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Abstract

In this article we study symmetry properties of the extremals for the Sobolev trace embeddingH1(B(0,µ)) ↪→ Lq(∂B(0,µ))

with 1� q � 2(N − 1)/(N − 2) for different values ofµ. These extremalsu are solutions of the problem{
�u = u in B(0,µ),
∂u
∂η

= λ|u|q−2u on ∂B(0,µ).

We find that, for 1� q < 2(N − 1)/(N − 2), there exists a unique normalized extremalu, which is positive and has to be radia
for µ small enough. For the critical case,q = 2(N − 1)/(N − 2), as a consequence of the symmetry properties for small b
we conclude the existence of radial extremals. Finally, for 1< q � 2, we show that a radial extremal exists for every ball.

Résumé

Dans cet article nous étudions des propriétés de symétrie des extrémales de l’immersion de SobolevH1(B(0,µ)) ↪→
Lq(∂B(0,µ)), où 1� q � 2(N − 1)/(N − 2) en fonction du rayonµ. Ces extrémales sont solutions du problème{

�u = u dansB(0,µ),
∂u
∂η

= λ|u|q−2u sur∂B(0,µ).

Nous trouvons que, pour 1� q < 2(N −1)/(N −2), il existe une extrémale normalisée uniqueu, qui est positive et radiale, pou
µ suffisamment petite. Dans le cas critiqueq = 2(N − 1)/(N − 2), comme conséquence des propriétés de symétrie pou
petits rayons, nous déduisons l’existence d’extrémales. Finalement, pour 1< q � 2, nous montrons qu’une extrémale radi
existe pour toute boule.
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1. Introduction

The aim of this article is to study of the following problem: Given a ball of radiusµ, B(0,µ), in R
N , N � 3,

decide whether or not there exists a radial extremal for the embedding

H 1(B(0,µ)
)
↪→ Lq

(
∂B(0,µ)

)
.

First, let us introduce our motivation. LetΩ ⊂ R
N be a bounded smooth domain. Relevant for the st

of boundary value problems for differential operatorsare the two following Sobolev inequalities. For ea
1 � q � 2(N − 1)/(N − 2) ≡ 2∗, we have a continuous inclusionH 1(Ω) ↪→ Lq(∂Ω), and for each 1� p �
2N/(N − 2) ≡ 2∗, H 1

0 (Ω) ↪→ Lp(Ω), hence the following inequalities hold:

S‖u‖2
Lq(∂Ω) � ‖u‖2

H1(Ω)
,

S̄‖u‖2
Lp(Ω) � ‖u‖2

H1
0 (Ω)

.

These inequalities are known as the Sobolev trace theorem and the Sobolev embedding theorem respectively. The
best constants for these embeddings are the largestS andS̄ such that the above inequalities hold, that is,

S = inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω |∇v|2 + |v|2 dx

(
∫
∂Ω |v|q dσ)2/q

(1.1)

and

S̄ = inf
v∈H1

0 (Ω)\{0}

∫
Ω

|∇v|2 dx

(
∫
Ω

|v|p dx)2/p
. (1.2)

Along this paper, we denote bydx (dσ ) theN dimensional (N − 1 dimensional) Hausdorff measure.
The main difference between these two quantities, is the fact thatS̄ is homogeneous under dilatations of t

domain, that is, if we defineµΩ = {µx| x ∈ Ω}, takingv(x) = u(µx) in 1.2 and changing variables we get

S̄(µΩ) = µ(pN−2p−2N)/pS̄(Ω).

On the other hand,S is not homogeneous under dilatations. In fact we have

Sµ ≡ S(µΩ) = µβ inf
v∈H1(Ω)\H1

0 (Ω)

∫
Ω

µ−2|∇v|2 + |v|2 dx

(
∫
∂Ω |v|q dσ)2/q

, (1.3)

whereβ = (Nq − 2N + 2)/q .
For 1� q < 2∗ and 1� p < 2∗ the embeddings are compact, so we have existence of extremals, i.e. fun

where the infimum is attained. These extremals are weak solutions of the following problems{
�u = u in Ω ,
∂u
∂η

= λ|u|q−2u on∂Ω , (1.4)

where ∂
∂η

is the outer unit normal derivative, and{
−�u = λ|u|p−2u in Ω , (1.5)

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
u = 0 on ∂Ω .
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The asymptotic behavior ofS(µΩ) in expanding (µ → ∞) and contracting domains (µ → 0), was studied in
[4] and [6]. In [4] it is proved that for expanding domains andq > 2, S(µΩ) → S(RN+). In [6] it is shown that

lim
µ→0+

Sµ

µβ
= |Ω |

|∂Ω |2/q
. (1.6)

The behavior of the extremals for (1.1) in expanding and contracting domains is also studied in [4] and
expanding domains, it is proved in [4] that the extremals develop a peak near a point where the mean cur
the boundary is a maximum. For contracting domains, we have that the extremals, when rescaled to the
domain asv(x) = u(µx), x ∈ Ω , and normalized with‖v‖Lq (∂Ω)) = 1, are nearly constant in the sense that

lim
µ→0

v = 1

|∂Ω |1/q
in H 1(Ω).

Another big difference between the Sobolev trace theorem and the Sobolev embedding theorem aris
behavior of extremals. Namely, ifΩ is a ball,Ω = B(0,µ), as the extremals do not change sign, from result
[7] the extremals for (1.2) are radial while, ifq exceeds 2 andµ is large, extremals for (1.1) are not, since th
develop a peaking concentrationphenomena as is described in [4].

The above discussion leads naturally to the purpose of this article: the study of the symmetry propertie
extremals of the Sobolev trace embedding in small balls. We find that the symmetry properties of the ex
depend on the size of the ball. Our main result describes when there exists a radial extremal.

Theorem 1.1. Let 2∗ = 2(N − 1)/(N − 2) be the critical exponentfor the Sobolev trace immersion. Concerni
symmetry properties of the extremals for the embedding

H 1(B(0,µ)
)
↪→ Lq

(
∂B(0,µ)

)
there holds,

(1) Let 1 < q � 2. For everyµ > 0 there exists a radial extremal.
(2) Let 2 < q < 2∗. There existsµ0 > 0 such that for everyµ < µ0 there is a unique positive extremal,u,

normalized such that‖u(µx)‖Lq(∂B(0,1)) = 1, moreover this extremal is a radial function. However, for lar
values ofµ there is no radial extremal.

(3) Letq = 2∗. There existsµ0 > 0 such that for everyµ < µ0 there is a positive radial extremal.

The main ingredient of the proof of the symmetry result for small balls is the implicit function theorem
remark that the moving planes technique cannot be applied to obtain symmetry results in this case, as the
for largeµ are not radial.

For the critical exponent 2∗ = 2(N − 1)/(N − 2), we prove existence of extremals, which turns out to
radial functions, for small balls. We remark that theexistence of extremals for the critical exponent is
trivial, this is due to the lack of compactness. This result has to be compared with the case of the im
H 1

0 (B(0,µ)) → L2∗
(B(0,µ)) where it is well known that, by Pohozaev identity, there is no positive solutio

(1.5) regardless the size of the ball for the critical exponent 2∗ = 2N/(N − 2). However, there exist solutions fo
topologically nontrivial domains.

For the existence of extremals in this critical case for general domainsΩ , see [3,5].
The rest of the paper is organized as follows: in Section 2 we prove our symmetry result for small balls a

subcriticalq . In Section 3 we find a bound on the critical radius below which there exists radial extremals.
Section 4 we deal with the existence of radial extremals with critical exponent and finally in Section 5 we
that there exists a radial extremal for every ball if 1< q � 2.
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2. Symmetry for small balls and subcritical q

In this section we use the implicit function theorem to show that there exists a unique minimizer forµ small.
As observed in the introduction, making the change of variablesv(x) = u(µx), we get

Sµ = µβ inf
v∈H1(B(0,1))\H1

0(B(0,1))

∫
B(0,1) µ

−2|∇v|2 + |v|2 dx

(
∫
∂B(0,1)

|v|q dσ)2/q
,

whereβ = (qN − 2N + 2)/q . As q < 2∗ the extremals exist and are solutions of{
�v = µ2v in B(0, 1),
∂v
∂η

= µ2 Sµ

µβ |v|q−2v on∂B(0,1).
(2.1)

We denote

S =
{
v ∈ H 1(B(0,1)

); ∫
∂B(0,1)

|v|q dσ = 1

}
.

Let us consider the functional

F :S × [0,1] → (
H 1(B(0,1)

))∗

given by

F(v,µ)(φ) =
∫

B(0,1)

∇v∇φ dx + µ2
∫

B(0,1)

vφ dx − µ2 Sµ

µβ

∫
∂B(0,1)

vq−1φ dσ.

This functionalF is continuous andC1 with respect tov.
We observe that

v0 ≡ 1

|∂B(0,1)|1/q
∈ S

and satisfies

F

(
1

|∂B(0,1)|1/q
,0

)
= 0.

We want to use the implicit function theorem to show that there exists a unique solution,v = v(µ) to the
equationF(v,µ) = 0, defined for small values ofµ nearv0 = 1/|∂B(0,1)|1/q .

To this end we state the following lemmas.

Lemma 2.1. The tangent space toS at v0 is given by

Tv0(S) =
{
z ∈ H 1(B(0,1)

); ∫
∂B(0,1)

z dσ = 0

}
.

Proof. First let us prove that

Tv0(S) ⊂
{
z ∈ H 1(B(0,1)

); ∫
∂B(0,1)

z dσ = 0

}
.

Each curveγ : (−1,1) → S with γ (0) = v0 satisfies∫ ∣∣γ (t)
∣∣q dσ = 1.
∂B(0,1)
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Differentiating att = 0 we get

q

∫
∂B(0,1)

γ (0)q−1γ ′(0) dσ = qv
q−1
0

∫
∂B(0,1)

γ ′(0) dσ = 0.

Now let us prove the reverse inclusion

Tv0(S) ⊃
{
z ∈ H 1(B(0,1)

); ∫
∂B(0,1)

z dσ = 0

}
.

Let z be such that∫
∂B(0,1)

z dσ = 0,

and consider the following curve

γ (t) = v0 + tz

(
∫
∂B(0,1)

|v0 + tz|q dσ)1/q
.

This curve verifiesγ (t) ∈ S, γ (0) = v0, γ ′(0) = z. This ends the proof. �
Lemma 2.2. Let

A = {
ϕ ∈ (

H 1(B(0,1)
))∗

: 〈ϕ,1〉 = 0
}
.

The derivative ofF with respect tov at the point(v0,0) is given by

∂F

∂v
(v0,0) :Tv0(S) → A,

∂F

∂v
(v0,0)(w)(φ) =

∫
B(0,1)

∇w∇φ dx.

Proof. The result follows directly from the fact that

F(v,0)(φ) =
∫

B(0,1)

∇v∇φ dx. �

Next we prove that∂F
∂v

(v0,0) has a continuous inverse.

Lemma 2.3. Givenϕ ∈ A there exists a uniquew ∈ Tv0(S) such that∫
B(0,1)

∇w∇φ dx = 〈ϕ,φ〉, ∀φ ∈ H 1(B(0,1)
)
.

Moreover the mapϕ �→ w is continuous.

Proof. Observe thatTv0(S) is a Hilbert space with the inner product given by

(u, v) =
∫

∇u∇v dx.
B(0,1)
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Then the lemma follows from the Riesz representation theorem.�
Theorem 2.1. Suppose that1� q < 2∗. There existsµ0 > 0 such that for everyµ < µ0 there exists a unique pos
tive extremal,u, for the embeddingH 1(B(0,µ)) ↪→ Lq(∂B(0,µ)) normalized such that‖u(µx)‖Lq(∂B(0,1)) = 1.
Moreover this extremal is a radial function.

Proof. From the previous lemmas we get thatF verifies the hypothesis of the implicit function theorem, see
example [1]. Hence there existsµ0 such that for everyµ ∈ [0,µ0] there exists a unique solutionv = v(µ) of

F(v,µ) = 0

with v nearv0. Therefore there exists a unique weak solution of (2.1) nearv0 for small values ofµ. By the results of
[6] the extremals are weak solutions of (2.1) that converges, asµ goes to zero, tov0 in H 1(B(0,1)), the uniquenes
of the extremal follows.

Now take an extremalu1 in B(0,µ) and letR be any rotation, thenu2(x) = u1(Rx) is also an extremal. Sinc
there is a unique extremal we must haveu1 = u2 and we conclude that the unique extremal must be a ra
function. �
Remark 2.1. This method also works for any domainΩ and hence there existsµ0 > 0 such that for every
µ < µ0 there exists a unique positive extremal,u, for the embeddingH 1(µΩ) ↪→ Lq(∂µΩ) normalized such
that‖u(µx)‖Lq(∂Ω) = 1.

Remark 2.2. Once we know that the extremals are radial we can obtain some monotonicity properties exp
them as power series. Indeed as radial extremals can be written in terms of Bessel functions, they have an
in powers ofµ, v(r) = ∑∞

j=0 aj (r)µ
2j . As an immediate consequence, we get some monotonicity properti

small values ofµ, the normalized extremals are strictly decreasing as functions ofµ, that is, if µ1 < µ2 then
vµ1 > vµ2 in B(0,1). Moreover,Sµ/µβ is decreasing as a function ofµ, that is, ifµ1 < µ2 thenSµ1/µ

β

1 > Sµ2/µ
β

2 .

Remark 2.3. In the caseN = 2, Theorem 2.1 holds for 1< q < ∞.

3. Estimate for the critical radius

Theorem 2.1 says that for small balls (µ small) the extremals are radial, while the results of [4] say that th
not the case for large balls. Therefore we can define

µ0 = sup
{
µ: there existsuθ a radial extremal inB(0, θ),∀ θ < µ

}
. (3.1)

This valueµ0 is the critical size where we pass from radial extremals to nonradial ones. Our next resu
estimate on the value ofµ0.

Theorem 3.1. The critical radiusµ0 defined by(3.1)verifies

µ0 � |∂B(0,1)|1/q

|B(0,1)|1/2

√
c̄1

q − 1
, (3.2)

where

c̄1 = inf

{∫
B(0,1)

|∇v|2 dx

‖v‖2
L2∗ (∂B(0,1))

: v ∈ H 1(B(0,1)
)
,

∫
v dσ = 0

}
> 0. (3.3)
∂B(0,1)
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Moreover, the set of parameters(µ,q) such that there is no radial extremal is open.

Proof. From now on we use the notation

Q(v,µ,q) =
∫
B(0,1) µ

−2|∇v|2 + |v|2 dx

(
∫
∂B(0,1) |v|q dσ)2/q

,

for v ∈ H 1(B(0,1)) \ H 1
0 (B(0,1)), µ > 0 and 1< q � 2∗.

Let us look at the linear part of the problem near any positive solutionv of (1.4). The kernel of the linear pa
are the solutions of{

�z = µ2z in B(0,1),
∂z
∂η

= µ2 Sµ

µβ (q − 1)vq−2z on∂B(0,1),
(3.4)

with ∫
∂B(0,1)

z dσ = 0.

Let us look for a bound on the valuẽµ such that (3.4) has a nontrivial solution.
This valueµ̃ can be estimated as follows, multiply byz (3.4) and integrate by parts to get∫

B(0,1)

|∇z|2dx + µ2
∫

B(0,1)

z2 dx = µ2 Sµ

µβ
(q − 1)

∫
∂B(0,1)

vq−2z2 dσ.

Now, by Hölder’s inequality,∫
B(0,1)

|∇z|2dx + µ2
∫

B(0,1)

z2 dx � µ2 Sµ

µβ
(q − 1)‖v‖q−2

Lq(∂B(0,1))
‖z‖2

Lq(∂B(0,1)).

We definec1 = c1(q) as

c1(q) = inf

{∫
B(0,1) |∇v|2 dx

‖v‖2
Lq(∂B(0,1))

: v ∈ H 1(B(0,1)
)
,

∫
∂B(0,1)

v dσ = 0

}
,

and we get

c1(q) � µ2 Sµ

µβ
(q − 1).

Also we have that, by [6] and Remark 2.2,

Sµ

µβ
� |B(0,1)|

|∂B(0,1)|2/q
.

Then, if

c1(q) > µ2 |B(0,1)|
|∂B(0,1)|2/q

(q − 1),

we can not have a nontrivial solutionv. Therefore we get that

µ̃ � |∂B(0,1)|1/q

|B(0,1)|1/2

√
c1(q)

q − 1
.
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To finish the proof of the estimate it remains to show thatµ̃ � µ0.
Assume thatµ0 < µ̃. Then, there exists a sequenceµn ∈ R andvn ∈ H 1(B(0,1)) such thatµn → µ0 < µ̃,

vn is an extremal forSµn with ‖vn‖Lq(B(0,1)) = 1. Then, it follows that‖vn‖H1(B(0,1)) � C and so, there exists
subsequence (that we still callvn) and a functionv ∈ H 1(B(0,1)) such that

vn ⇀ v weakly inH 1(B(0,1)
)
, (3.5)

vn → v in L2(B(0,1)
)
, (3.6)

vn → v in Lq
(
∂B(0,1)

)
. (3.7)

Let us see thatv is an non-radial extremal forSµ0. By (3.7),‖v‖Lq(∂B(0,1)) = 1 sov �= 0.
Now, if v is a radial function, as there exists a unique radial solution of (1.4),(v,µ0) must be a bifurcation poin

from the branch that starts with(v0,0) which contradicts the definition of̃µ, thenv is not a radial function.
By (3.5)–(3.6), we have

Q(v,µ0, q) =
∫

B(0,1)

µ−2
0 |∇v|2 + |v|2 dx � lim inf Q(vn,µn, q).

Also, if there exists a functioñv ∈ H 1(B(0,1)) with Q(ṽ,µ0, q) < Q(v,µ0, q), we get a contradiction from th
fact thatQ(ṽ,µn, q) < Q(vn,µn, q). Therefore, the limitv must be a non-radial extremal.

By the implicit function theorem, and by our assumptionµ̃ < µ0 there exists a branch of non-radial solutio
vµ, of (2.1) that passes throughv and verify‖vµ‖Lq(∂B(0,1)) = 1. Therefore,‖vµ‖H1(B(0,1)) is uniformly bounded
hence the branch cannot go to infinity forµ < µ̃ and cannot go to zero. The only possibility that remains is that fo
every 0< µ < µ0 there exists a non-radial solution of (2.1), but this is a contradiction with the results of Sec
that proves that the unique solution of (2.1) must be radial forµ small enough.

To finish the proof of the theorem, it remains to show that the set of parameters where the extremals
radial functions is open.

Let us define the set

A = {
(µ,q): there is no radial extremal of(1.1)

}
.

We denote byH 1
rad(B(0,1)) the set of radial functions inH 1(B(0,1)). Let (µ0, q0) ∈ A. We have that

inf
v∈H1(B(0,1))

Q(v,µ0, q0) < inf
v∈H1

rad (B(0,1))

Q(v,µ0, q0).

Now, if (µ,q) is close to(µ0, q0) by continuity ofQ, we get that

inf
v∈H1(B(0,1))

Q(v,µ,q) < inf
v∈H1

rad (B(0,1))

Q(v,µ,q).

Hence(µ,q) ∈ A for every(µ,q) close to(µ0, q0) and the result follows. �

4. Extremals for the critical exponent

In this section we focus on the existence of extremals for the critical exponent 2∗ = 2(N − 1)/(N − 2).

Theorem 4.1. For everyµ small enough there exists a radial extremal for the immersion

H 1(B(0,µ)
) → L2∗(∂B(0,µ)

)
.
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Proof. From (3.2) we get that there existsµ1 such that for everyµ < µ1 the extremals are radial for eve
2 < q < 2∗. In order to prove existence of extremals in the critical case, the main idea is to take the li
q ↗ 2∗ of a sequence of radial extremals forH 1(B(0,µ)) ↪→ Lq(∂B(0,µ)).

Let µ < µ1 be fixed,qj < 2∗ be any sequence such thatqj ↗ 2∗ and letvj a radial extremal defined inB(0,1).
Thesevj are solutions of{

�vj = vj in B(0,1),
vj = |∂B(0,1)|−1/qj on∂B(0,1). (4.1)

As the boundary values converges uniformly

vj |∂B(0,1) = ∣∣∂B(0,1)
∣∣−1/qj → ∣∣∂B(0,1)

∣∣−1/2∗

we get that the sequencevj converges strongly inH 1(B(0,1)) and uniformly to some functionv∗.
We claim thatv∗ is an extremal for 2∗. In fact, assume that there existsw ∈ H 1(B(0,1)) such thatQ(w,µ,2∗) <

Q(v∗,µ,2∗). We arrive at a contradiction noticing that,vj → v∗ andqj → 2∗ imply, by the continuity ofQ,
Q(w,µ,qj ) < Q(vj ,µ,qj ) for j large enough. �

5. Symmetry of extremals for 1 < q � 2

Let us see that if there exists a radial extremal for someq1 then there exists a radial extremal for eve
1 < q < q1.

Theorem 5.1. If there exists a radial extremal of the embeddingH 1(B(0,µ)) ↪→ Lq1(∂B(0,µ)) and1 < q � q1,
then there exists a radial extremal forH 1(B(0,µ)) ↪→ Lq(∂B(0,µ)). Moreover, these extremals are multiples
each other.

Proof. From Hölder’s inequality( ∫
∂Ω

|u|q1 dσ

)1/q1

� |∂Ω | 1
q1

− 1
q2

( ∫
∂Ω

|u|q2 dσ

)1/q2

for 1 < q1 < q2, we get that

Sq2 � Sq1|∂Ω | 1
q1

− 1
q2 .

Now assume that there exists a radial extremal,ur , for q = q2. Using thatur is constant on the bounda
∂B(0,µ)

Sq2 =
∫
B(0,µ)

|∇ur |2 + |ur |2 dx

(
∫
∂B(0,µ)

|ur |q2 dσ)2/q2
= ∣∣∂B(0,µ)

∣∣ 1
q1

− 1
q2

∫
B(0,µ)

|∇ur |2 + |ur |2dx

(
∫
∂B(0,µ)

|ur |q1 dσ)2/q1
�

∣∣∂B(0,µ)
∣∣ 1

q1
− 1

q2 Sq1.

Therefore∫
B(0,µ) |∇ur |2 + |ur |2 dx

(
∫
∂B(0,µ) |ur |q1 dσ)2/q1

� Sq1.

This finishes the proof. �
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Now we prove that for everyµ the extremal is radial forq = 2, see also [8] for a proof of this fact for th
immersionW1,p(B(0,µ)) ↪→ Lp(∂B(0,µ)).

Lemma 5.1. Let q = 2, then for everyµ > 0 there exists a radial extremal for the immersionH 1(B(0,µ)) ↪→
Lq(∂B(0,µ)).

Proof. It follows easily from the fact that the eigenfunctions of{
�u = u in B(0,µ),
∂u
∂η

= λu on∂B(0,µ), (5.1)

can be expanded in terms of spherical harmonics. In fact, the eigenfunctions are given by

ukj (x) = Ckj |x|1− N
2 Ik+N/2−1

(|x|)Ykj

(
x

|x|
)

,

whereCkj is a constant;Iν andYkj stand for the modified Bessel function of first kind and orderν and for any
spherical harmonic of degreek. Herej labels the spherical harmonics of degreek. For a review on special function
see [2,9].

The eigenvalues of (5.1) are given by

λk = 1− N/2

µ
+ I ′

k+N/2−1(µ)

Ik+N/2−1(µ)
.

The eigenfunctionsukj belongs to the eigenvalueλk .
As I ′

ν(a)/Iν(a) increases whenν increases, the smallest eigenvalue isλ0 that has associated a rad
eigenfunction. �

Hence we get the following result.

Corollary 5.1. For everyq � 2 and everyµ > 0 there exists a radial extremal for the embeddingH 1(B(0,µ)) ↪→
Lq(∂B(0,µ)).
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