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Abstract

We solve the Riemann problem for a class of resonant hyperbolic systems of balance laws. The systems are not strictly
hyperbolic and the solutions take their values in a neighborhood of a state where two characteristic speeds coincide. Oul
construction generalizes the ones given earlier by Isaacsoneangld for scalar equations and for conservative systems. The
class of systems under consideration here includes, in particular, a model from continuum physics that describes the evolutiot
of a fluid flow in a nozzle with discontinuous cross-section.
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Résumé

Nous résolvons le probléeme de Riemann pour une classe de systémes hyperboliques non-conservatifs et résonants. Ces s
temes ne sont pas strictement hyperboliques et les solutions considérées prennent leurs valeurs au voisinage d’un état const:
ou deux des vitesses caractéristiques coincident. Notre construction généralise celle donnée précédemment par Isaacson
Temple pour les équations scalaires et les systemes conservatifs. La classe générale de systemes étudiée ici comprend, en |
ticulier, un modele important de la dynamique des milieux cargtiqui décrit I'évolution d'n fluide dans une tuyére dont la
section est discontinue.
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1. Introduction

In this paper we study the Riemann problem for a general class of nonlinear hyperbolic systems of balance laws
which is motivated by the Euler system of compressible fluids in a nozzle with variable cross-section (see (1.9)
below). Precisely, we are interested in the Riemann problem for the nonlinear hyperbolic system

8tu+axf(u’a)=g(uaa) axa’ (1'1)
da =0, 1.2)
with initial data consisting, by definition, of two constant staies, ;) and(ag, ug):
| ur,ar), x<0,
(u,a)(x,0) = { wn an) x>0, (1.3)

The unknowns are the two functions= u(x, t) € R” anda = a(x) € R.

It is assumed that the flux-functioh= f(u, a) in (1.1) is a given smooth mapping such that, for each value
a €R, f(-,a):R"— R" is strictly hyperbolic; that is, for eacl € R" the Jacobian matri®, f («, a) admitsn
real and distinct eigenvalues

M,a) << Aiy(u,a)
and, therefore, corresponding basis of left- and right-eigenvektars:), r;(u,a) (i =1, ..., n), normalized so
that

‘r,-(u, a)| =1 Lwa)-riwa)=1 1Iliwu,a) rjw,a)=0 ifi#j. (1.4)

We also assume that each characteristic fiel®p§ (u, a) is either genuinely nonlinear or linearly degenerate,
that is, for each =1, ..., n, the function(u, a) — V,A;(u, a) - r;(u, a) never vanishes or vanishes identically,
respectively.

In addition, we observe that Eq. (1.2) trivially corresponds to a linearly degenerate field with eigenvalue

Ao :=0.

We are interested in studying the problem (1.1)—(1.3) when the Riemann data lie in a neighborhood of a state
(ux, ay) at which one of the wave speeds of (1.1) also vanishes, that is, we assume that for sornke index

Ak (Us, ax) = Ao. (1-5)
Thek-characteristic field is assumed to be genuinely nonlinear, so after normalization
(Vuhi - 1) (s, ay) > 0. (1.6)

Throughout this paper, we restrict attention to data in thef®@il, o) with center, and (small) radiugg > 0
and we impose on the functiorfsandg the following two conditions

(I - Oa f — &) (ux,as) #0 (we assume that it is negative), (1.7)

(Ik - Dyg . 11)(uys, ax) 70  (we assume that it is negative) (1.8)

which, as we will show, give the generic structure of elementary wavegngar,). By continuity, we can always
assume that (1.6)—(1.7) still hold for alle B(u, 80) anda € B(ax, o).
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Hyperbolic systems of balance laws, having the fafroonservation laws with a source arise in many applica-
tions. Most notably, the Euler equations for a fluid flow in a nozzle with cross-sectional aredx) read (see for
instance [11]):

pu
00 + 0x (ou) = - Ora,
2

u
0 (pu) + 0, (ou? + p) = == .0, (1.9)
dr(pe) + Bx((,oe + p)u) = —@ 0xd.

Here,p > 0 denotes the density of the fluid the velocity,p the pressure, andis the total (internal and kinetic)
energy. The equations express balance laws for the mass, momentum, and total energy of the fluid through th
nozzle.

We emphasize that the model (1.1)—(1.2) has two important features. On one hand, it contains a nonconserve
tive productg(u, @) 9,a which cannot make sense within the framework of the theory of distributions. Instead, a
rigorous definition of weak solutions must be based on the theory of nonconservative products due to Dal Maso,
LeFloch, and Murat [22—24,12]. See in particular LeFlo28][for a review of several applications, including the
model (1.9) above. On the other hand, (1.1)—(1.2) is non-strictly hyperbolic: for works on resonant systems we refer
to Marchesin and Paes-Leme [31], Embid, Goodman, and Majda [13], Glimm, Marschall, and Plohr [14], Isaacson
and Temple [18,19], Liu [28-30], Lien [27], and Marchesin, Plohr, and Schecter [32]. The construction proposed in
this paper can be regarded as an extension to resonant nonconservative systems of [18] (conservative systems) a
[19] (scalar, nonconservative equations). For other important related works, including the construction of Riemann
solutions and numerical schemes for equations similar to (1.9), we refer to Amadori, Gosse, and Guerra [1,2,15],
Andrianov and Warnecke [3-5], Asakura [6], Botchorigh¥werthame, and Vasseur [7], Bouchut [8], Chen and
Glimm [9], Greenberg and Leroux [16], Jin and Wen [20,21], and LeFloch and Thanh [26].

2. Preliminaries
By setting

U=@a), FU):=(f@a).0), cw);:[g g(uda)]

the set of Egs. (1.1)—(1.2) can be regarded as a nonconservative systeiilafquations:

Ui+ (DyF(U) — G(U)) Uy =0. (2.1)
We denote byR; (U),i =0, ..., n, the corresponding right-eigenvectors of the mabxF (U) — G(U). Clearly,
we haveR; = (r;,0),i = 1,...,n. The vectorRg is associated with the eigenvaliig and will be determined
shortly.

First, we discuss some consequences of our assumptions (1.5)—(1.8). By the implicit function theorem, (1.6)
guarantees that the equatib(u, a) = 0 defines (locally) @moothr-dimensional manifoldf R*+1,

T :={(u,a), u € Bu, 0), a € B(ax, 80) / A (u,a) =0} C R,

which passes through the stdfg := (u., a,) and will be called theransition manifold.The integral curves ofy
are transversal t@ ', and this property allows us to distinguish two “half-spaces”

T%:={U € B(U,,80)/forall V € T, Ry(V) - (U — V) 2 0}.
We now determine thaght-eigenvectoRg(u, a). Thanks to (1.7) the Jacobian matrix

DuF(U) —GU) = [Dgf aafo‘ g}
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has rank: on 7 in a neighborhood ot/,. We claim that the eigenvectofy and R; can be chosen outside the
manifold 7 in such a way that they remain continuous across the mariifolthis is clear for the vector fiel®y.
The vectorRg =: (rg, bg) must satisfy

(Oaf —8)bo+ Dy f.ro=0. (2.2)

If we search for the componentin the general formp = Y _"_; «;r; and we multiply (2.2) by each left-eigenvector
[; we obtain

li - (0af —8bo+ Xio; =0,

which determines the coefficiest. Hence, imposingp to be a unit vector, we find

"
R0=C<—Zfli : (8af—g)ri,kk), (u,a)¢ T,

i=1""
where the normalization coefficieat- 0 is given by

?:=xk+z<;zi.(aaf—g)) . (2.3)
i=1 "t

It is now easy to check that, as the statea) approaches the manifoll, we haverg — r; andbg — 0, and that
Ro can be extended smoothly to the manifold and coincides Rjite- (¢, 0) on 7, in other words,

Ro(u,a) — Ry(u,a) - 0 as(u,a) approacheg . (2.4)

In particular, providedg > 0 is sufficiently smallJRo(U) — Ry (U)| < & for [U — Uy| < 8 < 8p.

To parametrize the wave curves it will be convenient to introduce at this stage a globally defined parameter
wi (1) € R which should depend smoothly uparand be strictly monotone along the wave curve. More precisely,
we assume that the parametegris given such that

Vi) -ri(u) #0, u e B(ux, 8o) (2.5)

(here and in the sequelis kept fixed and we will neglect it while it does not play a role). In view of condition
(2.5), when the field is genuihenonlinear a natural choice for; is the wave speet);, while there is no canonical
choice for linearly degenerate fields. In particular,ifef k we will set

pi(u) = rr(u), u € B(ux, o), (2.6)

and we will reparametrize the wave curves accordingly. For smedy, i, € B(uy, 81), ande > 0, we will de-
note bym — v (m; uy,) the Hugoniot curve (or shock curve) consisting of all right stateshat can be connected
touy by ak-shock of speedy (m; ur), and bym — wy(m; uy) the rarefaction curve grametrized so that we can
refer to

oy uwmsur), o moe (—e, i (up)],
> Yi(ms ) = { wr(myup), me[ur(ur),e) (2.7)

as thek-wave curve issuing fromy, (for details, see for example [25, Chapter VI]). We will also use the notations
Seur) = {vm;ur), me (—e mx(ur)]}
Ri(ur) :={wi(m;ur), m € [ur(ur), )},
Wi(ur) :=Sp(ur) U Rk (ur) = {Wx(m;ur), m € (—¢,6)}.
Thanks to (2.5) and (1.6), we can choose the parametercoincide withuy, that is:
ik (Wems up)) =m. (2.8)
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In this situation, by setting: :=m — ux(ur), we have the following expansion for the shock curve
i m? -3
ve(myup) =up + ——re(ur) + 5——— (Dri.ri + bri) (ur) + O@m®), (2.9)
a(ur) 2a(uy)

and the corresponding shock speed satisfies

Tlms up) = h(ur) + 2a’(7;L) (Vi - re)(ur)
+ e (V(Vk - i) -1+ eV - ) (ur) + O, (2.10)

wherea = V. -1y = Vg -1 # 0 andb, ¢ are smooth and real-valued functions@f, while the expansion of the
rarefaction curveuvi (m; u) takes the same form as (2.9). Derivation of (2.10) gives the following expansions for
the partial derivatives oty (m; ur):

_ 1 W 3
Omdo(msup) =5 + @(V(V)»k -1%) - 1% + Vg - 1) + OGR?), (2.11)
_ 1 7
Vikmiu) =5 Vi e - g(wwk 7)1k 4 eV 1) + OGi2) (2.12)
(l

(wherery =ri(up), ik = h(up), a =a(up) = Vg - ri(ur)).

Given some statéu_, a_) we now investigate the properties of two important curves, that will play a central
role in the construction of the solution of the Riemann problem. First we studstaineling wave curyelenoted
bym — (¢, a)(m; u_,a_), made of all states which can be attained by using time-independent smooth solution of
(1.1)-(1.2). Second, we consider the compaséasformed standing curve, made of states which can be reached
by a standing wave followed by a shock wave with zero speed. We state the properties of these curves in the
following two lemmas.

Lemma 2.1.Given some staté:_,a_) € 7 consider the standing wave solution @f.1)—(1.2) denoted byn
(¢, a)(m; u_,a_) and determined by

(p.a) =y (m)Ro(p, @),

pO)=u_, a0)=a-,
for some smooth scalar functiornim) bounded away from zero and such thd0) = 1/a(u_). Then we have
1 (Vi -ri)(u—,a-)

&' (0)=0 and «"(0)= Caw_)2 (- (Baf —g)(u—,a-) ”

0. (2.13)

Proof. We have

{ o =y(mbo(p, @), { (0) =a_,

@' =ymyro(p,a), pO)=u_.

The standing wave satisfies

3af01/ + Duf‘P/ = 805/:
that we rewrite as

Ouf —g) o +D,f¢' =0. (2.14)
We decompose the vectpf along the right-eigenvector as

n

9= ci(m)ri(m). (2.15)

i=1
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Sincey’(0) = (1/a(u_))ro = (1/a(u_))rr, we must have; (0) = 0 fori # k andci(0) = 1/a(u_). Differentiating
(2.14) with respect te: we obtain

d

(Oaa f — 8ag)(0/)2 +@uf —8) o + Dy(0a f — 8) (p’o/ + %{Dufw/} =0. (2.16)
We can rewrite the last term of the left-hand side using the decomposition (2.15). In fact,

Duf ¢ =Duf Y cim)ri(m)="y_ ci(m)ri(m)ri(m),

i=1 i=1

and thus

4ip fe't= ic/»(m))\'(m)r'(m) + ic(m)i{k-(m)r'(m)}

dm u P i i i P i dm i i .
At m =0 we havey, (0) =0 ando’(0) =0, hence

n

> 020 ri(0) =) c/(0) 2 (0) i (0)

i=1 i#k
and

ﬁécmwf%xmnrmﬂ
o i dm i i

1 1 /
m=0 = a(ui) {a(u) V)\'k - Fk + 3(1)\](05 (0)}rk

(u—.a-)

(VAg - ri)ri

- a(u,)z (u—,a_)

We now evaluate (2.16) at = 0, and we obtain

1
Ouf =)+ cihiri + ———(Vix - rre =0.

2
ik au-)
Finally, multiplying on the left by (u_, a_) yields
1 VAr -1k

a”(0) = > 0,

(u—,a—)

a2 b Baf —8)
where we have used the hypothesis (1.7)

Remark 2.2.Lemma 2.1 shows that the standing wave curve that passes thtbugh(u_, a_) € 7 touches the
hyperplane: = a_ only atU_ and does not cross it. The sign assumptions in (1.6) and (1.7) imply that the curve
lies above the hyperplane, and crosses any hyperplanei, a; > a— exactly twice in a neighborhood &f_.

We note also that givem_, a_, a connecting state, can always be found far, > a_, while fora, < a_ this
is true only as far as; > «(0; u_, a_). This means that smooth stationary flow is always possible for expanding
ducts. On the contrary, for contracting dsithe change in area must not be too large.

We now describe the transformed standing curve corresponding to a given standing wave curve. By the sign
assumption in (1.6), shock curves cr@sgrom 7+ to 7 . By the Rankine—Hugoniot condition

slul = [ fw)].
the 0-speed shocks £ 0) cross7 at a constant value of.
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Denote byZ(m; u_,a_) = (p(m), a(m)) a given standing wave curve (here we will assum®; u_,a_) =
(u_,a_) e T). For a given statéu;,a;) = (p(my),a(my)) € T+, (my > 0), on this curve, defing; andii,
such that the state®, ar) and (i, ar) lie on the other side of at the same-level and belong, respectively,
to the same standing wave curve and to the same level curyeasfthe statéa; ,u;). Thatis,uy; andi; must
satisfy

(ur,ar) = (¢(mg), a(mg)) (2.17)
(for somem g < 0) and
flur,ar) = f(ur,ar). (2.18)

Definition 2.3. The transformed standing curveorresponding to a standing wave curdém;u_,a_) =
(p(m), a(m)) is the curve

{w,a)eT 1 a=a(m), fu,a)= f(pm),a(m)), m > 0}.

Lemma 2.4.1f l; - Dg .ry < 0, then for each standing wav&(m; u_, a_), the corresponding transformed standing
curve lies closer to the transition surfa@ethan Z. That is,

mr(ar) < pug@rp) < 0.

If I - Dg . ri > 0, then the corresponding transformed standing curve lies farer from the transition sufface
thanZ. That s,

m(ip) < pug(ug) <O.

Note that the conditiofy - Dg . ry < 0 above also arises in the analysis by Lien [27] on conservation laws with
a moving source.

Proof. We denote the positive and negative branches of the standing wave curve as

| (pr(m),ar(m)) if m=>0,
(pm), am) = { (p—(m),a_(m)) ifm<O.

Each of these branches can then be parametrized by

((p+(m),a+(m))—>®+(a), aza_,
((p_(m), (x_(m)) - ®_(a), a>a-_.

We compute

flar,ar) — fur,ar) = f(emg), a(mg)) — f(p(mr), a(m))

:/[Dufgo’—i—&afa’]dm
:/g(go(m),oz(m))o/(m)dm

mrp

0 mpg

= / g(p+(m), ey (m)) o, (m) dm + / g(p—(m), a—(m)) a’_(m) dm

my, 0
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a_ ar,

=/g(<1§+(a),a)da+/g(¢_(a),a)da

ar, a_
ar,

:/[g(cb_(a),a) —g(@.,_(a),a)] da.

Hence

a;, 1

I (f(zZL, ap) — f(ur, aL)) = //lk . Dg(sCD,(a) +(A—s5)Di(a), a) . (CD,(a) - <D+(a)) dsda, (2.19)
a- 0
that is different from O thanks to (1.8). Hence the two curves are distinct. On the other side by (2.18) we have

e (flar,ap) = f(ur,ap)) =l (fGir,ar) — fGir,ar))

1
Z/Zk . Duf(SL_tL +(1- S)ﬁL,aL) (g —up)ds
0
~Alp-(up —ur), (2.20)

wherei, < 0 sinceiy, iy € 7. Identities (2.19) and (2.20) imply that

lk-Dg.re<0 = peur) <px(ar), (2.21)
lk-Dg.re >0 = p(ur) > pr(ur) (2.22)
(seeFig. 1). O

In the next section will be also useful to know the mutual position of the transformed standing curve corre-
sponding toZ(m; uy,ar) = (p(m), «(m)) and the standing curve passing through, a; ), that we will denote
by Z(m;iip,ar) = (p(m),a(m)) (see again Fig. 1). For a given statg, definei;, andu/ such that the states
(it} ,ag) and(u’ , ag) lie in T~ respectively on the standing curiggm; ii; , a;) and on the transformed standing
curve corresponding to:z, a ). Thatis,ii;, andu] must satisfy

(it} ,ag) = (¢(m"), @(m")), for somem’ <0,
and

f(u’L/, ar) = f(u/L, ar) = f((p(m”), ot(m”)), for somem” > 0.

a T a T

\\ I / ar \
\Y A}
\
\Y
ar,

ar

N
~
N

!
|
|
|

N |
[
|
|

e . 7 Mk

]
U A ufah o uhur whulf 0 up Ul

Fig. 1. The mutual position of the standing wave (coatus) and the transformed standing wave (dotted).
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Lemma 2.5.Let us assume thét - Dg . i < 0. Then the following holds

ag <ar = W]) <wux(iy) <0, (2.23)
ag>ap = (iy) <) <0. (2.24)

Proof. We follow closely the lines of the proof of Lemma 2.4. We compute

[y, ar) — f],ar)= f(g(m"),am")) — f(em"),a(m™)

m/

- / [Duf ¢ + 0o fo'1dm + f L. ar)
(i)

m’

- f [Duf ¢ +0afo1dm — fur,ar)

M (ur)
= / g(¢—(m), &—(m)) &_(m)dm — / 8(p4(m), oy (m)) e, (m) dm
i (i) i (ur)
=/g(q§_(a),a)da—/g(q5+(a),a)da

ar

= /[g(@,(a), a) — g(®4(a),a)]da.

ar
Hence
1

I - (f(ft/L, agr) — f(u']:, aR)) = //lk . Dg(sé_(a) + (1 —s5)P,(a), a) . (¢_(a) — @.,.(a)) dsda. (2.25)
ar 0
On the other hand we have

I - (f(ft/L, agr) — f(u']:, aR)) = | Ii- Duf(sft/L +(A- s)u/li, aR) Sy — u/li) ds ~ Ap i - (ﬁ/L — u{), (2.26)

O\H

wherex; < 0 sinceit; , u] € T—. Comparing identities (2.25) and (2.26) we get the conclusian.

Remark 2.6.In the case; = 0, system (1.1) reduces to the fully conservative system
o + 0y f(u,a) =0, (2.27)

which has been studied in [18]. Note that in this case standing wave curves and 0-speed shock curves coincide.

Remark 2.7.We consider as significant physical example the Euler equations of compressible isentropic gas flow
through a nozzle
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044

0.34

0.2

0.19

Fig. 2. Significant curves for the 2 2 Euler system.

m
010 + 0xm = —— 0xa,
a

2 2
B + By ('"— + p(p)) =-" b, (2.28)
o ap

wherem is the momentum of the gag,= a(x) is the cross-sectional area of the duct and the pressure is given by
p(p) =y~ 1p?,andy =1+ 20 > 1is the adiabatic constant.
The standing waves are determined by the following system of ordinary differential equations [9]:

2 2
<m— + p(p)> =-"a,. (2.29)
P . ap

System (2.29) can be integrated, leading to the following equations which implicitly define the standing wave curve
passing through a given state; , pr, mr):

2 2
m 1o myp 1 5
—+-=p7=—+-p7. (2.30)
p? 0 p? 0"

Fig. 2 shows the projection on thg, m)-plane of the stationary curve as well as the 1-wave curve and 2-wave
curve through the pointoz, mz) = (1/5, 1/5), while the dotted curves = +p'*? define the transition curves,
where the eigenvalues are equal to 0.

3. The 0-%-curve

As a first step toward the construction of the solution of the Riemann problem for (1.1)—(1.3), we give in this
section an accurate description of the set of all right statesWgo x (m; ur, ar, ar) associated with the levelg
that can be reached fro ., ar) by a solution of the Riemann problem consisting of admissible 0-waves and
k-waves, only. From now on, let;, ag anduy, be fixed and let us impose the following admissibility criterion on

the standing waves:
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(H) A O-wave that connect; to Ug on the same integral curve & by a contact discontinuity of speed zero
is admissible if the integral curve & does not cross the transition surfaEdetween/; andUg.

This admissibility condition wamotivated in [18,19] by the fact that the total variationaoin Glimm’s method
then does not increase. It follows from (H) that to move to the other side of the transition surface one has to use &
k-wave.

To construct the Oe-curve we will make use of the following lemma.

Lemma 3.1.There exist$1 < §g such that the following holds. Lat_ € B(u., 1) be given withu; (u—) > 0 and
consider the wave curve — v (m; u_) associated ta:_. Then there exist &uniqué pointii_ and a smooth
functionji; < 0 such that

U_ =g (ﬁk(u_); u_) and )_\k(/lk(u_); u_) =0. (3.1
In particular, fix is a monotone decreasing functionwof in ther, direction

Vi -ri ~ =V -1 near the transition manifold . (3.2)

Proof. Existence and uniqueness of the paintis given by (1.6), which implies that the shock spegdn; u_)

is strictly increasing for smalk. We are assuming heie_ € B(u,, §p), the other case being not interesting for

our purpose. The second part of the statement follows from the implicit function theorem applied to the mapping
A (m; u). Indeed, it is a smooth mapping of its arguments, and we hai#, (1); u) = 0 by definition. Moreover

from (2.11),8,, A« (m; u) remains strictly positive fot — 1 (1) small enough. From the definition (3.1) @f (1)

and (2.10) we recover

(i () — 1 @) + O (i) — p))® = =2 w),
henceiy (1) — i (u) is small if uy (u) is small, that is, ifx is sufficiently close to the transition surfage
To derive (3.2) along the critical manifold we use again the implicit function theorem:
Vo - ri(u)
O Mk (g (u); )

Using (2.11) and (2.12) to compute the derivatives in the right hand side of (3.3) and letting the apgeach
the manifold7, we get (3.2). O

Vit - ri(u) = — (3.3)

The standing wave curves deserve a special treatment. As we have seen in the previous section, the standir
wave through some poirit—, a_) is defined by the following ODE

Z'=ymRo(Z),  Z(uw_))=U_=(u_,a") (3.4)

(sinceRg ~ Ry close to7, we can parametrize the curve with respect to the parametiefined in (2.8)). Thanks
to the regularity ofRg, (3.4) defines a curve

m— Z(m;U_) = ((p(m;u_,a_)>’ m e (—e,¢e), (3.5)

a(myu_,a_)
for somee > 0, which depends smoothly upan, a_ andm, and we can write the following expansions for the
curveg and its first derivative,, ¢:
- =2

m m (
2w " T 20y

om;u_,a_)=u_ + Drg . ro + bodaro + dro) (ur) + O(i®), (3.6)

1
a(u_)ro(u,) + a(;n_)z (Dro .10 + bodaro + dro)(uL) + O3, (3.7)

Omep(m;u_,a_)=
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whered is some smooth function. Moreover thig directional derivative with respect to the initial data is the
vectorV which solves the linear Cauchy problem

V/'=y(m)DRo(Z(m, UV, V(ux(u-))= R

(see for example [17, Chapter V] for a rigorous proof). Hencepfor i (u—) sufficiently small, we havé (m) ~
Ry and, in particular,

. s U— h yU—) — yu—,a—
D,_gpm;u_,a_).r:= lim plmiu- +hre.a-) = plmiu-.a )’\‘Vk, (3.8)
h—0+ h

Vu a(m;u_,a_).rp~0. (3.9

Similarly, we can compute the derivatives w.rato. As before, they correspond to the derivativeZafn; U_) w.r.
to the initial data, in the direction of the vecti = (1,0, ..., 0) € R"*1, that is given by the solution of

V'=y(m)DRo(Z(m,U-))V, V(ux(u-))=Ex.
This means that fon — ui (1—) sufficiently small, we have the following approximations

. yu—,a— h - yu—,a—
Oq_p(m;u_,a_):= Ilim pimiu—,a-+h —pimu-,a )~O, (3.10)
h—0+ h

Ou_a(myu_,a_)~1. (3.11)

We denote by:” (u_) = «(0; u_, a_) the level at which the curv&(m; U_) intersects the transition surfage
In view of the admissibility criterior(H), each fixed valuer, > a’ (u_) uniquely defines the parameter value
(ay; u—,a-) such that

a(ﬁ(aJr;u,,a,);u,,a,):aJr. (3.12)
Deriving (3.12) w.r tou_ anda_ gives respectively

Du_plas;u_,a_) - re(u_) ~0, (3.13)

ama(ﬁ(a+; u_,a_);u_, a,) Oqa_fi(ar;u_,a)~—1. (3.14)
Foray, ag fixed, we can thus define the map

u> go(ﬁ(aR; u,ap); u, aL), for u € B(uy, 81), a’ () < ag.

One should keep in mind that by (2.13), fo§ < a; a statex is mapped closer to the sonic line (staying on the
same side of"); the opposite is true farg > ay.

We will distinguish two main cases, depending on whether the &tateelongs to7 + or 7.

Casel. We first study the cagé; € 7. The analysis will be further divided into four subcases, depending on
the value ofug.

Casela:ag > a;. While moving along a Ok-curve, one has at most three possibilities:

(A) follow the standing wave curve up to levek, and then move along thewave with nonnegative speed,;

(B) use ak-wave with nonpositive speed at constant lavefollowed by a standing wave;

(C) amore complex pattern, move first along the standing wave curve up to an intermediatg/lguehp on the
other side of/ by means of a 0-speddshock and then use another standing wave to reach

These three cases define three different branches of the curve
Wiur) == {Wox(m; ur,ar,ag), me (—,&)}.
Case (A) defines a first branch of the curve,

Wit (ur) = {Yn(m; o(Alars ur,ar)iur.ar)), m € [fir(e(Alar; ur,ar)iur.ar)). )},
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Case 1c Case 1d

Fig. 3. Case 1.

while another branch is found following case (B)

Wi (ur) == {o(f(ar; ve(m;ug), ap); vem; up),ar), me (— e, fix@ur)]}.
Finally, case (C) can be described by

WH () = {e(i(ar;u” a(m;ur, ap));u”, a(m;ur,ar)),

u” = v (i (@m;ur,ar)); pm;ug,ar)), pi(ur) <m < plag;ur,ar)l.

In the following we will also set

u'=@m;ur,ar), minfar,ar} <a(m;ur,ar) <maxag,agr},

u" =g(f(ag; u” am;ur,ar));u”, a(m;ur, ar)),

uy =@(lag;ur,ar);ur,ar),

u] = vk (uy);ul),

iy =¢((ag; L, ar);ir, ar)

(see Fig. 3).
The setting of the following lemma is general as to cover the next cases.
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Lemma 3.2.There exist$1 < §o such that fom, € B(uy, 61) with ux(ur) > 0, andla,, —ag| < 81, the parameter
m is strictly monotone along each branch of the cue(u ). More precisely

(i) m— rx (P (m; u))) is strictly increasing fomm € [k (u}), €);
@iy m> A(p((ag; vi(m;ur),ar); vi(m;ur),ar)) is strictly increasing fom € (—e, fix(up)];
(iii) if moreoverag > a’ (iiy), thenm — A (u”) is strictly increasing fomn € [px(ur), f(ag; ur, ar)l.

Proof. By definition (2.8),m is strictly increasing anngT/,j(uL), and (i) is proved. To prove (ii), we use (3.7),
(3.13), (2.9) and (3.8) to compute

d 7 . . . .
%fp(u(am vk(m;ur),ap); v(m;ur),ar)

= Om@ Du_ft + Dy_¢) . dvr(m; ur)

~ 1 D,_p+ D 1 @
(m u_ b+ u_¢)~<a(uL)rk(uL)+ (m—uk(ML)))

~

Dy_¢ . ri(up) ~ re(ur),

a(ur) a(ur)
for uy sufficiently close to the transition surface, dagd — ag| sufficiently small.
In order to establish (iii), we need (2.9) and (3.7), which give

d -
%Uk(l/«k((ﬂ(mi ur,ap)); ¢(m;ug,ar))
= O vk (2 (u'); u') Viak W) - dme + Dyvr (A(); u') . 0o

1
= ( — () + O (') — /Lk(u/)))Vﬁk(u’) : <
a(u’)

2D ro(ur) + O(m — Mk(uL)))

ro(ur) +O(m — Mk(ML)))

~ / / 1
+ Dy (a(u'); u') . (a(uL)
1

N N S 1, () o’ ) (3.15)
a(u’) rk(u)a(uL) Mk(u)'rO(uL)—i_m wk (A ): u') - rouL '

nearZ . Moreover we compute

Fig. 4. The curvéV (uy) for ag > ay, (case 1a).
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W —up=@miurp,ar) —@(urur);ur,ar)

= (e (ur); ug, ap)(m — () +O(m — e (ur))?

1
= a(uL)ro(uL)(m — p(up)) +O(m — Mk(ML))2~
Hence we have
i)y = fi(ur) + Vigur) - @ —ur) +O(ju’ —ug|?)

ro(ur) (m — uk(uL)))

1
~f(ur) + Vig(ur) - <
a(ur)

1
~p(ur) + —— Vi ur) - rour)(m — p(ur))
a(ur)

1
~(ur) — ——— Vg(ur) - re(ur) (m — pr(ur))
a(ur)

~ fuur) = (m — pur(ur)),
where we have used (3.2), which also gives

Vit 'y - ro(ur) ~ Viu(ur) - rour) — V(m — pur(ur)) - ro(ur)
~ Viik(ug) -ro(ur) + Vag(ur) - ro(ur) ~ 0. (3.16)
Using (3.16) in (3.15) we get

d " . . . ~
%Uk(l/«k (e(m;ur,ap)); p(m;ur,ar))

1
ro(ur) (3.17)
a(ur)

near7 . Thus, together with (3.13) and (3.14), we get the following estimate

d

5@ (i (ar; v () '), ms s an)); vi (i @ w'), ams ur ar))

.. d . d
=0 | (Vu_t) =——vk + (0g_j1) O | + Dy_@ . —— v + 04_¢ Opx
dm dm

bo(u',a(m;ur,ar))

1 1
~ m(p(— Va_fi-r(up) —C )+ Dy_¢.ro(ur)
a(ur) a(ur)

bo(u"”, ag)
M a(m;ur,ar)) 1
~—C19 +
o W aR) atup)

C 1 ( //) + 1
~ —rolu
2a(u”) 0 a(ur)

for some smooth function§, C1, C2 ~ 1. Here we have used the fact thai(u’, a(m; ur,ar)) andi; (w”, ag)
have opposite signs, sin€&’, a(m; uy,ar)) and(u’”, ag) lie on opposite sides df. O

ro(ur)

It is clear that wheni; = ag, the curveVT/k(uL) coincides withW, (uz). Lemma 2.5 allows us to determine
the mutual positions of the singular poinits andu’; (see Fig. 4). In this case the cun/g (x,) is monotone w.r.
tom.

Caselb:a’ (iiy) <ag < ar. We still have the three branches defined by (A), (B) and (C). By Lemma 2.5 we
haveu (u}) < uk (i} ), hence the curvéVy (1) is no more monotone w.r. ta, but presents a bifurcation. More

precisely WM (ur) is now described by
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Fig. 5. The curveV; (uy) for a (iy) <ag < ay, (case 1b).

W ur) = o(i(ar; u”, am;ur, ar)); u”, a(m; ur, ar)),
u" = v (i (p(m;ur,ap)); om;up, ar)), flag;ur,ap) <m < pue(ug)}.

By Lemma 3.2, the map: — Ax (1) is now strictly decreasing when we move from(u,) to ji(ag; ur,ar)

(Fig. 5).
Caselc:al (uy) <ag <a®(ir). Let us define the pointiz, a;) € 7~ such that
al (ip) = ag. (3.18)

By construction, we have
pr(itr) < pi(in) < pi(ir) = fuc(ur)

(see Lemma 2.5 and Fig. 3). Moreover we define the vala¢ar , ag] such that
Flo+(p@sur,ar);ur,ar),a) = f(o-((@; ir, ar); i, ar), a).

That is,a is the level at which the standing wave issuing fraim, a;) intersects the transformed standing wave
correspondingt@(-; ur, ar).
Case (A) still holds, while we have cases (B) and (C) changed into

(B') use ak-wave with speed; < Ax(ux(fiz); uz) at constant levet; followed by a standing wave;
(C") move first along the standing wave curve up to an intermediatedgyet a, jump on the other side &f by
means of a 0-speddshock and then use another standing wave to reach

Hence branche®, (uz) andWM (u) become

Wi (ur) = {p((ars velms ur), ap); ve(ms ur), ar), m e (—e, wein)]},
WM ) = o(i(ar; u”, am;ur, ar)); u”, a(m; ur, ar)),
u" = v (i (@(m;ur,ap)): e(miug,ar)), filag;ur,ar) <m <@ ur,ar)}.

Lemma 3.2 still applies, showing that even in this case the c]AT?ymL) presents a bifurcation, since the map
m — A (u”) is now strictly decreasing when we move frgna; uy, ar) to fi(ag; ur, ar) (Fig. 5).
Caseld:ag < a® (ur). We take(iiz, ar) € T~ as defined in (3.18), except that now we have
ui (i) < px ().
This time we can distinguish only two paths:
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(B”) use ak-wave with speed; < Ax(ux(iiz); uz) at constant levat; followed by a standing wave;

(C") use a shock of speexk = Ay (ux(iiz); uz) at levelay, then move along the standing wave curve up to
(p((ag;dr,ar); i, ar),agr) € 7, and finally follow the rarefaction curvey (m; ¢ (t(ag; iy, ar); iy,
ar)) with positive speed at levelg.

These define respectively the following two branchesfaiu )

V~Vk_(ML) :={@(i(ar; ve(m;ur),ar); ve(m;ur),ar), m € (—e, ueGip)]},
Wi ur) = {wi(m; g(filag; fip, ap)s g, ar)), me[0,e)},

which are monotone increasing w.r.#oas in Lemma 3.2.

Case2. We now study the cadé; € 7 —. The main difference in the construction of thekBwaves is that in
this case we cannot “jump” on the other sidefoby means of &-shock. The analysis will be divided into three
subcases, depending on the value pf

Case2a:ag > ar. We can use the following three paths:

(A) use ak-rarefaction with nonpositive speed at constant leyelp to (wi(0; uz),ar) € 7, followed by the
positive branch of the standing wave up to lewg| and finally move along &-wave with nonnegative speed
at constant levely;

(B) use ak-wave with nonpositive speed at constant lavefollowed by a standing wave;

(C) move first along thé-rarefaction with nonpositive speed up to the pdint (0; u;),ar) € 7, then entel +
following the positive branch of the standing wave curve up to an intermediatedgygump on the other
side of 7 by means of a 0-speddshock and then use another standing wave to reach

These three cases define respectively

Wi ur) = {Y(m; o+ (2(ar; we(©; ur), ar); we(O; ur), ar)),
m € [ (o4 (A(ar; wkO; up), ar); we(O; up), ar)). )},

Wi () :={o(ft(ar; YOm; ur), ar); yu(m; ur), ar), m € (=&, 01},

W ur) = {p(i(ar: u”, oy (m; we©;up), ar)); u”, ey (m; we(O; ur),ar)),
u” = v (fir (@ (m; wi(0; up), ar)); 4 (m: we(O; ur), ar)),
m € [0, iy (ag: we(©;ur). ar)l},

wheref+ means that we are moving aloqg,, «+). As in case 1, we will also set

u' = <p+(m; wi(O; ur), aL), ar < ot+(m; wi (05 ur), aL) < ag,

u" =g(f(ar: u”, oaq(m; we;ur),ar));u”, aq (m; we(0;ur), ar)),
uy =@ (f(ar; wi(0;up), ar): wp(O;ur), ar),

u = v (fu(uy);uy),

iy =¢_(i(ar; weO;ur),ar); wi(0;ur),ar)

(see Fig. 6). The proof of the following lemma is very similar to the proof of Lemma 3.2.

Lemma 3.3.There exist$1 < §o such that fom, € B(uy, 61) with i (ur) <0, andla,, —ag| < 81, the parameter
m is strictly monotone along each branch of the cue(u ). More precisely

(i) m— x(Yr(m; u')) is strictly increasing fom € [ (1} ), €);
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@iy m> (p((ag; Ye(m;uy),ar); yx(m; uy),ar)) is strictly increasing fomn € (—¢, 0];
(i) m— A (u”) is strictly increasing fom € [0, ii(ag; wi(0; ur), ar)].

Moreover, by Lemmas 2.4 and 2.5, the singular paifjtendu’; are placed so that (it} ) < (1) < 0. This
shows that the curvidV, (1) is monotone w.r. tan.
Case2b:a’ (u;) < ag < ay. In this case we have only two branches, defined by cases

(A’) use ak-rarefaction with nonpositive speed at constant leyelup to iy (defined as in (3.18)), then the
standing wave up to levelr, and finally move along &a-rarefaction with nonnegative speed at constant level
ag,

(B") use ak-wave with nonpositive speed at constant levgfollowed by a standing wave;

We obtain respectively the following two branches

Wi (ur) = {wi(m; g(filag; fip, ap)s g, ar)), m€[0,e)},

W (ur) = {p(i(ar: v(miug), ar); Yalm; ur).aL), m € (—e, ui(ip)]}.
Again, by Lemma 3.3, the (k—curveVN\Jk(uL) is monotone.
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Case2c:ag < a’ (uy). Itis very similar to the previous case, apart from the positiofgfwhich makes (A
changed into

(A") use ak-shock with nonpositive speed at constant levglup toi, then the standing wave up to level,
and finally move along &-rarefaction with nonnegative speed at constant legel

VNVk(uL) is still monotone.

4. The Riemann problem

We are now ready to solve the Riemann problem (1.1)—(1.3). First of all, since the parametrization dfthe 0—
curve exhibit jumps at the points connecting together the various branches (see thé'pairitsr the intersection
point with 7" in Section 3), it is convenient to reparametrize the curve by choosing a global pararsetiat

pk(Wok(s;ur,ap, ag)) =s

(we sets = m for the curves belonging to familiés# k).

Itis clear from the construction performed in Section 3 that the @4rve is merely Lipschitz continuous at the
pointsii;, andu’ (cases 1a, 1b, 1c and 2a) orsat 0 (cases 1d, 2b and 2c), even when there is no bifurcation
phenomena. So, it is necessary to rely on the implicit fioncheorem for Lipschitz continuous mapping [10] to
obtain existence (and uniqueness) of the solution. See also [18,25].

In addition to the lack of regularity of the wave curves, we have to handle the bifurcation phenomena. So, we
propose here to extend smoothly each branch of the wave curve ip theection. The corresponding curves are
denoted by

W) =¥ (s;u), s € (—e, )},
Wi ) ={J (s:u), s € (—e e},
WM ) ={FM (s;u), s € (=&, 8)).
We sets; =s; — u; (u) for i # k, andsy = sx — i ('), where

J = | eaariu ar)iu,ar), if ag > a’ ),
Wok(O; u,ar, ar), otherwise.

Hence each mapping

§=G1 .., S €(—£,8)" > UTE) = Y@ oo Gu) oo Y1 (G1)(ur),
§=Gr ... €(—&,8)" > U E) =yYnG) ooy (o) o---oyr(F1)(uL),
§=G1..,5)€(=68)" > ¥ME) =y,G oo yMGr) oo Y1(G1)(ur)

is aC? diffeomorphism from a neighborhood 0f0R” onto a neighborhood of, . This follows from the implicit
function theorem since the partial derivative$§ at 0 are

W EMO) =airi(ug,ar), i<k,

R WM () ~ ar (ul, ar),

(M)~ airi(uy,ar), i>k,

a; # 0. By the strict hyperbolicity and the continuity 6%, f (u, a) the differentialsbw ** (0) are invertible: x n
matrices. Hence there exists- 0 such that, for alli;, € B(u, 80), if lug —ur| <8 andlag —ar| < 8 then
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UR = Yn(s;) 0o Y () 0 - o Yra (s (ur),
UR = Yn(sy) 0+~ 0Py (sp) 0 oya(sy)(ur),

ur =Y}y o oM (st o oya(si(ur),
for somes;™ ™, ..., si>™. Equivalently, if the pointe;™", ..., wy ™ are inductively defined by

+.M +£.M
wo=ur, ;" =Yi(s; T ) (wi-1),

in particular

M M, £ M
o =1y

(5" ) (wr—1),

thenw=" = ug. At this stage we keep into account only the solutions that are physically admissible, that is, we

keep the values,, ..., s, for which the poiniw, belongs to one of the original branchesf (wx_1). Due to the
transversality of each characteristic field (we recall that each brandh, ;1) is essentially parallel tg,, and
then transverse to any other cumé (w;), i # k), we can distinguish the following cases:

o if Wk(wk_l) has no bifurcations (cases 1a, 1d and case 2), the solution is unique, due to the monotonicity of
the parameter in ther, direction; N

e in cases 1b and 1c we may have up to three solutions (with onegpim each branch ofVy (wi—1)), which
reduce to two fos = i (it} ) or sp = px ().

Now assume that

g =vYn(s) o oYM (st) oo Ya(sn)(ur).
Wheni # k, each Riemann problem with initial data

wi—1, x<0,
w;, x>0,

u(x,O):{ a(x,O):{aL’ i<k, (4.2)

agr, 1>k,
has an entropy-admissible, self-similar (thatidss u(x/t)) solution made of two constant states separated by a
contact discontinuity, a shock or a rarefaction fan.

Fori =k, the Riemann problem with initial data

_ | (wk-1,a1), x <0,
a0 = f @b <=0 @2)
has a self-similar solution made of two or more constant states separated by shocks, rarefactions or standing wave
that can have the same speed (equal to 0), and then be superposed. More precisely

o if wy € V’\\}/:r(wk,l):
Case lwy_1 — w,’{_l by a standing contact discontinui'zyj{_l — wy by a shock or a rarefaction with non-
negative speed (one may havg ; = ),
Case 2w;—1 — w),_4 by a shock or a rarefaction with nonpositive speed,; — w;_; by a standing contact
discontinuity,w;_; — w; by a shock or a rarefaction with nonnegative speed;
o if wp € VT/,: (wr—1): wx—1 — wj,_4 by ashock or ararefaction with nonpositive spegd,, — «; by a standing
contact discontinuity;
o if wy € Wlﬁw(a)k,l):
Case 1wi—1 — w,_, by a standing contact discontinuity, , — w;_; by a zero speed shocl, ; — wy
by a standing contact discontinuity;
Case 2w;—1 — w;_, by a rarefaction with nonpositive speed, ; — «;_; by a standing contact disconti-
nuity, w;_, — ;” ; by a zero speed shock;” ; — w; by a standing contact discontinuity;
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The solution to the original problem (1.1)—(1.3) can now be constructed by piecing together the solutions of the
Riemann problems (4.1)—(4.2) on different sectors of(the) plane. Indeed fofj, ..., 5, sufficiently small, and
ar sufficiently close taz;, the speed of each wave remains close to the corresponding eigehMadyea ) of
the matrixD, f (ur,ar). By the strict hyperbolicity and continuity properties, we can thus assume that the wave
speeds remain distinct.

In conclusion, we have proved the following:

Theorem 4.1(The Riemann solverSuppose that, if8(u., o), the systenfl.1)is strictly hyperbolic and admits
only genuinely nonlinear or linearly degenerate fields. Under the assumffidsis(1.8), there exist$; < §p such
that the following holds. Given any;, ug € B(uy, §1), the Riemann probler(iL.1)—(1.3)admits at most three
self-similar solutions made up ef+ 1 constant states

wo=ur, wg, ..., Wp =UR

separated by elementary wavshocks, rarefactions or contact discontinuijiesloreover, the states;—1 and
wy are connected by at most three intermediate stfdg$1<; <, j<3 Separated by a standing wave and possibly
shocks or rarefactions.
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