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Abstract

Unlike the non-singular cases = 0, or the case when 0 belongs to the interior of a domainΩ in R
n (n � 3), we show that the

value and the attainability ofthe best Hardy–Sobolev constant on a smooth domainΩ,

µs(Ω) := inf

{∫
Ω

|∇u|2 dx;u ∈ H1
0 (Ω) and

∫
Ω

|u|2∗(s)

|x|s = 1

}

when 0< s < 2, 2∗(s) = 2(n−s)
n−2 , and when 0 is on the boundary∂Ω are closely related to the properties of the curvature

∂Ω at 0. These conditions on the curvature are also relevant to thestudy of elliptic partial differential equations with singula
potentials of the form:

−�u = up−1

|x|s + f (x,u) in Ω ⊂ R
n,

wheref is a lower order perturbative term at infinity andf (x,0) = 0. We show that the positivity of the sectional curvature
0 is relevant when dealing with Dirichlet boundary conditions, while the Neumann problems seem to require the positivity
the mean curvature at 0.
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Résumé

Contrairement au cas non-singuliers = 0, ou au cas d’une singularité à l’intérieur d’ un domaineΩ deR
n (n � 3), on montre

que la valeur de la meilleure constante dans l’inégalité de Hardy–Sobolev sur un domaine régulier,

µs(Ω) := inf
{∫
Ω

|∇u|2 dx;u ∈ H1
0 (Ω) et

∫
Ω

|u|2∗(s)

|x|s = 1
}

quand 0< s < 2, 2∗(s) = 2(n−s)
n−2 , et quand 0 appartient à la frontière, est étroitement liée aux propriétés de la courbure∂Ω

en 0. Ces mêmes conditions sur la courbure sont aussi pertinentes pour l’existence de solutions d’équations à potenti
de la forme :

−�u = up−1

|x|s + f (x,u) in Ω ⊂ R
n,

où f est une perturbation d’ordre inférieur à l’infini etf (x,0) = 0. On montre que la positivité de la courbure sectionelle
suffisante pour l’existence de solutions des problèmes avec conditions de Dirichlet au bord, tandis que pour les problèmes d
Neumann, c’est la positivité de la coubure moyenne qui compte.

Keywords: Best Hardy–Sobolev constant; Boundary singularity; Semilinear elliptic equations

1. Introduction

We consider the value of the best Hardy–Sobolev constant [4] on a domainΩ of R
n,

µs(Ω) := inf

{∫
Ω

|∇u|2 dx;u ∈ H 1
0 (Ω) and

∫
Ω

|u|2∗(s)

|x|s = 1

}
(1)

and the corresponding ground state solutions for
−�u = |u|2∗(s)−2u

|x|s in Ω,

u = 0 on ∂Ω,

(2)

whenn � 3,0 < s < 2, and 2∗(s) = 2(n−s)
n−2 . Unlike the non-singular case and assuming 0 is on the boundary o

domainΩ , we show that these problems are closely connected to the curvature of the boundary∂Ω at 0. This is in
sharp contrast with the non-singular contexts = 0, or when 0 belongs to the interior of a domainΩ in R

n, where it
is well known thatµs(Ω) = µ0(R

n) for any domainΩ and thatµs(Ω) is never attained unless cap(Rn \ Ω) = 0.
The case when∂Ω has a cusp at 0 has already been shown by Egnell [7] to be quite different from th

singular setting. Indeed, by considering open cones of the formC = {x ∈ R
n;x = rθ, θ ∈ D andr > 0} whereD

is a connected domain of the unit sphereSn−1 of R
n, Egnell showed thatµs(C) is actually attained for 0< s < 2

even whenC̄ �= R
n.

The case where∂Ω is smooth at 0 turned out to be also interesting as the curvature at 0 gets to play an im
role. Indeed, we shall show that the positivity of the sectional curvature at 0 is needed for problems with D
boundary conditions, while the Neumann problems require the positivity of the mean curvature at 0.

More precisely, assume that the principal curvaturesα1, . . . , αn−1 of ∂Ω at 0 are finite. The boundary∂Ω near
the origin can then be represented (up to rotating the coordinates if necessary) by:

xn = h(x ′) = 1

2

n−1∑
αix

2
i + o

(|x ′|2),

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
i=1
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wherex ′ = (x1, . . . , xn−1) ∈ B(0, δ) ∩ {xn = 0} for someδ > 0 whereB(0, δ) is the ball inR
n centered at 0 with

radiusδ.
If we assume the principal curvatures at 0 to be negative, that is max1�i�n−1 αi < 0, then the sectional curvatu

at 0 is positive and therefore∂Ω – viewed as an(n−1)-Riemannian submanifold ofRn – is strictly convex at 0 [9]
The latter property means that there exists a neighborhoodU of 0 in ∂Ω , such that the whole ofU lies on one
side of a hyperplaneH that is tangent to∂Ω at 0 andU ∩ H = {0}. In our context, we specify the orientation
∂Ω in such a way that the normal vectors of∂Ω are pointing inward towards the domainΩ . The above curvatur
condition then amounts to a notion of strict local convexity ofRn \ Ω at 0. Indeed, setting

Pγ,δ = {
x = (x ′, xn) ∈ R

n−1 × R
1: xn > γ (x2

1 + · · · + x2
n−1)

} ∩ B(0, δ),

then, with the above orientation of∂Ω , the condition that the principal curvatures are negative, yields the exis
of δ > 0 andγ < 0 such thatPγ,δ ⊂ Ω , up to a rotation. If the principal curvatures of∂Ω are only non-positive on
a neighborhood of 0, then we simply have thatP0,δ ⊂ Ω for someδ > 0. The following result will be establishe
in Sections 2 and 3.

Theorem 1.1. Let Ω be a C2-smooth domain in R
n with 0 ∈ ∂Ω , then µs(Ω) � µs(R

n+). Moreover,

1) If T (Ω) ⊂ R
n+ for some rotation T (in particular, if Ω is convex, or if Ω is star-shaped around 0), then

µs(Ω) = µs(R
n+) and it is not attained unless Ω is a half-space.

2) On the other hand, when n � 4, and if the principal curvatures of ∂Ω at 0 are negative (i.e., if
max1�i�n−1 αi < 0), then µs(Ω) < µs(R

n+), the best constant µs(Ω) is attained in H 1
0 (Ω) and (2) has a

positive solution on Ω .

The “global convexity” assumption onΩ in 1) can be contrasted with the hypothesis on the principal curva
in 2) which, as discussed above, can be seen as a condition oflocal strict concavity of the boundary at 0 when
viewed from the interior ofΩ . However, we shall see that the latter is not a necessary condition for the exi
of solution for Eq. (2), since we will exhibit domainsΩ whereµs(Ω) < µs(R

n+), even though∂Ω is “flat at zero”.
Such an analysis is relevant to the study of elliptic partial differential equations with singular potentials of the fo

−�u = up−1

|x|s + f (x,u) in Ω ⊂ R
n,

under both Dirichlet and Neumann boundary conditions. Heref is to be seen as a lower order perturbative term
infinity andf (x,0) = 0. We shall see that in both Neumann and Dirichlet problems, our existence results d
on conditions on the curvature of the boundary near 0. The following two statements summarize the s
Slightly more general results will be established later.

In the following Dirichlet problem, the same concavity condition around the origin will play a key role.

Theorem 1.2. Let Ω be a bounded domain in R
n with C2 boundary and consider the Dirichlet problem

−�u = |u|2∗(s)−2u

|x|s + λu in Ω,

u = 0 on ∂Ω

(3)

for 0 < s < 2. Assume that 0 ∈ ∂Ω and that the principal curvatures of ∂Ω are non-positive in a neighborhood
of 0. If n � 4 and if 0 < λ < λ1 (the first eigenvalue of −� on H 1(Ω)), then (3) has a positive solution.
0
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For the Neumann problem, it is the positivity of the mean curvature at 0 that is needed.

Theorem 1.3. Let Ω be a bounded domain in R
n with C2 boundary and consider the Neuman problem

−�u = |u|2∗(s)−2u

|x|s + λu in Ω,

Dγ u = 0 on ∂Ω

(4)

for 0 < s < 2. Assume that 0 ∈ ∂Ω and that the mean curvature of ∂Ω at 0 is positive (i.e.,
∑n−1

i=1 αi > 0). If n � 3
and λ < 0, then (4) has one positive solution.

Remark 1.4. As expected, the variational methods used in this paper lead to weak solutions. However, s
nonlinearitiesg(x,u) we consider, satisfy|g(x,u)| � C(1 + |u|2∗(s)−1) on any bounded domainΩ ′ such that
0 /∈ Ω ′, regularity theory and the strong maximum principle can be applied inΩ ′ (cf. [12], [17, Appendix B]).
Therefore, a non-negative solutionu ∈ H 1

0 (Ω) to (3) is necessarilyC∞ on Ω . It satisfiesu(x) > 0 for every
x ∈ Ω , but may have a singularity at 0. The same remark applies to equations with subcritical perturbation ter
as well as to the corresponding Neumann problem.

2. Best Hardy–Sobolev constants

The best Hardy–Sobolev constant of a domainΩ ⊂ R
n (n � 3) is defined as:

µs(Ω) := inf

{∫
Ω

|∇u|2 dx; u ∈ H 1
0 (Ω) and

∫
Ω

|u|2∗(s)

|x|s = 1

}
(5)

where 0� s < 2, 2∗(s) = 2(n−s)
n−2 .

In the non-singular cases = 0, this is nothing but the best Sobolev constant ofΩ and it is well known that
µ0(Ω) = µ0(R

n) for any domainΩ and thatµ0(Ω) is never attained unless cap(Rn \ Ω) = 0.
Similar results hold in the singular case (0< s < 2) provided 0 belongs to the interior of the domainΩ . Indeed,

as noticed by several authors [11], the best constantin the Hardy–Sobolev inequality is not attained on th
domainΩ containing 0 and satisfying cap(Rn \ Ω) �= 0, while it is attained onRn by functions of the form

ya(x) = (a · (n − s)(n − 2))
n−2

2(2−s)

(a + |x|2−s)
n−2
2−s

(6)

for somea > 0. Moreover, the functionsya are the only positive radial solution to

−�u = u2∗(s)−1

|x|s in R
n, (7)

hence, by denotingµs := µs(R
n), we have:

µs

(∫
Rn

|ya|2∗(s)

|x|s
) 2

2∗(s) = ‖∇ya‖2
2 =

∫
Rn

|ya|2∗(s)

|x|s = µ
n−s
2−s
s . (8)

In this section, we deal with the more interesting case when 0belongs to the boundary of the domain Ω . We shall
see that the situation is completely different as it very much depends on the smoothness and the curvatu
boundary at 0.

The case when∂Ω is not smooth at 0 has been well analysed by Egnell [7]. Starting with the case wherΩ is
a half-spaceRn+ or more generally an open cone of the formC = {x ∈ R

n;x = rθ, θ ∈ D andr > 0} whereD is a
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connected domain on the unit sphereSn−1 of R
n, Egnell [7] showed thatµs(C) is actually attained for 0< s < 2

even whenC̄ �= R
n, and therefore there exists a positive solution for


−�u = u2∗(s)−1

|x|s in C,

u = 0 on ∂C,

u(x) = o(|x|2−n) as|x| → ∞ in C.

(9)

A consequence of Egnell’s result is thatµs(C) �= µs(R
n) wheneverRn\C is non-negligible. For otherwise, we ca

find au ∈ H 1
0 (C), u � 0 in C, which attainsµs(R

n). Such a solutionu satisfies

−�u = λ
|u|2∗(s)−2u

|x|s
in R

n, where λ > 0 is a Lagrange multiplier. By the strong maximum principleu > 0 in R
n, which is a

contradiction. One obtains in particular that,µs(R
n+) > µs(R

n), and more generally that

µs(C1) > µs(C2), (10)

wheneverCi are cones such thatC1 ⊂ C2.

The main ingredient in this analysis comes from the fact that the quantities||∇u||L2(Rn) and
∫

Rn
|u|2∗(s)

|x|s dx are

invariant under scalingu(x) �→ r(n−2)/2u(rx). This means that whenever 0∈ ∂Ω , we have µs(Ω) = µs(λΩ) for
any λ > 0. It is also clear thatµs is invariant under rotations. These observations combined with the fac
µs(Ω1) � µs(Ω2) if Ω1 ⊆ Ω2, yield that the best constant for any finite cone (that is, the intersection of an in
cone with a bounded connected open set) is the same as the best constant for the corresponding infinite c

In the sequel, we deal with the distinct and more interesting case where 0is a smooth point of the boundary of
the domain Ω as stated in Theorem 1.1. In contrast to Egnell’s result on pointed cones, we have in partic
following examples which give a totally different picture when the “cones” are smooth at 0.

Proposition 2.1. Assume n � 4 and define, for each γ ∈ R, the open paraboloid

Pγ = {
x = (x ′, xn) ∈ R

n−1 × R: xn > γ |x ′|2}.
1) If γ � 0, then µs(Pγ ) = µs(R

n+).
2) If γ < 0, then µs(Pγ ) = µs(R

n).

It follows that µs(Pγ ) is not attained unless Pγ = R
n or R

n+.

Proof. (1) If γ � 0, thenPγ ⊂ R
n+ and obviouslyµs(Ω) � µs(R

n+). We shall prove below that the rever
inequalityµs(Ω) � µs(R

n+) holds whenever∂Ω is smooth at 0.
For (2), notice that forλ > 0, λPγ = Pγ

λ
. On the other hand, ifγ < 0, then M := R

n\{x = (0, xn);
xn � 0} = ⋃

0<λ<1 λPγ . Chooseuε ∈ C∞
0 (M), such that

∫
M

|uε |2∗(s)

|x|s dx = 1, and
∫
M

|∇uε|2 � µs(M) + ε. There
existsδ > 0, such that for allλ < δ,uε ∈ C∞

0 (Pγ
λ
), which implies thatµs(Pγ

λ
) � µs(M) + ε. It leads immediately

to infλ µs(Pγ
λ
) � µs(M). Since infλ µs(Pγ

λ
) = µs(Pγ ) by scaling invariance, we haveµs(Pγ ) = µs(M). That

µs(R
n) = µs(M) follows from the fact thatM = R

n \ L whereL = {x = (0, xn);xn � 0} is a 1-dimensiona
subspace ofRn, whose capacity is zero as soon asn � 4 ([14], p. 397). �

Behind these examples lies a more general phenomenonsummarized in Theorem 1.1 whose proof will be giv
in various parts throughout this section. First, we prove thatµs(Ω) � µs(R

n+). Note thatµs(R
n+) = µs(Bδ) for all

δ > 0, where

Bδ = {
x = (x ′, xn) ∈ R

n+; |x ′|2 + (xn − δ)2 < δ2}.
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Indeed, sinceBδ ⊂ R
n+, we have thatµs(R

n+) � µs(Bδ) for all δ > 0, henceµs(R
n+) � inf

δ
µs(Bδ). On the other

hand, chooseuε ∈ C∞
0 (Rn+), such that

∫
R

n+
|uε |2∗(s)

|x|s dx = 1, and
∫

Rn |∇uε|2 � µs(R
n+) + ε. There existsmε ∈ N,

such that for allm > mε,uε ∈ C∞
0 (Bm), which implies thatµs(Bm) � µs(R

n+) + ε. This leads immediately to
infδ µs(Bδ) � µs(R

n+), hence to equality. SinceλBδ = Bλδ for all λ, δ > 0, we get the conclusion from scalin
invariance. Now by the smoothness assumption on the domainΩ , there exists – modulo a rotation – a ballBε ⊆ Ω

centered at(0, ε). This means thatµs(Ω) � µs(Bε) = µs(R
n+). Assertion (1) of Theorem 1.1 is then obtained

monotonicity and by the rotation invariance ofµs(Ω).

Theorem 2.2. If the principal curvatures of ∂Ω at 0 are negative, and if n � 4, then µs(Ω) < µs(R
n+).

As seen in the introduction, if the principal curvatures of∂Ω at 0 are negative, then there isγ < 0 and δ >0
such that the set

Pγ,δ = {
x = (x ′, xn) ∈ R

n−1 × R: xn > γ (x2
1 + · · · + x2

n−1)
} ∩ B(0, δ),

is included inΩ , up to a rotation. We also note that if the principal curvatures of∂Ω are non-positive on a
neighborhood of 0, thenP0,δ ⊂ Ω .

By Egnell’s result [7], the problem
−�u = |u|2∗(s)−2u

|x|s in R
n+,

u ∈ H 1
0 (Rn+), u > 0

(11)

has a positive solutionφ, which, up to a multiplier, also attains the best constantµs(R
n+). We may assume tha

φ ∈ H 1
0 (Rn+), that

∫
Rn

|φ|2∗(s)

|x|s = 1, and||∇φ||22 = µs(R
n+). We shall also extendφ to all of R

n by letting it equal 0
on the complement ofRn+. For these extremal functions, there holds the following estimates (see ([7], or app
in [13]):∣∣φ(x)

∣∣ � C

|x|n−2 and
∣∣∇φ(x)

∣∣ � C

|x|n−1 , ∀x �= 0. (12)

To prove the theorem, it is sufficient to find a functionu ∈ H 1
0 (Ω) such that

∫
Ω

|∇u|2 dx
/(∫

Ω

|u|2∗(s)

|x|s
) 2

2∗(s)

< µs(R
n+).

Following Jannelli and Solimini [13], we shall “bend”, cut-off and rescaleφ, to get it intoΩ while still controlling
its various norms. Indeed, denotex ′ = (x1, . . . , xn−1,0), while x = x ′ + xnen.

For anyσ > 0, the change of variablesθσ (x) = x − γ
σ
|x ′|2en is measure-preserving, in other words, ifJθσ is the

Jacobian matrix related toθσ , then|det(Jθσ )| = 1. Define the bendingφ(σ)(x) = φ(θσ (x)). By direct computations
we know that for sufficiently largeσ > 0,∫

Rn

|φ(σ)(x)|2∗(s)

|x|s =
∫
Rn

|φ2∗(s)(x)|
|θ−1

σ (x)|s dx =
∫

R
n+

|φ2∗(s)(x)|
|x + γ

σ
|x ′|2en|s dx

=
∫

R
n+

φ2∗(s)(x)

|x|s dx − s
γ

σ

∫
R

n+

φ2∗(s)(x)|x ′|2xn

|x|s+2 dx + o(σ−1)

= 1− C1
γ + o(σ−1), (13)

σ
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whereC1 > 0 is independent of the “curvature”γ and the scaling factorσ . Here we used a Taylor expansion a
the fact that∫

R
n+

φ2∗(s)(x)|x ′|2xn

|x|s+2 dx �
∫

R
n+∩{0<xn�1}

φ2∗(s)(x)

|x|s dx +
∫

|x|>1

φ2∗(s)(x)

|x|s−1 dx < +∞,

by the estimate onφ given in (12).
Consider now the functional

I0(v) = 1

2

∫
R

n+

|∇v|2 dx − 1

2∗(s)

∫
R

n+

|v|2∗(s)

|x|s dx.

By a variant of Pohozaev identity [8,13], one has

d

dε

[
I0

(
φ
(
x − εk|x ′|2en

))]
ε=0 = k

2

∫
{xn=0}

|∇φ|2|x ′|2 = C2k,

whereC2 := 1
2

∫
{xn=0} |∇φ|2|x ′|2 > 0, again which is independent ofγ andσ .

Therefore, for sufficiently largeσ > 0, we have

I0(φ
(σ)) = 1

2
µs(R

n+) − 1

2∗(s)
+ C2

γ

σ
+ o(σ−1). (14)

Combining (14) with (13), we obtain∫
Rn

∣∣∇φ(σ)
∣∣2 = 2I0(φ

(σ)) + 2

2∗

∫
Rn

|φ(σ)(x)|2∗(s)

|x|s

=
∫
Rn

|∇φ|2 + 2

(
C2 − 1

2∗(s)
C1

)
γ

σ
+ o

(
1

σ

)

= µs(R
n+) + 2

(
C2 − 1

2∗(s)
C1

)
γ

σ
+ o

(
1

σ

)
.

Note that forγ = 0, we haveφ(σ) = φ, which means that there is no any error term in the above estimates.
Define now a cut-off functionψσ , such thatψσ ≡ 1 for |x| � 1

2δσ andψσ ≡ 0 for |x| � δσ , ψσ is radially
symmetric, and|ψ ′

σ (r)| � C 1
σ

.
By direct computations, we know∫

Rn

∣∣∇(φ(σ)ψσ )
∣∣2 =

∫
Rn

|∇φ(σ)|2ψ2
σ + 2

∫
φ(σ)ψσ ∇φ(σ) · ∇ψσ +

∫
|φ(σ)|2|∇ψσ |2

=
∫
Rn

|∇φ(σ)|2 +
∫
Rn

|∇φ(σ)|2(ψ2
σ − 1) +

∫
|φ(σ)|2|∇ψσ |2 + 2

∫
φ(σ)ψσ ∇φ(σ) · ∇ψσ .

From (12), there holds

∫
|∇φ(σ)|2(1− ψ2

σ ) dx �
∫

|x|� 1δσ

|∇φ(σ)|2 � C

+∞∫
1δσ

rn−1

r2n−2 dr = O(σ 2−n),
2 2
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∫
|∇ψσ |2(φ(σ))2 � C

δσ∫
1
2δσ

rn−1

r2n−2
dr = O(σ 2−n).

For
∫

φ(σ)ψσ ∇φ(σ) · ∇ψσ we have a similar estimate. Hence forn � 4,∫
Rn

∣∣∇(φ(σ)ψσ )
∣∣2 = µs(R

n+) + 2

(
C2 − 1

2∗(s)
C1

)
γ

σ
+ o(σ−1).

Similarly,∫ |φ(σ)ψσ |2∗(s)

|x|s =
∫ |φ(σ)|2∗(s)

|x|s +
∫ |φ(σ)|2∗(s)(1− ψ

2∗(s)
σ )

|x|s .

From the estimate (12), sinces < 2, we know that

∫ |φ(σ)|2∗(s)(1− ψ
2∗(s)
σ )

|x|s � C

∞∫
1
2δσ

rn−1

r2∗(s)(n−2)+s
dr = C

∞∫
1
2δσ

rs−n−1 dr = O(σ s−n) = o(σ−1).

It follows that∫ |φ(σ)ψσ |2∗(s)

|x|s = 1− C1
γ

σ
+ o(σ−1).

Set now

φσ (x) ≡ σn/2∗
φ(σ)(σx)ψσ (σx)

and note that supp(φσ ) ⊂ Pγ,δ ⊂ Ω for everyσ > 0. Since||∇u||L2(Rn) and
∫

Rn
|u|2∗(s)

|x|s are invariant under th

scalingu(x) �→ r
n−2

2 u(rx), the following estimates then hold:∫
Ω

|∇φσ |2 = µs(R
n+) + 2

(
C2 − 1

2∗(s)
C1

)
γ

σ
+ o

(
1

σ

)
, (15)

∫
Ω

|φσ |2∗(s)

|x|s = 1− C1
γ

σ
+ o

(
1

σ

)
. (16)

Now we claim that forσ large enough,

∫
Ω

|∇φσ |2 dx
/(∫

Ω

|φσ |2∗(s)

|x|s
) 2

2∗(s)

< µs(R
n+).

From the estimates (15) and (16), the above is equivalent to:

µs(R
n+) + 2

(
C2 − C1

2∗(s)

)
γ

σ
+ o

(
1

σ

)
< µs(R

n+)

(
1− 2C1

2∗(s)
γ

σ

)
+ o

(
1

σ

)
,

which, in view of the negativity ofγ , reduces to verifying that

2C2 >
2C1
∗

(
1− µs(R

n+)
)
.

2 (s)
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It is therefore sufficient to show thatµs(R
n+) > µs(R

n) > 1, which is done in the following lemma.

Lemma 2.3. For n � 4, we have µs(R
n) > 1.

Proof. By the Hardy, Sobolev and Hölder inequalities, for anyu ∈ H 1(Rn), u �= 0, we have

∫
Rn

|u|2∗(s)

|x|s =
∫
Rn

|u|s
|x|s · |u|2∗(s)−s �

( ∫
Rn

|u|2
|x|2

) s
2
( ∫

Rn

|u|(2∗(s)−s) 2
2−s

) 2−s
2

=
( ∫

Rn

|u|2
|x|2

) s
2
( ∫

Rn

|u|2∗
) 2−s

2

�
[
µ2(R

n)
]−s

2

( ∫
Rn

|∇u|2
) s

2 [
µ0(R

n)
]− 2∗

2 · 2−s
2

( ∫
Rn

|∇u|2
) 2∗

2 · 2−s
2

= [
µ2(R

n)
]−s

2
[
µ0(R

n)
]− 2∗

2 · 2−s
2

( ∫
Rn

|∇u|2
) n−s

n−2

,

which implies∫
Rn

|∇u|2 dx
/( ∫

Rn

|u|2∗(s)

|x|s
) 2

2∗(s)

�
[
µ2(R

n)
] s

2∗(s) · [µ0(R
n)

] n(2−s)
2(n−s) .

By minimizing overu, we get

µs(R
n) �

[
µ2(R

n)
] s

2∗(s) · [µ0(R
n)

] n(2−s)
2(n−s) .

Sincen � 4, the Hardy constantµ2(R
n) = ( n−2

2 )2 � 1 and the optimal Sobolev constant

µ0(R
n) = 1

4
(ωn)

2/n
[
n(n − 2)

]
> 1. �

Exterior domains. The “strict concavity ofΩ at 0” (implied by the strict negativity of the principal curvatures
∂Ω at 0) is not necessary for the existence of the solution to (2), since there are domainsΩ that are flat at 0, ye
satisfyingµs(Ω) < µs(R

n+). These examples are based on the following observations:

Proposition 2.4. If Ω is an exterior domain with 0 ∈ ∂Ω , then µs(Ω) = µs(R
n).

Indeed, the hypothesis means thatR
n\Ω is connected and bounded. In this case, we haveR

n\{0} =⋃
0<λ<1 λΩ . BecauseC∞

0 (Rn\{0}) is dense inH 1(Rn) for n � 2 (cf. [5, Lemma 2.2]), we also haveµs(R
n) =

µs(R
n\{0}). Combining these two facts with scaling invariance, yields easily thatµs(Ω) = µs(R

n).
The above remark allows the construction of various interesting examples. Indeed, letΩ0 be any exterior domain

with 0 ∈ ∂Ω and defineΩr := Ω0 ∩ B(0, r), whereB(0, r) is the standard Euclidean ball with radiusr > 0,
centered at 0. Obviously∂Ωr is smooth at 0 andµs(Ωr1) � µs(Ωr2) if r1 > r2. We have the following

Proposition 2.5. There exists r0 � 0 such that r → µs(Ωr) is left-continuous and strictly decreasing on (r0,+∞).
In particular, µs(R

n) < µs(Ωr) < µs(R
n+) for all r ∈ (r0,+∞).

Proof. Using similar arguments as above (scaling invariance and approximation of smooth functions), co
with the smoothness assumption on∂Ω0, one can easily observe that:

µs(Ω0) = inf
r>0

µs(Ωr) and µs(R
n+) = supµs(Ωr).
r>0
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Now we claim that for allr > 0, µs(Ωr) > µs(R
n). Indeed otherwise, by Corollary 3.2, there is somer∗ > 0,

such thatµs(Ωr∗) = µs(R
n) is attained by some functionu ∈ H 1

0 (Ωr∗) with u � 0. In other words,µs(R
n) is also

attained by this functionu, henceu satisfies the corresponding Euler–Lagrange equation in the whole space
by the Strong Maximum Principle, we knowu > 0 in R

n, which is a contradiction.
The argument for the left-continuity ofµs(Ωr) goes like this: For a fixedr > 0 and arbitrarily smallε > 0,

one can always choose a functionu ∈ C∞
0 (Ωr), such that

∫
Ω

|∇u|2 dx � µs(Ωr) + ε, and
∫
Ωr

|u|2∗(s)

|x|s dx = 1.
Since supp(u) is compact, the distance dist(∂B(0, r),supp(u)) =: δ > 0. It follows that supp(u) ⊂ Ωr ′ , where
r − δ < r ′ < r, henceµs(Ωr ′) � µs(Ωr) + ε, for r − δ < r ′ < r, which means thatµs(Ωr) is left-continuous.
This implies that there must be somer > 0, such thatµs(R

n+) > µs(Ωr) > µs(R
n). Now definer0 := inf{r > 0;

µs(R
n) < µs(Ωr) < µs(R

n+)}.
It is clear that for everyr > r0, µs(R

n) < µs(Ωr) < µs(R
n+). Suppose now there existr2 > r1 > r0, but

µs(Ωr1) = µs(Ωr2). Using Corollary 3.2, there exists a nonnegative functionu1 ∈ H 1
0 (Ωr1), whereµs(Ωr2) is

attained. Henceu1 satisfies the corresponding Euler–Lagrange equation inΩr2, and again this violates the Stron
Maximum Principle, hence the strict monotonicity.

Remark 2.6. In the above situation, both casesr0 > 0 andr0 = 0 could happen. Indeed,

(a) If R
n\Ω0 = B(0, r∗)∩R

n+, thenr0 � r∗. Notice that in this case, we haveµs(Ωr) < µs(R
n+) wheneverr > r0,

and therefore there exists a solution to (2), though∂Ω is flat near 0.
(b) If R

n\Ω0 = Bδ := {x = (x ′, xn) ∈ R
n: (xn − δ)2 + |x ′|2 < δ2}, thenr0 = 0.

3. Blow-up analysis and attainability of best constants

In this section, we show that some aspects of the well known blow-up techniques are still valid in our c
The novelties here – when there is a singularity at 0∈ ∂Ω – are the fact that the energies are not transla
invariant, and that the limiting case is the half-spaceR

n+ as opposed to all ofRn. Consider the Dirichlet problem
−�u = λuq−1 + |u|p−2u

|x|s in Ω,

u = 0 on ∂Ω,

(17)

whereΩ is a bounded domain inRn, 0 ∈ Ω̄ , 0 < s < 2 < n, p = 2∗(s) and 2� q < 2∗(0) = 2n/(n − 2). Here
λ > 0, if q > 2, but we can takeλ ∈ R, if q = 2.

The following discussion applies to the case where 0∈ Ω and also to the case where 0∈ ∂Ω , a boundary that is
smooth near the origin. The “limiting problem” will be:

−�u = |u|p−2u

|x|s onM,

u(x) → 0 as‖x‖ → ∞,

(18)

where

M =
{

R
n, if 0 ∈ Ω,

R
n+, if 0 ∈ ∂Ω.

The energy functional for (17) is well defined onH 1
0 (Ω) by

Iλ(u) = 1

2

∫
|∇u|2 − λ

q

∫
|u|q − 1

p

∫ |u|p
|x|s dx,
Ω Ω
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in

s

while (18) corresponds to the functionalI0

I0(u) = 1

2

∫
M

|∇u|2 − 1

p

∫
M

|u|p
|x|s dx

defined onD1,2(M), which is the closure ofC∞
0 (M) under the norm‖u‖D1,2(M) = ∫

M
|∇u|2.

In view of Egnell’s result, both limiting problems have a solution corresponding to a critical point ofI0. The
following is a direct extension of the known case whens = 0, established by Struwe.

Theorem 3.1. Suppose (um)m is a sequence in H 1
0 (Ω) that satisfies Iλ(um) → c and I ′

λ(um) → 0 strongly in
H−1(Ω) as m → ∞. Then, there is an integer k � 0, a solution U0 of (17) in H 1

0 (Ω), solutions U1, . . . ,Uk of
(18) in D1,2(M) ⊂ D1,2(Rn), sequences of radii r1

m, . . . , rk
m > 0 such that for some subsequence m → ∞, rk

m → 0
and

1) um → U0 weakly in H 1
0 (Ω),

2) ‖Um − U0 − ∑k
j=1(r

j
m)

2−n
2 Uj ((r

j
m)−1·)‖ → 0, where ‖ · ‖ is the norm in D1,2(Rn),

3) ‖Um‖2 → ∑k
j=0 ‖Uj‖2

,

4) Iλ(Um) → Iλ(U
0) + ∑k

j=1 I0(U
j ).

Recalling that a functionalI is said to have thePalais–Smale condition at level c (P-S)c, if any sequence(um)m
in H 1

0 (Ω) that satisfiesIλ(um) → c andI ′
λ(um) → 0 in H−1(Ω) asm → ∞, is necessarily relatively compact

H 1
0 (Ω), we can immediately deducefrom the above theorem thatIλ satisfies (P-S)c for anyc < 2−s

2(n−s)
µs(M)

n−s
2−s .

This implies the following:

Corollary 3.2. Suppose that 0 ∈ ∂Ω and that ∂Ω is smooth near the origin.

1) If µs(Ω) < µs(R
n+), then µs(Ω) is attained.

2) If the principal curvatures of ∂Ω at 0 are negative, and if n � 4, then there is a positive solution to (2).

Proof. The above theorem yields thatI0 satisfies (P-S)c for anyc < 2−s
2(n−s)

µs(R
n+)

n−s
2−s .

If µs(Ω) < µs(R
n+), then

β := inf
p∈P

sup
t∈[0,1]

I0
(
p(t)

) = 2− s

2(n − s)
µs(Ω)

n−s
2−s <

2− s

2(n − s)
µs(R

n+)
n−s
2−s ,

where

P = {
p ∈ C0([0,1]: H 1

0 (Ω)
)
: p(0) = 0, I0

(
p(1)

)
� 0

}
.

That β = 2−s
2(n−s)

µs(Ω)
n−s
2−s can be proved using the similar argument fors = 0 [17, p. 178]. The mountain pas

theorem yields a sequenceuk ∈ H 1
0 (Ω) such that

I0(uk) → 2− s

2(n − s)
µs(Ω)

n−s
2−s and dI0(uk) → 0 in H−1(Ω).

The (P-S) condition yields thatuk → u in H 1
0 (Ω), I0(u) = 2−s

2(n−s)
µs(Ω)

n−s
2−s anddI0(u) = 0; that is

∫
Ω |∇u|2 =∫

Ω
|u|p
|x|s , so that

sup
t>0

I0(tu) = sup
t>0

{
t2

2

∫
|∇u|2 − tp

p

∫ |u|p
|x|s

}
= I0(u).
Ω Ω
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Brezis–
But

sup
t>0

I0(tu) = 2− s

2(n − s)

[∫
Ω

|∇u|2
/(∫

Ω

|u|p
|x|s

)2/p] n−s
2−s

,

which implies that∫
Ω

|∇u|2
/(∫

Ω

|u|p
|x|s

)2/p

= µs(Ω)

is attained atu.
For 2), it is enough to combine assertion 1) with Theorem 2.2.�
The proof of Theorem 3.1 requires several lemmas, some of which are quite standard, like the following

Lieb type lemma ([2], whens = 0).

Lemma 3.3. Assume {um} ⊂ H 1
0 (Ω) is such that um → u a.e. on Ω and um → u weakly in H 1

0 (Ω). Then,

1)
∫
Ω

|um|p
|x|s − ∫

Ω
|um−u|p

|x|s → ∫
Ω

|u|p
|x|s as n → ∞.

2)
∫
Ω

|∇um|2 − ∫
Ω

|∇um − ∇u|2 → ∫
Ω

|∇u|2 as n → ∞.
3) If um → u weakly in D1,2(Rn), then

|um|p−2um

|x|s − |um − u|p−2(um − u)

|x|s → |u|p−2u

|x|s
in H−1(Rn).

Proof. The first two assertions are standard. Here is a proof of 3). By the mean value theorem, we have∣∣∣∣ |um|p−2um

|x|s − |um − u|p−2(um − u)

|x|s
∣∣∣∣ � (p − 1)

[|um| + |u|]p−2 |u|
|x|s .

ForR > 0 and w∈ D(Rn), we get from Hölder’s inequality:∣∣∣∣
∫

|x|>R

( |um|p−2

|x|s um − |um − u|p−2

|x|s (um − u)

)
w

∣∣∣∣
� C

∫
|x|>R

|um|p−2 + |u|p−2

|x|s |u||w|

= C

∫ |um|p−2|u||w|
|x| s(p−2)

p
+ s

p
+ s

p

+ C

∫ |u|p−2|u||w|
|x| s(p−2)

p
+ s

p
+ s

p

� C

[( ∫
|x|>R

|um|p
|x|s

) p−2
p +

( ∫
|x|>R

|u|p
|x|s

) p−2
p

]
·
(∫ |u|p

|x|s
)1/p

·
(∫ |w|p

|x|s
)1/p

� C‖w‖
(∫ |u|p

s

)1/p

.
|x|
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Here we have used the Hardy–Sobolev inequality:(∫
Ω

|w|p
|x|s

)1/p

� C‖w‖.

We also have that∣∣∣∣
∫

|x|>R

|u|p−2u

|x|s w

∣∣∣∣ �
∫

|x|>R

|u|p−1

|x|s·(1− 1
p
)
· w

|x| s
p

dx �
( ∫

|x|>R

|u|p
|x|s

) p−1
p ·

(∫ |w|p
|x|s

)1/p

� C‖w‖
(∫ |u|p

|x|s
)1/p

.

By the dominated convergence theorem, for everyε > 0, there existsR > 0 andk > 0 such that for allm > k, we
have ∣∣∣∣

∫
|x|>R

( |um|p−2u

|x|s − |um − u|p−2(um − u)

|x|s − |u|p−2

|x|s
)

w

∣∣∣∣ � ε‖w‖.

As in [11, Lemma 4.3], we have onB(0,R),∫
|x|<R

|um − u|p−2(um − u)

|x|s w → 0 asm → ∞

and ∫
|x|<R

|um|p−2umw

|x|s →
∫

|x|<R

|u|p−2

|x|s w asm → ∞.

Hence∫
|x|<R

( |um|p−2

|x|s um − |um − u|p−2

|x|s (um − u)

)
w

−→
m→∞

∫
|x|<R

|u|p−2u

|x|s w,

which completes the proof.�
Lemma 3.4. Consider (um)m in H 1

0 (Ω) such that Iλ(um) → c, and dIλ(um) → 0 in H−1(Ω). For (rm) ∈ (0,∞)

with rm → 0, assume that the rescaled sequence vm(x) := r
(n−2)/n
m um(rmx) is such that vm → v weakly in

D1,2(Rn) and vm → v a.e. on R
n.

Then, dI0(v) = 0 and the sequence

wm(x) := um(x) − r
2−n

2
m v

(
x

rm

)

satisfies I0(wm) → c − I0(v), dI0(wm) → 0 in H−1(Ω) and ‖wm‖2 = ‖um‖ 2 − ‖v‖2 + o(1).

Proof. Easy computations yield the dilation invariance:

‖vm‖2 =
∫
Rn

∣∣∇(
r

n−2
2

m um(rmx)
)∣∣2 dx =

∫
Rn

|∇um|2 dx = ‖um‖2,

∫
n

|vm|p
|x|s =

∫
n

rn−s
m

|um(rmx)|p
|x|s dx =

∫
n

|um|p
|x|s dx,
R R R
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that
thereforeI0(vm) = I0(um), i.e., the functionalI0 is invariant under dilation. Sincevm → v in D1,2(Rn), it is clear
that

‖wm‖2 = 〈∇wm,∇wm〉L2(Rn) = 〈∇vm − ∇v,∇vm − ∇v〉
= ‖vm‖2 + ‖v‖2 − 2〈∇v,∇vm〉 = ‖vm‖2 − ‖v‖2 + o(1)

= ‖um‖2 − ‖u‖2 + o(1).

Sincevm → v weakly inD1,2(Rn), dI0(um) → 0 in H−1(Ω), Lemma 3.3 leads to

I0(wm) = I0(vm) − I (v) + o(1) = I0(um) − I0(v) + o(1) = c − I0(v) + o(1).

Sincerm → 0, we havedI0(v) = 0, and again by Lemma 3.3, we finally obtain

dI0(wm) = dI0(um) − dI0

(
r

2−n
2

m v

( ·
rm

))
+ o(1) = o(1). �

We also need the following:

Lemma 3.5. If u ∈ D1,2(Rn) and v ∈ C∞
0 (Rn), then∫

v2|u|p
|x|s � µs(R

n)−1
( ∫

suppv

|u|p
|x|s

) p−2
p

∫ ∣∣∇(vu)
∣∣2.

Proof. By Hölder’s inequality,∫
v2|u|p
|x|s =

∫ |u|p−2

|x|s(1− 2
p )

· |uv|2
|x| 2s

p

�
( ∫

suppv

|u|p
|x|s

)1− 2
p ·

(∫ |uv|p
|x|s

) 2
p

.

Now apply the Hardy–Sobolev inequality.�
Proof of Theorem 3.1. Let um → u be in H 1

0 (Ω) such thatIλ(um) → c, anddIλ(um) → 0 in H−1(Ω). That
such a (P-S)-sequence is bounded, is well known and can be found in [11, Lemma 4.4]. Note that whenq = 2,
λ can be chosen to be any real number. There exists therefore a subsequence, still denoted by(um) such that for
someU0 ∈ H 1

0 (Ω), um → U0 weakly inH 1
0 (Ω) and∇um → ∇U0 a.e. An easy consequence of Lemma 3.3 is

dIλ(U0) = 0. Moreover, the sequenceu1
m := um − U0 satisfies

(∗)




‖u1
m‖2 = ‖um‖2 − ‖U0‖2 + o(1),

dI0(u
1
m) → 0 in H−1(Ω),

I0(u
1
m) → c − Iλ(U0).

Case (1): Ifu1
m → 0 in Lp(Ω, |x|−s dx), then〈dI0(u

1
m),u1

m〉 = ∫
Ω |∇u1

m|2−∫
Ω

|um|p
|x|s → 0, sincedI0(u

1
m) → 0.

It follows thatu1
m → 0 in H1

0 (Ω), and we are done.

Case (2): Ifu1
m �→ 0 in Lp(Ω, |x|−s dx), then from〈

dI0(u
1
m),u1

m

〉 = ∫
Ω

|∇u1
m|2 −

∫
Ω

|um|p
|x|s = o

(‖u1
m‖)

and ∫
|∇u1

m|2 � µs(R
n)

(∫ |u1
m|p

|x|s
)2/p

,

Ω Ω
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t

we have(∫
Ω

|u1
m|p

|x|s
)1− 2

p

>
µs

2
,

for largen and we may therefore assume that∫
Rn

|u1
m|p

|x|s > δ for some 0< δ <

(
µs

2

) n−s
2−s

.

Define an analogue of Levy’s concentration function,

Qm(r) =
∫

B(0,r)

|u1
m|p

|x|s .

SinceQm(0) = 0 and Q(∞) > δ, there exists a sequencer1
m > 0 such that for eachn,

δ =
∫

B(0,r1
m)

|u1
m|p

|x|s .

Definev1
m(x) := (r1

m)(n−2)/nu1
m(r1

mx). Since‖v1
m‖ = ‖u1

m‖ is bounded, we may assumev1
m → U1 in D1,2(Rn)

weakly,v1
m → U1 a.e. onRn andδ = ∫

B(0,1)

|v1
m|p

|x|s dx. We now show thatU1 �≡ 0.

DefineΩm = 1
r1
m
Ω , and letfm ∈ H 1

0 (Ω) be such that for anyh ∈ H 1
0 (Ω), we have〈dI0(u

1
m),h〉 = ∫

Ω ∇fm ·∇h.

Thengm(x) := (r1
m)(n−2)/2fm(rmx) satisfies

∫
Ωm

|∇gm|2 = ∫
Ω

|∇fm|2 and〈dI0(v
1
m),h〉 = ∫

Ωm
∇gm · ∇h for any

h ∈ H 1
0 (Ωm).

If U1 ≡ 0, thenv1
m → 0 in L

p

1oc

(
B(0,1), |x|−s dx

)
. Choosingh ∈ C∞

0 (Rn) such that supph ⊂ B(0,1), we get
from Lemma 3.5,∫

B(0,1)

∣∣∇(hv1
m)

∣∣2 =
∫

B(0,1)

∇v1
m · ∇(h2v1

m) + o(1) =
∫

h2|v1
m|p

|x|s +
∫

∇gm · ∇(h2v1
m) + o(1)

� µs(R
n)−1 ·

( ∫
B(0,1)

|u1
m|p

|x|s
)1− p

2
∫ ∣∣∇(hv1

m)
∣∣2 + o(1)

= µs(R
n)−1δ

2−s
n−s

∫ ∣∣∇(hv1
m)

∣∣2 + o(1) � 1

2

∫ ∣∣∇(hv1
m)

∣∣2 + o(1).

Hence ∇v1
m → 0 in L2

1oc(B(0,1)) and v1
m → 0 in Lp(B(0,1), |x|−s dx), which contradicts the fact tha∫

B(0,1)

|v1
m|p

|x|s = δ > 0. Thus we have proved thatU1 �≡ 0.

SinceΩ is bounded, we can assume thatr1
m → r1∞ � 0. If r1∞ > 0, the fact thatu1

m → 0 weakly inH 1
0 (Ω) will

imply thatv1
m(x) := (r1

m)(n−2)/2u1
m(rmx) → 0 weakly inD1,2(Rn), which contradicts thatU1 �≡ 0, and therefore

r1
m → 0.

By (∗) and Lemma 3.4,dI0(U1) = 0, andU1 is a weak solution of
−�u = |u|p−2u

|x|s in M,

u → 0 as |x| → ∞,
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n
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o
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whereM = R
n if 0 ∈ Ω and whereM = R

n+ if 0 ∈ ∂Ω . Indeed, to show the latter case, we can assume wit
loss of generality that∂R

n+ = {xn = 0} is tangent to∂Ω at 0, and that−en = (0, . . . ,−1) is the outward norma
to ∂Ω at that point. For any compactK ⊂ R

n−, we have form large enough, thatΩ
r1
m

∩ K = ∅, asr1
m → 0. Since

suppv1
m ⊂ Ω

r1
m

andv1
m → U1 a.e. inR

n, it follows thatU1 = 0 a.e. on K, and therefore suppU1 ⊂ R
n+.

The sequenceu2
m(x) := u1

m(x) − (r1
m)(2−n)/2U1(x/r1

m) also satisfies

‖u2
m‖2 = ‖um‖2 − ‖U0‖2 − ‖U1‖2 + o(1),

I0(u
2
m) → c − Iλ(U0) − I0(U1),

dI0(u
2
m) → 0 in H−1(Ω).

Moreover, any nontrivial critical pointu of I0 onH 1
0 (M) satisfies

µs(M)

(∫
M

|u|p
|x|s

) 2
p

�
∫
M

|∇u|2 =
∫
M

|u|p
|x|s ,

so that

I0(u) =
(

1

2
− 1

p

)∫
M

|u|p
|x|s � c∗ := 2− s

2(n − s)
µs(M)

n−2
2−s .

By iterating the above procedure, we construct similarly sequences(Uj ), (r
j
m) with the above properties. Since f

everyj � 1, I0(Uj ) � c∗, the iteration must necessarily terminate after a finite number of steps.�
Remark 3.6. This type of blow-up result also holds for domainsΩ with a conic singularity at 0. More precisel
consider an infinite open cone of the formC = {x ∈ R

n;x = rθ, θ ∈ D andr > 0} whereD is a connected domai
of the unit sphereSn−1 of R

n, and assume the domainΩ satisfiesBr ∩ Ω = C ∩ (Ω ∩ Br) for every ballBr

(centered at 0) with radiusr < r0, where r0 is some positive number (i.e.,Ω has a conic singularity at 0), the
Theorem 3.1 remains true, withM – in this case – being the corresponding infinite coneC.

Behind our analysis, is the fact that (P-S)-sequences either converge or concentrate at 0. This is due to
fact that the embeddingH 1

0 (Ω ′) ↪→ L2∗(s)(Ω ′, |x|−sdx) is compact whenever 0/∈ Ω ′, which means there are n
bubbles away from the origin. The following corollary can also be obtained by combining Corollary 3.2
Egnell’s analysis, which imply that limr→0+ µs(Ω ∩ Br) = µs(R

n+).

Corollary 3.7. Suppose that 0 ∈ ∂Ω and that ∂Ω is C2 at 0. If µs(Ω) is not attained, then there exists r0 > 0 such
that Ω ∩ Br0 �= ∅ and µs(Ω) = µs(Ω ∩ Br) for every r ∈ (0, r0).

Note that Theorem 1.1 implies thatµs(Ω) is not attained wheneverΩ is star-shaped around 0, and theref
there is no ground-state solution for (2). The followingstandard Pohozaev-type identity, gives a stronger resu

Proposition 3.8. If the domain Ω is star-shaped around 0, then problem
−�u = |u|2∗(s)−2u

|x|s in Ω,

u ∈ H 1
0 (Ω)

(19)

has no non-trivial solution.
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bean-
solution
it is
Proof. The assumptionΩ is star-shaped around 0 simply means thatx ·γ > 0 on ∂Ω\ {0}, whereγ is the outward
unit normal to∂Ω . Multiply Eq. (19) byx · ∇u on both sides and integrate by parts, we obtain

1

2

∫
∂Ω

|∇u|2x · γ dσ + n − 2

2

∫
Ω

|∇u|2 dx = n − s

2∗(s)

∫
Ω

|u|2∗(s)

|x|s dx.

On the other hand, multiplying the equation byu and integrating, we have∫
Ω

|∇u|2 dx =
∫
Ω

|u|2∗(s)

|x|s dx.

Combining these two identities, one gets
∫
∂Ω

|∇u|2x · γ dσ = 0, which concludes the proposition.�
Remark 3.9. Unlike the cases = 0, we can have solutions to (2) for star-shaped domains. Indeed, consider a
shaped domain with vertex at 0. Since the principal curvatures are strictly negative at 0, there exists a
to (2). Note that this is not contradictory to Proposition 3.8, since the domain is not star-shaped at 0, though
star-shaped at some other point.

4. Least energy solution to the perturbed Dirichlet problems

Throughout this section, we assume thatΩ is a bounded domain inRn and that 0∈ ∂Ω , ∂Ω is Lipschitz
continuous,∂Ω is C2 at the origin. Consider the functional

Iq(v) =
∫
Ω

[
1

2
|∇v|2 − 1

2∗(s)
v

2∗(s)
+
|x|s − λ

q
|v|q

]
dx

onH 1
0 (Ω), where 2� q < 2∗ := 2n

n−2.
We shall deal first with the case of linear perturbations (see [3] whens = 0).

Theorem 4.1. Let Ω be a bounded domain in R
n with Lipschitz boundary and consider the Dirichlet problem

−�u = |u|2∗(s)−2u

|x|s + λu in Ω,

u = 0 on ∂Ω

(20)

for 0 < s < 2 and n � 4. Assume that 0 ∈ ∂Ω and that ∂Ω is C2-smooth at 0. If ∂Ω has non-positive principal
curvatures on a neighborhood of 0 (in particular, if ∂Ω has negative principal curvatures at 0), then for any
0 < λ < λ1, (20) has a positive solution.

Proof. The results of the last section give thatIq satisfies the Palais–Smale condition (P-S)c for any

c <
2− s

2(n − s)
µs(R

n+)
n−s
2−s .

So, we need to find a critical level below that threshold, for the functional

I (v) =
∫
Ω

[
1

2
|∇v|2 − λ

2
|v|2 − 1

2∗(s)
v

2∗(s)
+
|x|s

]
dx

on the spaceH 1(Ω).
0
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To use a mountain-pass argument, note that sinceλ < λ1, then 0 is clearly a strict local minimum forI . The
condition on the curvature at 0 implies that – modulo a rotation – there is somePγ,δ ⊂ Ω , whereγ � 0 andδ > 0.
Sinceµs(Ω) � µs(R

n+), we only need to consider two cases:
Case 1. µs(Ω) < µs(R

n+).
By Corollary 3.2, there exists then a functionw ∈ H 1

0 (Ω), such that
∫
Ω |∇w|2 = µs(Ω) and

∫
Ω

|w|2∗(s)

|x|s dx = 1.
Without loss of generality we can assume thatw is nonnegative by replacingw with |w|. Sinceλ is positive, we
have the following inequality:

sup
t>0

I (tw) < sup
t>0

J (tw), whereJ (v) =
∫
Ω

{
1

2
|∇v|2 − 1

2∗(s)
v

2∗(s)
+
|x|s

}
dx.

Since

sup
t>0

J (tw) = 2− s

2(n − s)
µs(Ω)

n−s
2−s ,

the conclusion follows.
Case 2. µs(Ω) = µs(R

n+).
This means thatγ = 0 in view of Theorem 2.2. In this case, we will closely follow the strategy use

Theorem 2.2 where we start from an extremal functionφ ∈ H 1
0 (Rn+), and through cutting and scaling, we ge

test functionφσ on Ω , whose various norms are controllable perturbations of those ofφ. Note that bending is no
required here, therefore we only need to pay the cost of the scaling and of the cut-off.

As mentioned in Theorem 2.2, the decays estimates onφ andψ are:|φ(x)| ∼ C/|x|n−2, |∇φ(x)| ∼ C/|x|n−1

and |∇ψσ (x)| ∼ C/σ . Since no bending is required, direct computations similar to those in Theorem 2.2,
that ∫

|x|� 1
2δσ

|∇φσ |2|ψσ |2 ∼ C

σn−2 ,

∫
|x|� 1

2δσ

|φσ |2|∇ψσ |2 ∼ C

σn−2 ,

∫
|x|� 1

2δσ

|φσ |2∗(s)

|x|s ∼ C

σn−s
;

here and belowC represents various positive constants, which are independent ofσ . We therefore have th
following estimates:∫

Ω

|∇φσ |2 = µs(R
n+) + O

(
1

σn−2

)
,

∫
Ω

|φσ |q = Cσ
q(n−2)

2 −n + o(σ
q(n−2)

2 −n),

∫
Ω

|φσ |2∗(s)

|x|s = 1+ O

(
1

σn−s

)
.

For 2� q < 2∗, we obtain
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e that

e of
∫
Ω

|φσ |q =
∫
Rn

∣∣σ n
2∗ φ(σ)(σx)ψσ (σx)

∣∣q dx

= σ
q(n−2)

2 −n

∫
Rn

∣∣φ(σ)(x)ψσ (x)
∣∣q dx

= Cσ
q(n−2)

2 −n + o(σ
q(n−2)

2 −n).

Notice that whenq = 2, the order ofσ is −2 and the above estimates, combined with the assumptionµs(Ω) =
µs(R

n+) give, forn � 5,

I (tφσ ) = t2

2

∫
Ω

|∇φσ |2 − λt2

2

∫
Ω

|φσ |2 − t2∗(s)

2∗(s)

∫
Ω

|φσ |2∗(s)

|x|s

= t2

2

(
µs(Ω) + O

(
1

σn−2

))
− t2∗(s)

(
1

2∗(s) + O

(
1

σn−s

))
− λCt2 1

σ 2 + o

(
1

σ 2

)
.

Sinceλ > 0, then forσ large, the minimum is attained in a uniformly bounded interval, and it is easy to se
supt>0 I (tφσ ) achieves its maximum attM , where

tM = µs(Ω)
1

2∗(s)−2 − Cσ−2 + o(σ−2).

Substituting the value into the expression ofI (tφσ ) and noticing thattM is bounded whenσ → ∞, it eventually
leads to

sup
t>0

I (tφσ ) = 2− s

2(n − s)
µs(Ω)

n−s
2−s − Cσ−2 + o(σ−2),

whereC > 0 is independent ofσ . From the above identity we can see that for sufficiently largeσ ,

sup
t>0

I (tφσ ) <
2− s

2(n − s)
µs(Ω)

n−s
2−s ,

and we are done.
The casen = 4 could be treated similarly, with the help of the stronger estimate

∫
Ω

|φσ |2 ∼ Cσ−2

δσ∫
1
2δσ

dr

r
∼ logσ

σ 2
.

Adopting the similar strategy as in the cases = 0 [17], one can argue that the mountain-pass solution must b
one sign, say, nonnegative. Then the maximum principle concludes its positivity.�

Now we deal with the Dirichlet problem with a non-linear perturbative term.

Theorem 4.2. Let Ω be a bounded domain in R
n with Lipschitz boundary. Assume also that 0 ∈ ∂Ω and that ∂Ω

is C2-smooth at 0. If n � 4, then equation
−�u = |u|2∗(s)−2u

|x|s + λu|u|q−1 in Ω,

u = 0 on ∂Ω

(21)

with λ > 0 has one positive solution under one of the following conditions:

1) 2+2∗
< q < 2∗, where 2∗ = 2∗(0) = 2n ,
2 n−2
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g-
2) 2< q < 2∗ and ∂Ω has non-positive principal curvatures in a neighborhood of 0.

Proof. The idea again is to try to find a critical point for the functional

Iq(v) =
∫
Ω

[
1

2
|∇v|2 − 1

2∗(s)
v

2∗(s)
+
|x|s − λ

q
|v|q

]
dx

in H 1
0 (Ω) through a mountain-pass argument, by using thatIq satisfies (P-S)c for any c < 2−s

2(n−s)
µs(Ω)

n−s
2−s . As

above, we need to deal with two cases.
Case 1. µs(Ω) < µs(R

n+).
As before, there exists by Corollary 3.2, a positive functionw ∈ H 1

0 (Ω), such that
∫
Ω

|∇w|2 = µs(Ω) and∫
Ω

|w|2∗(s)

|x|s dx = 1. Sinceλ is positive, we have:

sup
t>0

Iq(tw) < sup
t>0

J (tw), whereJ (v) =
∫
Ω

{
1

2
|∇v|2 − 1

2∗(s)
v

2∗(s)
+
|x|s

}
dx,

while supt>0J (tw) = 2−s
2(n−s)

µs(Ω)
n−s
2−s .

Case 2. µs(Ω) = µs(R
n+).

Again, as in Theorems 2.2 and 4.1, from an extremal functionφ ∈ H 1
0 (Rn+), one gets through bending, cuttin

off and scaling, a functionφσ onΩ , with the following estimates:∫
Ω

|∇φσ |2 = µs(R
n+) + O

(
γ

σ

)
, (22)

∫
Ω

|φσ |q = Cσ
q(n−2)

2 −n + o(σ
q(n−2)

2 −n), for 2 � q < 2∗, (23)

∫
Ω

|φσ |2∗(s)

|x|s = 1+ O

(
γ

σ

)
. (24)

Now we estimate the mountain-pass value. By (22)–(24), and the assumptionµs(Ω) = µs(R
n+), we obtain

I (tφσ ) = t2

2

∫
Ω

|∇φσ |2 − λtq

q

∫
Ω

|φσ |q − t2∗(s)

2∗(s)

∫
Ω

|φσ |2∗(s)

|x|s

= t2

2

(
µs(Ω) + O

(
γ

σ

))
− t2∗(s)

2∗(s)

(
1+ O

(
γ

σ

))
− Cλtqσ

q(n−2)
2 −n + o(σ

q(n−2)
2 −n).

In part 1) since−1 <
q(n−2)

2 − n < 0, γ
σ

= o(σ
q(n−2)

2 −n), and supt>0 I (tφσ ) achieves its maximum attM on a
uniformly bounded interval whenσ large, where

tM = µs(Ω)
1

2∗(s)−2 − Cσ
q(n−2)

2 −n + o(σ
q(n−2)

2 −n).

Substituting the value into the expression ofI (tφσ ) and noticing thattM is bounded whenσ → ∞, this eventually
leads to

supI (tφσ ) = 2− s

2(n − s)
µs(Ω)

n−s
2−s + O(γ σ−1) − Cλσ

q(n−2)
2 −n + o(σ

q(n−2)
2 −n).
t>0
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s in
-off and

It is easy

eshold.
be
Hence forσ is sufficiently large, without any restriction onγ , the range ofq in 1) guarantees that

sup
t>0

I (tφσ ) <
2− s

2(n − s)
µs(Ω)

n−s
2−s .

In part 2) now we only need to deal withγ = 0 (sinceγ < 0 belongs to case 1, which has been discussed). A
the proof of Theorem 4.1, no more bending is required, therefore we only need to pay the cost of the cut
scaling, hence we have∫

Ω

|∇φσ |2 = µs(Ω) + O

(
1

σn−2

)
,

∫
Ω

|φσ |q = Cσ
q(n−2)

2 −n + o(σ
q(n−2)

2 −n),

∫
Ω

|φσ |2∗(s)

|x|s = 1+ O

(
1

σn−s

)
.

We requireq(n−2)
2 − n > −n + 2, hence the conditionsq > 2 andn � 4 are sufficient. �

5. The Neumann problem

When∂Ω ∈ C2, it is easy to see that the embeddingH 1(Ω) ↪→ Lp(Ω, |x|−s dx) is continuous, wherep is the
Hardy–Sobolev exponent. Just as in the non-singular case [1,15], problem (4) has a variational structure.
to check that the positive solution of (4) correspondsto the nonzero critical points of the functional

J (u) =
∫
Ω

[
1

2
|∇u|2 − 1

2∗(s)
u

2∗(s)
+
|x|s − 1

2
λu2

]
dx

defined onH 1(Ω) and the norm‖u‖H1(Ω) := ‖∇u‖L2 + ‖u‖L2 is equivalent to

|u|H =
(∫

Ω

(|∇u|2 + λu2)dx

) 1
2

.

The relative compactness of Palais–Smale sequences can easily be adapted from [19] where the cases = 0 is
considered. One then obtain the following:

Lemma 5.1. Let (uj ) be a sequence in H 1(Ω) such that J (uj ) → c and J ′(uj ) → 0 in H−1(Ω) as j → ∞. If the
level

c <
2− s

4(n − s)
µs(R

n)
n−2
2−s , (25)

then there is a non-zero u ∈ H 1(Ω) such that J (u) � c and J ′(u) = 0.

The rest of the proof of Theorem 1.3 consists of finding a least energy solution to (4) below that thr
Since the boundary∂Ω is C2, and the mean curvature of∂Ω at 0 is positive, the boundary near the origin can
represented (up to rotating the coordinates if necessary) by:

xn = h(x ′) = 1

2

n−1∑
αix

2
i + o

(|x ′|2),

i=1
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nds
wherex ′ = (x1, . . . , xn−1) ∈ D(0, δ) for someδ > 0 whereD(0, δ) = B(0, δ) ∩ {xn = 0}. Hereα1, . . . , αn−1 are
the principal curvatures of∂Ω at 0 and the mean curvature

∑n−1
i=1 αi > 0. Set

uε(x) = ε
n−2

2(n−s)
(
ε + |x|2−s

) 2−n
2−s .

Theorem 5.2. Under the above assumptions, problem (4) possesses a positive solution, provided n � 3.

Proof. For notational convenience, we denote 2∗(s) by p throughout the proof. The solutions of (4) correspo
to the nonzero critical points of the functional

J (u) =
∫
Ω

[
1

2
|∇u|2 − 1

p

u
p
+

|x|s − 1

2
λu2

]
dx.

Set

c = inf
ψ∈Ψ

sup
t∈(0,1)

J
(
ψ(t)

)
,

the mountain-pass level, whereΨ = {ψ ∈ C([0,1],H 1(Ω));ψ(0) = 0, J (ψ(1)) � 0}. We also set

c∗ = inf
u∈H(Ω)

{
sup
t>0

J (tu);u � 0, u �≡ 0
}
.

It is easy to see thatc � c∗. In view of Lemma 5.1, we need to prove

c∗ <
2− s

4(n − s)
µ

n−s
2−s
s .

We claim that

Yε = sup
t>0

J (tuε) <
2− s

4(n − s)
µ

n−s
2−s
s (26)

for ε > 0 sufficiently small. Denote

K1(ε) =
∫
Ω

|∇uε|2, K2(ε) =
∫
Ω

|uε|p
|x|s dx and g(x ′) = 1

2

n−1∑
i=1

αix
2
i .

The proof is divided into two cases.
Case 1. n � 4. One then has

K1(ε) =
∫

Rn+

|∇uε|2 dx −
∫

D(0,δ)

dx ′
h(x ′)∫
0

|∇uε|2 dxn + O(ε
n−2
2−s )

= 1

2
K1 −

∫
Rn−1

dx ′
g(x ′)∫
0

|∇uε|2 dxn −
∫

D(0,δ)

dx ′
h(x ′)∫

g(x ′)

|∇uε|2 dxn + O(ε
n−2
2−s ),

where

K1 =
∫
Rn

|∇uε|2dx = (n − 2)2
∫
Rn

|y|(2−2s)

(1+ |y|2−s)
2(n−s)

2−s

dy, (27)

which is independent ofε. Observing that
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I(ε) :=
∫

Rn−1

dx ′
g(x ′)∫
0

|∇uε|2 dxn

= (n − 2)2ε
n−2
2−s

∫
Rn−1

dx ′
g(x ′)∫
0

|x|2−2sdxn

(ε + |x|2−s)
2(n−s)

2−s

= (n − 2)2
∫

Rn−1

dy ′
g(y ′)ε

1
2−s∫

0

|y|2−2sdyn

(1+ |y|2−s)
2(n−s)

2−s

. (28)

We note that

lim
ε→0

ε− 1
2−s I(ε) = (n − 2)2

∫
Rn−1

|x ′|2−2sg(x ′)

(1+ |x ′|2−s)
2(n−s)

2−s

dx ′ =
(

n−1∑
i=1

αi

)
A,

where

A := (n − 2)2

2

∫
Rn−1

|x ′|2−2s |xj |2
(1+ |x ′|2−s)

2(n−s)
2−s

dx ′ = (n − 2)2

2(n − 1)

∫
Rn−1

|x ′|4−2s

(1+ |x ′|2−s)
2(n−s)

2−s

dx ′ > 0.

In view of the curvature assumption, this implies

I(ε) > 0 and I(ε) = O(ε
1

2−s ).

Moreover,

I1(ε) :=
∣∣∣∣

∫
D(0,δ)

dx ′
h(x ′)∫

g(x ′)

|∇uε|2 dxn

∣∣∣∣

=
∣∣∣∣∣(n − 2)2ε

n−2
2−s

∫
D(0,δ)

dxn

h(x ′)∫
g(x ′)

|x|2−2s

(ε + |x ′|2−s)
2(n−s)

2−s

dx ′
∣∣∣∣

� C(n − 2)2ε
n−2
2−s

∫
D(0,δ)

|h(x ′) − g(x ′)|dx ′

(ε + |x ′|2−s)
2(n−s)

2−s

,

whereC depends only onδ,n.
Sinceh(x ′) = g(x ′) + o(|x ′|2), it follows that∀σ > 0,∃C(σ) > 0 such that∣∣h(x ′) − g(x ′)

∣∣ � σ |x ′|2 + C(σ)|x ′| 5
2

and

I1(ε) � Cε
n−2
2−s

∫
D(0,δ)

σ |x ′|2 + C(σ)|x ′| 5
2

(ε + |x ′|2−s)
2(n−s)

2−s

dx ′ � Cε
1

2−s
(
σ + C(σ)ε

1
2(2−s)

)
,

which implies

I1(ε) = o(ε
1

2−s ) asε → 0.
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Thus we obtain

K1(ε) = 1

2
K1 − I(ε) + o(ε

1
2−s ). (29)

On the other hand,

K2(ε) =
∫

R
n+

u
p
ε

|x|s dx −
∫

D(0,δ)

dx ′
h(x ′)∫
0

u
p
ε

|x|s dxn + O(ε
n−s
2−s ),

= 1

2
K2 −

∫
Rn−1

dx ′
g(x ′)∫
0

u
p
ε

|x|s dxn −
∫

D(0,δ)

dx ′
h(x ′)∫

g(x ′)

u
p
ε

|x|s dxn + O(ε
n−s
2−s ),

where

K2 =
∫
Rn

u
p
ε

|x|s =
∫
Rn

ε
p(n−2)
2(n−s)

|x|s(ε + |x|2−s)
p(n−2)

2−s

= ε
n−s
2−s

∫
Rn

dx

|x|s(ε + |x|2−s)
2(n−s)

2−s

=
∫
Rn

dy

|y|s(1+ |y|2−s)
2(n−s)

2−s

.

It is well known (see [11]) thatK1,K2 satisfy

K1/K
n−2
n−s

2 = µs := µs(R
n). (30)

Since

II(ε) :=
∫

Rn−1

dx ′
g(x ′)∫
0

u
p
ε

|x|s dxn =
∫

Rn−1

dy ′
ε

1
2−s

g(y′)∫
0

dyn

|y|s(1+ |y|2−s)
2(n−s)

2−s

, (31)

this implies that

lim
ε→0

ε− 1
2−s II(ε) =

∫
Rn−1

g(y ′) dy ′

|y ′|s(1+ |y ′|2−s)
2(n−s)

2−s

=
(

n−1∑
i=1

αi

)
B,

where

B = 1

2

∫
Rn−1

|yj |2 dy ′

|y ′|s(1+ |y ′|2−s)
2(n−s)

2−s

= 1

2(n − 1)

∫
Rn−1

|y ′|2 dy ′

|y ′|s(1+ |y ′|2−s)
2(n−s)

2−s

> 0.

It follows from the curvature assumption again, that

II(ε) > 0 and II(ε) = O(ε
1

2−s ).

Similarly,∣∣∣∣∣
∫

dx ′
h(x ′)∫

′

u
p
ε

|x|s dxn

∣∣∣∣∣ = o(ε
1

2−s ).
D(0,δ) g(x )
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Therefore,

K2(ε) = 1

2
K2 − II(ε) + o(ε

1
2−s ). (32)

Moreover, careful calculations lead to

K3(ε) :=
∫
Ω

u2
ε =




O(ε
1

2−s ), n = 3,

O(|ε 2
2−s ln ε|), n = 4,

O(ε
2

2−s ), n � 5.

Let tε > 0 be a constant that

J (tεuε) = Yε = sup
t>0

J (tuε) = sup
t>0

{
1

2

(
K1(ε) + λK3(ε)

)
t2 − 1

p
K2(ε)t

p

}
. (33)

Forn � 4,K3(ε) = o(ε
1

2−s ), hence

Yε = J (tεuε) � sup
t>0

[
1

2
K1(ε)t

2 − 1

p
K2(ε)t

p

]
+ o(ε

1
2−s ) = 2− s

2(n − s)

[
K1(ε)

(K2(ε))
n−2
n−s

] n−s
2−s + o(ε

1
2−s ).

We claim that

K1(ε)/
(
K2(ε)

) n−2
n−s < 2− 2−s

n−s µs + o(ε
1

2−s ) = 1

2
K1/

(
1

2
K2

) n−2
n−s + o(ε

1
2−s ),

which will lead to our conclusion.
By (29), (20) and (30), the above is equivalent to(

1

2
K1 − I(ε)

)(
1

2
K2

) n−2
n−s

<
1

2
K1

(
1

2
K2 − II(ε) + o(ε

1
2−s )

) n−2
n−s + o(ε

1
2−s )

= 1

2
K1

{(
1

2
K2

) n−2
n−s − n − 2

n − s

(
1

2
K2

) s−2
n−s

II(ε)

}
+ o(ε

1
2−s ),

i.e., limε→0
I(ε)
II(ε) > (n−2)K1

(n−s)K2
.

From (28) and (31), and using L’Hôpital’s rule, we know

lim
ε→0

I(ε)

II(ε)
= lim

ε→0

I′(ε)
II ′(ε)

= (n − 2)2
∫

Rn−1

|y ′|2−2sg(y ′) dy ′

(1+ |y ′|2−s)
2(n−s)/(2−s)

/ ∫
Rn−1

g(y ′) dy ′

|y ′|s(1+ |y ′|2−s)2(n−s)/(2−s)

= (n − 2)2

∞∫
0

rn+2−2s dr

(1+ r2−s)2(n−s)/(2−s)

/ ∞∫
0

rn−s dr

(1+ r2−s)2(n−s)/(2−s)
.

Integrating by parts, one has for 2� β � 2(n − s) − 1,
∞∫

0

rβ−2 dr

(1+ r2−s)
2(n−s)

2−s
−1

= 2n − 2− s

β − 1

∞∫
0

rβ−s dr

(1+ r2−s)
2(n−s)

2−s

.

Observing that
∞∫

rβ−s dr

(1+ r2−s)
2(n−s)

2−s

=
∞∫

rβ−2 dr

(1+ r2−s )
2(n−s)

2−s
−1

−
∞∫

rβ−2 dr

(1+ r2−s)
2(n−s)

2−s

,

0 0 0
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from
if
hence
∞∫

0

rβ−s dr

(1+ r2−s)
2(n−s)

2−s

= β − 1

2n − β − 1− s

∞∫
0

rβ−2 dr

(1+ r2−s)
2(n−s)

2−s

.

Therefore one has

lim
ε→0

I(ε)

II(ε)
= n + 1+ s

n − 3
(n − 2)2,

and

n − 2

n − s

K1

K2
= (n − 2)3

n − s

∞∫
0

rn+1−2s dr

(1+ r2−s)
2(n−s)

2−s

/ ∞∫
0

rn−1−s dr

(1+ r2−s)
2(n−s)

2−s

= (n − 2)3

n − s

n − s

n − 2
= (n − 2)2.

We therefore get

I(ε)

II(ε)
>

n − 2

n − s

K1

K2
+ o(1).

Case 2. n = 3. Careful calculations lead to

K1(ε) � 1

2
K1 − Cε

1
2−s | ln ε| + o(ε

1
2−s ) for someC > 0, (34)

K2(ε) = 1

2
K2 − O(ε

1
2−s ). (35)

LettingJ (tεuε) = Yε = supt>0 J (tuε), we have

Yε � sup
t>0

[
1

2
K1(ε)t

2 − 1

p
K2(ε)t

p

]
+ O(ε

1
2−s ) = 2− s

2(n − s)

[
K1(ε)

(K2(ε))
n−2
n−s

] n−s
2−s + O(ε

1
2−s ).

Consequently if

K1(ε)/
(
K2(ε)

) n−2
n−s < 2− 2−s

n−s µs − O(ε
1

2−s ), (36)

then (26) follows.
By (34) and (35), (36) reduces to

1

2
K1 − Cε

1
2−s | lnε| < 2− 2−s

n−s µs

[
1

2
K2 − O(ε

1
2−s )

] n−2
n−s + O(ε

1
2−s ) = 1

2
µsK

n−2
n−s

2 + O(ε
1

2−s ).

Since

K1/K
n−2
n−s

2 = µs,

we get (36) immediately. Hence we found a critical pointu ∈ H 1(Ω) of J (u). Now we show thatu > 0. Because

0= 〈J ′(u),u−〉 =
∫
Ω

[|∇u−|2 − λ(u−)2]dx,

whereu− = min(u,0), andλ < 0, we conclude thatu− ≡ 0, or u � 0. Sinceu cannot be constant,u > 0 by
maximum principle. �
Remark 5.3. As noticed in [16] (theres = 0), if Ω is an exterior domain, the mean curvature at 0 (when seen
inside) is negative, then there exists a least-energy solution. The proof is almost the same as above. WhileR

n\Ω
is close to a ball in some sense, then forλ > 0, (4) has no least energy solution.
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results.

ternik–
ve been

r

983)

83)

of

2) (2002)

ath.

91)

91)
One may of course replace the nonlinearity in (4) with a more general nonlinear term and obtain similar
The same arguments also apply to get the following extension of Theorem 5.2.

Theorem 5.4. Suppose that the mean curvature of ∂Ω at 0 is positive, then the problem


−�pu = |u|p∗(s)−1

|x|s − λup−1 in Ω,

|∇u|p−2∇u · ν = 0 on ∂Ω,

u > 0 in Ω

(37)

has a solution. Here ν is the outward unit normal to ∂Ω , λ > 0,1 < p < n,0 < s < p,p∗(s) = p(n−s)
n−p

and where

�pu = div(|∇u|p−2∇u).

Based on the mountain pass solution – found in Theorem 1.3 – and using a suitable form of Ljus
Schnirelman [10] theory, one can establish the following theorem. Analogous results in this direction ha
obtained, for example, in [6,18] for the Neumann problem whens = 0, [11] for the Dirichlet problem whens > 0,
0 ∈ Ω .

Theorem 5.5. Under the same assumptions as in Theorem 1.3, Eq. (4) also has a sign-changing solution, provided
n � 6.

References

[1] Adimurthi, G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, in: Ambhrosetti, et al. (Eds.), Nonlinea
Analysis, a tribute in honor of G. Prodi, Scoula Norm. Sup. Pisa (1991) 9–25.

[2] H. Brezis, E. Lieb, A relation between point convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1
486–490.

[3] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (19
437–477.

[4] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequality with weights, Compositio Math. 53 (1984) 259–275.
[5] F. Catrina, Z. Wang, On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry

extremal functions, Comm. Pure Appl. Math. 2 (2001) 229–258.
[6] M. Comte, G. Tarantello, A Neumann problem withcritical Sobolev exponent, Houston J. Math. 18 (1992) 279–294.
[7] H. Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc. 11 (1992) 191–201.
[8] I. Ekeland, N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. (N.S.) 39 (

207–265.
[9] S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer-Verlag, 1987.

[10] N. Ghoussoub, Duality and Perturbation Methodsin Critical Point Theory, Cambridge Univ. Press, 1993.
[11] N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. M

Soc. 12 (2000) 5703–5743.
[12] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer, Berlin, 1983.
[13] E. Jannelli, S. Solimin, Critical behaviour of some elliptic equations with singular potentials, preprint, 1996.
[14] V.G. Maz’ja, Sobolev Spaces, Springer-Verlag, 1985.
[15] W.-M. Ni, I. Takagi, On the shape of least-energy solutionsto a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (19

819–851.
[16] X. Pan, X. Wang, Semiliner Neumann problem in exterior domains, Nonlinear Anal. 31 (1998) 791–821.
[17] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990.
[18] G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992) 25–42.
[19] X.-J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (19

671–684.


