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Abstract

We prove that the elliptic system

−�u = |v|q−2v + k(x), x ∈ Ω, (1)

−�v = |u|p−2u + h(x), x ∈ Ω, (2)

where Ω is a regular bounded domain of R
N , N � 3 and h, k ∈ L2(Ω), admits an unbounded sequence of solutions (uk, vk) ∈

H 1
0 (Ω)×H 1

0 (Ω), provided 2 < p � q and N
2 (1 − 1

p − 1
q ) <

p−1
p . We also prove a generic multiplicity result for exponents in the

open region bounded by the lines p = 2, q = 2 and the critical hyperbola.

Résumé

Nous démontrons que le système elliptique ((1), (2)) où Ω est un domaine régulier de R
N , N � 3 et h, k ∈ L2(Ω), possède une

suite non bornée de solutions (uk, vk) ∈ H 1
0 (Ω)×H 1

0 (Ω), pour autant que 2 < p � q et N
2 (1 − 1

p − 1
q ) <

p−1
p . Nous démontrons

également un résultat générique de mulplicité lorsque les exposants se situent dans l’ouvert délimité par les droites p = 2, q = 2 et
l’hyperbole critique.
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1. Introduction

Let Ω be a smooth bounded domain of R
N , N � 3, and h, k ∈ L2(Ω). We consider an elliptic system of the form⎧⎪⎨

⎪⎩
−�u = |v|q−2v + k(x) in Ω,

−�v = |u|p−2u + h(x) in Ω,

u = 0 on ∂Ω,

v = 0 on ∂Ω,

(1.1)

with p,q > 2. Here q stands for the largest exponent appearing in (1.1), that is we assume without loss of generality
that p � q . In case h(x) = k(x) and p = q > 2, the system reduces to a single equation

−�u = |u|p−2u + h(x) in Ω, u = 0 on ∂Ω. (1.2)

This equation can be seen as a (large) perturbation of an equation possessing a natural Z2-symmetry and thus a large
number of solutions are expected. One can indeed obtain infinitely many solutions, provided the growth range of
the nonlinearity is suitably restricted. Namely, Bahri and Berestycki [3], Struwe [24], and, with a different approach,
Rabinowitz [16,17] proved the existence of infinitely many solutions for problem (1.2) under the restriction

2

p
+ 1

p − 1
>

2N − 2

N
, (1.3)

while, later on, Bahri and Lions [4] and Tanaka [26] (see also [14]) showed that it is sufficient to assume

p <
2N − 2

N − 2
· (1.4)

Moreover, assuming the “natural” growth restriction p < 2N/(N − 2), Bahri [2] proved that there is an open dense
set of functions h ∈ H−1(Ω) for which (1.2) admits infinitely many weak solutions. We also mention that the radially
symmetric case has been studied by Kajikiya [13] and Struwe [25] while Tehrani [28] dealt with sign-changing
nonlinearities. More recent results, including nonhomogeneous boundary conditions and information on the sign of
the solutions, can be found in [5,6,21] and their references.

In the past years, a special attention has been devoted to the study of elliptic systems leading to strongly indefinite
functionals. In the context of superlinear elliptic systems with perturbed symmetry, we mention the recent papers by
Clapp, Ding and Hernández-Linares [7] and by de Figueiredo and Ding [10] which deal with potential systems of the
form

−�u = ∂uF (x,u, v) in Ω,

�v = ∂vF (x,u, v) in Ω,

for some smooth function F(x,u, v).
For strongly coupled systems such as (1.1), we are merely aware of the works [1,27]. In [1], Angenent and van

der Vorst showed, among other results, that the unperturbed system (with h(x) = 0 = k(x)) admits an unbounded
sequence of solutions under the “natural” restriction (cf. [8,11,12])

N

2

(
1 − 1

p
− 1

q

)
< 1, (1.5)

while Tarsi [27] proved that the same conclusion holds for the perturbed system (1.1) under the restriction (recall also
that 2 < p � q)

1

p
+ 1

q
+ p

(p − 1)q
>

2N − 2

N
· (1.6)

We observe that (1.6) implies condition (1.3) (and it reduces to (1.3) in case p = q); in particular, p is not allowed to
be close to the critical range (2N − 2)/(N − 2) which appears in (1.4). Observe also that (1.6) implies both p and q

to be smaller than the critical Sobolev exponent 2N/(N − 2).
In the present note we extend the main result in [27] by proving the following.
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Fig. 1. The (p, q)-region covered by Theorem 1 is the one bounded by the continuous lines. When p = q , we recover the critical value (μ,μ) =
( 2N−2

N−2 , 2N−2
N−2 ). The upper hyperbola delimits the subcritical region while the lower hyperbola delimits the “superlinearity” region.

Theorem 1. Let h, k ∈ L2(Ω) and 2 < p � q be such that

N

2

(
1 − 1

p
− 1

q

)
<

p − 1

p
· (1.7)

Then the system (1.1) admits an unbounded sequence of solutions (uk, vk)k ⊂ H 1
0 (Ω) × H 1

0 (Ω).

We stress that the condition (1.7) is sharp in the sense that it reduces to (1.4) in the case p = q , see Fig. 1. In
particular, this condition is implied by that expressed in (1.6). On the other hand, (1.7) does force both p and q to be
smaller than the Sobolev exponent 2N/(N − 2). Observe also that we do assume both equations to be superlinear.
To our knowledge, it is not known whether Theorem 1 extends to superlinear systems under the milder assumption
(p − 1)(q − 1) > 1.

The proof of Theorem 1 is worked out in several steps in the next sections. It combines the perturbation argument
from Rabinowitz [16] and Tanaka [26] for the single equation (1.2) with a Lyapunov–Schmidt type reduction used in
Ramos and Tavares [18] (see also Ramos and Yang [19]). We provide a new estimate to the Morse index of solutions
of the unperturbed system (1.1) (see Section 3.2) which can be seen as an extension of the one in [4,26] for the single
equation.

It should be pointed out that contrarily to the above quoted papers [7,10,27], we do not rely on Galerkin type
arguments; indeed, using our reduction method allows to get rid of the indefiniteness of the energy functional associ-
ated to the system, giving rise to critical points whose energy is controlled (from below) by their Morse indices (cf.
Lemma 9). Concerning the unperturbed problem (1.1) (i.e. with h = k = 0), we obtain as a byproduct a short proof of
the multiplicity result obtained in [1, Theorem 33]. We emphasize that in the unperturbed case, we can also deal with
the natural growth condition 1/p + 1/q > (N − 2)/N , see Proposition 4.

We believe that our direct approach to the problem may turn to be useful to prove other results concerning the
system (1.1). For instance, it becomes a simple task to adapt the argument of Bahri [2] to deduce that the multiplicity
result is generic, in the sense that if 2 < p,q < 2N/(N − 2), then, for (h, k) on a residual subset of H−1(Ω) ×



678 D. Bonheure, M. Ramos / Ann. I. H. Poincaré – AN 26 (2009) 675–688
H−1(Ω), the problem admits infinitely many weak solutions. We refer to Theorem 11 below for a more general
statement concerning the case where 1/p + 1/q > (N − 2)/N .

For the sake of simplicity, we have restricted our attention in this paper to the model problem (1.1). It will be clear
from the proofs that we could have dealt with more general nonlinearities, as done in [3,4,16,17].

Our paper is organized as follows. In Section 2, we introduce our functional settings and recall the basics of the
reduction method borrowed from Ramos and Tavares [18]. Section 3 deals with technical lemmas used in the proof of
Theorem 1 while Section 4 contains the proof in itself. Since we rely on the arguments in [16,17], we keep the proof
short by merely emphasizing the difficulties which arise from the indefinite character of our problem. Section 5 deals
with the adaptation of Bahri’s genericity result to our framework.

We write throughout the paper f (s) = |s|p−2s, F(s) = |s|p/p, g(s) = |s|q−2s and G(s) = |s|q/q with 2 < p �
q < 2∗ = 2N/(N − 2) and, if not explicitly stated, all integrals are taken over Ω . The notation ‖ · ‖ refers to the usual
norm of H 1

0 (Ω). Throughout the text, C denotes a positive constant that can change from line to line.

2. Functional settings

Let E := H 1
0 (Ω) × H 1

0 (Ω). The energy functional I : E → R associated to the elliptic problem (1.1) writes

I (u, v) =
∫ (〈∇u,∇v〉 − F(u) − G(v) − h(x)u − k(x)v

)
. (2.1)

This is a C2 functional whose derivative is given by

I ′(u, v)(ϕ,ψ) =
∫ (〈∇u,∇ψ〉 + 〈∇v,∇ϕ〉 − f (u)ϕ − g(v)ψ − h(x)ϕ − k(x)ψ

)
,

and since both p and q are subcritical, it is easily seen that I satisfies the Palais–Smale condition (PS in short) over E,
namely that every sequence (un, vn)n ⊂ E such that I ′(un, vn) → 0 and I (un, vn) is bounded admits a convergent
subsequence (see e.g. [23, p. 1457]); here one makes use of the compact embedding H 1

0 (Ω) ⊂ Lq(Ω).
Next we consider the reduced functional J : H 1

0 (Ω) → R defined by

J (α) := I (α + ψα,α − ψα) := max
ψ∈H 1

0 (Ω)

I (α + ψ,α − ψ). (2.2)

It follows from [18, Proposition 2.1] that the map

Ψ : H 1
0 (Ω) → H 1

0 (Ω) : α �→ ψα

is well defined and of class C1. We observe that, for every φ ∈ H 1
0 (Ω), ψα satisfies

I ′(α + ψα,α − ψα)(φ,−φ) = 0, (2.3)

that is ψα is the unique solution of the following equation in H 1
0 (Ω),

−2�ψα = g(α − ψα) − f (α + ψα) + k(x) − h(x). (2.4)

Moreover, using (2.3), we infer that for all α,φ ∈ H 1
0 (Ω),

J ′(α)φ = I ′(α + ψα,α − ψα)(φ,φ). (2.5)

Combining now (2.3) and (2.5), we deduce the following crucial proposition.

Proposition 2. The map

η : H 1
0 (Ω) → E : α �→ (α + ψα,α − ψα)

provides a homeomorphism between critical points of the reduced functional J and critical points of the functional I .

Proof. Observe that for any (ζ, ξ) ∈ H 1
0 (Ω) × H 1

0 (Ω), we have

I ′(α + ψα,α − ψα)(ζ, ξ) = I ′(α + ψα,α − ψα)

(
ζ − ξ

2
,−ζ − ξ

2

)
+ I ′(α + ψα,α − ψα)

(
ζ + ξ

2
,
ζ + ξ

2

)
and there you have it. �
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In particular, one can study the reduced functional J to find solutions of the system (1.1).
We now prove that the Palais–Smale condition holds for J .

Lemma 3. The reduced functional J satisfies the Palais–Smale condition in H 1
0 (Ω) and, moreover, for any finite

dimensional subspace X ⊂ H 1
0 (Ω),

J (α) → −∞ as ‖α‖ → ∞, α ∈ X. (2.6)

Proof. Let (αn)n ⊂ H 1
0 (Ω) be a Palais–Smale sequence for J and write ψn := Ψ (αn). Then, it is clear that the

sequence (η(αn))n ⊂ E is a Palais–Smale sequence for I . Since PS holds for I , we deduce that, up to a subsequence,
αn + ψn → u and αn − ψn → v for some (u, v) ∈ E. In particular, we have αn → (u + v)/2 so that our first claim
follows.

Now, take a finite dimensional subspace X ⊂ H 1
0 (Ω). Assume by contradiction that there exists an unbounded

sequence (αn)n ⊂ X such that

lim inf
n→∞ J (αn) > −∞.

Computing J (αn), we easily see that the sequence (‖ψn‖/‖αn‖)n is bounded and

lim
n→∞

∫ ∣∣∣∣ αn

‖αn‖ ± ψn

‖αn‖
∣∣∣∣
p

= 0.

It then follows that

lim
n→∞

∫ ∣∣∣∣ αn

‖αn‖
∣∣∣∣
p

= 0,

which is impossible since X has finite dimension. This completes the proof. �
At this point, we are already able to prove an existence result in the unperturbed case. In this way, we recover with

a direct proof the existence result in [1, Theorem 33] and [27, Section 3].

Proposition 4. Assume that 2 < p � q are such that

N

2

(
1 − 1

p
− 1

q

)
< 1.

Then the system (1.1) with h ≡ k ≡ 0 admits an unbounded sequence of solutions (uk, vk)k ⊂ H 1
0 (Ω) × H 1

0 (Ω).

Proof. Assume first that p � q < 2∗ = 2N/(N − 2). If h(x) = k(x) = 0, then we deduce that

J (α) � I (α,α) � c‖α‖2

provided ‖α‖ = ρ with ρ > 0 small enough. The results then follows straightforwardly from the Z2-version of the
Mountain Pass Theorem (cf. e.g. [17, Theorem 9.12]).

Next, observe that assuming p,q < 2∗ is not restrictive. Indeed, if q > 2∗, define gn(s) as a smooth odd truncation
of g(s) such that gn(s) = g(s) if |s| � n + 1, |gn| is strictly convex and grows like |s|p−1 at ±∞.

Since p < 2∗, extending the case of pure powers to our new settings, it is easily seen that for every n ∈ N, the
modified system⎧⎪⎨

⎪⎩
−�u = gn(v) in Ω,

−�v = |u|p−2u in Ω,

u = 0 on ∂Ω,

v = 0 on ∂Ω,

(2.7)

has an unbounded sequence of solutions (uk, vk)k ⊂ H 1
0 (Ω) × H 1

0 (Ω).
Finally, arguing as in [18, Section 5], it comes out that those solutions are bounded independently of n. This means

that for every k ∈ N, the first k solutions of (2.7) are indeed solutions of the original system provided n is chosen large
enough. Since this is true for every k ∈ N, the conclusion follows. �
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3. Preliminaries

Our proof of Theorem 1 mainly consists in adapting Rabinowitz’s perturbation argument [16,17] to our framework,
together with a new result on the Morse index of the solutions of (1.1). Some preliminary estimates are in order. For
convenience, we write in the sequel

uα := α + ψα, vα := α − ψα. (3.1)

3.1. The modified functional

Rabinowitz’s approach [16,17] mainly relies on an estimate of the deviation from symmetry, see (3.14). Since the
original functional does not enjoy this property, following [16,17], we next define a modified functional.

At first, we observe that, for any α ∈ H 1
0 (Ω),

J ′(α)α = 2‖α‖2 −
∫ (

g(vα)α + f (uα)α + k(x)α + h(x)α
)
, (3.2)

while (2.4) shows that

2‖ψα‖2 =
∫ (

g(vα)ψα − f (uα)ψα + k(x)ψα − h(x)ψα

)
. (3.3)

Taking (3.3) into account, we infer that

J (α) − 1

2
J ′(α)α =

∫ (
g(vα)vα

2
− G(vα) − k(x)

2
vα

)
+

∫ (
f (uα)uα

2
− F(uα) − h(x)

2
uα

)
.

Henceforth, there exist A,B > 0 such that, for every α ∈ H 1
0 (Ω),

2A
(∫ (

F(uα) + G(vα)
) − 1

)
� J (α) − 1

2
J ′(α)α

� B
(∫ (

F(uα) + G(vα)
) + 1

)
. (3.4)

Let χ ∈ D(] − 2,2[), 0 � χ � 1, with χ = 1 in [−1,1] and consider the C1 map θ : H 1
0 (Ω) → R,

θ(α) := χ

(
A

∫
(F (uα) + G(vα))√

J 2(α) + 1

)
,

where A > 0 was introduced in (3.4). Accordingly, we consider the functional Ĩ : E → R defined by

Ĩ (u, v) := I (u, v) +
(

1 − θ

(
u + v

2

))∫ (
h(x)u + k(x)v

)
and, similarly to (2.2),

J̃ (α) := Ĩ (α + ψ̃α,α − ψ̃α) := max
ψ∈H 1

0 (Ω)

Ĩ (α + ψ,α − ψ). (3.5)

Lemma 5. There exists C > 0 such that, for any α ∈ H 1
0 (Ω),

(i) ‖ψα − ψ̃α‖ � C;

(ii) ‖ψ̃α + ψ̃−α‖ � C.

Proof. By definition, ψ̃α solves

−2�ψ̃α = g(α − ψ̃α) − f (α + ψ̃α) + θ(α)
(
k(x) − h(x)

)
. (3.6)

By subtracting this equation from that in (2.4) and multiplying by ψα − ψ̃α , we get
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2‖ψα − ψ̃α‖2 =
∫ (

g(vα) − g(α − ψ̃α)
)
(ψα − ψ̃α) +

∫ (
f (α + ψ̃α) − f (α + ψα)

)
(ψα − ψ̃α)

+ (
1 − θ(α)

) ∫ (
k(x) − h(x)

)
(ψα − ψ̃α).

Writing

∫ (
g(vα) − g(α − ψ̃α)

)
(ψα − ψ̃α) =

∫ ψ̃α(x)∫
ψα(x)

g′(α − s) ds(ψα − ψ̃α),

similarly for the second term and using the fact that f ′ � 0, g′ � 0, we deduce the estimate

2‖ψα − ψ̃α‖2 �
(
1 − θ(α)

)∫ (
k(x) − h(x)

)
(ψα − ψ̃α),

so that (i) follows. The second statement can be proved in the same way, by comparing (3.6) with the identity

−2�ψ̃−α = g(−α − ψ̃−α) − f (−α + ψ̃−α) + θ(−α)
(
k(x) − h(x)

)
= −g(α + ψ̃−α) + f (α − ψ̃−α) + θ(−α)

(
k(x) − h(x)

)
. �

Large critical values of J̃ are in fact critical values of J . To establish this property, we need a further preliminary
estimate. For any α ∈ H 1

0 (Ω), we define

φα := Dψαα = d

dt

∣∣∣∣
t=0

Ψ (α + tα). (3.7)

By differentiating either (2.3) or (2.4), we see that φα is the unique solution of the following equation in H 1
0 (Ω):

−2�φα = g′(vα)(α − φα) − f ′(uα)(α + φα). (3.8)

Lemma 6. There exists C > 0 such that for every α ∈ H 1
0 (Ω),∫ ∣∣f (uα)(α + φα)

∣∣ + ∣∣g(vα)(α − φα)
∣∣ � C

(∫ (
F(uα) + G(vα)

) + 1
)
,

where uα and vα are defined by (3.1).

Proof. Subtracting the equation in (3.8) from that in (2.4) and taking φα − ψα as test function yields

2‖φα − ψα‖2 +
∫ (

f ′(uα) + g′(vα)
)
(φα − ψα)2

=
∫ (

g′(vα)vα − g(vα) + f (uα) − f ′(uα)uα

)
(φα − ψα) +

∫ (
h(x) − k(x)

)
(φα − ψα). (3.9)

The last term on the right-hand side can be estimated using Schwarz inequality. In order to deal with the first terms,
observe that for any δ > 0, we have∫ (

g′(vα)vα − g(vα)
)
(φα − ψα) � Cδ

∫ ∣∣g′(vα)
∣∣|φα − ψα|2 + C

δ

∫ ∣∣g′(vα)
∣∣|vα|2

� Cδ

∫ ∣∣g′(vα)
∣∣|φα − ψα|2 + C

δ

∫
G(vα),

where C > 0 only depends on q . Handling the term (f (uα)− f ′(uα)uα)(φα −ψα) in the same way and taking δ < 1,
we now deduce the estimate∫ (

f ′(uα) + g′(vα)
)
(φα − ψα)2 � C

(∫ (
F(uα) + G(vα)

) + 1
)
,

where C > 0 depends on p, q and δ.
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By writing f (uα)(α + φα) = f (uα)uα + f (uα)
uα

uα(φα − ψα), we now infer that∫ ∣∣f (uα)(α + φα)
∣∣ �

∫ (
CF(uα) +

∣∣∣∣f (uα)

uα

∣∣∣∣(u2
α + (φα − ψα)2))

� C

∫ (
F(uα) + f ′(uα)(φα − ψα)2).

Arguing similarly to treat the term g(vα)(α − φα), the conclusion easily follows. �
Lemma 7. If θ(α) �= 0 then

J (α) − J̃ (α) = o(1)J (α) (3.10)

and

J ′(α)α − J̃ ′(α)α = o(1)J (α) + o(1)J ′(α)α (3.11)

where o(1) → 0 as J (α) → ∞. In particular, if α ∈ H 1
0 (Ω) is such that J̃ ′(α) = 0 and J̃ (α) is sufficiently large then

θ(α) = 1 and J ′(α) = 0.

Proof. By assumption,

A

∫ (
F(uα) + G(vα)

)
� 2

√
J 2(α) + 1, (3.12)

where as before, uα = α + ψα and vα = α − ψα . Now, by (3.3), Hölder inequality and Sobolev embeddings, we see
that

‖ψα‖ � C + C
(∫

|uα|p
) p−1

p + C
(∫

|vα|q
) q−1

q
. (3.13)

Thanks to Lemma 5, a similar estimate holds for
∫
(F (ũα)−F(uα)) and for

∫
(G(ṽα)−G(vα)), where ũα := α + ψ̃α

and ṽα := α − ψ̃α . Indeed, using the inequality

F(x) − F(y) � |x − y|(∣∣f (x)
∣∣ + ∣∣f (y)

∣∣),
we infer that∣∣∣∫ (

F(ũα) − F(uα)
)∣∣∣ � C‖ψα − ψ̃α‖

[(∫
|uα|p

) p−1
p +

(∫
|ũα|p

) p−1
p

]
.

Arguing in the same way to estimate
∫
(G(ṽα) − G(vα)) and taking the first statement of Lemma 5 into account, we

finally deduce that∣∣∣∫ (
F(ũα) − F(uα)

) +
∫ (

G(ṽα) − G(vα)
)∣∣∣ � C + C

(∫
|uα|p

) p−1
p + C

(∫
|vα|q

) q−1
q

.

From this last estimate and (3.12), we readily conclude that

J (α) − J̃ (α) = o(1)J (α), as J (α) → ∞.

Similar estimates are used to deduce (3.11). Compute

J ′(α)α − J̃ ′(α)α =
∫ (

f (ũα) − f (uα)
)
α +

∫ (
g(vα) − g(ṽα)

)
α + (

θ(α) − 1
)∫ (

h(x) + k(x)
)
α

+ θ ′(α)α

∫ (
h(x)ũα + k(x)ṽα

)
.

The first terms can be estimated using by now familiar arguments. To deal with the extra term

θ ′(α)α

∫ (
h(x)ũα + k(x)ṽα

)
,



D. Bonheure, M. Ramos / Ann. I. H. Poincaré – AN 26 (2009) 675–688 683
we make use of the estimate derived in Lemma 6. Indeed, this lemma implies that∫ (
f (uα)(α + φα) + g(vα)(α − φα)

) = O(1)J (α)

and since we have

θ ′(α)α = χ ′
(

A
∫
(F (uα) + G(vα))

(J 2(α) + 1)1/2

)

×
[
A

∫
(f (uα)(α + φα) + g(vα)(α − φα))

(J 2(α) + 1)1/2
− J ′(α)α A

∫
(F (uα) + G(vα))

(J 2(α) + 1)3/2

]
,

a straightforward computation leads to (3.11).
At last, suppose that J̃ ′(α) = 0 and J̃ (α) is large. Arguing by contradiction, it is easily seen that we must have

θ(α) �= 0. Indeed, it follows from Lemma 5 and a computation similar to (3.2)–(3.4) (with h = k = 0) that having
θ(α) = 0 is impossible. Then, we infer that J (α) is large as well and therefore (3.11) shows that J ′(α)α = o(1)J (α),
as J (α) → +∞. Hence, we deduce that

(
1 + o(1)

)
J (α) = J (α) − 1

2
J ′(α)α, as J (α) → +∞.

Combining this with the first inequality in (3.4) yields θ(α) = 1 (in fact, θ takes the value 1 near α). Clearly, in this
case, we have ψ̃α = ψα and J̃ ′(α) = J ′(α), as claimed. �

It is now an easy task to prove that if (αn)n ⊂ H 1
0 (Ω) is a Palais–Smale sequence for J̃ at a sufficiently large level

then θ(αn) = 1 and therefore (αn)n is a Palais–Smale sequence for J as well. In particular (cf. Lemma 3), J̃ satisfies
the Palais–Smale condition at large energy levels. Of course, the property displayed in (2.6) also holds for J̃ .

Next we analyze the deviation from symmetry enjoyed by J̃ . As in [16,17], this estimate is crucial in the proof of
our main result.

Lemma 8. There exists C > 0 such that∣∣J̃ (α) − J̃ (−α)
∣∣ � C

(∣∣J̃ (α)
∣∣1/p + 1

)
, ∀α ∈ H 1

0 (Ω). (3.14)

Proof. The estimate in (3.13) is not accurate enough for our purposes. Instead, we start with the observation that,
according to the definition in (3.5),

J̃ (α) � Ĩ (α − ψ̃−α,α + ψ̃−α) = Ĩ (−ũ−α,−ṽ−α)

and

J̃ (−α) � Ĩ (−α − ψ̃α,−α + ψ̃α) = Ĩ (−ũα,−ṽα),

where as usual, we use the notations ũα = α + ψ̃α , ṽα = α − ψ̃α , ũ−α = −α + ψ̃−α and ṽ−α = −α − ψ̃−α . We then
compute

∣∣J̃ (α) − J̃ (−α)
∣∣ �

(
θ(α) + θ(−α)

) ∫ (∣∣h(x)ũα

∣∣ + ∣∣h(x)ũ−α

∣∣ + ∣∣k(x)ṽα

∣∣ + ∣∣k(x)ṽ−α

∣∣).
Using Lemma 5, this leads to the estimate

∣∣J̃ (α) − J̃ (−α)
∣∣ � C

(
1 +

∫ (∣∣h(x)uα

∣∣ + ∣∣k(x)vα

∣∣)).

The conclusion now follows from Hölder inequality and the estimate (3.10). �
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3.2. Morse index

We now focus on the Morse index of the solutions of the unperturbed system (1.1) with h(x) = k(x) = 0. Let
I ∗ : E → R be the functional associated to the unperturbed problem⎧⎪⎨

⎪⎩
−�u = |v|q−2v in Ω,

−�v = |u|p−2u in Ω,

u = 0 on ∂Ω,

v = 0 on ∂Ω.

(3.15)

Consider the associated reduced functional

J ∗(α) := I ∗(α + ψ∗
α,α − ψ∗

α

) := max
ψ∈H 1

0 (Ω)

I ∗(α + ψ,α − ψ). (3.16)

Recall that if α is a critical point of J ∗ then

−2�α = f
(
u∗

α

) + g
(
v∗
α

)
, (3.17)

where u∗
α := α + ψ∗

α , v∗
α := α − ψ∗

α and ψ∗
α is the unique solution of the following equation in H 1

0 (Ω):

−2�ψ∗
α = g

(
v∗
α

) − f
(
u∗

α

)
. (3.18)

Denote by m∗(α) the augmented Morse index of the critical point α with respect to J ∗, i.e. the number of nonpositive
eigenvalues of the quadratic form (J ∗)′′(α). We next derive a bound on m∗(α).

Proposition 9. There exists C > 0 such that for every critical point α ∈ H 1
0 (Ω) of J ∗,

m∗(α) � CJ ∗(α)
(1− 1

p
− 1

q
) N

2 .

Proof. According to (3.17) and (3.18), m∗(α) is the number of eigenvalues μ � 1 of the problem

−2�ϕ = μ
(
f ′(u∗

α

)
(ϕ + φ) + g′(v∗

α

)
(ϕ − φ)

)
, ϕ ∈ H 1

0 (Ω), (3.19)

where φ ∈ H 1
0 (Ω) solves

−2�φ = g′(v∗
α

)
(ϕ − φ) − f ′(u∗

α

)
(ϕ + φ). (3.20)

By denoting V = (f ′(u∗
α) + g′(v∗

α))/2 and W = (f ′(u∗
α) − g′(v∗

α))/2, we can rephrase (3.19)–(3.20) by

−�ϕ = μ(V ϕ + Wφ) and (−� + V )φ = Wϕ.

Hence, m∗(α) is the number of eigenvalues μ � 1 of the problem

−�ϕ = μT ϕ, ϕ ∈ H 1
0 (Ω),

where T is the compact operator

T := V − W(−� + V )−1W.

Now, let

m(x) := min
{
f ′(u∗

α(x)
)
, g′(v∗

α(x)
)}

.

Observe that, since |W | � V − m � V , we have

〈T ϕ,ϕ〉 −
∫

mϕ2 =
∫

V ϕ2 −
∫

Wϕφ −
∫

mϕ2

�
∫

|W |ϕ2 −
∫

Wϕφ

�
∫

|W |ϕ2 − 1

2

∫
|W |ϕ2 − 1

2

∫
|W |φ2

= 1
∫

|W |(ϕ2 − φ2).

2
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Multiplying the identity −�φ + V φ = Wϕ by φ and integrating, we get that∫
|W |φ2 �

∫
V φ2 �

∫
|W |ϕ2. (3.21)

Hence, we deduce that

〈T ϕ,ϕ〉 � 〈Sϕ,ϕ〉 :=
∫

mϕ2, ∀ϕ ∈ H 1
0 (Ω). (3.22)

It follows from (3.22) that m∗(α) � m∗
S(α), where the latter quantity denotes the number of eigenvalues μ � 1 of the

problem

−�ϕ = μm(x)ϕ, ϕ ∈ H 1
0 (Ω).

According to a well-known estimate obtained in [9,15,20] (see e.g. [22] for a proof), we have that

m∗
S(α) � C

∫ ∣∣m(x)
∣∣N/2

for some universal constant C > 0. Now, since |m(x)| � f ′(u∗
α(x))1/2g′(v∗

α(x))1/2 and since, by assumption, p−2
p

N
4 +

q−2
q

N
4 = (1 − 1

p
− 1

q
)N

2 < 1, we conclude, using Hölder inequality, that

m∗
S(α) � C

(∫
f ′(u∗

α

)p/(p−2)
)N(p−2)/4p(∫

g′(v∗
α

)q/(q−2)
)N(q−2)/4q

,

that is

m∗
S(α) � C

(∫ ∣∣u∗
α

∣∣p)N(p−2)/4p(∫ ∣∣v∗
α

∣∣q)N(q−2)/4q

.

Going back to the original system −�u = |v|q−2v, −�v = |u|p−2u, we observe that
∫ |u∗

α|p = ∫ |v∗
α|q and

J ∗(α) = I ∗(u∗
α, v∗

α

) =
(

1

2
− 1

p

)∫ ∣∣u∗
α

∣∣p +
(

1

2
− 1

q

)∫ ∣∣v∗
α

∣∣q
=

(
1 − 1

p
− 1

q

)∫ ∣∣u∗
α

∣∣p
=

(
1 − 1

p
− 1

q

)∫ ∣∣v∗
α

∣∣q,

so that the conclusion follows. �
4. Proof of Theorem 1

We have now all the ingredients we need to complete the proof of our main result. Let us write

H 1
0 (Ω) = Ek ⊕ E⊥

k ,

where, for each kN0, Ek is spanned by the first k eigenfunctions of the Laplacian operator in H 1
0 (Ω). Arguing as in

Lemma 3, we can provide a large constant Rk > 0 such that J̃ (α) < 0 for every α ∈ Ek satisfying ‖α‖ > Rk . Let

Gk := {
γ ∈ C

(
BRk

(0) ∩ Ek;H 1
0 (Ω)

) ∣∣ γ (−u) = −γ (u), γ|∂BRk
(0)∩Ek

= Id
}
,

and define the minimax levels

b̃k := inf
γ∈Gk

max
{
J̃
(
γ (α)

)
: α ∈ BRk

(0) ∩ Ek

}
. (4.1)

Following Rabinowitz’s idea [17], we will exploit these levels to deduce the statement of Theorem 1 by an indirect
argument.

Proof of Theorem 1. Assume by contradiction that J̃ does not admit an unbounded sequence of critical values. Let
(b̃k)k be the sequence of minimax levels of J̃ defined by (4.1).
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Claim 1. There exist C,k0 > 0 such that for all k � k0,

b̃k � Ckp/(p−1). (4.2)

Thanks to the estimate (3.14) of Lemma 8, the claim follows exactly as in [17, Proposition 10.46].
Now, similarly to [4,26], we use the information on the Morse index to obtain a lower bound on the growth of the

sequence b̃k .

Claim 2. There exist C′ > 0 and k′
0 > 0 such that for all k � k′

0,

b̃k � C′k2pq/N(pq−p−q). (4.3)

Let us fix a small c > 0 in such a way that the functional

Î (u, v) =
∫ (〈∇u,∇v〉 − cF (u) − cG(v)

)
is such that Ĩ − Î is bounded from below in H 1

0 (Ω) × H 1
0 (Ω). We also consider the associated reduced functional Ĵ

defined by

Ĵ (α) := Î (α + ψ̂α,α − ψ̂α) := max
ψ∈H 1

0 (Ω)

Î (α + ψ,α − ψ)

and the corresponding minimax numbers

b̂k := inf
γ∈Gk

max
{
Ĵ
(
γ (α)

)
: α ∈ BRk

(0) ∩ Ek

}
,

where taking Rk larger if necessary, we can assume that Ĵ (α) < 0 for every α ∈ Ek satisfying ‖α‖ > Rk . Clearly, the
sequence b̃k − b̂k is bounded from below.

According to [4] and [26, Theorem B], applied to Ĵ , there exists a sequence (α̂k)k of critical points of Ĵ such that

Ĵ (α̂k) � b̂k and m̂(α̂k) � k,

where m̂(α̂k) denotes the augmented Morse index of the critical point α̂k with respect to Ĵ . Then, by Proposition 9,
we infer that

k2pq/N(pq−p−q) � m̂(α̂k)
2pq/N(pq−p−q) � CĴ (α̂k) � Cb̂k,

so that the claim follows.

Conclusion. In view of our assumption (1.7), by comparing (4.2)–(4.3), we reach a contradiction. Therefore, J̃ does
have an unbounded sequence of critical values which, by Lemma 7, means that J does as well. Finally, the conclusion
follows from Proposition 2.

This completes the proof of Theorem 1. �
5. Genericity

In this section, we focus on the genericity of our multiplicity result. The next theorem is the counterpart of Bahri’s
result [2] for a single equation. We first state it in a simple form and subsequently extend it in Theorem 11 below.

Theorem 10. Let 2 < p � q < 2N/(N − 2) and n ∈ N. Then there exists an open dense subset Hn ⊂ H−1(Ω) ×
H−1(Ω) such that the system (1.1) admits at least n solutions for every (h, k) ∈ Hn. In particular, there exists a
residual set H = ⋂

n∈N
Hn such that (1.1) has infinitely many solutions for every (h, k) ∈ H .

As the proof essentially follows the lines of Bahri’s paper, we only stress the special care our settings require.
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Let S = {u ∈ H 1
0 (Ω) | ‖u‖ = 1}. One first observes that the functional Q : S → R defined by

Q(α) := sup
λ∈[0,+∞[

J (λα)

is such that there exists λ0 > 0 such that if λ � λ0 and
d

dλ
Q(λα) = 0,

then

d2

dλ2
Q(λα) < 0.

This claim can be proved along the lines of [18, Lemma 2.2]. As a consequence, we can fix a large positive constant
A such that the functional Q − A belongs to the class (C), see [2, Definition 1].

Next, for α such that Q(α) > A, define λ(α) as the unique positive solution of Q(α) = J (λα). The second inequal-
ity in statement (i) of Lemma 2 in [2], namely the fact that, for some C > 0, λ(α) � C(Q(α)1/2 + 1) ∀α ∈ S, assumes
in our setting the weaker form λ(α) � C(Q(α)r + 1) ∀α ∈ S, r = max{(p − 1)/p, (q − 1)/q}; in particular, it follows
that if Q(α) is bounded then λ(α) is bounded as well, and this is all that matters in the proof given in [2].

The remaining of Bahri’s arguments can be deduced with obvious differences so that the proof of Theorem 10 can
be completed arguing as in [2].

Next we deal with the more general situation where p,q > 2, 1/p + 1/q > (N − 2)/N . We use the functional
framework introduced in [11]. Let us fix positive numbers s, t such that s + t = 2, p < 2N/(N − 2s) and q <

2N/(N − 2t). We denote by (μj )j the nondecreasing sequence of eigenvalues of (−�,H 1
0 (Ω)) and by (φj )j the

corresponding sequence of eigenvalues normalized in L2(Ω). The Hilbert space Es(Ω) is defined as

Es(Ω) :=
{

u =
∞∑

j=1

ujφj ∈ L2(Ω), ‖u‖2
Es(Ω) :=

∞∑
j=1

μs
ju

2
j < ∞

}
,

and we denote by As : Es(Ω) → L2(Ω) the isometric isomorphism

Asu :=
∞∑

j=1

μ
s/2
j ujφj .

We point out that E1(Ω) = H 1
0 (Ω) and A1 = (−�)1/2. It can be proved that there is a compact inclusion Es(Ω) ⊂

Lp(Ω) and that solutions (u, v) of the system (1.1) with h ∈ Lp/(p−1)(Ω), k ∈ Lq/(q−1)(Ω) can be seen as critical
points of the functional defined on Es(Ω) × Et(Ω) by∫

Ω

AsuAtv −
∫
Ω

F(u) −
∫
Ω

G(v) −
∫
Ω

hu −
∫
Ω

kv.

In fact, as shown in [11, Theorem 1.2], any critical point (u, v) ∈ Es(Ω) × Et(Ω) turns out to satisfy u ∈
W 2,q/(q−1)(Ω) ∩ W

1,q/(q−1)

0 (Ω), v ∈ W 2,p/(p−1)(Ω) ∩ W
1,p/(p−1)

0 (Ω) and is a strong solution of (1.1).
For our purposes it is convenient to use a slightly different formulation. Let us denote Bs := (As)−1 ◦ A1, so that

Bs : H 1
0 (Ω) → Es(Ω) is an isometric isomorphism with corresponding dual operator B∗

s : (Es(Ω))′ → H−1(Ω). We
then seek for critical points of the functional Is,t : H 1

0 (Ω) × H 1
0 (Ω) → R defined by

Is,t (u, v) =
∫
Ω

〈∇u,∇v〉 −
∫
Ω

F(Bsu) −
∫
Ω

G(Btv) −
∫
Ω

hBsu −
∫
Ω

kBtv.

Such a critical point will satisfy

−�u = B∗
t

(
g(Btv) + k

)
in H−1(Ω), −�v = B∗

s

(
f (Bsu) + h

)
in H−1(Ω),

and so the pair (ũ, ṽ) = (Bsu,Btv) ∈ Es(Ω) × Et(Ω) will be a strong solution of the original system (1.1).
Next we can define the associated reduced functional Js,t : H 1

0 (Ω) → R as in (2.2). Starting from this point, there
are no substantial changes with respect to our previous considerations. In particular, we can deduce the following
theorem, which can be seen as an extension of Theorem 10.
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Theorem 11. Let p,q > 2, 1/p + 1/q > (N − 2)/N and n ∈ N. Then there exists an open dense subset Hn ⊂
H−1(Ω) × H−1(Ω) such that, for every (h, k) ∈ Hn, the system

−�u = B∗
t

(
g(Btv) + k

)
, −�v = B∗

s

(
f (Bsu) + h

)
(5.1)

admits at least n solutions in H−1(Ω) × H−1(Ω). In particular, there exists a residual set H = ⋂
n∈N

Hn such that
(5.1) has infinitely many solutions for every (h, k) ∈ H .
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