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Abstract

We prove that any continuous and convex stationary ergodic Hamiltonian admits critical subsolutions, which are strict outside 
the random Aubry set. They make up, in addition, a dense subset of all critical subsolutions with respect to a suitable metric. 
If the Hamiltonian is additionally assumed of Tonelli type, then there exist strict subsolutions of class C1,1 in RN . The proofs are 
based on the use of Lax–Oleinik semigroups and their regularizing properties in the stationary ergodic environment, as well as on 
a generalized notion of Aubry set.
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0. Introduction

Throughout the paper we deal with a Hamiltonian H(x, p, ω) defined in RN ×R
N × Ω , where Ω is a probability 

space which is separable, in a suitable measure-theoretic sense. It is assumed that RN acts ergodically on Ω and that 
H satisfies a stationarity property with respect to such action. As well known, this frame, usually called stationary 
ergodic, generalizes periodic, quasi-periodic and almost-periodic settings. Besides the basic convexity and growth 
conditions in p, we require H to be continuous in x in Section 2, and of Tonelli type in Section 3.

The main object of our investigation is the stochastic Hamilton–Jacobi equation

H
(
x,Dv(x,ω),ω

) = c in R
N (0.1)

corresponding to the critical value c of H . The latter is characterized by the property that Eq. (0.1) has admissible 
subsolutions, but H = a does not at any subcritical level, i.e. whenever a < c. By admissible subsolution we mean 
a random Lipschitz function that has stationary increments, sublinear growth at infinity, and the property of being 
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an almost everywhere subsolution in RN , almost surely with respect to ω. By convexity of the Hamiltonian, this last 
condition is equivalent to the notion of viscosity subsolution.

It is well known that the critical value is the unique level for which the corresponding Hamilton–Jacobi equation 
may have viscosity solutions, also termed correctors for the role they play in associated homogenization problems. 
The issue of finding characterizing conditions for the existence of correctors has been addressed in [10,11] by means 
of a stochastic version of weak KAM Theory and of an adaptation of the metric techniques developed for deterministic 
Hamilton–Jacobi equations. The cornerstone of this approach is a random notion of Aubry set A(ω), defined following 
the basic idea that the real invariant objects to look at in the analysis of stationary ergodic equations are not any 
more single points of the state space but instead random closed stationary sets. The set A(ω) has been characterized 
in the aforementioned references as the minimal closed stationary random set for which there exists an admissible 
subsolution strict in its complement, at least in a weak sense, see Section 2.1 for precise definitions and results.

The present paper fits into the same line of research. It specifically aims at generalizing the previous characteri-
zation in two directions. On one side we would like to get admissible critical subsolutions, strict outside the random 
Aubry set in a stronger more classical sense; namely, we look for critical admissible subsolutions v satisfying

H
(
x,Dv(x,ω),ω

) ≤ c − δ for a.e. x ∈ U, (0.2)

for every open set U compactly contained in RN \A(ω) and for every ω in a set of probability 1, with δ > 0 depending 
on U and ω. On the other side, assuming the Hamiltonian of Tonelli type, we would like to show that such random 
functions can be taken almost surely of class C1,1 in the whole RN . Both these goals are achieved by making use of the 
properties of the associated positive and negative Lax–Oleinik semigroups, see Section 1.4 for the precise definitions. 
This is new in this context and shows the effectiveness of these tools in the stationary ergodic setting, opening the 
door to a fruitful use of it for the study of other topics in the field, as well.

The sought generalizations can be also regarded as a step forward to deduce comparison principles for the critical 
equation. In the periodic case, for instance, similar results permit to show that the Aubry set is a uniqueness set for 
the critical equation, meaning that two admissible solutions agreeing on it are in fact the same. Here the problem gets 
more involved and remains open since it is not still clear how to exploit the weak form of compactness encoded in the 
stationary ergodic model.

The connection between regularity of subsolutions and the property of being strict in some distinguished regions 
can be understood if we think of finding regular subsolutions of the Hamilton–Jacobi equation at a supercritical level. 
In this case, the problem becomes relatively easy and does not require any special theory to be developed since, 
roughly speaking, there is some space to make a direct regularization starting from any globally strict subsolution, 
for example through mollification, without violating the subsolution property. When instead no strict subsolutions are 
available to start with, the problem becomes difficult and requires a deeper understanding of the setup.

To give account of the main results on the subject in the deterministic case, we recall that an initial crucial step 
has been to realize that the obstruction in getting strict subsolution for critical equations is not spread out indistinctly 
on the whole ambient space, but is concentrated around a specific set named after Aubry. Using this information, the 
existence of C1 critical subsolutions has been first proved in [20] for Tonelli Hamiltonians and subsequently in [21]
for Hamiltonians Lipschitz-continuous in the state variable through a technique combining partitions of unity and 
coverings, which non-surprisingly requires quite laborious estimates in proximity of the Aubry set.

Next, a relevant progress has been made in [3] where C1,1 subsolutions, which is the optimal attainable regularity, 
have been found, at least when the Hamiltonian is Tonelli and the ambient space compact, through a simpler and 
more powerful procedure based on a double alternate application of positive and negative Lax–Oleinik semigroup. 
Within this approach, the difficulty of dealing with the Aubry set is bypassed thanks to the fact that the action of such 
semigroups do not affect critical subsolutions on the Aubry set. A nontrivial extension of this result to noncompact 
setting has been more recently provided in [19] by means of countable many alternative applications of Lax–Oleinik 
semigroups.

To further illustrate our results avoiding technical complications, we assume in the remainder of this introduction 
the critical value to be 0, which is not restrictive up to adding a constant to the Hamiltonian. Our main achievements 
are the following: first, we provide a construction of the random Aubry set that simplifies the one given in [10] and 
that allows us to get rid of a restrictive condition therein assumed (see (A) in Section 2.1), still keeping the crucial 
property of existence of an admissible critical subsolution, weakly strict outside it. The crucial improvement with 
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respect to the analysis performed in [10] is that the main tools used here are Lax–Oleinik semigroups instead of the 
critical semidistance.

Secondly, as already pointed out, we in addition establish the existence of admissible critical subsolutions that are 
strict, in the usual and stronger sense (0.2), outside the random Aubry set. More precisely, we show that any given 
weakly strict critical subsolution can be approximated, uniformly in RN , by a critical subsolution that is strict outside 
the random Aubry set, see Theorem 2.16. The key point here is the discovery of the fact that, when acting on a 
weakly strict subsolution, the negative Lax–Oleinik semigroup produces a 1-parameter family of admissible critical 
subsolutions that is strictly increasing outside the random Aubry set, see Proposition 2.19. In the end, the sought 
strict subsolution is defined, as usual in the topic, through infinite convex combination of the critical subsolutions 
obtained by applying the negative Lax–Oleinik semigroup to the initial weakly strict one at suitably small times, see 
Theorem 2.16. Via a standard argument, it is then easy to prove that strict critical subsolutions are dense, with respect 
to a suitable metric, among all critical admissible ones.

When the Hamiltonian is additionally assumed of Tonelli type, such strict critical subsolutions can be taken of 
class C1,1 in RN . This is obtained by first deducing a further invariance of Lax–Oleinik semigroups with respect 
to strict critical subsolutions, and then by applying to the stationary ergodic environment the regularizing procedure 
due to Bernard, see [3]. The lack of compactness of the ground space does not affect the method since, under our 
assumptions, we have a global control on RN of the semiconcavity or semiconvexity constants of the subsolutions 
generated in the construction, see Proposition 3.4.

The paper is divided in three sections. Section 1 has introductory character: we give notation, terminology and we 
recall some basic mathematical facts that will be used throughout the paper. Further we provide a brief presentation of 
the stationary ergodic setting and of the corresponding stochastic Hamilton–Jacobi equations, and present the salient 
properties of the positive and negative Lax–Oleinik semigroups in random environments. For the interpretation of the 
negative Lax–Oleinik semigroup stated in Proposition 1.13 we need a comparison principle for an associated time-
dependent Hamilton–Jacobi equation, which is proved in Appendix A. Section 2 is about continuous Hamiltonians. 
In the first subsection we give the definition of random Aubry set and we prove the existence of an admissible critical 
subsolution that is weakly strict outside it. In the second subsection we strengthen these results by showing existence 
and density of strict critical subsolutions. Section 3 is devoted to Hamiltonians of Tonelli type. In the first subsection 
we present some additional properties enjoyed by the Lax–Oleinik semigroups and by the random Aubry set in our 
setting, while in the second one we apply Bernard’s method to the case at issue and we derive the announced results 
about regular strict subsolutions.

1. Basic material

1.1. Notations and preliminaries

We write below a list of symbols used throughout this paper.

N an integer number

BR(x0) the open ball in R
N centered at x0 of radius R

BR the open ball in R
N centered at 0 of radius R

〈 · , · 〉 the scalar product in R
N

| · | the Euclidean norm in R
N

R+ the set of nonnegative real numbers

B
(
R

N
)

the σ -algebra of Borel subsets of RN

χE the characteristic function of the set E

Given a subset U of RN , we denote by U its closure and by int(U) its interior. We furthermore say that U is 
compactly contained in a subset V of RN if U is compact and contained in V . If E is a Lebesgue measurable 
subset of RN , we denote by |E| its N -dimensional Lebesgue measure, and qualify E as negligible whenever |E| =
0. We say that a property holds almost everywhere (a.e. for short) on RN if it holds up to a negligible set. Given 
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a function u defined in RN , we will write u ∈ C1,1(Br(x0)) to mean that u is of class C1,1 in Br(x0). We will denote 
by Lip(u; Br(x0)) and Lip(Du; Br(x0)) the Lipschitz constant of u and Du in Br(x0), respectively.

With the term curve we will refer to an absolutely continuous function from some given interval [a, b] to RN .
Given a continuous function u on RN , we will call subtangent (respectively, supertangent) of u at x0 a function ψ

of class C1 in a neighborhood U of x0 such that u − ψ has a local minimum (resp., maximum) at x0. The (possibly 
empty) set made up by the differentials of supertangents (resp. subtangents) at x0 is called superdifferential (resp. sub-
differential) and denoted by D+u(x0) (resp. D−u(x0)). We recall that if both super and subdifferential are nonempty 
then u is differentiable at x0.

Given a locally Lipschitz function u in an open subset U of RN , we will denote by ∂∗u(x0) the set of reachable 
gradients of u at x0, that is the set

∂∗u(x0) =
{

lim
n

Du(xn) : u is differentiable at xn, xn → x0

}
,

while Clarke’s generalized gradient ∂cu(x0) is the closed convex hull of ∂∗u(x0). The set ∂cu(x0) contains both 
D+u(x0) and D−u(x0), in particular Du(x0) ∈ ∂cu(x0) at any differentiability point x0 of u. We recall that the set-
valued map x �→ ∂cu(x) is upper semicontinuous with respect to set inclusion. When ∂cu(x0) reduces to a singleton, 
the function u is said to be strictly differentiable at that point. In this instance, u is differentiable at x0 and its gradient 
is continuous at x0. When u depends on a time and space variable, indicated by t and x, respectively, we will denote 
by ∂c

t u(x, t) Clarke’s generalized gradient of the function u(·, x) at t , and by ∂c
xu(x, t) Clarke’s generalized gradient 

of u(t, ·) at x. We refer the reader to [6] for a detailed treatment of the subject.
A function u will be said to be semiconcave on an open subset U of RN if for every x ∈ U there exists a vector 

px ∈R
N such that

u(y) − u(x) � 〈px, y − x〉 + |y − x|Θ(|y − x|) for every y ∈ U,

where Θ is a modulus. The vectors px satisfying such inequality are precisely the elements of D+u(x), which is thus 
always nonempty in U . Moreover, ∂cu(x) = D+u(x) for every x ∈ U , yielding in particular that Du is continuous on 
its domain of definition in U , see [5]. Finally, we say that a function u is semiconvex if −u is semiconcave.

Throughout the paper, (Ω, F, P) will denote a separable probability space, where P is the probability measure 
and F the σ -algebra of P-measurable sets. Here separable is understood in the measure theoretic sense, meaning that 
the Hilbert space L2(Ω) is separable, cf. [27] also for other equivalent definitions. A property will be said to hold 
almost surely (a.s. for short) on Ω if it holds up to a subset of probability 0. We will indicate by Lp(Ω), p ≥ 1, the 
usual Lebesgue space on Ω with respect to P. If f ∈ L1(Ω), we write E(f ) for the mean of f on Ω , i.e. the quantity ∫
Ω

f (ω) dP(ω).
We qualify as measurable a map from Ω to itself, or to a topological space M with Borel σ -algebra B(M), if the 

inverse image of any set in F or in B(M) belongs to F . The latter will be also called random variable with values 
in M.

We will be interested in the case when the range of a random variable is the Polish space (i.e. a complete and 
separable metric space) C(RN) of continuous real functions on RN , endowed with a metric d inducing the topology 
of uniform convergence on compact subsets of RN . It can be for instance defined by

d(f,g) :=
∞∑

n=1

1

2n

‖f − g‖L∞(Bn)

‖f − g‖L∞(Bn) + 1
f,g ∈ C

(
R

k
)
. (1.1)

We will furthermore denote by Lipϑ(Rn) the subspace of C(RN) made up of Lipschitz-continuous real functions with 
Lipschitz constant less than or equal to ϑ > 0. We will briefly say Lipschitz random function to mean a ϑ -Lipschitz 
random function for some ϑ > 0.

Let (fn)n be a sequence of random variables taking values in C(RN). We will say that fn converge to f in 
probability if, for every ε > 0,

P
({

ω ∈ Ω : d
(
fn(ω),f (ω)

)
> ε

}) → 0 as n → +∞.

The limit f is still a random variable. Since C(RN) is a separable metric space, almost sure convergence, 
i.e. d(fn(ω), f (ω)) → 0 a.s. in ω, implies convergence in probability, while the converse is not true in general. 
However, the following characterization holds:
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Theorem 1.1. Let fn, f be random variables with values in C(RN). Then fn → f in probability if and only if every 
subsequence (fnk

)k has a subsequence converging to f a.s.

We denote by L0(Ω; C(RN)) the space made up by the equivalence classes of random variables with values in 
C(RN) for the relation of almost sure equality. For every f, g ∈ L0(Ω; C(RN)), we set

μ(f,g) := inf
{
ε ≥ 0 : P({

ω ∈ Ω : d
(
f (ω), g(ω)

)
> ε

}) ≤ ε
}
.

Theorem 1.2. μ is a metric, named after Ky Fan, which metrizes convergence in probability, i.e. μ(fn, f ) → 0 if and 
only if fn → f in probability, and turns L0(Ω; C(RN)) into a Polish space.

1.2. Stationary ergodic setting

An N -dimensional dynamical system (τx)x∈RN is defined as a family of mappings τx : Ω → Ω which satisfy the 
following properties:

(1) the group property: τ0 = id , τx+y = τx ◦ τy ;
(2) the mappings τx : Ω → Ω are measurable and measure preserving, i.e. P(τxE) = P(E) for every E ∈F ;
(3) the map (x, ω) �→ τxω from RN × Ω to Ω is jointly measurable, i.e. measurable with respect to the product 

σ -algebra B(RN) ⊗F .

We will moreover assume that (τx)x∈RN is ergodic, i.e. that one of the following equivalent conditions hold:

(i) every measurable function f defined on Ω such that, for every x ∈ R
N , f (τxω) = f (ω) a.s. in Ω , is almost 

surely constant;
(ii) every set A ∈ F such that P(τxAA) = 0 for every x ∈ R

N has probability either 0 or 1, where  stands for the 
symmetric difference.

Given a random variable f : Ω → R, for any fixed ω ∈ Ω the function x �→ f (τxω) is said to be a realization of f .
The following properties follow from Fubini’s Theorem, see [22]: if f ∈ Lp(Ω), then P-almost all its realizations be-
long to Lp

loc(R
N); if fn → f in Lp(Ω), then P-almost all realizations of fn converge to the corresponding realization 

of f in Lp

loc(R
N). The Lebesgue spaces on RN are understood with respect to the Lebesgue measure.

A jointly measurable function v defined in RN × Ω is said stationary if, for every z ∈ R
N , there exists a set Ωz

with probability 1 such that for every ω ∈ Ωz

v(· + z,ω) = v(·, τzω) on R
N

With the term (graph-measurable) random set we indicate a set-valued function X : Ω → B(RN) with

Γ (X) := {
(x,ω) ∈R

N × Ω : x ∈ X(ω)
}

jointly measurable in RN × Ω . A random set X will be qualified as stationary if for every for every z ∈ R
N , there 

exists a set Ωz of probability 1 such that

X(τzω) = X(ω) − z for every ω ∈ Ωz. (1.2)

We use a stronger notion of measurability, which is usually named in the literature after Effros, to define a closed 
random set, say X(ω). Namely we require X(ω) to be a closed subset of RN for any ω and{

ω : X(ω) ∩ K �= ∅} ∈ F

with K varying among the compact (equivalently, open) subsets of RN . If X(ω) is measurable in this sense then it is 
also graph-measurable, see [24] for more details.

A closed random set X is called stationary if it, in addition, satisfies (1.2). Note that in this event the set {ω :
X(ω) �= ∅}, which is measurable by the Effros measurability of X, is invariant with respect to the group of translations 
(τx)x∈RN by stationarity, so it has probability either 0 or 1 by the ergodicity assumption.
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The following holds, see [12]:

Proposition 1.3. Let f be a continuous random function and C a closed subset of R. Then

X(ω) := {
x : f (x,ω) ∈ C

}
is a closed random set in RN . If in addition f is stationary, then X is stationary.

Definition 1.4. A random Lipschitz function v is said to have stationary increments if, for every z ∈ R
N , there exists 

a set Ωz of probability 1 such that

v(x + z,ω) − v(y + z,ω) = v(x, τzω) − v(y, τzω) for all x, y ∈ R
N (1.3)

for every ω ∈ Ωz. This is equivalent to requiring that there exists a random variable k(ω), depending on z, for which

v(· + z,ω) = v(·, τzω) + k(ω) on R
N for every ω ∈ Ωz. (1.4)

Let v be a Lipschitz random function with stationary increments. For every fixed x ∈ R
N , the random variable 

Dv(x, ·) is well defined on a set of probability 1, see [11] for the details. Accordingly, we can define the mean 
E(Dv(x, ·)), which is furthermore independent of x by the stationary character of Dv. We are interested in the case 
when this mean is zero.

Definition 1.5. A Lipschitz random function will be called admissible if it has stationary increments and gradient with 
mean 0.

We state a characterizations of admissible random functions and a result that guarantees that stationary Lipschitz 
random functions are admissible, see [11] for the proofs.

Theorem 1.6. A Lipschitz random function v with stationary increments has gradient with vanishing mean if and only 
if it is almost surely sublinear at infinity, namely

lim|x|→+∞
v(x,ω)

|x| = 0 a.s. in ω. (1.5)

Theorem 1.7. Any stationary Lipschitz random function v is admissible.

1.3. Stochastic Hamilton–Jacobi equations

We consider a jointly measurable Hamiltonian

H : RN ×R
N × Ω → R

satisfying the following conditions:

(H1) H(·, ·, ω) ∈ C(RN ×R
N) for every ω;

(H2) H(x, ·, ω) is convex on RN for every (x, ω) ∈R
N × Ω ;

(H3) there exist two superlinear functions αH , βH : R+ → R such that

αH

(|p|) ≤ H(x,p,ω) ≤ βH

(|p|) for all (x,p,ω) ∈ R
N ×R

N × Ω;
(H4) H(· + z, ·, ω) = H(·, ·, τzω) for every (z, ω) ∈ R

N × Ω .

Remark 1.8. The functions αH and βH appearing above can be taken convex and nondecreasing, without any loss of 
generality. This will be tacitly assumed in the sequel. Condition (H3) is equivalent to saying that H is superlinear and 
locally bounded in p, uniformly with respect to (x, ω). We deduce from (H2)∣∣H(x,p,ω) − H(x,q,ω)

∣∣ ≤ M̃R|p − q| for all x,ω, and p,q in BR, (1.6)

where M̃R = sup{|H(x, p, ω)| : (x, ω) ∈ R
N × Ω, |p| ≤ R + 2}, which is finite thanks to (H3).
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For every a ∈R, we are interested in the stochastic Hamilton–Jacobi equation

H
(
x,Dv(x,ω),ω

) = a in R
N. (1.7)

The material we are about to expose has been already presented in [10–12], to which we refer for the details. Here we 
just recall the main items.

We say that a Lipschitz random function v is a solution (resp. subsolution) of (1.7) if v(·, ω) is a viscosity solution 
(resp. subsolution) of (1.7) for every ω in a set of probability 1. We recall that, due to the convexity assumption (H2), 
the notion of almost everywhere subsolution is equivalent to the one in the viscosity sense. We refer the reader to [1,2]
for more details on the theory of viscosity solutions in the deterministic case. In particular, any such subsolution is 
almost surely in Lipκa

(Rn), where

κa := sup
{|p| : H(x,p,ω) ≤ a for some (x,ω) ∈R

N × Ω
}
, (1.8)

which is finite thanks to (H3). We are interested in the class of admissible subsolutions, hereafter denoted by Sa, i.e. 
random functions taking values in Lipκa

(R) with stationary increments and zero mean gradient that are subsolutions 
of (1.7). An admissible solution will be also named exact corrector, remembering its role in homogenization.

We proceed by defining the free and the stationary random critical value, denoted by cf (ω) and c respectively, as 
follows:

cf (ω) = inf
{
a ∈ R : (1.7) has a subsolution v ∈ Lip

(
R

N
)}

, (1.9)

c = inf{a ∈R : Sa �= ∅}. (1.10)

We emphasize that in definition (1.9) we are considering deterministic a.e. subsolutions v of Eq. (1.7), where ω is 
treated as a fixed parameter. Furthermore, we note that cf (τzω) = cf (ω) for every (z, ω) ∈ R

N × Ω , so that, by 
ergodicity, the random variable cf (ω) is almost surely equal to a constant, still denoted by cf . Hereafter we will write 
Ωf for the set of probability 1 where cf (ω) equals cf .

It is apparent by the definitions that c ≥ cf . The relation of these two values with the effective Hamiltonian obtained 
via the homogenization [25,26] is discussed in [23,11].

In the sequel, we will focus our attention on the critical equation

H
(
x,Dv(x,ω),ω

) = c in R
N. (1.11)

The following result holds, see [23,11]:

Theorem 1.9. There exist admissible critical subsolutions, i.e. Sc �= ∅.

Moreover, the critical equation is the only equation of the kind (1.7) for which exact correctors may exist, see [12].
We recall the main items of the so called metric method for Hamilton–Jacobi equations, as adapted in [11] to the 

case at issue. In next formulae we assume that a ≥ cf and ω ∈ Ωf . Let

Za(x,ω) := {
p : H(x,p,ω) ≤ a

}
,

be the a-sublevels of the Hamiltonian and

σa(x, q,ω) := sup
{〈q,p〉 : p ∈ Za(x,ω)

}
the related support functions. It comes from (1.6) (cf. Lemma 4.6 in [12]) that, given b > a, we can find ρ =
ρ(b, a) > 0 with

Za(x,ω) + Bρ ⊆ Zb(x,ω) for every (x,ω) ∈R
N × Ωf . (1.12)

It is straightforward to check that σa is convex in q , upper semicontinuous in x and, in addition, continuous whenever 
Za(x, ω) has nonempty interior or reduces to a point. We extend the definition of σa to RN × R

N × Ω by setting 
σa(·, ·, ω) ≡ 0 for every ω ∈ Ω \ Ωf . With this choice, the function σa is jointly measurable in RN × R

N × Ω and 
enjoys the stationarity property

σa(· + z, ·,ω) = σa(·, ·, τzω) for every z ∈ R
N and ω ∈ Ω.
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We define the semidistance Sa as

Sa(x, y,ω) = inf

{ 1∫
0

σa

(
γ (s), γ̇ (s),ω

)
ds : γ ∈ Lipx,y

([0,1];RN
)}

. (1.13)

The following holds, cf. [21]:

Proposition 1.10. Let a ≥ cf and ω ∈ Ωf . We have:

(i) For any y ∈ R
N , the function Sa(y, ·, ω) is a subsolution of (1.7) in RN , and also a solution in RN \ {y}.

(ii) A continuous function φ is a subsolution of (1.7) if and only if

φ(x) − φ(y) ≤ Sa(y, x,ω) for all x, y ∈R
N.

1.4. Positive and negative Lax–Oleinik semigroups

The Lagrangian associated with H by duality is the function defined as

L(x, q,ω) := max
p∈RN

{〈p,q〉 − H(x,p,ω)
}

for all (x, q,ω) ∈ R
N ×R

N × Ω.

As well known, the Lagrangian satisfies properties analogous to (H1)–(H4).
For every t > 0 and ω ∈ Ω , we define a function ht on RN ×R

N as

ht (x, y,ω) := inf

{ t∫
0

L(γ, γ̇ ,ω)ds : γ (0) = x, γ (t) = y

}
.

Curves that realize the above infimum are called Lagrangian minimizers. It is well known that such minimizers always 
exist and they are Lipschitz continuous, see [4].

It is known, see for instance [16], that

Sa(y, x,ω) = inf
t>0

(
ht (y, x,ω) + at

)
(1.14)

for every a ∈ R and ω ∈ Ωf . In particular, when ω ∈ Ωf and a ≥ cf , we derive, in view of Proposition 1.10, that a 
function v is a subsolution of (1.7) if and only if

v(x) − v(y) ≤ ht (x, y) + at for every x, y ∈R
N and t > 0. (1.15)

For every t > 0 and every κ-Lipschitz random function u, we next define the negative and positive Lax–Oleinik 
semigroups T −

t u, T +
t u as follows:(

T −
t u

)
(x,ω) := inf

{
u(y,ω) + ht (y, x,ω) : y ∈R

N
}(

T +
t u

)
(x,ω) := sup

{
u(y,ω) − ht (x, y,ω) : y ∈R

N
}

for every (x, ω) ∈R
N × Ω .

Remark 1.11. It is worth noticing that T +
t u = −Ť −

t (−u), where we have denoted by Ť −
t the negative Lax–Oleinik 

semigroup associated with the Hamiltonian Ȟ defined by

Ȟ (x,p,ω) := H(x,−p,ω) for every (x,p,ω) ∈R
N ×R

N × Ω.

We list a series of properties enjoyed by such semigroups.

Proposition 1.12. Let ϑ > 0. Then there exists R(ϑ) > 0 such that for every ϑ -Lipschitz random function u and every 
ω ∈ Ω the following properties hold:



A. Davini, A. Siconolfi / Ann. I. H. Poincaré – AN 33 (2016) 243–272 251
(i)
(
T −

t u
)
(x,ω) < inf

{
u(y,ω) + ht (y, x,ω) : |x − y| ≥ tR(ϑ)

}
,(

T +
t u

)
(x,ω) > sup

{
u(y,ω) − ht (y, x,ω) : |x − y| ≥ tR(ϑ)

};
(ii) the maps (t, x) �→ T ±

t u(x, ω) are R(ϑ)-Lipschitz continuous on [0, +∞) ×R
N . In particular∥∥T ±

t u(·,ω) − u(·,ω)
∥∥∞ ≤ tR(ϑ) for every t > 0;

(iii) if u has stationary increments (resp. is stationary), then T ±
t u have stationary increments (resp. are stationary) 

for any t > 0.

Items (i), (ii) are the ergodic stationary version of well known estimates holding in deterministic case. Bounding 
function R(·) solely depends on the αH(·), βH (·) appearing in (H3), which are invariant with respect to ω. Item (iii)
is straightforward.

The next two results are purely deterministic, with ω thought as a fixed parameter. The first one is classical, see for 
instance [17,15] for the proof.

Proposition 1.13. Let u0 be a Lipschitz random function. Then, for every fixed ω ∈ Ω , the function u(t, x) :=
(T −

t u0)(x, ω) is the unique Lipschitz continuous viscosity solution of the time-dependent equation

∂tu + H(x,Dxu,ω) = 0 in (0,+∞) ×R
N (1.16)

satisfying u(0, x) = u0(x, ω) on RN .

The fact that u(t, x) := (T −
t u0)(x, ω) is a Lipschitz solution of (1.16) assuming the initial datum u0(·, ω) is well 

known, see for instance [1,8,9]. The fact that it is unique is usually obtained from a comparison principle between 
uniformly continuous sub and supersolutions of (1.16), which is proved under the additional assumption that H(·, ·, ω)

is uniformly continuous in domains of the form RN × BR , for every R > 0, see for instance [15]. Since we do not 
want to strengthen our hypotheses on H , we show in Appendix A that such a comparison principle keeps holding in 
our setting if we restrict to Lipschitz sub and supersolutions, see Theorem A.1.

Sub and supersolutions of the stationary equation (1.7) can be characterized through the action of the negative 
Lax–Oleinik semigroup as follows:

Proposition 1.14. Let v be a Lipschitz continuous function on RN and let ω be fixed. The following facts hold:

(i) v(·, ω) is a subsolution of (1.7) if and only if t �→ T −
t v(·, ω) + at is non-decreasing;

(ii) v(·, ω) is a solution of (1.7) if and only if v ≡ T −
t v(·, ω) + at for every t > 0.

Proof. Let us prove (i). If v(·, ω) is a subsolution of (1.7), then the function (t, x) �→ v(x, ω) − at is a subsolution 
of (1.16). From Proposition 1.13 and Theorem A.1 we infer that v(·, ω) − at ≤ T −

t v(·, ω) for every t > 0 and the 
assertion follows in view of the monotone character of the semigroup T −

t . Conversely, if t �→ T −
t v(·, ω) + at is 

non-decreasing, we get in particular that v(·, ω) enjoys (1.15), i.e. it is a subsolution of (1.7). Assertion (ii) readily 
follows from Proposition 1.13 by noticing that v is a solution of (1.7) if and only if v(x) − at is a solution of (1.16)
with initial datum u0 := v. �

As a consequence of the previous results, we deduce the following fact:

Proposition 1.15. Let u ∈ Sa . Then both T +
t u and T −

t u belong to Sa , for every t > 0.

2. Continuous Hamiltonians

In this section we assume H to satisfy assumptions (H1)–(H4). In the first subsection we give the definition of 
random Aubry set and we prove the existence of a critical admissible subsolution that is weakly strict outside it, in 
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a sense that will be clarified below, see Definition 2.3. This can be regarded as a completion of [10], where analo-
gous results were obtained under an additional assumption, see (A) below. In the second subsection we show how 
a strict admissible critical subsolution can be produced starting from a weakly strict one. For the outcomes of both 
subsections, we essentially use the (negative) Lax–Oleinik semigroup and its properties.

From now on we will assume the stationary critical value c = 0, which is not restrictive up to replacing H with 
H − c, and focus our analysis on such critical level. To ease notation, we will omit the subscript c when no ambiguity 
is possible. In particular, we will simply write S , S, κ and σ in place of Sc, Sc, κc and σc.

2.1. Aubry set and weakly strict subsolutions

We start by recalling the definition of the classical Aubry set.

Definition 2.1. The classical Aubry set Af (ω) is the closed stationary random set defined as follows:

Af (ω) =
{
y ∈R

N : lim inf
t→+∞ ht (y, y,ω) = 0

}
for any ω ∈ Ω.

The random set Af (ω) is almost surely empty whenever the random critical value is strictly greater than cf , i.e. 
when 0 > cf . When cf = 0, Af (ω) may be either almost surely nonempty or almost surely empty. This latter instance 
is not specific of the stationary ergodic setting: it can occur even in the periodic case.

We proceed by presenting the notion of random Aubry set as introduced in [10]. For this, we need to recall some 
facts about Lax formulae in the stationary ergodic setting, see [11,12] for more details. For any given almost surely 
nonempty stationary closed random set C(ω) in RN and any critical subsolution g ∈ S , the Lax formula is given by

u(x,ω) := inf
{
g(y,ω) + S(y, x,ω) : y ∈ C(ω)

}
x ∈R

N, (2.1)

and provides another admissible critical subsolution enjoying some additional properties, see Proposition 4.1 in [10]. 
More precisely, u(·, ω) is the maximal critical subsolution agreeing with g(·, ω) on C(ω) a.s. in ω, and, as a conse-
quence

u(·,ω) is a critical solution in R
N \ C(ω) a.s. in ω. (2.2)

In the above formula we agree that u(·, ω) ≡ 0 when either C(ω) = ∅ or the infimum is equal to −∞.
Inspired by the periodic model case, we define the stationary random Aubry set as follows:

Definition 2.2. A stationary and almost surely nonempty closed random set C(ω) will be called random Aubry set
and will be denoted by A(ω) if

(i) the extension of any admissible critical subsolution from C(ω) via the Lax formula (2.1) yields an admissible 
critical solution;

(ii) any stationary and almost surely nonempty closed random set that satisfies the previous property is almost surely 
contained in C(ω).

If there are no stationary and almost surely nonempty closed random sets satisfying (i), we agree that the Aubry set is 
almost surely empty.

We now proceed to show that the above definition is well posed. For this, we will take on the burden of checking 
that, if there is some nonempty stationary closed random set satisfying item (i) above, then there is also a maximal one. 
This task is by no means trivial, the main difficulty being the following: the random sets needed for the construction 
cannot be defined by treating ω as a fixed parameter because this procedure would lead to objects that do not satisfy 
the proper measurability hypotheses.

We also underline that the case of an almost surely empty random Aubry set (i.e. the case of nonexistence of 
nonempty stationary closed random sets satisfying item (i) above) can actually occur, see for instance Example 4.10 
in [11].



A. Davini, A. Siconolfi / Ann. I. H. Poincaré – AN 33 (2016) 243–272 253
The fact that Definition 2.2 is well-posed has been already shown in [10] under the following additional assumption:

either cf < 0 or cf = 0 and Af (ω) = ∅ a.s. in ω. (A)

As already announced, the novelty here is that we get rid of (A) by using the negative Lax–Oleinik semigroup.
In order to state the result we aim at, we need the following

Definition 2.3. Let C(ω) be a stationary closed random set. A critical subsolution v ∈ S is said to be weakly strict in 
R

N \ C(ω) if the following property holds a.s. in ω:

v(x,ω) − v(y,ω) < S(y, x,ω) for every x, y ∈ R
N \ C(ω) with x �= y. (2.3)

Remark 2.4. If v ∈ S is a weakly strict critical subsolution in RN \ C(ω), the inequality (2.3) keeps holding even 
if one (but only one) between the points x, y belongs to C(ω). This can be deduced from the fact that S(·, ·, ω) is a 
geodesic-type semidistance. Namely, assume for definiteness that x /∈ C(ω) and choose r > 0 such that the closed ball 
Br(x) is disjoint from C(ω) and does not contain y. By definition of the critical semidistance, it is easily seen that

S(y, x,ω) = min
z∈∂Br (x)

S(y, z,ω) + S(z, x,ω).

By using (2.3) and the fact that ∂Br(z) is disjoint from C(ω) we get

min
z∈∂Br (x)

S(y, z,ω) + S(z, x,ω) > min
z∈∂Br (x)

(
v(z) − v(y) + v(x) − v(z)

) = v(x) − v(y),

as it was asserted.

Theorem 2.5. The definition of random Aubry set A(ω) is well posed. Moreover, there is a critical subsolution which 
is weakly strict in RN \A(ω).

Under assumption (A), it has been provided in [10] a sort of dual characterization of the Aubry set as the minimal 
stationary closed random set for which there exists a critical admissible subsolution weakly strict in its complement. 
To prove the above theorem, we try to generalize this approach. We fix a sequence (tn)n dense in (0, +∞) and, for 
each v ∈ S , we define

Xt
v(ω) = {

x ∈ R
N : (

T −
t v

)
(x,ω) = v(x,ω)

}
, t > 0, (2.4)

and

Xv(ω) =
⋃
n∈N

Xtn
v (ω). (2.5)

It is easily seen that Xt
v(ω) is a stationary closed random set. This yields that Xv(ω) is a stationary and graph-

measurable random set, but not closed in general.
We begin by showing a property enjoyed by such sets that will be relevant for our analysis. The following fact will 

be exploited in the proof and later on in the paper: when v(·, ω) is a critical subsolution, the equality (T −
t v)(x, ω) =

v(x, ω) for some t > 0 implies the existence of a point y ∈R
N satisfying

ht (y, x,ω) = v(x,ω) − v(y,ω) = S(y, x,ω). (2.6)

The last equality follows from Proposition 1.10 and (1.14) with a = 0.

Proposition 2.6. Let v ∈ S . Then there exists a set Ωv of probability 1 such that, for every ω ∈ Ωv and x0 ∈ Xv(ω), 
any subtangent ψ to v(·, ω) at x0 satisfies H(x0, Dψ(x0), ω) ≥ 0.

Proof. Let us fix ω in a set Ω̂ of probability 1 such that v(·, ω) is a critical subsolution and pick x0 ∈ Xv(ω). By 
definition of Xv(ω), there exist t > 0 and y ∈R

N with

v(x0,ω) = v(y,ω) + ht (y, x0,ω) = v(y,ω) + S(y, x0,ω). (2.7)
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This implies that the function v(·) := S(y, ·, ω) + v(y, ω) touches v(·, ω) from above at x0, so any subtangent to 
v(·, ω) at x0 is also a subtangent to v at that point.

If y �= x0, the assertion follows since v is a critical solution in RN \ {y}. If instead y = x0, then the we deduce 
from (2.7) the equality ht (x0, x0, ω) = S(x0, x0, ω) = 0. This means that there exists a closed curve γ parameterized 
in the interval [0, t] and with base point at x0 along which the action of L(·, ·, ω) is zero. By moving along γ k-times 
we infer that hkt (x0, x0, ω) = 0 for any k ∈ N. This, in turn, implies

lim inf
s→+∞ hs(x0, x0,ω) = 0,

and this relation is possible only when cf = 0 and x0 ∈Af (ω). In this instance v is a critical solution on the whole RN , 
see [16] (or [14] for a proof in the case of a convex Hamiltonian just continuous). This concludes the proof. �

Given v ∈ S , we set

v̂(x,ω) := v(x,ω) − v(0,ω) for every (x,ω) ∈ R
N × Ω. (2.8)

The set made up by critical subsolutions obtained in this way, namely

Ŝ := {
v̂ ∈ S : v̂(0,ω) = 0 for every ω

}
is a subspace of L0(Ω, C(RN)), in particular it is separable with respect to the Ky Fan metric by Theorem 1.2. There 
thus exists a sequence of Lipschitz random functions (vn)n dense in Ŝ with respect to convergence in probability, 
which implies, in view of Theorem 1.1, that it is also dense for the almost sure convergence in C(RN). We set

w(x,ω) =
+∞∑
n=1

1

2n
vn(x,ω) for every (x,ω) ∈ R

N × Ω. (2.9)

The next result illustrates the first crucial property enjoyed by w.

Proposition 2.7. For every v ∈ S , there exists a set Ωv of probability 1 such that

Xtk
w(ω) ⊆ Xtk

v (ω) for every ω ∈ Ωv and k ∈N.

In particular, there exists a set Ωv of probability 1 such that

Xw(ω) ⊆ Xv(ω) for every ω ∈ Ωv.

Proof. It is enough to prove the first assertion, for the second trivially follows from this. Let us fix t ∈ {tk : k ∈ N }. 
The proof is divided in two parts. First we prove the assertion for any element of the sequence (vn)n, then, in the 
second step, we extend it, by density, to all random functions in Ŝ. This is actually enough, for Xt

v(ω) = Xt
v̂
(ω), for 

any ω, whenever v and v̂ are in the relation given by (2.8). Let us set

Ω̂ := {
ω ∈ Ω : vn(·,ω) is a critical subsolution for every n ∈ N

}
,

and pick ω ∈ Ω̂ and x ∈ Xt
w(ω). Then (T −

t w)(x, ω) = w(x, ω). By the very definition of T −
t(

T −
t w

)
(x,ω) ≥

+∞∑
n=1

1

2n

(
T −

t vn

)
(x,ω),

and, combining this information with the monotonic character of the action of the negative Lax–Oleinik semigroup 
on critical subsolutions pointed out in Proposition 1.15, we get

(
T −

t w
)
(x,ω) ≥

+∞∑
n=1

1

2n

(
T −

t vn

)
(x,ω) ≥

+∞∑
n=1

1

2n
vn(x,ω) = w(x,ω),

discovering in the end that all the inequalities in the above formula have actually to be equalities. In particular we 
infer (

T −
t vn

)
(x,ω) = vn(x,ω) for every n ∈N, (2.10)
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which proves that Xt
w(ω) ⊆ Xt

vn
(ω) for every ω ∈ Ω̂ and n ∈N. Now let v ∈ Ŝ . Then there exist a subsequence (vni

)i
such that

vni
(·,ω) ⇒ v(·,ω) as i → +∞ (2.11)

for every ω in a set Ωv ⊆ Ω̂ of probability 1. Let ω ∈ Ωv and a pick a point x ∈ Xt
w(ω). In force of the first part of 

the proof, we have that (2.10) holds, and this readily implies T −
t v(x, ω) = v(x, ω) in view of (2.11). This shows that 

x ∈ Xt
v(ω), as desired. �

In the next proposition we show that the action of the negative Lax–Oleinik semigroup does not affect the values 
of w on Xw(ω) not only for some positive t , as required in the original definition of such a set, see (2.5), but actually 
for all t > 0, at least a.s. in ω.

Proposition 2.8. The following holds:

Xw(ω) = {
x ∈R

N : (
T −

t w
)
(x,ω) = w(x,ω) for every t > 0

}
a.s. in ω.

Proof. Let Ω̂ be a set of probability 1 such that w(·, ω) is a critical subsolution. According to the monotonicity 
property stated in Proposition 1.14, the following implication holds for every ω ∈ Ω̂ :(

T −
t w

)
(x,ω) = w(x,ω) ⇒ T −

s w(x,ω) = w(x,ω) for s ∈ [0, t]. (2.12)

To prove the assertion, it will be enough to show that, for every ω in a set of probability 1,

sup
{
t > 0 : T −

t w(x,ω) = w(x,ω)
} = +∞ for every x ∈ Xw(ω).

For each n ∈N, set wn := T −
tn

w, where (tn)n is the dense sequence in (0, +∞) previously chosen in the definition of 
Xw(ω), see (2.5). According to Proposition 2.7, there is a set Ω ′ ⊆ Ω̂ of probability 1 with

Xtn
w(ω) ⊂ Xtn

wn
(ω) for any n ∈ N and ω ∈ Ω ′. (2.13)

Fix ω ∈ Ω̂ , x ∈ Xw(ω), and assume for purposes of contradiction

max
{
t > 0 : T −

t w(x,ω) = w(x,ω)
} =: s < ∞,

then select tk with

tk < s < 2tk. (2.14)

By (2.12)(
T −

tk
w

)
(x,ω) = w(x,ω), (2.15)

or, in other terms, x ∈ X
tk
w(ω). In view of (2.13) we get x ∈ X

tk
wk

(ω), i.e.

T −
tk

(
T −

tk
w

)
(x,ω) = (

T −
tk

w
)
(x,ω).

Combining it with (2.15), we get(
T −

2tk
w

)
(x,ω) = w(x,ω),

which is in contrast with (2.14) and the maximality property of s. �
We go on gathering some more information on Xw.

Proposition 2.9. Let cf = 0. There exists a set Ω̂ of probability 1 such that

Af (ω) ⊆ Xw(ω) for every ω ∈ Ω̂.
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Proof. Let Ω̂ be a set of probability 1 such that w(·, ω) is a critical subsolution. Then, exploiting Proposition 1.14
and the very definition of T −

t w, we have, for every t > 0 and x ∈ R
N ,

w(x,ω) ≤ (
T −

t w
)
(x,ω) ≤ lim inf

t→+∞ w(x,ω) + ht (x, x,ω). (2.16)

When cf = 0 and x ∈Af (ω)

lim inf
t→+∞ ht (x, x,ω) = 0, (2.17)

so that, combining (2.16) and (2.17), we get in the end w(x, ω) = (T −
t w)(x, ω). �

We pause our analysis on w to derive a general characterization of weakly strict subsolutions in terms of strict 
monotonicity of the action of the negative Lax–Oleinik semigroup.

Lemma 2.10. Let w ∈ S and C(ω) be a stationary closed random set. If cf = 0, we additionally assume that Af (ω) ⊆
C(ω) a.s. in ω. Then w is weakly strict in RN \ C(ω) if and only if there exists a set Ω̂ of probability 1 such that(

T −
t w

)
(y,ω) > w(y,ω) for any y ∈R

N \ C(ω),ω ∈ Ω̂ and t > 0. (2.18)

Proof. Let Ω̂ be a set of probability 1 made up of elements ω ∈ Ω for which w(·, ω) is a critical subsolution and 
enjoys (2.3). Throughout the proof, ω will denote a fixed element of Ω̂. Were (2.18) not true, we should have by 
Proposition 1.14(

T −
t w

)
(y,ω) = w(y,ω),

for some t > 0 and y /∈ C(ω), hence, by (2.6),

w(y,ω) − w(z,ω) = S(z, y,ω) for some z ∈ R
N, (2.19)

in contrast with the fact that w(·, ω) is weakly strict and y /∈ C(ω).
The converse implication will be also proved by contradiction. Assume that (2.19) holds for some y, z not belonging 

to C(ω). Exploiting that S(·, ·, ω) is a geodesic semidistance, we can assume, up to moving y, that there is a curve 
γ : [0, 1] → R

N joining z to y and with support disjoint from C(ω) such that

w(y,ω) − w(z,ω) =
1∫

0

σ(γ, γ̇ ,ω)ds.

Since the support of γ is also by assumption disjoint from Af (ω) in the case that cf = 0, we can determine a 
reparametrization ξ : [0, t] → R

N of γ , for some t > 0, with

σ
(
ξ(s), ξ̇ (s),ω

) = L
(
ξ(s), ξ̇ (s),ω

)
for a.e. s ∈ [0, t],

see [9,13]. We deduce

w(y,ω) = w(z,ω) +
t∫

0

L(γ, γ̇ ,ω)ds ≥ (
T −

t w
)
(y,ω),

but since the opposite inequality comes from Proposition 1.14, the above formula must actually hold with equality, 
yielding a contradiction. �

We are now in position to give the

Proof of Theorem 2.5. Let w be defined via (2.9) and set

C(ω) =
⋂{

x ∈ R
N : (

T −
sn

w
)
(x,ω) = w(x,ω)

}
for every ω,
n∈N
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where (sn)n is any fixed dense sequence in (0, +∞) (for instance, we could take the one previously chosen in the defi-
nition of Xw(ω), see (2.5)). It is easily seen that C(ω) is stationary closed random set. Moreover, by the monotonicity 
property stated in Proposition 1.14 and by Proposition 2.8,

C(ω) = Xw(ω) a.s. in ω. (2.20)

We claim that w is weakly strict in RN \ C(ω) and that C(ω) is the Aubry set.
Let us start with the weakly strict character of w in RN \ C(ω). In view of (2.20) and of Proposition 2.9, for every 

ω in a set of probability 1 we have(
T −

t w
)
(y,ω) > w(y,ω) for every y ∈ R

N \ C(ω) and t > 0 (2.21)

and Af (ω) ⊆ C(ω) if cf = 0. By Lemma 2.10, we conclude that w is weakly strict in RN \ C(ω).
Let us now show that C(ω) is the Aubry set, i.e. it is the maximal stationary closed random set satisfying item (i)

in Definition 2.2. We start by proving the maximality property. Let C̃(ω) be a nonempty stationary closed random set 
satisfying item (i) in Definition 2.2 and set

u(x,ω) := inf
{
w(y,ω) + S(y, x,ω) : y ∈ C̃(ω)

}
, x ∈R

N.

Since u is an admissible critical solution, we infer from Proposition 1.14 that the following equality holds for every ω
in a set of probability 1:

T −
t u(·,ω) ≡ u(·,ω) on R

N for every t > 0. (2.22)

Take ω ∈ Ω such that w(·, ω) is a critical subsolution, C̃(ω) �= ∅ and (2.22) holds. We know that w(·, ω) ≤ u(·, ω)

in R
N and w(·, ω) = u(·, ω) in C̃(ω). By the monotone character of the operator T −

t , for every x ∈ C̃(ω) we deduce

w(x,ω) ≤ (
T −

t w
)
(x,ω) ≤ (

T −
t u

)
(x,ω) = w(x,ω) for every t > 0.

Hence all the inequalities in the above formula are indeed equalities, yielding C̃(ω) ⊆ C(ω) a.s. in ω.
In particular, we derive that A(ω) = ∅ when C(ω) is almost surely empty, since the above argument implies, in 

this instance, that stationary and nonempty closed random sets satisfying (i) in Definition 2.2 do not exist.
Let us then assume that C(ω) �= ∅ a.s. in ω and let us check that it satisfies (i) in Definition 2.2. Pick a critical 

subsolution g ∈ S and let u be the admissible critical subsolution defined through (2.1). To prove that u(·, ω) is an 
almost sure critical solution on RN , we only have to check, in view of (2.2), that the supersolution test is satisfied on 
C(ω) a.s. in ω. But this follows in view of (2.20) and of Propositions 2.7 and 2.6 with v := u. �
Remark 2.11. Since v is a subsolution of H = a if and only if −v is a subsolution of Ȟ = a, then H and Ȟ have 
the same critical value. Moreover, if v is a critical subsolution for H which is weakly strict outside some stationary 
closed random set C(ω), then −v is critical for Ȟ and weakly strict outside C(ω), see Proposition 5.10 in [10] for 
more details. In view of Theorem 2.5 and Remark 2.13, this implies that H and Ȟ have the same Aubry set.

We finally record for later use that, as a consequence of Theorem 2.5, we are able to extend Theorem 5.9 in [10], 
employing the same argument used there, as follows:

Theorem 2.12. Assume that A(ω) �= ∅ a.s. in ω. Then there exists a set Ω̂ of probability 1 such that for any ω ∈ Ω̂

and any x ∈ A(ω) we can find a curve ηx : R → A(ω) (depending on ω) with ηx(0) = x satisfying the following 
properties:

(i) for every a < b in R

S
(
ηx(a), ηx(b),ω

) =
b∫

a

L(ηx, η̇x,ω)ds;
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(ii) for every v ∈ S there exists a set Ωv of probability 1 such that for every ω ∈ Ωv

b∫
a

L(ηx, η̇x,ω)ds = v
(
ηx(b),ω

) − v
(
ηx(a),ω

)
for every a < b in R.

If condition (A) holds, we furthermore have limt→±∞ |ηx(t)| = +∞.

Remark 2.13. From Theorems 2.5 and 2.12 we deduce that A(ω) is the minimal stationary closed random set for 
which there exists a critical admissible subsolution which is weakly strict in its complement.

2.2. Strict critical subsolutions

The purpose of this section is to reinforce Theorem 2.5 showing the existence of a critical subsolution enjoying the 
property of being strict outside the Aubry set in a stronger and more classical sense.

Definition 2.14. Let C(ω) be a stationary closed random set. A critical subsolution v ∈ S is said to be strict in 
R

N \ C(ω) if the following property holds a.s. in ω:

for every open set U compactly contained in RN \ C(ω) there exists δ > 0 such that

H
(
x,Dv(x,ω),ω

) ≤ −δ for a.e. x ∈ U. (2.23)

We will say that v is (weakly) strict, with no further specification, to mean that it is (weakly) strict in RN \A(ω).

Next lemma makes precise that the previous notion is actually a strengthening of that of weakly strict subsolution. 
It is a purely deterministic result, where ω plays just the role of a parameter, and so is omitted for notational simplicity.

Lemma 2.15. Let v be a critical subsolution satisfying (2.23) in some open subset U of RN and for some δ > 0. Then

v(x) − v(y) < S(y, x) for every x ∈ U and y �= x. (2.24)

Proof. Since S is a geodesic-type semidistance, it will be enough to check (2.24) for every point x ∈ U and y ∈
∂Br(x), where Br(x) is any open ball compactly contained in U .

Let ρ = ρ(0, −δ) > 0 be chosen according to (1.12) and choose a curve γ joining y to x such that

ρr

2
+ S(y, x) >

1∫
0

σ(γ, γ̇ )ds. (2.25)

Let us set τ := sup{t ∈ [0, 1] : γ (t) ∈ R
N \ Br(x)} and z = γ (τ). By taking into account (1.12) and the fact that the 

critical subsolution v satisfies (2.23) in Br(x), we get:

1∫
0

σ(γ, γ̇ )ds =
τ∫

0

σ(γ, γ̇ )ds +
1∫

τ

σ (γ, γ̇ )ds

≥ v(z) − v(y) + v(x) − v(z) + ρ

1∫
τ

∣∣γ̇ (s)
∣∣ds.

Hence by (2.25)

S(y, x) ≥ v(x) − v(y) + ρr

2
> v(x) − v(y). �

The converse implication does not hold. More generally, the inequality

v(x) − v(y) < Sa(y, x) for every x, y in an open set U ⊆R
N
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does not imply ess supx∈U H(x, Dv(x)) < a. For instance, the antiderivative of a function vanishing on an open 
and dense subset of R of small measure and equal to 1 in the complement is a weakly strict subsolution of the 
1-dimensional Eikonal equation |u′| = 1 in R, but it is not strict in R.

The statement of the main theorem reads as follows:

Theorem 2.16. Let H satisfy (H1)–(H4). Then there exists a strict critical subsolution in S . More precisely, for every 
weakly strict critical subsolution w ∈ S and every ε > 0, there exists a strict critical subsolution wε ∈ S such that

(i) ‖wε(·, ω) − w(·, ω)‖∞ < ε for every ω ∈ Ω;
(ii) wε(·, ω) = w(·, ω) on A(ω) a.s. in ω.

It, in particular, implies the existence of a critical admissible subsolution, strict on the whole RN , when the random 
Aubry set is almost surely empty.

As a consequence, we also get:

Corollary 2.17. Let H satisfy (H1)–(H4). The set of admissible, strict critical subsolutions is dense in S with respect 
to the Ky Fan metric on L0(Ω; C(RN)).

Proof. According to Theorems 2.5 and 2.16, there exists a strict critical subsolution in S , say it v. Now pick u ∈ S
and set

vn(x,ω) = 1

n
v(x,ω) +

(
1 − 1

n

)
u(x,ω) (x,ω) ∈ R

N × Ω

for every n ∈N. By convexity of the Hamiltonian, vn are strict critical subsolutions belonging to S . Moreover

vn(·,ω)⇒ u(·,ω) for every ω ∈ Ω,

meaning that d(vn(·, ω), u(·, ω)) → 0 for every ω ∈ Ω . Since almost sure convergence implies convergence in prob-
ability, we get that vn converge to u with respect to the Ky Fan metric in L0(Ω; C(RN)) in view of Theorem 1.2. �

To pass from the existence of a weakly strict admissible subsolution to that of a strict one, we make use of two, 
in a sense complementary, crucial properties of the Lax–Oleinik semigroups that will be proved below. The first is 
the invariance of the values of any critical subsolution on the random Aubry set under the action of T −

t and T +
t , the 

second instead the strict monotonicity of T −
t , when applied to a weakly strict critical subsolution, outside such set, at 

least for small times.

Proposition 2.18. Let w ∈ S . Then the following property holds a.s. in ω:

T −
t w(x,ω) = T +

t w(x,ω) = w(x,ω) for any x ∈ A(ω) and t > 0.

Proof. We assume that Aubry set is a.s. nonempty otherwise the statement is void. We take ω such that A(ω) �= ∅, 
w(·, ω) is a subsolution of the corresponding critical Hamilton–Jacobi equation and assertion (ii) of Theorem 2.12
holds for v := w. Pick a point x ∈ A(ω) and a time t > 0. According to Proposition 1.14,

T −
t w(x,ω) ≥ w(x,ω).

Now, let ηx : R →R
N be the curve chosen according to Theorem 2.12. Then

w(x,ω) = w
(
ηx(−t),ω

) +
0∫

−t

L(ηx, η̇x,ω)ds ≥ (
T −

t w
)
(x,ω),

yielding equality. The assertion for T +
t w can be proved analogously in view of Remarks 1.11 and 2.11. �
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Proposition 2.19. Let w ∈ S be weakly strict. Then we can determine a set Ωw of probability 1 such that for every 
ω ∈ Ωw and x ∈ R

N \A(ω) there exists tx = tx(ω) ∈ (0, +∞] such that the function

t �→ v(t, x,ω) := (
T −

t w
)
(x,ω)

is strictly increasing in [0, tx) and constant for t ≥ tx .

Proof. Let Ωw be a set of probability 1 made up by elements ω for which w(·, ω) is a weakly strict critical subsolution. 
Fix ω ∈ Ωw and x ∈R

N \A(ω). Let us define J as the set of times t > 0 satisfying the following property:(
T −

t w
)
(x,ω) = w(y,ω) + ht (y, x,ω) for some y ∈ A(ω). (2.26)

Let us set tx := infJ , where we agree that tx = +∞ if J is empty. From Proposition 1.12, which bounds the distance 
of the point y in (2.26) from x, and the fact that A(ω) is closed we infer that J is closed and that tx > 0.

Let us prove that t �→ (T −
t w)(x, ω) is strictly increasing in [0, tx). Take s > t in [0, tx), then(

T −
s w

)
(x,ω) = (

T −
s−tw

)
(y,ω) + ht (y, x,ω) for some y ∈R

N. (2.27)

If y ∈ A(ω), from Proposition 2.18 we deduce(
T −

s w
)
(x,ω) = w(y,ω) + ht (y, x,ω) >

(
T −

t w
)
(x,ω),

were the strict inequality comes from the fact that t /∈ J . If instead y /∈ A(ω), we invoke Lemma 2.10, which holds 
true for the ω we are working with, to get from (2.27)(

T −
s w

)
(x,ω) > w(y,ω) + ht (y, x,ω) ≥ (

T −
t w

)
(x,ω).

Let us now prove that t �→ (T −
t w)(x, ω) is constant in [tx, +∞) when tx < +∞. Let y ∈A(ω) be a point satisfying 

(2.26) with tx in place of t . We invoke Proposition 2.18 to get for t > tx(
T −

t w
)
(x,ω) ≤ (

T −
t−tx

w
)
(y,ω) + htx (y, x,ω) = w(y,ω) + htx (y, x,ω) = (

T −
tx

w
)
(x,ω).

By monotonicity properties of Lax–Oleinik semigroup pointed out in Proposition 1.14, we get the assertion. �
To proceed in our analysis, we need two technical lemmata about locally Lipschitz functions and related Clarke’s 

generalized gradients. In what follows, we denote by π1, π2 the maps defined as π1(pt , px) = pt , π2(pt , px) = px

for every (pt , px) ∈ R ×R
N .

Lemma 2.20. Let v(t, x) be a locally Lipschitz function in (0, +∞) ×R
N such that, for every bounded open subset 

U of RN , the functions{
v(·, x) : x ∈ U

}
are locally equi-semiconcave (resp. equi-semiconvex) in (0,+∞).

Then, for every (t0, x0) ∈ (0, +∞) ×R
N ,

π1
(
∂cv(t0, x0)

) = ∂c
t v(t0, x0), π2

(
∂cv(t0, x0)

) ⊇ ∂c
xv(t0, x0).

In particular, the map (t, x) �→ ∂c
t v(t, x) is upper semicontinuous in (0, +∞) ×R

N .

Proof. The fact that

π1
(
∂cv(t0, x0)

) ⊇ ∂c
t v(t0, x0), π2

(
∂cv(t0, x0)

) ⊇ ∂c
xv(t0, x0)

for every (t0, x0) ∈ (0, +∞) ×R
N follows from Proposition 2.3.16 of [6]. To prove that π1(∂

cv(t0, x0)) = ∂c
t v(t0, x0), 

it will be enough to show that

π1
(
∂∗v(t0, x0)

) ⊆ ∂c
t v(t0, x0).

Let pt0 ∈ π1(∂
∗v(t0, x0)) and let (tn, xn) be a sequence of differentiability points for v converging to (t0, x0) such that 

∂tv(tn, xn) =: ptn → pt0 as n → +∞. The functions

φn(t) := w(t − t0 + tn, xn)
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are locally equi-semiconcave (resp. equi-semiconvex) in (0, +∞) and

φn ⇒ v(·, x0) in (0,+∞).

Moreover φn are differentiable at t0 and φ′
n(t0) = ptn , in particular ptn belongs to the superdifferential (resp. subdiffer-

ential) of φn at t0 by semiconcavity (resp. semiconvexity). This property passes to the limit since the functions φn are 
locally equi-semiconcave (resp. equi-semiconvex), hence pt0 belongs to the superdifferential (resp. subdifferential) of 
the function v(·, x0) at t0, that is to ∂c

t v(t0, x0).
Since the map (t, x) �→ ∂cv(t, x) is upper semicontinuous in (0, +∞) ×R

N , so is the map (t, x) �→ π1(∂
cv(t, x)), 

from which we get the last assertion in view of the identity just established. �
Lemma 2.21. Let v(t, x) be a locally Lipschitz function in (0, +∞) × R

N and assume there is a bounded open 
subset U of RN such that

(i) the functions {v(·, x) : x ∈ U} are locally equi-semiconcave (resp. equi-semiconvex) in (0, +∞);
(ii) for every x ∈ U the map

t �→ v(t, x) is strictly increasing in [0, tx)

for some tx ∈ (0, +∞].
Then, for every x ∈ U , the set

Ix := {
t > 0 : min

{
pt : pt ∈ ∂c

t v(t, x)
}

> 0
}

is open and dense in (0, tx), in particular it is nonempty.

Proof. Let us fix x ∈ U and set

f (t) = min
{
pt : pt ∈ ∂c

t v(t, x)
}

for every t > 0.

Thanks to Lemma 2.20, the set-valued map t �→ ∂c
t v(t, x) is upper semicontinuous. Consequently, the function f is 

lower semicontinuous, so that

Ix = {
t > 0 : f (t) > 0

}
is open. Let us prove that it is dense in (0, tx). This is indeed a consequence of the strict monotonicity of t �→ v(t, x)

in [0, tx). Because of it, in fact, in any subinterval of (0, tx) we find differentiability points of v(·, x) with positive 
derivative. Since any such point, say t0, is of strict differentiability due to the semiconcavity (resp. semiconvexity) of 
v(·, x), the corresponding derivative is also the unique generalized gradient, which shows that t0 ∈ Ix and proves the 
statement. �

Our strategy for proving Theorem 2.16 is structured in two parts: we first show the result under the additional 
assumption that the H is strictly convex and then generalize it to Hamiltonians solely convex by means of a regular-
ization in time of the action of the negative Lax–Oleinik semigroup via t -partial sup convolutions.

Proof of Theorem 2.16 for H strictly convex. The precise statement of our extra assumption is:

(H2′) H(x, ·, ω) is strictly convex on RN for every (x, ω) ∈R
N × Ω .

Let w ∈ S be a weakly strict subsolution and let ε > 0 be fixed. The main effect of (H2′) is that the function

v(t, x,ω) := (
T −

t w
)
(x,ω), (t, x,ω) ∈ (0,+∞) ×R

N × Ω, (2.28)

is locally semiconcave in (0, +∞) with respect to t , see Lemma 2.11 in [14]. More precisely, for every open and 
bounded set U ⊂R

N and every fixed ω ∈ Ω the functions{
v(·, x,ω) : x ∈ U

}
are locally equi-semiconcave in (0,+∞).
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Let κ be the constant given by (1.8) with a = 0 and let R(κ) be chosen according to Proposition 1.12. Choose τ > 0
such that τR(κ) < ε and let (tn)n be a dense sequence in (0, τ). We define

wε(x,ω) =
+∞∑
n=1

1

2n
v(tn, x,ω), (x,ω) ∈R

N × Ω. (2.29)

By Proposition 1.15, we get

∥∥wε(·,ω) − w(·,ω)
∥∥∞ ≤

+∞∑
n=1

1

2n

∥∥v(tn, ·,ω) − w(·,ω)
∥∥∞ ≤ τR(κ) < ε

for every ω ∈ Ω , showing in particular that wε(·, ω) is finite-valued. As a convex combination of admissible critical 
subsolutions, see Proposition 1.15, a standard argument shows that wε is an admissible subsolution as well. From 
Proposition 2.18 we also infer

wε(·,ω) = w(·,ω) on A(ω) (2.30)

a.s. in ω. It is left to show that wε is strict. To this purpose, let us fix ω in a set of probability 1 made up of elements for 
which the assertion of Proposition 2.19 holds true and the functions v(tn, ·, ω) are critical subsolutions. Pick a point 
y ∈ R

N \A(ω). According to Lemma 2.21 and by density of the sequence (tn)n in (0, τ), there exist i ∈ N and a > 0
such that

min
{
pt : pt ∈ ∂c

t v(ti , y,ω)
}

> a. (2.31)

By upper semicontinuity of the set-valued map x �→ ∂c
t v(ti , x, ω), we infer that (2.31) keep holding in a ball Br(y). 

Now we exploit the fact that v(·, ·, ω) is a (sub)solution of the time-dependent equation (1.16), in view of Proposi-
tion 1.13, so

pt + H(x,px,ω) ≤ 0 for every (pt ,px) ∈ ∂cv(ti , x,ω) and x ∈ Br(y).

In view of Lemma 2.20 and of what remarked above, we get in particular

H
(
x,Dxv(ti , x,ω),ω

)
< −a < 0 for a.e. x ∈ Br(y).

By the definition of wε and the convexity of H , we conclude that

H
(
x,Dwε(x,ω),ω

) ≤ 1

2i
H

(
x,Dxv(ti , x,ω),ω

)
+

∑
n�=i

1

2n
H

(
x,Dxv(tn, x,ω),ω

) ≤ − a

2i
< 0

for a.e. x ∈ Br(y). This actually shows that wε is strict since y was arbitrarily chosen in RN \A(ω). �
Looking carefully at the above argument, we recognize that definition (2.28) can be interpreted as a convenient way 

to select a 1-parameter family {v(t, ·, ·)}t>0 of elements in S in such a way that the following conditions are satisfied 
almost surely: v(·, ·, ω) is a subsolution of the time-dependent equation (1.16); the function t �→ v(t, x, ω) is constant 
on A(ω), and strictly increasing outside A(ω) in a suitable neighborhood [0, tx) of t = 0; the map t �→ v(t, x, ω) is 
locally semiconcave (or semiconvex) in (0, +∞), with a modulus that is locally uniform with respect to x.

In the general case of a Hamiltonian, not strictly convex, but just convex, the latter condition is apparently no longer 
fulfilled by the random variable given by (2.28). To get the proof of Theorem 2.16 in full generality, we modify the 
definition of v by setting

v(t, x,ω) = sup
s≥0

{(
T −

s w
)
(x,ω) − 1

2δ
(s − t)2

}
. (2.32)

To complete our task it is then enough to check out that such a v fulfills all the requirements listed above, and this 
is indeed the content of our next proposition. In this way v can be actually used in formula (2.29) to provide a strict 
subsolution wε ∈ S almost surely satisfying (2.30), while for the inequality ‖wε − w‖∞ < ε in the item (i) of the 
statement, it simply suffices to choose τ > 0 and δ > 0 small enough.
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Proposition 2.22. Let v be defined via (2.32) for some w ∈ S and δ > 0. The following properties hold:

(i) ‖v(t, ·, ω) − w(·, ω)‖∞ ≤ R(κ)(t + 2δR(κ)) for every t > 0 and ω ∈ Ω;
(ii) the function v(·, ·, ω) is a Lipschitz subsolution in (0, +∞) ×R

N of the time-dependent equation (1.16) for every 
ω ∈ Ω;

(iii) v(t, ·, ·) ∈ S for every t > 0;
(iv) for every ω in a set of probability 1 the following property holds:

v(t, ·,ω) = w(·,ω) on A(ω) for every t > 0;
(v) the functions {v(·, x, ω) : x ∈R

N, ω ∈ Ω} are equi-semiconvex in (0, +∞).

Moreover, if w ∈ S is weakly strict, then v enjoys the assertion of Proposition 2.19.

Proof. By Proposition 1.12 we know that the function (t, x) �→ (T −
t w)(x, ω) is R(κ)-Lipschitz continuous 

[0, +∞) × R
N for every ω ∈ Ω , in particular (T −

t w)(x, ω) grows at most linearly in t . This implies that the supre-
mum in (2.32) is attained. Let us denote by Y(t, x, ω) the set of maximizers of the right-hand side term of (2.32). 
Then

|s − t | ≤ 2δR(κ) for every s ∈ Y(t, x,ω).

This follows from the fact that, for any such s, we have

1

2δ
(t − s)2 ≤ (

T −
s w

)
(x,ω) − (

T −
t w

)
(x,ω) ≤ R(κ)|t − s|.

In particular,

0 ≤ v(t, x,ω) − (
T −

t w
)
(x,ω) ≤ (

T −
s w

)
(x,ω) − (

T −
t w

)
(x,ω) ≤ 2δR(κ)2,

and assertion (i) follows by Proposition 1.12–(ii).
Assertion (ii) is well known, see for instance [5]: the Lipschitz character of v(·, ·, ω) comes from the fact that it is 

the supremum of equi-Lipschitz functions; the subsolution property is a consequence of the inclusion

D+v(t, x,ω) ⊆ D+(
T −

s w
)
(x,ω) for every s ∈ Y(t, x,ω),

together with the fact that (T −
t w)(x, ω) is a (sub)solution of (1.16) and that the Hamiltonian is autonomous.

Let us prove item (iii) for any fixed t > 0. First notice that, by continuity with respect to s, the supremum in (2.32)
can be taken over a dense and countable subset of (0, +∞), yielding that v(t, ·, ·) is a random variable. Moreover, 
v(t, ·, ω) is the supremum of a family of critical subsolutions whenever w(·, ω) is a critical subsolution, see Propo-
sition 1.14, i.e. almost surely. This implies that v(t, ·, ω) is a critical subsolution a.s. in ω. The fact that v(t, ·, ω) is 
almost surely sublinear is obvious from (i) and from the fact that w ∈ S . It is left to show that v(t, ·, ·) has stationary 
increments. Indeed, w has stationary increments, meaning that, for every fixed z ∈R

N , there exists a random variable 
k(ω) and a set Ωz with probability 1 such that

w(· + z,ω) = w(·, τzω) + k(ω) on R
N for every ω ∈ Ωz.

Keeping in mind the stationary character of the Lagrangian, it is easily checked that the same identity is satisfied by 
T −

s w for every s > 0, and, consequently, by v(t, ·, ·).
Assertion (iv) is straightforward consequence of the definition of v in view of Proposition 2.18.
Assertion (v) is also well known, see for instance [5].
Let us prove the last assertion. We first note that, when w(·, ω) is a critical subsolution, the monotonicity of the 

map t �→ (T −
t w)(x, ω) readily implies, by the very definition of v, that

Y(t, x,ω) ⊂ [t,+∞). (2.33)

Assume now that w is weakly strict and let us denote by Ωw a set of probability 1 made up by elements ω for 
which w(·, ω) is a weakly strict critical subsolution. Fix ω ∈ Ωw and pick a point x ∈ R

N \ A(ω). Then we know 
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by (the proof of) Proposition 2.19 that there exists tx ∈ (0, +∞] such that the function t �→ (T −
t w)(x, ω) is strictly 

increasing in [0, tx) and constant for t ≥ tx . In view of (2.33) and the very definition of v, we infer that

t �→ v(t, x,ω) is constant for t ≥ tx .

It is left to show that it is strictly increasing in [0, tx). Take t1 > t2 in [0, tx) and let si ∈ Y(ti , x, ω) for i = 1, 2. Two 
cases are possible: either s2 < tx or s2 = tx . In the first instance we have

v(t2, x,ω) = (
T −

s2
w

)
(x,ω) − 1

2δ
(s2 − t2)

2

<
(
T −

t1+(s2−t2)
w

)
(x,ω) − 1

2δ
(s2 − t2)

2 ≤ v(t1, x,ω),

in the second

v(t2, x,ω) = (
T −

tx
w

)
(x,ω) − 1

2δ
(tx − t2)

2

<
(
T −

tx
w

)
(x,ω) − 1

2δ
(tx − t1)

2 ≤ v(t1, x,ω),

as it was to be shown. �
3. Tonelli Hamiltonians

In this section we deal with Hamiltonians satisfying more stringent regularity assumptions and named after Tonelli. 
In the first subsection we provide basic definitions and illustrate the salient features of the corresponding Hamiltonian 
flow and Lax–Oleinik semigroups. In the second one we prove existence of C1,1 strict subsolutions in the stationary 
ergodic setting and investigate their properties. This is achieved by applying Bernard’s method on C1,1-regularization 
of strict subsolutions on compact manifolds in the deterministic case.

Throughout the section we will use the term semiconcave (respectively semiconvex) in a stronger sense than the 
one defined in Section 1: we will in fact additionally require the modulus to be linear, namely Θ(h) = Kh for some 
K > 0. If such a constant need to be showcased then we will employ the diction K-semiconcave (respectively, 
K-semiconvex). We recall that a function u is both K-semiconcave and K-semiconvex in some open subset U of 
R

N if and only if is of class C1,1 in U and Lip(Du; U) ≤ K , see [5].

3.1. Generalities

We say that a stationary ergodic Hamiltonian H is Tonelli if it enjoys conditions (H1)–(H4) and the following set 
of assumptions:

(T1) H(·, ·, ω) ∈ C2(RN ×R
N) for every ω ∈ Ω ;

(T2) for every R > 0 there exists a constant νR > 0 such that

∂2
pH

∂p2
(x,p,ω) > νR IdRN for every (x,p,ω) ∈R

N × BR × Ω;

(T3) for every R > 0 there exists MR > 0 such that∥∥DH(·, ·,ω)
∥∥

L∞(RN×BR)
< MR,∥∥D2H(·, ·,ω)

∥∥
L∞(RN×BR)

< MR

for every ω ∈ Ω .

The following holds

Proposition 3.1. The associated Lagrangian L satisfies properties analogous to (T1)–(T3).
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Proof. For every fixed ω ∈ Ω , we already know, see for instance [7,16], that L is of class C2 in RN ×R
N and

q = ∂pH
(
x, ∂qL(x, q,ω),ω

)
, ∂xL(x, q,ω) = −∂xH

(
x, ∂qL(x, q,ω),ω

)
(3.1)

for every (x, q) ∈ R
N ×R

N . From assumption (H3) it is easily seen that L is bounded in RN × BR for every R > 0, 
uniformly with respect to ω. By the convexity of L in q , this readily implies that for every R > 0 there exists ρ(R) > 0
such that∣∣∂qL(x, q,ω)

∣∣ ≤ ρ(R) for every (x, q,ω) ∈ R
N × BR × Ω. (3.2)

Let us fix R > 0 and let us denote by Mρ(R) a positive constant chosen according to (T3). By differentiating the first 
equality in (3.1) with respect to q we get

∂2L

∂q2
(x, q,ω) =

(
∂2H

∂p2

(
x, ∂qL(x, q,ω),ω

))−1

>
C

Mρ(R)

IdRN

for every (x, q, ω) ∈ R
N × BR × Ω and for some universal constant C > 0. This proves that L satisfies a condition 

analogous to (T2). The fact that DL is bounded in RN ×BR for every R > 0, uniformly with respect to ω, immediately 
follows from the second equality in (3.1) and from (3.2). An analogous bound for D2L can be easily proved by 
differentiating the identities in (3.1) with respect to x and q and by making use of (3.2) and assumption (T3). �
Remark 3.2. The above hypotheses, in particular (T2) and (T3), are adaptation to the stationary ergodic environment 
of the usual ones required for deterministic Tonelli Hamiltonians. The changes are basically due to the fact that 
we need bounds independent of ω, and this immediately implies that they have also to be global in x. In fact, bounds 
independent of ω that are local in x simply do not make sense in our frame, for stationarity and ergodicity assumptions 
should automatically transfer them to the whole RN . Similarly, we could rephrase (T2) and (T3) by requiring νR and 
MR to depend in a measurable way on ω: the ergodicity assumption would then imply that they are almost surely 
constant.

We will denote by φH
t (x, p, ω) the Hamiltonian flow, i.e. the flow associated with Hamilton’s ODE{

ξ̇ = ∂pH(ξ, η,ω)

η̇ = −∂xH(ξ, η,ω).

The corresponding integral curves will be also called characteristics in the sequel. As well known, H(φH
t (x, p, ω),

ω) = H(x, p, ω) for every (x, p, ω), which yields, by the coercivity assumption (H3), that the flow is complete, i.e. 
globally defined in time.

We proceed discussing the two main additional features of Lax–Oleinik semigroups for Tonelli Hamiltonians. The 
first one asserts that the action of the negative semigroups is driven by characteristics, see [16] for the proof.

Proposition 3.3. Let u be a ϑ -Lipschitz random function, x ∈ R
N and t > 0. Let γ : [0, t] → R

N be a Lipschitz curve 
with γ (t) = x such that

(
T −

t u
)
(x,ω) = u

(
γ (0),ω

) +
t∫

0

L(γ, γ̇ ,ω)ds.

Then γ is the projection on the state variable space of a characteristic taking value (γ (0), pγ (0)) at time 0, and (x, px)

at time t , where

pγ (0) ∈ D−u
(
γ (0),ω

)
, px ∈ D+(

T −
t u

)
(x,ω).

While for continuous Hamiltonians, we can only assert κ-Lipschitz continuity of (T −
t u)(·, ω) and (T +

t u)(·, ω)

when u ∈ S , for Tonelli ones we get semiconcavity and semiconvexity, respectively. This property will be crucial to 
transfer to the stationary ergodic setting the regularization procedure yielding C1,1 critical subsolutions.
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Proposition 3.4. Let t0 > 0. Then the functions {ht0(·, ·, ω) : ω ∈ Ω} are locally equi-semiconcave (and equi-
Lipschitz) in RN × R

N . In particular, there exists a constant K = K(t0) such that, for every w ∈ S and for every 
t ≥ t0, (T −

t w)(·, ω) is K-semiconcave in RN , (T +
t w)(·, ω) is K-semiconvex in RN , for every ω ∈ Ω .

Proof. Let us pick x1, x2 ∈ R
N and r > 0 and set Ui := Br(zi) for i = 1, 2. The fact that ht0(·, ·, ω) is, for fixed ω, 

semiconcave in U1 ×U2 is well known, see for instance [18, Theorem B.19]. We only need to check that the semicon-
cavity constant can be chosen independent of ω. To this aim, let us first denote by αL, βL : R+ → R two superlinear 
functions such that

αL

(|q|) ≤ L(x, q,ω) ≤ βL

(|q|) for all (x, q,ω) ∈R
N ×R

N × Ω;
Such functions do exist due to condition (H3). Moreover, they can be assumed, without any loss of generality, convex 
and nondecreasing, see Remark 1.8. It is not difficult to see that

t0αL

( |x − y|
t0

)
≤ ht0(y, x,ω) ≤ t0βL

( |x − y|
t0

)
in R

N ×R
N × Ω.

Hence we can always assume that a Lagrangian minimizer γ : [0, t0] → R
N with γ (0) ∈ U1 and γ (t0) ∈ U2 satisfies 

‖γ̇ ‖∞ ≤ A for some constant A only depending on r , t0, αL, βL, see for instance Lemma 3.2 in [9]. Let M be a 
Lipschitz constant for DL(·, ·, ω) in RN × BA+4r/t0 for every ω ∈ Ω , which exists according to Proposition 3.1. Fix 
ω ∈ Ω and pick xi, yi ∈ Ui for i = 1, 2 and a Lagrangian minimizer γ : [0, t0] → R

N with γ (0) = x1 and γ (t0) = x2
(i.e. an optimal curve for ht0(x1, x2, ω)) such that ‖γ̇ ‖∞ ≤ A. We define a curve γ̃ : [0, t0] → R

N joining y1 to y2 by 
setting

γ̃ (s) =
{ t0−2s

t0
(y1 − x1) + γ (s) if s ∈ [0, t0/2)

2s−t0
t0

(y2 − x2) + γ (s) if s ∈ [t0/2, t0].
Arguing as in the proof of Theorem B.19 in [18], we derive

ht0(y1, y2,ω) − ht0(x1, x2,ω) ≤
t0∫

0

L
(
γ̃ (s), ˙̃γ (s),ω

)
ds −

t0∫
0

L
(
γ (s), γ̇ (s),ω

)
ds

≤ 〈
px1(ω), y1 − x1

〉 + 〈
px2(ω), y2 − x2

〉 + M

(
t0

2
+ 2

t0

)(|y1 − x1|2 +|y2 − x2|2
)

for a pair of vectors p1(ω), p2(ω) ∈ R
N . This proves the first part of the statement.

Let us prove the asserted semiconcavity of T −
t w. Let us first prove that there exists a constant K = K(t0) such 

that Tt0w(·, ω) is K-semiconcave in B1 for every ω ∈ Ω and w ∈ S . This is a consequence of the fact that, for every 
ω ∈ Ω ,

Tt0w(·,ω) = min
{
ht0(y, ·,ω) + w(y,ω) : |y| ≤ 1 + t0R(κ)

}
in B1

in view of Proposition 1.12 and that the functions {ht0(y, ·, ω) : |y| ≤ 1 + t0R(κ), ω ∈ Ω} are locally equi-
semiconcave. By the fact that Tt0w has stationary increments, it is easily seen that Tt0w(·, ω) is K-semiconcave 
in B1(z) if and only if Tt0w(·, τzω) is K-semiconcave in B1. This readily implies that Tt0w(·, ω) is K-semiconcave 
in RN for every ω ∈ Ω . To see that the same semiconcavity constant works for t > t0 as well, simply notice that 
Ttw = Tt0(Tt−t0w) and Tt−t0w ∈ S for every w ∈ S .

The semiconvexity of T +
t w readily follows from this in view of Remark 1.11. �

We can derive from Theorem 2.12:

Theorem 3.5. The following facts hold:

(i) for every v ∈ S , there exists a set Ωv of probability 1 such that for every ω ∈ Ωv and every x ∈A(ω)

v(·,ω) is differentiable at x and H
(
x,Dv(x)

) = 0.
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(ii) Let u and v belong to S . Then

Du(·,ω) = Dv(·,ω) on A(ω)

for every ω ∈ Ωu ∩ Ωv .

Theorem 3.5 is analogous to a well known result in weak KAM Theory and can be proved similarly, see [16].
Let us pick v ∈ S and set

Ã(ω) := {(
x,Dv(x,ω)

) : x ∈ A(ω)
}
, ω ∈ Ω.

Up to a set of null probability, the definition of Ã(ω) is independent of the choice of v ∈ S in view of Theorem 3.5. 
The following holds, see [16]:

Theorem 3.6. There exists a set Ω̂ of probability 1 such that for every ω ∈ Ω̂

φt
H

(
Ã(ω),ω

) = Ã(ω) for every t ∈R.

3.2. C1,1 subsolutions in stationary ergodic case

In this subsection we show how to pass from a strict critical and admissible subsolution, which is in general just 
Lipschitz-continuous with respect to x, to one which is of class C1,1 in RN . The precise result we will prove is the 
following:

Theorem 3.7. Let H satisfy (H1)–(H4) and (T1)–(T3). Then there exists a strict critical subsolution in S of class C1,1

in RN . More precisely, for every strict critical subsolution w ∈ S and every ε > 0, there exists a strict critical subso-
lution wε ∈ S such that

(i) ‖wε(·, ω) − w(·, ω)‖∞ < ε for every ω ∈ Ω;
(ii) wε(·, ω) = w(·, ω) on A(ω) a.s. in ω;

(iii) wε(·, ω) ∈ C1,1(RN) for every ω ∈ Ω .

This theorem, in particular, implies the existence of a critical admissible subsolution of class C1,1 and strict on the 
whole RN when the random Aubry set is almost surely empty.

As a direct consequence of Theorem 3.7 and Corollary 2.17 we get

Corollary 3.8. Let H satisfy (H1)–(H4) and (T1)–(T3). Then the set of admissible, strict critical subsolutions of class 
C1,1 in RN is dense in S with respect to the Ky Fan metric on L0(Ω; C(RN)).

We start by showing a further invariance property of Lax–Oleinik semigroup.

Proposition 3.9. Let H be a stationary ergodic Tonelli Hamiltonian. Then the family of strict subsolution belonging 
to S is invariant for the positive and negative Lax–Oleinik semigroups. Namely, if u ∈ S and is strict, then both T +

t u

and T −
t u belong to S and are strict, for every t > 0.

Proof. Let u ∈ S be strict. Take ω such that u(·, ω) is a strict critical subsolution, u(·, ω) is differentiable on A(ω) and 
Ã(ω) is invariant with respect to the Hamiltonian flow. Theorems 3.5 and 3.6 guarantee that such a choice can be done 
in set of probability 1. We go on fixing t > 0 and a closed ball B disjoint from A(ω). We consider the set V made 
up by points y optimal for (T −

t u)(x, ω), for some x ∈ B . This set inherits from B the property of being compact. 
As established in Proposition 3.3, if y ∈ V is optimal for (T −

t u)(x, ω), the corresponding Lagrangian minimizer 
γ : [0, t] → R

N is the projection on the state variable space of the characteristic taking the value (y, p) at time 0, with 
p ∈ D−u(y, ω). If y ∈ A(ω), then p = Du(y, ω) and (y, p) ∈ Ã(ω), but then, by the invariance property of Ã(ω), γ
cannot reach x, which does not belong to A(ω). This argument shows by contradiction that V ∩A(ω) = ∅.
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Being u(·, ω) strict critical subsolution, there exists δ > 0 with

H(y,p,ω) ≤ −δ for every p ∈ ∂cu(y,ω) and y ∈ V.

Taking into account Proposition 3.3 and the fact that the Hamiltonian stays constant on characteristics, we derive

H
(
x,Dx

(
T −

t u
)
(x,ω),ω

) ≤ −δ for a.e. x ∈ B.

Since B is a closed ball arbitrarily chosen in the complement of A(ω), this proves the assertion for T −
t u, and conse-

quently for T +
t u in view of Remark 1.11. �

The above argument shows that, if x /∈ A(ω), the optimal points for T −
t u(x, ω) do not belong to A(ω) for any 

t > 0. Thanks to this, we get the following strengthened form of Proposition 2.19 for Tonelli Hamiltonians:

Corollary 3.10. Let H be a stationary ergodic Tonelli Hamiltonian. Then, for any weakly strict subsolution w ∈ S , 
there exists a set Ωw of probability 1 such that, for every ω ∈ Ωw and x ∈ R

N \A(ω), the function

t �→ (
T −

t w
)
(x,ω)

is strictly increasing in [0, +∞). In particular, T −
t w is weakly strict for every t > 0.

For the sake of completeness, we also provide, in the framework of the proof of Theorem 3.7, a worked out 
presentation of Bernard regularization technique in the deterministic setting using our terminology and notations. The 
material is illustrated in a more elementary way and providing more details with respect to the original proof in [3], 
at the expense of some loss of concision and elegance.

The first two steps are purely deterministic, and so ω is omitted. Lemma 3.11 establish that a function which 
is C1,1 locally around a given point, remains of class C1,1, at least in a smaller neighborhood of the same point, 
under application of T −

t for small times. It will be used in the subsequent Proposition 3.12 to show, by working on 
subtangents, that a function locally semiconvex becomes locally C1,1 under the same action.

In what follows, the symbols π1 and π2 will denote the projections on the space and momentum variable, respec-
tively, i.e. the maps defined as π1(x, p) = x, π2(x, p) = p for every (x, p) ∈R

N ×R
N .

Lemma 3.11. Assume ψ : RN → R to be κ̃-Lipschitz-continuous in RN , for some κ̃ > 0 and, in addition, of class 
C1,1 in a neighborhood of B1(x0), for some x0 ∈ R

N . Then there exist t0 > 0 and A > 0, solely depending on ̃κ and 
the Lipschitz constant of Dψ in B1(x0), such that, for every t ∈ [0, t0], the following properties hold:

(i) any y ∈ B1/2(x0) is the unique optimal point in RN for (T −
t ψ)(x) with x = π1 ◦φH

t (y, D(ψ(y)));
(ii) T −

t ψ ∈ C1,1(B1/2(x0)) and Lip(Dx(T
−
t ψ); B1/2(x0)) ≤ A.

Proof. For every t ≥ 0, we define a map Rt : B1(x0) → R
N by setting

Rt(y) = π1 ◦φH
t

(
y,Dψ(y)

)
for every y ∈ B1(x0).

We claim that we can choose t0 > 0, only depending on ̃κ and on the Lipschitz constant of Dψ in B1(x0), such that the 
map Rt − I is a contraction on B1(x0) for every t ∈ [0, t0]. To this aim, fix y1 and y2 in B1(x0) and denote by (ξi, ηi), 
i = 1, 2, the characteristic taking the value (yi, Dψ(yi)) at 0. We have

Rt(yi) − yi =
t∫

0

∂pH(ξi, ηi)ds

and consequently

∣∣(Rt(y1) − y1
) − (

Rt(y2) − y2
)∣∣ ≤

t∫ ∣∣∂pH(ξ1, η1) − ∂pH(ξ2, η2)
∣∣ds. (3.3)
0
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Now we recall that H is superlinear and locally bounded in p, uniformly in x, and stays constant on characteristics. 
From the inequality |Dψ(yi)| ≤ κ̃ we derive that (ξi(s), ηi(s)) is contained RN × Bρ for some ρ only depending on 
κ̃ and on the functions αH , βH appearing in assumption (H3). Let us denote by M the positive constant MR given by 
hypothesis (T3) with R = ρ. Resuming our estimate, from (3.3) we get

∣∣(Rt(y1) − y1
) − (

Rt(y2) − y2
)∣∣ ≤ M

t∫
0

∣∣(ξ1, η1) − (ξ2, η2)
∣∣ds.

Let us denote by λ a Lipschitz constant for Dψ in B1(x0). By Gronwall inequality∣∣(ξ1(s), η1(s)
) − (

ξ2(s), η2(s)
)∣∣ ≤ eMs

∣∣(y1,Dψ(y1)
) − (

y2,Dψ(y2)
)∣∣

≤ eMs
(√

1 + λ2
)|y1 − y2| for s ∈ [0, t], (3.4)

hence∣∣(Rt(y1) − y1
) − (

Rt(y2) − y2
)∣∣ ≤ (√

1 + λ2
)(

eMt − 1
)|y1 − y2|. (3.5)

Let us choose t0 > 0 such that(
eMt0 − 1

)√
1 + λ2 <

1

2
, Mt0 <

1

4
, t0R(̃κ) <

1

4
, (3.6)

with R(̃κ) given by Proposition 1.12, and fix t ∈ [0, t0]. From (3.5) we derive that Rt − I is a contraction, with 
Lipschitz constant less than 1/2. By the triangular inequality we get

1

2
|y1 − y2| ≤

∣∣Rt(y1) − Rt(y2)
∣∣ ≤ 3

2
|y1 − y2| for every y1, y2 ∈ B1(x0),

showing in particular that Rt is injective in B1(x0).
Let us prove (i). We first observe that the equality(

T −
t ψ

)
(x) = ψ(y) + ht (y, x) for x ∈ B3/4(x0)

implies y ∈ B1(x0) and Rt(y) = x, in view of Proposition 1.12, see the third inequality in (3.6), and of Proposition 3.3, 
in particular such a point y is unique by injectivity of Rt . On the other hand, by the choice of M and the inequality 
Mt < 1/4, for every y ∈ B1/2(x0) we have that the point x = Rt(y) belongs to B3/4(x0). In view of the previous 
remark, we conclude that y is the unique point in RN that is optimal for (T −

t ψ)(x).
Let us prove (ii). The previous argument implies that B3/4(x0) ⊆ Rt(B1(x0)), in particular we infer that the map

R−1
t : B1/2(x0) → B1(x0)

is well defined and Lipschitz-continuous. From this and (3.4) we get that the function

x �→ π2 ◦φH
t

(
R−1

t (x),D
(
ψ

(
R−1

t (x)
)))

is A-Lipschitz continuous in B1/2(x0), where A is a constant only depending on t0 and on the Lipschitz constant 
of Dψ in B1(x0). In addition, by Proposition 3.3, its images belong, for any x, to D+(T −

t ψ)(x). This means that 
we have constructed an A-Lipschitz continuous selection of D+(T −

t ψ)(x) in B1/2(x0). Since D+(T −
t ψ)(x) reduces 

to the differential of T −
t ψ at any differentiability point, we infer, by its very definition, that the Clarke generalized 

gradient of T −
t ψ reduces to a singleton at any point of B1/2(x0). This readily gives that T −

t ψ ∈ C1,1(B1/2(x0)) and 
Lip(Dx(T

−
t ψ); B1/2(x0)) ≤ A. �

Proposition 3.12. Let w be a critical subsolution which is K-semiconvex in B1(x0) for some x0 ∈ R
N . Then we can 

find t0 > 0, only depending on K , such that

T −
t w ∈ C1,1(B1/4(x0)

)
for any t ∈ (0, t0].

Moreover, Lip(Dx(T
−
t w); B1/4(x0)) ≤ Bt for some Bt only depending on t and K .
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Proof. We recall that, being w a critical subsolution, it is κ-Lipschitz continuous, with κ given by (1.8) with a = 0, 
i.e. the critical value. By semiconvexity assumption on w we have that, for any y ∈ B1(x0) and p ∈ D−w(y), the 
paraboloid

ψy,p(x) = w(y) + 〈p,x − y〉 − K|x − y|2, x ∈ B1(x0)

satisfies ψy,p ≤ w in B1(x0). We suitably extend it outside B1(x0) to obtain a family of κ̃-Lipschitz continuous 
subtangents to w in RN , i.e. satisfying ψ ≤ w in RN , which clearly are smooth and have K-Lipschitz differentials 
in B1(x0). Here ̃κ is a constant greater than κ . We denote by F this family of modified paraboloids.

In view of Lemma 3.11, there exist two common values t0 > 0 and A > 0 such that, for every t ∈ [0, t0], all 
functions of F satisfy items (i) and (ii) of the lemma. We recall that t0 has been chosen small enough so that

t0R(̃κ) <
1

4
, (3.7)

where R(̃κ) is the constant given by Proposition 1.12. Let us fix t ∈ [0, t0]. We want to show that(
T −

t w
)
(x) = sup

ψ∈F
(
T −

t ψ
)
(x) for every x ∈ B1/4(x0). (3.8)

By monotonicity of T −
t , it is clear that T −

t w ≥ supψ∈F T −
t ψ on RN . Let us show equality on B1/4(x0). Fix x ∈

B1/4(x0) and let y ∈ R
N be optimal for (T −

t w)(x). Then y ∈ B1/2(x0) in view of Proposition 1.12 and of (3.7). By 
Proposition 3.3, there furthermore exists p ∈ D−w(y) such that

x = π1 ◦φH
t (y,p).

By the very definition of F , there is ψ ∈ F which is a subtangent to w at y and satisfies Dψ(y) = p. Hence, by 
Lemma 3.11–(i), y is also optimal for (T −

t ψ)(x), so that(
T −

t w
)
(x) = (

T −
t ψ

)
(x),

proving (3.8). Summing up, we have showed that T −
t w is the supremum in B1/4(x0) of a family of A-semiconvex func-

tions, so it is A-semiconvex. Now T −
t w is also Kt -semiconcave for some Kt only depending on t , in view of Proposi-

tion 3.4. We conclude that T −
t w is of class C1,1 in B1/4(x0) with Lip(Dx(T

−
t w); B1/4(x0)) ≤ Bt := max{A, Kt }. �

We go back to stationary ergodic setting and apply the information on the action of Lax–Oleinik semigroups 
gathered so far.

Proof of Theorem 3.7. Let w ∈ S be a strict subsolution and let ε > 0 be fixed. Choose s > 0 such that R(κ)s < ε/2
and set

v(x,ω) = (
T +

s w
)
(x,ω), (x,ω) ∈R

N × Ω.

According to Proposition 3.9, v is still an admissible and strict critical subsolution. Furthermore, by Proposition 3.4, 
there exists K > 0 such that v(·, ω) is K-semiconvex in RN for every ω ∈ Ω . In view of Proposition 3.12, there 
exist t > 0 and a constant Kt , only depending on t , such that T −

t v(·, ω) is a function of class C1,1 in RN and 
Lip(Dx(T

−
t v(·, ω)); RN) ≤ Kt , for every ω ∈ Ω . Since t can be taken arbitrarily small, we choose t > 0 such that 

R(κ)t < ε/2 and we set

wε(x,ω) = (
T −

t v
)
(x,ω) = (

T −
t ◦T +

s w
)
(x,ω), (x,ω) ∈R

N × Ω.

According to Proposition 3.9, wε is still an admissible and strict critical subsolution. From Proposition 1.12 we get∥∥wε(·,ω) − w(·,ω)
∥∥∞ ≤ ∥∥T −

t ◦T +
s w(·,ω) − T +

s w(·,ω)
∥∥∞ + ∥∥T +

s w(·,ω) − w(·,ω)
∥∥∞

≤ (t + s)R(κ) < ε.

Last, by Proposition 2.18, for every ω in a set of probability 1 we have

wε(·,ω) = T −
t ◦T +

s w(·,ω) = T +
s w(·,ω) = w(·,ω) on A(ω). �
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Appendix A

In this appendix, we want to prove a comparison principle between Lipschitz continuous sub and supersolutions of

∂tu + F(x,Dxu) = 0 in (0,+∞) ×R
N, (A.1)

where the Hamiltonian F :RN ×R
N →R is a continuous function satisfying

(F) for every R > 0 there exists a constant CR > 0 such that∣∣F(x,p1) − F(x,p2)
∣∣ ≤ CR|p1 − p2| for every x ∈R

N and p1,p2 ∈ BR.

We will prove the following result:

Theorem A.1. Let F : Rn ×R
n → R be a Hamiltonian satisfying (F) and let v, u ∈ Lip([0, ∞) ×R

N) be a sub and 
a supersolution of (A.1), respectively. Then

v(t, x) − u(t, x) ≤ sup
y∈RN

v(0, y) − u(0, y) for every (t, x) ∈ (0,+∞) ×R
N.

Proof. Choose

R > ‖Dxu‖L∞(RN) + ‖Dxv‖L∞(RN)

and set C := CR according to hypothesis (F). We claim that the function w(t, x) := (v − u)(t, x) is a viscosity 
subsolution of

∂tw − C|Dxw| = 0 in (0,+∞) ×R
N. (A.2)

This is enough to conclude since any constant function is a solution of (A.2) and this latter equation satisfies a 
comparison principle, see for instance [1] or the Appendix in [15]. Let us prove that w is a subsolution of (A.2). 
Formally the result is obvious since it suffices to subtract the inequalities for v and u and use (F), but to show it in the 
viscosity sense is a bit more technical. Let ϕ be a C1 test function such that w − ϕ attains a strict local maximum at a 
point (t0, x0) ∈ (0, +∞) ×R

N . Let U be an open ball centered at (t0, x0) and contained in (0, +∞) ×R
N such that 

(t0, x0) is a strict maximum point of w − ϕ in U . For ε > 0, we introduce the function

Φ(t, x, s, y) := 1

2ε

(|x − y|2 + |t − s|2) + ϕ(t, x)

and denote by (tε, xε, sε, yε) a maximum point of v(t, x) − u(s, y) − Φ(t, x, s, y) in U × U . It is easily shown that 
both (tε, xε) and (sε, yε) converge to (t0, x0) as ε → 0+, in particular they lie in U for ε > 0 small enough. Hence 
χ(t, x) := Φ(t, x, sε, yε) is a supertangent to v at (tε, xε) and ψ(s, y) := −Φ(tε, xε, s, y) is a subtangent to u at 
(sε, yε). Since v is a subsolution and u is a supersolution of (A.1), we get

∂tχ(tε, xε) − ∂sψ(sε, yε) � F
(
yε,Dxψ(sε, yε)

) − F
(
xε,Dxχ(tε, xε)

)
(A.3)

The fact that v(tε, ·) and u(sε, ·) are R-Lipschitz and χ and ψ are a super and a subtangent to v and u, respectively, 
yields∣∣Dxχ(tε, xε)

∣∣ ≤ R,
∣∣Dxψ(sε, yε)

∣∣ ≤ R,

while a direct computation shows that

∂tχ(tε, xε) − ∂sψ(sε, yε) = ∂tϕ(tε, xε), Dxχ(tε, xε) = Dxϕ(tε, xε) + Dxψ(sε, yε).
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By condition (F) and the choice of C we infer from (A.3)

∂tϕ(tε, xε) ≤ C
∣∣Dxϕ(tε, xε)

∣∣ + max|p|≤R

∣∣F(xε,p) − F(yε,p)
∣∣,

so the claim follows from the continuity of F by sending ε → 0+. �
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