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Abstract

The main subject of this work is to study the concept of very weak solution for the hydrostatic Stokes system with mixed
boundary conditions (non-smooth Neann conditions on the rigid surface and laganeous Dirichletanditions elsewhere
on the boundary). In the Stokes framework, this concept has been studied by Conca [Rev. Mat. Apl. 10 (1989)] imposing
non-smooth Dirichleboundary conditions.

In this paper, we introduce the dual problem that turnstoube a hydrostatic Stokes system with non-free divergence
condition. First, we obtain strong regularity for this dual problem (which can be viewed as a generalisation of the regularity
results for the hydrostatic Stokes system with free divergence condition obtained by Ziane [Aaipb&(1995)]). Afterwards,
we prove existence and uniqueness of very weak solution for the (primal) problem.

As a consequence of this result, the existence of strong solution for the non-stationary hydrostatic Navier-Stokes equations i
proved, weakening the hypothesis over tinee derivative of the wind stress tewsmposed byGuillén-Gonzalez, Masmoudi
and Rodriguez-Bellido [Differetal Integral Equations 50 (2001)].
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Le but principal de ce travail est d’étudier le concept de solution tres faible pour le systéme de Stokes hydrostatique avec
conditions aux limites mixtescondition de Neumann non réguliére sur la surfacedegt conditio de Dirichlet homogéne
dans le reste). Dans le cas du probleme de Stokes, ce sujet a été étudié par Conca [Rev. Mat. Apl. 10 (1989)] en imposant ur
condition aux limites de Dirichlet non homogene et peu réguliere.
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(M.A. Rojas-Medar).
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Dans ce papier, on introdui¢ Iprobléme dual qui est aussi un systéme wé&e® hydrostatique mais avec une condition de
divergence non nulle. D'abord, on obtient la régularité forte pour le probléme dual (ce résultat peut étre consideré comme une
généralisation des résultatsdgularité pour le systéme de Stokes hydrostatayee la condition de divergence nulle, obtenus
par Ziane [Appl. Anal. 58 (1995)]). On montre ensuite I'exis&rt unicité de solution trés faible pour le probléme primal.

Comme conséquence de ce résultat, on montre I'existenagudon forte pour le probléeme de Navier-Stokes hydrostatique
non-stationnaire, avec une hypothése sur la dérivée par rapport au temps du tenseur du vent plus faible que celle qui éta
imposée par Guillén-Gonzalez, Masmoudi et Rodriguez-Re]ifferential Integral Equations 50 (2001)].

© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
MSC:35A05; 35Q35; 35B40; 35B65; 76D03
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1. Introduction

The hydrostatic Navier—Stokes problem (also called Primitive Equations) is a model that appears in Geophysical
fluid dynamics, in order to describe the general circulation in the Ocean or the Atmosphere [14]. This model has
been extensively studied from a mathematical point of view by several authors [12,13,3,2,10,8,9], who in particular
have established existence and uniqueness rdsulfse stationary and non-stationary problems.

Let us recall that the Primitive Equations are varianthefMavier—Stokes system, where some simplifications
have been made based on the analysis of physical scalesu$e the domain of study have a depth scale negligible
in comparison to horizontal scales). Concretely, rigid-lid hypothesis and hydrostatic pressure are imposed [10].
These simplifications reduce the dimension of the system from a numerical point of view. However, it does not
make any easier its mathematical analysis. For instance, this system is no longer parabolic for the vertical velocity
which depends upon derivatives for the horizontal velocity, loosing basically an order of regularity.

As far as we know, all the results concerning strong solutions for the Primitive Equations are based on Ziane’s
results for the hydrostatic Stokes problem [16].

In [9], Guillén-Gonzéalez, Masmoudi and Rodriguez-Balligsed Ziane’s results in order to obtain existence
of strong solutions (global in time for small data or local in time for any data) for the non-stationary hydrostatic
Navier—Stokes problem. This fact forced to impose some regularity hypothesis on the data (more precisely, on the
time derivative for the Neumann boundary condition) that we consider as not optimal.

In [6], Conca defines the very weak solution concept for the Stokes problem, analysing what kind of regularity
can be obtained for a Stokes system when Dirichlet boundary data only beldésgite®) (we recall that a weak
solution has regularityd1(£2), therefore one has to impose Dirichlet dataAi/2(3£2)). See also [1] for the
non-hilbertian case.

In the present paper, we study a very weak solution concept for the hydrostatic Stokes problem, with mixed
Dirichlet—-Neumann boundary conditions. Moreover, we apply this research as an auxiliary problem in order to
obtain strong regularity for the non-stationary case.

By sections, the main contributions of this paper are the following:

— In Section 2 we set up the formulation of the (stationary) hydrostatic Stokes praBlerand we define
the dual problem associatg8). Using a mixed formulation, we obtain, first, a weak solution for the dual
problem (where the “divergence condition" does not vanish). Afterwards, we obtain strong solution for the
dual problem. Finally, we define the very weak solution concept for the hydrostatic Stokes problem, by means
of a transposition argument (using the strong regularity for the dual problem) and we prove the existence (and
unigueness) of very weak solutions.
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— In Section 3 we give a differential interpretation of the very weak solution and a meaning for the boundary
conditions; Dirichlet on the bottom and Neumann on the surface.

— In Section 4 we apply the results obtained in Section&@ter to obtain strong solutions for the non-stationary
hydrostatic Stokes Problem, weakening the hypothesis on the time derivative for the wind stress tensor imposet
in [9] (here, a very weak solution will be used to lift the time derivative of the Neumann data). Finally,
the application to the nonlinear non-stationary problem (or non-stationary Primitive Equations) is sketched,
rewriting the arguments used in [9].

2. Existence of very weak solutions
2.1. Formulation of the problem

We consider an open, bounded and Lipschitz-continuous dofaairiR? given by
2={(x2eR} x=(,yeS, —h(x) <z<0}, (1)

whereS is an open bounded domain Bf and’: S — R, is the depth function (which regularity assumptions
will be precised later on). The boundary2 can be written a8 = I'; U I', U I; where:

Iy ={x0)|xeS}
ry={(x.—h() | x € S},
and
I={(x,2)/x€dS, —h(x) <z <0}.
In the main results of this work, we are going to impose the hypothesis of minimal depth strictly positive, i.e.
h>hmin>0 inS.

Concretely, a vertical section of the domain can be viewed in Fig. 1.
We start from the hydrostatic Stokes problem:

—vAu—vg(')Zzu—i—Vp:f in £2,

Z

V382u='f OnFsy
u=0 onl, U7,

where (u)(x) = ff’h(x) u(x, z) dz. The unknowns are: 2 — R? the horizontal components of the velocity, and
a potentialp: S — R representing the surface pressure stress (andehtripetal forces, see [14]). The data for
(2) are the external force$; 2 — R? , the wind tension stress on the surfa@e, I, — R2, and the (eddy)
horizontal and vertical viscosities, > 0 and vz > 0, respectivelyA, V and V. denote the two-dimensional
operatorsafx + 8)2,},, (dx, 9y)" and the horizontal divergence operator, respectively.

We define the following dual problem:

—VA® — 1302 P +Vr =g in,

V(P)=—¢ in s, 3
U38z®:O Oan, ( )
®=0 only U7,

where(®, ) are the unknowns andj, ¢) the data.
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L

Fig. 1. A vertical section of the domain.

2.2. Weak and strong regularity for the dual problem

The following functional spaces will be used for the velocities:

H=VY={ve L2(2)% V- (v) =0 in S, (v) - nys =0},
v=V" ={ve HX(2)% V- (v) =0 in S,v|5un =0},

wherenys denotes the outward normal vector to the boundary oéntained in the plang= 0,
V={peC(2)% V- (p)=0ins},

and
C3(82) = {9 € C*(£2)% suppy)is a compact set 2\ (1}, U I})}.

We denotet,}, (£2) the space of functions d () vanishing on, U I (i.e. H} () = Wm)'

Respect to spaces for the pressure, let us introduce:

13(5) = {q e L5y [ qax= 0},
S

H= {q e HY(S); /qu=o} = HY(S) N L(S).
S

In the following, byC we will denote different positive constants.
Now, we present the main result of this subsection:

Theorem 2.1(Strong solution 0f3)). Suppose € R? with 85 € €2 andh e C3(S) with & > hmin > 0in S, and
the corresponding domaif? (defined in(1)). If g € L2(£2)? andg € H, then there exists a uniqstrong)solution
of B)with @ € H3(2)?N H} ()%, = € HY(S). Moreover,

1P 172y + 17111 05) < CLIGIZ 2 ) + Il Fpn, s }- (4)
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First of all, we will obtain a weak solution @B) using a mixed formulation for the problem. We introduce the
notation:

X=H} (@2  M=LEO),

a(u,v)zv/Vu:Vde+v3/azu-8zvd.{2, Yu, ve X,
Q Q

b(u,p)z—/p(v (u))dx, YueX,VpeM,
S

(L,v):/g-vd.(z, Vv e X,
2

(R,q)szqu, Vge M.
S

It is easy to verify that(-, -) is a bilinear, symmetric,antinuous and elliptic form oX x X, b(-, -) is a bilinear
continuous form orX x M, L is a linear continuous form oK andR is a linear continuous form o/ .
Then, we consider the (abatt) mixed problem: Find®, =) € X x M such that:

{a(d),v)+b(v,n):(L,v) Yve X, (5)
b(®,q9)=(R,q) YgeM.

Proposition 2.2 (Existence and uniqueness of solution for (5) [Alppose that

e a(-,-) is a bilinear continuous form ol x X, satisfying theV-elliptic condition i.e. there existgy > 0 such
that

a(v,v) > aollvl%, WeV,

e b(-,-) is a bilinear continuous form oX x M satisfying the inf-sup condition, i.e. there exigts> 0 such
that

inf sup M > Po.

peM\(0}vex (o} IVIx Il Pllm

Then, for each paiXL, R) € X’ x M’ (the dual space oK x M) the mixed problent5) has a unique solution
(@, ) € X x M. Moreover, the following mapping is an isomorphism

(LLR)eX' xM — (@,m1)e X x M.

Therefore, in order to prove existence and uniqueness of weak soluti@, @ < Hbl_,l(Q)2 andn € L%(S),
we only have to prove that the inf-sup condition holds. For this purpose, we use the following result:

Lemma 2.3[7]. Let 22 c R3 be a Lipschitz-continuous domain. The three-dimensional divergence operator,
Va-: Wt — L2(£2) is an isomorphism, wher® = {v € H}(2)3; V3-v =0}, W' is the orthogonal space of
W respect to thed}(s2)-norm, andL3(2) = {g € L?(2), [, gd$2 =0}.
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Lemma 2.4. Assumes2 (defined in(1)) Lipschitz-continuous ané@ > hmin > 0 in S. The following inf-sup
condition holds

pV-(v)dx
sup Jsp V- ) dx > Cy/hmin l|pll 25y, Y € LE(S).
veHL($2)2\(0} ”V”Hé(ﬂ)

Proof. Basically, we follow here an argument introduced in [5]. lpet L(Z)(S). Easily, we can deducg(%p €
L(Z)(SZ) (using thath > hmin > 0) andd, p = 0. Indeed, we have:

1 1 1
P < ' =D S —==lIrliL2s)-
H h(X) " | 122y VhX) " 12 hoin )

Then, applying Lemma.3, there exists a functiod = (u, u3) € W C H}(£2)* such thatvz - U = 75 p and (in
particular)

1
< C—IpliL2s)- (6)

||V3U||L2(_Q) < C||V3 : U”LZ(_Q) < CH .
L2(£2) hmin

1
h(X) p
Rewriting the bilinear fornb(-, -), one has that for alt € H}(£2)2

b(V,p):—/p(V~(V))dX:—/p(V-V)dX:—/pV-Vd.Q

S S 22
(asd.p = 0)= — / PVa- (v, v3) A2
2

wherews is any function belonging taH&(.Q). Then, in particular

_|_ Y R T N T S
|b(u, p)| = pV3-(Uuz)dR|= noo? d2= | pedx=plzag @)
2 2 S
Therefore, using (6) and (7)
|b(u, p)| Pl z2s) V3Ull 2
= > CVhmin ———E D > ¢ /hmin,
IVUll 2 1PllL2sy VU200 ™ IVUl 20 m

hence
[b(v, p)l

> Cvhmin [Pl 55 YPEL(S). O
vert@2vo Vg
Applying Proposition 2 in our context, we deduce the following result:

Theorem 2.5(Weak solution of (3))Suppose? Lipschitz-continuous antl > hmin > 0in S. Ifg e Hb‘)ll(.(Z)2 and
¢ € L3(S)', then there exists a unique weak solutioni®f (&, ) € H;},(£2)? x L3(S). Moreover,

”@D”Hl(Q) + ||7T||L2(S) < C{”g”[-[bl’](g)/ + ”w”L%(S)/}' (8)

Remark 2.1. Taking into account that the spa&é(S)/R is isomorphic toLS(S)/ (see [7] for instance), we can
replace in(8) the norm||<p||L3(S), by lollz2cs)/r-
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In order to prove Theorem.2, we will use two auxiliary regularity results; a result for elliptic problemsan
(see [16] and references therein cited) anttataiga’s result for the Stokes problemsn(see [15] for instance),
that we recall here:

Proposition 2.6 (Regularity for a elliptic problem in2, with mixed Neumann-Diriglet boundary conditions).
Assumeé: € C3(S) with & > hmin > 0in S anddS € €3, and the corresponding domai@. Letu be the unique
solution of the problem

—vAW—v38ZZZW=d in 2,
VW =T on Ty,
w =Y, (respectivelyl,) on I (respectivelyly).
Supposed € L2(@)2 If T e HY ()2, w e HY Y212, W, € HY Y2(I},)2 with 3/2 < s < 2, then,
1/2+¢ 3/24¢ 3/2+¢

W e H*(£2)2. Moreover, ifY" € Hy' ™ (I)2, ¥ € Hy'“™*(I7)? and W, € Hy'“"* (I)?, for somes: 0 <& < 1/2,
thenw € H2(2)2.

Proposition 2.7 (Regularity for the Stokes problem ). Let S € R? be an open set withs € C3. Let (u, p) be
the solution for the Dirichlet—Stokes problemSn
—AV+Vr=a ins§,
: V.-v=b> in S,
v=cC onas.
Ifac LY(S)2, b e WLe(S) andce WS #(3S)2 with 1 < a < +o00 and1 < s < 2 such thats — 1 is notan
integer, and the coprtibility condition [, bdx = [, ;c- nysds holds, then

ve W ()2 and 7 e WLe(s).

This result was proved by Cattabriga [4], for amy> 1 integer, and can be generalizedste R using
interpolation techniques, as in Lions and Magenes [11].

Proof of Theorem 2.1. Let us considef®, ) the weak solution of the dual problem (3) (obtained in Theorem
2.5). Sincer e L3(S), in particularvr € H~1(S). Therefore, we might consider the auxiliary functioa HZ(S)?
as the (unique) weak solution of the elliptic problensin
VAV=Vrm inS
' 9

{ v=0 onas. ®)
Now, we look at the elliptic problem verified by = @ — v (without pressure and free divergence restriction):
2

—VAW —v30fW=g ing£,
v39,w=0 onlrly, 10
w=0 onlIly, (10)
W=-—V onrlyp.

Here, we have made the identificatiofx) = v(x, —h (X)) in order to considev as a function defined ifi},.

Due to the regularity of the datg € L?(£2)2, v € H}(I'»)?), we can apply Proposition 2.6 (fer=3/2) and
deduce thatv e H%/2(£2)2. Then, using Lemma B.1 (see Appendix BY) € H%?2(5)2. Asv is independent of,
(v} = hv. Then

—V-(hV)=-V- (V) =V - (W) — V- (@) =V - (W) + ¢ e HY(S).
Now, as

1 Vh-v
V.v==-V.-(vVv)— ,
h h
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thenV -v e HY2(S) (using that: > hmin > 0 in ). In particular,V - v e H1/2-¢(S) for all ¢ > 0. Therefore, if we
consider the Stokes problem fhthat satisfiegv, ):
—VvAV+Va=0 1inS§,
{ V.ve HY?27¢(8) ins, (11)
v=0 onas,

from Proposition 27 (for s = 1/2 — ¢ anda = 2) one hasr € H03/2’€(S)2 andrw € HY/2-¢(s), for all ¢ > 0.
Returning to systeni10) (and (11)), using again Proposition.@ for s = 2 — ¢ (and Proposition Z), one has
w e H274(2)2 (andv € HZ*(S)? andr € H%(S)).
Notice that, following with this “bootstrap” argument, it is not possible to obtaia H2(£2)? by means of
Proposition 26, sincev ¢ H§/2+8(!2)2 because in gener%ﬁ #0o0nas.
Therefore, we change the argument. In order to increase the regularity of the pressar&th s), we integrate
(3)1 in the z-variable, arriving at:
—VA(®)+h(X)Vr =G inS,
!v.@):_(p in S,
(@) =0 onas,
where

G =(g) +v30,®(x,0) — 133, P (x, —h(X)) + (V®) (X, —h (X)) VA(X).

The last term of5 is the vector whos&h component s the scalar prod®t®;)|r, - VA, coming from the equality
(AD;) = A(P;) — (V®)|r, - Vh (i =1,2) (here,®@ |, = 0is used). We will see thas e L?(5)2.
Sincew € H%4(£2)?, in particular,

3.0 =0.we H¢(2)2 (12)

Fromg e L2(£2)2 and (12), we have thatg) + v33,® (X, 0) — v3d, P (X, —h(X)) € L2(S)2. Therefore, we focus
our attention on the terriv®;)(x, —h(x)) - Vi(x). Deriving with respect to th&-variables the equalit® |, =
@ (X, —h(x)) =0, we obtain:

(Vo) 1, = -8 1, VR(X).
Then,
(VO)r, - Vi = 0.8 p, | Vh(O|%.

Therefore, it suffices to analyze the regularity 6f:(x)|2 ©:P)r,-
Since h € H?(S), in particular [VA|? € LP(S) for all p > 1. From (12), (3,®) |, € HY?75(I},)? —
LY A+29)(1,)2. In particular,(d,®)|r, € L1(S)? for a certaing > 2. Then|VA(X)|? (3.®) |, € L2(S)?, hence
we can conclude tha® € L2(5)2.
Notice that, using the equality Vo = V(h ) —  Vh, the previous problem can be rewritten as the Stokes
problem ins:

—VA{(®)+V(hr)=G+nxVh inS,
:V.(cp):—(p ins,
(@)=0 onas.

SinceG + Vi € L%(5)? (recall thatr € HY/?7¢(S)) andg € H(S) such that/; ¢ dx = 0, by Proposition Z,
(@) € H2(S)2 andhz € H(S). In particularr € H(S) (using once again thadt> hmin > 0).

Now, we go back to the dual proble(). Moving the pressure term to the right hand side, we consider the
corresponding elliptic problem with the unknow. Then, using the new regularity € H(S) and applying
Proposition 26, one hasp € H?(2)2. Finally, inequality(4) can be deduced by construction, thanks to the
continuous dependence bt auxiliary problems9), (10)and(11). O
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2.3. Very weak regularity for the primal problem

Suppose the following regularity hypothesis for the data:
fe (HX2)?nHL )%,  1eH ¥4Iy, (H)

Denote by(-, -)s the duality betweerl1(S) and H1(S), by (-, -} the duality betweeriH2(§2) N H;Z(Q))/

andH2(2) N H},(2) and by(-, ), the duality betweett! ~%/2(I) and Hy/*(I7).

Definition 2.8. A pair (u, p) is said avery weak solution of2) if u e L2(£2)?, p € HX(S)'/R and satisfies:

2

JoU- (—vA® —v302.P + Vr)d2 — (p, V- (®))s = (f, @) + (T, ®) (13)
Vo € HA(2)?NHy ()% with 9.®|r, =0, ¥z € HL(S).

Remark 2.2. Notice thatp € H1(S)’/R means thaip € H1(S) is defined up to an additive constant. From
® € HA(2)’NH; (2)? one hasv - (@) € HY(S) and [ V - (@) =0 (therefore(p, V- (®))s = (p+c, V- (P))s
for all ¢ € R).

Remark 2.3.1t is easy to see that if the dat Y') are regular andu, p) € H; (2)? x L?(2)/R is a weak
solution of(2), then(u, p) is also a very weak solution @®) (i.e., the previous definition is a generalization of the
variational formulation).

Let/:L%(£2)? x H — R defined by:
9. 9)= (@) + (Y. P)r,,

with (@, ) the strong solution for the dual problei®) with data(g, ¢) (given in Theorem 2). It is easy to prove
that/ is a linear and continuous operator frdm(£2)2 x H into R. Indeed, from (4) one has

Il 2c@ysemy < CHIMN arzipnmg @y + 1T =320y}

Applying the classical Riesz’ identification, one can easily prove the following:

Lemma 2.9.AssumingH) and the hypothesis of Theore?ri, there exists a unique paiu, p) € L2(22)? x H'
verifying

/ U-gd2+ (p, @) 1 =100, 9), VYgeL?(£2)% YpeH. (14)
2

Moreover, one has

lull L2y + 1Pl < C{IIfII(HzmHgl)/ + ||T||H*3/2(1‘5)}- (15)
In order to rewrite the linear form of (14) in terms @b, ), one needs the following result
Proposition 2.10.The spaced(S)’/R is isomorphic taH’.

Proof. In Appendix A. O
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Now, we are able to show the result about existence (and uniqueness) of very weak solutions.

Theorem 2.11.Under conditions of Lemma.9, there exists a unique very weak solutiam p) of (2) in
L2(£22)2 x (H(S))'/R. Moreover, one has

||u||L2(_Q) + ”p”Hl(S)’/R < C{ ”f”(HZ(.Q)ﬂHle(.Q))’ + ||T||H—3/2(1})}' (16)

Proof. From Lemma 2, there exists a unique pdin, ) € L2(£2)2 x ‘H' verifying (14).

Using the isomorphism betweg® 1(S))’/R and’H’, we can identifyp with a distributionp in (H1(S))'/R
such tha{p, ¢)1 1 = (P, ¢) mi(sy. uics) Yo € H. Therefore, we conclude that, p) is a solution of(13), i.e. a
very weak solution of2). The uniqueness is deduced from the linearity of the problem. Fird#yy,is deduced
from (15) and the isomorphism betweénl(S)’/R andH'. O

3. Interpretation for the differential problem
3.1. Differential equation

From now on, we fix € L2(£2)? instead off € (H?(£2) N H},)’ (in order to have a space of distributions). Let
us consideru, p) the very weak solution of2). Takingm = 0 and® < D(£2) in (13), one has:

/u (—VAD — 1302 D) d2 — (p. V(@) = /f - PdR,
2 2
hence we can deduce the systéyy in the distributional sense. Takirg = 0 andx € D(S) in (13),

/rond.on
2

hence we can deduée- (u) =0 in D'(S). Therefore, we have:

Proposition 3.1.Assumé e L2(£2)2. Let(u, p) € L2(2)? x (H1(S))’/R be the unique very weak solution(@.
Thenu and p verify Eqs.(2)1—2 in the distributional sense if2 and S, respectively.

3.2. Sense for the boundary conditions

Fromu e L2(£2)?, we have thafu) € L?(S)2. On the other hand, sinéé- (u) = 0, in particularV - (u) € L2(S).
Then we can conclude that) - nys € H~Y2(S). Moreover, takingp = 0 andx € H1(S) in (13), we get:
/ Uu-vrds2 =0,
2
hence

0= /(u) VrdS=((u)-ngs, )y, VmeHS)
S
where(-, -)55 denotes the dualityy ~1/2(3S), H/2(3S). Therefore,
(uy-nys =0 in HY2(38). (17)



F. Guillén-Gonzélez et al. / Ann. |. H. Poincaré — AN 21 (2004) 807-826 817

3.2.1. Dirichlet boundary conditions
In order to give a sense at the Dirichlet boundary conditi@son I', U I, we define the operator

De.p): HY?(Iy U I7)? — R,

D.p)(¥) = / U-(—vA® —v3d28)d2 — (p,V - (@), — (f. @), YW e HYA(,U )2,
2
whered = & (¥) is the unique weak solutio® € H2(£2)? N H}(£2)?, of the problem:
A2¢ =0 ing,
®=0 onos2,
¥ =y onl,ul, d®=00nl;.
Itis easy to show thady, ) is a linear continuous operator, i.e.:
D, p) € (HY2(I, u )%

Notice that if(u, p) is a weak solution of2), then:

D(u,p)(ll/)z / u-¥do, VYV,
,ur;

therefore we can denote this operator asgbeeralized trace ovef, U 7.
ReplacingTr =0 and® = ¢ (¥) in (13), we obtain that:

Dw.py(®)=0, V¥ eHY2(,un)?
Thus, it follows thaDy, ,) = 0 in (HY2(I}, U )?)".

3.2.2. Neumanhoundary condition
In this case, in order to give a meaning to the Neumann boundary condi#ipen Iy, we define the operator

Neu.p): Hy'2(8)? — R,
Neu.p) (&) = / U-(—vAD —13920)d2 — (p, V - (®)) — (f, D)2,
2
where® = & (¥) is the unique weak solutio® € H2(52)2, of the problem:

A%® =0 in$2,
=Y onl,, ®=0o0onl,Uly,
9 _0  ondsf.

an

Now, assuming thatu, p) is a weak solution of2), one has:

N(u,p)(‘l’)=/3ZU-lI/dU, VY,
T

therefore we can denote this operatogaseralized normal trace ovdr;.
Replacingr = 0 and this newp = @ (¥) in (13), we obtain that:

3/2
N,y (®) = (T, ®)p,, V¥ e HY(S)?

Thus, it follows thalN(, ) = T in (Hy' 2($)2) = H=3/2(5)2,



818 F. Guillén-Gonzélez et al. / Ann. |. H. Poincaré — AN 21 (2004) 807-826

4. Application to non-stationary problems
4.1. The linear case

In this subsection, we are going to apply the result obtained for the stationary case in order to get strong solutions
for the linear non-stationary Primitive Equations ¢atsilled non-stationary hydrostatic Stokes problem):

U —vAU—392u+Vp=F in(0,T) x £,

Z

V-(u=0 in(0,7) x S,

Ul;—0 = Ug in §2, (18)
v3d, u=7 on(0,T) x Iy,

u=0 on(0,T) x (IpUIy).

The following result was given in [9]:

Theorem 4.1.Supposes € R2 with 85 € €3 andh € C3(S) with /1 > hmin > 0in S. If F € L2((0, T) x £2)2,
UueV, T elL?0,T; H01/2+€(1"5)2) for somes > 0, with 8,7 € L2(0, T; H~Y2(I';)?), then there exists a unique

strong solutioru of problem(18) in (0, T). Moreover,

IUIZ vy + 1UIZ 2 1120y + 190UIT 2,

2 2 2 2 2
g C{HUOHV + ”T(O)”H—l/Z(R) + ”F”LZ(LZ(_Q)) + ||T”L2(H(:)l/2+6(1—})) + ||8tT||L2(H—1/2(]‘S))}‘ (19)

The proof of this theorem is based on the following two results about the stationary pré®lpm weak
regularity result given by Lions, Temam and Wang in [13], and a strong regularity result due to M. Ziane [16],
respectively:

Lemma 4.2.Suppose&? C R3 be Lipschitz-continuous. ffe Hbf,l(.Q)2 andY € H~Y2(I})?, then the problem
(2) has a unique weak solutiane V. Moreover,

2 T2 2
uly <C . + 11115, : “
Iully < CHT G2y + ”H,,,,l(m} ()

Lemma 4.3. SupposeS C R? with 35 € €2 and h € C3(S) with & > hmin > 0 in S. If f e L2(£2)2 and
T e Hé/Z“(I})Z, for some ¢ >0, the unique solution of the problem(2) belongs toH %(£2)% N V. Moreover,

Ul 2,0y SCLHITIZ 120e .+ 112200 - (21)
H2(2) { H01/2+ (ry) LZ(Q)}

In this section, using Theoreml2. instead of Lemma 2, we will obtain strong solutions @.9) imposing less
regularity overn, T (replacingH ~Y/2(Iy) by H=%2(I})). More precisely, the new result is:

Theorem 4.4. SupposeS C R2 with 39S € €2 domain andh € C3(S) with & > hmin > 0 in S. If F ¢
L2((0,T) x 2)2, Ugp € V, T € L0, T; Hy'*™*(I'})3 N L™(0, T; H-Y2(I})?) for somes > 0 with 3,7 ¢
L?(0, T; H=3/2(I';)) and T (0) € H~Y/2(I})?, then there exists a unique strong solutioof the problem(18) in
(0, T). Moreover,

2 2 2
”u”LOC(V) + ”u”LZ(HZ(_Q)) + ||8l‘u||L2(H)

< Clluolly + 17 ONF 172,

2 2 2
+ ”F”LZ(LZ(.Q)) + ||T ”LZ(H(:JL/ZJFS(FS))mLOO(H_l/Z(FS)) + ||8tT||L2(H73/2(FS)) } (22)
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Remark 4.1.1f S is smooth enough, the hypothedise L°°(0, T; H=Y2(I;)3) and Y'(0) € H~Y2(I3)3 are
not necessary, since from € L2(0, T; H§/2+5(Fs)3) and 8,7 € L%(0, T; H%2(I})%) we can deduc&” ¢
C([0, T); H~Y?(ry)®) with continuous dependence (see Appendix C). In particular, we arrive again at (19).

Proof. The uniqueness is obtained thanks to the linearity of the problem. To get existence, we will separate the
proof in the same steps of the proof done in [8,9]:

Step 1 Existence of weak solutiort can be obtained as the limit for the Galerkin approximate solutions
Un € CX([0, T1; V,») (beingV,, am-dimensional subspace &f) such that:

4 Uy @d2+v [, VU : Vod2 +v3 [ ;U - .0d2 = [, Fi - 0dS2
+_/11~S’rm '(P|I}d0 VQDE Vma
U, (0) = projection ofup overV,,,

where F,, € C%([0, T1; H, }(£2)%) and T,, € C°([0, T]; H~Y%(I'})? are smooth approximates & and 7",
respectively.

Takingy = u,,, we can deduce that the sequengds bounded in.*°(0, T'; H) NL2(0, T; V). Then, a standard
limit process gives a weak solutianof (18).

Step 2 Lifting of the Neurann boundary conditiondVe defineB : T — BT = u the solution of the stationary
hydrostatic Stokes proble@) with f = 0.

Then, we can define the auxiliary functietr) = B(T (¢)) a.e.r € (0, T') that let us made an adequate lifting of
the Neumann boundary condition d&taUsing Lemmas £ and 43, taking into account thaf () € H(}/ZH(FS)2
a.e.t € (0, T), we obtain thae(r) € H%(£2)2NV a.e.t € (0, T), and

He(t) ”%/ < C”T(t) ||12L1—1/2(1})’ ||e(t) ”3{2(9) < C”T(t) ||12L1§/2+€(rs)'

Thereforeee L2(0, T; H2(£2)2N V)N L>®(0, T; V) and

el vy < CIT w121, (23)
2 2

On the other hand, using Theorem 2.11 we have that, &) € H~%2(I) a.e.t € (0,T), we can define
&)= B(3; T (1)) a.e.t € (0,T), with &(r) € L3(2) and |&(1) |l 12 < ClI8: T [l g-321.-
Now, let us see thai(r) = 9,e(z); in fact, taking

Us (2 = et +8) —er) P :B<T(t+5; -7

5 - 3r7’(t)),

asTWHI=TO _ .7 (1) e H-3/2(I), from Theorem 2.1, we deduce that:

Hug(t)HLz(m gcuw—am(n —0 ass— 0.

) H—3/2(R)

Therefore, we can conclude ti&t) = 9,e(¢) in L2(2) a.e.r € (0, T). Moreover, we obtain the bound:
H afe(f)” L2(2) < C” %1 (1) ” H=3/2(I%)
hence

l0:€ll L2(12(2y) < CUO Y |l L2c-32(ryy)- (25)

Remark 4.2. Notice that this step 2 will be the fundamental siephe proof, because the fact of using estimate
(16) (and Theorem A1) instead of estimat@0) (and Lemma 4£) allows us to impose weaker hypothesisiphi.
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Step 3 Strong solution for the homogeneous problérhe functiony = u — e (with a potentialg: S — R
associated) verifies the following system:

8,y—vAy—V33 Y+Vg=h in(0,T) x £,

V.(y)=0 in(0,7T) x S,
Yli=0=Yo in s,

v3d,y =0 on (0, T) x Iy,
y=0 on (0, T) x (Ip U Iy,

whereh = F—d,ee L2(0, T; L2(£2)?) andyo = ug—e(0) € V. Again, arguing by a Galerkin procedure, we denote
by y.. : [0, T1 — V,, the Galerkin approximate functions, wherg is the subspace df = {w, w2, ..., w™", ..}
spanned by the eigenfunctions of the hydrostatic Stokes opetatér— V'’ defined by:

(Au,v)vf,vzf(vVu:Vv+ v30:U-3.V)d2 Vu,vev, (26)
2

and associated to homogeneous boundary conditions (Neumann on the sulfBiecitet on the bottom and the
vertical sidewalls). These approximates solve the ordinary differential problem:

{%fﬂym(t)-de.Q-l-vf_QVym:Vde.Q+v3fgazym-de.Q:f_th-de.Q, Wi € Vs o

Ym(0) =Yom = Y71 (f VYo : VW 4 8.y0 - d;w/)w/,

beingh,, a smooth approximated function lof Let us now obtain strong estimates fgy. Takingv,, = Ay, (¢) €
V,, as test functions ii27), we deduce the inequalityr € [0, T],

d
O + 1490 | 20 < Iz

Integrating in time, we get:

lym®|2 + / | AYm ()| 72y d5 < IYomlI3 + / [ ) [ 2, -
Therefore, the sequencg,,),. is bounded inL2(0, T; D(A))NL>(0, T; V), so there exists a limit functionthat
belongs to the same spacedarerifies the inequality:

IYIZ oo vy + 1Y 17200y < IVOIS + D122 20 (28)
Now, takinga,y,, € V,, as test functions iiR) and integrating in time, we have:

”alym”LZ(H) ”yOm”V + ”hm”LZ(LZQ))a
and the limitd,y € L2(H) and verifies the inequality:

13eY112 247 < VOIS + 1IN1Z2 ;2 (29)
Adding (28) and(29), and using thayo = up — e(0) andh = F — 3,e, we conclude that:

2
VI ooy + Y12 2 payy F+ 19:Y17 205y, < CLIIUOIT + €OV 5, + IF T2 20, + 13812 2,200 }-

Finally, replacing estimate®0) for e(0) in V and estimate&5) for 8;ein L2(0, T'; L?(£2)), we obtain(19). O
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4.2. Application to the non-stationary nonlinear Primitive Equations

The extension of the result from Theoren#i4o the nonlinear case follows similar arguments as in [8,9],
replacing the use made there of Theorethldy Theorem 4. Therefore, we will get the same weaker hypothesis
overo; T as in the previous linear case.

We want to obtain the strong regularity result for the nonlinear problem of Primitive Equations:

dU-+U-VU+uzd.u—vAUu—v3d2U+aut +Vp,=F in(0,7T) x £,

v3d. Ulr, =7, Ulnun=0 in (0, 7),
wherea = 21 sin(}) is the Coriolis coefficient and the vertical velocity is computed by
0
us(t; X, z) = / V.u(t; X, s)ds. (31)

Z

We give here an schedule of the result (see [9] for the detalfg)er the hypothesis of Theored, there exists
a unique solutiom of problem(30), either defined ir{0, 7*) for a small timeT™* € (0, T), or in all the time interval
(0, T) under smallness assumptions for the data.

For the proof, we usée, ¢;) the solution of(18) in order to lift the boundary coritions. Therefore, we only
have to study the homogeneous problem that verifiesr;) = (U — €, ps — ¢5):

QW — VAW — 1302 W + Vi, + (W+€) - V(W +©) + (w3 +e3)d,(W+e) =0 in(0,T) x 2,
V- wW)=0 in(0,T)xS, W—=0 in £, (32)
v3d, W, =0, W|nun =0 in (0, T),

with wz = fzo V -wds and the same form fass.

We approximate the functiong by the Galerkin functionsv,, in them-dimensional spaces,,, which are the
orthonormal basis of dimensiem (in V) of eigenfunctions of the hydrostatic operator. In order to obtain estimates
in the H2(£2)-norm, we takeAw,, (1) € V,, as test functions, obtaining:

d 2 2 2
S Wy + 1AW 172 ) < € (Wi +€n) - V) Wy, +80)| dR2
2

3
+C / (e + (e3)m) =W +€0)[*d2 + CIFI2, 0 =D 1. (33)
2 i=1

We bound thel;-terms using the estimates in strong normsgfand the left hand side af33). The biggest
difficulty is to bound the nonlinear terms:

/|(W,,,-V)Wm|2d.{2 and /|(wm)3azwm|2d!2.
2 2

Remark thatl, is less regular thard; due to the anisotropic regularity for the vertical velocity, sitces =
—V -w e L2(£2), and therefore (using a Poincaré inequaliby) € L?(£2). However,Vws ¢ L2(£2) in general.
If we use the usual estimates in the Sobolev spaces, dedddavier—Stokes equation, this lack of regularity of
the vertical velocity does not allow to obtain strong regularity @2). Searching for an alternative method, we
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separate the regularity knandz, considering the anisotropic spaces astineates that were introduced in [9] and
that we overview here:

Definition 4.5. Given p, ¢ € [1, +oc], we say that a function belongs toL? L{ () if:
U(', Z) eLq(SZ) and | U(', Z) ”Lq(Sz) ELP(—hmaX, O)a

whereS, = {x e S /(X, z) € §2} for a fixedz € (—hmax 0), and its norm is given by the expression:

Iuc. 2 ||Lq(Sz) I LP(—hmax0)"

Lemma 4.6(Interpolation inequalities [9]).

() Letv e L?(£2) be a function such that.v € L?(£2) and (vn;)|r;, = 0. Then,w € L L2(£2) and satisfy the
estimate

19170 2 < 20101 120) 19: 01| L2 - (34)
More generally, ift € H1(£2) thenv € L§°L)2((.Q), and there exists a consta@it= C(£2) > 0 such that
191702 S CE NVl L2 IVl a2y, Y€ HYSR). (35)

(b) Letv e L2(£2) be a function such tha¥v € L2(2)? and (vny,)|r,ur, =0 (i = 1,2). Thenw € L2L#(52) and
verifies the estimate

1017228 < 410l 2 I V0l 20 (36)
More generally, ifv € H1($2) thenv € L2L3, and there exists a consta@it= C(£2) > 0 such that:
||U||igL§ < C(Q)”U”LZ(_Q) ||U||H1(_Q)- (37)

(c) Letv e L?(£2)? be a function such tha¥ - v e H1(£2). Then, if we considers defined as in31), we have
thatvs L;’OLﬁ(.Q) and satisfies the following estimate

1/2
L2(R2)

1/2

lvsll 218 < C(2) IV -Vl )"

IV - v (38)

By using the above ineqliies, we can bound the ternig and I, as follows:
2
hL<C ” (w3)m + (e3)m ” Lgoszxllasz +0:€n ”igLﬁ

< gz 1AW 12 22y W llv + 51 15 1€ 1112y 1€ 1522y + Cll€n 1571 1€ 1572 )
for a constanC = C(£2) > 0. For thel;-term, we bound in the usual (isotropic) form:

I < C”Wm + €y ”i4(9) ”VWm + Ve, ”34(9)

3/2 1/2 3/2 1/2
S CUIVWll 2 ) Wl 2 ) + 18n 151 ) 1811 2 ) )
3/2 1/2 3/2 1/2
X (1YW 72 0 I 9Wan 1 2 ) + 8l 2 1800 1 )

1 8 1 8 1 1/2 3/2 2

5/2 3/2

1 2
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Plugging the above estimates(i83), we have:

d C C
T 19 + 1AW 112 ) < —575 1AW 12 IWnllv + —5 Wi 13+ @ (@) [Wn I + b(2), (39)

wherea(t) andb(r) are bounded functions ih'(0, T), depending ow and the data.

From here, we can argue in two ways: supposing small data (to obtain global in time strong regularity) or for
any data (to obtain local in time strong regularity).

In order to obtainglobal in time strong solution for small data, we reason as follows: First, supposing the
estimate:

Wi @], < yv¥? fory small enough, (40)

we can control globally in time the ternﬂs&wmni2 o Wi llv and% ||wm||},0 appearing on the right hand side of
(39), and finish the proof in a standard way. Secondly, we have to prove the esti#gtevhich is obtained using
the homogeneous initial data and adequate smallmgsothesis on the data (see [9] for more details).

In order to obtairlocal in time strong solution for any datasing thatw,, (0) = 0 andw,, : [0, T] — H1(£2)2

is a continuous function, we can chose a tif)esuch that:

3/2
W], < ==, Vi el0,T,l. (41)

2C’
Then, we can prove thdi, is bounded from below by a timg, > 0 independent om:. Indeed, integrating39)
between 0 and, ¢ € [0, T;,], and using41) we obtain ([9]):

t t

2 2 2 2
W (1% +/||Awm(s)||L2(mds < K@)t +Cv /||em(s)||H2(9) ds.

0 0

Therefore, choosing no, such that:

»3

K(V)T* + CVZHem ||i2(0,T*;H2(Q)) < 4C2 )

we verify thatT;,, can be chosen equal 1 for eachm. Now, the proof of the existence of strong solutiorfn7,)
follows in a standard manner.co
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Appendix A. The isomorphism

Proposition A.1 (before cited as Proposition 2.1@he spaced 1(S)'/R is isomorphic toH’.

Proof. Recall thati = {¢ /¢ € H(S), [(pdx=0}.
(@) H1(S) = H @ H* (identifying H+ with the space spanned by the constant functions Syein fact, any
constant functiomw = « in S (¢ € R), verifies:

((a),@)l:/va)'V(pdx—i—/w(de=a/godx:O Yo eH,
S s S
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where((-, -))1 denotes the inner product 1 (S). Thereforew = o € H*.
On the other hand, every functiere H(S) can be written in a unique manner as:

v=¢+a,
with o = -+ [(vdxeRandgp =v —a € H.
(b) The isomorphismVe define the operator
T:HYS) /R > H,
q—>Tq
as

(Tq, o)1 =1q, )iy nisy» Yo €H.

This operator isvell-definedbecause itx is a constant7 (¢ + «) = Tq. Indeed(T (¢ + «), ¢) = (g + o, @) =
(q,¢), because ofs @ dx for all ¢ € H. Therefore, it suffices to prove thatis a continuous bijection.

T is one-to-oneSuppose thal'q = 0, i.e. (Tq, ¢) =0 for all ¢ € H. Letv € H(S), thenv = ¢ + « with
@ =557 [yvdxandg € H . Then,

1
(g, Visy mis) =4, ¢+ ) gy i) =Tq, o) H+ m(% L) picsy. micsy / vdx
5

1
== m(q, 1>H1(S)/!Hl(s)\/\vdx,
N

therefore, deflnln@ = |—g:| <q, 1>Hl(S)/,H1(S) S R, one haS{q — ﬁ, U>H1(S)/,H1(S) =0forallv e Hl(S), henCG] — ﬁ
belongs to the zero equivalent classHA(S)’ /R, and thereforg = 0 in H(S)/R.
T is onto: For any € H’, we have to prove that there exists an elemeatH1(S)'/R such thatl'q =1, i.e.,

<q, §0>H1(S)’,H1(S) = <l, (p)’}—{/”)—{ V(p eH. Indeed, it suffices to deflm@, U)Hl(S)’,Hl(S) = <l, (p)’}—{/”}—{ if v= ¢ +a.
T is continuousUsing the standard norm definitions,

<q +c, U>H1(S)’,H1(S) (6] +c, q))Hl(S)/,Hl(S)

gl gicsym = INf llg +cllgigy = INf - sup > inf sup
OVRT cer ) ceR e g1(s) vl g2 cs) ceR pen ol f2cs)
(g, 0)u1sy mis (Tq, ) H
= sup——— ORI — gyp = LTI — i 7g gy o
peH ”Q"”Hl(S) peH ||§0||H1(S)

Appendix B. Regularity in §
Lemma B.1.Supposé € H2(S). If we H(2) foranys: 1< s < 2, then(w) € H*(S).

Proof. If w e L2(£2), then integrating if—%(x), 0) we obtain:

0 2 0
\(w>\2= /w(x,z)dz << / |w(x,z)\2dz>h(x).
—h(x) —h(X)

Integrating now inS, we obtain:
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0
2 2 2
/\(w)\ dxg/h(x)( / lw(x, 2)| ds)dxg ||h||LO°(S)/‘w(Xa 2)| dQZHh”LOC(S)”w”iZ(Q)’
s s —h(X) 2
that implies:

[ 25y < M7 s Iwll 20 (42)

Deriving (w), we get thatv (w) = (Vw) + w|r, Vh. Taking theL2(S)-norm and using42), we obtain:

1/2
LA(S)

1/2

” Vh ||L4(S)'

[V ) 205, < [0V} | 25y + 10l Vll2gs) < IRITS 5 IVl 20y + Nl

Let us focus our attention on the termsId¥($)-type:

1/4 1/4

lwin s = </|w(x’ —h(x))|4dx> (/|W(X, —hoo)[*(1+ |Vh(X)|2)_l/2d0)
N I

<lwllzacn) < Cllwll g,

where we have used the continuity of the trace function fi@h(s2) in L*(352). On the other hand, using the
Sobolev embedding/2(S) < W14(S), one has:

||Vh||L4(S) <C ||h||1-12(s)~
Therefore,
1/2 1/2 1/2
[V )| 25y < Il 5 i5) IV 22 + C Wl o) 1020 - (43)

Estimateg42) and(43) let us deduce that iy € H1($2) andh € H2(S), then(w) € H(S).
Now, we study the case where € H2(2) andh € H?(S). From the previous estimates, we only need to
estimate second order derivatives farWithout loss of generality, we will only reason f&}x (w). We have:

02, (w) = (92,w) + 2@ w) 1, ) — B.w)| 1 [0 00| + wlr, B2 AX).

Therefore, using the same arguments as before:

2 1/2 2
|02, )] L2(s) < I1Al17% s, 102w 20
1/2 1/2 1/2 1/2 1/2
+ C 10wl gz Ml ras) + 10215 1l pr2s) + 1wl 75 o5y W)
1/2 1/2 1/2 1/2
<RI ) 102wl 2 + Clwilz o 1Az, (L4 11s)): (44)

where we have used in the last term thawit H2(£2), thenw|yo € H¥2(02) — L*>(352). Expression44)
together with(42) and(43), let us deduce that iy € H2(£2) andh € H2(S), then(w) € H2(S).

We have just proved that, ifv € H1(2) then (w) € H1(S), and if w € H2(£2) then (w) € H2(S). In
the caseH*(2) for s € (1, 2), interpolation results [11] let us s&é*(2) = [H1(2), H2(£2)]y and H*(S) =
[H1(S), H2(S)]y with ® = s — 1, hence we can deduce thatife H*(£2), then(w) € H*(S). O

Appendix C. Interpolation results

Lemma C.1.Let S € R? be a bounded open set wilt§ € C®. If ¥ € L2(0, T; H01/2+6(1})) for somes > 0 and

9T € L2(0, T; H%2(I,)), thenY € CO([0, T1; HY24(Iy)).



826 F. Guillén-Gonzélez et al. / Ann. |. H. Poincaré — AN 21 (2004) 807-826

In order to prove this lemma, we will use some interpolation results appearing in Lions and Magenes [11]:

Theorem C.2[11, p. 79].Suppose thafy € C*. Letsi, s2 > 0 such thats; # A + 1/2 (» integer,i =1, 2). Let
6 €10, 1] such that

(1-0)s1—0s2#u +1/2 and #—u—1/2 (uninteger> 0). (45)
Then,
H{TP2 ()i (L—6)s1 — 0520,

46
HQ=0s1=0s2(y if (1 —0)s1 — 052 <O. (46)

[H3H (), H™2(I)), = {

Proposition C.3[11, p. 53].Let X and Y two separable Hilbert spaces such th&tc ¥, X dense inY with
continuous embedding. Then:

[H(2; X), H?(2: Y)], = H1402(2: [X, Y]y).

Proof of Lemma C.1. In our case, taking in Theorem C2=0,s1 =1/2+¢, s2 =3/2+ ¢’ with ¢ < ¢ one has
[Hy 2** (), B2 (1)), = HY2H (1),
if one imposes thatl — 0)s1 — 6s2 = —1/2+ § < 0 with § is small enough, then:
1+e-6 1
0=———>—
24+¢e¢+¢ 2
From hypothesi&” € H1(0, T; H=3/%(Iy)) n H%(0, T’; Hg/Z“(FS)). Then, we use Proposition C.3 for= 0,
=1, X = H/*"(I), Y = H-¥2¢(I) and 2 = (0, T), obtaining T € H?(0, T; H-Y2+(I3)) (with
6 > 1/2), hence in particular one hase C°([0, T1; H~Y3(Iy)). O

(takinge > &’ + 26).
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