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Abstract

In this article we study symmetry properties of the extremals for the Sobolev trace embﬁd‘diﬂg), ) — L1(dB(0, n))
with 1< g <2(N — 1)/(N — 2) for different values of:. These extremals are solutions of the problem

Au=u in B(O, ),
g—;; =Aul?"2u ondB(O, 1.

We find that, for 1< ¢ < 2(N — 1) /(N — 2), there exists a unique normalized extremalvhich is positive and has to be radial,
for 1 small enough. For the critical case= 2(N — 1)/(N — 2), as a consequence of the symmetry properties for small balls,
we conclude the existence of radial extremals. Finally, ferd < 2, we show that a radial extremal exists for every ball.

© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé
Dans cet article nous étudions des propriétés de symétrie des extrémales de I'immersion de BobBlEy 1)) —
L9(0B(0, u)), ou 1< g < 2(N — 1)/(N — 2) en fonction du rayom. Ces extrémales sont solutions du probléme

{ Au=u dansB(0, 1),

g_i; =Aul9"2u  surdB(O, w).

Nous trouvons que, pourd g < 2(N —1)/(N —2), il existe une extrémale normalisée uniquejui est positive et radiale, pour

u suffisamment petite. Dans le cas critique= 2(N — 1)/(N — 2), comme conséquence des propriétés de symétrie pour des
petits rayons, nous déduisons I'existence d’extrémales. Finalement, poyr<l2, nous montrons qu’'une extrémale radiale
existe pour toute boule.
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1. Introduction

The aim of this article is to study of the following problem: Given a ball of ragius(0, 1), in RY, N > 3,
decide whether or not there exists a radial extremal for the embedding

HY(B(O, w)) > LI(3B(O, w)).

First, let us introduce our motivation. L&2 ¢ RV be a bounded smooth domain. Relevant for the study
of boundary value problems for differential operatar® the two following Sobolev inequalities. For each
1< g <2(N—1)/(N —2) = 2,, we have a continuous inclusiai(£2) — L7(3£2), and for each K p <
2N /(N — 2) = 2¥, H&(.Q) — LP(£2), hence the following inequalities hold:

2 2
S”“”Lq(ag) < ”u”Hl(Q)’

2

< 2
S”””Lp(g) < ”u”Hé(.Q)'

These inequalities are known as the Sobolev trace theaneitha Sobolev embedding theon respectively. The
best constants for these embeddings are the lasgast S such that the above inequalities hold, that is,
[o IV + [v]?dx

S =
vert@\uk@) ([yo|v14da)?/d

(1.1)

and
fo [Vv|2dx

S= —_ (1.2)
vert@no) ([ VP dx)?/P
Along this paper, we denote ljx (do) the N dimensional § — 1 dimensional) Hausdorff measure.

The main difference between these two quantities, is the factStimhomogeneous under dilatations of the

domain, that is, if we define 2 = {ux| x € 2}, takingv(x) = u(ux) in 1.2 and changing variables we get
S(MQ) — M(PN—ZP—ZN)/PS'(_Q).
On the other hands is not homogeneous under dilatations. In fact we have
—217,(2 2
. Vol|© 4+ [v|dx
S, =S(uR) = uP inf Jo IVl '2|
verl@\HA2)  (fyg V19 do)?/4

whereg = (Ng — 2N +2)/q.
For 1< ¢ < 2, and 1< p < 2* the embeddings are compact, so we have existence of extremals, i.e. functions
where the infimum is attained. These extremals are weak solutions of the following problems

: (1.3)

Au=u in 2,
W ult2 onag, (1.4)

where% is the outer unit normal derivative, and

—Au=AulP"%u in £, (1.5)
u=20 onos2.
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The asymptotic behavior df(1£2) in expanding &t — oo) and contracting domaing((— 0), was studied in

[4] and [6]. In [4] it is proved that for expanding domains and 2, S(u$2) — S(IR{_’X). In [6] it is shown that
S |82]
u—0+ b 382|214

The behavior of the extremals for (1.1) in expanding and contracting domains is also studied in [4] and [6]. For
expanding domains, it is proved in [4] that the extremals develop a peak near a point where the mean curvature o
the boundary is a maximum. For contracting domains, we have that the extremals, when rescaled to the origina
domain a(x) = u(ux), x € 2, and normalized withv|| ¢ (52)) = 1, are nearly constant in the sense that

AITOUZW in H (Q)

Another big difference between the Sobolev trace theorem and the Sobolev embedding theorem arises in th
behavior of extremals. Namely, § is a ball,2 = B(0, 1), as the extremals do not change sign, from results of
[7] the extremals for (1.2) are radial while,4fexceeds 2 ang is large, extremals for (1.1) are not, since they
develop a peaking concentratiphenomena as is described in [4].

The above discussion leads naturally to the purpose of this article: the study of the symmetry properties for the
extremals of the Sobolev trace embedding in small balls. We find that the symmetry properties of the extremals
depend on the size of the ball. Our main resultotibgs when there exists a radial extremal.

Theorem 1.1. Let2, = 2(N — 1)/(N — 2) be the critical exponerfor the Sobolev trace immersion. Concerning
symmetry properties of the extremals for the embedding

HY(B(O, ) = L1(3B(O, 10))

there holds,

(1) Letl < g < 2. For everyu > 0 there exists a radial extremal.

(2) Let 2 < ¢ < 2,. There existsug > 0 such that for every < po there is a unique positive extremal,
normalized such thatu(ux)|l L4 8(0,1)) = 1, moreover this extremal is a radial function. However, for large
values ofu there is no radial extremal.

(3) Letg = 2,. There existgp > 0 such that for every. < ug there is a positive radial extremal.

The main ingredient of the proof of the symmetry result for small balls is the implicit function theorem. We
remark that the moving planes technique cannot be applied to obtain symmetry results in this case, as the extrema
for largeu are not radial.

For the critical exponent,2=2(N — 1)/(N — 2), we prove existence of extremals, which turns out to be
radial functions, for small balls. We remark that thristence of extremals for the critical exponent is not
trivial, this is due to the lack of compactness. This result has to be compared with the case of the immersion
Hol(B(O, w)) — L% (B(0, n)) where it is well known that, by Pohozaev identity, there is no positive solution of
(1.5) regardless the size of the ball for the critical exponénrt 2N /(N — 2). However, there exist solutions for
topologically nontrivial domains.

For the existence of extremals in this critical case for general donfajsee [3,5].

The rest of the paper is organized as follows: intec2 we prove our symmetry result for small balls and
subcriticalg. In Section 3 we find a bound on the critical radiusolaewhich there exists radial extremals. In
Section 4 we deal with the existence of radial extremals with critical exponent and finally in Section 5 we prove
that there exists a radial extremal for every ball ¥l < 2.
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2. Symmetry for small ballsand subcritical ¢

In this section we use the implicit function theorem to show that there exists a unique minimizesfuall.
As observed in the introduction, making the change of varialles= u(ux), we get
5 , Jpo.p 1 21V + [vPdx
Sy=n inf 5 ,
veHYBOL\HEBOLY)  ([3p0,1) 1019 d0)?/4

whereg = (gN — 2N + 2)/q. As g < 2, the extremals exist and are solutions of

Av =l in B(0, 1), 01
g_; :MZ%W—% ondB(0, 1). (2.1)
We denote
S= {u e HY(B(0,1)); / |v|?do = 1}.

9B(0,1)
Let us consider the functional
F:Sx[0,1]1— (HY(B(0, D))"
given by

N
F(v, w)(¢) = / VuoVedx + Mz / vopdx — ;1,2—’; / vi g do.
"
B(0,1) B(0,1) 9B(0,1)
This functionalF is continuous and’* with respect ta.

We observe that
1

=——— ¢S
10B(0. 1[4 ©
and satisfies

1
Fl —————,0)=0.
<I3B(0, 1)|ta >

We want to use the implicit function theorem to show that there exists a unique solutiom(u) to the
equationF (v, u) = 0, defined for small values qf nearvg = 1/|d B(0, 1)|¥/4.
To this end we state the following lemmas.

vo

Lemma 2.1. The tangent space t§ at vg is given by

Tyo(S) = {z € Hl(B(O, 1); / zdo = O}.
3B(0,1)

Proof. First let us prove that

Tyo(S) C {z e HY(B(O,1); / zdo = o}.
9B(0,1)
Each curvey : (—1,1) — S with y (0) = v satisfies
ly®|?do = 1.
9B(0,1)
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Differentiating atr = 0 we get

q / J/(O)qfly/(o) do = qvg_l / vy (0)do =0.
9B(0,1) 9B(0,1)
Now let us prove the reverse inclusion

Tyo(S) D {z e HY(B(0,1); / zdo = o}.
9B(0,1)
Let z be such that

zdo =0,
9B(0,1)
and consider the following curve
vo+ 12
(Jspoy Ivo+ 1217 do)t/a”

This curve verifies (1) € S, y (0) = v, y'(0) = z. This ends the proof. O

y() =

Lemma 2.2. Let
A={pe(HYBO, 1)) : (¢, 1) =0}.
The derivative of with respect ta at the point(vg, 0) is given by

oF
——(v0,0): Ty, (S) — A,
av
oF
8_U(UO’ 0)(w)(¢p) = / VwVedx.
B(0,1)
Proof. The result follows directly from the fact that

F(v,0)(¢) = / VoVédx. O
B(0,1)

Next we prove tha%(vo, 0) has a continuous inverse.
Lemma 2.3. Giveng € A there exists a unique € T,,(S) such that

VwVedx = (g, ¢), YoeH(BO,1).
B(0,1)
Moreover the mag — w is continuous.

Proof. Observe thaf,,(S) is a Hilbert space with the inner product given by

(u,v) = / VuVvdx.

B(0,1)

799
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Then the lemma follows from the Riesz representation theoram.

Theorem 2.1. Suppose that < g < 2,. There existg.o > 0 such that for every. < ug there exists a unique posi-
tive extremaly, for the embedding?*(B(0, 1)) < L4(3B(0, 1)) normalized such thatu(ux) || 13 5(0.1)) = 1.
Moreover this extremal is a radial function.

Proof. From the previous lemmas we get thiatverifies the hypothesis of the implicit function theorem, see for
example [1]. Hence there existg such that for every: € [0, uo] there exists a unique solutien= v(u) of

F(v,u) =0

with v nearvg. Therefore there exists a unigue weak solution of (2.1) ngtor small values ofx. By the results of
[6] the extremals are weak solutions of (2.1) that convergegs gases to zero, tog in H1(B(0, 1)), the uniqueness
of the extremal follows.

Now take an extremal in B(0, ) and letR be any rotation, thenz(x) = u1(Rx) is also an extremal. Since
there is a unigue extremal we must have= u, and we conclude that the unique extremal must be a radial
function. O

Remark 2.1. This method also works for any domaig and hence there exisjsg > 0 such that for every
w < po there exists a unique positive extrema),for the embeddingd1(11£2) < L7(3.£2) normalized such
that [lu(ux)llrepe) =1.

Remark 2.2. Once we know that the extremals are radial we can obtain some monotonicity properties expanding
them as power series. Indeed as radial extremals can be written in terms of Bessel functions, they have an expansic
in powers ofu, v(r) = Z?io aj(r),uzj. As an immediate consequence, we get some monotonicity properties for
small values ofu, the normalized extremals are strictly decreasing as functions diat is, if u1 < 2 then

Uy > U, iN B(O, ). Moreoversu/uﬁ is decreasing as a function pf thatis, ifu1 < us thenSM/uf > suz/,ﬂ;.

Remark 2.3. In the caseV = 2, Theorem 2.1 holds for & g < oco.

3. Estimate for thecritical radius
Theorem 2.1 says that for small balls $§mall) the extremals are radial, while the results of [4] say that this is
not the case for large balls. Therefore we can define
po=sup{u: there existsiy a radial extremal irB(0,6), V6 < u}. (3.1)
This valuepng is the critical size where we pass from radial extremals to nonradial ones. Our next result is an

estimate on the value ofp.

Theorem 3.1. The critical radiusug defined by3.1) verifies
0B, 1)|Y7 | &
> , 3.2
M7 Bo D2 Y g1 ez

5 :ve HY(B(0, 1), / vdo = o} > 0. (3.3)
L2+ (3B(0,1)) 9B(0.1)
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Moreover, the set of parameteg, ¢) such that there is no radial extremal is open.

Proof. From now on we use the notation
O, 1, q) = fB(O,l) ,U«_2|Vv|2 + |v|2dx
(3800.1) V17 do)?/4
forve H1(B(0,1) \ H}(B(0,1)), » > 0and 1< g < 2,.

Let us look at the linear part of the problem near any positive solutioh(1.4). The kernel of the linear part
are the solutions of

AZ:MZZ in B(0, 1), 3.4
g_; = ,B%(q —1v?=2z 0ondB(0,1), (34)
with
zdo =0.
3B(0,1)

Let us look for a bound on the valyesuch that (3.4) has a nontrivial solution.
This valueft can be estimated as follows, multiply by3.4) and integrate by parts to get

S
IVz|2dx + 1 / 2dx = Mzu—;(q -1 / V1272 do.
B(0,1) B(0,1) 9B(0,1)
Now, by Hoélder’s inequality,

S _

2 2 2 2901 q—2 2

IVz|“dx + / Z9dx < F(‘] - 1)||U||Lq(33(0,1))||Z||Lq(33(0,1))'
B(0,1) B(0,1)

We definec; = c1(g) as

|Vv|?dx
flf“w—:veHl(B(o,l)), / vd0=0}v

3B(0,1)

c1(q) = inf{ >
||U||Lq(33(o,1))

and we get
S
c1(@) <n25(g = D.
n

Also we have that, by [6] and Remark 2.2,
Su __1BO.D)|
uP = 19BO, 1|2
Then, if
2 |B(O, )]
19B(0, 1)|%/4

we can not have a nontrivial solutian Therefore we get that

- [0BO. DIV [ea(q)
" BO Y Y -1

c1(g) > (¢—D.
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We observe thati1(q) > c1(24) = ¢1.

To finish the proof of the estimate it remains to show that 1o.

Assume thafug < fi. Then, there exists a sequeneg € R andv, € H1(B(0, 1)) such thatu, — uo < ft,
vp is an extremal forS,,,, with [[v, [l Le(0.1)) = 1. Then, it follows that|v, || y1((0.1)) < € and so, there exists a

subsequence (that we still caj}) and a functiorv € H1(B(0, 1)) such that

ve —v  weakly inH(B(0, 1)), (3.5)
ve— v  inL?(B(0,1)), (3.6)
v —> v inL9(3B(0, 1)). (3.7)

Let us see that is an non-radial extremal fd,,,. By (3.7), [v]|Le98(0,1)) = 1 sov # 0.

Now, if v is a radial function, as there exists a unique radial solution of (w4),0) must be a bifurcation point
from the branch that starts wittrg, 0) which contradicts the definition gf, thenv is not a radial function.

By (3.5)—(3.6), we have

O, 1o, q) = / 15 21V + 2 dx < liminf Q(vy, i, @)
B(0,1)

Also, if there exists a functiod € H1(B(0, 1)) with Q(, no, ¢) < Q(v, no, ¢), we get a contradiction from the
fact thatQ (v, w,, q) < Q (v, 1n, q). Therefore, the limib must be a non-radial extremal.
By the implicit function theorem, and by our assumptjor: 1o there exists a branch of non-radial solutions,
vy, of (2.1) that passes throughand verify|[v, |43 0.1)) = 1. Therefore|lv, |l g1 (0 1)) IS uniformly bounded,
hence the branch cannot go to infinity for< & and cannot go to zero. The onlysmibility that remains is that for
every O< u < uo there exists a non-radial solution of (2.1), but this is a contradiction with the results of Section 2
that proves that the unique solution of (2.1) must be radialifemall enough.
To finish the proof of the theorem, it remains to show that the set of parameters where the extremals are non-
radial functions is open.
Let us define the set

A= {(u, q): there is no radial extremal ¢1.1)}.
We denote by !

a

4+(B(0, 1)) the set of radial functions iB1(B(0, 1)). Let (uo, go) € A. We have that

inf — Q(v, no,qo0) < inf Q(v, wo, qo)-
veH(B(0,1) veH! ,(B(0,1)

Now, if (u, q) is close to(uo, go) by continuity of O, we get that

inf Qv 1, q) < inf O, i1, q).
veHY(B(0,1)) veH?! ,(B(0,1)

Hence(u, q) € A for every(u, g) close to(uo, go) and the result follows. O

4. Extremalsfor the critical exponent
In this section we focus on the existence of extremals for the critical expopenev — 1)/(N — 2).

Theorem 4.1. For everyu small enough there exists a radial extremal for the immersion

HY(B(O, w)) — L*(3B(0, w)).
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Proof. From (3.2) we get that there existg such that for every:w < 1 the extremals are radial for every
2 < g < 2. In order to prove existence of extremals in the critical case, the main idea is to take the limit as
q /' 2, of a sequence of radial extremals 6t (B(0, 1)) < L7 (3 B(O, p)).

Let u < 1 be fixed,q; < 2, be any sequence such tlgat,” 2, and letv; a radial extremal defined iB(0, 1).
Thesev; are solutions of

v; =[8B(0,1)|"Y9 0ondB(O,1).
As the boundary values converges uniformly

vilago,1 = |9B(O, 1)|71/q" — [0B(O, 1)|71/2*

we get that the sequeneg converges strongly i? 1(B(0, 1)) and uniformly to some function®*.

We claim thav* is an extremal for 2 In fact, assume that there exisiss H1(B(0, 1)) such tha (w, u, 2) <
Q(v*, 1, 2,). We arrive at a contradiction noticing that; — v* andg; — 2, imply, by the continuity ofQ,
Ow, u,q;) < Qj, u,q;) for j large enough. O

5. Symmetry of extremalsfor 1 < g <2

Let us see that if there exists a radial extremal for sgmehen there exists a radial extremal for every
l<qg<q1.

Theorem 5.1. If there exists a radial extremal of the embeddi§(B(0, 1)) — L (dB(0, n)) and1 < g < q1,
then there exists a radial extremal féf1(B(0, u)) < L7(3B(0, )). Moreover, these extremals are multiples of
each other.

Proof. From Holder’s inequality

1/q1 11 1/q2
</|u|‘“da) < |082|4 ‘12</ |u|q2dcr)
s

982
for 1 < g1 < g2, we get that
i_1
Sqp < Sg11082|11 92,

Now assume that there exists a radial extrema),for ¢ = ¢g2. Using thatu, is constant on the boundary
dB(0, )

Js00 1 Vur?+ lur P dx
- (faB(o,M)Wrmd")z/qz

ERNEY Vur|?+ Jur P dx 11
= ‘(‘)B(O, ,u)|611 a2 /B(O’“) " r2 < |8B(O, M)‘ a2 S, .
(fBB(O,u) ur|9tdo)?/a

S‘12

Therefore

fB(O,u) Ivur|2 + |ur|2dx <
(faB(O,u) lup |9t do)/ar = "1

This finishes the proof. O
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Now we prove that for every. the extremal is radial foy = 2, see also [8] for a proof of this fact for the
immersionW%? (B(0, 1)) < L?(3B(0, )).

Lemma 5.1. Let g = 2, then for everyu > 0 there exists a radial extremal for the immersidft(B(0, 1)) —
L7(0B(0, w)).

Proof. It follows easily from the fact that the eigenfunctions of

{ Au=u inB@O,pwn),

g_i; =lu onaB(O, w),

(5.1)

can be expanded in terms of spherical harmonics. In fact, the eigenfunctions are given by
1-X X
uij () = Cg e 172 D=2 (161 Vg { 117 )

whereCy; is a constant], andY;; stand for the modified Bessel function of first kind and ordemnd for any
spherical harmonic of degréeHere labels the spherical harmonics of degkeEor a review on special functions,
see [2,9].

The eigenvalues of (5.1) are given by

C1-N/2 | Denjeaaw)
o Lipny2—1(1)

The eigenfunctionsy; belongs to the eigenvalug.
As I)(a)/I,(a) increases when increases, the smallest eigenvaluelis that has associated a radial
eigenfunction. O

Ak

Hence we get the following result.

Corollary 5.1. For everyg < 2 and everyu > 0 there exists a radial extremal for the embedd#ig(B(0, 1)) —
L1(0B(0, w)).
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