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Abstract

This paper studies global existence, hydrodynamic limit, and large-time behavior of weak solutions to a kinetic flocking model 
coupled to the incompressible Navier–Stokes equations. The model describes the motion of particles immersed in a Navier–Stokes 
fluid interacting through local alignment. We first prove the existence of weak solutions using energy and Lp estimates together 
with the velocity averaging lemma. We also rigorously establish a hydrodynamic limit corresponding to strong noise and local 
alignment. In this limit, the dynamics can be totally described by a coupled compressible Euler – incompressible Navier–Stokes 
system. The proof is via relative entropy techniques. Finally, we show a conditional result on the large-time behavior of classical 
solutions. Specifically, if the mass-density satisfies a uniform in time integrability estimate, then particles align with the fluid 
velocity exponentially fast without any further assumption on the viscosity of the fluid.
© 2015 
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1. Introduction

In the animal kingdom, one can find several species where the action of individuals leads to large coherent structures 
and where there are no external forces or “leader” guiding the interaction. Perhaps the most famous examples are 
flocks of birds, schools of fish, or insect swarms. However, similar phenomena in self-organization are also relevant 
for bacteria, in robotic engineering, and in material science. The past decade has witnessed a massive growth in 
the attempts to develop mathematical models capturing these types of phenomena. These models are usually based 
on incorporating different mechanisms of interaction between the individuals such as local repulsion, long-range 
attraction, and alignment. These Individual Based Models lead to macroscopic descriptions by means of mean-field 
limit scalings, see [7] for a review. These continuum descriptions can be written as kinetic equations in which there 
is a mechanism of interaction in the velocity or orientation vector. A very simple idea implementing the consensus 
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mechanism in velocity was introduced by Cucker and Smale in [9] and improved recently in [28]. These models take 
into account nonlocal interactions of the particles by averaging in velocity space. Here, we will focus on a much 
stronger local averaging of the velocity vector and the effect of a fluid in the tendency to consensus. We will explain 
the relation to these classical models of alignment below.

The model under consideration governs the motion of particles immersed in a Navier–Stokes fluid interacting 
through local alignment. By local alignment, we mean that each particle actively tries to align its velocity to that 
of its closest neighbors. The particles and fluid are coupled through linear friction. If we let f = f (x, ξ, t) be the 
one-particle distribution function at a spatial periodic domain x ∈ T

3, ξ ∈ R
3 at time t , and u = u(x, t) be the bulk 

velocity of fluid, then our model reads

∂tf + ξ · ∇xf = α∇ξ · [(ξ − u)f
]+ β∇ξ · [(ξ − uf )f

]+ σ�ξf

∂tu + u · ∇xu + ∇xp = μ�xu − αρf (u − uf )

∇x · u = 0 (1.1)

subject to initial data

f (x, ξ,0) = f0(x, ξ), u(x,0) = u0(x), (1.2)

where α, β, σ > 0 are constants, and ρf and uf denote the average local density and velocity, respectively

ρf :=
∫
R3

f dξ, ρf uf :=
∫
R3

ξf dξ. (1.3)

The model (1.1) contains as particular cases two previously studied models in the literature. If β = 0, the model 
reduces to the fluid-particle model studied in [16,17], see also [3,8,18,26,27]. They analyzed the existence of weak 
solutions and their hydrodynamic limit. On the other hand, if α = 0, (1.1) decouples and becomes the kinetic flocking 
model studied in [21–23]. This latter series of papers establishes existence of weak solutions and hydrodynamic limit, 
but leaves out the question of large-time behavior.

In this paper, we shall be concerned with the case α, β > 0. This introduces new difficulties compared to the 
previous studies, requiring non trivial arguments to overcome them. To prove existence of weak solutions to (1.1), the 
main challenges are posed by the product fuf and the lack of regularity on u. In the first case, weak compactness 
of f uf is not trivial as there does not seem to be any available regularity in a spatial domain. Moreover, uf is only 
defined on regions with 	f > 0 and hence does not belong to any Lp-space. In this paper, we will obtain the needed 
compactness from the velocity averaging lemma together with some technical arguments. This part of the proof will 
be similar to the existence proof in [21] for (1.1) with α = 0. However, the coupling with the Navier–Stokes equations 
introduces new problems that are not straightforward to handle.

Since Eq. (1.1) is posed in 2d + 1 dimensions, finding an approximate solution is computationally expensive. 
For this reason, it is of interest to identify regimes where the complexity of the equations reduces. In this paper, 
we shall rigorously identify one such regime corresponding to strong noise and local alignment. That is, the case 
where β ∼ σ ∼ ε−1, where ε is a small number. We will establish that in this case f is close to a thermodynamical 
equilibrium f ∼ c0	f e−|uf −ξ |2/2 and that the dynamics can be well approximated by a compressible Euler equation 
for (	f , uf ) coupled to the incompressible Navier–Stokes equations for u (see Section 2.2 for clarity). We will achieve 
this result by establishing a relative entropy inequality. Though this type of inequality was originally devised in [10]
to prove weak-strong uniqueness results, it has also been successfully applied to hydrodynamic limits for kinetic 
equations [14,24,29]. The perhaps most relevant study is [22], where (1.1) with α = 0 is studied. However, with 
β > 0, deriving a relative entropy bound is more involved and requires completely new arguments that does not have 
a kin in the literature.

For the estimates of large-time behavior of solutions, when β = 0, i.e., no local alignment force, the particle-fluid 
equations (1.1) reduce to the Vlasov–Navier–Stokes–Fokker–Planck equations. For this system, classical solutions 
near Maxwellians converging asymptotically to them were constructed in [15]. More recently, the incompressible 
Euler–Fokker–Planck equations (β = 0 and μ = 0) were treated in [5] showing the existence of a unique classical so-
lution near Maxwellians converging to them. On the other hand, without the diffusive term (σ = 0), the particle-fluid 
system has no trivial equilibria, and as a consequence the previous arguments used in [5,15] for the estimates of large-
time behavior can not be applied. The large-time behavior of the Vlasov–Navier–Stokes equations, to our knowledge, 
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has only been studied in periodic spatial domain [1,2]. By replacing the Cucker–Smale alignment force in [1] by 
the local alignment one, we will show the emergence of alignment between fluid and particles as time evolves. Our 
strategy to analyse the large-time behavior can be applied to the system discussed in [1], improving their results by 
weakening the assumptions. Unfortunately, our framework can not be applied to the Vlasov–Navier–Stokes equations 
in the whole space, since we do not know how to get information from the dissipation of the fluid equation replacing 
the Sobolev inequality.

Let us now give some explanation for the term local alignment and how this pertains to the Cucker–Smale flocking 
model. In the previous decade, Cucker & Smale [9] introduced a Newtonian-type flocking model using �2-based 
arguments:

dxi

dt
= ξi,

dξi

dt
=

N∑
j=1

ψcs
ij (ξj − ξi), t > 0, i ∈ {1, . . . ,N}, (1.4)

where xi(t) ∈ R
d and ξi(t) ∈ R

d are the position and velocity of i-th particles at time t , respectively and were ψcs
ij is 

a communication weight between particles defined by

ψcs
ij := 1

N
ψcs
(|xi − xj |

)
, i, j ∈ {1, . . . ,N}. (1.5)

Subsequently, this flocking model and its invariants have been extensively studied in a vast number of papers such as 
[4,6,19,20] to mention a few. However, more recently Motsch and Tadmor pointed out several deficiencies with the 
Cucker–Smale model, and suggested a new model which take into account not only distance between particles but 
also their relative distance [28]. More precisely, they considered a nonsymmetric communication weight normalized 
with a local average density:

ψmt
ij := ψcs

ij∑N
k=1 ψcs

ik

. (1.6)

As a result, the Motsch–Tadmor model does not involve any explicit dependence on the number of particles. Since 
ψmt

ij is nonsymmetric, they introduce a new tools based on the notion of active sets to estimate the flocking behavior 
of particles.

On the other hand, when the number of particles goes to infinity, N → ∞, one can formally derive a mesoscopic 
description for system (1.4)–(1.6) with density function f = f (x, ξ, t) which is a solution to the Vlasov-type equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tf + ξ · ∇xf + ∇ξ · (F [f ]f )= 0,

F [f ](x, ξ) :=
∫
Rd×Rd ψcs(|x − y|)(ξ∗ − ξ)f (y, ξ∗)dydξ∗∫

Rd ψcs(|x − y|)ρf (y)dy
,

f0(x, ξ) := f (x, ξ,0).

Now, notice that F [f ] can be rewritten as

F [f ] = ũf − ξ where ũf :=
∫
Rd×Rd ψcs(|x − y|)ξ∗f (y, ξ∗)dydξ∗∫

Rd ψcs(|x − y|)ρf (y)dy

and hence that this equation is a non-local version of (1.1)1. However, we can localize the previous derivation by 
assuming that the communication rate is very concentrated around the closest neighbors of a given particle, i.e., 
that ψcs(x) is close to a Dirac Delta at the origin. Under this localization of the alignment, it is reasonable to ex-
pect (1.1)1 as the N → ∞ limit of the Motsch–Tadmor model. Some formal indications on its validity are provided 
in [23].

In the next section, we state our main results. Then, in Section 3, we provide a priori energy and Lp estimates. 
Section 4 is devoted to the proof of global existence of weak solutions using Schauder’s fixed point theorem and 
velocity averaging lemma. In Section 5, we rigorously investigate the convergence of weak solutions to the system 
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(1.1) when the local alignment and diffusive forces are sufficiently strong. In Section 6, we show a priori estimates for 
long-time behavior of solutions.

Notation. We provide several simplified notations that are used throughout the paper. For a function f (x, ξ) ((x, ξ) ∈
T

3 × R
3), we denote by ‖f ‖Lp the usual Lp(T3 × R

3)-norm, and if u is a function of x ∈ T
3, we denote by ‖u‖Lp

the usual Lp(T3)-norm, otherwise specified. We also drop x-dependence of differential operators ∂xi
, ∇x , and �x , 

i.e., ∂if := ∂xi
f , ∇f := ∇xf and �f := �xf .

2. Main results

In this section, we state the three main results of this paper. Our first result concerns the existence of global weak 
solutions to (1.1). In the second result, we rigorously study a hydrodynamic limit of (1.1) corresponding to strong 
noise and strong local alignment. Our final result is an estimate on the large-time behavior of solutions to (1.1) with 
σ = 0. The latter result assumes that the solutions are sufficiently integrable and the particle density is uniformly 
bounded in time.

2.1. Existence of weak solutions

Let us define

H := {w ∈ L2(
T

3) | ∇ · w = 0
}
, V := {w ∈ H 1(

T
3) | ∇ · w = 0

}
and denote by V ′ the dual space of V .

Existence will be proved using the following notion of weak solutions.

Definition 2.1. Suppose the initial data (f0, u0) satisfy

f0 ∈ (L1+ ∩ L∞)(
T

3 ×R
3), |ξ |2f0 ∈ L1(

T
3 ×R

3), u0 ∈ H. (2.1)

For a given T ∈ (0, ∞), we say that the pair (f, u) is a weak solution of (1.1)–(1.2) provided the following condi-
tions are satisfied:

(1) f ∈ L∞(0, T ; (L1+ ∩ L∞)(T3 ×R
3)), |ξ |2f ∈ L∞(0, T ; L1(T3 ×R

3)).
(2) u ∈ L∞(0, T ; H) ∩ L2(0, T ; V) ∩ C0([0, T ], V ′).
(3) For all φ ∈ C1(T3 ×R

3 × [0, T )) with φ(·, ·, T ) = 0,

−
T∫

0

∫
T3×R3

f (∂tφ + ξ · ∇φ) dξdxds

−
T∫

0

∫
T3×R3

(
α(u − ξ)f + β(uf − ξ)f − σ∇ξ f

) · ∇ξφ dξdxds

=
∫

T3×R3

f0φ(·, ·,0) dξdx.

(4) For all ψ ∈ [C1(T3 × [0, T ])]3, and ∇ · ψ = 0, for a.e. t ,

∫
T3

u(t) · ψ(t)dx +
t∫

0

∫
T3

(−u · ∂tψ − (u · ∇)ψ · u + μ∇u : ∇ψ
)
dxds

= −
t∫

0

∫
T3

(u − uf ) · ψρf dxds +
∫
T3

u0 · ψ(0, ·) dx.



J.A. Carrillo et al. / Ann. I. H. Poincaré – AN 33 (2016) 273–307 277
Our existence result is given by the following theorem.

Theorem 2.1. Suppose the initial data (f0, u0) satisfies (2.1). Then for any T > 0 there exists at least one weak 
solution (f, u) to (1.1)–(1.2) on the time-interval (0, T ).

The proof of Theorem 2.1 is the topic of Section 4.

2.2. Hydrodynamic limit

In our second result, we study the regime where the noise and local alignment are relatively strong compared to 
the other terms. That is, for ε small, we consider the system

∂tf
ε + ξ · ∇f ε + ∇ξ · [(uε − ξ

)
f ε
]= 1

ε
∇ξ · [∇ξ f

ε − (uf ε − ξ)f ε
]
,

∂tu
ε + uε · ∇uε + ∇pε − μ�uε = −

∫
R3

(
uε − ξ

)
f εdξ,

∇ · uε = 0. (2.2)

Now, observe that the right-hand side can be written

∇ξ · [∇ξ f
ε − (uf ε − ξ)f ε

]= ∇ξ ·
(

Mε∇ξ

(
f ε

Mε

))
,

where we have introduced the Maxwellian

Mε(x, ξ, t) := 1

(2π)3/2
e− |ξ−uf ε (x,t)|2

2 .

Consequently, if we have that uf ε → uf and uε → u, then we expect that f ε converges to the thermodynamical 
equilibrium

f ε → Mρf ,uf
(x, ξ, t) := ρf (x, t)

(2π)3/2
e− |ξ−uf (x,t)|2

2 as ε → 0.

In this case, it can be readily seen that ρf , uf , and u evolves according to the fluid-particle model

∂tρf + ∇ · ρf uf = 0,

∂t (ρf uf ) + ∇ · (ρf uf ⊗ uf ) + ∇ρf = ρf (u − uf ),

∂tu + u · ∇u + ∇p − μ�u = −ρf (u − uf ),

∇ · u = 0, (2.3)

subject to(
ρf (x,0), uf (x,0), u(x,0)

)= (ρf0 , uf0 , u0), x ∈ T
3. (2.4)

In our second result fact, we prove that weak solutions of (2.2) are close to a strong unique solution of (2.3). Hence, 
if ε is sufficiently small, (2.3) provides a good approximation of (2.2).

Theorem 2.2. Assume that there exists a unique strong solution (ρf , uf , u) to the system (2.3)–(2.4) in the interval 
[0, T ∗]. Furthermore suppose that (f0, u0) satisfies (2.1), and f0 is given by

f0(x, ξ) = ρf0(x)

(2π)
3
2

e− |ξ−uf0
(x)|2

2 .

Then, for any sequences of weak solutions (f ε, uε) to the system (2.2), we have

sup
∗

(‖uf ε − uf ‖2
L2 + ‖ρf ε − ρf ‖2

L2 + ∥∥uε − u
∥∥2

L2

)≤ C
√

ε.

0≤t≤T
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As a consequence, as ε → 0,

f ε → ρf

(2π)
3
2

e− |ξ−uf |2
2 in L1

loc

(
0, T ∗;L1(

T
3 ×R

3)),
ρf εuf ε → ρf uf in L1

loc

(
0, T ∗;L1(

T
3)),

ρf ε |uf ε |2 → ρf |uf |2 in L1
loc

(
0, T ∗;L1(

T
3)),

uε → u in L1
loc

(
0, T ∗;L2(

T
3)).

2.3. Large-time behavior

Our third result is a large-time behavior estimate for our kinetic model. To state this result, we introduce several 
energy-fluctuation functions:

EP (t) := 1

2

∫
T3×R3

|ξ − uf |2f dxdξ,

EU(t) := 1

2

∫
T3×T3

∣∣uf (x) − uf (y)
∣∣2ρf (x)ρf (y)dxdy,

EF (t) := 1

2

∫
T3

∣∣u − uc(t)
∣∣2dx,

EI (t) := 1

2

∣∣uc(t) − ξc(t)
∣∣2,

where uc and ξc are the mean bulk velocity of the fluid and the averaged particle velocity:

uc :=
∫
T3

u dx and ξc :=
∫

T3×R3

ξf dξdx.

We finally set a total energy function E :

E(t) := 2EP (t) + EU(t) + 2EF (t) + EI (t).

For this analysis, without loss of generality, we assume α = β = 1.

Theorem 2.3. Let (f, u) be global in time classical solutions to the system (1.1)–(1.2) with σ = 0 satisfying

E(0) < ∞, lim|ξ |→∞ |ξ |2f (x, ξ, t) = 0, (x, t) ∈ T
3 × [0,∞).

Assume that ‖ρf ‖L∞(0,∞;L3/2(T3)) < ∞, then the total energy fluctuation function E(t) satisfies

d

dt
E(t) ≤ −CE(t), for t ∈ [0,∞),

where C is a positive constant depending on μ, ρf .

Remark 2.1. Since the total momentum uc(t) + ξc(t) is conserved, we find

1

2
EI (t) =

∣∣∣∣uc(t) − 1

2

(
ξc(0) + uc(0)

)∣∣∣∣
2

=
∣∣∣∣ξc(t) − 1

2

(
ξc(0) + uc(0)

)∣∣∣∣
2

.

Thus this deduces the emergence of exponential alignment between particles and fluid, and they asymptotically con-
verge to half of the initial total momentum. Notice that the previous theorem makes no assumption on the viscosity of 
the fluid.
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3. Preliminary material

The purpose of this section is to derive a priori energy and Lp estimates for the system (1.1). We will also provide 
two technical lemmata that will be frequently applied in the subsequent analysis. In this process, we shall use the 
following notations for the k-th local and global momentums

mk(f )(x, t) =
∫
R3

|ξ |kf dξ, Mk(f )(t) :=
∫

T3×R3

|ξ |kf (x, ξ)dxdξ,

where k = 0, 1 . . . . We also observe that

ρf = m0(f )(x, t), |ρf uf | ≤ m1(f )(x, t), and Mk(f )(t) =
∫
T3

mk(f )dx.

3.1. A priori energy and Lp estimate

The following proposition provides an energy estimate.

Proposition 3.1. Let (f, u) be any fast decaying at infinity smooth solutions to the system (1.1). Then, the following 
properties hold

(i)
d

dt

∫
T3×R3

f dξdx = 0,

(ii)
d

dt

(∫
T3

udx +
∫

T3×R3

ξf dξdx

)
= 0,

(iii)
1

2

d

dt

( ∫
T3×R3

|ξ |2f dξdx +
∫
T3

|u|2dx

)
+ μ

∫
T3

|∇u|2dx

= −α

∫
T3×R3

|u − ξ |2f dξdx − β

∫
T3×R3

|uf − ξ |2f dξdx + 3σ

∫
T3×R3

f dξdx.

Proof. (i) and (ii) are readily obtained from the system (1.1). For the estimate of (iii), we multiply (1.1)1 by |ξ |2/2
and integrating over T3 ×R

3 to get

1

2

d

dt

∫
T3×R3

|ξ |2f dξdx

= α

∫
T3×R3

ξ · (u − ξ)f dξdx + β

∫
T3×R3

|uf − ξ |2f dξdx

+ 3σ

∫
T3×R3

f dξdx, (3.1)

where we have used that∫
T3×R3

uf · (uf − ξ)f dξdx = 0.
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On the other hand, from (1.1)3, we get

1

2

d

dt

∫
T3

|u|2dx + μ

∫
T3

|∇u|2dx = −α

∫
T3×R3

u · (u − ξ)f dξdx. (3.2)

We now combine (3.1) and (3.2) to conclude the desired result. �
Remark 3.1. Throughout the paper, without loss of generality, we assume

M0(f0) =
∫

T3×R3

f0(x, ξ)dxdξ = 1.

Then it follows from mass conservation (Proposition 3.1(i)) that

M0(f )(t) =
∫

T3×R3

f (x, ξ, t)dxdξ = 1, t ≥ 0.

We next provide an Lp-estimate for the particle density function f .

Proposition 3.2. Let (f, u) be any smooth solutions to the system (1.1). Then we have

d

dt
‖f ‖p

Lp + 4σ(p − 1)

p

∥∥∇ξ f
p
2
∥∥2

L2 = 3(α + β)(p − 1)‖f ‖p
Lp .

In particular, we have that

‖f ‖L∞(T3×R3×[0,T ]) ≤ C(T ,α,β)‖f0‖L∞(T3×R3).

Proof. (i) Multiplying (1.1)1 by pf p−1 and integrate over T3 ×R
3 to obtain

d

dt

∫
T3×R3

f pdxdξ

= −αp

∫
T3×R3

f p−1∇ξ · ((u − ξ)f
)
dxdξ

− βp

∫
T3×R3

f p−1∇ξ · ((uf − ξ)f
)
dxdξ + σp

∫
T3×R3

�ξf dxdξ

=: I1 + I2 + I3.

For the estimates of Ii , i = 1, 2, 3, it is straightforward to get by integration by parts

I1 = 3α(p − 1)

∫
T3×R3

f pdxdξ,

I2 = 3β(p − 1)

∫
T3×R3

f pdxdξ,

I3 = −4σ(p − 1)

p

∫
T3×R3

∣∣∇ξ f
p
2
∣∣2dxdξ.

This concludes the proof. �
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3.2. Integrability and velocity averaging

Let us now provide two useful lemmas for later reference. For the proofs of these lemmas, we refer to [3,13,21].

Lemma 3.1. Let k2 > k1 and f be a nonnegative function. Suppose f satisfies

‖f ‖L∞(T3×R3×[0,T ]) < ∞, and mk2(f )(x, t) < ∞, a.e. (x, t).

Then the following inequality holds

mk1(f )(x, t) ≤
(

4π

3
‖f ‖L∞(T3×R3×[0,T ]) + 1

)
mk2(f )(x, t)

k1+3
k2+3 , a.e. (x, t).

We conclude this section by stating the following version of the celebrated velocity averaging lemma.

Lemma 3.2. For 1 ≤ p < 5
4 , let {Gn}n be bounded in Lp(T3 ×R

3 × (0, T )). Suppose that

f n is bounded in L∞(0, T ;L1 ∩ L∞(
T

3 ×R
3)),

|ξ |2f n is bounded in L∞(0, T ;L1(
T

3 ×R
3)).

If f n and Gn satisfy the equation

f n
t + ξ · ∇f n = ∇k

ξ Gn, f n|t=0 = f0 ∈ Lp
(
T

3 ×R
3),

for a multi-index k. Then, for any ψ(ξ), such that |ψ(ξ)| ≤ c|ξ | as |ξ | → ∞, the sequence{∫
R3

f nψ(ξ) dξ

}
n

,

is relatively compact in Lp(T3 × (0, T )).

4. Global existence of weak solutions (Theorem 2.1)

In this section, we will prove the existence of weak solutions to the system (1.1) and thereby prove Theorem 2.1. 
Our strategy will be to pass to the limit in a sequence of approximate solutions. To define the approximate solutions, 
fix a small ε > 0, let θ be a standard mollifier:

θ ≥ 0, θ ∈ C∞
0

(
T

3), suppx θ ⊂ B1(0),

∫
T3

θ(x)dx = 1,

and set θε(x) := (1/ε3)θ(x/ε). The approximate solutions are obtained by solving:

∂tf + ξ · ∇f + ∇ξ · [f (χR(u) − ξ
)]= −∇ξ · [f (χR

(
uε

f

)− ξ
)]+ σ�ξf,

∂tu + (θε � u) · ∇u + ∇p = μ�u + (mf − 	f u)1R(u),

∇ · u = 0, (4.1)

where mf = ∫
R3 ξf dξ . Compared to (1.1), we have introduced the regularizations

1R(w) =
{

1, |w| ≤ R,

0, otherwise
, χR(w) = w1R(w), and uε

f = mf

	f + ε
, (4.2)

and in addition, we have regularized the convection velocity θε � u. Notice that we do not need the notation of uf .
We shall also need to regularize the initial data:

uε
0 := θε � u0, f R

0 := f01R(ξ). (4.3)
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Remark 4.1. In our approximation scheme (4.1), for simplicity, we set α = β = 1. We also dropped the subscript ε
and R, for instance f ε,R or uε,R by f or u.

Before we can start sending ε → 0 and R → ∞ in (4.1), we need to make sure that (4.1) actually admits a weak 
solution. We will establish the following proposition.

Proposition 4.1. For a given T > 0, suppose that (f0, u0) satisfy (4.3). Then there exists a weak solution (f, u) to 
(4.1) in the sense of Definition 2.1 (with χR(uε

f ) replacing uf ).

For the proof of Proposition 4.1, we will consider another decoupled system which is defined in the next subsection.

4.1. The regularized and linearized system

We shall prove Proposition 4.1 using a fixed point argument. For this purpose, we will use the space

S := L2(
T

3 × (0, T )
)× L2(

T
3 × (0, T )

)
.

For (w, ū) ∈ S given, let (f, u) be a weak solution to

∂tf + ξ · ∇f + ∇ξ · [f (χR(w) − ξ
)]= −∇ξ · [f (χR(ū) − ξ

)]+ σ�ξf,

∂tu + (θε � u) · ∇u + ∇p = μ�u + (mf − 	f w)1R(w),

∇ · u = 0, (4.4)

and define the operator T : S �→ S through the relation

T [w, ū] := [u,uε
f

]= [u,
mf

ε + 	f

]
.

Observe that a fixed point [u, uε
f ] = T [u, uε

f ] is also a solution of (4.1). Hence, Proposition 4.1 follows if we are able 
to establish the existence of such a fixed point. In this subsection, we shall achieve this by verifying the postulates of 
the Schauder fixed point theorem.

4.1.1. The operator T [·, ·] is well-defined
Lemma 4.1. Let (f0, u0) satisfy (4.3), and assume that we are given (w, ū) ∈ S . Then there exists a unique solution 
(f, u) of (4.4) satisfying

‖f ‖L∞(0,T ;Lp(T3×R3)) + ∥∥∇ξ f
p
2
∥∥ 2

p

L2(0,T ;L2(T3×R3))
≤ C(R,σ,T )‖f0‖Lp(T3×R3),

sup
t∈(0,T )

∫
f |ξ |k dξdx ≤ C(R,k,σ,T ), (4.5)

for p ∈ [1, ∞] and all finite k, and moreover,

1

2
‖u‖L∞(0,T ;L2(T3)) + μ‖∇u‖L2(0,T ;L2(T3)) ≤ 1

2
‖u0‖L∞(0,T ;L2(T3)) + C(R,T ). (4.6)

Here, C(·) denotes a generic constant depending on ·.

Proof. First, we observe that the two equations in (4.4) are decoupled and a solution can be obtained by first deter-
mining f and then u. Let us begin by discussing solutions to the first equation.

1. Since both χR(w) and χR(ū) are bounded in L∞(T3 × (0, T )), existence of a unique function f ∈
C([0, T ]; (L1 ∩ L∞)(T3 ×R

3)) solving (4.4) is by now standard and can be found in [11] (cf. [21]). The Lp bound in 
(4.5) can be found in [21]. We also notice that for a smooth solution f to (4.4) provides
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d

dt

∫
T3×R3

f |ξ |k dξdx ≤
∫

T3×R3

f
(
2kR|ξ |k−1 + σk(k + 1)|ξ |k−2) dξdx

≤ C(R,k,σ )

( ∫
T3×R3

f0 dξdx +
∫

T3×R3

f |ξ |k dξdx

)
.

Since 
∫
T3×R3 f0 dξdx < ∞ and 

∫
T3×R3 f R

0 |ξ |k dξdx < ∞ for any finite k, we obtain that

sup
t∈(0,T )

∫
T3×R3

f |ξ |k dξdx < C(R,k,σ,T ) for any k finite. (4.7)

This bound continues to hold for the unique solution f of (4.4). To see this, one can for instance localize |ξ |k as φ(|ξ |k)
where φ(r) = 1 when r ≤ D, and φ = 0 when r ≥ 2D, make the corresponding calculations and send D → ∞. This 
concludes the second inequality in (4.5).

2. Let us now turn to the Navier–Stokes equations for u. First, since all (finite) moments of f are bounded (4.7), 
Lemma 3.1 gives in particular

	f , mf ∈ L∞(0, T ;L2(
T

3)), (4.8)

where the inclusion constant depends on R. Due to (4.8), we see that the right-hand side in the equation for u is also 
in L∞(0, T ; L2(T3)), that is,∥∥(mf − 	f w)1|w|≤R

∥∥
L∞(0,T ;L2(T3))

≤ C(R).

Standard parabolic theory then asserts the existence of a unique solution u satisfying (4.6) (cf. [12]). �
From the previous lemma, it readily follows that T [·, ·] is well-defined and maps into a bounded subset of S .

Corollary 4.1. There is a constant C(R, ε), such that∥∥T [w, ū]∥∥S ≤ C(R,ε), ∀(w, ū) ∈ S.

Proof. By definition, we have that

∥∥T [w, ū]∥∥
S

≤ ‖u‖L2(T3×(0,T )) + 1

ε
‖mf ‖L2(T3×(0,T ))

≤ C(R,ε,T ),

where the last inequality is (4.5) and (4.6). �
4.1.2. The operator T [·, ·] is compact
Lemma 4.2. Let (f0, u0) and T be as in Proposition 4.1, and let {(wn, ūn)}∞n=0 be a uniformly bounded sequence 
in S . Then up to a subsequence {T [wn, ūn]}∞n=0 converges strongly in S .

Proof. Let {(un, fn)}n be the sequence of solutions to (4.4) corresponding to {(wn, ūn)}n. We will prove compactness 
of the two components of T [·, ·] separately.

1. We take the first component of T [wn, ūn], T [wn, ūn]|1 = un. To show its compactness in L2(0, T ; L2(T3)), it 
suffices to prove that

‖un‖L2(0,T ;H 1) ≤ C, and ‖∂tun‖L2(0,T ;V ′) ≤ C,

due to the Aubin–Lions compactness lemma.
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• Estimate of ‖un‖L2(0,T ;H 1) ≤ C: From (4.4), we get

1

2

d

dt

∫
T3

|un|2dx + μ

∫
T3

|∇un|2dx = −
∫

T3×R3

(w − ξ)fn1|w|≤R · undξdx

≤ ‖ρfn‖L2‖un‖L2 + ‖mfn‖L2‖un‖L2

≤ (‖ρfn‖L2 + ‖mfn‖L2

)2 + ‖un‖2
L2 .

Then it follows from Lemma 3.1 that

1

2

d

dt
‖un‖2

L2 + μ‖∇un‖2
L2 ≤ C + ‖un‖2

L2,

and this yields

‖un‖L∞(0,T ;L2) ≤ C, and ‖∇un‖L2(0,T ;L2) ≤ C. (4.9)

• Estimate of ‖∂tun‖L2(0,T ;V ′) ≤ C: For this, it is enough to check the convection and drag force terms. For φ ∈ V , 
we obtain∣∣∣∣∣

T∫
0

∫
T3

(
(θε � un) · ∇un

) · φ dxdt

∣∣∣∣∣=
∣∣∣∣∣

T∫
0

∫
T3

(
(θε � un) · ∇φ

) · un dxdt

∣∣∣∣∣
≤

T∫
0

‖θε � un‖L∞‖∇φ‖L2‖un‖L2dt

≤ ‖θε‖L2‖un‖2
L∞(0,T ;L2)

T∫
0

‖∇φ‖L2dt

≤ C(T , ε)‖∇φ‖L2(0,T ;L2),

by (4.9). This implies

φ �→
T∫

0

∫
T3

(
(θε � un) · ∇un

) · φ dxdt is bounded in L2(0, T ;V ′).
For the drag force term, we obtain

∣∣∣∣∣
T∫

0

∫
T3×R3

(w − ξ)fn1|w|≤R · φ dξdxdt

∣∣∣∣∣
≤ R‖φ‖L2(0,T ;L2)‖ρfn‖L2(0,T ;L2) + ‖φ‖L2(0,T ;L5)‖mfn‖

L2(0,T ;L 5
4 )

≤ C‖φ‖L2(0,T ;H 1).

Here we used again Lemma 3.1 and T3 is bounded. Hence we conclude that the drag force term is uniformly bounded 
in L2(0, T ; V ′).

2. The second component of T [·, ·] is given by

T [wn, ūn]|2 = mfn

ε + 	fn

,

and hence strong convergence follows if we can prove the compactness of 	fn and mfn . From (4.8), we have that

	fn, mfn ∈b L2(
T

3 × (0, T )
)
,
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where ∈b means that the inclusion constant is independent of n. To show the compactness, we write (4.4) in the form

∂tfn + ξ · ∇fn = ∇ξ · Gn + σ�ξfn,

where we have introduced the quantity

Gn = fn

(
χR(wn) + χR(ūn) − 2ξ

)
.

For any finite 2 ≤ p < ∞, an application of the Hölder inequality provides

‖Gn‖Lp(T3×R3)

≤ C(R)‖fn‖Lp(T3×R3) + 2‖fn‖
p−1
p

L∞(T3×R3)

( ∫
T3×R3

|fn||ξ |p dξdx

) 1
p ≤ C(R),

where the last inequality is (4.5)–(4.6). Hence, we can conclude that

Gn ∈b Lp
(
T

3 ×R
3 × (0, T )

)
for all p ∈ (1,∞).

The velocity averaging Lemma 3.2 is then applicable and yields that {	fn}n and {mfn}n are relatively compact in 
L2(T3 × (0, T )). This concludes the proof of compactness of the operator T . �
Proof of Proposition 4.1. Through Lemma 4.1, Corollary 4.1, and Lemma 4.2, we have established that the oper-
ator T [·, ·] is well-defined, bounded, and compact. Moreover, continuity of the operator T [·, ·] is straightforward. 
As a consequence, the postulates of the Schauder fixed point theorem are satisfied, and hence yields the existence of 
a fixed point. This concludes our proof of Proposition 4.1. �
4.2. Uniform bounds

To consider vanishing approximation parameters, we will need some uniform (in ε and R) Lp and energy bounds 
on solutions of (4.1). We recall that the energy is given by

E(t) =
∫

T3×R3

f
|ξ |2

2
dξdx +

∫
T3

|u|2
2

dx.

Lemma 4.3. Under the conditions of Proposition 4.1, there exists a constant C > 0, independent of R and ε, such that

‖f ‖L∞(0,T ;Lp(T3×R3)) + ∥∥∇ξ f
p
2
∥∥ 2

p

L2(T3×R3×(0,T ))
≤ C(p,σ,T )‖f0‖Lp(T3×R3), (4.10)

sup
t∈(0,T )

E(t) + μ

T∫
0

‖∇u‖2
L2(T3)

dt +
∫

T3×R3

f
∣∣χR(u) − ξ

∣∣2 dξdx

≤ E(0) + 3σM0(f0)T . (4.11)

Proof. By direct calculation using (4.1), we deduce

d

dt
‖f ‖p

Lp(T3×R3)
+ 4σ(p − 1)

p

∥∥∇ξ f
p
2
∥∥2

L2(T3×R3)

=
∫

T3×R3

(
χR(u) + χR

(
uε

f

)− 2ξ
) · ∇ξ f

p dξdx = 6‖f ‖p

Lp(T3×R3)
,

and (4.10) follows from the Gronwall inequality.
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Next, we calculate E′(t) using both equations in (4.1);

E
′ =
∫
T3

ut · u dx +
∫

T3×R3

ft

|ξ |2
2

dξdx

= −μ‖∇u‖2
L2(T3)

−
∫
T3

(
(θε � u) · ∇u

) · u dx +
∫
T3

(mf − 	f u)1R(u) · u dx

+ 3σM0(f0) +
∫

T3×R3

f
(
χR(u) − ξ

) · ξ dξdx

+
∫

T3×R3

f
(
χR

(
uε

f

)− ξ
) · ξ dξdx. (4.12)

By adding and subtracting, we deduce that∫
T3×R3

f
(
χR(u) − ξ

) · ξ dξdx

= −
∫

T3×R3

f
∣∣χR(u) − ξ

∣∣2 dξdx +
∫
T3

(
	f χR(u) − mf

) · χR(u) dx

= −
∫

T3×R3

f
∣∣χR(u) − ξ

∣∣2 dξdx +
∫
T3

(	f u − mf )1R(u) · u dx. (4.13)

We also have∫
T3×R3

f
(
χR

(
uε

f

)− ξ
) · ξ dξdx ≤

∫
T3

|mf |2
ρf + ε

dx −
∫

T3×R3

|ξ |2f dξdx ≤ 0, (4.14)

where we used |mf |2 ≤ ρf (
∫
R3 |ξ |2f dξ). By applying (4.13) and (4.14) in (4.12), we obtain (4.11). �

4.3. The R → ∞ limit

We are now ready to send R → ∞ in our approximate equation (4.1). We begin by deriving some compactness 
properties. Some of the arguments we shall use in this regard are similar to those of [21].

Lemma 4.4. Let ε > 0 be fixed, set R = n, and let {(fn, un)}∞n=0 be the corresponding sequence of solutions to (4.1). 
Then, up to a subsequence as n → ∞, we have

fn ⇀ f in C
([0, T ];Lp

(
T

3 ×R
3)), p ∈ (1,∞),

	fn → 	f a.e. and in Lp
(
T

3 × (0, T )
)
, p ∈

(
1,

5

4

)
,

mfn → mf a.e. and in Lq
(
T

3 × (0, T )
)
, q ∈

(
1,

5

4

)
,

un → u a.e. and in L2(
T

3 × (0, T )
)
, (4.15)

where 	f = ∫
R3 f dξ and mf = ∫

R3 ξf dξ .

Proof. 1. We first apply the previous lemma and Lemma 3.1, to deduce that

	fn ∈b Lp
(
T

3 × (0, T )
)
, mfn ∈b Lq

(
T

3 × (0, T )
)
, (4.16)
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for any p ∈ (1, 53 ) and q ∈ (1, 54 ). Using this, we apply the Hölder inequality to find that

∣∣∣∣∣
T∫

0

∫
T3

∂tun · v dxdt

∣∣∣∣∣≤ ‖un‖L3(T3×(0,T ))‖∇un‖L2(T3×(0,T ))‖v‖L6(T3×(0,T ))

+ μ‖∇un‖L2(T3×(0,T ))‖∇v‖L2(T3×(0,T ))

+ ‖pn‖L2(T3×(0,T ))‖∇ · v‖L2(T3×(0,T ))

+ ‖mfn‖L∞(0,T ;Lq(T3))‖v‖
L1(0,T ;L

q
q−1 (T3))

+ ‖	fnun‖L2(0,T ;Lq(T3))‖v‖
L2(0,T ;L

q
q−1 (T3))

, (4.17)

for q < 5
4 and all v ∈ [C∞

0 (T3 × (0, T ))]3. To bound the last norm in the right-hand side, we shall need the calculation

‖	fnun‖L2(0,T ;Lq(T3)) ≤ ‖	fn‖
L∞(0,T ;L

5q
5−q (T3))

‖un‖L2(0,T ;L5(T3))

≤ C‖	fn‖
L∞(0,T ;L

5q
5−q (T3))

‖un‖L2(0,T ;W 1,2(T3)). (4.18)

We notice that 5q
5−q

< 5
3 since q < 5

4 . By applying (4.18) in (4.17), using (4.16) and (4.11), and using q = 6
5 , we 

deduce that

∂tun ∈b L
6
5
(
0, T ;W−1,2(

T
3)).

Since in addition un ∈b L2(0, T ; W 1,2(T3)), we can apply the Aubin–Lions lemma to conclude

un → u a.e. and in L2(0, T ;L2(
T

3)), as n → ∞.

2. To conclude compactness of 	fn , we write the first equation in (4.1) in the form

∂tfn + ξ · ∇fn = ∇ξ · Gn + σ�ξfn,

where Gn = fn(χn(un) + χn(u
ε
fn

) − 2ξ). By direct calculation, using the uniform bounds (4.10), (4.11), and (4.18), 
we deduce

‖Gn‖Lq(T3×R3×(0,T ))

≤ ‖fnun‖Lq(T3×R3×(0,T )) + ‖fnufn‖Lq(T3×R3×(0,T )) + 2
∥∥fn|ξ |∥∥

Lq(T3×R3×(0,T ))

≤ C
(‖un‖Lq(0,T ;L5(T3)) + ‖mfn‖Lq(T3×(0,T )) + ∥∥√fn|ξ |∥∥

L2(T3×R3×(0,T ))

)
≤ C,

where we used

‖fuun‖Lq(T3×R3) ≤ ‖fn‖
q−1
q

L∞(T3×R3)

∥∥ρ 1
q

fn

∥∥
L

5q
5−q (T3)

‖un‖L5(T3)

≤ ‖fn‖
q−1
q

L∞(T3×R3)
‖ρfn‖

1
q

L
5

5−q (T3)

‖un‖L5(T3), (4.19)

and here ‖ρfn‖
1
q

L
5

5−q (T3)

is uniformly bounded in n since 5
5−q

< 5
3 . Hence we can conclude that

Gn ∈b Lq
(
T

3 ×R
3 × (0, T )

)
, ∀q ∈

(
1,

5

4

)
. (4.20)

The velocity averaging Lemma 3.2 is then applicable and yields∫
3

fnψ(ξ) dξ →
∫

3

f ψ(ξ) dξ in Lq
(
T

3 × (0, T )
)
, (4.21)
R R
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for any ψ(ξ) such that |ψ(ξ)| ≤ c|ξ | as |ξ | → ∞, and any q ∈ (1, 54 ). If we set ψ(ξ) ≡ 1 and ψ(ξ) ≡ ξ in (4.21), we 
obtain

	fn → 	f and mfn → mf in Lq
(
T

3 × (0, T )
)
.

The proof is now complete. �
In the next lemma, we establish convergence of solutions to (4.1) as R → ∞. Specifically, we will send n → ∞ in

∂tfn + ξ · ∇fn + ∇ξ · [fn

(
χn(un) − ξ

)]= −∇ξ · [fn

(
χn

(
uε

fn

)− ξ
)]+ σ�ξfn,

∂tun + (θε � un) · ∇un + ∇pn = μ�un + (mfn − 	fnun)1n(un),

∇ · un = 0. (4.22)

Lemma 4.5. Under the conditions of the previous lemma, (f, u) is a weak solution of

∂tf + ξ · ∇f + ∇ξ · [f (u − ξ)
]= −∇ξ · [f (uε

f − ξ
)]+ σ�ξf,

∂tu + (θε � u) · ∇u + ∇p = μ�u + (mf − 	f u),

∇ · u = 0, (4.23)

in the sense of Definition 2.1, where uε
f is defined in (4.2). Moreover, (f, u) satisfies

‖f ‖L∞(0,T ;Lp(T3×R3)) + ∥∥∇ξ f
p
2
∥∥ 2

p

L2(0,T ;L2(T3×R3))
≤ C(p,T )‖f0‖Lp(T3×R3), (4.24)

sup
t∈(0,T )

E(t) + μ

T∫
0

‖∇u‖2
L2(T3)

dt +
∫

T3×R3

f |u − ξ |2 dξdx

≤ E(0) + 3σM0(f0)T . (4.25)

Proof. The only problematic terms when passing to the limit in (4.22), are

fnχn(un), fnχn

(
uε

fn

)
, 	fnun1n(un). (4.26)

1. Let us begin with the latter. From (4.18), we have that

‖	fnun‖L2(0,T ;Lq(T3)) ≤ C, q <
5

4
. (4.27)

As a consequence, we can apply weak compactness to (4.27), (4.11) and use the strong convergences of ρfn and un

in (4.15) to deduce

	fnun ⇀ 	f u as n → ∞ in L2(0, T ;Lq
(
T

3)), q <
5

4
. (4.28)

Now, by adding and subtracting, we see that

	fnun1n(un) = 	fnun − 	fnun

(
1 − 1n(un)

)
, (4.29)

where the last term converges to zero as∥∥	fnun

(
1 − 1n(un)

)∥∥
L1(T3×(0,T ))

≤ C‖	fnun‖
L2(0,T :L 6

5 (T3))

∥∥1 − 1n(un)
∥∥

L2(0,T ;L6(T3))

≤ C

n
‖un‖L2(0,T ;L6(T3)) ≤ C

n
‖un‖L2(0,T ;H 1(T3))

n→∞−−−−→ 0,

where we have used q = 6
5 < 5

4 in (4.18) and the estimates of uniform bounds for the approximations (4.11). Hence, 
we can send n → ∞ in (4.29) to conclude

	fnun1n(un) ⇀ 	f u as n → ∞ in L2(0, T ;Lq
(
T

3)), q <
5

4
. (4.30)
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2. Let us now consider the first term in (4.26). For this purpose, we use (4.11) and (4.19) to find

‖fuun‖L2(0,T ;Lq(T3×R3))

≤ ‖fn‖
q−1
q

L∞(T3×R3×(0,T ))
‖ρfn‖

1
q

L∞(0,T ;L
5

5−q (T3))

‖un‖L2(0,T ;L5(T3))

≤ C‖un‖L2(0,T ;H 1(T3)) ≤ C.

Then we use the similar argument to (4.28) to obtain

fnun ⇀ f u in L2(0, T ;Lq
(
T

3 ×R
3)). (4.31)

Next, by adding and subtracting, we write

fnχn(un) = fnun + fn

(
χn(un) − un

)
, (4.32)

where the last term converges to zero as∥∥fn

(
χn(un) − un

)∥∥
L1((0,T )×T3×R3)

= ∥∥	fnun

(
1 − 1n(un)

)∥∥
L1((0,T )×T3)

≤ ‖	fn‖
L∞(0,T ;L 3

2 (T3))
‖un‖L2(0,T ;L6(T3))

∥∥1 − 1n(un)
∥∥

L2(0,T ;L6(T3))

≤ 1

n
‖	fn‖

L∞(0,T ;L 3
2 (T3))

‖un‖2
L2(0,T ;L6(T3))

n→∞−−−−→ 0.

This, together with (4.31), in (4.32) yields

fnχn(un) ⇀ f u in L2(0, T ;Lq
(
T

3 ×R
3)). (4.33)

3. Finally, we consider the second term in (4.26). First, we calculate∥∥fnu
ε
fn

∥∥
L∞(0,T ;Lq(T3×R3))

≤ ‖fn‖L∞(0,T ;L∞(T3×R3))

∥∥uε
fn

∥∥
L∞(0,T ;Lq(T3))

≤ C

ε
‖mfn‖L∞(0,T ;Lq(T3)) ≤ C

ε
,

where the last inequality is (4.10), (4.16), and q < 5
4 . We also notice that the convergence estimates of ρfn and mfn in 

(4.15) and 1
ε+ρfn

≤ 1
ε

yield

uε
fn

= mfn

ε + 	fn

n→∞−−−−→ mf

ε + 	f

in Lq
(
T

3 × (0, T )
)
, q <

5

4
,

for each fixed ε > 0, due to a simple application of Vitali’s convergence theorem. In particular, we again use the 
similar strategy to (4.28) to have that

fnu
ε
fn

⇀ f uε
f as n → ∞ in Lq

(
T

3 × (0, T )
)
. (4.34)

By adding and subtracting,

fnχn

(
uε

fn

)= fnu
ε
fn

+ fn

(
χn

(
uε

fn

)− uε
fn

)
, (4.35)

where the last term satisfies∥∥fn

(
χn

(
uε

fn

)− uε
fn

)∥∥
L1(T3×R3×(0,T ))

= ∥∥	fnu
ε
fn

(
1 − 1n

(
uε

fn

))∥∥
L1(T3×(0,T ))

≤ 1

n

T∫
0

∫
T3

	fn

∣∣uε
fn

∣∣2 dxdt
n→∞−−−−→ 0, (4.36)

since 
∫
T3 	fn |uε

fn
|2 dx ≤ ∫

T3×R3 fn|ξ |2 dξdx, which is bounded by (4.11). By combining (4.34), (4.35), and (4.36), 
we conclude

fnχn

(
uε

fn

)→ f uε
f as n → ∞ in Lq

(
T

3 × (0, T )
)
. (4.37)
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4. Equipped with (4.30), (4.33), and (4.37), there are no problems with passing to the limit in (4.22) to conclude 
that (u, f ) is a weak solution to (4.23). The bounds (4.24) and (4.25) can be proved as in Propositions 3.1 and 3.2. �
4.4. The ε → 0 limit and proof of Theorem 2.1

We will now send ε → 0 in (4.23) and thereby conclude the proof of Theorem 2.1. The largest challenge is pre-
sented by possible vacuum regions of 	f rendering passing to the limit in uf non-trivial. To this end, we shall need 
the following lemma:

Lemma 4.6. Let {(fε, uε)}ε>0 be a sequence of weak solutions to (4.23). As ε → 0,

fε ⇀ f in C
([0, T ];Lp

(
T

3 ×R
3)), p ∈ (1,∞),

	fε → 	f a.e. and in Lp
(
T

3 × (0, T )
)
, p ∈

(
1,

5

4

)
,

mfε → mf a.e. and in Lq
(
T

3 × (0, T )
)
, q ∈

(
1,

5

4

)
,

uε → u a.e. and in L2(
T

3 × (0, T )
)
, (4.38)

where 	f = ∫
R3 f dξ , mf = ∫

R3 ξf dξ , and where the convergence may take place along a subsequence.

Proof. Since (4.16), (4.18), and (4.20) hold independently of ε, the proof follows by the exact same arguments as the 
proof of Lemma 4.4. �

Theorem 2.1 follows as a consequence of the following lemma.

Lemma 4.7. Under the conditions of the previous lemma, (f, u) is a weak solution of (1.1) in the sense of Defini-
tion 2.1, where

uf =
⎧⎨
⎩
∫
R3 f ξ dξ∫
R3 f dξ

, 	f �= 0,

0, 	f = 0.

Proof. From (4.38), we easily conclude that

fε(uε − ξ) ⇀ f (u − ξ) in L2(0, T ;Lq
(
T

3 ×R
3)), q <

5

4
,

mfε − 	fεuε ⇀ mf − 	f u in L2(0, T ;Lq
(
T

3)), q <
5

4
,

(θε � uε) · ∇uε ⇀ u · ∇u in L
6
5
(
T

3 × (0, T )
)
.

Hence, in order to pass to the limit in (4.23), it remains to prove that

fεu
ε
fε

→ f uf as ε → 0 in the sense of distribution.

For this purpose, let λ > 0 be a small parameter and define

Aλ = {(x, t) : 	f (x, t) > λ
}
.

Since 	fε → 	f a.e., Egoroff’s theorem yields, for any η > 0, the existence of a set Bλ,η with |Aλ \ Bλ,η| < η and 
where 	fε → 	f uniformly on Bλ,η. In particular, for a sufficiently small ε̄,

	fε > λ − η

2
, ∀ε < ε̄, (x, t) ∈ Bλ,η.
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By virtue of (4.38), we have that

uε
fε

= mfε

ε + 	fε

→ mf

	f

in Lq(Bλ,η), q <
5

4
.

In particular, since fε converges weakly, we can conclude that

fεu
ε
fε

⇀ f uf in Lq
(
Bλ,η ×R

3) as ε → 0.

We then write

fεu
ε
fε

1Aλ = fεu
ε
fε

1Bη + fεu
ε
fε

1Aλ\Bη ,

where we see that the last term is small due to the following bound

∥∥fεu
ε
fε

1Aλ\Bη

∥∥
L1(T3×R3×(0,T ))

≤ η
1
q′ ‖mfε‖Lq(T3×(0,T )) =O

(
η

1
q′ ). (4.39)

Since we can choose η arbitrarily small, we must have that

fεu
ε
fε

⇀ f uf in Lq
(
Aλ ×R

3) as ε → 0.

For the estimate on the set (T3 × (0, T )) \Aλ, we let η be a small parameter and make another application of Egoroff’s 
theorem to obtain a set Cλ,η such that

∣∣((T3 × (0, T )
) \ Aλ

) \ Cλ,η

∣∣< η, 	fε < λ + η

2
, ∀ε < ε.

On Cλ,η, the product 	fnufn is controlled by λ + η
2 as

∥∥fεu
ε
fε

∥∥
L1(Cλ,η×R3)

≤
( ∫
Cλ,η

	fεdxdt

) 1
2
( T∫

0

∫
T3

	fε

∣∣uε
fε

∣∣2 dxdt

) 1
2

≤
(

λ + η

2

) 1
2

C,

where we have used 
∫
T3 	fε |uε

fε
|2 dx ≤ ∫

T3×R3 fε|ξ |2 dξdx which is bounded by (4.11), and the fact that |T3 × (0, T )|
is finite to conclude the last inequality. As in (4.39), we also see that

∥∥fεu
ε
fε

∥∥
L1((((T3×(0,T ))\Aλ)\Cλ,η)×R3)

≤O
(
η

1
q′ ).

Since η can be chosen arbitrarily small, we deduce∥∥fεu
ε
fε

∥∥
L1(((T3×(0,T ))\Aλ)×R3)

≤ O
(
λ

1
2
)
.

Hence by choosing sufficiently small λ to conclude

fεu
ε
fε

⇀ f uf in Lq
(
T

3 ×R
3 × (0, T )

)
, q <

5

4
.

This completes the proof. �
5. Hydrodynamic limit (Theorem 2.2)

In this section, we will study the flocking-Navier–Stokes system (1.1) under the assumption of strong noise and 
local alignment. In this regime, we shall rigorously establish that the evolution can be accurately described by a cou-
pled compressible Euler and incompressible Navier–Stokes system, and thereby prove Theorem 2.2. For the reader’s 
convenience, we recall the equations under consideration:
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∂tf
ε + ξ · ∇f ε + ∇ξ · [(uε − ξ

)
f ε
]= 1

ε
∇ξ · [∇ξ f

ε − (uf ε − ξ)f ε
]
,

∂tu
ε + uε · ∇uε + ∇pε − μ�uε = −

∫
R3

(
uε − ξ

)
f εdξ,

∇ · uε = 0, (5.1)

subject to(
f ε(x, ξ,0), uε(x,0)

)= (f0(x, ξ), u0(x)
)
. (5.2)

Our goal is to prove that solutions of this system can be well approximated by the Euler–Navier–Stokes system

∂tuf + ∇ · (	f uf ) = 0,

(	f uf )t + ∇ · (	f uf ⊗ uf ) + ∇	f = 	f (u − uf ),

ut + u · ∇u + ∇p − μ�u = −	f (u − ud),

∇ · u = 0,

provided ε is sufficiently small.

5.1. Entropy of weak solutions

We first show that the weak solutions obtained from Theorem 2.1 satisfies some entropy inequalities that are 
uniform in ε. For this, we set

F
(
f ε,uε

) := ∫
T3×R3

f ε

(
logf ε + |ξ |2

2

)
dxdξ +

∫
T3

|uε|2
2

dx,

D1
(
f ε
) := ∫

T3×R3

1

f ε

∣∣∇ξ f
ε + (uf ε − ξ)f ε

∣∣2dxdξ,

D2
(
f ε,uε

) := ∫
T3×R3

∣∣uε − ξ
∣∣2f εdxdξ + μ

∫
T3

∣∣∇uε
∣∣2dx. (5.3)

Then it follows from Proposition 3.1 that

d

dt
F
(
f ε,uε

)+ 1

ε
D1
(
f ε
)+ D2

(
f ε,uε

)= 3M0(f0),

and this yields

F
(
f ε,uε

)−F(f0, u0) + 1

ε

t∫
0

D1
(
f ε
)
ds +

t∫
0

D2
(
f ε,uε

)
ds = 3M0(f0)t. (5.4)

On the other hand, we notice that∫
T3×R3

f ε
∣∣logf ε

∣∣dxdξ ≤
∫

T3×R3

f ε logf εdxdξ + 1

4

∫
T3×R3

(
1 + |ξ |2)f εdxdξ + C.

This implies that∫
T3×R3

f ε

(
1 + ∣∣logf ε

∣∣+ 1

4
|ξ |2
)

dxdξ +
∫
T3

|uε|2
2

dx

+
T∫

D2
(
f ε,uε

)
dt + 1

ε

T∫
D1
(
f ε
)
dt ≤F(f0, u0) + C(T ). (5.5)
0 0



J.A. Carrillo et al. / Ann. I. H. Poincaré – AN 33 (2016) 273–307 293
By expanding the square, one can check after some tedious computations that

1

2

∫
T6×R6

f ε(x, ξ)f ε(y, ξ∗)|ξ − ξ∗|2dxdξdydξ∗ +
∫
T3

ρf ε

∣∣uε − uf ε

∣∣2dx

=
∫

T3×R3

∣∣uε − ξ
∣∣2f εdxdξ + 1

2

∫
T3×T3

ρf ε (x)ρf ε (y)
∣∣uf ε (x) − uf ε (y)

∣∣2dxdy. (5.6)

Now we use the similar estimates in [22, Lemma B.3] to get

1

2

∫
T3×T3

ρf ε (x)ρf ε (y)
∣∣uf ε (x) − uf ε (y)

∣∣2dxdy

≤ −3
(
M0(f0)

)2 + C(T )ε + 1

2ε
D1
(
f ε
)+ ∫

T6×R6

f ε(x, ξ)f ε(y, ξ∗)
|ξ − ξ∗|2

2
dxdξdydξ∗. (5.7)

Combining (5.4), (5.6), and (5.7), we obtain

F
(
f ε,uε

)+ 1

2ε

t∫
0

D1
(
f ε
)
ds +

t∫
0

∫
T3

ρf ε

∣∣uε − uf ε

∣∣2dxds + μ

t∫
0

∫
T3

∣∣∇uε
∣∣2dxds

≤F(f0, u0) + C(T )ε, (5.8)

where we used the fact that f0 has a unit mass, i.e., M0(f0) = 1. In light of the above arguments, we conclude the 
following proposition.

Proposition 5.1. Suppose the initial data (f0, u0) satisfies (2.1). Then for any T > 0 and ε > 0 there exists at least 
one weak solution (f ε, uε) to (5.1)–(5.2) on the time-interval (0, T ) satisfying (5.5) and (5.8).

We will prove Theorem 2.2 through a relative entropy argument. For this to be rigorous, we need a unique strong 
solution (at least for short time) to the system (2.3)–(2.4). We claim the following result.

Theorem 5.1. Let s ≥ 3. Suppose the initial data (ρf0, uf0 , u0) ∈ Hs(T3) and ρf0 > 0. Then there exists a positive 
constant T ∗ > 0 such that the Cauchy problem (2.3)–(2.4) has a unique solution (ρf , uf , u) satisfying

(ρf ,uf ) ∈ C
([

0, T ∗];Hs
(
T

3))∩ C1([0, T ∗];Hs−1(
T

3)),
u ∈ C

([
0, T ∗];Hs

(
T

3))∩ L2(0, T ∗;Hs+1(
T

3)).
Since local existence theories for this type of balance laws have been well developed, we omit this proof. We refer 

to [25] for the readers who are interested in it.

5.2. Relative entropy

We shall prove Theorem 2.2 using a relative entropy argument. For this purpose, it will be convenient to write the 
equation in a more abstract form using the variables

U :=
(

	f

mf

u

)
, A(U) :=

⎛
⎝ mf 0 0

mf ⊗mf

	f
	f 0

u ⊗ u 0 0

⎞
⎠ ,

and

F(U) :=
( 0

	f u − mf

)
,

mf − 	f u − ∇p + μ�u
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where mf = ρf uf . The system can then be recast in the form

Ut + ∇ · A(U) = F(U),

and the macroscopic entropy (energy) takes the form

E(U) := 	f log	f + |mf |2
2	f

+ |u|2
2

.

Using the newly defined variables, we define the relative entropy functional as follows:

H(V |U) := E(V ) − E(U) − dE(U)(V − U), and V :=
(

	f̄

mf̄

ū

)
. (5.9)

Upon noticing that

−dE(U)(V − U) = −
⎛
⎜⎝− m2

f

2ρ2
f

+ logρf + 1
mf

ρf

u

⎞
⎟⎠
(

ρf̄ − ρf

mf̄ − mf

ū − u

)

= ρf̄

2
|uf |2 − ρf

2
|uf |2 − (logρf + 1)(ρf̄ − ρf ) + ρf |uf |2 − ρf̄ uf̄ · uf − (ū − u) · u,

we see that the relative entropy can alternatively be written

H(V |U) = ρf̄

2
|uf − uf̄ |2 + 1

2
|ū − u|2 + P(ρf̄ , ρf ),

where

P(ρf̄ , ρf ) := ρf̄ logρf̄ − ρf logρf + (ρf − ρf̄ )(1 + logρf ) ≥ 1

2
min

{
1

ρf̄

,
1

ρf

}
(ρf̄ − ρf )2.

Hence, the relative entropy controls the L2-difference provided one of the densities is without vacuum regions.
To proceed, we shall need to derive an evolution equation for the integrated relative entropy.

Lemma 5.1. The relative entropy H defined in (5.9) satisfies the following equality

d

dt

∫
T3

H(V |U)dx + μ

∫
T3

∣∣∇(u − ū)
∣∣2dx +

∫
T3

ρf̄

∣∣(uf̄ − ū) − (uf − u)
∣∣2dx

=
∫
T3

∂tE(V )dx +
∫
T3

ρf̄ |ū − uf̄ |2dx + μ

∫
T3

|∇ū|2dx

−
∫
T3

∇(dE(U)
) : A(V |U)dx −

∫
T3

dE(U)
[
Vt + ∇ · A(V ) − F(V )

]
dx

−
∫
T3

(ρf − ρf̄ )(ū − u)(u − uf )dx,

where we have introduced the relative flux functional

A(V |U) := A(V ) − A(U) − dA(U)(V − U).

Proof. Although this lemma is essential for the proof of Theorem 2.2, it is rather lengthy and technical. Thus we 
postpone its proof in Appendix A for the smooth flow of reading. �
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5.3. Relative entropy bound

The proof of Theorem 2.2 will follow as a consequence of the following proposition.

Proposition 5.2. Suppose all assumptions in Theorem 2.2. Set

U :=
(

ρf

ρf uf

u

)
and Uε :=

(
ρf ε

ρf εuf ε

uε

)
,

where (ρf , uf , u) and (f ε, uε) are a unique strong solution to the system (2.3)–(2.4) and weak solutions to the system 
(5.1)–(5.2), respectively. Then we have

∫
T3

H
(
Uε|U)(t) dx + μ

t∫
0

∫
T3

∣∣∇(u − uε
)∣∣2dxds + 1

2

t∫
0

∫
T3

ρf ε

∣∣(uf ε − uε
)− (uf − u)

∣∣2dxds

≤ C
√

ε,

for all t ∈ [0, T ∗].

Proof. From Lemma 5.1, we know that

∫
T3

H
(
Uε|U)(t) dx + μ

t∫
0

∫
T3

∣∣∇(u − uε
)∣∣2dxds +

t∫
0

∫
T3

ρf ε

∣∣(uf ε − uε
)− (uf − u)

∣∣2dxds

=
t∫

0

∫
T3

∂tE
(
Uε
)+ ρf ε

∣∣uε − uf ε

∣∣2 + μ
∣∣∇uε

∣∣2dxds −
t∫

0

∫
T3

∇(dE(U)
) : A(Uε|U)dxds

−
t∫

0

∫
T3

dE(U)
[
Uε

t + ∇ · A(Uε
)− F

(
Uε
)]

dxds −
t∫

0

∫
T3

(ρf − ρf ε )
(
uε − u

)
(u − uf )dxds,

=:
4∑

i=1

Ii .

• Estimate of I1: We first notice that 
∫
T3 E(Uε) dx ≤ F(f ε, uε), where F is given in (5.3). Then we obtain

I1(t) =
∫
T3

(
E
(
Uε
)
(t) − E(U0)

)
dx +

t∫
0

∫
T3

ρf ε

∣∣uε − uf ε

∣∣2 + μ
∣∣∇uε

∣∣2dxds

=
∫
T3

E
(
Uε
)
(t) dx −F

(
f ε,uε

)
(t)

+F
(
f ε,uε

)
(t) +

t∫
0

∫
T3

ρf ε

∣∣uε − uf ε

∣∣2 + μ
∣∣∇uε

∣∣2dxds −F(f0, u0)

+F(f0, u0) −
∫
T3

E(U0) dx

≤ C
(
T ∗)ε,

where we used the facts that (5.8) and F(f0, u0) =
∫

3 E(U0) dx.

T
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• Estimate of I2: Straightforward computation shows that

A
(
Uε|U)= A

(
Uε
)− A(U) − dA(U)

(
Uε − U

)
=
( 0 0 0

ρf ε (uf ε − uf ) ⊗ (uf ε − uf ) 0 0
(uε − u) ⊗ (uε − u) 0 0

)
.

This implies that∫
T3

∣∣A(Uε|U)∣∣dx =
∫
T3

ρf ε |uf ε − uf |2dx +
∫
T3

∣∣uε − u
∣∣2dx ≤ 2

∫
T3

H
(
Uε|U)dx,

and

I2(t) ≤ C

t∫
0

∫
T3

H
(
Uε|U)dxds.

• Estimate of I3: One can find that ρf ε and uf ε satisfy

∂tρf ε + ∇ · (ρf εuf ε ) = 0,

∂t (ρf εuf ε ) + ∇ · (ρf εuf ε ⊗ uf ε ) + ∇ρf ε − ρf ε

(
uf ε − uε

)
= ∇ ·

(∫
R3

(uf ε ⊗ uf ε − ξ ⊗ ξ + I)f εdξ

)
,

in the distribution sense on T3 × [0, T ∗). Then we deduce that∣∣∣∣∣
t∫

0

∫
T3

dE(U)
[
Uε

s + ∇ · A(Uε
)− F

(
Uε
)]

dxdt

∣∣∣∣∣
≤
∣∣∣∣∣

t∫
0

∫
T3

∣∣∇dE(U)
∣∣∣∣∣∣
∫
R3

(uf ε ⊗ uf ε − ξ ⊗ ξ + I)f εdξ

∣∣∣∣dxdt

∣∣∣∣∣
≤ C

t∫
0

∫
T3

∣∣∣∣
∫
R3

(uf ε ⊗ uf ε − ξ ⊗ ξ + I)f εdξ

∣∣∣∣dxdt.

Then we now apply the same argument in [22, Lemma 4.8] to have∣∣∣∣∣
t∫

0

∫
T3

dE(U)
[
Uε

s + ∇ · A(Uε
)− F

(
Uε
)]

dxds

∣∣∣∣∣≤ √
εC
(
T ∗).

• Estimate of I4: The strategy is to use the third term in the dissipation. By the Cauchy–Schwartz inequality and 
using the fact

1 ≤ min

(
1

x
,

1

y

)
(x + y), for x, y > 0,

we get∣∣∣∣
∫
T3

(ρf − ρf ε )
(
uε − u

)
(u − uf )dx

∣∣∣∣
≤ ‖u − uf ‖L∞

(∫
3

min

(
1

ρf

,
1

ρf ε

)
|ρf − ρf ε |2dx

) 1
2
(∫

3

(ρf + ρf ε )
∣∣u − uε

∣∣2dx

) 1
2

T T
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≤ C

∫
T3

H
(
Uε|U)dx + 1

4

∫
T3

ρf ε

∣∣u − uε
∣∣2dx. (5.10)

On the other hand, the second term of the last inequality in (5.10) is again estimated as follows∫
T3

ρf ε

∣∣u − uε
∣∣2dx =

∫
T3

ρf ε

∣∣u − uf + uf − uf ε + uf ε − uε
∣∣2dx

≤ 2
∫
T3

ρf ε

∣∣(u − uf ) − (uε − uf ε

)∣∣2dx + 2
∫
T3

ρf ε |uf − uf ε |2dx,

and this implies

1

4

∫
T3

ρf ε

∣∣u − uε
∣∣2dx

≤ 1

2

∫
T3

ρf ε |uf − uf ε |2dx + 1

2

∫
T3

ρf ε

∣∣(u − uf ) − (uε − uf ε

)∣∣2dx

≤
∫
T3

H
(
Uε|U)dx + 1

2

∫
T3

ρf ε

∣∣(u − uf ) − (uε − uf ε

)∣∣2dx.

This concludes that∣∣∣∣
∫
T3

(ρf − ρf ε )
(
uε − u

)
(u − uf )dx

∣∣∣∣
≤ C

∫
T3

H
(
Uε|U)dx + 1

2

∫
T3

ρf ε

∣∣(u − uf ) − (uε − uf ε

)∣∣2dx.

From the above, we have

∫
T3

H
(
Uε|U)(t) dx + μ

t∫
0

∫
T3

∣∣∇(u − uε
)∣∣2dxds

+ 1

2

t∫
0

∫
T3

ρf ε

∣∣(uf ε − uε
)− (uf − u)

∣∣2dxds

≤ C
√

ε + C

t∫
0

∫
T3

H
(
Uε|U)(s) dxds, for all t ∈ [0, T ∗].

We now apply Gronwall’s inequality to derive that

∫
T3

H
(
Uε|U)(t) dx + μ

t∫
0

∫
T3

∣∣∇(u − uε
)∣∣2dxds

+ 1

2

t∫
0

∫
T3

ρf ε

∣∣(uf ε − uε
)− (uf − u)

∣∣2dxds ≤ C
√

ε. �
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5.4. Proof of Theorem 2.2

The entropy inequality in Proposition 5.2 and arguments in [22] yield that

ρf ε → ρf in L1
loc

(
0, T ∗;L1(

T
3)),

ρf εuf ε → ρf uf in L1
loc

(
0, T ∗;L1(

T
3)),

ρf ε |uf ε |2 → ρf |uf |2 in L1
loc

(
0, T ∗;L1(

T
3)),

uε → u in L1
loc

(
0, T ∗;L2(

T
3)).

Furthermore, we can also use the same argument in [22] to conclude that

f ε → ρf

(2π)
3
2

e− |ξ−uf |2
2 in L1

loc

(
0, T ∗;L1(

T
3 ×R

3)).
This completes the proof.

6. A priori estimate of asymptotic behavior (Theorem 2.3)

In this section, we provide a long-time behavior estimate for the system (1.1)–(1.2) without diffusion, i.e., σ = 0. 
Since the constants α and β do not play any crucial role in our analysis as we mentioned before, we assume that 
α = β = 1. For the estimate of large-time behavior, we first notice that local density ρf and velocity uf in (1.3)
satisfy the following hydrodynamic equations.

∂tρf + ∇ · (ρf uf ) = 0,

∂t (ρf uf ) + ∇ · (ρf uf ⊗ uf ) + ∇ · P̃ = ρf (u − uf ), (6.1)

where P̃ is given by

P̃ :=
∫
R3

(ξ − uf ) ⊗ (ξ − uf )f dξ.

We recall energy-fluctuation functions EP , EU , EF and EI :

EP (t) := 1

2

∫
T3×R3

|ξ − uf |2f dxdξ,

EU(t) := 1

2

∫
T3×T3

∣∣uf (x) − uf (y)
∣∣2ρf (x)ρf (y)dxdy,

EF (t) := 1

2

∫
T3

∣∣u − uc(t)
∣∣2dx,

EI (t) := 1

2

∣∣uc(t) − ξc(t)
∣∣2.

Then we next investigate the time-evolution of the above energy-fluctuation functions.

Lemma 6.1. Let (f, u) be classical solutions to the system (1.1)–(1.2) with σ = 0 satisfying

lim|ξ |→∞ |ξ |2f (x, ξ, t) = 0, (x, t) ∈ T
3 × [0, T ].
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The following identities hold:

(i)
dEP

dt
=
∫
T3

(∇ · P̃ ) · uf dx − 4EP .

(ii)
dEU

dt
= −2

∫
T3

(∇ · P̃ ) · uf dx + 2
∫
T3

ρf (u − uf ) · uf dx

− 2
∫
T3

ρf uf dx ·
∫
T3

ρf (u − uf )dx.

(iii)
dEF

dt
= −μ

∫
T3

|∇u|2 dx +
∫

T3×R3

(uc − u) · (u − ξ)f dξdx.

(iv)
dEI

dt
= −2

∫
T3×R3

(uc − ξc) · (u − ξ)f dξdx.

Proof. For the estimate of (i), it follows from the system (1.1) that

dEP

dt
= −

∫
T3×R3

(ξ − uf ) · u′
f f dxdξ + 1

2

∫
T3×R3

|ξ − uf |2∂tf dxdξ

= 1

2

∫
T3×R3

|ξ − uf |2(−ξ · ∇f + ∇ξ · [(ξ − uf )f
]− ∇ξ · [(u − ξ)f

])
dxdξ

=:
3∑

i=1

Ii , (6.2)

where u′
f := d

dt
uf , and Ii , i = 1, 2, 3 are given by

I1 = 1

2

∫
T3×R3

∇(|ξ − uf |2) · ξf dxdξ = −
∫

T3×R3

(
(ξ − uf ) · ∇uf

) · ξf dξdx,

I2 = −
∫

T3×R3

|ξ − uf |2f dxdξ,

I3 =
∫

T3×R3

(ξ − uf ) · (u − ξ)f dxdξ = −
∫

T3×R3

ξ · (ξ − uf )f dxdξ

= −
∫

T3×R3

|ξ − uf |2f dxdξ. (6.3)

A further integration by parts leads to

I1 = −
3∑

i,j=1

∫
T3×R3

(
ξ i − ui

f

)
∂iu

j
f ξjf dxdξ

= −
3∑

i,j=1

∫
T3×R3

(
ξ i − ui

f

)(
∂iu

j
f

)(
ξj − u

j
f

)
f dxdξ =

∫
T3

(∇ · P̃ ) · uf dx.

Thus, (i) is obtained by combining (6.2) and (6.3) with the above equality. For the identity (ii), we use the hydrody-
namic equations (6.1) to find
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dEU

dt
=

∫
T3×T3

(
uf (x) − uf (y)

) · (u′
f (x) − u′

f (y)
)
ρf (x)ρf (y) dxdy

+
∫

T3×T3

∣∣uf (x) − uf (y)
∣∣2ρ′

f (x)ρf (y) dxdy

= 2
∫
T3

uf · u′
f ρf dx − 2

(∫
T3

ρf uf dx

)
·
(∫
T3

ρf u′
f dx

)

+ 2
∫
T3

ρf uf · (uf · ∇uf )dx − 2

(∫
T3

ρf (uf · ∇uf )dx

)
·
(∫
T3

ρf uf dx

)

= −2
∫
T3

(∇ · P̃ ) · uf dx + 2
∫
T3

ρf (u − uf ) · uf dx

− 2

(∫
T3

ρf uf dx

)
·
(∫
T3

ρf (u − uf )dx

)
,

where we used the fact that ‖ρf ‖L1(T3) = 1 and

ρf u′
f + ρf uf · ∇uf + ∇ · P̃ = ρf (u − uf ).

For the estimate of (iii), we use the definition of EF and direct integration by parts to get

dEF

dt
=
∫
T3

(u − uc) · ∂tudx − u′
c ·
∫
T3

(u − uc) dx =
∫
T3

(u − uc) · ∂tudx

= −
∫
T3

(u · ∇u) · (u − uc) dx −
∫
T3

(u − uc) · ∇p dx

+ μ

∫
T3

(u − uc) · �udx −
∫

T3×R3

(u − uc) · (u − ξ)f dxdξ

= −μ

∫
T3

|∇u|2 dx −
∫

T3×R3

(u − uc) · (u − ξ)f dxdξ,

since ∇ · u = 0. Finally we employ the following facts

ξ ′
c =

∫
T3×R3

(u − ξ)f dξdx and u′
c = −

∫
T3×R3

(u − ξ)f dξdx,

to derive the estimate of (iv)

dEI

dt
= (uc − ξc) · (u′

c − ξ ′
c

)= −2(uc − ξc) ·
∫

T3×R3

(u − ξ)f dξdx. �

Remark 6.1. Since 
∫
T3 	f dx ≡ 1, we have that∫

T3

(uf − ξc)ρf dx =
∫

T3×R3

(ξ − ξc)f dξdx = 0.
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As a consequence,

EU(t) = 1

2

∫
T3×T3

∣∣uf (x) − uf (y)
∣∣2ρf (x)ρf (y) dxdy

= 1

2

∫
T3×T3

∣∣uf (x) − ξc + ξc − uf (y)
∣∣2ρf (x)ρf (y) dxdy

= 1

2

∫
T3×T3

∣∣uf (x) − ξc

∣∣2ρf (x)ρf (y) dxdy

+ 1

2

∫
T3×T3

∣∣uf (y) − ξc

∣∣2ρf (x)ρf (y) dxdy −
(∫
T3

(uf − ξc)ρf dx

)2

=
∫
T3

|uf − ξc|2ρf dx.

Proof of Theorem 2.3. For the sake of the reader, we divide the proof into two steps.
1. In this part, we will show that

(i)
d

dt
(2EP + EU) = −8EP − 2EU + 2

∫
T3×R3

(ξ − ξc) · uf dξdx.

(ii)
d

dt
(2EF + EI ) = 2EU + 4EP − 2μ

∫
T3

|∇u|2dx − 2
∫

T3×R3

|u − ξ |2f dxdξ

− 2
∫

T3×R3

(ξ − ξc) · uf dxdξ. (6.4)

For a detailed estimate of (i), we use Lemma 6.1 to get
d

dt
(2EP + EU) = −8EP + 2

∫
T3

ρf (u − uf ) · (uf − ξc) dx

= −8EP + 2
∫
T3

ρf (u − ξc) · (uf − ξc) dx − 2
∫
T3

ρf |uf − ξc|2dx

= −8EP − 2EU + 2
∫
T3

ρf u · (uf − ξc) dx,

where we used∫
T3

ρf uf dx = ξc and
∫
T3

ρf (uf − ξc) dx = 0.

For the second part (ii), it also follows from Lemma 6.1 that
d

dt
(2EF + EI ) = −2μ

∫
T3

|∇u|2dx − 2
∫

T3×R3

(u − ξ) · (u − ξc)f dxdξ

= −2μ

∫
T3

|∇u|2dx − 2
∫

T3×R3

|u − ξ |2f dxdξ

− 2
∫

3 3

u · (ξ − ξc)f dxdξ + 2
∫

3 3

ξ · (ξ − ξc)f dxdξ. (6.5)
T ×R T ×R
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On the other hand, the fourth term in the last inequality of (6.5) is estimated by

2
∫

T3×R3

ξ · (ξ − ξc)f dxdξ = 2
∫

T3×R3

|ξ − ξc|2f dxdξ = 2EU + 4EP .

This yields the estimate of (ii).
2. We now combine two inequalities in (6.4) to find

d

dt
E(t) = −4EP − 2μ

∫
T3

|∇u|2dx − 2
∫

T3×R3

|u − ξ |2f dxdξ.

We set a corresponding dissipation function D(t) to E(t):

D(t) := 4EP + 2μ

∫
T3

|∇u|2dx + 2
∫

T3×R3

|u − ξ |2f dxdξ.

Then we obtain

d

dt
E(t) +D(t) = 0.

Claim. There exists a positive constant C > 0 such that E(t) ≤ CD(t) for all t ≥ 0.

For the proof of claim, we estimate the last term in the function D(t) as follows∫
T3×R3

|u − ξ |2f dξdx =
∫

T3×R3

|u − uc + uc − ξc + ξc − ξ |2f dξdx

=
∫
T3

ρf |u − uc|2dx + |uc − ξc|2 +
∫

T3×R3

|ξc − ξ |2f dξdx

+ 2
∫

T3×R3

(u − uc) · (uc − ξ)f dξdx

= 2EI + 2EP + EU +
∫
T3

ρf |u − uc|2dx

+ 2
∫

T3×R3

(u − uc) · (uc − ξ)f dξdx, (6.6)

where we used∫
T3×R3

(uc − ξc) · (ξc − ξ)f dξdx = 0,

and ∫
T3×R3

|ξc − ξ |2f dξdx =
∫

T3×R3

|ξc − uf |2f dξdx +
∫

T3×R3

|uf − ξ |2f dξdx

= EU + 2EP .
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Furthermore we use the fact that∫
T3×R3

|uc − ξ |2f dxdξ =
∫

T3×R3

|uc − ξc + ξc − ξ |2f dxdξ

=
∫

T3×R3

(|uc − ξc|2 + |ξc − ξ |2)f dxdξ

= 2EI + 2EP + EU

to find

−4
∫

T3×R3

(u − uc) · (uc − ξ)f dxdξ ≤ 4
∫
T3

ρf |u − uc|2dx +
∫

T3×R3

|uc − ξ |2f dxdξ

= 4
∫
T3

ρf |u − uc|2dx + 2EI + 2EP + EU . (6.7)

Then it follows from (6.6) and (6.7) that

2EI + 2EP + EU ≤ 2
∫

T3×R3

|u − ξ |2f dxdξ + 2
∫
T3

ρf |u − uc|2dx.

This deduces that

E(t) ≤
∫
T3

|u − uc|2dx + 2
∫

T3×R3

|u − ξ |2f dxdξ + 2
∫
T3

ρf |u − uc|2dx

≤ C
(
1 + ‖ρf ‖L∞(0,∞;L3/2)

)∫
T3

|∇u|2dx + 2
∫

T3×R3

|u − ξ |2f dxdξ

≤ CD(t),

where we used the following Sobolev inequalities∫
T3

|u − uc|2dx ≤ C

∫
T3

|∇u|2dx,

∫
T3

ρf |u − uc|2dx ≤ ‖ρf ‖L3/2‖u − uc‖2
L6

≤ C‖ρf ‖L3/2‖u − uc‖2
H 1 ≤ C‖ρf ‖L∞(0,∞;L3/2)‖∇u‖2

L2 .

This yields the proof of claim, and we have

d

dt
E(t) + CE(t) ≤ 0, t ≥ 0,

for some positive constant C > 0. This completes the proof. �
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Appendix A. Proof of Lemma 5.1

In this part, we provide the proof of Lemma 5.1. It follows from (5.9) that

d

dt

∫
T3

H(V |U)dx =
∫
T3

∂tE(V )dx −
∫
T3

dE(U)
(
Vt + ∇ · A(V ) − F(V )

)
dx

+
∫
T3

d2E(U)∇ · A(U)(V − U) + dE(U)∇ · A(V )dx

−
∫
T3

d2E(U)F(U)(V − U) + dE(U)F(V )dx

=:
4∑

i=1

Ii .

Using integration by parts, we find

I3 =
∫
T3

(∇dE(U)
) : (dA(U)(V − U) − A(V )

)
dx

= −
∫
T3

(∇dE(U)
) : (A(V |U) + A(U)

)
dx

= −
∫
T3

(∇dE(U)
) : A(V |U)dx.

Here we used the fact that∫
T3

(∇dE(U)
) : A(U)dx =

∫
T3

∇ · Q(U)dx = 0,

where Q is an entropy flux function given by

Qi(U) :=
∑

k

Aki(U)dkE(U).

For the estimate I4, we claim that the following identity holds.∫
T3

d2E(U)F(U)(V − U) + dE(U)F(V )dx

= −
∫

3

	f̄ |uf̄ − ū|2 dx − μ

∫
3

|∇ū|2 dx
T T
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+
∫
T3

	f̄

∣∣(uf − u) − (uf̄ − ū)
∣∣2 dx + μ

∫
T3

∣∣∇(u − ū)
∣∣2 dx

+
∫
T3

(	f − 	f̄ )(ū − u)(uf − u)dx. (A.1)

Proof of Claim. We first notice that

dE(U) =
⎛
⎜⎝ log	f + 1 − m2

f

2	2
f

mf

	f

u

⎞
⎟⎠ and d2E(U) =

⎛
⎜⎝

∗ −mf

	2
f

0

∗ 1
	f

0
0 0 1

⎞
⎟⎠ .

Then by direct calculation, we have∫
T3

d2E(U)F(U)(V − U)dx

=
∫
T3

	f

[
uf ū − uf u − uū + u2]+ 	f̄

[−uf u + u2
f + uf̄ u − uf̄ uf

]
dx

+
∫
T3

(ū − u)μ�u − (ū − u)∇p dx (A.2)

and moreover∫
T3

dE(U)F(V ) dx =
∫
T3

	f̄ [uf ū − uf̄ uf + uf̄ u − ūu] dx

+
∫
T3

μu�ū − u∇p̄ dx. (A.3)

By combining (A.2)–(A.3), and using that ∇ · u = ∇ · ū = 0, we obtain∫
T3

d2E(U)F(U)(V − U) + dE(U)F(V ) dx

=
∫
T3

	f̄

[−uf u + u2
f − 2uf̄ uf + 2uf̄ u + uf ū − ūu

]
dx

+
∫
T3

	f

[
uf ū − uf u − uū + u2] dx

+
∫
T3

μ[u�ū + ū�u − u�u] dx =: J1 + J2 + J3. (A.4)

By adding and subtracting, we rewrite J1 as follows

J1 =
∫
T3

	f̄

[−uf u + u2
f − 2uf̄ uf + 2uf̄ u + uf ū − ūu

]
dx

=
∫
T3

	f̄

[−2(uf̄ − ū)(uf − u) − ū(uf − u) − uf u + u2
f

]
dx.



306 J.A. Carrillo et al. / Ann. I. H. Poincaré – AN 33 (2016) 273–307
Next, we add and subtract 	f̄ |uf − u|2 to discover

J1 =
∫
T3

	f̄

[−2(uf̄ − ū)(uf − u) + |uf − u|2]dx

+
∫
T3

	f̄

[−|uf − u|2 − ū(uf − u) − uf u + u2
f

]
dx

=
∫
T3

	f̄

∣∣(uf̄ − ū) − (uf − u)
∣∣2 dx −

∫
T3

	f̄ |uf̄ − ū|2dx

+
∫
T3

	f̄

[
uf u − u2 − ūuf + ūu

]
dx.

As a consequence, we find that

J1 + J2 =
∫
T3

	f̄

∣∣(uf̄ − ū) − (uf − u)
∣∣2dx −

∫
T3

	f̄ |uf̄ − ū|2dx

+
∫
T3

(	f̄ − 	f )
[
uf u − u2 − ūuf + ūu

]
dx

=
∫
T3

	f̄

∣∣(uf̄ − ū) − (uf − u)
∣∣2dx −

∫
T3

	f̄ |uf̄ − ū|2dx

+
∫
T3

(	f̄ − 	f )(u − ū)(uf − u)dx. (A.5)

Next, we apply integration by parts to write J3 in the form

J3 =
∫
T3

μ[u�ū + ū�u − u�u]dx = −μ

∫
T3

|∇ū|2dx + μ

∫
T3

∣∣∇(u − ū)
∣∣2dx. (A.6)

By setting (A.5) and (A.6) in (A.4), we obtain (A.1).
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