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Abstract

Unlike the non-singular case= 0, or the case when 0 belongs to the interior of a doniain R” (n > 3), we show that the
value and the attainability adhe best Hardy—Sobolev cdast on a smooth domaif?,

Ju[# ) }

x|

115 (£2) :=inf{/ \Vul?dx; u € H}(2) and/
2 2

when 0< s < 2, 2(s) = % and when 0 is on the boundady?2 are closely related to the properties of the curvature of

a£2 at 0. These conditions on the curvature are also relevant tsttigy of elliptic partial diffeential equations with singular
potentials of the form:

up—1
—Au = -
|x]®

+ f(x,u) in2CR",

where f is a lower order perturbative term at infinity agfdx, 0) = 0. We show that the positivity of the sectional curvature at
0 is relevant when dealing with Diricileoundary conditions, while the Neumanroplems seem to require the positivity of
the mean curvature at 0.
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Résumé
Contrairement au cas non-singuliee 0, ou au cas d’'une singularité a I'intérieur d’ un domaiaele R” (n > 3), on montre
que la valeur de la meilleure constante dans faléé de Hardy—Sobolev sur un domaine régulier,

-

quand O< s < 2, Z*(s) = % et quand 0 appartient a la frontiére, est étroitement liée aux propriétés de la courB@e de
en 0. Ces mémes conditions sur la courbure sont aussi pertinentes pour I'existence de solutions d’équations a potentiel singulie
de laforme :

|u|2*(5)
x|$

115 (£2) ::inf{/Wulzdx;u e H} () et/ |
2 2

up—1
—Au =
xS

+ f(x,u) in2cCR",

ou f est une perturbation d’ordre inférieur a I'infini (x, 0) = 0. On montre que la positivité de la courbure sectionelle est
suffisante pour I'existence de solutions des problémes avec conditions de Dirichlet au hdisigtee pour les problemes de
Neumann, c’est la positivité de la coubure moyenne qui compte.

© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

We consider the value of the best Hardy—Sobolev constant [4] on a daenafrR”,

ws(£2) :=inf{/ |Vul?dx; u e H3($2) and/ '”'25(3) =1} (1)
J J x|
and the corresponding ground state solutions for
—Au= 7“4'2*(”72“ in 2
T ’ (2)
u=~0 onas2,

whenn >3,0<s <2,and 2(s) = fojz“). Unlike the non-singular case and assuming 0 is on the boundary of the
domaing2, we show that these problems are closely connected to the curvature of the bouRdatr®. This is in

sharp contrast with the non-singular context 0, or when 0 belongs to the interior of a doma&rin R”, where it

is well known thatu, (£2) = uo(R") for any domain2 and thatu, (£2) is never attained unless q&¥ \ §2) = 0.

The case wheild$2 has a cusp at 0 has already been shown by Egnell [7] to be quite different from the non-
singular setting. Indeed, by considering open cones of the bea{x € R*; x =r0,6 € D andr > 0} whereD
is a connected domain of the unit sphéfe! of R”, Egnell showed that, (C) is actually attained for & s < 2
even wherC # R".

The case wherés2 is smooth at 0 turned out to be also interesting as the curvature at 0 gets to play an important
role. Indeed, we shall show that the positivity of the sectional curvature at 0 is needed for problems with Dirichlet
boundary conditions, while the Neumann problentgiiee the positivity of the mean curvature at 0.

More precisely, assume that the principal curvataes. ., «,—1 of 362 at 0 are finite. The boundabg? near
the origin can then be represented (up to rotating the coordinates if necessary) by:

111—1
xn=h(x) = > Zaix,? +0(1x"1?),
i=1
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wherex’ = (x1, ..., x,—1) € B(0, ) N {x,, = 0} for somes > 0 whereB(0, §) is the ball inR" centered at 0 with
radiuss.

If we assume the principal curvatures at 0 to be negative, that is¢gnax_1 «; < 0, then the sectional curvature
at 0 is positive and therefofe2 — viewed as afin — 1)-Riemannian submanifold &" — is strictly convex at 0 [9].
The latter property means that there exists a neighborlbofl 0 in 92, such that the whole of/ lies on one
side of a hyperplané&/ that is tangent t@$2 at 0 andU N H = {0}. In our context, we specify the orientation of
952 in such a way that the normal vectorsas® are pointing inward towards the domaih The above curvature
condition then amounts to a notiof strict local convexity oR” \ £2 at 0. Indeed, setting

Pys={x=0"x) e R"IxRY x, > y (2 4+ +x2 )} N B, ),

then, with the above orientation 812, the condition that the principal curvatures are negative, yields the existence
of § > 0 andy < 0 such that?, 5 C £2, up to a rotation. If the principal curvaturesaf2 are only non-positive on

a neighborhood of 0, then we simply have tiRat; C $2 for somes > 0. The following result will be established

in Sections 2 and 3.

Theorem 1.1. Let £2 bea C2-smooth domainin R” with 0 € 952, then s (£2) < s (R",). Moreover,

1) If T(£2) C R for some rotation T (in particular, if £2 is convex, or if £2 is star-shaped around 0), then
s ($2) = s (R'}) and it is not attained unless §2 is a half-space.

2) On the other hand, when n > 4, and if the principal curvatures of 952 at O are negative (i.e, if
maxi<i<n—1a; < 0), then u;(2) < uy(R’}), the best constant i, (£2) is attained in H&(.Q) and (2) has a
positive solution on 2.

The “global convexity” assumption af? in 1) can be contrasted with the hypothesis on the principal curvature
in 2) which, as discussed above, can be seen as a conditionabfstrict concavity of the boundary at 0 when
viewed from the interior of2. However, we shall see that the latter is not a necessary condition for the existence
of solution for Eq. (2), since we will exhibit domaiu whereu (£2) < 15 (R”), even thougld §2 is “flat at zero”.

Such an analysis is relevant to the study of elliptic padifferential equations with singular potentials of the form

ub~1
—Au =
|x]*

+ f(x,u) in2CR",

under both Dirichlet and Nenann boundary conditions. Heyeis to be seen as a lower order perturbative term at
infinity and f (x, 0) = 0. We shall see that in both Neumann and Dirichlet problems, our existence results depend
on conditions on the curvature of the boundary near 0. The following two statements summarize the situation.
Slightly more general results will be established later.

In the following Dirichlet problem, the same cangty condition around the origin will play a key role.

Theorem 1.2. Let £2 be a bounded domain in R” with C2 boundary and consider the Dirichlet problem

|u|* ) =2y .
—Au= +Au Ing2,

x| Q)
u=0 onos2

for 0 < s < 2. Assume that 0 € 952 and that the principal curvatures of 32 are non-positive in a neighborhood
of 0.1fn >4 andif 0 < A < A1 (thefirst eigenvalue of —A on Hol(.Q)), then (3) has a positive solution.



770 N. Ghoussoub, X.S. Kang / Ann. |. H. Poincaré — AN 21 (2004) 767—793

For the Neumann problem, it is the positivity of the mean curvature at O that is needed.

Theorem 1.3. Let £2 be a bounded domain in R” with C? boundary and consider the Neuman problem

Iulz*(s)fzu
—Au=———+4+2X ins$2,
! M (4)

Dyu=0 onos2

for 0 < s < 2. Assumethat O € 92 and that the mean curvature of 952 at O is positive (i.e., Zl'.’z‘llai >0).1fn>3
and A < 0, then (4) has one positive solution.

Remark 1.4. As expected, the variational methods used in this paper lead to weak solutions. However, since the
nonlinearitiesg (x, u) we consider, satisfyg(x, u)| < C(1 + [u|®®~1) on any bounded domaif’ such that

0 ¢ £2/, regularity theory and the strong maximum principle can be applie@’ificf. [12], [17, Appendix B]).
Therefore, a non-negative solutione H(}(.Q) to (3) is necessarilyC>® on 2. It satisfiesu(x) > 0 for every

x € £2, but may have a singularity at 0. The same remark apptieequations with subcritical perturbation terms

as well as to the corresponding Neumann problem.

2. Best Hardy—Sobolev constants

The best Hardy—Sobolev constant of a dom@ic R” (n > 3) is defined as:

2%(s)
ws (£2) ::inf{/|Vu|2dx; ueH&(Q)and/ Jul :1} (5)
2 2

|x]*

where 0< s < 2, 2¥(s) = 225,

In the non-singular case= 0, this is nothing but the best Sobolev constanfofind it is well known that
1o(82) = no(R™) for any domains2 and thatuo($2) is never attained unless q&¥ \ £2) = 0.

Similar results hold in the singular case<® < 2) provided 0 belongs to the interior of the doma&m Indeed,
as noticed by several authors [11], the best constatihe Hardy—Sobolev inequality is not attained on those

domaing2 containing 0 and satisfying céR" \ §2) # 0, while it is attained ofR” by functions of the form

(@-(n—s)(n—2)2rs

.Va(x) = n—2 (6)
(a+ |x|2=%) 2
for somea > 0. Moreover, the functiong, are the only positive radial solution to
u2i-1
—Au= in R", @
lx|®
hence, by denoting := u,(R"), we have:
% 2 %
yal* @\ Z© 2 / =
m( P IVyall5 o (8)
Rn Rn

In this section, we deal with the more interesting case whiee dhgs to the boundary of the domain §2. We shall
see that the situation is completely different as it very much depends on the smoothness and the curvature of th
boundary at 0.
The case wheid 2 is not smooth at 0 has been well analysed by Egnell [7]. Starting with the case where
a half-spac&’] or more generally an open cone of the fofre= {x e R"; x =r0,6 € D andr > 0} whereD is a
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connected domain on the unit sphete! of R”, Egnell [7] showed thaf, (C) is actually attained for & s < 2
even wherC # R”", and therefore there exists a positive solution for
2%(s)—1
—Au = “ inC,

lx|®
u=0 onac, 9)

u(x) =0(|x|>") as|x| - ocoinC.

A consequence of Egnell’'s result is that(C) # us(R™) wheneveiR"\C is non-negligible. For otherwise, we can
find au € Hol(C), u > 0in C, which attaingu, (R"). Such a solutiom satisfies

|u|2*(s)—2u
—Au=2x\
lx|®
in R", whereX > 0 is a Lagrange multiplier. By the strong maximum principle- 0 in R”, which is a

contradiction. One obtains in particular that,(R’} ) > us(R"), and more generally that

s (C1) > us(C2), (10)

whenevel; are cones such théj c Co.

The main ingredient in this analysis comes from the fact that the quantiiesi 2 ande,, W " dx are
invariant under scaling (x) — r"=2/2y(rx). This means that whenever® 2, we have y(£2) = 1 (12) for
any A > 0. It is also clear thaj, is invariant under rotations. These observations combined with the fact that
ws(£21) = 1 (822) if £21 C §27, yield that the best constant for any finite cone (that is, the intersection of an infinite
cone with a bounded connected open set) is the same as the best constant for the corresponding infinite cone.

In the sequel, we deal with the distinct and more interesting case wheiesnooth point of the boundary of
the domain £2 as stated in Theorem 1.1. In contrast to Egnell’s result on pointed cones, we have in particular the
following examples which give a totally different picture when the “cones” are smooth at 0.

Proposition 2.1. Assume n > 4 and define, for each y € R, the open paraboloid
P, = {x =W, x) e RV xR x, > ylx’lz}.

1) Ify >0, thenMS(P )_I‘LS(R+)
2) If y <0, then us(Py) = ps (R").

It follows that 1.5 (P, ) is not attained unless P, =R" or R’} .

Proof. (1) If y > 0, thenP, C R’} and obviouslyu,(£2) > u;(R%). We shall prove below that the reverse
inequality s (£2) < s (R7) holds Wheneveam is smooth at 0.

For (2), notice that forA > 0,AP, = P% On the other hand, iy < 0, then M := R™"\{x = (0, x,);
xn < 0} = g -1 APy . Chooseu, € CF (M), such thatf,, ‘“é)'c gy =1, and,, |Vue|? < us (M) + e. There
existss > 0, such thatforalk < 8, u, € Cgo(P%), which implies thajs (Pr) < us (M) + ¢. It leads immediately
to inf;, uS(P%) < ug(M). Since inf, uS(P%) = us(Py) by scaling invariance, we have,(P,) = us(M). That
ws(R™) = pug (M) follows from the fact thatM = R” \ L whereL = {x = (0, x,); x, < 0} is a 1-dimensional
subspace aR”, whose capacity is zero as soorvas 4 ([14], p. 397). O

Behind these examples lies a more general phenorm&momarized in Theorem 1.1 whose proof will be given
in various parts throughout this section. First, we prove thaf2) < u; (R’ ). Note thatu, (R) = 15 (Bs) for all
8 > 0, where

By ={x=(x",x0) €RY; |12+ (x, — 8)% < 8%}
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Indeed, sinceB; C R’} , we have thaj, (R} ) < us(Bs) for all § > 0, henceu,(R"}) < inf; us(Bs). On the other

hand, choose. € C3°(RY), such that/g, el |S() dx =1, and g, |Vue|? < s (R + ¢. There existsn, € N,
such that for alln > me, u. € C3°(Bn), WhICh implies thatu,(B,,) < s (R’}) + e. This leads immediately to
infs s (Bs) < us(R’), hence to equality. SinceBs = B;; for all A,5 > 0, we get the conclusion from scaling
invariance. Now by the smoothness assumption on the dofaaihere exists — modulo a rotation — a bBll C 2
centered at0, ). This means that, (£22) < s (Be) = s (R). Assertion (1) of Theorem 1.1 is then obtained by

monotonicity and by the rotation invarianceof($2).

Theorem 2.2. If the principal curvaturesof 952 at 0 are negative, and if n > 4, then i, (£2) < ps (RY).
As seen in the introduction, if the principal curvaturess@f at O are negative, then therejis< 0 and § >0
such that the set
Prs={x=" x) eR"IxR: x, > y(xZ+---+x2_ D} N BO,9),

is included ing2, up to a rotation. We also note that if the principal curvature9 @f are non-positive on a
neighborhood of 0, theRy s C £2.
By Egnell’s result [7], the problem

— |u|2*($)72u i n
_AM_T inRY, (11)
u e Hl(R ), u>0
has a positive solutioth, which, up to a multiplier, also attains the best consjay(R", ). We may assume that
¢ € HERY), that [, % =1, and||Vé||3 = us(R':). We shall also extend to all of R” by letting it equal 0

on the complement &'} . For these extremal functions, there holds the following estimates (see ([7], or appendix
in [13]):

c
lp()| < —= and |Vo(x)|<——, Vx#O. (12)
| |x]

To prove the theorem, it is sufficient to find a functioe Hol(.(z) such that

% _2
, |2 759 )
V| dx/ o < s (R,
2 2

Following Jannelli and Solimini [13], we shall “bend”, cut-off and resaea)¢o get it intos2 while still controlling
its various norms. Indeed, denote= (x1, ..., x,_1, 0), while x = x’ + x,e,,.

For anyo > 0, the change of variabl®s (x) = x — §|x’|2en is measure-preserving, in other words/gf is the
Jacobian matrix related &, then| det(Jy, )| = 1. Define the bending® (x) = ¢ (8, (x)). By direct computations,
we know that for sufficiently large > 0,

/ ) (x)[*' @ / 67O [ 1PV w)
|x|s 16,1 (x)IS Ix + L|x'|%e,|*
R
$Z ) (x) 20 1x'|%x 1
R" R"

=1 Cl +o(c™ Y, (13)
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whereC1 > 0 is independent of the “curvaturg”and the scaling factar. Here we used a Taylor expansion and
the fact that

¢2*(S)(x)|x/|2xn / ¢2*(s)(x) / ¢2*(s)(x)
—— 5 dx ————dx + ——dx < +o0,
/ |x|s+2 lx|® x|s—1

R R N{0<x, <1} lx|>1

N

by the estimate o given in (12).
Consider now the functional

|v|2 (S)
2*(8) |x]*

Io(v) = / V|2 dx

Rn

By a variant of Pohozaev identity [8,13], one has

d ) k )
Sl —ekixPe))]_o=5 [ Vo= ca,

{xn=0}

whereCs := %f{xn:O} |V|?|x'|? > 0, again which is independent pfando .
Therefore, for sufficiently large > 0, we have

Io(¢p”) = —MS(R ) —

1 Y =
2(s) +C2;+0(Cf ). (14)

Combining (14) with (13), we obtain
2 (@) ()2 ()
/|v¢(”>|2=2lo(¢("))+ 5/7@ Sl
Rn

|x]*

_ 2 1 v oofL
_/|v¢| +2(c2 2*(S)C1>a +o<a>
Rﬂ

1
=us(RY) +2( Co— C +ofl—).
@2 )L ol 2)
Note that fory = 0, we havep(©) = ¢, which means that there is no any error term in the above estimates.
Define now a cut-off function,, such thaty, =1 for |x| < %50 andy, = 0 for |x| > o, ¥, is radially

symmetric, andy., (r)| < C L
By direct computations, we know

Rn

/|V(¢“’>wa)| —f|V¢<">| ¥2 +2/¢<">w Vo' Vi, + f|¢(”>| IV, |?

Rﬂ

/ V@12 + / Ve ©@R2 — 1)+ / @RIV, |+ 2 / SO YV . V.
Rn
From (12), there holds

+00
P 1
/|V¢<“>|2(1—w3)dx< / |V¢<">|2<c/ L dr=0(?"),

Ix|>350 150
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So
n—1
/|vwo|2(¢<">)z<c / L dr=0(%™".
r
%8(7

For [ ¢y, Vg(©) . Vi, we have a similar estimate. Hence fo 4,

f|V(¢<“>wa)|2=us(Ri>+2< > 1 ) ) +0o(e ™.
Rn
Similarly,
/|¢<">wa|2*<f> B / g / 6@ 21— yZ'®)
|x]* |x[* |x[*
From the estimate (12), since< 2, we know that
. 2% (s 00 _ 00
/ 16(©))2 (.s)pjs— w2 O <c / 2*(:;’1 12)+S / =11 4y — O(° ") = 0(c~Y).

$0 320
It follows that

/ |¢(U)‘ﬁ |2*(S)

—1-cY +o™.
|x |8 o

Set now

b0 (x) =0"Z ¢ (0 x) ¥y (0x)

and note that Sum?)o) C P, s C £2 for everyo > 0. Since||Vul|p2gny ande,, L —

scalingu(x) —r 2 u(rx), the following estimates then hold:

2 (R" _ eV aoft
/|V¢o| _H‘S(RJ,_)JFZ(CZ 2*(S)Cl>0' +O<G>,
2

2%(s) 1
Pal” Y +0(—).
o o

|x]*

Now we claim that fow large enough,

9026\ 20
/|V¢U| dx /(/ e ) < ().

From the estimates (15) and (16), the above is equivalent to:

n _ G \r_ (1 2C1y 1
MS(R+)+2(C2 2*(S))0+0(0)<M5(R )< 2*(S)0)+0<0>’

which, in view of the negativity of, reduces to verifying that

1— u(R"
2()( s (RY)).

are invariant under the

(15)

(16)
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It is therefore sufficient to show that, (R,) > 1, (R") > 1, which is done in the following lemma.
Lemma 2.3. For n > 4, we have u, (R") > 1.

Proof. By the Hardy, Sobolev andéider inequalities, for any € HX(R"), u # 0, we have

Jul*

|u]® *(s)—s |u|2 $)—s &
o = W.WIZ() <(/|x|2) </||(2() )25)
I
2 55 : .
(o) <t fo)
Rn

Rn

2¥ 2—s
2 72

2 2y )\ "2
— [12®)] % [uo®")] "2 ( / |Vu|) ,

which implies
2*(S) Z*L(S) _s n(2—s)
/|Vu| dx < lul ) > [MZ(R")] 2*(5) '[MO(R")]Q‘"_‘”.

|x]*
Rll

By minimizing overu, we get

= n2=s)
ps(R") = [2®M)] T - [no(®R™M] 5= ol

Sincen > 4, the Hardy constanta(R"?) = (%)2 > 1 and the optimal Sobolev constant
1
po(R") = Z(a),,)z/"[n(n -2]>1 o

Exterior domains. The “strict concavity of2 at 0” (implied by the strict negativity of the principal curvatures of
042 at 0) is not necessary for the existence of the solution to (2), since there are da@intkiasare flat at 0, yet
satisfyingu, (£22) < us(R). These examples are based on the following observations:

Proposition 2.4. If 2 isan exterior domain with 0 € 982, then u,(£2) = us (R™).

Indeed, the hypothesis means tHit\2 is connected and bounded. In this case, we hB{&{0} =
Uo<r<12£2. BecauseC°(R"\{0}) is dense ind1(R™) for n > 2 (cf. [5, Lemma 2.2]), we also haye, (R") =
us (R"\{0}). Combining these two facts with daogy invariance, yields easily that, (£2) = s (R").

The above remark allows the construction of various interesting examples. Indeeglbleiny exterior domain
with 0 € 02 and define2, := 20 N B(0, r), where B(0, r) is the standard Euclidean ball with radius> 0,
centered at 0. Obviousls2, is smooth at 0 ang, (£2,,) < s (£2y,) if r1 > ro. We have the following

Proposition 2.5. Thereexists ro > 0 such that » — u($2,) isleft-continuous and strictly decreasing on (rg, +00).
Inparticular, us(R") < us(£2,) < us(RY) for all r € (ro, +00).

Proof. Using similar arguments as above (scaling invariance and approximation of smooth functions), combined
with the smoothness assumption@f2g, one can easily observe that:
ws(§20) = mf MS(Q ) and u[RY) = Supus(-(? ).

r>0
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Now we claim that for all- > 0, u;(£2,) > us(R"). Indeed otherwise, by Corollary 3.2, there is sorfie- 0,
such thafu, (£2,+) = us (R") is attained by some functiane H(}(.Qr*) with u > 0. In other wordsy, (R") is also
attained by this function, henceu satisfies the corresponding Euler—Lagrange equation in the whole space, while
by the Strong Maximum Principle, we knaw> 0 in R", which is a contradiction.

The argument for the left-continuity of,(£2,) goes like this: For a fixed > 0 and arbitrarily smalk > 0,

one can always choose a functione C3°($2,), such thatfq, |Vul?dx < pus(2,) + ¢, and [, |M|‘x|‘m dx = 1.
Since supf) is compact, the distance di8B(0, r), supfu)) =: § > 0. It follows that supfu) C £2,,, where
r—368<r' <r,henceu;(£2,/) < us(82,) + ¢, forr — 8 <r’ < r, which means that(£2,) is left-continuous.
This implies that there must be some- 0, such thap;(R%) > 5(£2,) > s (R"). Now definerg := inf{r > 0;
ws (R) < s (82,) < pus (R}

It is clear that for every > rg, u;(R") < us(£2,) < uy(R%). Suppose now there exisg > r; > ro, but
s (82) = ns(82,,). Using Corollary 3.2, there exists a nonnegative functigre H0 (£2;)), wherepug($2,,) is
attained. Hence; satisfies the corresponding Euler-Lagrange equatigp.jnand again this violates the Strong
Maximum Principle, hence the strict monotonicity.

Remark 2.6. In the above situation, both casges> 0 andrg = 0 could happen. Indeed,

(a) IfR"\£20= B(O, r*) NR', thenrg > r*. Notice that in this case, we haug(£2,) < us(R’}) whenever > rg,
and therefore there eX|sts a solution to (2), thoaghis flat near 0.
(b) FR"\ Q0= Bs :={x =", xy) eR": (x, — 5)2 + |x/|2 < 82}1 thenrg =0.

3. Blow-up analysisand attainability of best constants

In this section, we show that some aspects of the well known blow-up techniques are still valid in our context.
The novelties here — when there is a singularity & @2 — are the fact that the energies are not translation
invariant, and that the limiting case is the half-spR&eas opposed to all dk". Consider the Dirichlet problem

p—2
— —yd-1 M i
Au=Au + x in $2, (17)
u=~0 onos2,

where 2 is a bounded domain iR?, 0e 2, 0<s <2 <n, p=2%(s) and 2< ¢ < 2*(0) = 2n/(n — 2). Here
A>0,if g > 2, but we cantake € R, if g = 2.

The following discussion applies to the case wheeef® and also to the case where® 2, a boundary that is
smooth near the origin. The “limiting problem” will be:

P L L
—Au = T (0] s (18)
u(x)—0 as||x|| — oo,
where
R", if0e$2,
M_{R’jr, if0 €02

The energy functional for (17) is well defined m@(g) by

L (1) = /|V|— /||‘f—— bl o,
e ¢
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while (18) corresponds to the functional
Iulp

Io(u)— Y% I—— p
IXI

defined onDl!z(M), which is the closure of §°(M) under the normiul| pr2cyy = [y, |Vl
In view of Egnell’'s result, both limiting problemsalie a solution corresponding to a critical pointlef The
following is a direct extension of the known case whken 0, established by Struwe.

Theorem 3.1. Suppose (u,,),, IS a sequence in H(}(.Q) that satisfies 7, (uy) — ¢ and I (u,,) — O strongly in

H~1(2) asm — co. Then, there is an integer k > 0, a solution U° of (17)in H3(£2), solutions U, ..., UX of
(18)in D¥2(M) c DY?(R™), sequences of radii r}, ..., r¥ > 0 such that for some subsequence m — oo, rk — 0
and

1) um — U° weakly in A} (.(2)
2) |Un—U° =3 1(rm) “UI((r})~1)| — 0, where || - || isthe normin DL-2(R™),
3) [1Unll?— YE o IU7 11,
4) L(Un) = LU + X5_y Io(U).
Recalling that a functiondl is said to have thPalais-Smale condition at level ¢ (P-S)., if any sequencéu,,),,

in H}(£2) that satisfied; (u,) — ¢ and I} (u,,) — 0 in H~1(£2) asm — oo, is necessarily relatively compact in

1(52) we can immediately dedudemm the above theorem thét satisfies (P-S)for anyc < 2(n S)MS(M)E.
ThIS implies the following:

Corollary 3.2. Supposethat 0 € 952 and that 952 is smooth near the origin.

1) If us(£2) < s (RY), then s (£2) is attained.
2) If the principal curvatures of 92 at O are negative, and if n > 4, then thereis a positive solution to (2).

Proof. The above theorem yields that satisfies (P-S)for anyc < 2(n S);LS (R7 )2 5
If 115(82) < us(R7), then

Bim it sup Io(p(t) = o py (@5 < 275 @8
= — s -5 < —————— g -,
PEP 1€[0,1] 0P 2(n—S)M 2(n—S)M *
where
P ={peC’10,1]: H}(£2)): p(0) =0, Io(p(1)) <0}.
That = %us(ﬂ)E can be proved using the similar argument foe 0 [17, p. 178]. The mountain pass
theorem yields a sequengg Hl(Q) such that

To(uy) — (@ and diou) — 0 in H-X(Q).

2 —
2(n —s)
The (P-S) condition yields thaty — u in Hl(Q) Io(u) = 2(n S)M;(Q)g_:? anddIo(u) = 0; that is [, |Vu|2 =
[ W so that

|x|\ k]

12 P |ulP
suplo(tu) =su > [Vu| ——/ = Io(n).
2

t>0 t>0 | |S
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But

25 5 lu|P\ %P7
fi‘é"‘)(t”)‘z(n—s>[/'v”' /(/ |x|5> } ’
2 2
which implies that
P\ 2/p
/|w|2/</ ||L;|IS) = s (£2)
2 2

is attained at:.
For 2), itis enough to combine assertion 1) with Theorem 22.

The proof of Theorem 3.1 requires several lemmas, some of which are quite standard, like the following Brezis—
Lieb type lemma ([2], whem = 0).

Lemma 3.3. Assume {u,,} C H3(£2) issuchthat u,, — u a.e.on 2 and u,, — u weakly in H3(2). Then,

m L | m_ |17 |17
1) Ja ‘Tx\‘s —Jo 7~ Ja ‘|';|: asn — oo.
2) [o|Vuml? = [ |Vum — Vul? — [ |Vu|? asn — oo.
3) If u,, — u weakly in DL2(R"), then

P 2um it — P2 — ) u|P"%u
s s s
in H-L(®R").

Proof. The first two assertions are standard. Here is a proof of 3). By the mean value theorem, we have

| | — P2 — u)

|x]* |x[*

—2 |ul
<(p = Dlum! +ul]” TR

For R > 0 and we D(R"), we get from Hdlder’s inequality:

Ium|p 2 |um_u|p72( —u)
e . m )

[x|>R

|t P2 + u|P2

<C - Jul|w]
|x|
|x|>R
[t ] P~2|ul|w] o [ 2|ul|lw]
s(p 2)+5+£ s(p—2)+£+£
|[x] P r'p x| » r'p

/
| p—|
N
—
=
==
SN———
1\"
o
—
1\"
N

) ()

x>
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Here we have used the Hardy—Sobolev inequality:

|w|? 1/p
(/ W) <Clwl.
2

We also have that

|ulP~2u P~ w
_ d
|x|s caty o
X lx772) |x|p

[x|>R |x|>R

Ju|?\?
<cll |55 )

“(J

[x|>R

|ua]?

|x]*

p—1

) (

lw]”

|x]*

)1/17

779

By the dominated convergence theorem, for every0, there exist®R > 0 andk > 0 such that for alln > k, we

have

|u|P—2

/ | |7~ 2u i — ulP "2 —u)
ol ol

[x|>R
Asin[11, Lemma 4.3], we have aB(0, R),

|t — ulP~?(uy — u)

|x[*
[x]<R
and
|t P~ 21w |u|P—2
T—) |x|5 w asm — 0.
[x|<R |x|<R
Hence
|2 |t — ulP~2 .
i Uy — e (U — u) W m—>oco
[x]<R [x]<R

which completes the proof.O

|x]*

w—0 asm— oo

)w‘<8llw||.

|u|P~2u

|x[*

9

Lemma 3.4. Consider (uy,), in HY($2) suchthat I (um) — ¢, and d 1 (u,) — 0in H=1(2). For (r,) € (0, 00)

with r,, — 0, assume that the rescaled sequence vy, (x) := ry,

DY2(R") and v,, — v a.e. on R".
Then, dIp(v) = 0 and the sequence

2—n X
Wi (X) 1=t (x) — sz U<_)

'm

satisfies Io(wm,) — ¢ — Ip(v), dlop(wy) — 0in H~1(2) and |w, |2 =

Proof. Easy computations yield the dilation invariance:

||Um||2=/~|V m® Mm(rmx) | dx—/lv”m| dx = ””m”
R’l

Rﬂ

|x|5 m

Rn Rn Rn

|vm]? _/r,,,swm(rmx)wdx_ 4017

|x]* |x]*

(n—2)/n

lumll 2 = Ilv]1% + o(2).

"Um(rmx) is such that v, — v weakly in
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thereforelp(vy,) = Io(un), i.€., the functionaly is invariant under dilation. Since, — v in DL-2(R"), it is clear
that

[ wp, ||2 = (Vwy,, Vwm>L2(Rn) = (Vv,, — Vv, Vu,, — Vo)
= [lvm 12 + 111 = 2(Vv, Vo) = [vm 1> = lv]* + 0(D)
= Il 1> = llull® + 0(D).
Sincev,, — v weakly in DY2(R"), dIo(u,) — 0in H~1(£2), Lemma 3.3 leads to
lo(wm) = Io(vm) — I (v) +0(1) = lo(um) — lo(v) +0(1) = ¢ — Io(v) + 0(1).
Sincer,, — 0, we havellp(v) = 0, and again by Lemma 3.3, we finally obtain

m

dIlo(wp) =dIo(um,) —dlo(r,,212nv<r;)) +0(1) =o(1). O

We also need the following:
Lemma 3.5. 1f u € D2(R") and v € C§°(R™), then

[ smen ([ RF) T [l
|x| x|

supp

Proof. By Hélder’s inequality,

2 2
/v2|u|”_/ julp~2 |uv|2<(/ |u|p>1ﬁ < |w|p>;
x5 5(172)' 2 S x|$ ’ x|$ :
x| P9 x v sunpo x| x|
Now apply the Hardy—Sobolev inequalitys

Proof of Theorem 3.1. Let u,, — u be in H}(£2) such thatl, (u,) — ¢, andd;, (u,) — 0 in H~1(£2). That
such a (P-S)-sequence is bounded, is well knowsh@an be found in [11, Lemma 4.4]. Note that whee- 2,

A can be chosen to be any real number. There exists therefore a subsequence, still deagigdibgh that for
somelg € Hol(Q), u, — Ugweakly in Hol(Q) andVu,, — VUp a.e. An easy consequence of Lemma 3.3 is that
dI, (Ug) = 0. Moreover, the sequenaél = u,, — Up satisfies

lul 1% = llum 1% — 1 Uoll? + o(1),
(*) tdloui)—0 inH (),
Io(ul) — ¢ — I, (Vo).

Case (1): i}, > 0in LP (2, x|~ dx), then(d Io(u}), uk) = [o Vud 2= [ " — 0, sinced Io(u?,) — 0.
It follows thatul, — 0 in H}(£2), and we are done.

Case (2): lful, A 0in LP (2, |x|~* dx), then from

2 [tem|?
(dIo(u}). up) = / V| — |;1|S = 0(luy, )
2 2

and
1p\2/p
1,2 n |um|
/IVum > pus(R )( I ) ,
Q Q
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we have

1-2
al” T s
lx|® 2°
2

for largen and we may therefore assume that

n—s

1p 2=
M>8 for some O< § < [ 12 .
x| 2

Define an analogue of Levy’s concentration function,

lul,|P
Qm(}’)z / .

B(0,r)

SinceQ,,(0) =0 and Q60) > §, there exists a sequenf;}? > 0 such that for each,

5— / 431"
|x |8

B(0,rl)

m

Define v} (x) := (r1)"=2/myl (v1x). Since|v} || = [lu} || is bounded, we may assumg — U; in DY2(R")
weakly,vl — U7 a.e. onR" ands = S0 'll’f’—lw dx. We now show that/; 0.

Defines2,, = 1 2, and letf,, € Hy(£2) be such that for an e H($2), we haveldIo(uy,). h) = [ V fin - Vh.
Theng, (x) := (r,:iz)("*a/z fn(rmx) satisfiesf, [Ven|? = [o |V ful? and(dlo(vy), h) = [o Vgu - Vh for any
h e Hy(2m).

If Uy =0, thenvl, — 0in L7 (B(0, 1), |x|™ dx). Choosing: € C5°(R") such that supp C B(0, 1), we get
from Lemma 3.5,

1,2 1 2.1 h2|vp |7 2.1
[ vt = [ vk vatid) o= [ o + [ V- V20 + ot
B(0,1) B(0,1)

1p\1-%
@s(R")—l-(/ d) 2]\V(hvi>|2+o<1>

|x|¥
B(0,1)

- 1
NG DR T /|V(hu,}1)\2+o(1) < E/]V(hvi)‘z—i—o(l).

Hence Vv, — 0 in L2 (B(0,1)) and v} — 0 in L?(B(0,1),|x|~*dx), which contradicts the fact that
vp1?

fB(o,l) m = § > 0. Thus we have proved thak = 0.

lx|*
Sinces2 is bounded, we can assume that— rZ > 0. If rL > 0, the fact thati}, — 0 weakly in H3(£2) will
imply thatv? (x) := (r2)*=2/2,1 (1, x) — 0 weakly in D2(R"), which contradicts thal/; # 0, and therefore
1
ry; — 0.
By (x) and Lemma 3.44 Io(U1) = 0, andU1 is a weak solution of
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whereM =R" if 0 € £2 and whereM =R’} if 0 € 2. Indeed, to show the latter case, we can assume without
loss of generality thadR", = {x,, = 0} is tangent t@ 2 at 0, and that-¢, = (0, ..., —1) is the outward normal

to 942 at that point. For any compadét c R” , we have form large enough, tharf% NK =49, aSr,}, — 0. Since
suppvl r% andvl — Uy a.e.inR”, it follows thatU; = 0 a.e. on K and therefore supip, C R™.

m

The sequence? (x) := ul (x) — (r1)@"/2U (x/rl) also satisfies
I 1? = llum | = [ Uoll® — 1ULI? + 0(1),
Io(u3) — ¢ — I(Uo) — Io(U1),
dlo?) -0 inH ().
Moreover, any nontrivial critical point of Io on H&(M ) satisfies

ulP\ 7 , [ lul?
s (M) < [ 1Vu= ,
IR s
M M

M

so that

[( ) 1 1 /lulp - 2—s (M)Z;Z
uy=[-=-—— >c* = =5 .
0 2 p |x|$ 2(n—s)Ms

M

By iterating the above procedure, we construct similarly sequeiices (r,{;) with the above properties. Since for
everyj > 1, Io(U;) > c¢*, the iteration must necessarily terminate after a finite number of steps.

Remark 3.6. This type of blow-up result also holds for domaif2swith a conic singularity at 0. More precisely,
consider an infinite open cone of the fotia= {x € R"; x =r60, 6 € D andr > 0} whereD is a connected domain
of the unit spheres”—1 of R”, and assume the domaiR satisfiesB, N 2 = C N (2 N B,) for every ball B,
(centered at 0) with radius < rg, where p is some positive number (i.e2 has a conic singularity at 0), then
Theorem 3.1 remains true, wit¥f — in this case — being the corresponding infinite c6ne

Behind our analysis, is the fact that (P-S)-sequendbgreconverge or concentrate at 0. This is due to the
fact that the embeddingd(2") < L? ©)(£2’, |x|~*dx) is compact whenever @ 2/, which means there are no
bubbles away from the origin. The following corollary can also be obtained by combining Corollary 3.2 with
Egnell's analysis, which imply that lim, o+ w5(£2 N By) = s (R7).

Corollary 3.7. Supposethat 0 € 952 and that 352 is C? at 0. If ;15 (£2) isnot attained, then there exists rp > 0 such
that 2 N B, # ¥ and s (§2) = s (2 N B,) for every r € (0, ro).

Note that Theorem 1.1 implies that (£2) is not attained wheneve® is star-shaped around 0, and therefore
there is no ground-state solution for (2). The followstgndard Pohozaev-type identity, gives a stronger result:

Proposition 3.8. If the domain 2 is star-shaped around 0, then problem

u =2y
—AI/{ = T n Q, (19)

u € Hy($2)

has no non-trivial solution.
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Proof. The assumptiom? is star-shaped around 0 simply means that > 0 on 982\ {0}, wherey is the outward
unit normal tod 2. Multiply Eq. (19) byx - Vu on both sides and integrate by parts, we obtain

1 2 n—2 2 n—s [ |u®®
— \% -yd e — Vul*dx =
2/' uvdet /' W =m ) r
052 2 2

On the other hand, multiplying the equationdband integrating, we have

) |M|2*(S)
|Vu|“dx = dx.
J J x[*

Combining these two identities, one gg¢is, |Vu|2x - y do = 0, which concludes the propositiono

Remark 3.9. Unlike the case = 0, we can have solutions to (2) for star-shaped domains. Indeed, consider a bean-
shaped domain with vertex at 0. Since the principal curvatures are strictly negative at 0, there exists a solution
to (2). Note that this is not contradictory to PropositiaB,3ince the domain is not star-shaped at 0, though it is
star-shaped at some other point.

4. Least energy solution to the perturbed Dirichlet problems

Throughout this section, we assume tlfatis a bounded domain iR” and that Oc 352, 352 is Lipschitz
continuousy$2 is C? at the origin. Consider the functional

2"(s)
1 5 1 v A

Iq(U):/I:EIVl” —2*—(S)W_a|vlq}dx

2

on H}(£2), where 2< g < 2 := 2%

We shall deal first with the case of linear perturbations (see [3] wheg).
Theorem 4.1. Let £2 be a bounded domainin R” with Lipschitz boundary and consider the Dirichlet problem

Iulz*(s)—zu .
—AM:T—F)\.M ins2, (20)

u=0 onos2

for 0 <s <2andn > 4. Assume that 0 € 352 and that 352 is C?-smooth at 0. If 352 has non-positive principal
curvatures on a neighborhood of O (in particular, if 32 has negative principal curvatures at 0), then for any
0 < A < A1, (20) has a positive solution.

Proof. The results of the last section give thatsatisfies the Palais—Smale condition (R48) any

2 — S n—s
< ————— g (R 2= .
¢ < 2(1’1—S)MS( )
So, we need to find a critical level below that threshold, for the functional
2%(s)

1 A 1 v
I = ||V = Z? - t |4
® /[2| vl 2%(s) le"} '
2

on the spacéi}(£2).
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To use a mountain-pass argument, note that sineekq, then 0 is clearly a strict local minimum far. The
condition on the curvature at 0 implidsat — modulo a rotation — there is sorfigs C £2, wherey <0 ands > 0.
Sincepu; (£2) < us(R7), we only need to consider two cases:

Casel. ,us(-Q)<,us(R ) )

By Corollary 3.2, there exists then a functienc H(£2), such that/,, |[Vw|? = u,(£2) and [, ‘wl‘xl‘ dx=1.
Without loss of generality we can assume thails nonnegative by replacing with |w|. Sincea is positive, we
have the following inequality:

2%(s)
supl (tw) < supJ (fw) whereJ(v)zf{}va— 1 v }
t>0 t>0 ’ 2 2*(s) |x |8

2
Since
supJ (tw) = ———— i (£2) 25,
t>(§) Z(n_s)ﬂs

the conclusion follows.

Case 2. us($2) = I/LS(RIJ’F)-

This means thayy = 0 in view of Theorem 2.2. In this case, we will closely follow the strategy used in
Theorem 2.2 where we start from an extremal functioa Hl(R ), and through cutting and scaling, we get a
test functionp, on £2, whose various norms are controllable perturbatlons of thoge Nbte that bending is not
required here, therefore we only need to pay the cost of the scaling and of the cut-off.

As mentioned in Theorem 2.2, the decays estimateg andy are:|¢ (x)| ~ C/|x|"~2, |[Vp(x)| ~ C/|x|""1
and |V, (x)| ~ C/o. Since no bending is required, direct computations similar to those in Theorem 2.2, show
that

C
2 2
/ Ve Plya P~ —.

lx|>380

C
0|2 2
|G ="

Ix|>380

|¢U|2*(S) C
/ |x|S ~ O-I‘l—s ;

Ix|>380

here and belowC represents various positive constants, which are independent We therefore have the
following estimates:

1
/|V¢o| —MS(R )+O( P 2)
/|¢o|q—CC7

o |2 1
|x|s =1+0 ohn—s :
2

For 2< ¢ < 2*, we obtain

7}1 +0(O_ 711)
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/ o | = / |67 P (ax) Yo (0x)|? dx

R”
q (n 2 _

= / |6 () o ()| dx

Rﬂ

q(n=2
2

-y,

Notice that wherny = 2, the order ob is —2 and the above estimates, combined with the assumptja®) =
us(R’) give, forn > 5,

qgn=2)
=Co 2z "4o0(o

t a2 126 g2
I(t¢s) = E/|V¢o| - 5 I(bcrl - 2*(5) x[*

2

2
s 1 2 1 1 , 1 < 1 )
= E<y,s(.Q) +O<6n_2>> —t (2*—(S) +O<$)) - ACt 5+0 =

Sincel > 0, then foro large, the minimum is attained in a uniformly bounded mterval, and it is easy to see that
sup.q I (t¢s) achieves its maximum aj;, where

tn = us($2)¥®-2 —Co™“+0(0c ™).

Substituting the value into the expression/@f¢, ) and noticing thaty, is bounded whea — oo, it eventually
leads to

supl (t¢y) = 115(2)% — Co~2 +0(07?),

2(n — )
t>0
whereC > 0 is independent of . From the above identity we can see that for sufficiently large
SUPI (t90) < —2 iy () &
o <7 —— S s k]
3 20 —9)"

and we are done.
The caser = 4 could be treated similarly, with the help of the stronger estimate

dr logo
f|¢ |2~C(r—2/ =22
g

180

Adopting the similar strategy as in the case 0 [17], one can argue that the mountain-pass solution must be of
one sign, say, nonnegative. Then the maximprinciple concludes its positivity. O

Now we deal with the Dirichlet problem with a non-linear perturbative term.

Theorem 4.2. Let £2 be a bounded domain in R” with Lipschitz boundary. Assume also that O € 352 and that 0£2
is C2-smooth at 0. If n > 4, then equation

|M|2 (s)— 2 1
— - q— i
Au = M + Aulu| in$2, 21)
u=~0 onas2

with A > 0 has one positive solution under one of the following conditions:

1) 22 < g < 2%, where 2 = 25(0) =
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2) 2<q < 2* and 952 has non-positive principal curvaturesin a neighborhood of 0.

Proof. The idea again is to try to find a critical point for the functional

1, 1 029
Iq(v):/[§|Vv| —2*—®;CT—5|v|qi|dx
2

in H}(£2) through a mountain-pass argument, by using fhatatisfies (P-S)for anyc < %us(m%. As
above, we need to deal with two cases.

Casel. us(£2) < I/LS(R )

As before, there exists by Corollary 3.2, a positive functior H}(s2), such that/, [Vw|? = 11,(52) and

2 K
[ le‘( " dx = 1. Sincex is positive, we have:

1 1 2O
supl, (rw) < supJ (tw) WhereJ(v)zf{—|Vv|2— %t }
=0 /=0 ’ J12 25(s) |x|*

while sup. o J (tw) = Zéf‘sg)m(g)%i_

Case 2. us(£2) = I/LS(R )

Again, as in Theorems 2.2 and 4.1, from an extremal funqﬁimHO (R%), one gets through bending, cutting-
off and scaling, a functiog, on §2, with the following estimates:

/|V¢a| = ps (R )+O( > (22)
/Iq&alq:Co T oI, for2<q < 2", (23)
2
2:(s)
iidd =1+O<Z). (24)
lx|® o

Now we estimate the mountain-pass value. By (22)—(24), and the assumptian = (R} ), we obtain

2 2%(s) 2%(s)
t At t | b |
I(I¢U)ZE/|V¢U|2_7/I¢GI(]_ 2%(s) ‘|7x|s
2 2 2

2 2%(s)
preof2)) - 1+0(2) -

: _ n-2) . . .
In part 1) since-1 < 422 _ 5 <0, L = o(0 Lr2-ny and sup. o/ (t¢,) achieves its maximum aj; on a
uniformly bounded interval whes large, where

,n)

% q(n—2) _n q(n—2) n
M= s (£2)270-2 —Co 2 +0(c 2 7).

Substituting the value into the expression ¢f¢, ) and noticing that,, is bounded whea — oo, this eventually
leads to

n—s 1 q(n—2) —n qg(n—2) —n
supl (t¢o) = ws(§2)25 +0(yo™ ") —Cho 2 ""+o0(c 2 7).

t>0 (I’l—S)
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Hence foro is sufficiently large, without any restriction gn the range of; in 1) guarantees that

2—s n—s
§E§I(t¢a) < 2 _S)MS(Q)Z
In part 2) now we only need to deal with= 0 (sincey < 0 belongs to case 1, which has been discussed). As in
the proof of Theorem 4.1, no more bending is required, therefore we only need to pay the cost of the cut-off and
scaling, hence we have

1
/ Vo * = 1(£2) +O(—n_2>,
o

q(n—2)
2

2

(n—2)
/I%I" =Co"7 "+o(0 ™,
2

o |2 1
|x|s =1+0 oh—s :
2

We require‘“”—z’z) —n > —n+ 2, hence the conditiong> 2 andr > 4 are sufficient. O

5. The Neumann problem

Whend$2 e C2, itis easy to see that the embeddifid(§2) — L (82, |x|~* dx) is continuous, where is the
Hardy—Sobolev exponent. Just as in the non-singular case [1,15], problem (4) has a variational structure. It is eas
to check that the positive solution of (4) correspotalthe nonzero critical points of the functional

2%(s)
1 2 1 uf 1 5
Jw)= [ | Z|Vul* - ——F— — Zxu®|d
(w) /[2' ul 2%(s) |x|’ 2 u X
2
defined onH1(£2) and the normull (o) := Vull 2 + llull .2 is equivalent to

luly = </(|W|2+/\u2)dx>%.

The relative compactness of Palais—Smale secg® can easily be adapted from [19] where the gase) is
considered. One then obtain the following:

Lemmab5.1. Let (4 ;) beasequencein H(2) suchthat J (u;) — c and J'(u;) — 0in H~1(2) as j — oo. If the
level
2—s
€= 4(n —s)
then thereis a non-zero u € H1(£2) such that J (1) < c and J'(u) = 0.

n—=2
s (R") 2=, (25)

The rest of the proof of Theorem 1.3 consists of finding a least energy solution to (4) below that threshold.
Since the boundar§s2 is C2, and the mean curvature 8f2 at 0 is positive, the boundary near the origin can be
represented (up to rotating the coordinates if necessary) by:

1 n—1
xn=h(x") = > Zaix,? +0(1x"1?),
i=1
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wherex’ = (x1,...,x,-1) € D(0, §) for someé > 0 whereD(0, §) = B(0, §) N {x, = 0}. Hereas, ..., a,_1 are
the principal curvatures dfs2 at 0 and the mean curvatuf@f;ll a; > 0. Set

2—n

n—2 2-n
Ug(x) = g20—s) (8 + |x|27“') =4
Theorem 5.2. Under the above assumptions, problem (4) possesses a positive solution, provided n > 3.

Proof. For notational convenience, we denotés2 by p throughout the proof. The solutions of (4) corresponds
to the nonzero critical points of the functional

1 14l 1
J(u)z/[—qulz——u—+— —Au2i|dx.
2

Set

c=inf sup J(¥()),
Vvev 1e(0,1) ( )

the mountain-pass level, whede= {y € C([0, 1], H1(2)); (0) =0, J (¥ (1)) < 0}. We also set

*= inf_{supJ(tu);u >0, 0f.
c ueH(Q){,>g) (tu); u u= }

It is easy to see that< cx. In view of Lemma 5.1, we need to prove
* 2—y g:;

= 4(n —s) M
We claim that

n—s

2 —
Y, = supJ (tu,) < S uF (26)
t>0 4(n —s)

for ¢ > 0 sufficiently small. Denote

-1
Jue | 13
ki) = [Vl Koo = [Hoar and g =3 3 an?
2 0 i=1
The proof is divided into two cases.
Casel.n > 4. One then has
h(x")
n—2
K1(8)=/|Vu6|2dx— / dx’ / [Vug|?dx, +O(eZ)
R D(0,5) 0
g(x) h(x")
1 / 2 / 2 1=2
=SKi— dx |Vue|?dx, — dx |Vue|?dx, + O(e7),
Rn—1 0 D(0,6) g(x"
where
(2—2s)
K1=/|we|2dx=(n—2)2/LMdy, (27)
R~ R? (]_+|y|2—s) 2-s

which is independent af. Observing that
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x')

o
S

I(e) := / dx’

Rn—1

|Vue|?dxp

o

(")
2-2s
= (n—2)%% / dx// _ dlez
0 (

2y n:s)
Ri-1 e+ x|

oo

2(n—s) °

(L+[y[2) %5

Rn-1

1
8()eZ=s
— (}’l _ 2)2 / dy/ / |y|2_2den
0

(28)
We note that

112—2s / n—1
im e~ 1(6) = (1~ 27 [ — “def=<2k)A
=0 (L+x'|2=5) =1

I ;
where
4o =27 / P22 (=22 2
20 At

dx' > 0.

- _ 2(n—s)
2(71 1)Rn_1 (1+ |x/|27s) 2—s
In view of the curvature assumption, this implies

le)>0 and Ke)=O(75).
Moreover,

h(x")

l1(g) := / dx’/IVuslzdx,,

D(0,8)  g(x')

5 n=2 e |x|Z%
= |(n—2)%zs / dx,

(e + x5
D(0,9) g(x)

n—. h ’ - ! d !

Cn —2)% 5 / ) — s Gl
2— —s

s EFIIT2

whereC depends only 04, n.

N

Sinceh(x) = g(x") + o(|x'|?), it follows that¥o > 0, 3C(¢') > 0 such that
h(x') — ()| < ol 2+ C(o)]x'|3
and

5
n=2 olx'|2 4+ C(o)|x'|2 1 1
wo<cst [ EHCOWR e oot ciorentn),
(e + [x[?75) 2

D(0,8)
which implies

l1(e) = 0(s75) ase — 0.
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Thus we obtain

1
Ki(e) = —Kl— I(s)+o(82—v) (29)
On the other hand,
h(x") up
Ko(e) = / N / dx’' / N dx, +O(e ),
R" D(0,5) 0
g(x) h(x")

1 r P n—s
=—-Ko— / dx// us,dxn— / dx// Msv +0O(e7),
2 |x|* |x|®
0

D(0,6) g(x")

dy
(n—s)
IyI* 1+ Iylzf“') =
It is well known (see [11]) thaK, K> satisfy

Il
T

n—=2

K1/K3 ™ = pug i= s (R™). (30)
Since
o)) szl—g()’)
ll(e) := / dx’ / P dx, = / dy’ / (31)
S 3 IS (1+|y|2 5%

this implies that

-1
. 1 g(y/)dy/ L
!ILnoe 2—s ” (8) = / 2(n—s) = Zai B
S i=1

Py E

where
g1 / ly; 12 dy’ __ 1 / ly'[2dy’ 0
- 2(n—s) — _ ) ) 2(n—s) :
2l @y EEE 20D gy @y 2 S

It follows from the curvature assumption again, that

ll(e)>0 and Ie)=O(75).
Similarly,
h(x)

dx’' pd
x ||an

D(0,5) g

=0(e 2—V)
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Therefore,
1
Ka(e) = —Kz —1l(e) + 0(82—‘)

Moreover, careful calculations lead to

O(25), n=3,
K3(¢) :=/u§ = O(IgZ%s Ing), n=4,
2 0@ 7), n>5.

Letr, > 0 be a constant that

1 , 1
J(teug) = Ye = supJ (tu,) = su 5(Kl(e) + 1K3(e))1° — ;Kz(s)tp .

t>0 t>0

1
Forn > 4, K3(¢) = 0(¢2-5), hence

n—s

1 > 1 1
Y. =J(teus) < SU EKl(g)t — —K2(e)t? | +0(e25) =
p

t>0

2—s |: K1(s) i|2—s+0(8%)
20 =9 L(kap(e)= '

We claim that

N

n—

n=2 2 1 1 1 1
K1(e)/(K2(e))"™ < 27n= ps + 0(e25) = §K1/<§K2> +0(s77),

which will lead to our conclusion.
By (29), (20) and (30), the above is equivalent to

n—s

Lei—1e)( 1k = Ltk - + o)) +oer)
K1 € K2 <2 1| 5Kz £ £ £
i.e., lim_o I'(S)) >

_Lal(t) onm2 (i %u() +0(e7)
—27h\27? n—s\2 2 ¢ e
I(e

From (28) and (313 and using L'Hopital’s rule, we know

(n=2)Ky Z)Kl

e e ) Y128 (y) dy’ g(y)dy

lim —= = Iim =n-2)

e=0ll(e) =0l (e) (L+ [y/[2=5)2 /@) V'S (L4 [y [25)20=9)/2=5)
Rn—l Rn—l

rt2=2s gy r "= dr
=(n—27? e 222 (14 r2=5)20—)/@=5)"
0

Integrating by parts, one has for2B <2(n —s) —

o o
/ rP=24r 2n—2—s/ rB=s dr
n s 2(n—s) °
(1+ r2 s) ,) 1 ,3 -1 9 (1+ r2—s)‘(2—s)

Observing that

o o o0

/ rB=s dr _/ rP=24r / rP=24r
2(n—s) 2(n—s) - 2(n—s)

o A+rEsy s o (L4279 2 -1 o (L4r2=s) 2

791

(32)

(33)
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hence

]o s dr . B—1 /OO P24y

; (1_|_r27s)2(2,:x> 2n—B—1-—s ) (1+r2*“')2(2':‘") .
Therefore one has

I(e) n+1+s 5
T T =2

Mie = a3 " 72°
and

n—2K, - 2)3 /o‘o pt1=2s gy //o‘o 1= gy (n— 2)3 n—s ( 2)2

= = =n — .

n—s K> n—s ) (1_"_’.2—,;')2(2}1—:5:) ) (1+r27.g)2<2”—_’§) n—s n—2
We therefore get

I(e) n—2Ky

— — 4+ 0(2).

Il (e) >n—s K2+ @

Case 2. n = 3. Careful calculations lead to
1
Ki(e) < K1 = Ce75|Ine| +0(75) for someC > 0, (34)
1 1

Ka(e) = 5Kz = O(e 7). (35)

Letting J (t;u.) = Y, =Sup.q J (tu,), we have
1 1 2— K =
Ye < Sup{—Kl(e)tz - —Kz(e)tpj| 0Ty = = [ 1(8),,_2} +0(e7).
~0L2 p 2(n = 5) L (Ky())i=s
Consequently if
n=2 _2-s 1

K1(e)/(K2(8))"™ <2 s py — O(e75), (36)

then (26) follows.
By (34) and (35), (36) reduces to

1 1 2 1 1 = 101 n-2 1

§K1 —Ce2s|Ine| <27 n=s s §K2 —O(e2) +0(e25) = Euus" '+ O(g2).
Since

n—2
K1/Ky™ = us,

we get (36) immediately. Hence we found a critical peirt H(£2) of J (). Now we show that > 0. Because

0= (J'(w),u_) = /[|w,|2 — Mu-)?]dx,
2

whereu_ = min(u, 0), andA < 0, we conclude thaik_ = 0, oru > 0. Sincex cannot be constant, > 0 by
maximum principle. O

Remark 5.3. As noticed in [16] (there = 0), if £2 is an exterior domain, the mean curvature at 0 (when seen from

inside) is negative, then there exists a least-energy solution. The proof is almost the same as aboveRW(ile if
is close to a ball in some sense, thenXox 0, (4) has no least energy solution.
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One may of course replace the nonlinearity in (4) with a more general nonlinear term and obtain similar results.
The same arguments also apply to get the following extension of Theorem 5.2.

Theorem 5.4. Suppose that the mean curvature of 92 at O is positive, then the problem

|M|p*(S)—1
—Apuzig—)\up_l ing2,
g, L (37)
[VulP~“Vu-v=0 onos2,
u>0 in$2

has a solution. Here v is the outward unit normal to 92, A > 0,1 < p <n,0 <s < p, p*(s) = ”fl”f’p“') and where
Apu = div(|Vu|P~2Vu).

Based on the mountain pass solution — found in Theorem 1.3 — and using a suitable form of Ljusternik—
Schnirelman [10] theory, one can establish the following theorem. Analogous results in this direction have been
obtained, for example, in [6,18] for the Neumann problem wher0, [11] for the Dirichlet problem when > 0,

Oe 2.

Theorem 5.5. Under the same assumptionsasin Theorem 1.3, Eqg. (4) also has a sign-changing solution, provided
n>6.
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