hk(M,R) → Hk(M,R);
if Hx,r is bounded away from zero, then RHx,r is closed invariant.

(2) H spans a linear space, invariant under f∗ :Hk(M,R) → Hk(M,R).

Proof. First we observe that the map f naturally induces an action on the currents, defined by:

f∗C(ω) = C(f ∗ω)

for any k current C and k form ω. Obviously, if C is closed, then f∗C is closed too and

[f∗C] = f∗[C] ∈ Hk(M,R).

Obviously the set of limit currents of Cn(x, r) is closed, so the subset of closed limit currents is also closed, and
then Hx,r must be closed. If Hx,r is bounded away from zero, obviously RHx,r is also closed. Hx,r is bounded because
the sequence Cn(x, r) is bounded.

Now we want to prove the invariance. If Hx,r = ∅ then there is nothing to prove. Let a current C be a closed
sub-sequential limit of Cn(x, r), so [C] ∈ Hx,r . Then

C(ω) = lim
i→∞

1

Vol(f ni (Wr(x)))

∫
f ni (Wr (x))

ω,

for any k-form on M . Therefore

(f∗C)(ω) = lim
i→∞

1

Vol(f ni (Wr(x)))

∫
f ni (Wr (x))

f ∗ω

= lim
i→∞

1

Vol(f ni (Wr(x)))

∫
f (ni+1)(Wr (x))

ω

= lim
i→∞

Vol(f (ni+1)(Wr(x)))

Vol(f ni (Wr(x)))
· 1

Vol(f (ni+1)(Wr(x)))

∫
(ni+1)

ω.
f (Wr (x))
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Since the ratio Vol(f (ni+1)(Wr(x)))/Vol(f ni (Wr(x))) is uniformly bounded, both from above and away from zero,
there is a convergent subsequence. Without loss of generality, we may assume that the sequence actually converges
and there is a constant λ > 0 such that

lim
i→∞

Vol(f (ni+1)(Wr(x)))

Vol(f ni (Wr(x)))
= λ.

This implies that

lim
i→∞Cni+1(x, r)(ω) = 1

λ
(f∗C)(ω),

for any k-form ω, so f∗C/λ is also a sub-sequential limit of the current Cn(x, r), then[
λ−1f∗C

] = λ−1f∗[C] ∈ Hx,r

is also a homology of a closed limit current of Cn(x, r), so RHx,r is invariant.
The second statement follows immediately from the first one. This proves the proposition. �
Now suppose that the foliation W carries a unique non-trivial homology. Let hC = [C] ∈ Hk(M,R), where C is

a limit current as defined above. The next proposition shows that hC is actually an eigenvector of the induced linear
map by f on the homology of M .

Proposition 2.6. Let W be a k-dimensional expanding invariant foliation that carries a unique non-trivial homol-
ogy hC . Then hC is an eigenvector of the induced linear map:

f∗ :Hk(M,R) → Hk(M,R).

Proof. From Proposition 2.5 we know that H spans a subspace of Hk(M,R) invariant under f∗. Because W has
unique non-trivial homology, this invariant subspace must be RhC . Then obviously hC must be an eigenvector of the
induced linear map:

f∗ :Hk(M,R) → Hk(M,R). �
Keeping the assumption that W has unique non-trivial homology, let λW be the eigenvalue of f∗ corresponding to

an eigenvector hC associated to W , as in Proposition 2.6. We call λW the topological growth of the foliation W . We
will see below that the topological growth and the volume growth are the same for a foliation that carries a unique
non-trivial homology, except that the volume growth we defined here is an exponent, while the topological growth is
a multiplier.

Theorem 2.7. Let W be an expanding invariant foliation that carries a unique non-trivial homology hW . Let λW be
the topological growth of the foliation. Then the volume growth defined before,

χ(x, r) = lim sup
i→∞

1

i
log

(
Vol

(
f i

(
Wr(x)

)))
= lim

i→∞
1

i
log Vol

(
f i

(
Wr(x)

)) = lnλW ,

for any x ∈ M and any r > 0.

Proof. The volume of a piece of leaf in a foliation depends on the Riemannian metric defined on M . So in general,
the volume does not grow uniformly with each iteration. We will rescale the volume at each step so that there will be
uniform growth. Let hW ∈ Hk(M,R) be a homology carried by W . Let ωW be a closed k-form such that the pairing
between hW and [ωW ] is nonzero. For any x ∈ M and r > 0, we choose a sequence of numbers di , i ∈ N such that

lim diCi(ωW ) = (
hW , [ωW ]).
i→∞
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Moreover, there are numbers 0 < c1 � c2 such that di can be chosen with c−1
2 � di � c−1

1 . Then, because of the
uniqueness of homologies carried by the foliation, every limit current of {diCi}i∈N must have the homology hW . This
implies that the relation

lim
i→∞diCi(ω) = (

hW , [ω])
holds for every closed form ω, so also for f ∗ω. Therefore,

(
hW , [f ∗ω]) = lim

i→∞
di

Vol(f i(Wr(x)))

∫
f i(Wr (x))

f ∗ω

= lim
i→∞

di

Vol(f i(Wr(x)))

∫
f i+1(Wr (x))

ω

= lim
i→∞

d−1
i+1 Vol(f i+1(Wr(x)))

d−1
i Vol(f i(Wr(x)))

· di+1

Vol(f i+1(Wr(x)))

∫
f i+1(Wr (x))

ω

= lim
i→∞

d−1
i+1 Vol(f i+1(Wr(x)))

d−1
i Vol(f i(Wr(x)))

· (hW , [ω]).
Therefore

lim
i→∞

d−1
i+1 Vol(f i+1(Wr(x)))

d−1
i Vol(f i(Wr(x)))

= (
hW , [f ∗ω])/(hW , [ω])

= (
f∗hW , [ω])/(hW , [ω]) = λW .

This implies that

χ(x, r) = lim sup
i→∞

1

i
log

(
Vol

(
f i

(
Wr(x)

)))
= lim

i→∞
1

i
log Vol

(
f i

(
Wr(x)

))
= lim

i→∞
1

i
log

(
d−1
i Vol

(
f i

(
Wr(x)

)))

= lim
i→∞

1

i
log

(
d−1

0 Vol
(
Wr(x)

) ·
(

i∏
j=1

d−1
i Vol(f i(Wr(x)))

d−1
i−1 Vol(f i−1(Wr(x)))

))

= lim
i→∞

1

i

i∑
j=1

(
log

d−1
i Vol(f i(Wr(x)))

d−1
i−1 Vol(f i−1(Wr(x)))

)

= logλW .

Here we used the elementary fact that if limi→∞ ai = a, then

lim
i→∞

1

i

i∑
j=1

ai = a.

This proves the theorem. �
Now we will discuss some situations where the above results apply and remind some related results.
The closed currents supported on a foliation (Ruelle–Sullivan currents) appear in [11,7]. They are equivalent to

transverse measures to the foliation. They may not exist always, for example in the case of the center-unstable foliation
of an Anosov flow. One of the most famous existence results is due to Plante, who proves that there are closed currents
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(or transversal measures) if the foliation is oriented and there are leaves with sub-exponential growth (see [5]). An
uniformly expanding foliation has all the leaves with sub-exponential growth, so it has transversal measures. The
topological growth was studied for the case of uniformly hyperbolic transitive diffeomorphisms, where the logarithm
of it must be equal to the entropy (see [7,9]). In this case the unstable and stable foliations have unique non-trivial
homology. It is still an open question weather there are non-transitive uniformly hyperbolic diffeomorphisms, so
actually all these results apply for all the known Anosov diffeomorphisms.

For the stable and unstable foliations of partially hyperbolic diffeomorphisms, the closed currents exist, but they
are not always non-trivial. For example, for the time one map of an Anosov flow, every closed current supported on the
stable or the unstable foliation has zero homology. This is because the map is homotopic to the identity, so the action on
the homology is the identity, and this makes impossible to have non-trivial closed currents on the unstable foliation,
because they would have to be expanded. However, in other known situations, the stable and unstable foliations
of partially hyperbolic diffeomorphisms have unique non-trivial homology. This is the case for skew products over
Anosov systems, some derived from Anosov maps (skew products over), linear partially hyperbolic maps of the torus
and small perturbations.

We will present in more detail the case of maps on the n-torus T
n close to a linear map. Consider an n×n matrix A

with determinant one and with integer entries. The matrix A induces a toral automorphism: TA : Tn = R
n/Z

n → T
n

defined by TAx = Ax mod Z
n. We will consider the standard Riemannian metric on the torus T

n. If all eigenvalues
are away from the unit circle, then TA is a hyperbolic toral automorphism. If the eigenvalues of A are mixed, with
some on the unit circle and some away from unit circle, then TA is partially hyperbolic. Let λi , 1 � i � n, be the
eigenvalues of A counted with their multiplicity, ordered such that

|λ1| � |λ2| � · · · � |λn−k| � 1 < |λn−k+1| � · · · � |λn|.
In both hyperbolic or partially hyperbolic cases, let Eu be the k-dimensional unstable distribution of TA on T

n.
At each point x ∈ T

n, Eu(x) ⊂ TxT
n is the unstable subspace for dTA :TxT

n → TxT
n, meaning that it is the space

spanned by the (generalized) eigenspaces corresponding to the eigenvalues greater than one in absolute value—λn,
λn−1, λn−k+1. Let Wu be the unstable foliation generated by Eu. Then it is easy to see that the condition in Proposi-
tion 2.2 is satisfied for N = 1, because the k-dimensional expansion in Wu, or the unstable Jacobian Ju, is constant

‖TA∗vk‖
‖vk‖ =

∣∣∣∣∣
n∏

i=n−k+1

λi

∣∣∣∣∣ := Ju, ∀vk ∈ ΛkT Wu,

and the maximal k − 1-dimensional expansion is at most the product of the greatest (in absolute value) k − 1 eigen-
values, which is strictly smaller than Ju:

‖TA∗vk−1‖
‖vk−1‖ �

∣∣∣∣∣
n∏

i=n−k+2

λi

∣∣∣∣∣ = Ju

|λn−k+1| < Ju, ∀vk−1 ∈ Λk−1T Wu.

This means that for any x ∈ M and r > 0, all the limit currents of Cn(x, r) are closed. Furthermore, there exist a closed
differential form

ω = dxi1 ∧ dxi2 ∧ · · · ∧ dxik

which is non-trivial on Wu, and by Proposition 2.4 this means that all the limit currents of Cn(x, r) are also non-trivial.
Moreover, for any i1, i2, . . . , ik ∈ {1,2, . . . , n}, we remark that

Cn(x, r)(dxi1 ∧ dxi2 ∧ · · · ∧ dxik ) = Ci1,i2,...,ik

is independent of n,x, r (this is because TA is linear, and Wu(x) is just a plane with the same direction for ev-
ery x), so all the limit currents will have the same homology, denoted by hu. This of course will be an eigenvector of
TA∗ :Hk(T

n,R) → Hk(T
n,R), corresponding to the unstable subspace Eu for A, and the eigenvalue will be exactly Ju

and it will be a simple eigenvalue. So the topological growth of Wu is Ju and the volume growth is logJu.
Now suppose that f is a map which is C1 close to TA. Then f is also partially hyperbolic, and the unstable

distribution Ẽu will be C0 close to Eu (this is because a dominated splitting depends continuously on the point and
the map, there is a simple proof using invariant cone fields) and can be integrated to obtain a new unstable foliation W̃u.
We claim that the unstable foliation of f has also unique non-trivial homology, the same as the one of TA, and the
same topological and volume growth.
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Proposition 2.8. If f is sufficiently C1 close to TA, then the unstable foliation W̃u of f has unique non-trivial
homology, the topological growth is equal to Ju, and consequently the volume growth of every unstable disk is logJu.

Proof. We remind that the condition on the rates of growth along Wu needed for Proposition 2.2 is an open condition,
if it holds for TA and Wu it also holds for f C1 close to TA and W̃u such that T W̃u = Ẽu is C0 close to T Wu = Eu,
so all the sub-sequential limits of the currents Cn(x, r) are closed for any x ∈ M , r > 0. Also, the existence of a non-
degenerate closed form on a foliation is an open condition, if ω is non-degenerate on Wu and W̃u is such that T W̃u

is C0 close to T Wu, then ω is also non-degenerate on W̃u. By Proposition 2.4 we get that all the limit currents
of Cn(x, r) are non-trivial. This implies that Hx,r is bounded away from zero for any x ∈ M , r > 0.

Furthermore we observe that the map f is homotopic to the linear map TA and hence the induced map on the
homology is exactly the same as that of the linear map. Denote by J̃u(x) the new unstable Jacobian for f which now
will depend of course on the point x ∈ M . For a C1 small perturbation J̃u is close to Ju. By Proposition 2.5, for any
x ∈ M and r > 0, the set RHx,r is a non-trivial closed invariant subset of Hk(T

n,R). Suppose RHx,r �= Rhu. Because
RHx,r is non-trivial closed invariant, RHx,r must contain some homology h̃ which is not in Rhu. Because Ju is
a simple eigenvalue, h̃ cannot be a (generalized) eigenvector for Ju, so if we write h̃ in a basis formed of generalized
eigenvectors we will find at least one non-trivial component in a direction of an eigenvector corresponding to some
eigenvalue λ̃ �= Ju. Then

|λ̃| � |λnλn−1 · · ·λn−k+2λn−k| < Ju,

and

lim
j→∞

∣∣f −j∗ h̃
∣∣ 1

j � 1

λ̃
.

We can assume without loss of generality that h̃ ∈ Hx,r , so there is a limit current

C = lim
i→∞Cni

(x, r)

such that [C] = h̃. Following the proof of Proposition 2.5, with f∗C replaced by f
−j∗ C, we get that eventually for

a subsequence we have

λ(j)f
−j∗ C = lim

i→∞Cni−j (x, r),

where

λ(j) = lim
i→∞

Vol(f ni (Wr(x)))

Vol(f ni−j (Wr(x)))

= 1

Vol(f ni−j (Wr(x)))

∫
f ni−j (Wr (x))

J̃u(x)J̃u

(
f (x)

) · · · J̃u

(
f j−1(x)

)
.

By choosing f sufficiently close to TA, we may assume that J̃u(x) is close enough to Ju so for some α > 1 we have
J̃u(x) > α|λ̃| for all x ∈ M . From this we get:

λ(j) >
(
α|λ̃|)j

.

Then λ(j)f
−j∗ C is also a limit of Cn(x, r) and[

λ(j)f
−j∗ C

] = λ(j)f
−j∗ h̃ ∈ Hx,r .

But, taking the limit as j tends to infinity we get:

lim
j→∞

∣∣λ(j)f
−j∗ h̃

∣∣ � lim
j→∞

λ(j)

|λ̃|j � lim
j→∞αj = ∞,

but this is a contradiction because Hx,r is bounded.
This proves that W̃u has unique non-trivial homology, hu, so the topological growth is Ju and the volume growth

of every disk W̃r (x) must be logJu. �
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3. Lyapunov exponents

The expansion of an invariant foliation W can also be described by the Lyapunov exponents. In this section, we
will consider this analytical description and show its relations with the geometric expansion we described in the first
section.

Let f be a diffeomorphism of M with an invariant probability measure μ. then for μ-a.e. x ∈ M , there exist
real numbers λ1(x) > · · · > λl(x) (l � n); positive integers n1(x), . . . , nl(x) such that n1(x) + · · · + nl(x) = n; and
a measurable invariant splitting TxM = E1

x ⊕ · · · ⊕ El
x , with dimension dim(Ei

x) = ni(x) such that

lim
j→∞

1

j
log

∥∥Dxf
j (vi)

∥∥ = λi(x),

whenever vi ∈ Ei
x , vi �= 0.

These numbers λ1(x), . . . , λl(x) are called the Lyapunov exponents of x ∈ M . If the probability measure μ is
ergodic, then these exponents are constant for a.e. (μ) x ∈ M . The existence of these Lyapunov exponents is the result
of Oseledec’s Multiplicative Ergodic Theorem.

Let E be an invariant sub-bundle of T M . For example it can be T W , the tangent spaces of leaves are preserved
under the map. i.e., for any x ∈ M , Dxf (TxW(x)) = Tf (x)W(f (x)). For any invariant probability measure μ and for
a.e. (μ) x ∈ M , a subset of the Lyapunov splitting Ei

x , i = 1, . . . , l, spans Ex . Let ΛE(x) be the sum (counting mul-
tiplicity ni(x)) of the Lyapunov exponents λi(x) corresponding to the sub-bundles Ei

x which are inside Ex . ΛE(x) is
defined a.e. (μ) and it is also given by the formula:

ΛE(x) = lim
j→∞

1

j
log

∥∥ΛkDxf
j |ΛkEx

∥∥.

We also define the integrated Lyapunov exponent of E to be

ΛE =
∫
M

ΛE(x)dμ.

Because of the Birkhoff Ergodic Theorem applied to the additive real-valued cocycle x �→ log‖ΛkDxf
j |ΛkEx

‖, the
integrated Lyapunov exponent of E is also equal to the integral over the manifold M of the logarithm of the Jacobian
of f restricted to the sub-bundle E:

ΛE =
∫
M

log
(∥∥ΛkDxf |ΛkEx

∥∥)
dμ.

When μ is ergodic, ΛE(x) = ΛE a.e. (μ). If E = T W we will denote ΛW(x) = ΛT W(x) and ΛW = ΛT W .
For the following result, we need to define the concept of absolute continuity. For simplicity, we use a stronger

version of absolute continuity. For any x ∈ M , let D1 and D2 be sufficiently small (n − k)-dimensional smooth disks
transverse to Wr(x) for some r > 0. One can locally define a map, called holonomy map for the foliation, from D1
to D2, y1 �→ y2 with y1 ∈ D1 and y2 = D2 ∩Wr(y1). The holonomy map is said to be absolutely continuous if it maps
sets of measure zero in D1 to sets of measure zero in D2. The foliation is said to be absolutely continuous if the holon-
omy maps are absolutely continuous. If a foliation is absolutely continuous, a full measure set for a smooth measure
intersects almost all leaves in full measure. Here the measure on the leaves is the Riemannian volume restricted to W ,
and almost all leaves is with respect to Riemannian volume on transversals.

The next result is a standard way to prove non-absolute continuity of foliations:

Lemma 3.1. Let f ∈ Diff r
μ(M) be a diffeomorphism on M , preserving a smooth volume μ. Let W be a k-dimensional

foliation of M , invariant under f and

χ(x, r) = lim sup
i→∞

1

i
ln Vol

(
f i

(
Wr(x)

))
,

and let

χ = χ(r) = sup χ(x, r).

x∈M
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Finally, let ΛW be the integrated Lyapunov exponent of the foliation W for the invariant measure μ. If the foliation W

is absolutely continuous, then

ΛW � χ.

Proof. Let A ⊂ M be the set of Lyapunov generic points. i.e., for any x ∈ A, there exist the sum of the Lyapunov
exponents for x on TxW and is equal to ΛW(x). This is a full measure set with respect to μ. We have that

ΛW =
∫
M

ΛW(x)dμ,

so there exists a positive measure set B ⊂ A ⊂ M such that for any x ∈ B we have ΛW(x) � ΛW . The absolute
continuity of W implies that there exists at least a leaf W(x) for some x ∈ M such that W(x) intersects B in a set of
positive measure (actually there is a positive set of such leaves). Denote by mW the Riemannian volume on W(x) and
fix a disk Wr(x) such that mW(Wr(x) ∩ B) > 0.

Let Jacy(f
i) = ‖ΛkDyf

i |ΛkTyW‖ be the Jacobian at y ∈ M of the function f restricted to W(y). If y is a Lyapunov
regular point (y ∈ A), we have

ΛW(y) = lim
i→∞

1

i
log

(
Jacy

(
f i

))
.

Then for any small ε > 0, for any y ∈ Wr(x) ∩ B ⊂ A there exist Ny ∈ N such that for all i � Ny we have

1

i
log

(
Jacy

(
f i

))
� ΛW(y) − ε,

or

Jacy

(
f i

)
� ei(ΛW (y)−ε).

Let BN ⊂ Wr(x) ∩ B be the set of points y such that Ny � N . Then BN is an increasing sequence of sets and the
union is Wr(x) ∩ B which has positive measure, so there is an N ∈ N such that mW(BN) > 0. It follows that for any
y ∈ BN and any i > N we have

Jacy

(
f i

)
� ei(ΛW (y)−ε) � ei(ΛW −ε).

We will use this to estimate the volume of f i(Wr(x)) for i > N :

Vol
(
f i

(
Wr(x)

)) =
∫

f i(Wr (x))

dmW

=
∫

Wr(x)

Jacy

(
f i

)
dmW

�
∫

BN

Jacy

(
f i

)
dmW

� mW(BN)ei(ΛW −ε).

Therefore,

χ � χ(x, r) = lim sup
i→∞

1

i
log Vol

(
f i

(
Wr(x)

))
� ΛW − ε.

Since ε > 0 is arbitrary, we have χ � ΛW . �
A simple corollary of the above lemma and its proof is the following:
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Corollary 3.2. Let f ∈ Diff r
μ(M) be a diffeomorphism on M , preserving a smooth volume μ. Let W be a k-dimen-

sional foliation of M , invariant under f and let ΛW be the integrated Lyapunov exponent of the foliation W for the
measure μ.

If χ < ΛW , then the foliation W is not absolutely continuous. Moreover, if μ is ergodic, then there is a full measure
set A ∈ M such that every leaf W(x) of the foliation W intersect A in a zero measure set,

μW

(
W(x) ∩ A

) = 0,

for all x ∈ M , where μW is the conditional measure of μ on the leaves of W .

Proof. The first statement of the corollary is just a consequence of Lemma 3.1. In the second statement of the corollary
let A be the set of Lyapunov regular points x such that ΛW(x) = ΛW . If a leaf of W intersects A in a positive measure
set then the same argument from the proof of the lemma will show that the leaf expands under iterates of f at an
exponential rate greater or equal to ΛW , so strictly greater than the volume growth χ , which gives a contradiction. �
4. Perturbations and examples

In this section we show how to perturb a linear map of the torus in order to make an intermediate foliation non-
absolute continuous in a persistent way. The main tool used here is a result of A. Baraviera and C. Bonatti (see [1]).
Before we state it, we have to define dominated splittings.

We say that T M = E ⊕ F is a dominated splitting for the diffeomorphism f if the sub-bundles E and F are
invariant under Df and there is an l ∈ N such that for each x ∈ M and each nonzero vectors u ∈ Ex , v ∈ Fx we have

‖Dxf
l(u)‖

‖u‖ <
1

2

‖Dxf
l(v)‖

‖v‖ .

A dominated splitting is continuous and it persists after perturbations, meaning that any g which is C1 close to f will
also have a dominated splitting T M = E′ ⊕ F ′ close to the dominated splitting T M = E ⊕ F for f . The definition
can be of course extended for splittings with more than two sub-bundles.

Theorem 4.1. Let M be a compact Riemannian manifold and μ a smooth volume form on M . Let f be a C1 diffeo-
morphism of M preserving μ and admitting a dominated splitting T M = E1 ⊕ E2 ⊕ E3. Then there are arbitrarily
small volume preserving C1 perturbations g of f such that, if T M = Ẽ1 ⊕ Ẽ2 ⊕ Ẽ3 is the new dominated splitting
for g, then the integrated Lyapunov exponent of Ẽ2 with respect to g is strictly larger than the integrated Lyapunov
exponent of E2 with respect to f :

Λ
Ẽ2(g) > ΛE2(f ).

The idea of the proof is the following. One has to make a small perturbation to ‘mix’ the direction of E2 with the
direction of E3, while keeping the coordinates corresponding to E1 almost unchanged. This mixing almost does not
change the direction of E2 ⊕ E3 and the Jacobian restricted to it, so the integrated Lyapunov exponent of Ẽ2 ⊕ Ẽ3 is
very close to the one of E2 ⊕ E3. The perturbation will be local, supported on a small ball with very large returning
time. This perturbation will change the direction of E3 toward E2 at the image of the ball, but then the dynamics of
the map will tend to correct this perturbation, and if the return time is large enough then this perturbation becomes
negligible for estimating the Jacobian along Ẽ3 for the further iterates. Then, analyzing the change on the small
ball where the perturbation is supported, one can prove that the integrated exponent corresponding to the new Ẽ3 is
‘significantly’ smaller than the one of E3. As a consequence, the integrated exponent corresponding to the new Ẽ2

becomes larger than the one of E2. For the details of the proof we send the reader to [1].
A. Baraviera and C. Bonatti show that a consequence of this result is the fact that a C1 generic small perturbation of

the time one map of an volume preserving Anosov flow has a non-absolutely continuous central foliation. Previously
M. Shub and A. Wilkinson gave some examples of perturbations of skew products where the central foliation is again
non-absolutely continuous in a persistent way. In their situation the central foliation consists of circles (see [10]).
Recently M. Hirayama and Y. Pesin proved that C1 generically a partially hyperbolic map with compact center leaves
has the central foliation non-absolutely continuous (see [2]). All this results lead to the following conjecture:
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Conjecture 1. Generically the central foliation (if it exists) of a volume preserving partially hyperbolic diffeomor-
phism is non-absolutely continuous.

We want to give another example of persistent non-absolutely continuous central and intermediate foliations of
volume preserving partially hyperbolic diffeomorphisms that supports this conjecture.

Consider again a linear automorphism TA of the torus T
n and suppose that this time the tangent bundle has a dom-

inated invariant splitting T T
n = E1 ⊕ E2 ⊕ E3 with the dimension of Ei equal to ki . We remark that TA preserves

the Lebesgue measure on T
n. We will also denote by J1, J2, J3 the Jacobians of TA on E1, E2, E3 and Λ1, Λ2, Λ3

the integrated Lyapunov exponents corresponding to the invariant bundles E1, E2, E3 (w.r.t. the Lebesgue invariant
measure). We have

Λi = logJi, i ∈ {1,2,3}.
We can integrate the invariant distributions E1, E2, E3 to obtain invariant foliations W 1, W 2, W 3. This is not true

for a general dominating splitting of a map. However in our case TA is linear, and all these foliations exist. To see
this consider A : Rn → R

n be the lift of TA. We will make an abuse of notation and denote the lifted bundles also
by Ei , and using the exponential map we identify R

n ≡ T0R
n, A ≡ D0A and Ei

0 ≡ Wi
0, for i ∈ {1,2,3}, where 0 is

the origin. Then the planes parallel to Ei
0 = Wi

0 will form a foliation of R
n which projected to the torus T

n will give
the foliation Wi tangent to Ei , for all i ∈ {1,2,3}.

We assume that W 2 and W 3 are uniformly expanding, or W 3 is a strong unstable foliation, W 2 is a weak unstable
foliation and W 1 is a stable or a center-stable foliation. We can also integrate E2 ⊕E3 to get W 23, which is an unstable
foliation, and E1 ⊕ E2 to obtain W 12, which can be seen as a center-stable foliation. All this foliations have unique
non-trivial homology which is an eigenvector of the map induced by TA in the corresponding homology group. We
denote this eigenvectors h1, h2, h3. By taking f 2 if necessary, we can assume that f preserves the orientation of the
invariant foliations. The topological growth of W 1, W 2, W 3 will be exactly the corresponding eigenvalues J1, J2, J3.
Because the map is linear, for all these foliations the volume growth, the Lyapunov growth and the logarithm of the
topological growth coincide.

For any f a C1 small perturbation of TA we will have an f -invariant dominated splitting T T
n = Ẽ1 ⊕ Ẽ2 ⊕ Ẽ3

which is close to the invariant splitting for TA. Also the foliations will persist, one can integrate Ẽ1, Ẽ2, Ẽ3 to obtain
the corresponding f -invariant foliations W̃ 1, W̃ 2, W̃ 3. The new foliations exist because Ẽ3 and Ẽ23 are (strong)
unstable distributions, so they can always be integrated to obtain strong unstable foliations W̃ 3 and W̃ 23, while the
existence of W̃ 1 and W̃ 12 follows from the persistence under small perturbations of the center foliations for TA, W 1

and W 12, because they are C1, so they are plaque expansive (see [6]). Then W̃ 2 will be just the intersection of W̃ 12

and W̃ 23.
To simplify the proof we will make the following technical assumption:

(H) J2 is a simple eigenvalue of TA∗ :Hk2(T
n,R) → Hk2(T

n,R) and there is no other eigenvalue of absolute value J2.

This is used just to obtain a simple proof of the fact that W̃ 2 has unique non-trivial homology. The next result is
also true without this assumption.

Theorem 4.2. Suppose TA is a linear automorphism of the torus T
n with an invariant dominated splitting T T

n =
E1 ⊕E2 ⊕E3, with E2 uniformly expanding, and satisfying the hypothesis (H). Then there exist an open set of volume
preserving diffeomorphisms U , C1 arbitrarily close to TA, such that, for any f ∈ U , the weak unstable foliation of f ,
W̃ 2, is non-absolutely continuous.

Proof. By the previous theorem we can make an arbitrarily C1 small perturbation of TA to obtain a volume preserving
diffeomorphism f such that

Λ
Ẽ2(f ) > Λ2.

We remark that this property is true also for small C1 perturbations of f , because the integrated Lyapunov exponent
of a sub-bundle of a dominated splitting depends continuous on the map (it is just the integral of the corresponding
Jacobian).
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We will use the following lemma:

Lemma 4.3. Suppose TA is a linear automorphism of the torus T
n with an invariant dominated splitting T T

n =
E1 ⊕ E2 ⊕ E3, with E2 uniformly expanding, and satisfying the hypothesis (H). Then for any f sufficiently C1 close
to TA, the weak unstable foliation of f , W̃ 2, has unique non-trivial homology, equal to the one of W 2 (h2).

Proof. The proof is similar to the proof of Proposition 2.8, the only difference is that now the eigenvalue J2 of
f∗ :Hk2(T

n,R) → Hk2(T
n
R) is not strictly greater than the other eigenvalues in absolute value, it is just different.

We start by making the remark that we can choose f sufficiently close to A so that the Jacobian of f on W̃ 2,
denoted J̃2(x), is inside a small neighborhood of J2 (|J2 − J̃2(x)| < ε) which does not contain any other eigenvalue
in absolute value of the map TA∗ :Hk(T

n,R) → Hk(T
n,R).

Because f is close to a linear map on the torus, one can apply Propositions 2.2 and 2.4 to conclude that every limit
current on W̃ 2 is closed and non-trivial (see also the proof of Proposition 2.8), and for every x ∈ M , r > 0, Hx,r is
bounded away from zero and infinity. Suppose that W̃ 2 does not have the unique non-trivial homology h2. Then there
exist a disk W̃ 2

r (x) in W̃ 2 and a subsequence of corresponding currents Cni
(x, r) such that limi→∞ Cni

(x, r) = C and
[C] = h̃ /∈ Rh2.

The condition (H) can be reformulated in the following way:

(H′) Suppose h ∈ Hk2(T
n,R). Then h ∈ Rh2 if and only if

lim
j→∞

∣∣f j∗ h
∣∣ 1

j = lim
j→∞

∣∣f −j∗ h
∣∣− 1

j = J2.

This implies that at least one of limj→∞ |f j∗ h| 1
j and limj→∞ |f −j∗ h|− 1

j must be different from J2. We will assume

that limj→∞ |f j∗ h| 1
j = λ̃ < J2, all the other cases are treated similarly.

As in Section 2 we get

f
j∗ C = lim

i→∞
Vol(f ni+j (Wr(x)))

Vol(f ni (Wr(x)))
· Cni+j (x, r),

and eventually for a subsequence

lim
i→∞

Vol(f ni+j (Wr(x)))

Vol(f ni (Wr(x)))
= λ(j),

so

lim
i→∞Cni+j (x, r) = f

j∗ C

λ(j)

is another closed limit current of Cn(x, r), or

f
j∗ h̃

λ(j)
∈ Hx,r , ∀j > 0.

On the other hand λ(j) � (J2 − ε)j > (αλ̃)j for some α > 1, so

lim
j→∞

∣∣∣∣ f
j∗ h̃

λ(j)

∣∣∣∣ � lim
j→∞

λ̃j

αλ̃j
= lim

j→∞α−j = 0,

which contradicts the fact that Hx,r is bounded away from zero and infinity. �
Now we go back to the proof of the theorem. We know from the previous lemma that W̃ 2 has unique non-trivial

homology which is h2. Then the volume growth of W̃ 2 will have to be

χ
(
f, W̃ 2) = logJ2 = Λ2 < Λ ˜ 2(f ) = Λ ˜ 2(f ).
E W
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But then the volume growth of W̃ 2 is strictly smaller then the integrated Lyapunov exponent Λ
W̃ 2 of W̃ 2, so from

Corollary 3.2 from the previous sections follows that the foliation W̃ 2 is non-absolutely continuous. The same is true
for all the diffeomorphisms sufficiently C1 close to f . �

We remark that this result can be generalized to dominated splittings with a larger number of sub-bundles. For
example if T T

n = E1 ⊕ E2 ⊕ · · · ⊕ El is a dominated splitting for the linear map on the n-torus TA, with E2

uniformly expanding, then there are arbitrarily small C1 perturbations f of TA such that for any 2 � i � j < l, there is
an intermediate f -invariant sub-bundle Ẽi ⊕ Ẽi+1 ⊕· · ·⊕ Ẽj close to Ei ⊕Ei+1 ⊕· · ·⊕Ej which can be integrated
to obtain a weak unstable foliation W̃ i,i+1,...,j which is not absolutely continuous in a persistent way. However if f

is C1+ε then the strong unstable foliations W̃ j,j+1,...,l are always absolutely continuous, for every 2 � j � l.
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