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Abstract

We characterize the lower semicontinuous envel@pef the functional F(E) := /aE[l + |xaE|1’]dH1, defined on
boundaries of set§ c RZ, wherexyr denotes the curvature 6fE and p > 1. Through a desingularization procedure, we
find the domain ofF and its expression, by means of different representation formulas.
© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

On caractérise I'enveloppe semi-continue infériefirede la fonctionnelleF (E) := faE[l + |kap|P1dHL, définie sur

la classe des frontiéres des domainés™ R2, oll ky dénote la courbure deE et p > 1. Grace a une méthode de
désingularisation, on trouve le domaineBet son expression, a I'aide de différentes formules de représentation.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In recent years a growing attention has been devoteddgriatenergies depending on curvatures of a manifold,;
besides the geometric interest of functionals such as the Willmore functional [2,24,25], curvature depending
energies arise in models of elastic rods [11,15,17], and in image segmentation [8,18-23]. In the case of plane
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curves the main example is the functional of the so-called elastic curves [11,13] which reﬁ[ds+aﬁ'/‘|2] ds.
This functional is the starting point of the research pursued in this paper. Let us consider the functional

F(E) = / [1+ |eor ()] dHA ), )

dE

whereE c R? is a bounded open subset of cl&és p > 1is a real numbek;£(z) is the curvature o E atz and
H1 is the one-dimensional Hausdorff measur&®
The mapF, considered as a function of the sEtrather than of its boundar§E, appears in problems of
computer vision [8,22,23] and of image inpainting [3,18,19]. It is a simplified version of the building block
appearing in the model suggested in [23] to segment agerteking into account the relative depth of the objects.
One of the motivations of looking & as a function of the setg, which are endowed with the!-topology,
comes from the above mentioned applications, where one is typically interested in minidiiziogpled with a
bulk term; for instance, one looks for solutions of problems of the form

Eigfw {}"(E)+ / 2@ dz}, (2
E

for an appropriate given bulk energywhereF stands for the.1-lower semicontinuous envelope 8t defined on

the classM of all measurable subsets Bf. Another motivation for adopting this point of view is represented by

a conjecture in [14], where the approximation of the Willmore functional through elliptic second order functionals
is addressed.

The choice of the. topology quickly yields the existence of minimizers of (2) under rather mild assumptions
on g, see the discussion in [4]; however, it is clear that, beinglthdopology of sets a very weak topology
(especially for functionals depending on second derivatives), several difficulties arise when trying to characterize
the domain ofF and to find its value.

The study of the properties ¢fF was initiated by Bellettini, Dal Maso and Paolini in [4]. After proving that
F = F on regular sets [4, Theorem 3.2], the authors exhibited several examples of nonsmodihhseisg
F(E) < +00, see for instance Fig. 1. However, some of these examples are rather pathological (for instance, sets
E that locally around a poinp have a qualitative shape as in Fig. 2) and show that the characterization of the
domain of F is not an easy task.

Let us briefly recall the partial characterization Bfobtained in [4, Theorems 4.1, 6.2]. K c R? is such
that F(E) < 400, then there exists a system of curvés= {y1, ..., y»} (thatis, a finite family of constant speed
immersions of the unit circl§, see Definition 2.2) such that € H2?(S1), the union of the supports?” 4 (i) =:

(I') coversdE and has no transversal crossings, @&hdoincides inL1(R?) with {z € R2\ (I"): Z(I",z) =1} =:

By

Fig. 1. The set is made by two connected components having one cusp point. The seqiigh@®nsists of smooth sets convergingdadn
L1(R?) whose energyF is uniformly bounded with respect fa HenceF (E) < +oo.
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Ar,whereZ(r,-) is the index ofl” (see Definition 2.7). As a partial converse of the previous result, given a system
ofcurvesl" = {y1, ..., ym} € H? l’(Sl - X Sl) if I has no transversal crossingslaelf-intersects tangentially
only at afinite number of pomtsthen]-‘(A ) < 400, whereAf, :={z R2: Z(I',z) = 1 (mod 2)} We stress that
the hypothesis of finiteness for the set of self-intersection pomlfs(Which in the sequel will be called the singular
set of I" and denoted by Sing is an effective restriction since it may happen thét(Sing-) > 0, as was shown
in [4, Example 1, p. 271]. To conclude the list of the known results concerning the domaininf4, Theorem
6.4] itis proved that, ib £ can be locally represented as the graph of a function of @SS up to a finite number
of “simple cusp points” (see Definition 2.33) thé(E) < +oc is equivalent to the condition that the total number
of cusps is even. Finally, as far as talueof F is concerned, in [4, Theorem 7.3] it is proved tf&t, 2) does
not admit an integral representation, whéte, 2) is the localization ofF on an open se®. This phenomenoniis
due to the presence, in the computatio/fE, £2), of hidden curves (not in general containedifi) which are
a reminiscence of the limit of the boundari&s;,, of a minimizing sequencgE,}. Such hidden curves could be
put in relation with the problem of reconstructing the contours of an object which is partially occluded by another
object closer to the observer [6].
Eventually, the computation of (E) is carried on in [4, Theorem 7.2] in one case only, i.e., whgrhas only
two cusps which are positioned in a very special way (as in Fig. 1), the proof being not adaptable to more general
configurations.
The aim of this paper is to answer the above discussed questions left open in the paper [4]. More precisely, we
can

— characterize the domain @, thus removing the crucial finiteness assumption in Theorem 6.2 of [4], through
a desingularization procedure on systems of cufvdgving an infinite number of singularities;

— exhibit different representation formulas f@ (obviously not integral representation in the usual sense),
making computable (at least in principle) the value/iE ) for nonsmooth sets’;

— describe the structure of the boundaries of the getgith F(E) < +o0o, and extend [4, Theorem 6.4] to
boundaries with more general singular points rather than simple cusp points.

We remark that, in the discussion of the above items, we also characterize the structure of those systems of curve
which are obtained as weak?? limits of boundarieof smooth bounded open sets.

Let us briefly describe the content of the paper. In Sections 2, 3 we prove some preliminary results, leading
to a characterization of the singular set of systems of curves. To explain with some details our results in the
subsequent sections letinsroduce some definitions. If = {y1, ..., v} is a system of curves of clags®?, we
let 7(I') := > [11+ |7:171ds. We say that two systems, I’ of curves are equivalent (and we wnIe~ r)
if their traces comude i.e() = (I") and ift{I"~X(p)} = #{I ~L(p)} for any p € (I'). It is not difficult to show
thatif I" ~ I, thenF(I") = F(I'). In Theorem 5.1 and Corollary 5.2 we show that, given an arbitrary system of
curvesl” = {y1, ..., ym} of classH?P?, without transversal crossings, there exists a system of ciifves™ which
is the strongd % P-limit of a sequencéd £y} of boundaries of smooth, open, bounded sets such that

lim F(Ey)=FT), lim Ey=A% inLYR?.
N—o0 N—oo

This approximation result generalizes [4, Theorem 6.2], since no finiteness assumptions;ois $&uyired. The
proof, which is quite involved, requires a desingularizatiod aiiround the accumulation points of Singand is
based on several preliminary lemmata, see Section 4. Observe that in Theorem 5.1 we show that among all systen

’“““4—;

Fig. 2. The grey region denotes (possibly a part of) theiself E, locally around the singular point (which is an accumulation point of
singular points ob E), behaves as in the figure, it may happen that) < +oo.
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of curves of clasg??? without transversal crossings, those which have finite singular set are a dense subset in
the energy norm. Hence we also have that evenyith F(E) < +oo can be approximated both ib! (R?) and
in energy by a sequence of subsgls,} such that Sing; =~ consists only of a finite number of cusps and branch
points (see again Definition 2.33).

In Section 6 we give some representation formulasfom particular, in Proposition 6.1 we show that

F(E)y=min{F(I'): I' € A(E)}, ©)

whereI” € A(E) if and only if (I') 2 9E and E = A in L1(R?). This formula is much in the spirit of [10,
Corollary 5.4], where a similar, but in some sense weaker, result is proved in the framework of Geometric Measure
Theory. Motivated by the density result of subsets with finite singular set given in Theorem 5.1 and Corollary 5.2,
in Theorem 6.3 we prove that B has a finite number of singular points then the collectign(E) of all systems

I' € A(E) with finite singular set is dense iA(E) with respect to theH%”-weak convergence and in energy.
Moreover

F(E)=inf{F(I"): I € Qin(E)}. (4)

Theorem 6.3 is stronger than Theorem 5.1, since phpraximating sequence now must fulfill the additional
constraint of being made of elements @fi,(E). Moreover Theorem 6.3 turns out to be the key technical tool
for proving the results of Section 8. Note carefully that the minimum in (4) in general is not attained, as we show
in Proposition 8.8.

In Section 7 the regularity of minimizets for problem (3) is studied in the cage= 2. The main result of this
section is Theorem 7.1 where we show that any solufioof the minimum problem (3) has, out 6fF, a finite
singular set and consists of pieces of elastic curves.

In Section 8 we focus our attention on subsgtwith finite singular set and wittF(E) < 4+o0. The main result
of this section is Theorem 8.6, where we give a (close to optimal) representation form@aHpr Precisely, we
prove that

F(E) = / [1+ |koe ()| ]dH 2) +2 min F(o).
oceX(E)
Reg g

Here Reg; denotes the regular part of the boundary=efX (E) is (roughly speaking) the class of all curvesf
classH?” connecting the singular points 8 in an appropriate way, which do not cross transversally each other
and do not cross transversall. This result is a wide generalization of the example discussed in [4], where the
setE had only two cusps and a very specific geometry.

2. Notation and preliminaries

A plane curvey : [0, a] — R? of classC?! is said to be regular if% # 0 for everyr € [0, 1]. Each closed
regular curvey : [0, 1] — R? will be identified, in the usual way, with a map: S* — R?, wheres! denotes the
oriented unit circle. By(y) = y([0,1]) = {y(¢): t € [0, 1]} we denote the trace gf and by/(y) its length;s
denotes the arc length parameter and the first and second derivative pfwith respect tos. Let us fix a real
numberp > 1 and letp’ be such that Ap + 1/p’ = 1. If the second derivativg in the sense of distributions
belongs tolL?, then the curvature(y) of y is given by|y|, and

e 7, = / 717 ds < +00;
10,1()L
in this case we say thatis a curve of clas#/%”, and we writey € H>”. Moreover, we put
F) =1+ ||,
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If z e R2\ (I'), Z(y, z) is the index ofy with respect tq [7].

For anyC c R? we denote by iniC) the interior ofC, by C the closure ofC, and bydC the topological
boundary ofC. All sets we will consider are assumed to be measurable.

For every sett  R? let xz denote its characteristic function, thatis(z) =1 if z € E, xg(z) =0if z ¢ E;
for anyzo € R?, p > 0, B,(z0) := {z € RZ: |z — z0| < p} is the ball centered ap with radiusp.

Definition 2.1.We say thatz ¢ R? is of classH?%? (respectivelyC¥, k > 1) if E is open and if, for every € dE,
the setE can be locally represented as the subgraph of a function of H&gs(respectivel\C¥) with respect to a
suitable coordinate system.

Let E c R? be a set of clas&%”. Sinced E can be locally viewed as the graph of &ff? function, we can
define, locally, the curvatune z of 9 E at H1-almost every point 0§ E using the classical formulas involving the
second derivatives. One can readily check that the definitiegptiloes not depend on the choice of the coordinate
system used to represeht as a graph, and also thafz € L? (3E, H1).

Given a sett c R?, we define

E*:= {zERZZ dr>0: ’Br(z)\E‘:O},

| - | denoting the Lebesgue measureAlftands for the symmetric difference between sets|amlF| = 0, then
E* = F*,

Let M be the collection of all measurable subset®Réf We can identifyM with a closed subset df1(R?)
through the magE — xx. The L1(R?) topology induced by this map ai is the same topology induced ow
by the metric(E1, E2) — |E1AE>|, whereE1, E> € M.

Now we define the mag : M — [0, +o0] as follows:

Jye1+ IkoE()1P1dHY(z)  if E is a bounded open set of clad%

F(E):=
{+oo elsewhere oM.

We call L-relaxed functional ofF, and denote it byF, the lower semicontinuous envelopeBfwith respect to
the topology ofL1(R?). It is known that, for evenf € M, we have

F(E) = inf{lihminf F(En): Ep — E in LX(R?) ash — oo}. (5)

2.1. Systems of curves

In this subsection we list all definitions and known facts on systems of curves used throughout the paper, and
we prove some preliminary results.

Definition 2.2. By a system of curves we mean a finite family= {y1, ..., y} of closed regular curves of clag$

such thaﬂ%| is constant orf0, 1] for anyi =1, ..., m. Denoting byS the disjoint union ofn circIesS%, .., Sk

of unitary length, we shall identify” with the map/™: S — R? defined byﬂs; =y, fori=1,...,m. The trace
(I') of I' is defined asI") := J/L; (yi)-

By a system of curves of clagd2?(S) we mean a systemi” = {y1, ..., ¥} such that eachy; is of class
H?P(SY). Inthis case we shall writ€ € H%7(S).

Definition 2.3. By a disjoint system of curves we mean a system of cufves{ys, ... ., v} such tha(y;) N (y;) =
Gforanyi,j=1,...,m,i #j.
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Definition 2.4. We say that a system of curvés= {y1, ..., y;y} is without crossings if% and % are
parallel, whenevey; (1) = y; (t2) for somei, j € {1, ..., m} andty, 12 € [0, 1].

Definition 2.5.1f I" = {y1, ..., ym} is a System of curves of clags®?, we define

(=Y 1. el =Y [ o) s
i=1 =ho.10m1
and
FIy=>"F) =Y 1)+ ],

i=1 i=1

As |9 | is constant ori0, 1], we haves (1) = l(y;), hence

/ 17 ds = 1) ZP/‘

10.1(vl 10.10

Given a setd = A1 x --- x A,, € S and a system of curves = {y1, ..., yu} € H>P(S), we fix the following
notation:

F(I', A) _Z / {
Remark 2.6. With a small abuse of notation, with the same letfewe denote a functional defined owl and a
functional defined on regulaf? curves.

dt + 1yt 21’/‘

dt2

Definition 2.7.Let I = {y1, ..., y} be a system of curves. ife R?\ (I") we define the index af with respect
toI"asZ(l",z):= Y i 1Z(yi, 2).

Definition 2.8. Let E ¢ R? be a bounded open set of clags We say that a disjoint system of curvésis an
oriented parametrization ofE' if each curve of the system is simpld,) = d E, and, in addition,
E={zeR*\JE: I(I''z) =1}, R2]\E={zeR?\JE: I(I',z) =0}.

In [4, Proposition 3.1] it is proved that any bounded sulisetf R? of classH2” (respectivelyC?) admits an
oriented parametrization of clags®? (respectivel\C?).

Definition 2.9. We say that a sequen¢&),} of systems of curves of clagg?? converges weakly (respectively
strongly) in H>? to a system of curves = {y1, ..., y.} Of classH?? if the number of curves of each system
I, equals the number of curves 6ffor i large enough, i.el}, = {yl”, e y,ﬁ}, and, in addition;/l." converges
weakly (respectively strongly) tg; in H%? ash — oo foranyi =1,...,m
If {I7,} weakly convergestd = {y1, ..., ym} in H%?, then
yih — 7y inCtash — oo,

foranyi =1,...,m. In particular/(y/") — I(y;) ash — oo.
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The following result is proved in [4, Theorem 3.1]; it states the coercivity of the functi&nalth respect to
the weakH2? convergence of systems of curves.

Theorem 2.10.Let {I},} be a sequence of systems of curves of cl&d¢ such that all(I},) are contained in a
bounded subset &2 independent ok and

SUpF (Iy) < 4o0.
heN

Then{I7},} has a subsequence which converges weaklyarf to a system of curves.

Definition 2.11.We say that” is a limit system of curves of clagg?? if I' is the weak limit of a sequendd?,}
of oriented parametrizations of bounded open sets of ¢ss.

Definition 2.12. We say that a system of curvésverifies the finiteness property in an open Eet R? if there
exists a finite se§ ¢ U such thatI") \ § is a one-dimensional embedded submanifoli®bf classC?.

2.2. Nice rectangles

Definition 2.13.Let I" = {y1, ..., ¥} be a system of curves of clags>” without crossings. Lep € (I'), let
7(p) be a unit tangent vector ta") at p, and lett(p) be the rotation of:(p) of 7/2 around the origin in
counterclockwise order. We say thR{p) is a nice rectangle foil") at p if

R(p)={z€R% z=p+It(p) +drr(p), | <a, |d| < b},

wherea > 0 andb > 0 are selected in such a way thd@) N R(p) is given by the union of the cartesian graphs,
with respect to the tangent liri, (I") to (I") at p, of a finite number of function§f, ... ., f-} such that grapfy;)
does not intersect the two sidesRfp) which are parallel td@’, (I") for everyl = {1, ...,r}.

Remark 2.14.By regularity properties of systems of curves of clas$” without crossings, one readily checks
that each poinp € (I") admits a nice rectangl(p) at p. Moreover, ifA € H%>? and(A) C (I'), thenR(p) is a
nice rectangle ap also for A.

Let p € (I'); when we write a nice rectanglR(p) at p for (I') in the form R(p) = [—a, a] x [, b], we
implicitly assume thap is the origin of the coordinates, th&}, (I") is thex-axis, and that ' (p) agrees with the
vector(0, 1). In this case we also s&" (p) := [0, a] x [—b, b] andR™ (p) :=[—a, 0] x [—b, b].

2.3. Density function of a system of curves

Definition 2.15.Let I" be a system of curves of clagg>?. We define the density functidi of I" as
Or:(I') > NU {+o00}, or(z) :=8{Ir @}
 denoting the counting measure.
Lemma 2.16.LetI" = {y1, ..., y.} be a system of curves of cla& ”. Then there existd/ € N depending only
onm and onF(I") such that
tly M <M Vpe@n, Vi=1....m.

Proof. The statement is a consequence of step 1 in the proof of Theorem 9.1 ing6].

Remark 2.17.As a direct consequence of Lemma 2.16 we obtain thati# a system of curves of clags®? then
0r(z) is uniformly bounded with respect toe (I").
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2.4. Definitions oA, A%, A(E), Qfin(E), A°(E)

If I is a system of curves of clags®?, in the following we set
Ap:={zeR*\(I"): I(I',z) = 1},

6
AY.:={zeR2\ (I"): Z(I',z) =1 (mod 2 }. ©

Remark 2.18.1f I" is a limit system of curves of clag$?? thenZ (I, z) € {0, 1} for anyz € R?\ (I'), see [4]; in
particularA = AY..

Definition 2.19.Let E ¢ R2. We denote byA(E) the collection of all limit systems of curves of classH?”
satisfying
(I 23E*, E*=int(ApU (F)). @)

We indicate byQsin (E) the collection of all systems € A(E) verifying the finiteness property iR2.1 We denote
by A°(E) the collection of all systems of curvésof classH?? satisfying

(M D0E*, E*= int(A% U (F)). (8)
Note that the elements od?(E) are not, in generalimit systems of curves. Moreoveékin(E) C A(E) C

A°(E). Finally, in view of Theorem 2.22 and (7) (respectively (8)), for evErg A(E) (respectivelyi” € A°(E)),
it holds|A-AE| =0 (respectivelyA%.AE| = 0), providedF (E) < +oo.

Remark 2.20.1f I" € A(E) (respectivelyl” € A°(E)) and F c R? is such tha EAF| =0, thenI" € A(F)
(respectivelyl” € A°(F)).

2.5. On set¥ with F(E) < +00

Definition 2.21.Let C be a subset dR?. We say thatC has a continuous unoriestt tangent if at each pointe C
the tangent con&¢ (z) to C atz (see [4, Definition 4.1]) is a straight line and the n¥&p: z — T¢(z) from C into
the real projective spade' is continuous.

The following results are proved in [4, Theorems 4.1, 6.2, 7.3].

Theorem 2.22.Let E c R? be such thatF(E) < 4+o0. ThenE* is bounded, openEAE*| =0, HL(J E*) < +o0
andd E* has a continuous unoriented tangent. Moreover

F(E) = inf{F(I"): I € AE)}, (9)
hence in particulat4(FE) is nonempty.

Remark 2.23.Let I' be a system of curves of clag&>? without crossings and define

E:=A%, F:={zeR?\(I": I(I,z)=0(mod 2). (10)
Then, as noticed in [4]E, E*, F, F* are openE* is bounded|EAE*| =0 and

IE*=3F*={zeR% 0<|B,(:)NE| < |B,(2)|Vr >0} =dENIF C(I"), E*=int(A%U().(11)
Thereforel” € A°(E).

1 Let us remark that in [4] the s&sin (E) was denoted b (E).
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Theorem 2.24 Let I' be a system of curves of clag& ? without crossings and satisfying the finiteness property.
Then

F(A}) < +oo,

hence there exists a sequeri@,} of bounded open sets of clag$ converging toA¢. in L1(R?) and such that
sup,en F(En) < oo. In addition, there exist oriented parametrizationg of d £, defined on the same parameter
spaceS, such thaf{ 1} converges strongly i/ 2.7 (S) to a system of curves equivalentffo(see Definitior2.30)
defined orf5, and whose trace contairisA{..

Theorem 2.25There exists a s  R? such thatF (E) < 4+o0 and F(E, -) is not subadditive.
2.6. Regular and singular points éf. Equivalent systems

Definition 2.26.Let I" be a system of curves of clags®” without crossings and lgi € (I"). We say thatp is
a regular point forI") if there exists a neighborhodd, of p such that(I") N U, is the graph of a function of
classH?? with respect tal,(I"). We say thap e (I") is a singular point ofI") if p is not a regular point ofI").
We indicate by Reg the set of all regular points @f”) and by Sing- = (I") \ Reg- the set of all singular points
of (IN).

Remark 2.27.1f I" e H2P(S) is a system of curves, then Reg- @1. This is obvious if Sing = . If Sing,- # @,
let p € Sing; and letR(p) =[—a, a] x [—b, b] be a nice rectangle fai") at p, and write

R(p)n () =|Joraphf).  fie H*?(1-a.al).
=1
We proceed by induction over the numbesf graphs. Suppose=2. As p € Singy, there existg1 € 1—a, al
such thatf1(&1) # f2(&1); hence we can find an open neighborh@bd 1—a, a[ of & such thatf1(x) # fa2(x) for
everyx € U. Therefore Reg N R(p) D {(x, fi(x)): x e U} #0,1=1,2. Assume that wheR(p) N (I") consists
of r > 2 graphs ofH?? functions, then RegN R(p) # #. Suppose thatI") N R(p) consists of + 1 graphs of
H?7 functionsfi, ..., f,41. Define

Ji={xe l-a,al: filx)¢{f200)..... frra(0)}}.

If J =@ then graplafi) is contained in the union of the remainimggraphs and the thesis follows by the
induction hypothesis. Otherwise there §s € J and an open neighborhodd C ]—a,a[ of & such that
fix) ¢ {fo(x), ..., fry1(x)} for everyx € U. Hence Reg N R(p) D {(x, f1(x)): x e U} # .

By an arc of regular points we mean a connected componenf pfconsisting of regular points ofl™).
If pe (') by B;'(p) (respectiverBp—(p)) we mean{z € B,(p): (z — p) - ©(p) = O} (respectively{z ¢
B,(2): (z— p) - t(p) <0}), wherer(p) is a unit vector parallel taI"/dt in p.

Definition 2.28.We say thaip € Sing- is a node of(I") if there existsV,, e N, N, > 1, such that for any > 0
sufficiently small eithetB:;(p) N\ {p}or B, (p)N(I")\{p} consists of the union a¥,, arcs of regular points
for (I') which do not intersect each other. We indicate by Ndlde set of the nodes @f™).

Fig. 3 explains the meaning of the definition of node.
Remark 2.29.Since in the definition of regular point (respgety singular point ad node) only the setl") is

involved and not the map’, similar definitions can be given for every (immersed) one-dimensional submanifold
of R? of classC?! without crossings.
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S>>

(a)

<L oo S>>

(b)

Fig. 3. The pointp in (a) is a node ofI"), while the pointg in (b) is not a node ofI").

Fig. 4. Two equivalent systems of curvésand I"; observe that™ is a limit system of curves, whilé" is not a limit system of curves. In
particularI” € A°(E) \ A(E) (the setE is the interior of the two drops).

Definition 2.30.Let I" € H2P(S) agdf € HZ*P@) be two systems of curves without crossings. We say khit
equivalent tol", and we writel” ~ I, if (I") = (I") andér =65 on (I).

If I € A(E) andif " ~ I, thenI” does not necessarily belongti£), since in general is not a limit system
of curves. In Fig. 4 we show two equivalent systems of cuivesd /", with I" € A(E), such that’” is not a limit
system of curves. Eventually, observe thal'if- I" thenA¢. = AOF'

2.7. Singular points of E*. Cusps and branch points

Definition 2.31.Let E be an open subset & such that E has continuous unoriented tangent, andilet 9 E .
We say thalp is a regular point od E if there exists a neighborhodd, of p such thaty, N E is the subgraph of
a function locally defined ovef, (9 E). We will indicate by Regy the set of all regular points GfE. We say that
p € dE is a singular point ob E (and writep € Sing, ) if p ¢ Regy.

Remark 2.32.1f E c R?is such thafF (E) < +oo, by Theorem 2.22, near every regular pginthe boundary of
the set£* can be represented as the graph of#&v function with respect td’, (0E), see also Lemma 4.3 below.

Definition 2.33.Let E be an open subset @& with continuous unoriented tangent, and jet 3 E. Suppose
that there arep > 0 and an integek > 2 such that eithelB;;(p) NJE = Uj‘zlgrapr(f,) or B, (p) NIE =

Uf‘zlgrapr(fl), where thef; are functions defined ofi,(d E) whose graphs meet each other onlypatf « is
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q
p
(a) (b)
-
(c)

Fig. 5. The grey region locally stands for the ¢&tThe pointp of (a) is a branch point, but not a cusp poikt=£ 3). The pointg of (b) is a
cusp point but not a simple cusp point, and the same happens for thexpioirit).

even we say thap is a cusp. lf is odd we say thap is a branch point. Ik = 2 and eithewj(p) NJoE ={p}or
B (p)NIE ={p}, then we say thap is a simple cusp point.

The definition of the set Nog of the nodes ob E is the same as Definition 2.28 where we replacby 9 E.
Each connected component of the &etn Fig. 1 has a simple cusp; in Fig. 5 we show examples of branch
points, and of cusp points which are not simple cusp points.

Remark 2.34.Let E be such thafF (E) < o0, p € Nodyg+, I' € A°(E) and letR be a nice rectangle fai")
at p. As noticed in [4, p. 269], the functiofy is odd on the regular points 6f£*. Sincel” verifies the train tracks
property inR (see Definition 3.6 below) we can conclude that

— the pointp is always a cusp or a branch point, and cannot be a cusp and a branch point simultaneously, since
the constants corresponding '[(B;r (p)NIE and toB (p) N IE have the same parity;

— if p is a cusp (respectively a branch) point thier(p) is even (respectively odd). Converselypife Nod; g«
andfr(p) is even (respectively odd) thegnis a cusp (respectively a branch) point.

3. Some useful results on systems of curves

Proposition 3.1.Let I" be a system of curves of clag&” without crossings. TheNodr is at most countable.
MoreoverSing;- has empty interior,

Sing;- = Nodr, (12)
and
Reg- = (I'). (13)

Remark 3.2.1t may happen that(*(Singr) > 0 (see [4, Example 1, p. 271]), therefore in this case SigdNodr
and Sing- is not countable.

Proof. Itis obvious that every node @f"), or any accumulation point of nodes@f), is a singular point, so that
Nodr C Singy.

Let us prove the opposite inclusion. Lpte Sing,-. We can select a nice rectangke= [—a, a] x [—b, b]
centered ap = 0 where(I") consists of a finite union of > 1 graphs ofH2? functions defined o N T,(I')
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and all passing through the poipt In particular, in[0, a — ] x [—b, b] the set(I") cannot be represented as the
graph of one function only for arg/e [0, a[.

We now reason by induction on the number of graphs. Suppose fir§Othdtx [—b, b1 N (I") = graph( f1) U
graph(f2), and setr1(x) := (x, f1(x)), a2(x) := (x, f2(x)), x € [0, a]. Define

I:={xel0.al A(x)# ().

As f1 and f2 are continuous/ is open, therefore it is the union of a possibly countable number of connected
componentdy,. It is clear that, ifx belongs to the boundary of one of tlig then(x, fi(x)) is a node. Since
f1(0) = f2(0), it follows thatal‘l(p) cannot belong to the interior of any of thg. Hence there are only two
possibilities: eitheral‘l(p) belongs to the boundary of one of tlg, and thenp € Nodr, or otl_l(p) is an
accumulation point of boundappints of the intervalg;,, and sop € Nodr-.

Assume that wherk N (I") consists ofr > 2 graphs of functions of clas&?? then p € Sing,- implies
p € Nodr. Suppose thak N (I') consists of + 1 graphs of functiongs, ..., f, 41 of classH??. Define

Ji={xel0,al: fix) ¢ {f2(x),..., frra(0)}}.

ThenJ is open. IfJ is empty, then the graph gf is contained in the union of the remainingraphs, and the
thesis follows by the induction hypothesis. Therefore we can supposé thatonempty. Define, := supJ > 0,
and consider the connected component o[ of J havingo? as the right boundary point. Note thatQr; < o2.
We divide the proof into two cases.

Casel. o1 =0. If p is a regular point foU;iégrapk(fj), then it is a node foU;jgrapk(fj), and hence

p € Nodr. If p is a singular point forU;iégrapr(fj), then p is a node (or an accumulation point of nodes)

of U;.iégrapr(fj) by the induction assumption. Therefgpeis a node (or an accumulation point of nodes) of

/£ graphf;), and hence € Nod;.

Case2. o1 > 0. There are two subcases: either all functighswith I € {2, ..., r + 1}, whose graph passes
through the pointio1, f1(o1)) coincide in an interval of the forno1, o1 + 8[, or in any interval of this form
there are at least two function, fi, with 2,k € {2,...,r 4+ 1} that do not agree. In the first subcase we have
(o1, f1(o1)) € Nodr. In the second subcase we can select a nice rect&igter centered ato1, f1(o1)). Inside
R; we can repeat the argumentsoaksel for the functiong f1, .. ., fr+1}. We conclude thato1, f1(o1)) € Nodr.

Now, using theCl-regularity of the f; and the fact thatfi(p) = f;(p) and filp) = f]f(p) for every 1<
k,j <r+ 1, we take a countable family of shrinking nice rectangles of the fpray,, a,] x [—by, b1, with
ap J 0 and 4 | 0 ash — oo, and repeat the above arguments. In this way we obtain a sequence of points
pn = (o], fi(o)) € [—an, an] x [—bp, by] N Nodr, which converges tp and p € Nod;. This concludes the
proof incase2, and the proof of (12).

Let us now prove (13). Lep € (I'); we have to prove that in each neighborhoochahere are regular points
of (I'). This is immediate ifp € Reg-. If p € Singy, then by (12) eithep € Nodr or p is an accumulation point
of Nodr; in both cases, from the definition of node, we have that in each neighborhpdatiefe are regular points
of (I').

To conclude the proof of the progtien, it remains to show that Ngdis at most countable. Lgi € (I") and
let R be a nice rectangle centeredmatSuppose thatl") N R = Uf’zlgrapr(f,»), wheref; € HZ*P(T,,(F) NR). If
q €int(R) isanode ofI"), then there aré,l € {1, ..., h}, k #1, and&; € [—a, a] such that&, fx(§1)) = ¢ and

GGy = fiGy)  fr(B1+x) # fiG1+x),

for everyx € 1-6,0[ orx € 10, 8[ (whereé > 0 is a number small enough). Therefore the péinis a boundary
point of some connected component of the{set [—a, al: fi(x) # fi(x)}, but this is an open set, and so points
of this kind can be at most countable. Now, since we can cover the whdlE)ofvith a finite number of nice
rectangles, we have that Npds at most countable. O
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Remark 3.3.Since Sing. = Nod by Proposition 3.1, it is clear that {f”") verifies the finiteness property i
the set Sing NU consists of a finite number of nodes.

As a consequence of Proposition 3.1 we obtain the following

Corollary 3.4. Let I" € H>?(S) be a system of curves without crossings andlet Sing-. Then there exists a
nice rectangler for (I") at p such that

(I')N9R C Regr. (14)

Proof. Supposep = 0 € Sing;- and let[—a, a] x [—b, b] be a nice rectangle fail") at p. Let f1,..., f- be a
collection of H% 7 (]—a, a[) functions such that

(Jgrapifi) = ([—a.al x [=b, b)) N (D).

=1
Clearly for everyx € 1—a, a[, the se{—a«, a] x [—b, b] is still a nice rectangle fofI") at p and(I") N ([—«, ] x
[—b, D)) is still represented by the graphs #f, ..., f.. By (13) we can findj1 € ([—a, a] x [—b, b]) N Reg.
Without loss of generality we can suppose thathas coordinatesgas, f1(a1)) andai € 10,a[. As Reg- is
an open subset ofl"), we can select an intervd} < ]0,a[ centered at; such that(x, f1(x)) € Reg.- for
every x € I1. From Proposition 3.1 we know that Sipghas empty interior in(I"). Therefore we can find
az € I1 such that(az, f2(a2)) € Regr and then select an intervé < I; such that(x, f1(x)) and (x, fa(x))
are regular points for every € I>. Repeating the same argumentimes we find a point;, € 10, a] such that
({a} xRYN(I") ={z1,...,zn} C Regy. SettingR :=[—a,, a,] x [—b, b], we get (14). O

Lemma 3.5.Let I" be a system of curves of claf?. Letp =0¢ (I") and letR = [—a, a] x [—b, b] be a nice
rectangle for(I") at p. Then

or(p)= Y. 6r( Vxel[-a.al (15)

ze(N{x}x[=b,b])

Proof. Write I' = {y1, ..., ym}. Leti € {1,...,m} be such thaR N y;(S}) # ¥, and write

,' mt(R) Ullla

where M; < ||0rlleo andI;; are the connected componentSypTl(int(R)). Using the fact thay; is a constant
speed parametrization we have

IiNLy=0 Yl+#k,
villi) Cint(R)yN (M), y@Ly) CcI)NIR VI,
Iip = (51, 82), vi(s1) €{Fa} x 1-b,b[ = yi(s2) € F{a} x 1-b, D],

andy; is injective over eacly;, so that we can tak&f; = jj{yi_l(p)}. Taking the unionover alle {1, ..., m} such
that(y;) N R # @, we get

m ﬁ{)/, (p)

mt(R) U U L,
i=1 [=1

anddr(p) = Y7 8l X(p)}. Therefore (15) holds. O
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Definition 3.6. In the following, we will refer to property (15) as to the train tracks property’dh R.

Proposition 3.7.LetI" = {y1, ..., v} be a system of curves of clag<-?. Then
(a) forany p e (I') and for anysg € S} such thaty; (so) = p there holds

0r(vj(s0)) = limsupér(y;j(s)). (16)

S]as—mo

(b) 6r is constant on each connected componeiRay-.

Proof. (b) Let p € Reg- and letU, be a neighborhood op such that(/") N U, is the graph of a function of
classH2?. Let us select a nice rectangkec U, for (I") at p. From Lemma 3.5 we have that is constant on
(I')N R. Covering(I") NU, with an appropriate countable family of nice rectangles, we obtairfihat constant
onU, N (I).

(a) Letp € Singr and letR be a nice rectangle fag”) at p. Then (a) follows from (15) and the fact that every
y; that intersect®R(p) passes through. O

In the following we will refer to property (a)f Proposition 3.7 as to the upper semicontinuity pf
Remark 3.8.The boundedness and the upper semicontinuity-diave been proved, in different contexts, in [16].

Lemma 3.9.LetI" € H2P(S) and[ ¢ H2>P(§) be two equivalent systems of curves without crossings. Then

F(I) = F (). (7)
Proof. Let p € (I") and letR = [—a, a] x [—b, b] be a nice rectangle at for (I") = (). As proved in Lemma
3.5, we have

Or(p) Or(p)

riieo=r w=T%L
i=1

i=1

where thel; C S (respectivelyl; C S) are open connected pairwise disjoint arcs. Furthermore, the image of;each

underI” (respectively off; underl™) is the graph of a functiorf; (respectlvelyf,) of classH?? passing through

p and the restriction of” over ; (respectively ofl” over ;) is injective. Sincel” and I” are without crossings,
using the locality of the weak derivatives in Sobolev spaces (see for instance [1, Proposition 3.71]), we have

=% f'=f" ae onfi=f
for everyi, j € {1,...,0r(p) = 0(p)}. Hence, as by hypothesig) N R = (I') N R, we have

Or(p) ”
Lf1P ,
FRIm)= ) f( Ty i+ 0

05(p)

7 = - o~
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Using Besicovitch Covering Theorem (see [12, Theorem 2.8.15]) we can find a countable family of nice rectangles
{R(pn)} such that intR(pn)) N INt(R(pm)) =@ if pn # pm and such that J, .y R(pn) coversH!-almost all
()= (). Using (18) we have

F)y=Y F(I, I Y (R(pn)) =Y _F([, T H(R(pn)) = F (),
neN neN

which is (17). O

Remark 3.10.Using essentially the same proof, we can prove a local version of Lemma 3.9, that s (S)
and I' e H27(S) are two systems of curves which verify the hypothesis of Lemma 3.9/ ia R?, i.e.,
(MHNU=)NU andér =6 on(I")NU, then

F(r, r~XW))=F(. rW)).
Lemma 3.11.Let I" € H27(S) and " € H? P(S) be two systems of curves.Reg- = Regr andfr = 05 on
Reg-, thenI" and " are equivalent.
Proof. From (13) we have

(I") = Regr = Regr = (I').

Therefore to prove that' and I” are equivalent it remains to check tat = 05 on (I'). Since by hypothesis
fr = 6r on Reg = Regr it is enough to check thatr = 6 on Sing= = Singr. Let p = 0 € Singr and
R =[—a,a] x [-b, b] be a nice rectangle fc(rf) = (I') at p, such thatr verifies (14), that is

(INNaR=(I')NJR C Reg- = Regr.
Using Lemma 3.5 and the hypothe8js= 6 on Reg- we have

h h
or(p)=)Y _0r(z) =Y 0r) =0r(p),

1=1 =1
which concludes the proof.0

Lemma 3.12.Let I" be a system of curves without crossingsdet (I") andv be a unit vector normal t¢/") at
p.-Letzi:=p+1tv,z2:=p—tv. ThenZ(I', z1) + Z(I', z2) =60 (p) (mod 2 for everyr > 0 small enough.

Proof. Using [4, Lemma 4.2] it follows thatZ (I, z1) — Z(I', z2)| = |k — d|, wherek, d € N are such that + d =
Or(p). If Z(I', z1) + Z(I", z2) = 0 (mod 2 then|Z(I', z1) — Z(I", z2)| = |k — d| is even. Thereforé andd are
either both odd or even, henég(p) is even, and (I, z1) + Z(I", z2) =0 (p) (mod 2. If Z(I", z1) + Z(I', z2) =
1 (mod?2 then|Z(I',z1) — Z(I', z2)| is odd. Thereforé,(p) is odd, andZ(I", z1) + Z(I", z2) =0, (p) (mod 2)

Using Lemma 3.12 we prove that given a system of cutVewithout crossings, the séyy € (I"): 6r(q) =
1 (mod 2} characterizes the sdt’. in L1(R?).
Proposition 3.13.LetI" € H2?(S) and A € H2>P(§) be two systems of curves without crossings. Assume that
{g € 0r(g)=1(mod2} ={g € (4): 6a(q) =1 (mod2}. (19)
Then
|A%AAY| =0. (20)
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Proof. Let C be the closure of the s¢y € (I"): 0r(g) =1 (mod2)} We claim thatC = d(int(A%. U (I))).
Using Lemma 3.12 it follows thaf € d(int(A%. U (I"))). Now let p € d(int(A%. U (I"))) and suppose that ¢ C.
From the local constancy of the index it follows thaint(A%- U (I"))) C (I'), thereforep e (I'). Sincep ¢ C,
it follows thatf(¢) is even for every- > 0 small enough and evegye B,(p) N (I"). Using Lemma 3.12 we
have thatZ(I", z) must be either always odd or always even for every B, (p) \ (I") which contradicts the
assumptiory e d(int(A%- U (I"))). Using (19) we have® = a(int(A. U (I"))) = a(int(A9 U (A))). Letz ¢ (I")
and leta be a continuous curve connectingvith co such that all the intersections betwe@n) U (A) and («)
are transversal. Sinc&(I'", z) (mod 2)(respectivelyZ(A, z) (mod 2) can be computed using the parity of the
number of the intersections @f") (respectively of(A)) with («) and since intA%- U (I")) and in(A% U (A))
are two bounded open subsetsRFfwith the same boundary we have(Af. U (I")) = int(A9 U (A)). Therefore
A%AA% C(IN)U(A), sothatA%AAY| < (MU (A)=0. O

4. Preliminary lemmata
In this section we prove some lemmata needed in the proof of Theorems 5.1, 6.3, 7.1.

Lemma 4.1.Leta, B:[0, 1] — R? be two regular curves of clagg?? such thaix(1) = 8(0) anda’(1) is parallel
to 8’(0). Then there is a regular curve: [0, 1] — R? of classH2? such that(y) = («) U (8) and|y’| is constant
on|0, 1].

Proof. Leta:[0,[(a)] — R? (respectivelys : [0, [(8)] — R?) be the reparametrization af(respectively o) by
arc length such thai(/(«)) = B(0) anda(/(«)) = B(0). Definey : [0, [(a) + [(8)] — R2 by

) [2® if s € [0, ()],
V=186 — 1)) if s e1i(a), 1) +1(B)].

Sincex andg are regular curves of clags anda(I(«)) = B(0), @(I(«)) = B(0), theny is a regular curve of class
ct andy = & (respectivelyy = B) on [0, ()] (respectively or{l(«), I(a) + L(8)]). Using two integrations by

parts and the assumptions @rand one checks that the second distributional derivagiva y is represented by

an L? function andy = & (respectivelyy = ) almost everywhere ot0, I («)[ (respectively almost everywhere
on]l(a), () +1(B)[). Reparametrizing with t :=s/(I(@) + [(B)) we obtain the thesis. O

Definition 4.2. Let « > 0 and {g1,...,g.} be a finite family of functions inC1([0,a]). We say that
graph(gy), ..., graphg,) meettangentially ifio, a]if given j, I € {1, ..., r} andx € [0, a] such thag; (x) = g/ (x),
theng;. (x) = g;(x). We say that grapg1), ..., graph(g,) pass through zero horizontallygf; (0) = g;. (0) =0 for
anyje{l,...,r}.

Lemma 4.3.Leta > 0and f1, ..., f be a family of distinct functions of clagé?”(]0, a[) whose graphs meet
tangentially in[0, a] and pass through zero horizontally. Define

Y= :g e (10, al): graphg) < |_Jgraphifi) ¢.

=1

ThenX is a bounded subset @27 (]0, a).

Remark 4.4.The fact that¥ is a bounded subset 6£([0, a]) was already observed in the proof of Theorem 6.4
of [4].
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Proof. Letg € X. Assume first thaf0, a] = Ule[ai, Bil, with d > 0 a natural number ard;, ;] intervals (with
O=ta1<Br<oaz<-<Bi-1<o0q < fqg:=a)whereg is equal to somgfj,. Let ¢ € C°(]0, a[). By Remark
4.4 we have thag € C1([0, a]), therefore

d
/g/go’dxzz / fi¢' dx

10,a[ =114, il
d d
=Z|:— / fl;,(pdx'i‘w(ﬁi)f[i(ﬁi)_(ﬂ(ai)f[:.(ai)i| =—Z / filpdx, (21)
=170 10 81 =lyo; il

where we used the fact that tife meet tangentially and the compactness of the suppert 06ing (21) it follows
thatg € H%7(]0, a[) and

.
lig"lLr 0. < Z £ 1P qo.aD)- (22)
1=1

Using (22) and the fact tha is a bounded subset 6#([0, a]) (Remark 4.4) we deduce that

gl z2rqo.ap < €, (23)

whereC > 0 is a constant independentpf

Assume now thag € X is arbitrary. Fix a dense countable subBet= {x¥} of [0, a]. We want to approximate
g in the weak topology 0f%7(]0, a[) with a sequencég, } C X such thatg, (x) = g(x*) foreveryk =1,...,n
and eachg, satisfies the hypothesis of the preceding step. To consfgugtwe proceed in the following way.
Fix n € N and relabel the first elements ofD in such a way that®:=0 < x1 < ... < x* < x"*1:= 4. We
can also assume thay, {x°, ..., x"*1} = D. We give the definition of, over each intervalx”, x"*1]. Let
h €{0,...,n}. We have two cases.

Casel. Thereexisté e {1, ..., r} such thatf; (x") = g(x") and f; (x"*1) = g(x"*1). In this case we sa}, := f;
on[x", x"+1].

Case2. For evenyi € {1, ..., r} either fi(x") # g(x") or fi(x"*+1) # g(x"*1). Define

gl.= inf{x € MM are(d, . ) fite) =g(x) and fi(x" Y = g(xh+l)}.

Notice thatx < &1, otherwise we are inasel; moreover, the fact thatis continuous and its graphs is contained
in the union of the graphs of thg imply thats® < x"+1. Finally, there id; € {1, ..., r} such thatf;, (§1) = g (&%)
and fi, (x"*1) = g(x"*1). We setg, := f;, on[£L, x"*1]. Now, if there isl € {1, ..., r} such thatf; (x") = g(x")
and f; (1) = g(¢1) we setg, := f; on[x", £1] and the algorithm stops. Otherwise we define

g2:=inflx e " £ 31 e (1, ..., r) filx) = gx) and fi(sH) = gD},

and sefg, := fi, on[£2, £1], wherelp € {1, ..., r} is such thatf;,(£%) = g(£%) and fi, (1) = g(&1).

Repeating the same argumeriimes,i an arbitrary natural number, the functigpis defined or{¢?, x"*1]
[x", x"*1] andg, agrees with one of th¢ on each intervalle/, £/-1], with j =1, ..., 1.

Observe that, if for somé € {1,...,i} andl € {1,...,r} we havef;(¢/) = g(£/) then, by definition o/,
fi(x) # g(x) for everyx € [x", £7]. Since we deal withr distinct functions, after a finite numbér < r of steps,
necessarily there ig € {1, ..., r} suchthatf;, (x") = g(x") and fi, (6%) = g(£X). Settingg, := fi, on[x", K],
we obtain that there is a finite number of closed intervals (with pairwise disjoint interior), whose union is the whole
interval[x", x"*1], whereg, agrees with one of the.

Now, repeating this construction for every=1, ..., n, we obtain the desired functig .

Recalling (22), we have that tHi¢%” norm ofg, is uniformly bounded with respect to It follows that{g,} has
a subsequence that converges weaklf (10, a[) to a certairg € H%7(]0, a[). SinceH%? weak convergence
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implies uniform convergence, we have tlgaindg coincide on the dense sBX, henceg =g on [0, a]. Therefore
g € H%>7(]0,a[) and (23) holds. O

Given an open interval and a functiory € H2P(I), we define
R Ig//l g N2
1

As proved in [4],P(g) equals the energf(y) of a simple curvey whose support is the graph gf The next
lemma is concerned witR-minimal connections between the origin and a given pgjnsee also Fig. 6.

Lemma4.5.Leta, f1,..., fr and X be as in Lemm4d.3. Set

{z1. .zt = {(a. @), ... (@, fr(@)]}
(observe that in generdd < r). Let

Yi={geXiga)=z;}, jef{l... h.
Then the problem

min{P(g,10,a[): g € X} (25)
admits a solution. Moreover if # [, there exist a minimizeg; of P over X; and a minimizerg; of P over X
such that the following property holdi for somec € 10, a[ we haveg;(c) = gi(c), theng; = g; on[0, c].

Proof. The weakH 2? sequential lower semicontinuity of the functiofi(l-, 10, a[) follows from [9, Theorem 3.4,
p. 74]. Using Lemma 4.3 it follows thaE; is H??-weakly compact for every € {1,...,h}. Therefore the
minimum problem (25) admits a solution.

bl o .
EZl
:Zz

c a
IZ3

o) !
/Zl
\:Z2

[ \
24

—H |

Fig. 6. These two figures show the construction in the pafdfemma 4.5. In the first figure we depict three solutigns j = 1,2, 3 of the
minimum problem (25), and2(c) = g3(c). In the second figure we depict the resulting minimizers: in this gase gz on [0, c].
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Let us fixgs € X1 solution of (25) forj = 1. Take a functiog, € X» solution of (25) forj =2 and let

5= Sup{x €[0,al: g1(x) =§2(x)}.

Clearlys < a. If s =0 then the graphs gf; andg> meet only at 0 and in this case we get= g». Suppose > 0.
Note that

P(g1.10, s[) = P(g2. 10, s[). (26)
Indeed, if not, assuming by contradiction for instance h@i1, 10, s[) > P (g2, 10, s[), we can define the function

~ _|g2 onl0,s],
§1:= g1 onls,al.

Using also Lemma 4.1 we hage € X1; moreoverP (g1, 10, a[) > P (g2, 10, a[), thus contradicting the minimality
of g1 overXs.
Now we define

__J&1 on[O,s],
82712 onls,al.

By (26) we haveP (g2, 10, a) = P(g2, 10, a[). Thereforeg, is still a minimizer of P(-, 10, a[) over X>. Now take
a functiongz € X3 solution of (25) forj = 3, define

o :=sup{x €[0,a]: eitherga(x) = g2(x) or g3(x) = g1(x)},

and make the same operation above to obtain the fungtion
Repeating the same argument for eaghwe obtain a family of minimizers of? satisfying the required
properties. O

Remark 4.6.The last assertion concernigg andg; in Lemma 4.5 is crucial in the proof of Theorem 5.1, since it
allows to locally modify an arbitraryZ?? system of curves into a new system verifying the finiteness property.

4.1. Finite unions of graphs, generalized multiplicity, canonical families

Definition 4.7.Letr e N\ {0}, I C R a closed interval and

Y = {(gls Ml)v ey (gr: Mr)}
be a family of pairs wherg; : I — R is a continuous function ang; € N\ {0} foreveryl =1, ...,r. We set

r

graphy) := _J graptig:).
i=1

We call the function
ny1graphy) > N\{0}, ny(x,y):= Y w, 27)
l:gi(x)=y
the generalized multiplicity of .

Remark 4.8.Let b be a real number with > max<i<- 1g/llz*qo,ap- Then

> ny(@ =) w Vxel0al

ze({x}x[—b,b))NgrapkY) =1

Clearly if all g; (x) have the same value at= 0, thenpy (0) = Y_;_; u; for anyx € [0, a].
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In the following lemma we do not assume that the union of the graphs of the fungtidits R ") is contained
in (N NRT.

Lemma 4.9.LetI" € H%7(S) be a system of curves without crossings. ket 0 e (I'), R = [—a, a] x [—b, b] be
a nice rectangle fofI") at p and set

{z1,...,zn} = () N ({a} x [—b, b]).

Lets eN, s > h, let{g1,..., g} C H>7(]0,a[) be a collection of distinct function§1, . .., us} € N\ {0}, and
Y :={(g1, 1), - - ., (&, is)}. ASsume that

— graphig1), ..., graphgs) meet tangentially ifi0, a] and pass through zero horizontally

- {(av gl(a))v MR ] (as gs(a))} = {Zly ceey Zh}y
— if (a,gi1(a)) =z; forsome € {1,...,s} andj € {1,..., h}, then the vecto(l, g;(a)) is parallel to T, (I);

— Y —11=0r(p).
If the generalized multiplicityyy of Y satisfies

ny(zj) =0r(z;) Vjel{l ... h}, (28)

then there exists a system of curvés H2(S), having the same number of curves Aswith the following
properties

(A)NRT =graphY) and 6, =ny ongraphY);
(M\RT={")\RT™ and 6,=6r outofRT.

Proof. LetI" ={y1, ..., ym}- As observed in the proof of Lemma 3.5, we have

m m 8y ()
r*ehH=r®ehH= Lik,

i=1 i=1 k=1
wherefr(p) = Zg"zlﬁ{yfl(p)} and I;; are closed, connected, pairwise disjoint arcsS,hfFix jefl, ..., hh.
Using (28) and (27) we havi{/;i: z; € i (Ii)} =0r(z;) = ny(z;) = Zl:(a,gl(a))zzj wi. Write I, = (s1, s2). AS,
foranyk =1, ..., m, the first components of the two vector%s1), y/ (s2) are either both positive or both negative,
we can apply Lemma 4.1 and obtain a nB\? curve whose image iR+ is given by graptg;) for somel such
that (a, gi(a)) = z;. Fixedz; we repeat the same argument for evégy such thatz; € y;(Z;x) in such a way
that, for everyl € {1, ..., s} such thatia, g;(a)) = z;, grapl(g;) is parametrized exactly; times. Repeating this
construction for every € {1, ..., h} we obtain the new system of curvds O

Definition 4.10.Let I" € H27(S) be a system of curves without crossings. pet 0 € (I') andR = [—a, a] x
[—b, b] be a nice rectangle fqd™) at p. Let{ f1, ..., f;} C H*>?(]—a, a[) be a collection of distinct functions and
{n1, ..., ur} C N\ {0}). We say that’ :={(f1, u1), ..., (f+, ur)} is a canonical family focI") in R if

(M NR=graphY)NR and 6p=ny on(I')NR. (29)
Lemma4.11.LetI" and R be as in Definitio.10. Then there exists a canonical faniilyor (I") in R.
Proof. Sinced takes nonnegative integer values, we can congider= min{6-(¢): ¢ € R} € N\ {0}. From (16)

and (13), it follows that we can fingh € Reg- N R such tha®r(g1) = 1. From (b) in Proposition 3.7, it follows
thatér = p1 on a whole connected componefit of Reg- N R containingg:. Now let f1 € H?%P()—a, al) be
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such thatC1 C graph(f1) € (I') N R (the existence off; is ensured from the fact that is a nice rectangle for
(I')). Then consider the function

. Or —u1 ongraphif),

Yi(MNR— N, ¥:= {ep otherw[i)se OMR,
and definegy := {¢ € int(R): ¥1(¢q) > 0}. As 61 verifies (15) we have thak; verifies the train tracks property
in int(R). Now, observing thatj; is still a finite union of H%? graphs, that the train tracks and the upper
semicontinuity properties still hold fa¥; and that Sing 2 Sing, , we repeat the argument above replaaing
with G1 and6r with ¥1. In this way we obtainu, := min{¥1(g): ¢ € R} € N\ {0}, a connected compone@ of
Regr NGy and a functionfs H?%P(]—a, al) such thaiCs C graph(f2) € G1 C (I'). Repeating this construction,
afterr < 6r(p) steps, we obtain thad,. 1 = @. In this way we construct a family := {(f1, u1), ..., (fr, r)}
such that

fi # f; foreveryl # j, sinceifl < j then graphf;) N C; =@ andC; C graph( /),
and satisfying (29). O

We conclude this section by observing that the ddin of canonical family for a system of curves could be
related with the notion of ¢ multiple function appearing in varifolds theory, see for instance [16].

5. Main result on the approximation of systems of curves

The following theorem is the crucial approximation result for systems of curves of Hiagsand is one of the
main results of the paper.

Theorem 5.1.Let I" be a system of curves of clagg>?(S) without crossmgs Then there exist a parameter
spaceS a limit system of curves € H2P(S) equivalent tol” and a sequencfly} of limit systems of curves of
classH27(S) satisfying the finiteness property, such that

~

I'v—=T weaklyinH?”(S), Nlim F(I'y) = F(I),
— 00

and

(Fy) S ('), F(Fy) <F(I') VN eN.

Proof. The proof is divided into three steps.
Stepl. We construct a sequenggy} C H%7(S) of systems of curves (not necessarily limit systems of curves)
such that, for everyv € N, the following properties hold:

- (An) € (),
— Ay verifies the finiteness property;
- F(AN) S F(D).

Fix N € N. For anyp € Sing- let R(p) be a nice rectangle faf' centered ap, with diameter strictly smaller
than 27V, By (12) the set Sing is compact, hence there apg, .. ., Pm(n) Points of Sing- such that
m(N)

sing- ¢ () R(p). (30)
i=1
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Recalling (14), we can assume thdl) N dR(p;) C Reg, for anyi € {1,...,m(N)}. In order to construct the
systemAy we use a recursive algorithm consistingmtN) steps. We proceed as follows: Iﬂl{)\’ =1, let

1<i <m(N), and suppose that’ ; has been defined. Then! is obtained by modifyingA" ; only on
int(R(p;)), in particular(AN) \ R(p;) = (AY ;)\ R(p;), in such a way that:

() (A)) S AN );
(i) AN verifies the finiteness property in {®(p;));
iy FAY) <F(AY;
(iv) AZN andA{‘il are defined on the same parameter space.

Let us defineA . To simplify the notation, we assume that= 0, thatT), (A" ;) coincides with ther-axis
and thatR(p;) = [—a, a] x [—b, b]. We shall work or(A{"_l) N R*(p;), since the modification o,ﬁ{"_l on the set
(A¥ )N R~ (p;) is similar. Because of the assumptions®(p;) and the inclusio4 ;) € (I"), we have that
(AN ) N ({a} x [—b, b]) consists of a finite set of distinct point3, ..., z;, labelled by theiry-coordinate. Let
Ui, £} C H>P(10, a[) be the family of distinct functions such th@t ) N R* (p;) = Ulr;graph(fﬁ).

Foranyj e{1,...,h} let

t:={g €C’([0,al): graphg) < (A ) NRT(p), gla) =z}
Consider the problem

min{P(g, 10, a[): g€ Z‘;T},
whereP is defined in (24). According to Lemma 4.5, for every=1, ..., h we can select a functiogl;r € E;r,
minimum of P over X7, such that, ifj #/ and if for somec € 10, a[ we haveg ] (c) = g/ (c), theng = g," on

[0, c]. Thenwe replace allthg, ..., £ withthegy ..., ;. Observe thatJ;_, graphig;") < Uj 1 graph(f;H).
Now consider the family' + := {(g, 9A4V,1(Zir))’ (gt QA(\il(Z;))} and letny+ :graphY ) — N\ {0} be the

generalized multiplicity ofr *.
Let f,", z7, E;, & » GF(Z;), Y~, ny- be the analog for the intervgl-a, 0] of the spaces, functions, points,
families and]densities that we used in the construction on the intgx\ual.

. + .
Sinced v (p) = iy QA’{V_l(Z;!:) and, by constructlorﬁAiN_l(zf) = ny+(z}) we can apply Lemma 4.9 and

find a system of curves i 27 (S), which will be ourAfV, whose trace and density function outsilep;) are the
same amﬁl, while onR ™ (p;) (respectively orR~ (p;)) the trace is given by gragh™) (respectively grapty —))
and the density function agrees with+ (respectively withny-). By construction, and recalling Remark 4.6,
properties (i), (ii) and (iv) hold (note tha’[{\’ verifies the finiteness property 0\,@]-@- R(pj)).

To prove the validity of (iii) we need thconcept of canonical family. Since the supports of the system of curves
coincide outsideR(p;) it is enough to verify inequality (iii) insid&® (p;).

Using Lemma 4.11 we can choose a canonical fanbil;", ui)..... (. uf)) for (AY ) in RT(pi).

r

Observe thafzy, ...,z } = {(a, fi @), ..., (a, fF(@)} andh <rt < 04 (Pi).
Recalling Definition 4.10 it follows

rt r-
F(AY L (A )T Rp))) = Do P(f10.al) + 3wy P(f;7. 1-a. 01). (31)
=1 =1

Note also that
Z ,L,izeAiN_l(sz) Vje{l,... h}. (32)

Lfif(@)=z7
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We now group the terms in the summat@)“;l as follows:

rt nt
SowP(f0a) =" Y wP(fT.10.al). (33)
I=1 J=L LR @)=z
We observe that for any and anyi such thatffr (a)= zj, the minimality property Of;;' entails
P(f*.10,al) = P(¢},10,al). (34)
Therefore, from (32)—(34) we deduce
rt nt
Yo w P 10.al) = Y 0,n (P(g]10,al). (35)
=1 =1
Similarly
r- h~
Don P(f1=a.00) > 30, ()P (g 1-a.01). (36)
=1 j=1 '
Using (31), (35) and (36) it follows
ht h
F(ALy (ALD M Rp0))) 2 D6,y @P(gF.10.al) + D 6,v (P85 1-a.0f)
Jj=1 j=1
=F(AY, (AN THRP)), (37)

and (iii) follows.
We now define

AN = A - (38)
We have

(AN) = (Al yy) S (A 1) S+ S (AY) = (D).
Consequently Sing, < Sing,, and by construction Sir)g, = Nod,, . Furthermore, sincety verifies the
finiteness property ohj?;(llv) R(p;) 2 Singr and(Ay) C (I"), we have thatA y) verifies the finiteness property
onR2. Finally, from (37), we have

F(AN) = F(A) (y) S F(A) (vy_p) < - < FD),

and this concludes the proof stepl.
Step2. We prove thaf Ay} has a subsequence weakly convergingl/h?(S) to a system of curved, which
is not necessarily a limit system of curves, but is equivalert to
Since(Ay) € (I') and
SupF(An) < F(I),
NeN
we can apply Theorem 3.1 of [4] and find a subsequence (still indicatgadiRy) which converges weakly in
H?%7(S) asN — +oo to a system of curved such that A) C (I').
We want to prove that\ ~ I'. To this aim we want to use Lemma 3.11. We start by proving that= (I").
Let p € Reg-. Since Sing = (I") \ Reg- is compact, we have digt, Sing;-) > 0. So, for everyN with
1/2V < dist(p, Singy), the pointp is outside the region where we made our modifications and therefore there
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is a whole neighborhood gf where the support ol y and its density function are the same as the support and the
density ofI". Thereforep € Reg, and Reg C Reg,. Hence, recalling (13) and the inclusion) < (I"), we get
(I') =Reg- C (A). So(I") = (A) and therefore Reg= Reg, .

By construction we haver =64 on Reg- = Reg,. Hencel” ~ A by Lemma 3.11.

Step3. Construction of the sequen{:EN}.
_ LetusfixN e N. As Ay verifies the finiteness property we can apply Theorem 2.24 and find a parameter space
Sy and a limit system of curveBy € H2P(Sy) such thatSy has a number of connected components uniformly
bounded with respect to/; I'v ~ Ay and I'y is the strongH?2?-limit of a sequencel'y.x}n C H2P(Sy)
of oriented parametrizations of boundadaoth open sets with equibounded energy aﬁdRz)-cogverg@g to
AR, = AQN. Passing to a suitable subsequence (still labelled by the iNjexe can suppose th&y =S for
anyN.

Sincely and Ay are equivalent, fronstepl we have Sing, = Nodp, < Sing,- and, using Lemma 3.9, we
have

F(I'y)=F(An) < F(D). (39)

Furthermore fromstepl we also hanFN) (An) € (I'). Therefore we can apply Theorem 2.10 and find a
subsequence (still indicated by ) whose elements are all defined Snand weakly converging iH2%? to a
system of curveg’ € H2 P(S). Using the same argumentsst&p2, one can prove thdt ~ I".
Finally
FN)=FT)< lim inf F(Iy) <limsupF(I'y) < F(I),
— 00

N—o0

and thereforem (I') = limy_. oo F(Fy). O

Fig. 7 illustrates the construction of the sequeficg} of Theorem 5.1 in a particular situation.
The following result is an improvement of Theorem 2.24.

Corollary 5.2. Let I" be a system of curves of clagg>?(S) without crossings. Then there exist a parameter
spaceS a system of curves” e HZP(S) N A(A%.) equivalent tol” and a sequencgly} of oriented
parametrizations of bounded open smooth #&§sc RZ such that

Ey — A% in LY(R?), I'y—T weaklyinH?"(S), Jim F(Iy) =F(I). (40)
—00
In particular
F(A%) < +o0. (41)

Proof. Let I e H?P(S) and{fN} be as in Theorem 5.1. The convergentthe energies, together with the weak
convergence, implies that lign, o [ T ll2., = 1T ]|2, », hence the strongl??-convergence of [y} to I". Write
Iy :=0EyNn, Wherel'y ; are introduced in the proof agitep3 in Theorem 5.1. Using a diagonal argument we
can select a subsequeni@€y , }, which for simplicity we denote byEy}, such that the sequen¢ely} of the
oriented parametrizations of the elementg Bf;} converges strongly i/ P(S) to I". Therefore, sincd” ~ I,

we have

Iim F(I'y)=FT) =F).

It remains to prove thakEy — E in Ll(Rz) and thatl” e A(E). For everyN € N we havexg, (z) =Z(I'y, z)
for everyz e R?\ (I'y) andxa~(z) = I(T', z) for everyz € R?\ (I"). By the continuity property of the index and
the Dominated Convergence Theorem we have fhat= A, — Af in Ll(RZ) asN — oo. Using the fact that
I ~ I we havedj = A% = E, so thatEy — E in LY(R?). Moreover,]” € A(E). O
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E;

@)

Fig. 7. The sefE := E1 U Eo U E3 has smooth boundary except for the simple cuspBjoéind E. The boundary of the smooth connected
componentEgz oscillates and meets (from above) infinitely many times the horizontal line connecting the two cuspse L4&tE) be such
thatdr =1 on Reg-NJE anddr =2 on Reg- N(R2\ 8E). The systent y is obtained through the desingLitmtion procedure described in
Theorem 5.1, while the systei), is obtained through the desingularization proceddréheorem 6.3. The main difference between the two
systems is explained in Remark 6.5. These two systems of curves are equivalenutmf the two respective (dotted) nice rectangles, and
have density constantly equal to 3 inside thetangles. The energies of the systeffisconverge taF (E) (this will be a consequence of the
results of Section 8) whereas the sequence itself does not converge to an ele@gnt/of.

Remark 5.3. Inequality (41) was proved in [4, Theorem 6.2], under the further assumptiotisatisfies the
finiteness property. Removing this assumption is one of the interesting and useful aspects of Corollary 5.2 (and of
Theorem 5.1).

6. Representation formulas forF

According to Theorem 2.25, the function8lE, -) is not local. As a consequencg,does not admit an integral
representation. In this section we study how to repregeas a minimum problem involvingF, considered as
a functional defined on systems of curves. Using tools of geometric measure theory (gemaiglized Gauss
graphg in [10] there are some partial results in this direction.

The following result is an improvement of (9).

Proposition 6.1.Let E c R? be such thafF (E) < +o0. Then

F(E)=min{F(I'): I' € A(E)} =min{F(I'): " € A°(E)}. (42)

Proof. Thanks to (9), to show the first equality in (42) it is enough to prove that

F(E) <inf{F(I): I' € AE)} (43)
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and that the infimum in (43) is attained. Givéhe A(E), let{I'y} and{Ex} be as in Corollary 5.2. Recalling that
Ar=A%,|EAAr| =0, using (5) and (40) we have

F(E) <liminf F(Ex) = lim F(Iy)=F),
h— 400 N—+o00

and (43) follows.

Now we select a sequendé),} of smooth bounded open sets convergingftan L(R?) and such that
limy— 00 F(Ep) = F(E). As in the proof of [4, Lemma 3.3], we can find a parameter sgfica system
I' € H%?(S) and a sequendd’,} ¢ H%7(S) of oriented parametrizations of smooth bounded opensets Ey,
dE), C JEy, such thatI,) are all contained in a bounded subseRgfindependent ok, E;, — E in L1(R?) and
I, — I weakly in H2?(S) ash — +oc. To show that the infimum in (43) is attained, it is enough to observe that
I e A(E) and

F(E)= lim F(Ey) > liminf F(E}) = liminf F(I'},) > F(I') > F(E),
h—+00 h—+00 h—+o00
where we used the Weagz’l’ lower semicontinuity ofF on systems of curves and (43).
Let us now prove thaf (E) = min{F(I"): I" € A°(E)}. As a direct consequence of the above arguments and
the inclusion4(E) € A°(E) we haveF (E) > inf{F(I'"): I € A°(E)}. On the other hand, the opposite inequality

can be proved as in the proof of (43), using the fact fi#ak A%.| = 0. Eventually, the proof that the infimum in
A°(E) is attained follows from the inclusioA?(E) 2 A(E) and the above observationsa

Definition 6.2. Let E C R? be such thatF(E) < +oo. Any I" € A(E) (respectivelyl” € A°(E)) satisfying
F(I') = F(E) will be called a minimal system of curves #i(E) (respectively in4°(E)).

Theorem 6.3.Let E C R? be such thafF (E) < +oo and suppose thaing, ;- is a finite set. Lef” € A(E). Then
there exist a sequengé;,} C Osin(E) and a system of curvds ~ I such that

I, —~T weaklyinH%?, lim F(I,) =F).
n—-+00
In particular

F(E)=inf{F(I'): I' € Qsin(E)}. (44)

Remark 6.4. The setQsn(E) is not empty only ifd E* has a finite number of singularities. Indeed, for every
I' e A(E) we have Sing 2 Sing, z-; therefore, if Singg is infinite, I" cannot verify the finiteness property.

Remark 6.5. The main difference between Theorem 6.3 and Theorem 5.1 is that in Theorem 6.3 we are able to
approximatel” under the additional constraint that

E*=int(Ap UI)) VneN. (45)

The difficulty to keep (45) true is related to the following observation: even if the singular poirt& ofre
isolated, it may happen that they aecumulation points of singularities 6f'), see Fig. 8; similarly, there may be
(an infinite number of) regular points 6™ which are singular points (or accutation points of sgular points)
of (IN).

Remark 6.6.We shall see in Section 8.1 that the infimum in (44) in general is not achieved.
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Fig. 8. A cusp ofd E which is accumulation point of singular points bt

Proof of Theorem 6.3. Write I' = {y1, ..., ym} : S — R2. Recall that, a® E* C (I"), we have Sing+ < Singy-.
Let acging(I") be the set of the accumulation points of Sindrix n € N. For everyp € acGing(I") let R(p) be a
nice rectangle fo(I") at p with diameter less than 2 such that:

— (I')NAR(p) C Regr (recall Corollary 3.4);

— if p¢ 9E* thenR(p) € R?\ dE*;

— if p € Sing, .~ thend E* is represented iR ™ (p) (or in R~ (p)) by a finite union of graphs aff%? functions,
all passing througlp, that do not intersect each other at any poinkdf(p) \ {p} (or of R~ (p) \ {p}) and

1 :
Mczn, C :=ﬁs|n%E*, M = ”91“”[‘00((1“)’7_[1). (46)

Note that these graphs coincide with all pointg 59 N (R(p) \ {p}) with odd density (in general may have
even density, for example if it is a cusp pointaf™*).

F(r.rYRrp)) <

Select a finite family{R(p1), ..., R(psw))} covering the set agpg(!"). Since Singg- is finite, we can also
assume thatR(p1), . ... R(ps))} satisfies the following additional property:

p €Singyp: NacGing(I") = R(p) € {R(p1), ..., R(psw))}-

The construction ofI},} is divided into two steps.
Stepl. We construct a sequenga, } ¢ H%7(S) of systems of curves such that

(@) OE* C (An) S (I);

(b) [A AE*|=0;

(c) Sing, NJE™is a finite set;
(d) lim,— 400 F(Ap) = F(I).

In the construction of A, } we are not able to bound the energy/f with the energy of”; however, we can prove
that condition (d) is valid, andt the same time the constraint in condition (b) is fulfilled.



866 G. Bellettini, L. Mugnai / Ann. I. H. Poincaré — AN 21 (2004) 839-880

In order to constructi,, we use a recursive algorithm consistingsdf) steps. LetA? :=I', let 1<i <8(n)
and suppose that the systeri ; of curves of clas#12" has been defined. Thet! is obtained by modifying
A_; only onint(R(p;)), in such a way that:

® th:dset of the points ofA}) where@Aiy is odd is the same as the set of the points4f ;) whereeA;_zil is
odd;
(i) Sing,r NR(pi) NIE™ is afinite set;
(iii) the following estimate holds:
o if pj € Singg-,

M .
52" if Pi EReg)E*

| F(AL1, (A7) TH(R(p))) = F (A} (ADTHR(p)))| <

We suppose; =0 andR(p;) = [—a,a] x [—b, b]. If either p; € R? \ 0E™ or p; ¢ acGing(A7_;) then we set
A= A?_;in R(p;), and (i)—(iii) are trivially satisfied.
Let us now suppose that € acGing(A?_;) NIE™. Write

k
R (pynaE* =(_Jgraphe;"),
=1
with k > 1, ¢;" € H>P(10,al), ¢; (0) =0 for everyl = 1, ..., k and¢;" < ¢j on]0,alforl<l<j<k (k=1
Define
O —1 onlJj_;graphg;),

Ui (A" )NRT(p))— 2N, W= 2
(Ai) (Pi) = Oar otherwise in(A”_)) N Rt (p;),

and setX := {g € int(R*(p;)): ¥(q) > 0}. As p; € acGing(A”_,), from (16) it follows thatHA;_zil(p,-) > 1, hence
pi€X. Sinceé?,‘;v_1 verifies the train tracks property in (R (p;)) and (A7_ N int(R*(p;)) is a finite union

of H>? graphs, we have that also is a finite union ofH>” graphs meeting tangentially and passing through
zero horizontally. Furthermorg, verifies the train tracks property and is upper semicontinuous i®tp;)).
Finally, we remark that, since the set of points wh@}ggl is odd coincides witmf‘zlgrapk(qsl*) (possibly, for
k > 1, with the exclusion op;), theny,, is everywhere even.

Arguing as in the proof of Lemma 4.11 we construct a canonical family

Y e={h 2u) L (L 2ut) ) c H2P(10,af) x (2N {0})
for (¥, X) in R*(p;), hence

X =graphy ™), ¥ =ny+ oONX.
We now define

Yr={@], D, @, D, (20D, (L 200 )
We have

graphy ") = (A7 )N RY(p),  np+=04r, on graphy™).

If R~ (p;)NIE™ # ( we repeat the same constructioriin (p;). We now proceed in two different ways depending
on whetherp; € Sing, z« or p; € Reg,z«. The casep; € Sing, z« is easier, since by assumption Sjpg s finite.
On the other hand, there may be an infinite number of regular poini&dfwhich are accumulation points of
singular points of”, and this makesase2 more delicate.
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Casel of stepl. Suppose; € acGing(A}_;) N Sing;z+ (a situation like the one depicted in Fig. 8).
In this case we havie> 1. Letl € {1, ...,rT} and define

k

j=1

We replace the functiorf;" with the functiong;" defined as follows: it; = 0 theng;" := £,*. If & € 10, a] there
is a uniquej € {1, ..., k} such thatff(g,) = ¢j(g,); in this case we set

+ ._ ¢7 On[ovél]a
&= £t on[&,al.

Roughly speaking, the above definition means that the grap@fotoincides withdE* in a small half-
neighborhood of;, thus leading by construction to the finiteness property6bn R (p;) N I E*.
Define

Fo={@. D, 0F. D, (g 2u]). L (g 2] (47)

By constructionR™ (p;) N dE* C grapiZ™*) € (A7_;) N R*(p;). In addition the set of points of gragh™)
wheren,+ is odd coincides with the set of points &f (p;) whereé?A;;_1 is odd (which coincides, in turn, with
RT(pi) NAE*, possibly with the exclusion of;).

If R=(p;) NIE™ 2 {p;} we repeat the same constructionRn (p;).

As dR(pi) C Regr C RegA?_1 and np+ = 9,1511, we have thatyz+ = GAj-Ll on ({a} x [=b,b]) N (A}_y)
(respectivelyn,- = Oar, on ({—a} x [=b,b]) N (A7_1)), so we can apply Lemma 4.9 and find a system of
curves inH%7(S), which will be our A%, such that(A?) N R*(p;) = grapi(Zz*) and 9A2’\Ri<p,.) = nz=+, While
(A]) = (AT_) andeAn = eAn outside ofR(p;).

By construction we have that (i) and (ii) are satisfied. Furthermore

SUPOan =0 (pi) =041 (pi) = SUPOpr  =---= SUPOan = SupOr <M
R(pi) R(pi) R(pi) R(pi)

Since(A?) € (A7_;) € (I'), we get, using (46),

F(A7. (D RG0)) < MF(. T R(0)) < o (48)
and (iii) follows.

We now consider the most difficult case.

Case?2 of stepl. Supposep; € acGing(A;_;) NRegg+.

We keep the notation introduced at the beginningtepl, but we omit the super/subscrifat since we directly
work on the whole oR(p;).

Using the assumption that is a regular point fod E* it follows that
R(pi) NOE™ =graphe),

whereg € H>?(1—a.al), and$(0) = ¢/(0) = 0. Let {z7 . ..., 22} := ({£a} x [=b, b)) N (A]_p). Fix f; with
1<I<r. Let

Ii:={x e[—a,al: itx)#p@)} =] I,

keN
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where thely, are open pairwise disjoint intervals. We replace the functjomith the functiong; defined as follows.
If I; is composed by a finite number of connected components then we+etf;. Otherwise, letr € N and define
8o € H*P(1-a,al) as

8l.o ‘=

¢ only withk > o and=a ¢ 91y,
fi otherwise if—a, a].

The requirementta ¢ 31k is needed to ensure that the conditions on the lateral boundaR(mf remain
unchanged.

Observe thag;_u = f/ on[—a,a]\ U,@a Ik andggfa = f/" almost everywhere op-a, a] \ U,@a 1jx. Since
liMy - oo Zk>(, H(Ix) = 0, using the absolute continuity of the Lebesgue integral, we can chposes N
such that

1
‘P(fl,]—a,a[)—P(gl,a,(n),]—a,a[)\<77(fl, U Ilk)+7)(¢s U Ilk)<2'18(n)r' (49)

kzaoy(n) k=0 (n)

Repeating the same arguments for evéry {1,...,r} we obtain a collection of functionggs,..., g} C
H?P?(]—a, al) defined ag; := 8i.o;(n)- L€t us consider the family

Z:={(.1). (g1.2111). ... (gr. 2u) }. (50)

By construction we hav&(p;) N dE* C grapi(Z) C (A7 ) N R(p;), graphZ) N dR(p;) = {77, ..., z]i} and
nz=0ar_ ONOR(p:). Applying Lemma 4.9 we obtain a system of curvegfi?(S), which will be ourA?, whose
trace and density function outsid¥ p;) are the same afi}_,, while (A7) N R(p;) = graph(Z) andeA;_z =1nz on
grapi(Z). By construction we have that (ii) is satisfied; moreojyee graph(Z): n(q) is odd = graph¢). Hence
(i) is valid. Using (49) we obtain

| (A7, (ADTHR(p))) = F (AL, (AL TH(R(p)))]

= (P(qb,]—a,a[) +22m7’(g1,]—a,a[)) - (7’(¢,]—a,a[) +22m7’(fz,]—a,a[)>‘

=1 =1

M
2n8(n)’

<MY |P(g1.1-a,al) = P(fi.1-a,al)| < (51)
Hence (iii) is valid and this concludes the proofdase2.
We are now in a position to conclude the prooktépl. Define

A, = Ag(n)

By construction we haveE™ C (A,) € (I") andg(Sing,, N E™) < +o0. Furthermore since the set of all points
where A, has odd density is the same as the set of all points whdnas odd density, from Proposition 3.13, we
obtain thajA9 AE*|=0. Therefore (a), (b) and (c) hold.

Since by construction the support and density function6fand A?_; agree outside oR(p;), we have, using
also (iii),

§(n)
<Y JF@An - FAr )|

i=1

| F(An) = F(D)| = | F (Al — F(AY)

8(n)

=Y |7 (A} (A THR(p0)) — F ALy, (A7) TH(R(po))]

i=1
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= 2 [P @pTHRG))) - F(ALy (AL THR (D))

i: pieSing gx
— n n — 1+M
Y AL AT RG) - F(AL (A RD)) < T2
i pieReg g

Hence also (d) is valid, and the proofsiepl is concluded.
Step2. We construct a sequentg,} ¢ H27(S) of limit systems of curves such that

(@) 9E* S (I) S (Ap);

(b) |AR,AAY9 |=0;

(¢) Sing;, N(R?\ JE*) is a finite set for any € N;
(d) F(I;) < F(Ay) foranyn e N.

In order to construcf;, we use a recursive algorithm consistingsgh) steps. Letly := A,, 1 <i <48(n) and
suppose that’” ; has been defined. Thei}" is obtained by modifying™/” ; only on int(R(p;)), in such a way
that:

(i) the set of the points ofl"/") Whereepin is odd is the same as the set of the pointsidt ;) whereé?pl_n_1 is
odd;
(i”) R(p;) N Singq» N(R?\ dE*) is finite;

@i’y F, (I YRp)) K FA L, (I D HR(p))).

We proceed in two different ways depending on whethes d E*, p; € R?\ dE*.
Casel of step2. Supposep; € IE*.
Repeating the construction at the beginningtepl we can find a family

Gt i={@].D.....@F. D, i 20, ...l 20T} € H#P(10,a[) x (N {0}),

such that the functions; are all distinct anag;" < ¢7— on]0,a] fori < j, and

k
R (pynoE* =|_Jgraphe;);
=1
R*(p)) N (I}"4) = graph(G™);
ng+="0rn, inRY(pp).

Notice that if p; € Sing, ;. (respectivelyp; € Reg, ) the functiong;" coincides with the functiog,;" of casel
of stepl (respectivelyt = 1 andq&jr coincides withg g+ (,,) Whereg is the function ofcase2 of stepl).

We want to modify(77" ;) N R(p;) leaving the functiona>;r unchanged in order to fulfill {j, while, to obtain
(i), (iii"), we want to replace evenyfr with a functionv;r whose graph has energy lower than the energy of the
graph Oful+ and the graphs of th@Jr intersect each other tangentiadlpd only a finite number of times.

To this aim we let

== {v e (10, al): graphv) C grapiG™), v(a) =u;f (@)}, 1efl,...,r}.
Applying Lemma 4.5 we obtain a family], ..., v".} ¢ H?7(]0, a[) such thaw;" is a minimizer forP in X,

and ifv;" (¢c) = v;r (c) for somec € 10, a] theny;" = v;r in [0, ¢]. Then we consider the family

HY = {05, D, ..., ¢ D, of .20, ..., 0F, 205)) € H2P(10,al) x (N {0}).
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We remark that(I" ;) N dR" (p;) = grapiH™) N dR™ (p;). In addition, if z € grapiH™) N IR (p;) then
N+ = ng+@) = Hpi»il(z). Finally we note that, by constructiomy+(q) is odd if and only ifg €
Ui_1 graphis;") (possibly with the exclusion gf;).

Then we repeat the same constructio®in(p;).

As all the hypotheses are fulfilled, we can apply Lemma 4.9 and obtain a system of E}'}r\zeHz’l’(S) such
that(I'"") N R*(p;) = grapiH ™) and (01 r=(p) = N+

Since

ri
(I (®*\IE*) N R*(p))  |_J graphv})
=1

and the set of singular points pjl’ilgrapr(v,i) is finite we have thaf’/" satisfies (if). Furthermore

F(r (i HR(p)))

k— kt r- rt
=Y P(#;.1-a.00) + Y _P(¢. 1=a.00) + > _ 207 P(v; . 1—a.0) + > 20} P(v;",10,al)
=1 =1 =1 =1

Kk~ Kt r pe
<) P(#;.1-a.0) + > _P(#;.1-a.00) + > _ 207 P(u; . 1-a,0) + > _ 20" P(u;, 10, al)
=1 =1 =1 =1
= F(ILy. () 7 (R(p0)).
which is (iii’).
Case2 of step2. Suppose; € R?\ JE*.
In this case we obtain}" simply repeating the construction useatepl in the proof of Theorem 5.1. Since we
supposed thak(p;) € R2\ E*, in R(p;) there are not points af") or of (I'";) with odd density. Therefore the

set of points of I'7}") Whereepin is odd coincides with the set of points@f;” ;) Whereepin_1 is odd, by construction
we have

F(r (Y (R(p))) < F(I g, 7)Y (R(po)))
and(I7") verifies the finiteness property R(p;). This concludes the proof atse2 of step2.
We are now in a position to conclude the prooktép2. Define
I, = an(n).

Applying Theorem 5.1 we can find lanit system of curves which is equivalent 1¢. Let us still denote by
I, this new limit system of curves. Since we did not modify the set of points with odd multiplicity, thanks to
Proposition 3.13 we have thaAp,,AA‘/’LJ = 0 which is the assertion df’). By construction we havé E* C

(I) € (An) S (I'), andg(Singy, N (R?\ dE*)) < 400 which are the assertions af’) and(c’). Furthermore,
.7:(1—',,)2.7:(1—'5”(’1)) <‘7:(F5n(n)_1) SR gj:(rf) g]—‘(]“é’):]—‘(An),

which provesd’) and this concludes the proof step2.
Now, using the properties of, andT;,, we can conclude the proof of the theorem. Thank®jo(b’), we have

|AR, AE| < |ArnAAY |+ A% AE| =0,

and hence (45) holds. Since evdryis a limit system of curves and (45) holds, using Remarks 2.23 and 2.20, we
have{l},} c A(E). Givenn € N, from (c) and(c’) it follows that (I},) verifies the finiteness property, therefore
{I} C Qiin(E).
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By construction we havifr, || < |0 |lL~ and from(a), (¢) it follows that(I7,) € (I"), hence

SUpF(I;) < +oo.

neN
So we can apply Theorem 2.10 to obtain a subsequence (still indicatel, Py H>7-weakly converging to a
certain system of curvek. Again as in the proof of Theorem 5.1, due to the fact that the diameters of the nice
rectangles used to cover the setgagcl”) uniformly decrease to 0, we obtain

Regr = Reg, (07)|Regx = (0)|Reg; -

These relations, together with Lemma 3.11, imply that I".
Using (d), (d"), Lemma 3.9 and th&/%? weak lower semicontinuity of, we have

F(M)y=FT)< IimJirnf F(I) <limsupF ()
n——+0oo

n—-+00
n—+00

n—-+00

Eventually, assertion (44) is a direct consequence of (42) and the assertions conggrhingn

Fig. 7 illustrates the construction of the sequefilgg of Theorem 6.3 in a particular situation.

7. Regularity of minimal systems inA(E)

In the following theorem we prove a regularity result for minimal systems of curves. We limit ourselves to study
the regularity of( ") in R?\ 8 E* and locally around regular points, since we know thas without crossings and
the optimal regularity focI") in Reg- N E* is given by the local representation with functions of cl&ags?.

Theorem 7.1.Let p = 2 and letE c R? be such thatF(E) < +oco. Then every minimal systef of curves in
A(E) verifies the finiteness property in any open sulbsa_Rz \dE*.

Furthermore, every connected componB8nof Reg- N U is an analytic curve and its curvature verifies the
equation

2

d 3 1
ZFK—FK —k=0, se[O,H (B)]. (52)

Proof. Let I" be a minimal system inl(E) and fix an open st € R?\ 3 E*. The proof consists of two steps.

Stepl. Every connected componeBitof Reg- N U is an analytic curve and its curvatweverifies (52).

Let B be a connected component of RegU; B is a one-dimensional submanifold & of class H2?2
and 61 is constant and even oB. Let «:[0, H}(B)] — R? be a parametrization by arc length &f let
n € C([0, H1(B)]) and consider the curve; : [0, H1(B)] — R?, & := a + 1. For |¢| < 1 we have(a,) N
[(I')\ B]=@. Using Lemma 4.1, we can find a system of cur¥es A(E), whose trace is given by

() =[(I"\ B]U (@),

andér, =60r on(I") \ B, while 6, on («,) assumes the same constant valué;obn B. Since the set of points
with odd multiplicity of /" and I, coincides, using Corollary 5.2 and Proposition 3.13, we can find a system of
curvesly € A(E) which is equivalent td. Therefore, from the minimality of” on A(E), we have

lim Fla+en) —F(a) _

e—0 &

0.
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Using [13] and the regularity theory of ordinary differential equations, it follows thetan analytic submanifold
of R? and (52) holds.

Step2. I' verifies the finiteness property .

Suppose by contradiction that there existse R? \ d E* such that” does not verify the finiteness property
in U. Hence acging(1") N U+Q. Letpe acGing(/) N U and letR(p) = [—a, a] x [—b, b] be a nice rectangle for
(I') at p such that

R(p) €R?\ JE*;
#(RT (p) NSingr) = +00;
(I NJAR(p) C Regr.

Let

Y = uD), - (T D) C HPP(10,al) x (2N {0))
be a canonical family for" in Rt (p). For everyi, j € {1,...,r} let

Iij = {x €[0,al: (x, fi+(x)) = (x, f;r(x)) € Singp}, & ==supx: x € I;;}.

Note that, sincél”) N dR(p) C Reg-, we havean ¢ I;;. If 0 < &;; < a then, due to the minimality of" in A(E)
we have

P(f;7,10,&;1) =P(f;.10, &1). (53)
Indeed, suppose by contradiction tﬁ%(tff, 10,&;;D < P(f;r, 10, &;]). Setting

/ f;r on[&;;,al,

from Lemma 4.9 and Corollary 5.2, we can find a system of cuies A(E) such that(f) N RT(p) =
graphy). 07 g+, = ny, whereY is obtained fromy by replacingf; with f;. HenceF(I") < F(I") which
contradicts the minimality of ", and (53) is proved.

Usingstepl we have that eac}‘“fr is analytic on the intervdD, &1, whereg; := supé;;: 1< j <r}. Therefore,
if I;; is infinite thenfl.Jr = f;r on [0, &;]. It follows that ™ verifies the finiteness property RT(p) and we have
a contradiction. O

Remark 7.2.In the general casp € ]1,+oo[, p # 2, arguing as in the proof of Theorem 5.1, for a fixed

U € R?\ dE* itis possible to prove that there exists a minimal system of cufves.A(E) verifying the finiteness
property inU. The Euler equation for a functional whose integrand is a smooth functiercah be found in the
literature, see for instance [13, pages 63, 64]. In this case a regularity result (similar to the one in Theorem 7.1)
holds, at least on compact subsets where the curvature does not vanish.

8. Characterization of the setsE with F(E) < +o0 and finite singular set

As a consequence of Theorem 5.1 and Corollary 5.2 we have thaEanyR? with F(E) < +oo can be
approximated, both il.1(R?) and in energy, with sets having a finite number of singular points. Our purpose is
to give a characterization of the subset&Rafwith finite singular set (and finite relaxed energy). Throughout this
section we will always suppose thatc R? has continuous unoriented tangent, that is piecewiseH%” and
that Sing is finite. HenceE™ = E and for everyp € Reg,; the setE can be locally written as the subgraph of
an H2? function defined o7, (E).
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The following definition is contained in [4, p. 282] diis needed to “count” the number of singularitiesdaf
with an appropriate multiplicity.

Definition 8.1. For everyp € Sing,; we define the balanced multiplicity; £ (p) as
lp* (p) —p~ (p)I
2 9
wherep™ (p) (respectivelyp™(p)) is the number of distinct graphs necessary to caetp) N 9 E (respectively
B (p) NAE), forr > 0 small enough.

wye(p) =

Remark 8.2. As observed in [4, p. 282]p™ (p) — p~(p)| is even for anyp € Nodyr = Sing, ;. Indeed, given
p € Nody g, there exists > 0 such thatB, (p) contains both points of and ofR? \ E, the intersection between
0B, (p) anddE is transversal and hence the number of the elemem&af 0 B, (p) is even. Ifr is sufficiently
small, this number coincides wiih" (p) + o~ (p), which has the same parity td*(p) — p~(p)|.

The following result is contained in [4, Theorems 6.3, 6.4].

Theorem 8.3.We have
> w(piseven = F(E) < +oc.
peSing g
Furthermore ifSing,; = {p1. ..., p»} and p; is a simple cusp point for every=1, ..., n, then
F(E) <400 = niseven (54)

Actually, a more refined result can be proved. Indeed, the following theorem holds.

Theorem 8.4.We have

F(E)<+oo = Y  wyr(p)iseven
peSing g

Theorem 8.4 is based, among other tools, on formddg &nd on Theorem 8.3; since no new techniques are
needed, we omit its proof, which can be found in [5].

We now want to prove Theorem 8.6, which is afehe main representation results f&rof the paper.

Let E c R? be such thaiF (E) < +oo. Suppose that Sipg is not empty, finite and composed only by simple
cusp points. Using Theorem 8.3 we have

Singyz ={p1, p2, ..., p2m}, M eN\{0}.

For everyp; € Sing,z we choose a unit vecter(p;) normal toT,, (9 E) in such a way thabgrE (pi) Z Py (pi).
Accordingly, the llf-nice rectangleR ™ (p;) corresponds tp ™ (p;).

Definition 8.5.Let E c R? be as above. We definB(E) as the set of all collection@n, ..., o} of curves such
that

() oi € H>P(0, 1) and|do; /dt| is constant for every=1, ..., M;
(i) if o;(t1) = o (t2) for somery, 1> € [0, 1] thendo; (11) /dt anddo;(t2)/dt are parallel; moreover ; (1) € 9E
for somer € [0, 1], thendo; (¢) /dt is parallel toTy, ) (OE);
(iii) 0i(0),0i(1) € Sing,; foreveryi € {1, ..., M}, and there exists a bijective application betwée(0), o1(1),
...,om(0), o (1)} and Sing;
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(iv) foreveryi e{l,..., M}

dCT,'
dt

(0) is parallel toT,,,(0)(d E) and points in the direction at~(0;(0)),
do’,' . . . . .
E(l) is parallel oy, (1)(d E) and points in the direction at™* (o; (1)).

It is immediate to see that the SB{(E) is not empty.

Theorem 8.6.Assume thatF(E) < +oo and thatSing, consists of a finite number of simple cusp points
{p1,..., p2u}. Then we have the following representation formulafgi):

F(E)= / [1+ Ikoel?]dHE +2 min F(o). (55)
oceX(E)
Reg)

Proof. The proof is divided into three steps.
Stepl. We have

F(E) > / [1+|/caE|p]dHl+2 inf F(o). (56)
oceX(E)
Regg

Thanks to (44), to obtain (56) it is enough to prove that for evéry Qjin(E) we can findop = {01, ...,01} €
X (E) such that

FI) > / [1+ leagl?]dHE + 2F o). (57)
Reg ¢

We will see thab - satisfies alsgo) C (I').
Let I € Qsin(E). For everyg € Sing;- 2 Sing, ;, we denote byR(¢) a nice rectangle fof” atq such that
R(g) N Singr = {q}. (58)
Moreover for everyy € Singr \ Sing,; we make an arbitrary choice of a normal unit vectoXity atg so that
RT(q), R~ (q) are defined.
Let us construct;. From now on with the symbdl; we denotet1 or —1. Accordingly, for every; e Singr
we write R% (¢) in place ofR*(q) whens; = 1.

Construction ofo1. Set(Go, Yo, (g0, 80)) := ((I"), 61, (p1, +1)). Suppose we have definég;, ¥;, (g;, 8;)) for
somei > 1, with:

(a) WG 1—> N, ¥:= {ij 2 g;‘g'_'l\Hb Gi:={z€Gi_1: ¥i() >0}, (59)
whereH; C G;_1 is a connected component of Regq such that¥;_1 > 2 is constant orH;; ¢; € Singy- is a
point of the relative boundary dff; (which is composed either by _; itself, and in this case we understand
thatg;—1 = ¢;, or by two points{g;_1, ¢;} C Singy); H; crossesk ~%-1(g;_1) and reachesg; crossingr% (¢;);

(b) the functiony; verifies the train tracks property in the rectangig) for everyq € G; N (Singr- \{p1, g:});

(c) if gi # p1 we have

Yo w@= ) W@+
z€GiNIRT (p1) z€GiNIR™ (p1)
moreover

=%l = Y W= )  Y@F2

z€GiNART (q;) z€GiNIR™(gi)



G. Bellettini, L. Mugnai / Ann. I. H. Poincaré — AN 21 (2004) 839-880 875

81_ o ,f:.fﬁfl

Fig. 9. The construction af; in stepl in the proof of Theorem 8.6.

(d) if g; = p1 ands; = —1 then

Yo W= ) wU@+4

z€GiNdR* (p1) z€GiNdR~ (p1)

(e) if ¢; = p1 ands; = +1 then

Y, W= ) %

z€G;NART (p1) z€G;NAR~(p1)

Let us construct the first step € 1). Sincepy := qo is a simple cusp point ang- verifies the train tracks
property, we can find a relative connected component of-Relgich crosseR ™ (p1) and over which¥g := 6 is
constant= 2. Hence we can defing, ¥1, (g1, 81)) satisfying properties (a)—(e), see Fig. 9.

Let us now explain in which way the algorithm constructs the stepl from the stepi > 1. If {z €
dR% (q;): W;(z) > 2} = ¢ then, from the hypothesis that Sjpgis composed only by simple cusps and (d),
(e), we have thag; € Sing, \{p1}; in this case the algorithm stops and we set

(01):=171U---UI7,~.

Otherwise, in view of (c), (d), (e) and (58) we can find an arc of regular point$’dfwhich is contained irG;,
crossesk % (¢;) and is such tha®; > 2 is constant on this arc. Lé{f;,; be the connected component of Beg
containing this arc and I§;, ¢;+1} be the relative boundary &f; 1 (possibly withg; = g;+1). Again from (b)—(e)
we have that; > 2 is constant orff; ;1 and H; 1 reachesy; 1 crossingr%+1(g;,1). In addition, setting?; 11 and
Gi+1 as in (59) withi replaced by + 1, we have, thanks to (58), th&f; 11, ¥it1, (gi+1, 8i+1)) satisfies (b)—(e)
replacing everywherewith i + 1, see Fig. 9.

Therefore we can iterate the algorithm as specified above. $ire@sin (E) we haves Sing;- < +o0, hence the
algorithm stops after a finite numberof steps. Furthermorg, = p;, € Sing,z \{p1}. Indeed, if by contradiction
qn = p1, from (b)—(e) we could iterate the algorithm also at siep 1.
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We now define
(01):=171U---U17,,.

Since H; and H;1 haveg; as a boundary point and belong to opposite half planes with respect to the normal
line to G; at¢;, using Lemma 4.1 we can fingy € H27(0, 1) parametrized with constant speed and such that
(o1) =U_1 Hi (I, 01(0) = p1,01(1) = pj;.

Construction ofos. In order to obtaino2) (which is meaningful in the case that the number of cusps is larger
than 2) we make a similar construction, but taking into account that parts ohave already been “deleted”
with a suitable weight in the construction ef. As we shall see, we will also modify the sEtlocally around
the two pointsps, pj, in such a way thap; and p; becomes regular points of the new set. We start from
(G3. ¢, (pj,, +1)), wherep , € Sing \{p1, pj,}, andGd, ¥ are obtained as follows. Let

0r(z) — 28{o; ")} if z € (o),

or(z) if ze (I")\ (01),

Sinceps, p;, are simple cusp points, fatr € {1, j1} we have
R(pm) NOE = R*(p,) NOE = graph(¢]') U graph¢y).

where ¢!, ¢3' are functions of clas#12?. Now, form € {1, j1}, we replace graplpy’) U graph(¢y') with the
support of a curver,, € H>7(0, 1) such that(a,,) C R(pm); (@) N () NINt(R(pm)) = {pm}; o jOins the two
points grapkyy’) N 9R™ (pn), graph¢s’) NIRRT (pn); am intersectgI") tangentially. Then we define

)= { Gh = {ze () : Wi > 0).

¥y ongg \ Ume. o). 1e(1.2) 9rapiig;"),
1.1 1._ o1yl
Yo =19 —1 onU,eqw . reqn2 9raphig), Go:=1{z€Gg:¥y(z) > 0}.
1 on(ay) U (ajy),

By constructionll/ol verifies the train tracks property (ﬁé and everyz € g& admits a nice rectangle fcﬁé
at z. Hence we can repeat the construction we used to oltgito geto, € H2?(0, 1) joining Pjs» Pjs €
Sing; \{p1, pj,} with p;, # pj,. Note that(o2) C (I').

Iterating this argument exactly/ times, we obtain the desiredl- € X (E). Now we observe that, since
(op) C (I, Or(z) = Zzi"ilﬁ{afl(z)} by construction andI") 2 dE, we also have (57). This concludes the
proof of stepl.

Step2. Giveno = {01, ...,0y} € X(E) we can findl', = {y1, ..., ym} € A°(E) such that

F(ly) = / [1+ Ikop|P]dHY + 2F (o). (60)
Reg g

We start noticing that if we set

M
G:=J)UdE, w:G—>N\{0}, ¥():=
i=1

{Zziﬂilﬁ{ail(z)} if z¢€ Uiﬂil(gi) \ Reg,,
1+2Y Y, 80,1 @) if zeRegy,

we have thatG admits a nice rectangle at anye G, ¥ verifies the train tracks property of and 9E =
{ze G: ¥(z) =1 (mod2}. Recall that since Sing is finite, then Reg, consists of a finite number of (relative)
connected components, whose (relative) boundary is composed by at most two distinct pointg af Sing

For everyp; € Sing, let R(p;) be a nice rectangle fo§ at p; such thatR(p;) N Sing,; = {p;}. Recall
that for everyp; € Sing); the unit vectorv(p;) normal toG at p; is such thatR™(p;) N Reg,; # ¥ and
R~ (pi)NRegg =14.
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Construction ofy;. We will constructy1 by gluing together the parametrizations of the elements of a finite
ordered chain composed by oriented relative connected components,gf &etjoriented supports of elements of
o. Let () C G be the support of a curve of classH2? connectingp;, p;j € Singy g (with p;, p; not necessarily
distinct) such thatr has constant speed. From now on by writag (p;, p;)) we mean that we move alor(g)
starting fromp; and reaching;.

Let K; be a relative connected component of Reglf K, does not have relative boundary th&n is an
embedded closed curve of clag&” and hence we can find a curye € H2?(S1) which is a constant speed
oriented parametrization ok1 and we stop. Let us suppose thK1 = {p1, p2} with p1, p2 € Sing;p not
necessarily distinct. We s@t = (a1, (p1, p2)), wherew; is the arc length parametrization &f. Suppose that we
have already constructed a chain

Fi = (a1, (p1. p2)), (@2, (2. P3)), - - .. (i—1, (pi—1, P)). (e, (pis Pit1)),
such that

(@) p1 € Singyg foreveryl e {1,...,i +1};

(b) if / is odde; is the arc length parametrization of one of the relative connected components gf Ragng
pi, pi+1 @s boundary points;

(c) if I is eveny; is the arc length parametrization of the support of the unigueonnectingp;, p+1;

(d) if I #m are both odd thelw;) N («,) = @; if 1 is even there is at most an evan# [ such thatla;) = (o).

Firstly we notice that, since if is odd (respectively eveny, starts crossingR™ (p;) (respectivelyR~(p;)) and
reaches;;1 crossingR™ (p;+1) (respectivelyR ™ (p;+1)), thanks to Lemma 4.1, we can glue together alldhe
in the order, and obtain a unique constant speed crneH?2%7(0, 1) whose support is given blyJ;_1(e). In
addition, thanks to (d) we have thét satisfies

B )} <w (@) Ve B, (61)

henceg; covers(o;) at most twice and once each (relative) connected component gf;Reg; ).

Now if i is odd (respectively even) and we can find a cusyehaving as starting or ending poimt 1
(respectively a connected componé&hpf Reg,; having p;+1 as boundary point) such that there is at most one
even/ € {1,...,i} such thaio;) = (¢;) (respectively for every odde (1, ..., i} we have(o;) # K), then we set

Fir1 =T, (@iv1. (pit1. pit2)),

wherec; 11 is the arc length parametrization ¢f;) (respectively ofK) and p; 12 is the other extreme of;
(respectively{ p;+1, pi+2} = dK). Otherwise we stop.

Since Reg; consists of a finite number of (relative) connected components aaahsists of a finite number of
curves, the above construction stops after a finite numlodisteps. It is immediate to check that- 3. We claim
thatn is even angb,,+1 = p1. Suppose by contradiction thats odd. Theny, parametrizes a connected component
K of Reg,; such thaf p,, p,+1} is the relative boundary ot andn > 5. Furthermore as our construction stops,
there are two even numbelsn € {1,...,n — 1}, I < m such that(w) = (a,) = (o), Wherego; is the unique
element ofo havingp,1 as starting or ending point.

This means that we crossed twi®e (p,+1) at the stepn <n — 1. If I <m < n — 1, since there is at most
only another relative connected component of Rebaving p,,+1 as a boundary point, in view of (d) we have a
contradiction. Ifm = n — 1 then (¢,—1, pn+1, pn) @andl < n — 3 (notice that: — 3 > 2 asn > 5). Therefore as
in the previous case since there is at most only another relative connected componentofi&egg p,+1 as a
boundary point, in view of (d) we have a contradiction. Hends even. With a similar argument and using the
fact thatn is even, one can prove that1 = p1.

As already noticed, we can find a constant speed cgneH27(0, 1) such thai8,) = Uj—1(ap). In addition,
as p,11 = p1 anda, reachesp; crossingR~(p1), while a1 moves frompy crossingR™(p1), we can find a
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constant speed curva € H2?(S1) such that(y1) = (8,) and also by (61)1{y1_1(z)} = ﬁ{ﬁ;l(z)} < Y () for
everyz € (y1).

Construction ofy,. To obtainy, we repeat the same construction used to obgajrbut this time we start
from Gy :={z € G: ¥1(z) > 0}, where¥1(z) := ¥ (z) — ﬁ{yl_l(z)} and taking into account thaty verifies
ty; "@)) < 1)

Since the number of connected components of,Reg finite and each component eof starts and ends
at a boundary point of a relative connected component of; Reijerating this procedure we obtaifi, :=
{y1,...,¥Ym} such that(I',) = Uf‘il(m) UJE andér, = ¥. Hence (60) holds. Moreover, since by construction
{ze (Is): 0r, (z) =1(mod 2)} = 9 E*, by Proposition 3.13 we also havg € A°(E).

As a consequence sfep2 and (42) we get

F(E) < / [1+IkoplP]dH +2 inf F(o).
ceX(E)
Regg
Hence bystepl we deduce

f(E): / [1+|K3E|p]dH1—‘r2 inf F(o).
oceX(E)
Reg

The proof of the theorem then follows from the following final step.
Step3. There existg € X' (E) such that

/ [1+ koel?]dH +2F5) = / [1+ Ikae|P]dH + 2 inf, F@). (62)
[AS]
Reg ; Reg
Let I" be a minimal element inl(E). Thanks to Theorem 6.3 we can pick a sequeitg ¢ H27(S) N Qfin (E)

converging tol” in H%7, Letor, be the elements of'(E) constructed irstepl, i.e., such that (57) holds with
replaced byl},. Since(or;,) C (I,) we get

F(E)<limsup | [1+|kgelP]dH  + 2F (o) < Nim F(r) = F(E).
n— 00 e
Reg g

Due to the strong convergence of the sequgigé and the finiteness of Sipg, we can find a subsequence of
{0} which converges to a certaine X' (E). Using the lower semicontinuity of on X (E) we have (55). O

Eventually let us sketch very briefly how the representation formula (55) can be proved removing the
hypothesis that every element of Sjpgis a simple cusp point (see [5] for a more detailed proof). Met=
% >_pesing,, @o£(p). Recall thatM € N by Theorem 8.4. In order to considleach singular point with the correct
multiplicity, let us represent the sgf € Sing, . wae(q) # 0} ={p1, ..., pa} as follows:

{q € Singyr: wak(q) #0} ={p1. p2, ..., pam},
whered < 2M, p; = p1 for every 1< j < wye(p1), and p; := p; for every j with Z;,;l]_wBE(ﬁh) <Jj<

> _1 @y (Pr) andeveryi =2, ..., d.

Definition 8.7.We defineX (E) as the set of all collectiongr, ..., o)} of curves such that properties (i) and (ii)
of Definition 8.5 hold, and

(iii) 0:(0),0:(1) € Sing,; for everyi € {1,..., M}, and there exists a bijective application betwegen(0),
01(1),...,om(0),om (1)} and{g € Sing, . wyE(q) # O};
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(a)
S, El
@
G e
2 o,
(b) ()

Fig. 10. (a) shows the easiest example of formula (55)Eifis the set consisting of two drops (as in Fig. 1), th&iE) equals
fRe%E[l + |kyg|P1dHY plus twice the distance between the tsimple cusp points. (b) and (c) (wheEe consists of four drops) show
that ¥ (E) does not necessarily reduce to a unique possible collegtipn. ., o).

(iv) foreveryi e{1,..., M} either

do’,'

dt

(0) is parallel toR.v(0;(0)) and i;" (1) is parallel toRv (o7 (1))

or

‘Zf (0) is parallel toRv (o; (0)) and d; (1) s parallel toR.v (oi (1)),

whereR, (respectivelyR) denotes the rotation aof /2 in clockwise (respectively counterclockwise) order.

Notice that (jii) implies that foi € {1, ..., m} we haveg; (0) = p;,, 0; (1) = p;; € Sing, andig # i1 (however
the pointsp;, andp;, may coincide).
The proof of (55) then follows by

(a) suitably approximating with a sequencék,} of sets obtained by modifying locally around each point
of Sing,; in such a way thad E,, = 9 E outside the union of a family of nice rectangles of diameter strictly
smaller than 12" covering Singg, and in addition Sing. is composed only by simple cusp points;

(b) suitably passing to the limit as— +oo in the formula (55) wheré is replaced by,, which is valid thanks
to Theorem 8.6, see [5].

8.1. A counterexample
Using Theorem 8.6 we show an example of aidbr which the minimum in (44) is not attained.

Proposition 8.8. There exists a sef with § Sing,; = 2 such that7(E) < +oo and the minimum of over the
classQjin(E) in (44)is not achieved.

Proof. Let E; with j =1,2,3 be as in Fig. 7: they are three connected sets, whose closure are pairwise disjoint.
The setE3 is smooth and contained ity > 0}, while E;, i = 1, 2, are smooth except for the poipt, which is
a simple cusp pointp; = (—1,0), p2 = (0, 1). The unoriented tangent ®FE; at p; is thex-axis,i = 1,2. We
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suppose that the oscillating part ®@f3 touches the segmeifit-1, 1[ x {0} an infinite number of times. Since the
segment joiningp1 and p» is an absolute minimizer faF in X' (E) the thesis follows from Theorem 8.6 0

Corollary 8.9. There exists a sdf C R? such thatF(E) < +oo, with only two simple cusp points and such that
the minimal system inl(E) has multiplicity equal t@® on a set of positivé{! measure.

Proof. Itis enoughto choose, in Proposition 8.8, theBgin such a way thad E3 intersect§—1, 1[ x {0} on a set
of positive ! measure. O
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