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Abstract

In this article, we develop the local Cauchy theory for the gravity water waves system, for rough initial data which do not decay
at infinity. We work in the context of L%-based uniformly local Sobolev spaces introduced by Kato [22]. We prove a classical
well-posedness result (without loss of derivatives). Our result implies also a local well-posedness result in Holder spaces (with loss
of d/2 derivatives). As an illustration, we solve a question raised by Boussinesq in [9] on the water waves problem in a canal. We
take benefit of an elementary observation to show that the strategy suggested in [9] does indeed apply to this setting.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Keywords: Water-waves; Cauchy problem; Uniformly local Sobolev spaces; Paradifferential calculus

1. Introduction

We are interested in this paper in the free boundary problem describing the motion of an incompressible, irrotational
fluid flow moving under the force of gravitation, without surface tension, in case where the initial data are neither
localized nor periodic. There are indeed two cases where the mathematical analysis is rather well understood: firstly
for periodic initial data (in the classical Sobolev spaces H*(T¢)) and secondly when they are decaying to zero at
infinity (for instance for data in H*(R?) with s large enough). With regards to the analysis of the Cauchy problem,
we refer to the recent papers of Lannes [25], Wu [31,32] and Germain, Masmoudi and Shatah [19]. We also refer to
the introduction of [2] or [7,10,12,23,26,30,33] for more references. However, one can think to the moving surface of
a lake or a canal where the waves are neither periodic nor decaying to zero (see also [16]).

A most natural strategy would be to solve the Cauchy problem in the classical Holder spaces WX *°(R¢). How-
ever even the linearized system at the origin (the fluid at rest) is ill-posed in these spaces (see Remark 2.4 below),
and this strategy leads consequently to loss of derivatives. Having this loss of derivatives in mind, the other natural
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approach is to work in the framework of L? based uniformly local Sobolev spaces, denoted by H;Z(Rd). These spaces
were introduced by Kato (see [22]) in the analysis of hyperbolic systems. Notice however, that compared to general
hyperbolic systems, the water waves system appears to be non-local, which induces new difficulties. This framework
appears to be quite natural in our context. Indeed, the uniformly local Sobolev spaces H,fl(Rd) contain, in particular,
the usual Sobolev spaces H*(R?), the periodic Sobolev spaces H*(T¢) (spaces of periodic functions on R?), the sum
H* (RY) 4+ H*(T?) and also the Holder spaces W**°(R?) (and as a by-product of our analysis, we get well-posedness
in Holder spaces, with a loss of derivatives).

The aim of this paper is precisely to prove that the water waves system is locally (in time) well posed in the
framework of uniformly local Sobolev spaces. Moreover, following our previous paper [2], the data for which we
solve the Cauchy problem are allowed to be quite rough. Indeed we shall assume, for instance, that the initial free

1
surface is the graph of a function which belongs to the space H;;r 2(RY) for s > 1+ %. In particular, in terms of

Sobolev embedding, the initial free surface is merely W%'“(Rd) thus may have unbounded curvature. On the other
hand this threshold should be compared with the scaling of the problem. Indeed it is known that the water wave
system has a scaling invariance for which the critical space for the initial free surface is the space H le%(Rd) (or
W1o¢(R4)). This shows that we solve here the Cauchy problem for data % above the scaling. (Notice that in [3] we
prove well-posedness, in the classical Sobolev spaces, % - % above the scaling when d > 2 and % — ﬁ whend =1.)

As an illustration of the relevance of this low regularity Cauchy theory in the context of local spaces, we solve
a question raised by Boussinesq in 1910 [9] on the water waves problem in a canal. In [9], Boussinesq suggested
to reduce the water-waves system in a canal to the same system on R> with periodic conditions with respect to one
variable, by a simple reflection/periodization procedure (with respect to the normal variable to the boundary of the
canal). However, this idea remained inapplicable for the simple reason that the even extension of a smooth function
on the half line is in general merely Lipschitz continuous (due to the singularity at the origin). As a consequence, even
if one starts with a smooth initial domain, the reflected/periodized domain will only be Lipschitz continuous. Here,
we are able to take benefit of an elementary (though seemingly previously unnoticed) observation which shows that
actually, as soon as we are looking for reasonably smooth solutions, the angle between the free surface and the vertical
boundary of the canal is a right angle. Consequently, the reflected/periodized domain enjoys additional smoothness
(namely up to C3), which is enough to apply our rough data Cauchy theory and to show that the strategy suggested
in [9] does indeed apply. This appears to be the first result on Cauchy theory for the water-wave system in a domain
with boundary.

The present paper relies on the strategies developed in our previous paper [2] and we follow the same scheme of
proof. In Section 7, we develop the machinery of para-differential calculus in the framework of uniformly local spaces
that we need later. We think that this section could be useful for further studies in this framework. In Section 3 we prove
that the Dirichlet—-Neumann operator is well defined in this framework (notice that this fact is not straightforward,
see [18,15] for related works), and we give a precise description (including sharp elliptic estimates in very rough
domains) on these spaces. In Section 4, we symmetrize the system and prove a priori estimates. In Section 5, we
prove contraction estimates and well posedness. In Section 6, we give the application to the canal (and swimming
pools). Finally, in Appendix A, we prove that in the context of Holder spaces, the water-waves system linearized on
the trivial solution (rest) is ill posed.

2. The problem and the result

In this paper we shall denote by ¢ € R the time variable and by x € R? (where d > 1), y € R, the horizontal and
vertical space variables. We work in a fluid domain with free boundary and fixed bottom of the form

2={(t,x,y)el0,TIxR! xR: (x,y) € 2(1)} where
2(0)={(x,y) e R x Rinu(x) <y <n(t,x)}.

Here the free surface is described by 7, an unknown of the problem, and the bottom by a given function n... We shall
only assume that 7, is bounded and continuous. We assume that the bottom is the graph of a function for the sake
of simplicity: our analysis applies whenever one has the Poincaré inequality given by Lemma 3.1 below. In the case
without bottom, the Dirichlet Neumann operator in the simplest case of a flat interface (i = 0) is equal to | D,|. It is
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possible (though not completely trivial due to the O frequency singularity) to show that this operator acts on uniformly
local spaces. It is hence very likely that our result should hold also in the case without bottom, but this would require
additional material and we preferred not to pursue in this direction.

We shall denote by X' the free surface and by I" the bottom,

={t,x,y) €l0,TIxR* xR: (x,y) € (1)} where
(@) ={(x.y) eR!xR:y =9, x0)},
I = {(x,y) eR? xR:y:n*(x)}.

We shall use the following notations

Ve=@)isizas  Vey =0y,  Ar= Y 05, Agy=A+0.

2.1. The equations

The Eulerian velocity v : 2 — R4+ solves the incompressible and irrotational Euler equation

v+ (V- Vyy)v+ VP =—gey, divy yv =0, curly yv=0 1in £

where g > 0 is the acceleration of the gravity, ey the vector (x =0,y =1) and P the pressure. The problem is then
given by three boundary conditions:

e a kinematic condition (which states that the free surface moves with the fluid)

n=+/1+|Ven2(v-n) onX,

where n denotes the unit normal vector to X,
e a dynamic condition (that expresses a balance of forces across the free surface)

P=0 onX,
e the “solid wall” boundary condition on the bottom I”
v-v=0 onlr,

where v denotes the normal vector to I” whenever it exists.

Since the motion is incompressible and irrotational there exists a velocity potential ¢ : 2 — Rsuch thatv =V, ¢,
thus Ay y¢ =0in £2. We shall work with the Zakharov/Craig—Sulem formulation of the water waves equations. We
introduce

Y, x)=¢(t,x,n(t,x))

and the Dirichlet-Neumann operator

d¢
_/ 2
Gy =1+ |Vin| <8n‘2>

= (0yp) (1. x, n(t, x)) — Van(t, x) - (V2)(t, x, 02, x)).
Then (see [14] or [11]) the water waves system can be written in terms of the unknown 7, ¥ as

n =Gy,
1 2
Y =—sIVa "+

1(Van- Va¥ + Gy @1
2 1+ Vo2 &0

It is useful to introduce the vertical and horizontal components of the velocity. We set
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Vin -V + Gy

B = (VU = N
( y)|).7 1+|Vxn|2 (22)
V=@)lz=Vi¥y — BVyn.
We recall also that the Taylor coefficient defined by a = —%—I;| » can be defined in terms of 7, y, B, V only (see

Section 7.2 below and §4.3.1 in [23]).
2.2. The uniformly local Sobolev spaces

We recall here the definition of the uniformly local Sobolev spaces introduced by Kato in [22].
Recall that there exists x € C®(R?) with supp x C [—1, 1], x = 1 near [—%, %]d such that

Z Xg(x)=1, VxeR? (2.3)
gezd

where
Xg(X) = x(x —q).

Definition 2.1. For s € R the space H ;I(Rd ) is the space of distributions u € H® (R?) such that

loc

”M”Hzfz(Rd) = sup || xgull s ray < +00.
qeZd

Endowed with this norm H,jl(Rd ) is a Banach space. Moreover its definition is independent of the choice of the
function y in C§° (RY) satisfying (2.3) (see Lemma 7.1 below).

Proposition 2.2. One has the following embeddings:

(1) If s > % and s — % ¢ N, H,jl(Rd) is continuously embedded in WS_%’OO(R‘J).
(2) If m € N, W™ (R?) is continuously embedded in H (R%).
(3) If s = 0, Wste°(R?) is continuously embedded in H;Z(Rd)for e>0.

2.3. The main result
The goal of this article is to prove the following result.

Theorem 2.3. Letd > 1, s > 1+ %. Assume that n is a bounded continuous function on RY. Consider an initial data
(no, Yo) satisfying the following conditions

. +1 +1
(i) no € H, *(RY), Yo € H, > (RY), Vy € HJ(RY), By € HY(RY),
(ii) there exists h > O such that no(x) — nx(x) > 2h, Vx € R?,
(iii) there exists ¢ > 0 such that ag(x) > ¢, Vx € RY,

where aq denotes the Taylor coefficient at time t = 0.
Then there exists T > O such that the Cauchy problem for the system (2.1) with initial data (no, Vo) att =0 has a
unique solution
41 sl
(1, ¥) € L([0, T1, H,, * (RY) x H, *(R"))

u

such that

1. (V,B) e L®([0, T1, H,(RY) x H}(R?)),
2. n(t,x) —nye(x) > h, V(t,x) €[0,T] x RY,
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3. a(t,x)> %c, Y(t,x) €[0,T] x RY,
4. forany s’ <s,

7 l ’ l
(. 9. V. B) € C([0. 7). Hy " (R) x Hy,

u ul

(RY) x H (R) x Hy (RY)).

Remark 2.4.
e Theorem 2.3 implies local well posedness in Holder spaces: indeed, writing H* = H*(RY), W5 = W% (R%)
and assuming that

1 1
(770s WOv VOy BO) e WU+§+S,OO % Wa+§+a,oo x WoJrs,oo X Wa+s,oo

OHbtS  othts | gots  pots
CH, x H, xH, ~xH,
for some 0 > 1 +d/2 and ¢ > 0, then we get a solution
0 o+i+5 o+i+5 o+5 o+5
(n.¥,V,B) e C°([0,T], H, x H, xH, *xH, ?)

1 _d 3 1_d 1 d
C CO([0, TT, WIH272H5:00 5 Wota=aH5:00 o o—g+5:00 5 o—3+5.%0),

e It is very likely that this loss of d/2 derivatives cannot be completely avoided. To explain this, we begin by
recalling that for o € R the Zygmund space CJ (RY) is defined, by means of a Littlewood—Paley decomposition, as
the space of tempered distributions u such that

IAjull pooey < C2777, Vj=>—1. (2.4)

Recall also that the linearized water waves equation around the zero solution can be written as

it +i| Dy 2u = 0.
The solution of this equation, with initial data u¢, is given by
u(t) =SWuo,  S(t) =exp(—it|Dy|?).
Proposition A.1 shows that for # # O the operator S(¢) is not bounded from the Zygmund space CJ (RY) to cs (RY)

ifs >0 — %, remembering that C (Rd )= W"*O"(Rd) if o0 > 0, o0 ¢ N. (For positive results see Fefferman and Stein

[17, p. 160].) Thus even in the linear case we have a loss of % derivative.
e The result in Appendix A also shows that, in the presence of surface tension, a similar well posedness result in
the framework of uniformly local Sobolev space is rather unlikely to hold. Indeed, in the presence of surface tension,

the linearized operator around the solution (7, 1) = (0, 0) can be written (see [1]) with u = | D| > n+iy as

3
ou+i|Dy|2u=0, Ult=0 = ug.

According to Proposition A.1 the loss of derivatives in x from u to the solution u(z, -), t # 0, is at least % whereas

an analogue of the above theorem would give a loss of at most %.
e The above theorem is not contained nor contains entirely the analogue result proved in [2] in the framework of

classical Sobolev spaces.
1 1

. +3 . -3
e The assumption that g € H,jl % should be replaced by the more natural assumption V, g € H;l 2. However,
this improvement would again require a few more developments and we preferred to keep this simpler assumption.

3. The Dirichlet-Neumann operator
3.1. Definition of the Dirichlet—-Neumann operator

For d > 1 we set

2= {(x,y) eRIT!: Ne(x) <y < n(x)},

3.1
Z={@x,y)eR™ iy =)} G-b
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where 7, is a fixed bounded continuous function on R? and ne WLoo(R?). We shall assume that there exists & > 0
such that

{r.y) eRM i) —h <y <nx)} C 2. (3.2)

In [2] the Dirichlet-Neumann operator G (1) associated to £2 has been defined as a continuous operator from H 3 (RY)

1
to H = (R%). Our aim here is to prove that it has a unique extension to the space Huzl (R?) (see Theorem 3.8 below).
Define first the space Hull(.Q) by

ueHY(2) < el g1 (2 = sup lixqutll g2y < +00.
u qeZd
Each element u € Hull(.Q) has a trace on X (see below) which will be denoted by ypu. We introduce the subspace
HY0(2) € H)(£2) defined by
H'(2)={ue HY(2) : you =0},
Then we have the following Poincaré inequality.

Lemma 3.1. There exists C > 0 depending on |0l pooray + 1]l oo ey Such that for a € Cy° (R?) non-negative and
ue Hull‘o(.Q) we have

//a(x)|u(x,y)|2dxdy§C//a(x)|8yu(x,y)|2dxdy.
2 Q

Proof. Letu € Hull’O(SZ). It is easy to see that there exists a sequence (u,) of functions which are C! in £2 and vanish
near the top boundary y = n(x) such that

nlir-ir—loo lun — ull g1 2nyx<ky =0-
As a consequence, it is enough to prove the result for such functions. Let o € Cg" (Rd ), @ > 0. We can write
y
u(x,y) = / osu(x,s)ds
n(x)
from which we deduce
7(x)
a(x)|ulx, y)|2 < In = nxllLa(x) / |3su(x,S)|2dS-
1 (x)

Integrating this inequality on £2 we obtain

//a(x>|u(x,y>|2dxdys ||n—n*nLoo//a<x>|ayu<x,y>|2dxdy. O
2 2

Remark 3.2. Let
H'"(2)={ue L*(2): Vi yu € L*(£2), and uly—y(x) = 0},

then we also have the Poincaré inequality

//a(x)yu(x,y)\2 < c//a(x)yayu(x,y)|2dxdy (3.3)
2 2
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forall u e H'(2), o € C;;O(Rd), o > 0, with a constant C independent of «. Indeed, this follows from the same
computation as above using the fact that any u € H'-9(£2) can be approximated by a sequence of functions which are
C® in £2 and vanish near y = n(x).

1
Proposition 3.3. For every { € H> (R?) the problem

0P
Acy® =0 in$2, Dz =1, —1| =0, (3.4)
v |

has a unique solution @ € HMII(.Q) and there exists a function F : Rt — R independent of (W, n) such that

1911 o) < FInllwroe@y)lvl 1+ .
a2 = T (Inllwrora)) i R

ul

Proof. Before giving the proof we have to precise the meaning of the boundary condition %| r =0 since I is
only C°. This condition means that

//vx,yqxx,y)-vx,y(a(x)e(x,y)) dxdy=0 (3.5)
2

for every 6 € H'(£2) (the usual Sobolev space) with supp8 C {(x, y) : 7x(x) < y < n4(x) + &} for a small & > 0 and
every a € C° (RY).
Notice that if n, € W2 (R?) the Green formula (see [20, p. 62]) shows that (3.5) is equivalent to Ba;f| r=0.

Lemma 3.4. We have

// Viy@(x,y) - Vx,y(a(x)e(x, y)) dxdy=0 (3.6)
2

for every 6 € H'(£2) with yo0 =0 and every o € C(‘)X’(Rd).

Proof. If 6 has support in a neighborhood of I', Vi = {(x,y) : x € R?, 1. (x) <y < n4(x) + ¢}, this follows
from (3.5). Assume that 6 vanishes in a neighborhood of I". Let 29 = {(x, y) : n«(x) + % <y<nx)}fore=>0
small enough. Then 6 € H'(£20) and 6], 20 =0.Thus 0 € HOl (£20). Since £29 has a Lipschitz upper boundary there

exists a sequence 6, € Cgo (£20) which converges to 6 in H'(£20) (see [20, Corollary 1.5.1.6]). Now by the equation
we have

0=(AxyP,ab,) =— //Vx,yq)(x, y) - Vx,y(a(x)en(x, y)) dxdy.
Q
Moreover

‘//Vx,y(p(xs Y)'Vx,y(a(x)(gn_g)(xv y))dXdy §C”®”Hl}l(9)”9n_9”H1(.Qo)'
2

Therefore, passing to the limit, we obtain (3.6) for such 6. O

Part 1. Uniqueness: Let us denote by @ the difference of two solutions in HMII(Q) of (3.4). Then yo® = 0. Now

we take in (3.6) a(x) = e_% g“(%) where A, B are large constants to be chosen, ¢ € C*°(R), ¢(t) = 1 when |f| < %
supps C{teR:|t|<1},0<¢ <1 and 6 = «a1(x)® where ] € Cgo(Rd) is equal to one on the support of «. Then
0 € H'(£2) and yp0 = 0. We can therefore use Lemma 3.4 and we obtain
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1= [[awlve, 00 dxdy
2

l// Vi (x))a(x)@(x, y) - Vi@ (x, y) dxdy

——// oA ( )‘1’(x M(Ve(x) - Vi@ (x, y)dxdy

(1)+(2)- (3.7
By the Cauchy—Schwarz inequality we have

1 1
|(1)| < %(//oz(x)|vx¢(x,y)|2dxdy>2<//a(x)|¢(x,y)|2dxdy>2.
Q 2

Using Lemma 3.1 we deduce that

|(1)| < %(//a(x)|vx¢(x,y)|2dxdy+//a(x)|8y(b(x,y)|2dxdy).
Q Q

Taking A large enough we see that the term (1) can be absorbed by the left hand side of (3.7). We then fix A. It follows

=Ry Y et

geZd kezd o

(%) ‘ X () G, )|V (k) D (v, ) [ dx .

If |k — g| > 2 we have supp x4 N supp xx = ¥. Therefore we have |k — g| < 1 (essentially kK = g). Moreover in
the integral in the right hand side we have |x — g| < 1 and % < % < 1. If B is large enough we have therefore

2 <|ql <3B and |x| > }|q|. It follows that
Cy
I=5 2
£<lql<3B

where
1

_ ta) 2 % 2 2
Iy =e CSA</ |Xq(x)¢>(x,y)| dxdy> (/ |Vx(xq(x)cb(x,y))| dxdy)
Q Q

so using again the Poincaré inequality we obtain

Ce
I<§B Z € CSA/ }Vx y Xq(x)(b(x y))] dxdy
3=lq|=3B
Cy
—_ -C 2
= B( e 5A>||€1§||H @)
8<iq1=3B

Since the cardinal of the set {g € Z¢ : % < |q| < 3B} is bounded by C B we obtain eventually

_m ({x) 2 d—1,- 2
//e Ae(?)’vx,yq)(x,yﬂ dxdy < CsB % 12151 o)
2

Letting B go to 400 and applying Fatou’s Lemma we obtain

//e—% Ve @ (x, y)|*dxdy =0,
2

which implies that Vy @ (x, y) =0 in £2 thus @ = 0 since @|5 =0.
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. S 1 . L
Part 2: Existence. We first recall the situation when v € H2 (R¢). In the following lemma, whose proof is given
below, in Section 4.2, we construct a suitable extension of ¥ to £2.

Lemma 3.5. Let v € H > (RY). One can find ¥ such that

(1) ¢ € H'(2), suppyr C {(x,y) :n(x) —h <y <n(x)},
(2) Yiypy =¥ (),

(3) 1) < F w10, 1 o
Then (see [2] for more details) the problem

ou
av

r

Ax,yuz—Ax,yﬂ in £2, uly =0,

has a unique solution u € H 1’O(Q). This solution, which is the variational one, is characterized by

//Vx,yu(x,y)-Vx,y9(x,y)dxdyZ—//Vx,yy(x,y)~Vx,y9(x,y)dxdy (3.8)
2 2

for every 6 € H0(02). 1t satisfies

IVt 20y < CIIWIIH%(Rd)-

Then @ =u + 14 solves the problem (3.4).

1
Let us consider now the case where ¢ € Huzl (RY).If g € 2% and Xq 1s defined in (2.3) we set

Vg =xq¥ € H%(Rd)

By Lemma 3.5 one can find v, € H'(£2) such that ¢ |y—p(x) = ¥ (x) and

() suppyy C{x,y):lx —gl <2,n(x) —h <y <n()}

) Wgllae) < F (o) Vgl o

To achieve (i) we multiply the function constructed in the lemma by X, (x), where supp ¥ is contained in {x : [x| < 2}

and X = 1 on the support of x.
Let u, be the variational solution, described above, of the equation Ay yuy; = —Ay y¥,. Our aim is to prove that

the series Zq <74 Ug 1s convergent in the space HJZ’O(.Q). This will be a consequence of the following lemma.

Lemma 3.6. There exist § > 0 and F : Rt — RT non-decreasing such that for all q € Z¢ we have

”es(qu)vx,yuq ”LZ(.Q) < F(Inllwiccway) 1% ”H%(Rd)' (3.9)
Assuming that this lemma has been proved, one can write
Xk Ve yugll 20y = | xxe 250070V, “LZ(Q)
< Ce D F(Inllwr) 1]y
< C/€_8<k_q>]:(||7)||wl,oo)||W||H%~ (3.10)

ul

Let us set S¢ = ZquSQ ug . First of all (S9) converges to u = quzd uq in D'(£2). Indeed if ¢ € C§°(£2) there exists
a finite set A C Z4 such that ¢ = D rea Xk@. Then using Lemma 3.1 and (3.10) we can write
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uq, Z’ XkUg, @ )| = CZ ||Xk3yuq||L2(Q)||¢||L2(_Q)
keA keA

< Ce"”‘”}'(llnllwm)IIWIIH% lell2 @)

ul
for large |q]|.
On the other hand (3.10) shows that for fixed k the series quzd Xkitg is absolutely convergent in HMIZ’O(.Q).

Therefore (x 59) converges to (xxu) in H: l (.Q) and we can write using (3.10),

”kax,yM”LZ(Q): lim ”kax,yS ”LZ(.Q)
< Ze “=a F (1l ) 191 b
qeZd Hy

Therefore u € HMII’O(SZ) and
IV, yullp2 ) = F(lInlwree) ¥l 1 (3.11)
u H

ul

Finally @ = u + ¢ solves the problem (3.4) and we have

121 512y = F(Inllwre) 11l
u H

ul

which completes the proof of Proposition 3.3 assuming Lemma 3.6. O

Proof of Lemma 3.6. We set

(x—q)
we(t) = ———-
14+¢e{x —q)
Let u, be the variational solution in H LO(0Q) of Aug =—Ayy. According to the variational formulation (3.8), with

0= e25w£(x)uq, we have

// Vx,yuq . Vx’y(ez&l)s(x)uq) dx dy = — / Vx’yﬂq . Vx‘y(ezauh(x)uq) dx dy
2 2

Therefore
//ezawg(x)vx,y“q Viyugdxdy =— //ezgwg(x)vx,yfq “Viyitgdxdy
Q Q

—23//e25w6<”uqvxgq Vyewedxdy

2

—26 //e”“)s(”uqvxuq -Vywgdxdy. (3.12)
2
Now V,wg is uniformly bounded in L> with respect to & and x and, on the support of ¥, we have eSWe () < €8

Consequently, using the Cauchy—Schwarz inequality, the inequality (3.3) with & = €2%¢™®) and taking § small enough
we obtain

//e”“’s@)wx,yuqﬁdx dy < Cllygll1 o) (3.13)

We deduce when ¢ goes to 0, using the Fatou Lemma, that

||€8(x_q) x,ylUq H L2 = = C||1/fq||1-11(9) = f(||n||wl OO(Rd))”‘/fq ”Hz(Rd)

This completes the proof. O
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3.2. Straightening the boundary

Before studying more precisely the properties of the Dirichlet—-Neumann operator, we first straighten the boundaries
of

2n =],y eR™ i) —h <y <n). (3.14)

Lemma 3.7. There is an absolute constant C > 0 such that if we take § > 0 so small that

h
) Ry < —
7110 raey < °C
then the map (x, z) — (x, p(x, z)) where
o(x,7) =(1 —i—z)eaZ(DX)ﬂ(X) _ { —38(1+z)(Dx) n(x) — } (3.15)

is a diffeomorphism from Q= {x,2):x € R, —1<z< 0} to $2;.

Proof. First of all we have p(x, 0) =n(x), p(x, —1) =n(x) — h. Moreover we have 9,0 > > 1 7- Indeed we have

9.p =1+ (*PIn — ) + (1 + 2)8¢*P) (D)
_ {77 —h+ (675(1+z)(Dx)n _ 7))} + Z3675(1+z)<Dx><Dx)n.
Now for any A < 0 the symbol a(£) = ¢*) satisfies the estimate |8§‘a(§)| < Cu (€)1l where C, is independent

of A. Therefore its Fourier transform is an L'(R?) function whose norm is uniformly bounded. This implies that
la(D) fll pooray < K|l f Il ooray With K independent of A. Since e’*(Pxly — = 52 fl 8:Dx) (D Vi dt we can write

”ezSz Dy)

+ (S”e(SZ(DX)(D + ||e—5(1+2)(DX)

n— nHLoc(Rd) X>n||Lo<>(Rd) n— rl”LOO(Rd)

+ § ||e—5(1+1)(Dx UHLOC(Rd) < C(S”ﬂ”wl oo(Rd) 2

This completes the proof. O

From the above computation we deduce that

h
sz(x, Z) > 5 and ”VX,ZIO”LOO(R‘{) < C”n”WIOC(Rd) (316)
We shall denote by « the inverse of p,
px,2)=y <= z=«kx,y).
If we set

fex.2)=f(x,p(x,2))

we have

Vv pte,0) = iaj(x, 9=t A1 fx.2)
y (3.17)

Ve f (x. p(x.2)) =< L) f)(x )= A f(x,2).
We introduce the space
HL(2) ={a e L2(2): Ajii e LE(£2), j=1,2},

endowed with the norm
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il &) = = s Ixqitll 255, +Z sup [lxq A jill 2(3)-
j=149€24

Then according to Lemma 7.12 we see that the elements of ’H}d(ﬁ ) have a trace on z = 0 belonging to the space

1 ~ ~
Hjl(Rd ). Then we introduce the subspace 7—[;}0(9) C "H,il(.Q) defined as follows
M, ($2) = {ii € Hyy(2) :ii] =0 =0}
It follows that we have

ueHYR2) & aeMl (2, ueH@) o aeH ).

3.3. Definition of the Dirichlet—-Neumann operator

1
We can now define the Dirichlet-Neumann operator. Formally we set for ¢ € H (RY)

19 P
Gy )= (1+Vin)I—| =(-——Vin-V,®
on |5 dy b
= (AP = Vi1 A3®) |0 = (A1 P — Vip - A2B) |0 (3.18)

where @ is the solution described in Lemma 3.3 and A; is as defined by (3.17). Our aim is to prove the following
theorem.

Theorem 3.8. Let d > 1 and n € WH°°(R?). Then the Dirichlet—-Neumann operator is well defined on H l(Rd) by
(3.18). Moreover there exists a non-decreasing function F : Rt — RY such that for all n € WH>°(R?)

”G("”””H-%(sz) < F(lInlw:. oomd))nt/fn
ul

1 .
H2RY)

Proof. Set U = A15 —V,p- A2¢~> and J = (—1, 0). We shall prove that for all g € 74,
IxqUllL2(s 22y < F(Inmllwroo) 19| %, (3.19)
IXq0:Ull 2y -1y Sf(llnllwloo)llwll s (3.20)

f
1

where 7 : R* — R™ is independent of ¢ and 7. Then Theorem 3.8 will follow from (3.19), (3.20) and Lemma 7.12.
Recall that @ =u + Y. Now the estimate (3.19) follows from (3.11), (3.17) and Corollary 7.11 witho =0 and m = 1.
To prove (3.20) we observe that

9.U =~V - ((3.0)20:D). (3.21)
Indeed we have
.U =0,A1P — V0.0 Aa® — Vip- 3. AP
= (0.0)AT® — Vid.p - A2® + (3.0)(A2 — Vi) - A2 ®
= (0:p) (AT + A3)® — V. - ((3:p) 429)
so (3.21) follows from the fact that (A2 + A2 )<D 0. Then (3.20) follows from the estimates used to bound (3.19)
and the Poincaré inequality (3.3). The proof of Theorem 3.8 is complete. O

We state now a consequence of the previous estimates which will be used in the sequel. Notice first that the equation
(A% + A%)(P = 0 is equivalent to the equation

(02 + oAy + B+ Vid, — yd)® =0, (3.22)
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where
(9:p)? 3.pVip 1,
= =2 = —(0Zp+aAyp+ B-V,0.0). 3.23
1+ V.2 B 1+ Vool Y azp( . P x0+ BV zp) ( )
Corollary 3.9. Let s > 1 + % and J = (—1,0). There exists a non-decreasing function F : RT™ — R such that
IVee®ll 1 <F(Inll 1 Il 1 (3.24)
Wty STt g VYt
where the spaces X{,(J), o € R, are defined in Definition 7.4.

Proof. Recall that & = Q + u. First of all the estimate
IVeo¥ll -1 <Clyll 1
L.

2
ul ) ul

follows from Corollary 7.11 withé =1,m =0, 1 and o =0.

On the other hand we notice that 9, = (9,0) A and V, = Ay + (Vyp)Aj. Let ¥ € Cgo (R, %X = 1 on the support
of x.Sinces > 1+ %, using Corollary 7.11 with o = s we can write

H'"2)
<C"(1+1nll 1)
H 2

_ ~ ’
Xk Vi 20l ooy xrdy < C“XkVX’Z'O”Loo(L 1 =C “VX’Z'O”LOO(J’HS’%)”,

ul

It follows from (3.11) that ||Vx,zﬁ||Lz(J,Lz)ul < F(Inll H%)Hw” %,which implies that
H

ul ul

1.

Ve @l 20,02y, < F(Inl 0)lwll (3.25)
Hul : Hul
Now using Lemma 7.12 we have

Xk Vi@

1

s by = CUT Bl 1) + DBl 2 1)

The first term in the right hand side is estimated using (3.25). For the second term using (3.25) we have

||Xkazvx®||L2(j,H*1) < ” (VXXk)az(p”LZ(J’H—l) + ||Xkaz@||L2(j,L2)

< Cl: P 12s,12), < F(Inl w Iy

I (3.26)
Hu/ ul
Therefore
v, d < 3.27
V@l gy, ST DIV g (327
Eventually
3P |

LOO(J,H_%) S C(”Xk825”L2(j,L2) + || Xkazz(i’“Lz(],H*l))'

(3.28)
The first term in the right hand side is estimated using (3.25). For the second term using (3.22) we have

| x62@ || 2 o1y < A1+ A2 + A3,
Ar =Xk D@l 1207 g1y,

Az = 1BV ®ll 207, 11,
Az =Xy 0: Pl 20511

Now using (7.5), (3.25) and (3.26) we obtain
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Ap < el

sy 18r @z, S F(nl oIV

Hul ul
A <8y oty 10V B iz, < F( IV

ul
< ) <
A=l oty 10BN, < Flinl L )I91

’

ENNTES

U
1.

ul ul
Therefore using (3.28) we obtain

3, P <F
0:80, ., oy, < F( )1

ul ul

which completes the proof of Corollary 3.9. O

3.4. Higher estimates for the Dirichlet—-Neumann operator

In this section we prove the following results.

Theorem 3.10. Let d > 1 and so > 1 + 4.

|
Case 1. There exists F : RT — R non-decreasing such that for —% <o <so— 1, everyne H ?+2 (RY) satisfy-
ing (3.2) and every € H;l“ (RY) we have

[GY | g < F il ()1l

ul

1
Case 2. For every s > s, there exists F : RT — RY non-decreasing such that for every n € H;l+ 2(RY) satisfy-
ing (3.2), everyso—1 <o <s — % and every ¥ € H;I'H (R we have

I60¥ |y < FUG DL ey Iy + 10l gz +1).

ul Xy ul

We set

Ry =G =T (3.29)
where T), is the paradifferential operator (see Section 7.5) with symbol
1
ho= (14 1Venl?) €1 = (Van - £)%)2.

Theorem 3.11. Let d > 1 and so > 1 + 4.

o L
Case 1. There exists F : RT — R™ non-decreasing such that for 0 <t < s — 3, NE H‘j?+2 (Rd) satisfying (3.2)
we have
IR g, < F (il e DIV ey

ul ul

1
for every ¥ € Hbil+2 (RY).

1

Case 2. For all s > sq there exists F : RT — RY non-decreasing such that for every n € H:;rz (RY) satisfying (3.2),
1

every so — % <t<s-— % and every ¥ € H;;_Z (R we have

| RV = F “(”’*”)“H;;”%xmo){”"”w% vl g+ 1}

ul ul H, ul

The main step in the proof of the above theorems is the following elliptic regularity result.
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Theorem 3.12. Letd > 1, J =(—1,0), so > 1 + % Let v be a solution of the problem

2 b=F inRY
{(az+an+ﬁ-Vx81—y3z)v—F in RY > J, (3.30)

ﬁlz:O = 1#

1
Case 1. For —3 <o <so— 1 letn € H:;”LZ (RY) satisfying (3.2), ¥ € H T (RY), F € Y9(J) (see Definition 7.4)
and

Vi 0l *%(,) < +4o00. (3.31)

ul

Then for every 79 € (—1,0) one has Vi ;v € X;,(20,0) and one can find F : R* — R* non-decreasing, depending
only on (sg, d) such that

Va2Vl x7,z0,0) < ]:(IIUIIHSO+%){II¢IIHZ+1 + 1 Fllye o + IIVx,zf)IIX,I%(J)}-

ul
1
Case 2. Fors > sg,andso — 1 <o <s — % letn e H:;_Z (Rd) satisfying (3.2), ¥ € H,Z'H(Rd), F e Y;I(J) and

”Vx,zU”XZ(])fl(J) < +o00. (3.32)

Then for every zg € (—1,0) one has Vy ;v € X,(20,0) and one can find F : R* — R* non-decreasing, depending
only on (sg, s, d) such that

||Vx,zﬁ||Xgl(zo,0)
<T@ gy I lgger H1F vz + (0l oy + DIVezOlg-1 ) )

ul Xy ul ul

Corollary 3.13. Let so > 1 + % Let @ be defined in Proposition 3.3.

1
Case 1. For —% <o <s9— 1 assume that n € H:?JrZ (Rd) satisfying (3.2) and ¥ € H;l'H (Rd). Then there exists
F :RY — R non-decreasing depending only on (so, d) such that

1Pl b1 (2000 F 1VxzPllxg 20,00 = ]"(IIUIIHSO+%)IIWIIHZ+1-

ul

1
Case 2. Fors > 59, 50— 1 <0 <s— % assume that n € H:fz (Rd) satisfying (3.2) and r € HIZ'H(Rd). Then there
exists F : RT — RY non-decreasing depending only on (sg, s, d) such that

19115041 0 0) + 1 Ve B lx 0.0
=F(lowl ey I oy + 1010 + 1}

ul ul ul
Proof. Indeed @ satisfies (3.30) with F = 0 and it is proved in Corollary 3.9 that

IVeeBl < F(Inll )l <o,
X H

ul (z0,0) ul ul

Moreover the estimate of @ in X o1(z0, 0) is obtained by the Poincaré inequality from the estimate of 825 . O
Proof of Theorem 3.10 given Corollary 3.13. Let us set

U=A® —V,p Ar®. (3.33)
By (3.18) we have U|;—9 = G(n){ and by (3.21)

9.U =~V - ((3:0) A2®) = =V - ((9;0)Vx — (Vi0)d;)P. (3.34)
Using Lemma 7.12 with f = x,U, we deduce that
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[k G | o < CUXGUN, ) oy, 102U, oy |
Moreover by (3.34) we have
301 ooty SCU DB ey + 102y ]

Case 1. If _i <o <sg— 1 we use the estimate

I/l Clrfl el

L2(J, H”+2) L®(J,H0™ 2) LZ(J,H”%)W
which follows from Proposilion 7.3 withog =0 + %, o] =S50 — % o) =0+ %, the estimates on p and Corollary 3.13.

Case2. If sp—1 <0 <s— j we use the inequality

I £3l < C(1F oo oy, 18 1x ) + 18 oo (g prso-ty, 1 )

L2(J, H"+2)

the estimates on p and again Corollary 3.13 to obtain Theorem 3.10. O
Theorem 3.12 will be a consequence of the following two results.

Proposition 3.14. Let so > 1 + % There exists F : Rt — RT non-decreasing such that for —1 < zo < z; < 0,
—% <o §s0—1andkEZd we have

IV 2kl xo 21,00 < F (Il Lot ){III/fIIHoH + 1 F gy + 1V 20l 1

TN (o)

ul

where Uy = X 0.

Proposition 3.15. Let so > 1 + % and s > so. Then there exists F : Rt — R non-decreasing such that for —1 <
z0 <z1 <0, So—lfafs—%andkeZd we have

IV,2 0kl xo 21,00 < F (Il 0+ ){III//||H0+1+|IF||Y oy + (14 Il H%)”Vx,zﬁknxx(lrl(zo 0)}, (Ko)

ul ul

where U, = xi0.

We shall prove these two results by induction on o and by the same method. However we have to distinguish them
since we want the right hand side of these estimates to be linear with respect to the higher norms of (¥, ). Since
(H_ 1 ) and (Ky,—1) are trivially satisfied if 7 > 1 these propositions will be a consequence of the following one.

Proposition 3.16. Case 1. Let s > 1 + %. If (H,) is satisfied for some —% <o <sg—1then (Ha—i-%) is true as long

as o + % <s0—1.
Case 2. Let so > 1 + % and s > so. If (ICy) is satisfied for some so — 1 <o <s§ — % then (ICG+%) is true as long as
1

o+ % <s—s.
In the sequel, Case 1 will refer to Proposition 3.14 and Case 2 to Proposition 3.15.
3.5. Nonlinear estimates
We begin by estimating the coefficients «, 8, v, defined in (3.23). We set J = (z9, 0).

Lemma 3.17. Case 1. Let so > 1 + %. Then there exists F : Rt — RT non-decreasing such that
lleell -1 +||/3|| 1yl
b's 9))

YO_E So—— 50——( )<'F(||T’|| So+ )

ul ul ul
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Case 2. Let so > 1 + %. Then for s > sq there exists F| : RT™ — R non-decreasing such that

ot FIBI o Flvl s = A |I77I|Y il Y1+1
by Iy I S F )+ 1),

ul X ul ul uI ul

llex

Proof. Since
p= (1 + Z)e(SZ(DX)n _ Z(e—(s(l-FZ)(DX)T] _ h)

Corollary 7.11 shows that forallt e R,k e Nand all a € S;’fo we have

[ 8fa(D)p||XLl(J) <Cc(1+ ||n||H;l+m+k). (3.35)
Then according to (3.23) we write
2
0= (0.0 — (000G (Vep),  Gi(E)=—o
1+ €2

Case 1: The estimate for « follows from (7.3) and (7.5) with u = 59 — % The estimate for 8 is similar. Now we
can write

32p £
Y =7+ (00— 3:0)G1(Vxp)) Axp + G2(Vip) - Vadep,  Ga(§) = ——.
3p 1+ €]
To estimate y we first use the embedding
X0 x X))~ 3 cxy :

ul
which is a consequence of Lemma 7.5 with p = 400, 09 =01 =509 — %, oy =50 — % and p=2,090 =02 =150 — 1,
o1 = so — 5. Then we use (7.5) and (3.35).
Case 2: The estimates of o and 8 follow from (7.3) and (7.5) with u =5 — % and from (3.35). The estimate of y
follows from (7.4) with u = s — % and (3.35) with r =59 — %, m+k=2. O

According to (3.30) we have

(32 + @Ay + B Vid:) ud) = x F + Fo + Fi
Fo:=aVyxk - Vit +a(Ay x)v + B - Vixxd v (3.36)
Fi:=yx10,0.

Lemma 3.18. Case 1. Let so > 1 + . There exists F : RT — RY non-decreasing such that for —5 5 <0 <so— 1 with
o+ 2 <s0—1

ul

1
2)||Fj||ya+%( FQinl e )1 Vrzllxgo.

Case 2. Assume sy > 1 + %. Then for all s > sg there exists F : Rt - Rt non-decreasing such that for so — 1 <
afs—%witha+%§s—%wehave

Zn Filyey oy S F O ) I¥eBlxgen + (Il o + D Velgo1 )}

ul ul

Proof. Case 1: The terms Fj and F; have the same structure but F is worse since, according to Lemma 3.17, y is
bounded in a weaker norm.

Let us look at F7. We can use Proposition 7.5 with p =2, 09 =0, 01 =0, 02 = 5o — 1. Indeed we have o1 +02 > 0
since s > 1 + %, 00 = 01, 09 < 0 due to the definition of o, eventually oy < o1 + 02 — % since s > 1+ %. ‘We obtain
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||VXkazﬁ||L2(J,HU) = C”%k)’||L2(J,HS0*1)||Xkazﬁ||L°°(J,H°)
(where x € C§° (R?) is equal to one on the support of x) and we use Lemma 3.17 to conclude.

Case 2: Using (7.4) with u = o — % we obtain

Iy xx0z0 24, 1oy < C(Ilyllxﬁ_l 190 X0 +lvl 03 l18; 8l x ).
ul ul

Since o — % <s— % we can use Lemma 3.17 to conclude. 0O

Our next step is to replace the multiplication by « (resp. 8) by the paramultiplication by T, (resp. Tg). Recall that
we see that Eq. (3.36) can be written as

(02 + Ay + B - Vid,)B = F + Fo + Fy. (3.37)

Then we have the following result.

Lemma 3.19. Let J = (z9,0), so > 1 + % and s > so. There exists F : Rt — RT non-decreasing such that, for all
I C J, vy satisfies the paradifferential equation

(02 + Ty Ay + Tp - Vid,)ok = F + Fo+ Fi + F» (3.38)

for some remainder F, satisfying
Case 1:if0<o Sso—lwitha—f—%gso—l

| 2] ot )<]:(I|77|| ot )”szv”X"(I)a (3.39)
ul
CaseZ:ifso—lfafs——wztha+ <s—%
| 2] oy F(lInll ot D) (Il s +1)||szv|| - (3.40)
) HO "

ul
Proof. Case 1: Using Proposition 7.18 with y =0, r =59 — % n=0 - % which satisfy all the conditions we obtain

” (a —Ty) Aoy ||L2(J HO) =< C“a”LOO(j Hyof%)m“Vx,zvk”LZ(‘]’HaJr%)a

” (ﬂ Tﬂ) V a Uk ”LZ(J HO') ||ﬂ||L°°(J,HS07%)u[”Vx,zvk”Lz(J,HaJr%).

The result follows then from Lemma 3.17.
Case 2: By Theorem 2.10 in [2] we have the following estimate for o > 0

| (@ = To)u CIIMII el o

e =

where the space Cy : has been defined in (2.4).
Let ¥ € C3° (R?) equal to one on the support of x. We write

(@ — Ty) At = ()?kOf - T)Yka)Axﬁk + T()kal)ani}b
It follows from Proposition 7.18 and the above inequality that

J(er = To) Al o < CUATN _y 1Tty

. 1 3 .
Since H*~2 ¢ C2 and o < s — 1 we obtain

|| (a - TO{)Axﬁk ||L2(J,Ha) =< C”Vxﬁ”XZ(l)—l(J ”(X” 5_7(1)

ul

which in view of Lemma 3.17 Case 2, proves (3.40). O
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Then as in [2] we perform a decoupling in a forward and a backward parabolic evolution equations. Recall that

2 (R%), in particular n € W%*‘X’(Rd). We can apply Lemma 3.29 in [2] to obtain the following result

s—Q—l
neH,
Lemma 3.20. Let so > 1 + 5. There exist two symbols a, A in 1"11 (R? x J) (see Definition 7.15), F : Rt — Rt
2
non-decreasing and a remainder term F3 such that
(0; = Ta)O; = TaNuk=F+Fo+ F1+ >+ F3 (3.41)
with
sup (M} (a(2)) + M1 (A@)) < F(lInl w ) (3.42)
ze(=1,0) 2 2 2 (RY)
(3.43)

(see (7.18)) and
FM ey 1Vl

ul

1500y,

forall o € R.
Proof. We follow closely the proof of Lemma 3.29 in [2]. We set

1
a=(=if & —\/4alEP = (B-£)?)
1
A= (=ip &+ 4als — (B-6)?). (3.44)
s b such that
2R

We claim the there exists ¢ > 0 depending only on |[|n]|
Hul
(3.45)

VA4alEl? — (B-8)? = cl§].
Indeed according to (3.23) we see by an elementary computation that

2 4(8zl0)2 2
405|§| —(B-8) _WISI .

Then our claim follows from (3.16)
Since we have sop > 1 + 5 we deduce from the paradifferential symbolic calculus that
(3, — T,)(3; — Ta) = 82 + Ty Ax + T - Vid. + Ro + R
where

3
Ro(2) :=Tu)Taz) — Tu Ay is of order 3

3
R1(z) :=—Ty,A(;) 1isof order 3

together with the estimates
supo)(” Ro(2) || T + ||R1(Z) || HH%HH’) < ]:(ze?l—l?,o)( i(A(Z)) +M! (a(z))))

ze(—1,
Now the semi-norms M (A(z)) and M } (a(z)) are bounded by the W%’W(Rd) norms of @ and . Since for f =«, 8
2

we have

7@, o, =CLO

we deduce from Lemma 3.17 and the fact that the symbols of R; vanish near the origin that for j =0, 1

|R; @k o < F(lnll Lot 1)1V Dl oth

ul

The proof is complete. O
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3.6. Proof of Proposition 3.16

Case 1. Assume that (7, ) is satisfied, which means that there exists Iy = (zg, 0) such that

IV 20kl xo (29) < F (Il L0t ){IIWIIHM + 1 Fllys ) + Ve zvll (J)}- (3.46)
ul
From this estimate and the Poincaré inequality we deduce that
IV 0llxe 1) < F(lInll Wz){lllﬂllmﬂ + 1Fllyg ) + Vi, zvllx,,m}. (3.47)
ul ul

Let z1 > zp and 11 = (21, 0). We want to prove that

< Fi(llnl SO+;){I|1/f|IH<,+%+I|F|IYU+%(J)+|IVX,ZUII 1k (3.48)

I Vx,zf)k Il o+1
X0z e

(1)
Introduce a cutoff function 0 such that 6(zog) =0, 8(z) = 1 for z > z;. Set
Wi (z,+) :=0(2)(0; — Ta) Uk (2, -)- (3.49)

It follows from Lemma 3.20 for z > z¢ that

ul ul ul ul

3
3.k — T = 0(2) (F +y° F,) + Fy (3.50)
j=0
where

Fy=0"(2)(3; — Ta) .
We deduce from Lemma 3.18, Lemma 3.19, Lemma 3.20 and (3.47) that

D NOF oy < F (Il o IFI o HIVeatl g Il (3.51)
=0 ul ul ul
and we see easily using (3.40) that
F. <F o F Vi . 3.52
I 4”Y”%<10 (Il ;}” ){IIWIIH -+ I F ;,lp )+|| 2Vl ;]%(])} (3.52)
Now using Proposition 2.18 in [2] and (3.50), (3.51) and (3.52) we see, since wi|;—;, = 0, that
w o+l + || F + | Vy ;0 3.53
I k”X(H'%(Io) F(lIml ;?Jr ){IWIIH + +[IF ;,]+1(J Vi, I| (J)} (3.53)

Now notice that on I; we have 6(z) = 1 so that
(0; — Ta)Vf = W (3.54)
We may apply again Proposition 2.18 in [2] and write

Vi <|v
|Vl = ||Uk||Xa+1+%(1)
<F
< F( e 0l g+ 101 o0)
<F
< (||77|IH:;J+ I ¥ + ¥l ;g)
<F(lInll w0t} )(Illﬁll o+3 TIFI o+ + Va0l Z1 ).

Hul ul u] 2 (‘]) Xulz (J)
The same estimate for d,v; follows then from (3.54) and (3.53). Thus we have proved (3.48) which completes the
induction.
1

Case 2. Assuming that (/Cy) is true, the exact same method shows that (KC, 41 ) holds as long as o + % <s-—3.
2

Details are left to the reader.
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3.7. Proof of Theorem 3.11

LetO<t<s— % Recall that

~ ~ 14 |Vepl?
Gy =g10:P — g2-Va®—0, &1 237;’ g2=Vip.
Z
We shall set
gj|z=0 = g?v .] =1,2, A|Z=0 = Ay, a|z=0 =4aop.

We recall that we have set Xk5 = 5k where 5|z=0 = and wy = (0; — TA)5k (see (3.49)) for z € 1. It follows that
we can write

GV = g8, Bp) =0 — xx&3 - Vit

= gV Wklz=0 + &V [ Tags Xkl + Xk (8)Tao — &5 - Vi) ¥ (3.55)
We shall set
Ry = (Xk8))[Tag: xe¥.  Ro = (Teg?) wel:=o (3.56)
where ¥ € C{° (R?) is equal to one on the support of x so
xkG MV = xi(89Ta, — 83 - Vx)¥ + Ri + Ry (3.57)

Letus set U = [Tx,, x«]¥. By the symbolic calculus, since H;?Jr% C W%’OO we have for all o € R
1UI e < F(lnll L0t )Illﬂll (3.58)
Hy, ul
IfOo<t<so— % the product law in Proposition 7.3 gives
Pl P Py e ) P (T Y [
ul

If 5o — % r<s— % we use the estimation

|7%eg?U | e = (178 | o1 WU e + | X8? | e 1U M g0-1)-
Therefore using (3.58) and (7.5) we obtain
5?0l e < FA@D s e 0y 101y 1)

ul ul ul uI

It follows that we have

IR g < F ([, ) oth ot D flnll s +|I¢||H,+% +1}. (3.59)

ul ul ul ul

By the same argument as above we have

IR Ml 7z < F(IInll 0t ) {1k = oll g, +||TIIIHS+1 0k |z=oll ,, H ). (3.60)
Hy ul b
Now using (3.53) with o =¢ — 5 we obtain in particular
1l prid, < (IInIIHW DYy +1). (3.61)

ul ul

Moreover we deduce from (3.50) that

4

0, W 1 —i—Z F; 1.
L TFIED DL T
]:
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It follows from (3.61) and the estimates already obtained on the F;’s that

1 < 1). .62
18l ety SF O e )V ey 1) (3.62)

Applying Lemma 7.12 to x,wy we obtain, for0 <t <s — %

lelz=oll gr, < F(Inll o) (Wl o1 +1). (3.63)
“ Hul : Hul :
Combining with (3.60) we obtain
RNz < F(|o 0| or o)l ox + w0 0+ 1 (3.64)
Hul : Hul : Hul : Hul :

Now we have
xk(80Tay — 85 Vi)Y = XkTg<l)A0_,-5.ggtﬂ + R3 + Ry,
Ry = xi{(g) - Tg?)TAo‘ﬂ — (85— ng) Vi)
Ry = Xk{Tg? Ty, — Tg?AO}. (3.65)
1

fOo<t<syp— % we use Proposition 7.18 with y =1, r =50 — 5, un =1 — % which satisfy the conditions and we
obtain
|68 = ) Tas ¥ e = €U0 417001

_1
2
1

2
ul

and an analogue estimate for the term containing gg , from which we deduce

1IR3l e < F(llmll o )Yl 1 (3.66)
Hul : Hul :
From Theorem 7.16(ii) with p = % we have
I Rall g < F(IInll SO+1)|I¢/II 4l (3.67)
Hul : Hul :

Summing up, using (3.57), (3.59), (3.64), (3.66), and (3.67), we obtain
X GV = XuTy0 a4,z 0¥ + Rs
with

IRsla < F(10 0] ey eIl oy #1910y + 1),

ul X Hy ul ul

So Theorem 3.11 follows from the fact that

A0 —i& - g0 =/ (1+ [VenP)E12 — (Van - £)2.

4. A priori estimates in the uniformly local Sobolev space
4.1. Reformulation of the equations

We introduce the following unknowns
£ =V,n, B =(0y?)|y=y, V=(x®)ly=y, a=—(0yP)ly=, 4.1)
where @ is the velocity potential and the pressure P is given by
1 2
P=Q— Elvx,y(p| — &y,

where Q is obtained from B, V, n by solving a variational problem (see Section 4.2 below for details).
We begin by a useful formula.
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Lemmad4.1. Let I =[0,T] and so > 1 + % For all s > sy one can find F : R — R™ non-decreasing such that
Gm)B=—divV +y, with

Iy <F(|m. | {1+ 1l

1 1 1 1
Lo®(1L,H ™ 2)y Lo(L,HO 2 H0F 2, L°(LH " 2) }’

where H° = H° (R9).
Proof. The estimate of the lemma will be proved first with fixed # which therefore will be skipped. Let 8 be the
variational solution of the problem
. a6
Ay y0=0 ingQ, Oly=ne) = B, —| =0.
ov|p
Then G(7) B = (0y0 — Vi1 - Vi6)|y=p(x). On the other hand since V;(x) = 0; @ (x, n(x)) we have
div V = (A ® + Vi - V,0,P) (x, n(x))
= (—8§<D + Vin- anyq))(x, n(x))
= _(ay —Vin- Vx)ayé(x, n(x))~
It follows that

GmB+divV =y, Y =@y = Vin - V)0 = 8,@)(x, n(x)).
Setting ® =0 — 9, we see that A, ,& =0 1in §2, and O|,—; = 0. Therefore we may apply Theorem 3.12 with
o=5— % to deduce that

192200 ooy < FUlawl ey o) I )

ul ul Xy ul

where (:)(x, 7)) =0O(x, p(x,7)). Using (7.3) with u =5 — % we deduce that
1VeiPl oy S FAO D] gy e Iy

ul ul ul ul

Now using the equation satisfied by &, Lemma 3.17 and Lemma 7.12 we obtain the desired conclusion. O

Proposition 4.2. Let so > 1 + %. Then for all s > so we have

(0 +V - -Vy)B=a—g, 4.2)
(0, +V - -V)V+a¢ =0, 4.3)
@ +V-V)i=GmV+LGmB +R, (4.4)

where the remainder term R = R(n, ¥, V, B) satisfies the estimate

IRl ey < F ([ v )(1+ Il

1 1
(ILH, %) Lo(1,HO 2 x 02 x f%0),,

L°°<1,H“+%)uz) (4-5)

where H° = H® (R9).

Proof. According to Proposition 4.3 in [2] the only point to be proved is the estimate (4.5). Let us recall how R is
defined. Let 6;, @ be the variational solutions of the problems

00;

A, y0; =0 1in £, Oily=y = Vi, —| =0, i=1,...,d (4.6)
|

P _ 0a41|
Axy0441=0 1in £, Od+1ly=n =B, S =0, 4.7
r

0P

Axy® =0 in$2, Dly=y =, —1 =0. (4.8)
o |p
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Then (see [2, Proposition 4.3])

Ri =0y — Vyn - V) Uily=y, U=0D—-06;,, i=1,...,d 4.9)
Riv1 =0y —Vin-V)Uatily=y, Uit1 =0yP —Oa1. (4.10)
Firstof all fori =1, ...,d we have A, ,U; =0in £ and U;|y—, = 0 since 0;®|,—, = V;. Denoting by l7,- the image

of U; by the diffeomorphism (3.15) we see that (71‘ satisfies Eq. (3.30) with F = ¢ = 0. It follows from Theorem 3.12
. 1
wito =5 — 5 that

IV, Ui o <F(|m. | O R L) (14 Il . )IIszUzII o (4.11)
2 H H

ul ul X ul Hul Xul (‘])
We are left with the condition (3.31), that is,

Ve Uil -4 < +o00.

ul

Indeed, since 6; is the variational solution of (4.6) Corollary 3.13 shows that

Vel _y < F(inl . )IVill -

ul ul l

Now 3;® = (3 — 529,)®. It follows that

— —~ ~ 9 p
IVigi@ll 1 <9®l 1 <I&Pl 1 +‘ =0,
2 27 ) 9;p

1 .
X3

ul v ul ( ul

1
Now we use the following facts: since sg > 1 + % one has X = hHcXx Z(J ); moreover X ~2(J) is an algebra and

eventually || 3”0 I X0~ h < ]:(||n”HSo+% ). We deduce using Corolldry 3.13 that
ul

IVoi@ll _y < Fi(lnll oS Dl ot
X

ul ul ul

To estimate the term || 9, 8,- D _ 1owe follow the same path using furthermore Eq. (3.30) with F = 0 satisfied by P.
X 2 (J)

ul

We obtain eventually

Va0l _y S E( 0D et et )

ul ul ul ul

Using (4.11) we obtain

||vx,zUi||le,%(J)sf(||<n,w, V| od ot H:?){””””H:f%}' (4.12)
Now from (4.9) we have
1+ |Vyepl? ~ ~
R; :=="TRi|;—0, Ri= Taz —Vip Vi Ui =:(g19; — g2 - V) U;. (4.13)
Z
Using (7.3) with u =5 — % and (4.12) with s and sy we obtain
IRill (_1  =<F(|n, ¥, V)| | st +lnll (4.14)
l Xul 2(‘] (” HHu;)+2XHu§)+2XHul){ ul+ }
Now we claim that
19:Ril s <F(|. v, V)|| wil it I L) (4.15)
ul (J ul X ul 2>< u? ul :

Indeed we can write

Ri = (8,4)3.U; + (3,B) - V. U; — (div B)3,U; + V., - (B3, U;) + A32U;
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The first three terms are bounded using (7.4) with u = s — % and (4.12), the fourth is estimated using (7.3) with
nw=s— % and (4.12), eventually for the last term we use the fact that 83[7,- = —(aAx 4+ B-Vy0, — yaz)fi,- together
with (7.3), (7.4), and (4.12). Finally from (4.14) and (4.15), using Lemma 7.12 we obtain (4.5) for R;.

We use exactly the same argument to estimate || Rg+1 ”Hk 1 &) This completes the proof of Proposition 4.2. 0O

ul

4.2. Estimate of the Taylor coefficient

Proposition 4.3. Let I =[0,T], so > 1 + %. For all s > sg there exists F : Rt — RT non-decreasing such that, with
H® = H° (RY)

=F([erv.v. B)|

a — 1
la =81y o,

L°°(1,H“0+% « HOTS 5 150 xHSO)uz)
X {1 + ||T’||LOO(1,HS+%)MI + “B ”LOC([,Hs)ul + || V||L°°(1,H'Y)ul}~ (416)
For convenience we shall set in what follows

Fo=F(|n.v. V. B| 4.17)

L°°(1,HSO+% ><HS0+% x H%0 xHSO)ul)
where F : RT™ — R™ is a non-decreasing function which may change from line to line. Before giving the proof of this
result let us recall how a is defined. As in [2] the pressure is defined as follows. Let Q be the variational solution of
the problem

. 1 , 1., 20
AyyO=0 in£2, Oly=y==B"+ =|V|" +gn, —1 =0. (4.18)
2 2 v |
Then
1 2

P:Q—§|Vx,ycp| —gy. 4.19)
It is shown in [2] that Q = —09,®. Then

a=—0yPly—y. (4.20)
We deduce from (4.18), (4.19) that P is solution of the problem

AxyP=—|V2 0, Pl =0. 4.21)

Denoting, as usual, by P, é, @ the images of P, Q, @ by the diffeomorphism (3.15) we have, using the nota-
tion (3.17),

5 o~ 1 ~o =2
P=0—-(NP) — | M@ —gp
2 2
and we see that P is a solution of the problem in RY x J,
2
(02 + A+ B Vid.—yd)P=—a Y |A;A;PP, Pl,—=0. (4.22)
ij=1

Notice that we have

A1 ®|,—o = B, Ay ®|,—g=V. (4.23)

Proof of Proposition 4.3. Below the time is fixed and we will skip it. We want to apply Theorem 3.12 witho = s — %,
so we must estimate the source term and show that the condition (3.31) is satisfied. We claim that (see (4.17))

IVi Pl -1 <Fo. (4.24)
2 J)

ul
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First of all since Q is the variational solution of (4.18) we have according to Corollary 3.9

19:.: 01 _y Sf(llnllHW%)(HBzHH%l + H|V|2|\H% il 1)-

ul ul {7 U ul
1
Using the fact that H,j? (R?) is an algebra contained in H, (R%) we obtain

195.:01 _y = Fo. (4.25)

ul

_1
The estimate of |V, . pl _ 1 by the right hand side of (4.24) is straightforward. Now, for j = 1, 2 since X:i(l) @)
(@)

ul

1
is an algebra contained in X Lfl(J ) we have

VAP <Cll|a; > <C'I|A; D2
I4,@P g | scla@Ply  <cuadr, ,

so using Corollary 3.13 with 0 =59 — % and the estimates on p we obtain

[Vaia; @l g < BAOD] gy 0t (4.26)

ul ul X Hy

The same kind of arguments shows that

lo:14;8P] g < ey ord) (4.27)

ul ul XHy

Using (4.25), (4.%6), and (4.27) we obtain the claim (4.24). Now we estimate the source term F =
—a Y} ;- 1AiA;®|? inEq. (4.22). Since s — } > % we can write

IFI oy <IFI 1
Y, 2(J) LY(JH 2)u

ul

2

12
=Cllall, 1 E [A;iA;P 1
L>®(J,H 2)ull. =1 LZ(J,H‘ 2

Since (A% + A%)cs =0and Ay, A commute, we have for j = 1,2
(AT+43)A;8 =0, (MP, ArP)|.0=(B,V) € H} x H,.
Since we have (see (4.17))

14;@1 1 <Fo
J)

ul

we can apply Theorem 3.12 with ¢ = s — 1 and conclude that

IVea i@l o ey <Fo- (14 ||n||H;l+% + Bl + 1V ).
Since A = ﬁaz, A=V, — Zj‘[f d;, using (7.3), the estimates on p, the above inequality for s = sop and for s we
obtain ) )
A4 PN ) s d iy, = Fo- (141l ;% +UBlgs, + 1V las)- (4.28)
It follows easily that
IFI 1 <Fo-(L+lnl o+ 1Blas +1Vi,). (4.29)
Yul 2(‘1) ul :
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Using (4.22), (4.24), (4.29), Theorem 3.12 and X o J)C L2((J) H?),; we obtain, using (4.17)

V.2 ﬁ”LZ((J),HY) S <Fo-(1+Inl o) Bl + ||V||H;'I)~ (4.30)

ul

We claim that

102l 2y, 51y, < Fo - (LIl oy + IBlag, + 1V 11s)-

ul

Indeed this follows from (4.22), (4.28), (7.3), (7.4), (4.30).
Noticing that a = — —8 P| .=0 and applying Lemma 7.12 we obtain the conclusion of Proposition 4.3. O

4.3. Paralinearization of the system

Asin[2]f0rs>1+%weset

= (D)’ T-(D,)*B
{Us { x>SV+ :(Dx)° B, (4.31)
é-S = (Dx> ;a
and we recall that we have set (see the statement of Theorem 3.11)
. 2\1£12 2

Mt x,8) =/ (14 [Van(t, 0)[)IE12 = (Van(t, x) - §)°. (4.32)
Proposition 4.4. Let so > 1 + %. For all s > sq there exists F : RT — R non-decreasing such that

(81 + TV . Vx)Us + Taé-s = fly (433)

0 +Tv - Vo)t — TUs = fo, (4.34)
where for each time t € [0, T']

|(fi@), £20) ”Lﬁle;,% <F(|(n). v, V), Bm)| e H;?X,,so)

<ALt O] oy +[BO] o + VO - (4.35)

ul

Proof. We follow the proof of Proposition 4.8 in [2]. First of all we shall say that a positive quantity A(z) is controlled
if it is bounded by the right hand side of (4.35). Here ¢ will be fixed so we will skip it, taking care that the estimates
are uniform with respect to ¢ € [0, T']. We also set

£OZBZ+TV'Vx-

4.3.1. Paralinearization of the first equation
We begin by proving that

LoV +Tu8 + T LoB=hy (4.36)
where ||/ ||H;1 is controlled. Indeed using (4.2), (4.3) and the fact that T, g = 0 we see that h1 = (Ty — V) - V.,V +
T:(Ty — V) -VyB+ R(a, {). By Proposition 7.18 with y =s,r =5, u = 5o — 1 we see that [|(Ty — V) - VXV||H;1 <
C|l V”Hifz I V||H;?. On the other hand since sg > 1 + %, Proposition 7.17 with @ =5 — %, B=s0— % shows that

[R@. Ol gy ey < Cllall ooy Vel Ly

d
ul ul )

These estimates together with Proposition 4.3 prove that /1 is controlled.
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4.3.2. Higher order energy estimates
Now we apply the operator (D, )’ = (I — A;)? to Eq. (4.36) and we commute. We claim that we obtain

Lo(Dy)*V + T, (Dx)’¢ + T Lo(Dx)’ B =hy (4.37)

where ||h;(2)]| L2RY) is controlled. Indeed this is a consequence of the following estimates

[[7v - Ve (D) ] s 12 = CIVIlwroe < CTlIV g

(e @1y, =Cllally <Clal

ul ul

72 4Ty =N g S CTIED gy

which follow from Theorem 7.16. Now Lemma 7.20 shows that
(T, Lol(D B”Lz <CIZ NV lyitese + |I£o§||L°°)IIB|IHf

Since sg > 1 + 7 one can find ¢ > 0 such that H, 50 (Rd ) is continuously embedded in Wl+e.0(R?), Therefore we
obtain

[17e. LolD) B oy < F(|. BV ey )IBlE,

ul X Hy ul

which shows that ||[T;, Lol{Dy)’ B ”Lzz is controlled. Using (4.37) and (4.31) we obtain (4.33).

4.3.3. Paralinearization of the second equation

0 +V -Vt =GV +¢Gm)B+ R. (4.38)

We first replace V by Ty modulo a controlled term. To do this we use Proposition 7.18 with y =5 — %, r=s,
n=so— % and we obtain

|(v=Tv)-vig|

1 = CIV g Il Lo0td (4.39)

ul ul

Next we paralinearize the Dirichlet-Neumann part. To achieve this paralinearization we use the analysis performed in

Section 7. Using Theorem 3.11 with t =5 — % we can write

GV +tGmB=TU+R (4.40)
where

U=V +T:B

R=I[T;,T.1B+ RV +¢R()B + (¢ — T;)T1. B, (4.41)

and

RV oy +]cR@B]
H H

ul ul

<T(H(n,B V)| L0 o HSO)(1+|I77|| ot HUBl, + 1V Is,)-

ul ul ul ul

Using again Proposition 7.18 with y =5 — %, r=s-— %, =59 — 1 and Theorem 7.16(i) we can write

[¢=ToTB| s =Clll .y Mo@IBl o < F(Inll . 1)IBl .

ul ul ul

which shows that this term is controlled. Eventually, by Theorem 7.16(ii), the term [T, T, ] B|| 1 is also controlled.
H,

s—5

Therefore we have the equality (4.40) with | R|| 1 controlled. It follows from (4.38), (4.39) and (4.40) that

s—
ul
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Lot =TWU+R

where ||R| _1 is controlled. By commuting Eq. (4.39) with (D, )* we obtain Eq. (4.34). This completes the proof

s=75

ul
of Proposition4.4. 0O
4.4. Symmetrization of the equations

As in [2] before proving an L? estimate for our system we begin by performing a symmetrization of the non-
diagonal part. Recall that Lo = 9; + Ty - V,.

Proposition 4.5. Introduce the symbols

a
y =+ak, q= o

where a is the Taylor coefficient and ). is recalled in (4.32). Set 65 = Ty ¢ and Lo = 0; + Ty - V. Then
LoUs +T,6, = Fy (4.42)
Loy —TyUs=F (4.43)

where Fy, F, satisfy, with L2, = L%,(RY), H5 = H%(R?),

u

[(F0. B0) | 2,012, = F (1 0. B V)

| el
so+75
HO2

)

x (L+||n@®]| et ||B(t)||H;.l + ||V(t)||H;.l),

ul

SO SO
xH,; xH,

for some non-decreasing function F :RY — RV and all t € [0, T.

Proof. We follow [2]. From (4.33) and (4.34) we have

Fr=:fi+ (Tqu —Ta)s
P, =T,/ +T,T, —T,)Us — [T, Lo]gs.

Then the proposition follows from Lemma 7.20 and from the symbolic calculus. O

We can now state our L2 estimate. Let us set with H%=H) (RY)

M;(0) = [ (n(0), ¥ (0), B(0), V(0))

1 1

|| s+5 s+5 ’
2 2 s s

Hul ul % Hul x Hul

(n(@), v (@), B(t), V(1))

X

M(T) = [

- XH,

1 .
7 ) s
- < HyxH,

ul

sup |
tel0,T]
Proposition 4.6. There exists F : Rt — R™ non-decreasing such that
@ o] 2 + 60 2, < F(MeO)Ms @), 1 €1 =[0,T),
@) |IUs ”L°°(1,L2)u1 + 1165 ”LOO(I,LZ)uI = ]'-(TMsO(T)){Ms 0) + ﬁMv(T)}
Proof. (i) This follows easily from the definition of Uy and 6, given in (4.31) and in Proposition 4.5.
(ii) Let xx be as in (2.3). Then we have

{ Lo(xxUs) + T, (xibs) = Gy
Lo(xxbs) — Ty(XkUs) =G

where G1, G, are given by

(4.44)
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Gi1=xx 1 +[Tv - Vi, xklUs + [Ty, xx10s
Gy = xkF2 + [Ty - Vq, Xk]es -7, Xk]Us-

We claim that for all ¢ € [0, T'] we have

[(G1®), G20) | 2,12 = F ([ (0), B®), VU))HHJO% )

50 50
ul x Hul X Hul

X [AO] g+ [BO gy + VO ) @49

ul

According to Proposition 4.5 this is true for the terms coming from xi F;, j = 1, 2. Now according to Theorem 7.16
we have (for fixed ¢ which is skipped)

[TV Ve xidUs | 2 < CIV w1 Ul 2,

= VI (Y gz ey + 1Vl ot 1B11m)

ul

<FI0 WV ey JO+IBl +1V ).

ul X Hy

The same estimate holds for ||[[Tv - Vy, xx16s] ;2. Eventually we have

|17y, %165 || 2 < F (|| 0. B, V)| ;;)+%xH;;)xH;;>)(l + il ! + 1Bl + 1V Ias)-

This proves our claim.
Now we compute the quantity %{HXkUs (t)||i2 + || xx6s (t)||iz}. Using Eqgs. (4.42), (4.43), the point (i), the fact
that

|(Tvay - Vo)™ + Ty - Vx| o 12 = CMy ()
Ty @) = Tye)*|) s 12 < €My (1)

and (4.45) we obtain easily (ii). O
4.5. Back to the original unknowns

Recall that

Us = <Dx)sV + TVxn(Dx>SBy
05 = T\/7<Dx)svx77-

>

From the estimate in Proposition 4.6 we would like to recover estimates of the original unknowns v, n, V, B. We
follow closely [2]. The result is as follows.

Proposition 4.7. Let so > 1 + % Forall s > so one can find F : Rt — R non-decreasing such that
M (T) < F (Mg (0) + T My (T)){ My (0) + T M(T)}.
The proposition will be implied by the following lemmas.
Lemma 4.8. There exists F : RT™ — R non-decreasing such that with 1 = [0, T] and H%=H) (R we have
Il oo, 19 + [ (B, V)|

Lw(I,H“*% xH“%)u,
< F(Myy(0) + T My (T)) | M (0) + ~T M(T)).
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Proof. Set £ =09, + V - V. According to Proposition 4.2 we have £L1B =a — g, L1V = —aV,n and from the
definition of V, B and the equations we have £1n = B. Then the lemma follows from Lemma 7.19 with pu =s,
nw=s— % and Proposition 4.3. O

Lemma 4.9. Let s > 1+ % For s > sg one can find F : RT — R non-decreasing such that, with H% = H, (RD),
we have

@l peedy S F(Myy (0) + ~T Mgy (T)) { M (0) + /T M (T)},

@) [V, B ooy sy, < F (Moo 0) + VT My (1)) { My (0) + VT M(T)},

ul

@iy Nyl 1 < F(Mgy(0) +~T My (T)) | M (0) + /T My(T)).

Lo(L,HY2),,

Proof. (i) By Lemma 4.8 it is sufficient to bound A = ||Vx77||LOO(I Hk% . Recall that ¢ = /¢, 6; = T, &, and

{s = (Dx)*Vin. By Theorem 7.16(ii)) we can write ¢ = T1 T3¢ + ;QQ where || R||
q
C(llall

urd =
Lo, HW)yy—L>° (I, H 2)u

+ lInll b ). Then we have
ul

1 1
L(1,H0™2), Loo(1,H%0" 2

_1 _1 ~1
A= ” (DX> 2§S ||L°°(1,L2)u] =< ” (Dx> 2 TéeY ||L°°(I,L2)u] + ” (DX> 2 R{s “LOO(I’LZ)MI'

Using Theorem 7.16(i), the above estimate on the norm of R with © = —1, Lemma 4.8 and Proposition 4.3 we deduce
that

A < F(Myy(0) + T Mgy (D) 165l oo 1,12y, + 11117, 115y}

Then the conclusion follows from Proposition 4.6 and Lemma 4.8.
(i) Recall that U =V + T; B. The commutator [(D)*, T;] is of order s — % which norm from L*°(/, Hs_%)ul to

L (I, L?),; is bounded by C||n]| 3 thus by C’|n|| o4l - Therefore we deduce from Proposition 4.6
LOO(I,C*Z) Loo(I,H0"2),

and Lemma 4.8 that

U oo (1, 15y < F (Mo (0) + T My (T)) (M, (0) + T My(T)). (4.46)

Now by Lemma 4.1 we have

divU =divV + Ty B+ Ty - ViB = —G()B + Tigeraive B+
=-T,B+RMB+TirerdveB+y=T.B+Tav¢B+y+ R(nB

where e = —A +i¢ -&. Writing B=T:1T,B+ (I — T1T,) B we obtain
B=TidivU — Ty + SB.

Then using (4.46), Lemma 4.1 we obtain the desired estimate on B and since V = U — T; B the estimate on V follows
as well. 1

(iii) We have V¢ =V + BV,n. Since the L*°(I, H*~2),; norm of (V,n, V, B) has been already estimated, it
remains to bound ||/ || oo (s 12,,- Now from (2.1) and (2.2) by a simple computation we see that

1 2 1 2
(3x+V~Vx)1ﬂ=—gf7+§IV| +§B .

Then the conclusion follows from Lemma 7.19 with © = s and (ii)). O
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5. Contraction and well posedness
5.1. Contraction

In this section we shall prove estimates on the difference of two solutions of the system described in (4.2), (4.3),
(4.4) which will prove the uniqueness and also enter in the proof by contraction of the existence. Let (n;, ¥, V;, B}),
j = 1,2 be two solutions on [0, Tp] of the system

O +V;j-Vi)Bj=a;—g,
0 +V;-Vo)Vi+aj; =0, (5.1
@ +V; V)L =Gmj)V; +¢iGmj)Bj +vj, & = Vanj,

where y; is the remainder term given by (4.4).

Theorem 5.1. Let s > 1 + %. We assume that the condition (3.2) holds for 0 <t < Ty and that there exists a positive
constant ¢ such that for all 0 <t < Ty and for all x € R?, we have aj(t,x) >cfor j=1,2. Set

Mji= sup [ v, Vi, BpO| b1 o ,
1€[0,Tp] H, *xH, *xHSxHS

ul ul ul

ni=n1—n, Y=Y — Yo, Vi=Vi—-V,, B:=By — Bs.

Then we have

9 b V? B
” (1. ¥ )”Lw((o,To),H“‘% xHS‘% x HS=Ux Hs=1),
< KM, M) | (. ¥, V. B)li=o| ,1 .1 1 . (5.2)
Hy > xH, * xHuy ' xHy
Let
N(T):= sup |, v.V.BYD)| .1 1 ] -
1€[0,T] ' SxH, PxHTUHST
Our goal is to prove an estimate of the form
N(T) < KMy, M2)N(0) + TK(M1, Ma)N(T), (5.3)

for some non-decreasing function I depending only on s and d. Then, by choosing 7' small enough, this im-
plies N(T) <2K(My, M3)N (0) for 71 smaller than the minimum of 7y and 1/2K (M7, M3), and iterating the estimate
between [T1,2T1],...,[T — Ty, T1] implies Theorem 5.1.

Remark 5.2. Notice that we prove a Lipschitz property in weak norms. This is a general fact related to the fact that
the flow map of a quasi-linear equation is not expected to be Lipschitz in the highest norms (this means that one does

not expect to control the difference (1, ¥, V, B) in L*([0, To], HStS x HS'1 x HS x Hw).

The proof of Theorem 5.1 follows the same lines as the proof of the similar result [2, Theorem 5.1]. It follows
4 steps: first we prove a Lipschitz estimate for the Dirichlet-Neumann operator. Then we paralinearize the system
satisfied by (, ¥, V, B), symmetrize this system, estimate the good unknowns of the symmetrized system and finally
estimate (1, ¥, V, B). The Lipschitz estimate of the Dirichlet—-Neumann operator is the crucial one and we shall give
some details. Having established the paradifferential calculus in uniformly local spaces, the other steps are identical
mutatis mutandi as in [2] and we shall skip the proofs.

5.2. Contraction for the Dirichlet—-Neumann operator

In this section the time being fixed we will skip it.
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1
Lemma 5.3. Assume s > 1 + %. Then there exists F : Rt — R non-decreasing such that for all n1, n, € H;;rz and

all f € Hj, we have

54

1
2

(G — G(nz))f”HS,% <F(|on.m2. HHH%XHH%XHS)IITH - 772||HS,

ul ul ul ul ul

where Hj, = HJ, (RY).

Proof. We follow closely [2]. As in (3.15), (3.23) we introduce p;, i, aj, Bj, y; for j =1,2. Then if it j|,.—o = f
we have

1+ vapj|2

(5.5)
9zpj

G f= ( azﬁj — Vxpj - Vx';j)

z=0

We set u =1ty — itp. Then

(8?—}-0{le +,31 . anz — )/laz)ﬂ =F

where

F={(a2—a)Ay+ (B2 — B1) - Vid. — (2 — y1)9; }iia.

Since s > 1+ %,Lemma 7.5withso=s5s—2,51 =5—2,50 =5 —1, p =2 gives (with J = (z¢, 0) and H,Z = H,Z(Rd))

||F||L2(J,Hs—2)ul = K{”Olz — o] ||L2(J,H.Y—1)ul ||Aﬁ2||L00(1,H-V—2)ul
+ 1182 = BillL2g, w51, 1 Vx0zit2ll poo (g, -2y,
+lr2—n ||L2(J,Hsf2)u,||3zf‘2||Loo(J,Hsfl)u,}-

Using (3.23) and Lemma 7.5 we can find a non-decreasing function F : Rt — R such that

oz —aillp2cg ms-1y, + 182 = Bill 2y ms—1y, + 12 = Vil L2 -2y,

<F (|, 7)2)||HS+% S+%)Ilm - nzlth%

ul Xy ul

On the other hand by Theorem 3.12 with 0 =5 — 1 we have

IV zdiall e g 00,11y < F (Il o)1l

ul

Combining these estimates we obtain eventually

1
2 2
ul X Hy ul ul

IF Nl 207,52, < F (|| nomas 1) St Hx)llm - nzllHS, :

Since u vanishes at z =0 Theorem 3.12 witho =5 — % gives

Vi il <F(|m.m N Wl ol Mim—mall 1.
H s

X xH H,?2

ul ul

_3
C%(20,0), H' ™ 2)y

ul ul

Using (5.5) and Proposition 7.3(i) we obtain (5.4). O
5.3. Paralinearization of the equations

Notice that it is enough to estimate », B, V. Indeed, since V; = Vy¥; — B;jV,n;, one can estimate the
L*°([0, T1, HS_%)ul-norm of Vy¢ from the identity

Vi =V 4+ BVyin1 + BaVin.
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Lemma 5.4. (See [2, Lemma 5.6].) The differences ¢, B, V satisfy a system of the form

{(8,+V1-V)(V+§1B)+a2§=f1, (5.6)

0 +V2-V)E =GV —5Gn) B = fa,

for some remainders such that

. ) < KMy, Ma)N(T).

3
L®([0,T],H"'xH' " 2),
5.4. Estimates for the good unknown

In this section we introduce the good-unknown of Alinhac in [4,1,5,6] and symmetrize the system. Let I = [0, T'].

Lemma 5.5. (See [2, Lemma 5.7].) Set
L=/ Ma, Q= Tm(V+§1B), U= Tﬁ{.

Then
O +Tv, - V)o+ T = g1, (5.7
O + Ty, - VYO — Ty = g2, (5-8)
where
I (g1, 82| < KMy, Ma)N(T).

3 .3
LX(LH " 2xH " 2)y

Once this symmetrization has been performed, simple energy estimates allow to prove

Lemma 5.6. (See [2, Lemma 5.8].) Let

Vsl 0]+ 1ol )

ul ul

We have
N'(T) < K(My, My)(N(0) + TN(T)). (5.9)

5.5. Back to the original unknowns
From the estimates in Lemma 5.6, it is fairly easy to recover estimates for 7.

Lemma 5.7. (See [2, Lemma 5.9].)

10, oot < KM M) {N©) + TN (D)) (5.10)

We now estimate (V, B).

Proposition 5.8. (Se [2, Proposition 5.10].)
Ve BY oo g sy, < K(M1, MD){N(©0) + TN(T)}. (5.11)

The proof will require several preliminary lemmas. We begin by noticing that it is enough to estimate B. Indeed, if

Bl poo(r, 51y, < K(Mi, Mp){N(©0)+TN(T)},

then, the estimate of ¢ in (5.9) above allows to recover an estimate for V + {1 B (by applying T . ), which in turn
implies the estimate for V.
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Let v = ¢; — ¢, where ¢ ;j is the harmonic extension in 2 of the function ¥ and set

3z¢~>2
by := , w=v—1Tpp.
0,02 ?
We have
Wl=0 =Y — Tp,n. (5.12)

We first state the following result.
Lemma 5.9. (See [2, Lemma 5.11].) We have
I — Te,nll Lo, 1) < K(M1, M2){N(0) +TN(T)}. (5.13)
We next relate w, p and B.

Lemma 5.10. (See [2, Lemma 5.12].) We have

1
B = [8 (0w — (by — Tp,) 0.0 + Tazbzp)]
zP1

z=0

Lemma 5.11. (See [2, Lemma 5.13].) Recall that by := §22. For k=0, 1,2, we have

BN ey, SCla

; ot L
CO(—1,01,.L®(,H* 2 LoH )y

‘or some constant C depending only on L1 .
J pending only on lmll, ot

Notice that n and hence p are estimated in L*°(/; H® _%) (see (5.10)). To complete the proof of Proposition 5.8, it
remains only to estimate d,w|,—g in L*°(/, Hb‘ffl).

Lemma 5.12. (See [2, Lemma 5.14].) For t € [0, T] we have

Ve zwllcoq_i.o1 m5-1y, < KM, M2){N(©0)+ TN(T)}. (5.14)
5.6. Well posedness

The proof goes as follows. In a first step we prove the main theorem for very smooth data, using a parabolic
regularization. Then, when the data are rough, we regularize them, thus obtaining a sequence of solutions living on an
interval depending on a small parameter €. In a second step, using the tame estimates proved in Proposition 4.7, we
show that this sequence exists on a fixed interval. In the last step, using the results stated in Section 7, we prove that it
is a Cauchy sequence and we conclude. Let us notice that most of this work has been already done in [2] in the case
of the classical Sobolev spaces. Therefore we will only sketch here the main points.

5.7. Parabolic regularization

We assume first that (19, o) € H Lfl x H ,jl for s > ng + %, no large enough, and we consider for ¢ > 0 the problem

=Gy +elAn,

1 2 L (Ve Vo + GpY)?
at‘//—_§|vx1/f| +§ T+ Vol —
™, ¥)li=0 = (Mo, Vo).

gn+eAcy (5.15)
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Setting U = (i, ¥) we can rewrite this problem as
t
U(t) =2 Uy + / UM A(U (D)) ] dr. (5.16)
0

We set I = [0, T'] and we introduce the space

Eg=L%®(I,H*), ,NL*(1, H'") .

etA

According to Lemma 7.10 we have [|e*'2xUpl| g, < C¢||Up ||H;[ =: R. Then using the estimates

”A(U) |’L2(1,H~‘)u1 = ]:(”U”LW(LH‘),J) ”U“LZ(I,H‘“)M
| AWUD = AW 12 sy, = FUWLUD | oo g s, UL = Uall 2 sy, (5.17)

we can show that, if 7 = T is small enough, the right hand side of (5.16) maps the ball of radius 2R in E; into itself
and is contracting. By the Banach principle Eq. (5.16) has a maximal solution on [0, 7). Moreover if Ty < 400 then

Jim, [ @ s gy = +00. (5.18)
Now with this large s we set
Msg(T) = Ssup “ (ns’ wg’ Va’ BS)(t) ” HS x HS x HST ' x HS1
t€[0,T] ul ul ul ul

Using the same computations as in [2] and the method of proof of Proposition 4.7 (but in an easier way since here s
is large) we deduce that one can find F : R — R strictly increasing such that

ME(T) < F(ME(0) + T ME(T)).

Since M¢(0) = M,(0) does not depend on ¢, this will imply that there exists 7y > 0 independent of ¢ such that
M{(T) < F(2M;(0)) for T € [0, Tp]. Using this uniform bound on this fixed interval and the arguments of [2] we can
pass to the limit in Egs. (5.15) to obtain a solution (1, ¥) of the water wave system.

5.8. Regularizing the data, a priori estimates

so+ % so+ %

Assume (10, %o, Vo, Bo) belongs to H,, > x H, " ? x H)} x H,) where so > 1+ %. Let j € CgO(Rd), jE) =1

when |£] < 1. We regularize the data in setting f; = j(¢D) fo if fo is one of them. Then the regularized data belong
to H), for s large. Therefore applying Step 1 we get a very regular solution U = (1, ¥e, Ve, Be) of the water wave
system, on an interval [0, T;] which satisfies M? (T;) < 400 and ng(f, x) — n4(x) > % forall 7 € [0, T.], x € RY.

Let T > 0 be the supremum of such 7.

If T} < +oo0 then either

limy 7+ M{(T) =+o00 or 519
{limT_,Tg* Ne(t, X) — Ny (x) = %, for some x € RY. -19)

Recall (see Theorem 2.3) that 7°(x) — n,(x) > 2h for all x € R. From now on we consider & > 0 so small that
0 3h d
N (X) — N (x) = > Vx e R%. (5.20)
We first apply Proposition 4.7 with s = 59 and we obtain

ME (T) < Fi(ME (0) + VT ME ().

Since there exists Ag > 0, independent of &, such that Mfo (0) < Ag, for all £ > 0 small, we deduce that one can find
Tp > 0 independent of & such that Mg (T') < F1(2A0) for all T < min(7p, 7,"). We apply again Proposition 4.7 with
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s large and we get
ME(T) < F(Ao +VToFi2A0)) (ME(0) + ﬁMg(T)).

Let 0 < Ty < Tp be such that /T1F (Ao + +/ToF1(2A0)) < 5. Then

ME(T) < 2F (Ao +VToFi1(2A0)) Ao =: Ko, T <min(Ty, T)Y). (5.21)
Now on [0, T'] we can write

t t

ng(t,X)—ng(X)=/3zng(s,X)ds=/(G(ns)1/fs)(s,x)ds

0 0

from which we deduce, since s is large
0
|76, ) =12 O oo gay =T sup [(Gne)¥e) (1) s ga)
1€[0,T]
< TF(M(T)) < T Fa(Ko).
Let 0 < T < T be such that 75 F,(Kg) < h . It follows that

Ne(t,x) —nx(x) > h, V€ [0, min(T>, T})), VxeR% (5.22)

This implies that 7* > T, for all small ¢. Indeed if there exists an &g such that T;(‘) < T, then we would have (5.21)
and (5.22) on [0, T;(‘)) which would contradict (5.19).

This shows that our solution (1, ¥, Ve, B.) exists on a fixed interval [0, 7>]. Moreover, as seen above, M (T) is
uniformly bounded on this interval.

5.9. Passing to the limit

According to Theorem 5.1, (¢, Vs, Ve, Bg) which is, according to Section 5.8, bounded in

1
O T Y HY)

ul ul ul

L>((0,T); H,
is convergent in
o0 . SO_% SO_% so—1 so—1
((0,T);H, *xH, *>xH}" xH; ),

and hence also for any § > 0 in

S0+5—6 so+4—8 _5 -5
0t xHu;J2 x H) ™% x Hy™").

ul ul

L>((0,7T); H,

To get the existence of solutions, it remains to pass to the limit in the equations (the uniqueness follows once again
from Theorem 5.1). For this step, we rewrite the system (2.1), (2.2) as

8t77£ = G(na)%,
1
Ve + Ve - Vit = (W+B) M,

_ Vine - Vy I/f€+G(7le)wa
1+|Vx778|
=V V¥e — BeVine.

(5.23)

3

Choosing § > 0 such thats —§ — 5 > 5 4 (so that H* %2 is an algebra), we deduce that
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dme — dn inD'((0,T) x RY)
e = 0 in D/((O, T) x Rd)

1

. y—5—14
Ve Vit — V-Ver  in L®((0,T); H, " °)
VZ+B2— VZ+B? inL™®((0,7); H?)
. o—§5—1
Ville - VeWe — Van - Ve in L2((0,T); H,, © %) € L®((0, T); L%)

1
IVenel> = [Vanl> in L((0, T); H, %) € L((0, T); €° N L®(RY)) (5.24)

On the other hand, according to Lemma 5.3, we get

Ge)e — Gy = G(e) (e —¥) + (G(ne) — G() ¥ — 0,
in
Lo(0.7): 5 3% € 1((0.7): L),

which allows to pass to he limit in (5.23) and show that the same system of equations is satisfied by (n, ¥, V, B) in
D'((0,T) x RY).

5.10. Continuity in time

1
so+5—9 s0—38 s0—3
xH, * " x H™° x H;? . From

. . o . . 0-+5—8
We now prove that (1, ¥, V, B) is continuous in time with values in H, 0tz l

ul
the equation, and product rules, its time derivative is clearly in
1 1

oo S0—73 S0—7 so—% s()—%
L>(0,T);H, *xH,; *xH, *>xH, ?)

u ul ul

and consequently (interpolating with the a priori estimate), for any § > 0,

1_ 1_
(9. V. B) e CO(10,T): H T2 70 5 H0F270 s 200 s o0y, (5.25)

ul ul ul

6. The canal

We consider now the case of a canal having vertical walls near the free surface or the case of a rectangular basin.

The propagation of waves whose crests are orthogonal to the walls is one of the main motivation for the anal-
ysis of 2D waves. It was historically at the heart of the analysis of water waves. The study of the propagation of
three-dimensional water waves for the linearized equations goes back to Boussinesq (see [9]). However, there are
no existence results for the nonlinear equations in the general case where the waves can be reflected on the walls of
the canals (except the analysis of 3D-periodic traveling waves which correspond to the reflexion of a 2D-wave off a
vertical wall, see Reeder and Shinbrot [29], Craig and Nicholls [13] and Iooss and Plotnikov [21]).

We hence consider a fluid domain which at time ¢ is of the form

(1) = {(xl,xz,y) eMxR:b(x)<y<n(tx), x= (xl,xz)},

where M = (0, 1) x R in the case of the canal and M = (0, 1) x (0, L) in the case of a rectangular basin, and b is a
fixed continuous function on M describing the bottom.
Denote by X' the free surface and by I" the fixed boundary of the canal:

Z(0)={(x1.x2,y) e M xR:y=n(t, x)},
and we set I' = 982(¢) \ X2'(¢) (which does not depend on time). We have
I'="nul,
N={G,xyeMxRbx)=y}
D={(x1,x2,y) € IM x R; b(x) <y < n(x1,x")}. 6.1)
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ne— /

Fig. 1. Two-dimensional section of the fluid domain, exhibiting the right-angles at the interface X' N I".

Denote by n the normal to the boundary I" and denote by v the normal to the free surface X'. The irrotational
water-waves system is then the following: the Eulerian velocity field v: £2 — R? solves the incompressible Euler
equation

v +v-Vy v+ VP =—gey, divy yv =0, curly, yv =0 in £, (6.2)

where —ge, is the acceleration of gravity (g > 0) and where the pressure term P can be recovered from the velocity
by solving an elliptic equation. The problem is then given by three boundary conditions. They are

v-n=0 on [,
dn=+1+|Vn?v-v onX, (6.3)
P=0 on X.

We notice that the first condition in (6.3) expresses the fact that the particles in contact with the rigid bottom remain
in contact with it. Notice that to fully make sense, this condition requires some smoothness on I, but in general it has
a weak variational meaning (see Section 3).

Finally we impose the initial condition

(1, v)|=0 = (Mo, v0), (6.4)
where v satisfies
divy yvo =0, curly yvo =0 in £, vo-n=0, onlr.
It follows that there exists a function ¢ : 20 — R such that
vo = Vi y¢o 1n §29, with Ay y¢o =0.
We set
Yo = ¢oly=no(x)
and introduce the trace of the velocity field vo = (vo, x;, V0,x,, vo,y) 0n X = {(x, no(x))} in setting
V0, x; |y=170 = VO,)C| s V0, x, |y:170 = VO,xz’ vO,yly:ng = By, Vo= (VO,x1 , VO,xz)-

Similarly, to a solution v of (6.2)—(6.3) we associate ¢, ¥ and (V, B) = v|y—, as above.
The stability of the waves is dictated by the Taylor sign condition, which is the assumption that there exists a
positive constant ¢ such that

a(t,x) = —(ByP)(t,x,n(t,x)) >c>0. (6.5)

6.1. A simple observation

We begin with an elementary calculation showing that, at least for regular enough solutions, as soon as the Taylor
sign condition (6.5) is satisfied, in the case of vertical walls, it is necessary that at the points where the free surface
and the boundary of the canal meet (X (¢) N I"), the scalar product between the two normals (to the free surface and
to the boundary of the canal) vanishes: v-n =0 on X N I", which means that the free surface X' necessarily makes a
right-angle with the rigid walls (see Fig. 1).
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Proposition 6.1. Let (1, v) be a classical solution of system (6.2), (6.3) such that the Taylor coefficient a is continuous
and non-vanishing and n(t, x) > b(x) + h for some positive constant h. Then the angle between the free surface, X (t)
and the boundary of the canal I is a right angle:

Viel0, T], VxeX@®) NI, n-v(,x)=0,

which is equivalent to
0x, n(t, x1, X2)|x,=0,1 = 0. (6.6)

Remark 6.2. Notice that here, to get the right angle property, we assume that the Taylor coefficient does not vanish.
It could happen that this is not the case, in which case, this right angle property could be violated.

Proof of Proposition 6.1. We give the proof in the case of a canal, the proof for the rectangular basin is similar. Since
no(x) > b(x) + h at a point my where X (t) and I" meet we have mg = (¢, xg, y9) where e =0 or 1. Let m = (g, x2, y)
be a point on I” near mq. At m the normal n to I" is n = (%1, 0, 0). Taking the scalar product of Eq. (6.2) with n we
obtain, since ey - n =0,

(VeyP) n=—0v)-n—((v-Vyy)v)-n atm. (6.7)
Denote by (vy,, vy,,vy) the three components of the velocity field v. The first condition in (6.3) implies that
(v-n)(m) ==Zvy, (1, &, x2,y) =0. It follows that (9;v) - n = 9;(v - n) = 0 at m. Moreover on I" near m( we have

(- Ve )v) 0]t 6,x2, ) = [0 Ve v ], 8,32, )

= [ (vy, 9y, + vy )y, (1, &, X2, ¥)
= [ (vx, 9y, + vy0y) | (vx, (7, &, x2, ¥)) = 0.
It follows from (6.7) that

(VeyP)-n=0 atm. (6.8)

Now by the third condition in (6.3) we have P =0 on X' and by (6.5) and our hypothesis on the Taylor coefficient we
have V, P # 0 on X. It follows that V, , P is proportional to the normal v at X and by continuity at X N I". We
deduce from (6.8) that v-n =0atmg. O

Once this right angle property is ensured, it is easy to show that some additional compatibility conditions have also
to be fulfilled. Namely, for f = By, Vo.x,, 0x, V0,x,, using (6.3), as soon as the function ¢ is smooth enough so that all
terms below are defined, we have with m = (¢, x3) (¢ =0 or 1):

3y, Yo(m) = Oy, do(m, no(m)) + dyepo (m, no(m))dx, mo(m) =0,
Oxy Bo(m) = 0y, 0y¢p0 (m, mo(m)) + 950 (m, no(m)) dx, mo(m) =0,
Oy Vo,x, (M) = i, 0, o (m, no(m)) + 8y dx, o (m, no(m))dx, no(m) =0,
331 Vo,x, (m) = 331 $o(m, no(m)) + 23;73)%1 do(m, no(m))dx, no(m)
+ 8205, 0 (1. 10 (m)) (3, 10 () + By, G0 (m. o (m)) 82, 10 (m)
=0,

(6.9)

where in the last equality, we used that 8;1 ¢ = —(8)%2 + 8}2,)3,(1 ¢, since ¢ is harmonic.
6.2. The result

As before, we denote by x; (resp. x») the variable in (0, 1) (resp. in R). To state our results we need to in-
troduce the uniformly local Sobolev spaces in the x, direction (these spaces are introduced by Kato in [22]). Let
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1 =2 1z x (x2 — k) be a partition of unity and define for any s € R,

Hi((0,1) x R) = {u e Hjy, ((0.1) x R) sup L (2 = B s 1y < +oo}.
These are Banach spaces when endowed with the norm

lull g, = supl|x Cx2 = B0 s 1)y

In Section 6.1 we showed that in order to get smooth solutions, a set of compatibility conditions (6.6), (6.9) have to
be assumed. Here we prove that these conditions are not only necessary, but they are sufficient.

Theorem 6.3. Set M = (0, 1) x R. Let s € (2, 3), s # % and

1 1
(M) =H., > (M) x H, 2(M) x H(M) x HS,(M).
Consider (ng, Yo, Vo, Bo) € H* (M) and assume that, with ¢ =0, 1
(H1) Vo,x (e,x2) =0and o, f (g, x2) =0 when f =nog, Yo, Bo, Vo,x,. Furthermore, 8)%1 Vo,x (6, x2) =01if s > 5/2.

(Hp) The Taylor sign condition, ag(x) > ¢ > 0 is satisfied at time t = Q.
(H3) no(x) = b(x) + h for some positive constant h.

Then there exists a time T > 0 and a unique solution (n, v =V y¢) of the system (6.2), (6.3), (6.4) such that

i) (n.¢l2,V,B)eC(0,T); H(M)),
ii) the Taylor sign condition is satisfied at time t and n(t) > b+ h/2.

In the case of a rectangular basin we have the following result.
Theorem 6.4. Set M = (0, 1) x (0, L). Let s € (2,3), s # % and

H (M) = H'F 2 (M) x HF2(M) x H (M) x H*(M).

Consider initial data (no, VYo, Vo, Bo) € H* (M), such that

(C1) Vo,x,(¢,x2) =0and 0y, f(e,x2) =0when f =nog, Yo, Bo, Vo,x,. Furthermore, 8%1 Vox, (8, x2) =0 if s > 5/2.
Here e =0or 1.

(C2) Vo,x,(x1,8) =0and 9y, f(x1,8) = 0when f = no, Yo, Bo, Vo.x,. Furthermore, 8}%2 Vo,x, (x1,8) =0 if s > 5/2.
Here 5 =0 or L.

(C3) The Taylor sign condition, ag(x) > ¢ > 0 is satisfied at time t = 0.

(Cq) no(x) = b(x) + h for some positive constant h.

Then there exists T > 0 and a unique solution (n, v =V, ,¢) of (6.2)—~(6.4) such that

(1) (n,¢le,V,B) € C(0,T); H'(M)),
(2) the Taylor sign condition is satisfied at time t and n(t) > b+ h/2.

Remark 6.5. (i) Our results exclude the case s = % for technical reasons. It would be possible (but unnecessarily
complicated) to include this case.
(ii) In the case of a flat bottom (say b(x) = —1) we do not need assumption (H3) (and (C3)) which is in this case
always satisfied as proved by Wu [31,30], see also [24]. Also, this condition is satisfied under a smallness assumption.
(iii) Condition (H1), when f = 59, says that at # = 0 the fluid has to be orthogonal to the fixed vertical walls.
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A A A

Fig. 2. Two-dimensional section of the extended fluid domain.

6.3. Proof of the result

Following Boussinesq (see [9, p. 37]) the strategy of proof is to perform a symmetrization process (following the
process which is illustrated on Fig. 2).
Once this symmetrization process is performed, we will apply our result [3, Theorem 2.3] to conclude.

6.3.1. The periodization process
Without additional assumptions, the reflection procedure should yield in general a Lipschitz singularity. However,
here the possible singularities are weaker according to the physical hypothesis (Hy).
For a function v defined on (0, 400), define v¢¥ and v°! to be the even and odd extensions of v to (—oo, 4+00)
defined by
-y, if 0
2 (y) = v(=y) ity <
v(y) if y>0.
—v(—y), if 0
Wy = | TP ity < (6.10)
v(y) if y > 0.

We have the following result:
Proposition 6.6. We have

(1) Assume that 0 <s < % Then the map v — v is continuous from H* (0, +00) to H(R).

(2) Assume that % <s < % Then the map v — v is continuous from the space {v € H*(0, +00) : v'(0) = 0} ro
H’(R).

(3) Assume that 0 <s < % Then the map v — v°4 is continuous from H*(0, +00) to H* (R).

(4) Assume that % <s< % Then the map v — v°9 is continuous from the space {v € H*(0, 4+00) : v(0) = 0} fo
H*(R).

(5) Assume that % < s < 4. Then the map v — v°4 is continuous from the space {v € H* (0, +00) : v(0) = v”(0) = 0}
to H*(R).

Proof. Let I = (0, +00). Then C§° (I) is dense in H* (I) for all s € R.

(1) The case s = 0 is trivial since ||v®" || =2|v|? Consider now the case 0 < s < 1. Then the square of

L2(R) L1y

the H*(R)-norm of v®¥ is equivalent to

2 [0 (x) — v (y)]?
[ ey + 4. A= / oy
RxR

Then we can write

lv(x) — v(y)]? lv(x) —v(y)]? ,
A= 2/ |1+2v d d + / ﬁdxdyZAl‘i‘AQ

We have

AL =200l 3s gy Az =200l
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since

(x+yl)1+23' < \x—yl|1+2°' . The case s = 1 being straightforward consider the case 1 <5 < % Seto=s5—1¢€ (0, %).

Then
” v ”iis(R) = H”ev Hi%R) + H G H}zqrf(R)'
Since 0 < o < 1 we have

[0c0 |2 g, < CA0+ A1 + A2)

e

Ao = [8,v° H 2w =C1 I U/HL2(1) =G ||U||12LIS(I)

v'(x) — V') >
m=/ ___———W@S®M%m”smew

|x—y|1+2"
IxI
v (x) + ' (y)]?
Ap —// |x+y|‘+2‘7 dxdy.
IxI

Eventually we have

v/ (x)|? ,
Ay <C3 NG dx < Cyl|v ||Hg(,) < Cqllvllgsa)
1

by Theorem 11.2 in [27], since 0 <o < % This completes the proof of (1).
) If % <s<2leto=s5s—1¢€ (%, 1); arguing as above we see that

/ 2
ev| 2 2 [v'(x)]
1oy = € (101, + [ 5 ax).
1

Now since v’ € H? (I) and v'(0) = 0 we can apply Theorem 11.3 in [27] which ensures that the integral in the right
hand side can be estimated by C || v|| He ()" The case s = 2 being straightforward let 2 < s <Z 5. Then

o™ ”H‘(R) C ([0 ||L2(R)+Haz%veVHHS*Z(R))'

Since0 <s—2 < i and v'(0) = 0 we may apply the same argument as in the case (1) to ensure that || 82 V|12

Clvle
The cases (3) to (5) are proved by exactly the same arguments. O

HS— Z(R)

To state the reflection procedure in higher dimension we need to introduce the uniformly local Sobolev spaces
inR", n>2.
Let 1 =), .z» x (x — k) be a partition of unity in R” and define for any s € R,

Hy(R") = {“ € H;, (R"): S‘]iP“X(' —ku HSR™) = +°O}"
These are Banach spaces when endowed with the norm
nmﬁzﬁﬁﬂ—mwmwy

Now, if v is a function on M = (0, 1) x R? we define the even (resp. odd) periodic extensions on T X RY, v
(resp. v°%), by

v(—x1,x"), if =1 <x; <0,
v (x1,x") = 4 v(x, x), if0<x; <1,
v(ix; —2k,x"), ifxy —2ke(=1,1), keZ.
—v(—x1,x"), if—1<x <0,
v (xp, 1) = v(xg,x), ifo<x <1, 6.11)
v(xy —2k,x"), ifx;—2ke(=1,1), keZ.
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Corollary 6.7. Let M = (0, 1) x R.
(1) Assume 0 < s < %; then the map v +— v® is continuous from H l(M) to Hgl(Rz).

(2) Assume % <s§s< % Let

Eg={u e H}(M): 0, u(e, x2)=0,6=0,1,¥x; €R}.

Then the map v — v® is continuous from E to H;I(Rz).
(3) Assume 0 < s < é, then the map v — v°Y is continuous from H} (M) to H;l(Rz).
4) Assume é <s<3 Let
F, = {u e Z(M) u(e,x)=0,e=0,1,Vxp € R}.
Then the map v — v°4 is continuous from Fy to H Ijl(Rz).
(5) Assume % <5 <4. Let
Gy ={u e Hj(M) :u(s, x2) = 97 u(e, x) =0, =0, 1,Vx; € R}.

od

Then the map v — v°¢ is continuous from Gy to Hljl(Rz).

Proof. Since (DY v)®¥ = DY (v™), (Dg, v)°d = D¢ (v°9) the result is clearly a one dimensional result and it is enough
to prove it for the one d1mens1ona1 case, in which case it is a direct consequence of Proposition 6.6 and a localization
argument. O

Consider now an initial data (19, Yo = ¢ol x,, Vo, Bo) satisfying the assumptions in Theorem 6.3 and define
do=n§".  Vo=v.  Vom=V%. Vo=V,  Bo=B{
onT x R.
Recall (see Theorem 6.3) that, with M = (0, 1) x R, we have set
(M) = HETE (M) x L2(M) x H3,(M) x HE,(M),
and introduce
H(R) = H,' 2 (R?) x L2 (R?) x HYy(R?) x HY(RY).

Then we have the following lemma.

Lemma 6.8. Ler2 <s <3, s # % and (no, Yo, Vo, Bo) € H* (M) satisfying the hypothesis (Hy) in Theorem 6.3. Then
(Mo, 1/~/0, Vo, Eo) € H*(R?) and are 2-periodic with respect to the xi variable.

Proof. This follows immediately from the hypothesis (H;) and Corollary 6.7. O

In the case of a rectangular basin, performing both reflection and periodizations with respect to the x| and the x>
variables leads similarly to extensions

e~ 1
(Mo, Yo, Vo, Bo) € H,f;rz (Rz) X Liz(Rz) X H;I(Rz) X H;I(Rz)

which are 2-periodic with respect to the x; variable and 2L periodic with respect to the x, variable.

6.3.2. Conclusion

We are now in pos1t10n to apply Theorem 2.3. We consider first the case of the canal. Starting from (1o, Yo, Vo, Bo),
we define (7o, Yo, Vo, Bo) their periodized extensions following the process in Section 6.3.1. Let (r] V) be the solution
of the free surface water waves system given by Theorem 2.3. Since the initial data (7, gﬁo, Bo) are even while
Vo, x; 1s odd, our uniqueness result guarantees that the solution satisfies the same symmetry property (because if we
consider our solution, the function obtained by symmetrization is also a solution with same initial data). The same
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argument shows that as the initial data are 2-periodic with respect to the variable x1, so is the solution. As a conse-
quence if we define v, n, P as the trace of v, 77, P on (0, 1) x R, we get that they satisfy trivially the incompressible
Euler equation with free surface

hv+v-Veyv+V, P =—gey, divy yv=0, curl, yv=0 1in £,
dn=+1+|Vn2v-v onX,
P=0 onX, (6.12)

and to conclude on the existence point in Theorem 6.3, it only remains to check that the “solid wall condition”

v-n=0, onl=1I1UIl (6.13)

is satisfied. On I7 it is a straightforward consequence of the condition v - 7 = 0, while on I it is simply consequence
of the fact that the component of the velocity field along x1, v, is odd and 2-periodic. To prove the uniqueness part
in Theorem 6.3, starting from a solution of (6.12), (6.13), on the time interval [—T, T], if we define the function v, 7
at each time ¢ following the same procedure, we end up with a solution of (6.2), (6.3) in the domain {(¢, x, y); ¢ €
(-T7,7),(x,y) e §(t)}, at the same level of regularity. Indeed, the jump formula gives

b+ - Ve b+ Ve P =—gey+ vy, - 0,01 ® 81, = —gey,

where in the last equality we used that the component of the velocity field along x; vanishes on I>. The uniqueness
part in Theorem 6.3 consequently follows from the uniqueness part in Theorem 2.3. The case of a rectangular basin is
similar.

7. Technical results
7.1. Invariance

The following result shows that the definition of the uniformly local Sobolev spaces does not depend on the choice
of the function yx satisfying (2.3).

Lemma 7.1. Let E be a normed space of functions from R? to C such that
Vo e W°°’°°(Rd) AC >0: |Oullg <Cllullg YuekE
where C depends only on a finite number of semi-norms of 6 in Wo>>®(R?). Let x € Cy° (R?) satisfying (2.3). Then

forany X € C§° (R?) there exists C' > 0 such that

sup | Xxulle < C" sup [ xqulle (7.1)
keZd qeZd

where xg(x) = x (x — q) and (x) = 7 (x — k).

Proof. Let x € Cg° (R?) be equal to one on the support of x. We write with N =d + 1
N

~ k=g
Xkxqu = (k —q) N[Lc_iz;zv)(k}[@c — )" xq]xqu.

Since the two functions inside the brackets belong to W (R?) with semi-norms independent of k, ¢, using the
assumption in the lemma we deduce that

Xkl < Y IRkxqulle <C Y (k—q)™" sup lIxqule.
qezd qezd qez!

which completes the proof. O
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Lemma 7.2. Let © € Rand N > d + 1. Then there exists C > 0 such that

sup [[(x =) "Vu| gy < Cllull i oy (7.2)
xeRd

forall u € H';(RY).
Proof. Indeed we have
e =] e < Y N =N xqull
qeZd
and we write
L a3
Xg M) xg(Muly
(x —g)V (x — y)N 2170

where ¥ € C°(RY), ¥ = 1 on the support of . This implies that

(x =) N xauy) =

1
Zd\ux —) "V xqut] yu = Cn Z Gy Il = Cullulgy,
g€l qeZ

x—q)¥

since the function y — T X4 (y) belongs to Wo-%°(R?) with semi-norms uniformly bounded (independently of

xandg). O
7.2. Product laws

Proposition 7.3. (i) Leto; € R, j = 1,2 be such that o1 + 0> > Oandu; € H{ (R?), j = 1,2. Then ujur € H' (R?)
forog <ojand oy < o1+ 03— %. Moreover we have

vzl oo gay = Cllutll gor ey 1021l o2 ey -
(i) Let s > 0 and uj € H5,(R) N L®(RY), j = 1,2. Then u u; € H5,(R?) and
||M1M2||H;‘l(Rd) = C(||M1 ||Loo(Rd)||M2||HL§I(Rd) + ||M2||L00(Rd) lluey ||H51(Rd))~
(iii) Let F € C*°(RN, C) be such that F(0) =0. Let s > %. If U € (H:;(RY)N then F(U) € HS,(R?) and
[ F @) 15 vy < G N zoo ey NU gy
for an increasing function G : RT — R,

Proof. The proofs are straightforward extensions of the proofs in the classical Sobolev spaces case. Indeed let us
show (i) for instance. Let x, be defined in (2.3) and X € Cgo(Rd) be equal to one on the support of x. Then from the
classical case we can write

 xquiuall goo = |l xqu1 Xqu2llgeo < Cllxguillmgorll Xqu2ll go2

< CllulllH”ll ||u2||H<f12-
u Ui

The proofs of (ii) and (iii) are similar. O
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The following spaces will be used in the sequel:

Definition 7.4. Let p € [1, +0o0], J = (20,0),z0 <0 and o € R.

(1) The space L?(J, H® (Rd))ul is defined as the space of measurable functions u from Rff x J, to C such that
”u||L1’(J,H“(Rd))u1 = Sup ||qu/l ”LP(J,H“(R‘I)) < 400.
qeZd

(2) We set

XG0 =L (J, 7 (RY),, 0 L2 (1, HTH (RY)

ul

G = LY HO (RY),, + L2(J. H7 72 (RY))

ul

endowed with their natural norms.
(3) We define the spaces X°(J), Y (J) by the same formulas without the subscript u!.

Notice that L>(J, H? (R?)),; = L°(J, HS(R?)).

Lemma 7.5. Let 0y, 01, 02 be real numbers such that o1 + 02 >0, 09 <0}, j=1,2, 09 <01+ 03 — % and 1 <
p < +oc. Then

luvlize s, meo ey, = ClullLoo g mor @iy, NVl Lr g mo2 @),
whenever the right hand side is finite.
The same inequality holds for the spaces without the subscript ul.

Proof. This follows immediately from Proposition 7.3(i) and (7.1). O

Lemma 7.6. If o > % the spaces X;,(J) and X° (J) are algebras.

Lemma 7.7. Let so > 1 + %, uw>0and J = (—1,0). Then we have

I £&llxr < CLF oo ooty 181t + 180 oo ooty 1F ), (13)

I8l < COLEN ooy ooty 1€l + gl (7.4)

. _3 1).
LOO(J,HAO*Z)M”'f”X,’:l*i)

Let F € C®(RY, C) be such that F(0) = 0. Then there exists a non-decreasing function F : Rt — RY such that for

w> % we have

[ F@)x < FUUN Lo g o1, JIU 1 (7.5)

ul

Proof. The first and the third estimates follow easily from (i), (iii) in Proposition 7.3. To prove the second one we
start from the inequality (see [2, Corollary 2.12])

e f&lar < C (Il fllLoe | Xegll ae + Ilikgllc,% IIkaIIHH%), 1>0

where ¥ € C{° (R?) is equal to one on the support of x. Then we use the continuous embeddings: H*~! ¢ L®,

.
H*~2 C C, ? and the above inequality for t =1, t =p + 5. O
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7.3. Continuity of the pseudo-differential operators

We have the following result which reflects the pseudo-local character of the pseudo-differential operators. Recall
that 87" is the set of symbols p € C *(R? x R?) such that

DEDEp(x. )] < Cap(1+1€)" ™ Vo, peN, V(x, &) e R! x RY.

Proposition 7.8. Let P be a pseudo-differential operator whose symbol belongs to the class SY',. Then for every s € R
there exists a constant C > 0 such that
1 Pul g3 oy < Cllelyoom ay

foreveryu € H,jl+ ™(R?), where C depends only on semi-norms of the symbol in ST

Proof. Write
Xk Pu = Z Xk P xqu + Z Xk P yqu=:A+ Z B g. (7.6)
lk—gq]<2 lk—q|>3 lk—q|>3

The first sum is finite depending only on the dimension. To bound it in H*(R?) we use the usual continuity of
pseudo-differential operators. For the second one let ng € N, ng > s. We shall prove that
Cyq
” DY Brq ”LZ(Rd) = W”“”yﬁm, l| < no (7.7

which will complete the proof of Proposition 7.8.
Notice that, due to the presence of yi, we have || D§ By 4ll;2 < C|| DY By 4|l L. We have

D§ By q(x) = (DzK(x, 3D, xqu>
with
K(x,y)=Qn)™ / e T p(x, £)dE xi (X)X (V)
Rd

where X € C{° (R%), ¥ =1 on the support of x.
Now on the support of xi (x))"(q (y) we have |x — y| = 8|k — g/, § > 0. Integrating by parts N times (with large N

depending on d, ng) with the vector field L = Z‘;:] \);l—_y)l/z

0¢; we see that for all g € N¢ we have

Cu, ~
|DfK(x,y)|§ﬁ}xq(y)|, V(x,y)eRded.
It follows that

| D¢ B g ()| < | DS K (x, )| =i 1 xg el s
< 76‘(1’)6
- (k _ q>d+1

which proves (7.7) and hence concludes the proof. O

Il xgull prs+m

In a particular case the proof above gives the following more precise result.

Proposition 7.9. Let m € R, h(§) = h(:5) &y (§) where h € C*(SY™!) and v € C®*(RY) is such that Y (§) = 1 if

E1>1L,¥vE)=0if|§] < % Then for every | € R there exists a constant C such that
”h(Dx)u || HLZ(Rd) = C”ﬁ ”H"I+1 (S4-1) ”u ||H$+m(Rd)

forallu e H'™ (RY).
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We shall use the following result when p(£) = (&) and p(&) = |£|%.

Lemma 7.10. Letd > 1,r >0, m e R. Let p € ST O(Rd), ac S{’fo(Rd) be two symbols with constant coefficients. We

assume that one can find co > 0 such that for all € € R¢ we have p(£) > co|&|". Then for all o € R and every interval
I =10, T, one can find a positive constant C such that, with H* = H® (R%)

||e*tp(DX)a(Dx)u 4 ||e*tP(Dx)a(Dx)bt||

ey < Cllull g (7.8)

LA(1LHY ),

+
forallue H;™.

Proof. The estimate of the first term in (7.8) follows from Proposition 7.8 since e~'? Dq(D) is a pseudo-differential
operator of order m whose symbol has semi-norms in S}"; bounded by constants depending only on 7'. Let us look at
the second term. Set

I, = || qu_”’(D)a(D)u||L2(I’H(,+%).

One can write

I,=A, + B,
A, = Z que_”’(D‘)a(Dx)Xku”Lz(LHM%)’

gl (7.9
By = Z ” qu_[p(D’”)a(Dx)Xk”||Lz(1 HotEy

lk—q|=3 ’

Since the number of terms in the sum defining A, is bounded by a fixed constant (depending only on ) using a
classical computation we can write

—tp(Dy)
Ay SClkseuzg”e tp “(DX)X"”HLZ(I,H”%)

Ay < Cy sup ||a(Dy) x| ;7o < C3 sup | xaull gom < Callull gosm. (7.10)
kezd kezd !

Let us look at the term B,. Let Ny be an integer such that No > o + 5. Then B, is bounded by a finite sum of terms
of the form

Z (DS xg) (DEe™ PP a(Dy)) xiu L2(1,12)
lk—q|>3

with |a| 4 |8| < No. Due to the presence of the function D% x,, B, is therefore bounded by a finite number of terms
of the form

Z (DS xq) (DEe™ PPV a(Dy)) puu| L2(1,1L%).
lk—q|>3

Now we can write
F(t,x):= (D¢ xq)(DE e PPIa(Dy)) xiu(x) = (K (¢, x, ), (xxu)(-)) (7.11)
with
K(t,x,y) = Qn) (D xg) )Xk (») / G (1,8) dE
Rd

where ¥ € Cgo(Rd) is equal to one on the support of x and g (¢, &) = £Pe=1PE) q(£). Tt follows that for fixed (7, x) we
have

|F(tsx)| = “K(tvxv ')||H7(U+m) ”Xku”Haer' (712)
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Let N1 € N be fixed such that N1 > —(o + m). We shall show that for every N € N one can find Cy = Cn(T) >0
such that for every (¢,x) € [ x R? we have

C

D) 713

[0 o, = e

Indeed for || < Ny, Dﬁ K(t,x,y) is a finite linear combination of terms of the form

2.3 i= (D) (DI 0) [ €086 q . erde

where |v| + |A] = |u].
We notice that for all y € N¢ we have

DY (E*q (1, 8))| < C, (T)(5)NotMitm=lrl, (7.14)

Now let N € N be such that N > max(d + 1, No+ N1 +m +d + 1) and y € N9 with |yl = N.Then

(@ = "I, x.y) = (Di xg) @) (DY) () / ¢TI (—Dg) (E4q (1, 8)) dé.
It follows from (7.14) that
|(x =) I, x, )| < CL(D)|(DE xg) 0| [ (DY %) )]
Now since |k — g| > 3, on the support of (D;‘xq)(x)(D‘y’Zk)(y) we have |x — y| > %|k — q|. It follows that

Co(T) ~
|J(t,x,y)| < TV (D5 xq) @[ [(Dy %) ()]
which proves (7.13). According to (7.12) and (7.13) we obtain

C3(T) C5(T)

IF N 207 100y < lnc Xt || oim < [l o+
LL%) = (ke — )N (k—q)V " " Hia

which implies that B, < C4(T)||ul| HOHm - Combined with (7.9) and (7.10) this proves the estimate of the second term
in(7.8). O !

Corollary 7.11. Let m e Rand a € 7' (RY). Then for every o € R there exists C > 0 such that

e aDoul , | <Cll

ul ’ ul (Rd)
_1
forevery § > 0 and every u € H;l+m Z(RY).

7.4. An interpolation lemma

We shall use the following interpolation lemma for which we refer to [27, Théoreme 3.1].

Lemma 7.12. Let J = (—1,0) and t € R. Let f € L2(J, H'*2(R%)) be such that o.f € L2(J, H'"2(R%)). Then
fe C?([—l, 0], H’(Rd)) and there exists an absolute constant C > 0 such that

su 2y <C Clo .
30 1@ ey S M et any F CIO SN it
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7.5. Paradifferential operators

7.5.1. Symbolic calculus

In this section we quote some results which concern the symbolic calculus for paradifferential operators in the
framework of the uniformly local Sobolev spaces. Of course, here, the theory for the classical Sobolev spaces will be
assumed to be known (see [8] and [28]).

The following technical lemma will be used in the sequel. Here D = D,.

Lemma 7.13. Let x € Ci° RY) and ¥ € Ccse (R?) be equal to one on the support of x. Let ¥, 0 € S(RY). For every
m, o € R one can find a constant C > 0 such that

D v @7 D)(A = Tu)0 (27 D)ol g gy < Cllull g ey 101l oo ey - (7.15)
j=z-1
For every m, o,t € R one can find a constant C > 0 such that

lxxw (277 D) ((1 = X)u)0 (27 D)oy gy < Cllll o vy 101 171 Ry - (7.16)
(RY) ul ul
jz—1

Proof. We may assume m € N. Let us call Ay ; the term inside the sum in the left hand side of (7.15). Due to x, the
term Ay, ; is bounded by finite sum of terms of the form

At ja =2 [ (DY x) Ve (277 D) ((1 = X)) X4y (277 D)o |

where |o1| + |az| + o3| < m and Yo, = X2, B, = x*36. We are going to show that for large N € N we have

@) [(D* xa)¥a, (27 D) ((1 = i) | oo < Cn2IM @D 27N ]| o
(i) | XkOus (277 D)V o < CllvllLo0
Qi) | Kby (27 D)0 oo < CMED 0]l 1

where, as indicated, M; are fixed constants depending only on d, o, t. Then the lemma will follow from these esti-
mates.
To prove (i) we write

(D™ X1 (X)) W, (277 D) ((1 = Xo)u) (x)

= 2m) 227" x <(2f v =) P (27 — ), ﬁ(m X)) (1= X)) (x = ->‘Nu>.
=y
lx—yI¥

the duality H~°—H? we deduce that

The function y (D! (X)) (1 — Xk () belongs to W with semi-norms uniformly bounded in x. Using

[ (D% ) ¥, (277 D) (1 = X)) || oo < EN2IMHED27IN (0 — )Nt

and we conclude using Lemma 7.2.
The estimate (ii) is easy. To prove (iii) we take x € C(‘)>o (Rd ) equal to one on the support of ¥ and we write

| %es (277 D)o oo < | ey (277 D) kv | o + [ s (277 D)1 = X0 -
The second term is bounded exactly by the same method as (). For the first one we write
Hkbas (277 D) av () = 21) 12755 () By (27 (- = ). T (Ho()

and we use the H '—H' duality. O
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Remark 7.14. (i) Notice that the same estimates in (7.15), (7.16) hold if in the left hand side one 27/ is replaced by
27/=Jo where jo € Z is fixed.

(ii) Notice also that in the above proof we have proved that for all real numbers m, o, all N € Nand all ¢ € Cgo (Rd)
one can find a positive constant Cy ,, - such that

| x¥ (277 DY = Tu]| yym gty < CNomo 277V llull o ey (7.17)

for every j € N and every k € Z¢.
We introduce now the para-differential calculus.

Definition 7.15. Given m € R, p € [0, 1], F;” (RY) denotes the space of locally bounded functions on R? x (R4 \ {0}

which are C™ with respect to &, such that for all « € N the function x > 8§‘a(x, £) belongs to W#-*°(R?) and there
exists a constant C, > 0 such that

_ 1
[3¢a &) |yoooquay = Ca + 16" VI = 5.
For such a we set
Mj'(a)= sup sup ||(l + |§|)'“""’aga(~,s)|| Wo.oo(RA)" (7.18)

la|<2d+2 \E\Z%

Then f’;” (R?) denotes the subspace of I')" (R?) which consists of symbols a(x, &) which are homogeneous of
degree m with respect to £.

Given a symbol a we denote by T, the associated para-differential operator which is given by the formula

Tau(€) = Qm) ™ / 0(& —n, mMaE —n, My mia(ndny
Rd

where a(¢, n) = fRd e X ‘a(x, n)dx is the Fourier transform of a with respect to the first variable, v, 6 are two fixed
C® functions on R such that for 0 < &; < &, small enough

. ) 1
ym=1 ifin| =1, v =0 lfIUISE (7.19)
o0&, m=1 if [l <eilnl, 0, m) =0 if[¢|=ealnl. (7.20)
Notice that if the symbol a is independent of & the associated operator 7, is called a paraproduct.
Theorem 7.16. Let m, m’ € R, p € [0, 1].

@) Ifaerly (R, then for all u € R T, is continuous from H,Z(Rd) to Hx_m (RY) with norm bounded by
CMy (a).

(ii) Ifa € I"(RY), b € ™ (RY) then, for all . € R, T, Ty — Tap is continuous from H'y(R?) to H;j*’"*m'“’ (RY)
with norm bounded by

C(MI @M (b) + M @M (b)).

(iii) Let a € F;" (Rd). Denote by (T,)* the adjoint operator of T, and by a the complex conjugate of a. Then for
all uw e R (T,)* — Ty is continuous from HIZ (RY) to H;fmﬂ) (RY) with norm bounded by CMJ (a).

Proof. All these points are proved along the same lines. We shall only prove the first one and for simplicity we shall
consider symbols in I} (R?). We begin by the case where a is a bounded function. Then we write

xkTaue = xiTa () + xiTa ((1 = Xiu)
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where X € C$° (R?), ¥ =1 on the support of x. By the classical theory we have

| T G | gy < Cliall oo | Xall e < Cllallzoelleell -

Now we write

xiTa (1= Xiu) ZXk (27/D)a}{p(27/ D)((1 - Fu)}.

and the desired estimate follows immediately from the first inequality in Lemma 7.13.

We now assume a(x, &) = b(x)h(&) where h(§) = |§|m}~z(%) with /1 € COO(Sd_l). Then directly from the defini-
tion we have T, = T (D, )h(D,) and our estimate in (i) follows from the first step and from the estimate proved in
Proposition 7.9

| (DYDY ;0 < CllRN gt ga—1y ]| oo

In the last step we introduce (hy)ven+ an orthonormal basis of Lz(Sd 1 con51st1ng of eigenfunctions of the (self
adjoint) Laplace Beltrami operator A, = Asd 1 on L2891, ie. Ayhy, =22 hv By the Weyl formula we know that

Ay ~ cvd. Setting h, = |£|" hu(a)), w= |5—| when & # 0, we can write

a(x, &)= Z by(x)h,(E) where b,(x) = / a(x,w)fzv(w)da).

veN*

Sd—l
Since
22412 (x) = / A a(x, w)hy (0)do
Sd—l
we deduce that
10| Lo (rey < CA; P2 ME (@) (7.21)

Moreover there exists a positive constant K such that for all v > 1
17yl a1 ga-1y < KALHL (7.22)
Now using the steps above and Proposition 7.9 we obtain
| Zatell gy < DT, (Db (D]
v>1

< C D Ibullooqrey 1yl s sy 1l e

v>1

< CMG @] ypeen y 25D

v>1
_ 1
and A, @D =0+, O

7.5.2. Paraproducts
We have the following result of paralinearization of a product.

Proposition 7.17. Given two functions a € H I(Rd) ue HL’Z (RY) with o + B > 0 we can write
au=Tyu+ T,a+ R(a,u)
with

R <Cllal ge . 7.23
|R(@,w) a+ﬂ——(Rd)— I ”Hul(Rd)”””Hﬁ(Rd) (7.23)
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Proof. We have

R(a,u) = Z Z 2 /D a q)(Z_kD)u.

Jjz—llk—jl=1

We take x € Ci° (RY) satisfying (2.3), X € Cy (RY) equal to one on the support of x and we write a = Yra + (1 —
Xia, u = Yru + (1 — Xp)u. It follows that

xkR(a,u) = xk R(Xxa, Xxu) + xiSk(a, u).

The term yx R(Xra, Xxu) is estimated by the right hand side of (7.23) using Theorem 2.11 in [2]. The remainder
Xk Sk (a, u) is estimated using (7.16). O

Proposition 7.18. Let y, r, i be real numbers such that

d
r+u >0, y <r, y<r+u,—5.
There exists a constant C > 0 such that
” (@ —Tyu H H (RY) = C”a”H;l(Rd)||14||H$(Rd) (7.24)
whenever the right hand side is finite.
Proof. We write
xi(a — Tou = xi(Xxa — Tga) Xatt + Ry ku + Ro ku (7.25)
Ry ju = xx(Mxa — Tra) (1 = Xi)u (7.26)
Rok =—xaT-zpatt =—xk y_ S;((1 = %)a) A (w) (7.27)

J
where ¥ € C{° (R%) is equal to one on the support of x. According to Proposition 2.12 in [2] we have
| xx(Rea = Tga) Xty < Cllal g lluel e (7.28)

Now

Rk = X, T -5 Xka + xx R(1 — Xeu, Xxa)
_XkZS A= X0u)AjGa) +x Y, Ai(( = Xu)Aj(Fea).

li—jl=<1

Therefore we can apply (7.16) in Lemma 7.13 to Ry and Rk to conclude that the estimate (7.24) holds for these
terms. O

7.6. On transport equations
We will be using the following result about solutions of vector fields.

Lemma 7.19. Let I =[0,T], so > 1+ % and > 0. Then there exists F : Rt — R™ non-decreasing such that
for Vi € L¥(1, HORY)),y N L®(I, H*R?))y j=1,....d, f € L', H*RY)y, uo € H';(RY) and any solution
ue L, HORY)), of the problem

0 +V-Vou=f, U]r=0 = ug

we have
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Nl Loocr, iy < F(T NV I oor, 150),) { luoll g +11f WLt r, i,

T
+ sup </||u(a)|| 40
kezd 5 ul

where X € C3° (RY) is equal to one on the support of x.

TVl d)}

Proof. Set V), = X V. We have

O + Ty, - Vo Ot) = xi [+ Vie - (Vexi) xku + (Ty, — Vi) - Ve (i) =: gk (7.29)

Now computing the quantity % ||Xku(t)||iz’ using the above equation, the fact that | Ty - Vy + (T - Vi) *|l;2 2 <

C||V(t)llw1.»~ and the Gronwall inequality we obtain

t
lxxu@ |2 < f(”V”Ll(I,WLOC))i||Xk140||L2 + / lex(@)] 2 do}. (7.30)
0

Now we can write

(0 + Ty, - Vi) (D) () = (D) gk + [Tvie, (D) ] - Vi Graew).

By the symbolic calculus (see Theorem 7.16(if)) we have

[ Tvs (D] - Ve Gan) @) | 12 < C|V @O | g0 a1 2

Therefore using (7.30) and the Gronwall inequality we obtain

t
x| e < ]:(||V||Ll(1,wl~oo)){||Xku0||Hu + / lgx @) 40 do}. (7.31)
0

Coming back to the definition of g given in (7.29) we have

[V (Vexo) Xeu® ] g < C([VO[ Lo [T + 4 ] o [ Vi ] 1)

On the other hand we have
(Vi — Tv) - Ve Gtatt) = Tv, () - Vi + R(Vie, Ve ().
By Theorem 7.16(7) and an easy computation we see that
|79, o0 - Vi@ g + [R(Vie: Vi Ouan)) | = €@ [ e [ Ve -

Using (7.31), the Gronwall inequality, the embedding of H:}’ in W1.% and the above estimates we obtain the desired
conclusion. O

7.7. Commutation with a vector field

Lemma 7.20. Let [ = [0, T1, V € CO(1, W62 (R?)) for some & > 0 and consider a symbol p = p(t, x, §) which is
homogeneous of order m. Then there exists a positive constant K (independent of p, V) such that for any t € I and
any u € C(I, HY (RY)) we have

” [Tpa 8[ + TV . Vx]u(tv ')”Lgl(Rd) =< KC(Pv V)||M(t, ) ” H;]'(Rd) (732)
where

C(p, V) = M(r)n (p)”V”CO(I,Wl"'S*OC(Rd)) + M(')”(atp + V. vxP)”V”LOO(IXRd)'
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Proof. We proceed as in the proof of Theorem 7.16 and we begin by the case where m = 0 and p is a function.
We denote by R the set of continuous operators R(¢) from Lﬁl(Rd) to L2(R?) such that sup;e; | R@)u (@)l 2Ray 18
bounded by the right hand side of (7.32). We write

Xk[pr 0 +Ty - Vy]= Xk[Tpv o+ Ty - Vx])?k + Xk[Tps o+ Ty -V, ] — )’Zk)

where ¥ € C§° (R?) is equal to one on the support of x. By Lemma 2.17 in [2] the first operator in the right hand side
of the above equality belongs to R. Let us look at the second term. It is equal to

—xkTo,p(L = %) + xuTpTv - Va(1 = Xi) — xk Ty - Vi Tp(1 = Xi) =0 A+ B + C.

We can write

A=—xi Ty, prv.v, p(1 = Xi) + xxTv.v,p(1 = Xi) =: A1 + As.
By Theorem 7.16(7) the term A belongs to R. Now

Agu = xi Tdiv(pv)—pdivv (1 — Xiu

= Y ¥ (27 D)(div(pV) — pdiv V) xee(2/ D) ((1 = Fo)u).
jz—1

Since
| (277 Dy) (div(pV) = pdiv V)| ;o < C2/IIpllLec IV [l

we deduce from Remark 7.14 that A € R.
Let x € C° (R?) such that ¥ = 1 on the support of x and x =1 on the support of x. We write

B = xxTpxkTv - V(1 = Xi) + xxTp(1 = x)Tv - Vi (1 — Xx) =: B1 + Ba.
By Theorem 7.16(i) we have

IBrull 2 < Cllplizee|| xxTv - Vel = Xoul|
<Clipllee Y | (¥(277 D) V)27 xie1 (277 D) (1 = F)u

j=—1
<Clpll=llViiLe Y 27 |xxer (277 D) (1 = Fou 12
jz=1
and Remark 7.14 shows that B| € R.
Now by (7.15) and Theorem 7.16 we can write
I Boull ;2 < CllpliLee||Tv - V(1 — )N(k)u”H—ll
= ClipllzellVilizee lull 2
so By € R. The term C is estimated exactly by the same way, introducing a cut-off x after the operator Ty - V. Thus
CeR.

The case where p = a(t, x)h(£) and then were p is a general homogeneous symbol of order m is handled as in the
proof of Theorem 7.16. O
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Appendix A
Let € (0, 400),  # 1 and S(r) = e~ */P+I"_ Our aim is to prove the following result.

Proposition A.1. Let s, o € R. Assume that there exists to # 0 such that S(to) is continuous from CZ (RY) 1o Cc; (RY).

Thensfo—‘%‘x.

Proof. Without loss of generality we can assume that 7o = —1. Our hypothesis reads

AC>0: | S(—Du|

ety < Cllullcomay,  VueCg (RY). (A1)

Now if u € L®(R?) we set A u(€) = 927/ £)i(&), where ¢ € C§°(R?), with suppe C {& : 1 < |£| < 2}. Then for
fixed j € N we have A ju € CZ (R?) and

”A]u”C;’(Rd) < C2./U ||AjM||L00(Rd) < C/2ja ”M”Loo(Rd).

This follows from the fact that ||Aju||cg (R?) = SUPkeN ko | Ak A jull oo (rey and the fact that AgA; =0if |j — k| > 2.
Since A; commutes with S(—1), we see that

27¢ ” S(=DA;Aju ”LOO(Rd) = ” S(_l)AJ’“|

Ci(R)’
It follows from (A.1) applied to A ju with u € L>®(R?) that one can find a positive constant C such that

2Js ||S(—1)A.,'AA,~M||LOO(R‘,) < C2%||ull jogay Yu€L®(R?), VjeN. (A.2)
Letusset Tj = S(—1)A ;A ;. Then (A.2) shows that

Tl Looms oo < €275 (A.3)

Now
Tju(x) = Q2n)~¢ // NN EHEFI G2 (27 g )u(y) dy dé.
We shall set # =27/ and take j large enough. Then setting 1 = h£ we obtain

Tjue) = [ Kt = yus)dy
R4
where
Ki(2) = @iy~ / R CTHI G2 ) iy,
R4
We shall use the following well known lemma.

Lemma A.2. Let K € CO(R? x RY) be such that sup,cgrd [ |1K(x,y)|dy < +oo. Then the operator T defined by
Tu(x)= f K (x, y)u(y)dy is continuous from L°°(Rd) to L°°(Rd) and || T || poo— Lo = SUp, cpd f K (x,y)|dy.

It follows from this lemma that in our case we have

1Tl e = / K3 (@) dz.
R4
Setting z = h'~%s and Kj,(s) = K (h'~*s) we find that

1T 2o 0 = R4 / 1By(s)|ds (A4)

R4



394 T. Alazard et al. / Ann. 1. H. Poincaré — AN 33 (2016) 337-395

with

Kn(s) =(27Th)_d/ MG () d, P(s,m) =s-n+Inl". (A.5)
R4

Recall that supp<p c{n: % < |n| <2}. We have g—? =5 —i—al;ﬂ%.

Case 1: [s] < Here, on the support of ¢, we have

2 2\1 —af*
l «
‘ (s, 77)‘_”1“ |S|Z§m~
Therefore integrating by parts in the right hand side of (A.5) using the vector field L = l. | 3 ¢|2 Zk 1 3"% % we
obtain
|Kn(s)| < Cwh"N, VN eN. (A.6)

Case 2: |s| > 2!*le=1ly. On the support of ¢ we have

> ola=1ly
|1 o —

‘—(S n)‘ > |Is| =

Then using the same vector field as in the first case and noticing that d'¢ is independent of s when || > 2 we obtain

|1?h(s)| <Cyls|™¥r¥, VNeN. (A7)
Case 3: “‘"al <|s| < 2!tle=lly, Here the function ¢ has a critical point given by E |2 7 = —- It follows that
Inlll“’ lsl , which implies that n, = cas|s| -1, Moreover we have
32¢ 2 N
——— =a|n|* mg, mir=368ix — (@ —2wjwy, w=—.
on;ong J / / ! il

—2)d
Since det(m jx) = co # 0 we obtain (| det(5,— - n a m (s, ne))D b= = Ca.qdlS] Z(a D . The stationary phase formula implies that
there exists Cy > 0 such that

~ wd [P O (sm0)

Kin(s) = Ca,gh™h'? { W‘P 2(ne) + O(ha)} (A.8)
Using (A.4), (A.6), (A.7), (A.8) we can conclude that for j large enough we have

1T}l oo oo = CRAO—O R~ — CynN > C'h= %
Recalling that h =27/ we obtain

1Tl oo oo = C'20 % (A.9)

Then Proposition A.1 follows from (A.3) and (A.9). O
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