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Abstract

In this article, we develop the local Cauchy theory for the gravity water waves system, for rough initial data which do not decay 
at infinity. We work in the context of L2-based uniformly local Sobolev spaces introduced by Kato [22]. We prove a classical 
well-posedness result (without loss of derivatives). Our result implies also a local well-posedness result in Hölder spaces (with loss 
of d/2 derivatives). As an illustration, we solve a question raised by Boussinesq in [9] on the water waves problem in a canal. We 
take benefit of an elementary observation to show that the strategy suggested in [9] does indeed apply to this setting.
© 2014 
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1. Introduction

We are interested in this paper in the free boundary problem describing the motion of an incompressible, irrotational 
fluid flow moving under the force of gravitation, without surface tension, in case where the initial data are neither 
localized nor periodic. There are indeed two cases where the mathematical analysis is rather well understood: firstly 
for periodic initial data (in the classical Sobolev spaces Hs(Td)) and secondly when they are decaying to zero at 
infinity (for instance for data in Hs(Rd) with s large enough). With regards to the analysis of the Cauchy problem, 
we refer to the recent papers of Lannes [25], Wu [31,32] and Germain, Masmoudi and Shatah [19]. We also refer to 
the introduction of [2] or [7,10,12,23,26,30,33] for more references. However, one can think to the moving surface of 
a lake or a canal where the waves are neither periodic nor decaying to zero (see also [16]).

A most natural strategy would be to solve the Cauchy problem in the classical Hölder spaces Wk,∞(Rd). How-
ever even the linearized system at the origin (the fluid at rest) is ill-posed in these spaces (see Remark 2.4 below), 
and this strategy leads consequently to loss of derivatives. Having this loss of derivatives in mind, the other natural 

* Corresponding author.
E-mail address: alazard@dma.ens.fr (T. Alazard).

1 T.A. was supported by the French Agence Nationale de la Recherche, projects ANR-08-JCJC-0132-01 and ANR-08-JCJC-0124-01.

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.anihpc.2014.10.004
0294-1449/© 2014 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2014.10.004
http://www.elsevier.com/locate/anihpc
mailto:alazard@dma.ens.fr
http://dx.doi.org/10.1016/j.anihpc.2014.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2014.10.004&domain=pdf


338 T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395
approach is to work in the framework of L2 based uniformly local Sobolev spaces, denoted by Hs
ul(R

d). These spaces 
were introduced by Kato (see [22]) in the analysis of hyperbolic systems. Notice however, that compared to general 
hyperbolic systems, the water waves system appears to be non-local, which induces new difficulties. This framework 
appears to be quite natural in our context. Indeed, the uniformly local Sobolev spaces Hs

ul(R
d) contain, in particular, 

the usual Sobolev spaces Hs(Rd), the periodic Sobolev spaces Hs(Td) (spaces of periodic functions on Rd ), the sum 
Hs(Rd) +Hs(Td) and also the Hölder spaces Ws,∞(Rd) (and as a by-product of our analysis, we get well-posedness 
in Hölder spaces, with a loss of derivatives).

The aim of this paper is precisely to prove that the water waves system is locally (in time) well posed in the 
framework of uniformly local Sobolev spaces. Moreover, following our previous paper [2], the data for which we 
solve the Cauchy problem are allowed to be quite rough. Indeed we shall assume, for instance, that the initial free 

surface is the graph of a function which belongs to the space H
s+ 1

2
ul (Rd) for s > 1 + d

2 . In particular, in terms of 

Sobolev embedding, the initial free surface is merely W
3
2 ,∞(Rd) thus may have unbounded curvature. On the other 

hand this threshold should be compared with the scaling of the problem. Indeed it is known that the water wave 
system has a scaling invariance for which the critical space for the initial free surface is the space Ḣ 1+ d

2 (Rd) (or 
W 1,∞(Rd)). This shows that we solve here the Cauchy problem for data 1

2 above the scaling. (Notice that in [3] we 
prove well-posedness, in the classical Sobolev spaces, 1

2 − 1
12 above the scaling when d ≥ 2 and 1

2 − 1
24 when d = 1.)

As an illustration of the relevance of this low regularity Cauchy theory in the context of local spaces, we solve 
a question raised by Boussinesq in 1910 [9] on the water waves problem in a canal. In [9], Boussinesq suggested 
to reduce the water-waves system in a canal to the same system on R3 with periodic conditions with respect to one 
variable, by a simple reflection/periodization procedure (with respect to the normal variable to the boundary of the 
canal). However, this idea remained inapplicable for the simple reason that the even extension of a smooth function 
on the half line is in general merely Lipschitz continuous (due to the singularity at the origin). As a consequence, even 
if one starts with a smooth initial domain, the reflected/periodized domain will only be Lipschitz continuous. Here, 
we are able to take benefit of an elementary (though seemingly previously unnoticed) observation which shows that 
actually, as soon as we are looking for reasonably smooth solutions, the angle between the free surface and the vertical 
boundary of the canal is a right angle. Consequently, the reflected/periodized domain enjoys additional smoothness 
(namely up to C3), which is enough to apply our rough data Cauchy theory and to show that the strategy suggested 
in [9] does indeed apply. This appears to be the first result on Cauchy theory for the water-wave system in a domain 
with boundary.

The present paper relies on the strategies developed in our previous paper [2] and we follow the same scheme of 
proof. In Section 7, we develop the machinery of para-differential calculus in the framework of uniformly local spaces 
that we need later. We think that this section could be useful for further studies in this framework. In Section 3 we prove 
that the Dirichlet–Neumann operator is well defined in this framework (notice that this fact is not straightforward, 
see [18,15] for related works), and we give a precise description (including sharp elliptic estimates in very rough 
domains) on these spaces. In Section 4, we symmetrize the system and prove a priori estimates. In Section 5, we 
prove contraction estimates and well posedness. In Section 6, we give the application to the canal (and swimming 
pools). Finally, in Appendix A, we prove that in the context of Hölder spaces, the water-waves system linearized on 
the trivial solution (rest) is ill posed.

2. The problem and the result

In this paper we shall denote by t ∈ R the time variable and by x ∈ Rd (where d ≥ 1), y ∈ R, the horizontal and 
vertical space variables. We work in a fluid domain with free boundary and fixed bottom of the form

Ω = {
(t, x, y) ∈ [0, T ] × Rd × R : (x, y) ∈Ω(t)

}
where

Ω(t)= {
(x, y) ∈ Rd × R : η∗(x) < y < η(t, x)

}
.

Here the free surface is described by η, an unknown of the problem, and the bottom by a given function η∗. We shall 
only assume that η∗ is bounded and continuous. We assume that the bottom is the graph of a function for the sake 
of simplicity: our analysis applies whenever one has the Poincaré inequality given by Lemma 3.1 below. In the case 
without bottom, the Dirichlet Neumann operator in the simplest case of a flat interface (η= 0) is equal to |Dx |. It is 
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possible (though not completely trivial due to the 0 frequency singularity) to show that this operator acts on uniformly 
local spaces. It is hence very likely that our result should hold also in the case without bottom, but this would require 
additional material and we preferred not to pursue in this direction.

We shall denote by Σ the free surface and by Γ the bottom,

Σ = {
(t, x, y) ∈ [0, T ] × Rd × R : (x, y) ∈Σ(t)

}
where

Σ(t)= {
(x, y) ∈ Rd × R : y = η(t, x)

}
,

Γ = {
(x, y) ∈ Rd × R : y = η∗(x)

}
.

We shall use the following notations

∇x = (∂xi )1≤i≤d , ∇x,y = (∇x, ∂y), �x =
∑

1≤i≤d
∂2
xi
, �x,y =�x + ∂2

y .

2.1. The equations

The Eulerian velocity v :Ω → Rd+1 solves the incompressible and irrotational Euler equation

∂tv + (v · ∇x,y)v + ∇x,yP = −gey, divx,y v = 0, curlx,y v = 0 in Ω

where g > 0 is the acceleration of the gravity, ey the vector (x = 0, y = 1) and P the pressure. The problem is then 
given by three boundary conditions:

• a kinematic condition (which states that the free surface moves with the fluid)

∂tη=
√

1 + |∇xη|2(v · n) on Σ,

where n denotes the unit normal vector to Σ ,
• a dynamic condition (that expresses a balance of forces across the free surface)

P = 0 on Σ,

• the “solid wall” boundary condition on the bottom Γ

v · ν = 0 on Γ,

where ν denotes the normal vector to Γ whenever it exists.

Since the motion is incompressible and irrotational there exists a velocity potential φ :Ω → R such that v = ∇x,yφ,

thus �x,yφ = 0 in Ω . We shall work with the Zakharov/Craig–Sulem formulation of the water waves equations. We 
introduce

ψ(t, x)= φ
(
t, x, η(t, x)

)
and the Dirichlet–Neumann operator

G(η)ψ =
√

1 + |∇xη|2
(
∂φ

∂n

∣∣∣∣
Σ

)
= (∂yφ)

(
t, x, η(t, x)

)− ∇xη(t, x) · (∇xφ)
(
t, x, η(t, x)

)
.

Then (see [14] or [11]) the water waves system can be written in terms of the unknown η, ψ as⎧⎨⎩
∂tη=G(η)ψ,

∂tψ = −1

2
|∇xψ |2 + 1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2 − gη.
(2.1)

It is useful to introduce the vertical and horizontal components of the velocity. We set
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⎧⎨⎩B = (vy)|Σ = ∇xη · ∇xψ +G(η)ψ

1 + |∇xη|2 ,

V = (vx)|Σ = ∇xψ −B∇xη.

(2.2)

We recall also that the Taylor coefficient defined by a = − ∂P
∂y

|Σ can be defined in terms of η, ψ, B, V only (see 
Section 7.2 below and §4.3.1 in [23]).

2.2. The uniformly local Sobolev spaces

We recall here the definition of the uniformly local Sobolev spaces introduced by Kato in [22].
Recall that there exists χ ∈ C∞(Rd) with suppχ ⊂ [−1, 1]d , χ = 1 near [− 1

2 , 
1
2 ]d such that∑

q∈Zd

χq(x)= 1, ∀x ∈ Rd (2.3)

where

χq(x)= χ(x − q).

Definition 2.1. For s ∈ R the space Hs
ul(R

d) is the space of distributions u ∈Hs
loc(R

d) such that

‖u‖Hs
ul(R

d ) := sup
q∈Zd

‖χqu‖Hs(Rd ) <+∞.

Endowed with this norm Hs
ul(R

d) is a Banach space. Moreover its definition is independent of the choice of the 
function χ in C∞

0 (Rd) satisfying (2.3) (see Lemma 7.1 below).

Proposition 2.2. One has the following embeddings:

(1) If s > d
2 and s − d

2 /∈ N, Hs
ul(R

d) is continuously embedded in Ws− d
2 ,∞(Rd).

(2) If m ∈ N, Wm,∞(Rd) is continuously embedded in Hm
ul (R

d).
(3) If s ≥ 0, Ws+ε,∞(Rd) is continuously embedded in Hs

ul(R
d) for ε > 0.

2.3. The main result

The goal of this article is to prove the following result.

Theorem 2.3. Let d ≥ 1, s > 1 + d
2 . Assume that η∗ is a bounded continuous function on Rd . Consider an initial data 

(η0, ψ0) satisfying the following conditions

(i) η0 ∈H
s+ 1

2
ul (Rd), ψ0 ∈H

s+ 1
2

ul (Rd), V0 ∈Hs
ul(R

d), B0 ∈Hs
ul(R

d),
(ii) there exists h > 0 such that η0(x) − η∗(x) ≥ 2h, ∀x ∈ Rd ,

(iii) there exists c > 0 such that a0(x) ≥ c, ∀x ∈ Rd ,

where a0 denotes the Taylor coefficient at time t = 0.
Then there exists T > 0 such that the Cauchy problem for the system (2.1) with initial data (η0, ψ0) at t = 0 has a 

unique solution

(η,ψ) ∈ L∞([0, T ],H s+ 1
2

ul

(
Rd

)×H
s+ 1

2
ul

(
Rd

))
such that

1. (V , B) ∈ L∞([0, T ], Hs
ul(R

d) ×Hs
ul(R

d)),
2. η(t, x) − η∗(x) ≥ h, ∀(t, x) ∈ [0, T ] × Rd ,
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3. a(t, x) ≥ 1
2c, ∀(t, x) ∈ [0, T ] × Rd ,

4. for any s′ < s,

(η,ψ,V,B) ∈C0([0, T ],H s′+ 1
2

ul

(
Rd

)×H
s′+ 1

2
ul

(
Rd

)×Hs′
ul

(
Rd

)×Hs′
ul

(
Rd

))
.

Remark 2.4.
• Theorem 2.3 implies local well posedness in Hölder spaces: indeed, writing Hs =Hs(Rd), Ws,∞ =Ws,∞(Rd)

and assuming that

(η0,ψ0,V0,B0) ∈ Wσ+ 1
2 +ε,∞ ×Wσ+ 1

2 +ε,∞ ×Wσ+ε,∞ ×Wσ+ε,∞

⊂H
σ+ 1

2 + ε
2

ul ×H
σ+ 1

2 + ε
2

ul ×H
σ+ ε

2
ul ×H

σ+ ε
2

ul

for some σ > 1 + d/2 and ε > 0, then we get a solution

(η,ψ,V,B) ∈ C0([0, T ],Hσ+ 1
2 + ε

2
ul ×H

σ+ 1
2 + ε

2
ul ×H

σ+ ε
2

ul ×H
σ+ ε

2
ul

)
⊂ C0([0, T ],Wσ+ 1

2 − d
2 + ε

2 ,∞ ×Wσ+ 1
2 − d

2 + ε
2 ,∞ ×Wσ− d

2 + ε
2 ,∞ ×Wσ− d

2 + ε
2 ,∞)

.

• It is very likely that this loss of d/2 derivatives cannot be completely avoided. To explain this, we begin by 
recalling that for σ ∈ R the Zygmund space Cσ∗ (Rd) is defined, by means of a Littlewood–Paley decomposition, as 
the space of tempered distributions u such that

‖�ju‖L∞(Rd ) ≤ C2−jσ , ∀j ≥ −1. (2.4)

Recall also that the linearized water waves equation around the zero solution can be written as

∂tu+ i|Dx | 1
2 u= 0.

The solution of this equation, with initial data u0, is given by

u(t)= S(t)u0, S(t)= exp
(−it |Dx | 1

2
)
.

Proposition A.1 shows that for t = 0 the operator S(t) is not bounded from the Zygmund space Cσ∗ (Rd) to Cs∗(Rd)

if s > σ − d
4 , remembering that Cσ∗ (Rd) =Wσ,∞(Rd) if σ ≥ 0, σ /∈ N. (For positive results see Fefferman and Stein 

[17, p. 160].) Thus even in the linear case we have a loss of d4 derivative.
• The result in Appendix A also shows that, in the presence of surface tension, a similar well posedness result in 

the framework of uniformly local Sobolev space is rather unlikely to hold. Indeed, in the presence of surface tension, 
the linearized operator around the solution (η, ψ) = (0, 0) can be written (see [1]) with u = |D| 1

2 η+ iψ as

∂tu+ i|Dx | 3
2 u= 0, u|t=0 = u0.

According to Proposition A.1 the loss of derivatives in x from u0 to the solution u(t, ·), t = 0, is at least 3d
4 whereas 

an analogue of the above theorem would give a loss of at most d2 .
• The above theorem is not contained nor contains entirely the analogue result proved in [2] in the framework of 

classical Sobolev spaces.

• The assumption that ψ0 ∈ H
s+ 1

2
ul should be replaced by the more natural assumption ∇xψ0 ∈ H

s− 1
2

ul . However, 
this improvement would again require a few more developments and we preferred to keep this simpler assumption.

3. The Dirichlet–Neumann operator

3.1. Definition of the Dirichlet–Neumann operator

For d ≥ 1 we set{
Ω = {

(x, y) ∈ Rd+1 : η∗(x) < y < η(x)
}
,

Σ = {
(x, y) ∈ Rd+1 : y = η(x)

} (3.1)
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where η∗ is a fixed bounded continuous function on Rd and η ∈W 1,∞(Rd). We shall assume that there exists h > 0
such that{

(x, y) ∈ Rd+1 : η(x)− h≤ y < η(x)
}⊂Ω. (3.2)

In [2] the Dirichlet–Neumann operator G(η) associated to Ω has been defined as a continuous operator from H
1
2 (Rd)

to H− 1
2 (Rd). Our aim here is to prove that it has a unique extension to the space H

1
2

ul (R
d) (see Theorem 3.8 below). 

Define first the space H 1
ul(Ω) by

u ∈H 1
ul(Ω) ⇔ ‖u‖H 1

ul(Ω) := sup
q∈Zd

‖χqu‖H 1(Ω) <+∞.

Each element u ∈ H 1
ul(Ω) has a trace on Σ (see below) which will be denoted by γ0u. We introduce the subspace 

H
1,0
ul (Ω) ⊂H 1

ul(Ω) defined by

H
1,0
ul (Ω)= {

u ∈H 1
ul(Ω) : γ0u= 0

}
.

Then we have the following Poincaré inequality.

Lemma 3.1. There exists C > 0 depending on ‖η‖L∞(Rd ) + ‖η∗‖L∞(Rd ) such that for α ∈ C∞
0 (Rd) non-negative and 

u ∈H
1,0
ul (Ω) we have
¨

Ω

α(x)
∣∣u(x, y)∣∣2 dxdy ≤ C

¨

Ω

α(x)
∣∣∂yu(x, y)∣∣2 dxdy.

Proof. Let u ∈H
1,0
ul (Ω). It is easy to see that there exists a sequence (un) of functions which are C1 in Ω and vanish 

near the top boundary y = η(x) such that

lim
n→+∞‖un − u‖H 1(Ω∩{|x|≤K}) = 0.

As a consequence, it is enough to prove the result for such functions. Let α ∈ C∞
0 (Rd), α ≥ 0. We can write

u(x, y)=
yˆ

η(x)

∂su(x, s) ds

from which we deduce

α(x)
∣∣u(x, y)∣∣2 ≤ ‖η− η∗‖L∞α(x)

η(x)ˆ

η∗(x)

∣∣∂su(x, s)∣∣2ds.
Integrating this inequality on Ω we obtain¨

Ω

α(x)
∣∣u(x, y)∣∣2dx dy ≤ ‖η− η∗‖L∞

¨

Ω

α(x)
∣∣∂yu(x, y)∣∣2 dxdy. �

Remark 3.2. Let

H 1,0(Ω)= {
u ∈ L2(Ω) : ∇x,yu ∈L2(Ω), and u|y=η(x) = 0

}
,

then we also have the Poincaré inequality¨
α(x)

∣∣u(x, y)∣∣2 ≤ C

¨
α(x)

∣∣∂yu(x, y)∣∣2 dxdy (3.3)
Ω Ω
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for all u ∈ H 1,0(Ω), α ∈ C∞
b (Rd), α ≥ 0, with a constant C independent of α. Indeed, this follows from the same 

computation as above using the fact that any u ∈H 1,0(Ω) can be approximated by a sequence of functions which are 
C∞ in Ω and vanish near y = η(x).

Proposition 3.3. For every ψ ∈H
1
2

ul (R
d) the problem

�x,yΦ = 0 in Ω, Φ|Σ =ψ,
∂Φ

∂ν

∣∣∣∣
Γ

= 0, (3.4)

has a unique solution Φ ∈H 1
ul(Ω) and there exists a function F : R+ → R+ independent of (ψ, η) such that

‖Φ‖H 1
ul(Ω) ≤ F

(‖η‖W 1,∞(Rd )

)‖ψ‖
H

1
2

ul (R
d )

.

Proof. Before giving the proof we have to precise the meaning of the boundary condition ∂Φ
∂ν

|Γ = 0 since Γ is 
only C0. This condition means that

¨

Ω

∇x,yΦ(x, y) · ∇x,y

(
α(x)θ(x, y)

)
dx dy = 0 (3.5)

for every θ ∈H 1(Ω) (the usual Sobolev space) with suppθ ⊂ {(x, y) : η∗(x) ≤ y ≤ η∗(x) + ε} for a small ε > 0 and 
every α ∈ C∞

0 (Rd).
Notice that if η∗ ∈W 2,∞(Rd) the Green formula (see [20, p. 62]) shows that (3.5) is equivalent to ∂Φ

∂ν
|Γ = 0.

Lemma 3.4. We have¨

Ω

∇x,yΦ(x, y) · ∇x,y

(
α(x)θ(x, y)

)
dx dy = 0 (3.6)

for every θ ∈H 1(Ω) with γ0θ = 0 and every α ∈ C∞
0 (Rd).

Proof. If θ has support in a neighborhood of Γ, VΓ = {(x, y) : x ∈ Rd, η∗(x) ≤ y ≤ η∗(x) + ε}, this follows 
from (3.5). Assume that θ vanishes in a neighborhood of Γ . Let Ω0 = {(x, y) : η∗(x) + ε

2 < y < η(x)} for ε > 0
small enough. Then θ ∈H 1(Ω0) and θ |∂Ω0 = 0. Thus θ ∈H 1

0 (Ω0). Since Ω0 has a Lipschitz upper boundary there 
exists a sequence θn ∈ C∞

0 (Ω0) which converges to θ in H 1(Ω0) (see [20, Corollary 1.5.1.6]). Now by the equation 
we have

0 = 〈�x,yΦ,αθn〉 = −
¨

Ω

∇x,yΦ(x, y) · ∇x,y

(
α(x)θn(x, y)

)
dx dy.

Moreover∣∣∣∣¨
Ω

∇x,yΦ(x, y) · ∇x,y

(
α(x)(θn − θ)(x, y)

)
dx dy

∣∣∣∣≤ C‖Φ‖H 1
ul(Ω)‖θn − θ‖H 1(Ω0)

.

Therefore, passing to the limit, we obtain (3.6) for such θ . �
Part 1. Uniqueness: Let us denote by Φ the difference of two solutions in H 1

ul(Ω) of (3.4). Then γ0Φ = 0. Now 

we take in (3.6) α(x) = e−
〈x〉
A ζ(

〈x〉
B
) where A, B are large constants to be chosen, ζ ∈ C∞(R), ζ(t) = 1 when |t | ≤ 1

2 , 
supp ζ ⊂ {t ∈ R : |t | ≤ 1}, 0 ≤ ζ ≤ 1 and θ = α1(x)Φ where α1 ∈ C∞

0 (Rd) is equal to one on the support of α. Then 
θ ∈H 1(Ω) and γ0θ = 0. We can therefore use Lemma 3.4 and we obtain
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I :=
¨

Ω

α(x)
∣∣∇x,yΦ(x, y)

∣∣2 dx dy
= 1

A

¨

Ω

(∇x〈x〉
)
α(x)Φ(x, y) · ∇xΦ(x, y) dx dy

− 1

B

¨

Ω

e−
〈x〉
A ζ ′

( 〈x〉
B

)
Φ(x,y)

(∇x〈x〉
) · ∇xΦ(x, y) dx dy

= (1)+ (2). (3.7)

By the Cauchy–Schwarz inequality we have∣∣(1)∣∣≤ C1

A

(¨
Ω

α(x)
∣∣∇xΦ(x, y)

∣∣2 dx dy) 1
2
(¨

Ω

α(x)
∣∣Φ(x,y)∣∣2 dx dy) 1

2

.

Using Lemma 3.1 we deduce that∣∣(1)∣∣≤ C2

A

(¨
Ω

α(x)
∣∣∇xΦ(x, y)

∣∣2 dx dy +
¨

Ω

α(x)
∣∣∂yΦ(x, y)∣∣2 dx dy).

Taking A large enough we see that the term (1) can be absorbed by the left hand side of (3.7). We then fix A. It follows 
that

I ≤ C3

B

∑
q∈Zd

∑
k∈Zd

¨

Ω

e−
〈x〉
A

∣∣∣∣ζ ′
( 〈x〉
B

)∣∣∣∣∣∣χq(x)Φ(x, y)∣∣∣∣∇x

(
χk(x)Φ(x, y)

)∣∣dx dy.
If |k − q| ≥ 2 we have suppχq ∩ suppχk = ∅. Therefore we have |k − q| ≤ 1 (essentially k = q). Moreover in 
the integral in the right hand side we have |x − q| ≤ 1 and 1

2 ≤ 〈x〉
B

≤ 1. If B is large enough we have therefore 
B
3 ≤ |q| ≤ 3B and |x| ≥ 1

2 |q|. It follows that

I ≤ C4

B

∑
B
3 ≤|q|≤3B

Iq

where

Iq = e
− 〈q〉
C5A

(¨
Ω

∣∣χq(x)Φ(x, y)∣∣2 dx dy) 1
2
(¨

Ω

∣∣∇x

(
χq(x)Φ(x, y)

)∣∣2 dx dy) 1
2

so using again the Poincaré inequality we obtain

I ≤ C6

B

∑
B
3 ≤|q|≤3B

e
− 〈q〉
C5A

¨

Ω

∣∣∇x,y

(
χq(x)Φ(x, y)

)∣∣2 dx dy
≤ C7

B

( ∑
B
3 ≤|q|≤3B

e
− 〈q〉
C5A

)
‖Φ‖2

H 1
ul(Ω)

.

Since the cardinal of the set {q ∈ Zd : B3 ≤ |q| ≤ 3B} is bounded by CBd we obtain eventually¨

Ω

e−
〈x〉
A θ

( 〈x〉
B

)∣∣∇x,yΦ(x, y)
∣∣2 dx dy ≤ C8B

d−1e−c
〈B〉
A ‖Φ‖2

H 1
ul(Ω)

.

Letting B go to +∞ and applying Fatou’s Lemma we obtain¨

Ω

e−
〈x〉
A

∣∣∇x,yΦ(x, y)
∣∣2 dx dy = 0,

which implies that ∇x,yΦ(x, y) = 0 in Ω thus Φ = 0 since Φ|Σ = 0.
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Part 2: Existence. We first recall the situation when ψ ∈ H
1
2 (Rd). In the following lemma, whose proof is given 

below, in Section 4.2, we construct a suitable extension of ψ to Ω .

Lemma 3.5. Let ψ ∈H
1
2 (Rd). One can find ψ such that

(1) ψ ∈H 1(Ω), suppψ ⊂ {(x, y) : η(x) − h ≤ y ≤ η(x)},
(2) ψ |y=η(x) =ψ(x),
(3) ‖ψ‖H 1(Ω) ≤ F(‖η‖W 1,∞(Rd ))‖ψ‖

H
1
2 (Rd )

.

Then (see [2] for more details) the problem

�x,yu= −�x,yψ in Ω, u|Σ = 0,
∂u

∂ν

∣∣∣∣
Γ

= 0

has a unique solution u ∈H 1,0(Ω). This solution, which is the variational one, is characterized by
¨

Ω

∇x,yu(x, y) · ∇x,yθ(x, y)dxdy = −
¨

Ω

∇x,yψ(x, y) · ∇x,yθ(x, y)dxdy (3.8)

for every θ ∈H 1,0(Ω). It satisfies

‖∇x,yu‖L2(Ω) ≤C‖ψ‖
H

1
2 (Rd )

.

Then Φ = u +ψ solves the problem (3.4).

Let us consider now the case where ψ ∈H
1
2

ul (R
d). If q ∈ Zd and χq is defined in (2.3) we set

ψq = χqψ ∈H
1
2
(
Rd

)
.

By Lemma 3.5 one can find ψq ∈H 1(Ω) such that ψq |y=η(x) =ψq(x) and

(i) suppψq ⊂ {
(x, y) : |x − q| ≤ 2, η(x)− h≤ y ≤ η(x)

}
(ii) ‖ψq‖H 1(Ω) ≤ F

(‖η‖W 1,∞(Rd )

)‖ψq‖
H

1
2 (Rd )

.

To achieve (i) we multiply the function constructed in the lemma by χ̃q(x), where supp χ̃ is contained in {x : |x| ≤ 2}
and χ̃ = 1 on the support of χ .

Let uq be the variational solution, described above, of the equation �x,yuq = −�x,yψq . Our aim is to prove that 

the series 
∑

q∈Zd uq is convergent in the space H 1,0
ul (Ω). This will be a consequence of the following lemma.

Lemma 3.6. There exist δ > 0 and F : R+ → R+ non-decreasing such that for all q ∈ Zd we have∥∥eδ〈x−q〉∇x,yuq
∥∥
L2(Ω)

≤ F
(‖η‖W 1,∞(Rd )

)‖ψq‖
H

1
2 (Rd )

. (3.9)

Assuming that this lemma has been proved, one can write

‖χk∇x,yuq‖L2(Ω) = ∥∥χke−δ〈x−q〉eδ〈x−q〉∇x,yuq
∥∥
L2(Ω)

≤ Ce−δ〈k−q〉F
(‖η‖W 1,∞

)‖ψq‖
H

1
2

≤ C′e−δ〈k−q〉F
(‖η‖W 1,∞

)‖ψ‖
H

1
2

ul

. (3.10)

Let us set SQ =∑
|q|≤Q uq . First of all (SQ) converges to u =∑

q∈Zd uq in D′(Ω). Indeed if ϕ ∈ C∞
0 (Ω) there exists 

a finite set A ⊂ Zd such that ϕ =∑
k∈A χkϕ. Then using Lemma 3.1 and (3.10) we can write
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∣∣〈uq,ϕ〉∣∣≤∑
k∈A

∣∣〈χkuq,ϕ〉∣∣≤ C
∑
k∈A

‖χk∂yuq‖L2(Ω)‖ϕ‖L2(Ω)

≤Ce−δ〈q〉F
(‖η‖W 1,∞

)‖ψ‖
H

1
2

ul

‖ϕ‖L2(Ω)

for large |q|.
On the other hand (3.10) shows that for fixed k the series 

∑
q∈Zd χkuq is absolutely convergent in H 1,0

ul (Ω). 

Therefore (χkSQ) converges to (χku) in H 1,0
ul (Ω) and we can write using (3.10),

‖χk∇x,yu‖L2(Ω) = lim
Q→+∞

∥∥χk∇x,yS
Q
∥∥
L2(Ω)

≤
∑
q∈Zd

e−δ〈k−q〉F
(‖η‖W 1,∞

)‖ψ‖
H

1
2

ul

.

Therefore u ∈H
1,0
ul (Ω) and

‖∇x,yu‖L2
ul(Ω) ≤ F

(‖η‖W 1,∞
)‖ψ‖

H
1
2

ul

. (3.11)

Finally Φ = u +ψ solves the problem (3.4) and we have

‖Φ‖H 1
ul(Ω) ≤ F

(‖η‖W 1,∞
)‖ψ‖

H
1
2

ul

which completes the proof of Proposition 3.3 assuming Lemma 3.6. �
Proof of Lemma 3.6. We set

wε(x)= 〈x − q〉
1 + ε〈x − q〉 ·

Let uq be the variational solution in H 1,0(Ω) of �uq = −�ψq . According to the variational formulation (3.8), with 
θ = e2δwε(x)uq , we have¨

Ω

∇x,yuq · ∇x,y

(
e2δwε(x)uq

)
dx dy = −

¨

Ω

∇x,yψq · ∇x,y

(
e2δwε(x)uq

)
dx dy.

Therefore¨

Ω

e2δwε(x)∇x,yuq · ∇x,yuq dx dy = −
¨

Ω

e2δwε(x)∇x,yψq · ∇x,yuq dx dy

− 2δ
¨

Ω

e2δwε(x)uq∇xψq · ∇xwε dx dy

− 2δ
¨

Ω

e2δwε(x)uq∇xuq · ∇xwε dx dy. (3.12)

Now ∇xwε is uniformly bounded in L∞ with respect to ε and x and, on the support of ψq , we have eδwε(x) ≤ eCδ . 
Consequently, using the Cauchy–Schwarz inequality, the inequality (3.3) with α = e2δwε(x) and taking δ small enough 
we obtain¨

Ω

e2δwε(x)|∇x,yuq |2 dx dy ≤ C‖ψq‖2
H 1(Ω)

. (3.13)

We deduce when ε goes to 0, using the Fatou Lemma, that∥∥eδ〈x−q〉∇x,yuq
∥∥
L2(Ω)

≤ C‖ψq‖H 1(Ω) ≤F
(‖η‖W 1,∞(Rd )

)‖ψq‖
H

1
2 (Rd )

.

This completes the proof. �
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3.2. Straightening the boundary

Before studying more precisely the properties of the Dirichlet–Neumann operator, we first straighten the boundaries 
of

Ωh = {
(x, y) ∈ Rd+1 : η(x)− h < y < η(x)

}
. (3.14)

Lemma 3.7. There is an absolute constant C > 0 such that if we take δ > 0 so small that

δ‖η‖W 1,∞(Rd ) ≤ h

2C

then the map (x, z) �→ (x, ρ(x, z)) where

ρ(x, z)= (1 + z)eδz〈Dx 〉η(x)− z
{
e−δ(1+z)〈Dx 〉η(x)− h

}
(3.15)

is a diffeomorphism from Ω̃ = {(x, z) : x ∈ Rd, −1 < z < 0} to Ωh.

Proof. First of all we have ρ(x, 0) = η(x), ρ(x, −1) = η(x) − h. Moreover we have ∂zρ ≥ h
2 . Indeed we have

∂zρ = η+ (
eδz〈Dx 〉η− η

)+ (1 + z)δeδz〈Dx 〉〈Dx〉η
− {

η− h+ (
e−δ(1+z)〈Dx 〉η− η

)}+ zδe−δ(1+z)〈Dx 〉〈Dx〉η.
Now for any λ < 0 the symbol a(ξ) = eλ〈ξ〉 satisfies the estimate |∂αξ a(ξ)| ≤ Cα〈ξ〉−|α| where Cα is independent 
of λ. Therefore its Fourier transform is an L1(Rd) function whose norm is uniformly bounded. This implies that 
‖a(D)f ‖L∞(Rd ) ≤K‖f ‖L∞(Rd ) with K independent of λ. Since eδλ〈Dx〉η− η= δλ ́ 1

0 e
δtλ〈Dx 〉〈Dx〉η dt we can write∥∥eδz〈Dx 〉η− η

∥∥
L∞(Rd )

+ δ
∥∥eδz〈Dx 〉〈Dx〉η

∥∥
L∞(Rd )

+ ∥∥e−δ(1+z)〈Dx 〉η− η
∥∥
L∞(Rd )

+ δ
∥∥e−δ(1+z)〈Dx 〉〈Dx〉η

∥∥
L∞(Rd )

≤ Cδ‖η‖W 1,∞(Rd ) ≤ h

2
.

This completes the proof. �
From the above computation we deduce that

∂zρ(x, z)≥ h

2
and ‖∇x,zρ‖L∞(Rd ) ≤ C‖η‖W 1,∞(Rd ). (3.16)

We shall denote by κ the inverse of ρ,

ρ(x, z)= y ⇐⇒ z= κ(x, y).

If we set

f̃ (x, z)= f
(
x,ρ(x, z)

)
we have⎧⎪⎪⎨⎪⎪⎩

∂f

∂y

(
x,ρ(x, z)

)= 1

∂zρ
∂zf̃ (x, z)=:Λ1f̃ (x, z)

∇xf
(
x,ρ(x, z)

)=
(

∇xf̃ − ∇xρ

∂zρ
∂zf̃

)
(x, z)=:Λ2f̃ (x, z).

(3.17)

We introduce the space

H1
ul(Ω̃)= {

ũ ∈L2
ul(Ω̃) :Λj ũ ∈L2

ul(Ω̃), j = 1,2
}
,

endowed with the norm



348 T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395
‖ũ‖H1
ul(Ω̃) = sup

q∈Zd

‖χqũ‖L2(Ω̃) +
2∑

j=1

sup
q∈Zd

‖χqΛj ũ‖L2(Ω̃).

Then according to Lemma 7.12 we see that the elements of H1
ul(Ω̃) have a trace on z= 0 belonging to the space 

H
1
2
ul(R

d). Then we introduce the subspace H1,0
ul (Ω̃) ⊂ H1

ul(Ω̃) defined as follows

H1,0
ul (Ω̃)= {

ũ ∈ H1
ul(Ω̃) : ũ|z=0 = 0

}
.

It follows that we have

u ∈H 1
ul(Ω) ⇔ ũ ∈ H1

ul(Ω̃), u ∈H
1,0
ul (Ω) ⇔ ũ ∈H1,0

ul (Ω̃).

3.3. Definition of the Dirichlet–Neumann operator

We can now define the Dirichlet–Neumann operator. Formally we set for ψ ∈H
1
2

ul (R
d)

G(η)ψ(x)= (
1 + |∇xη|2

) 1
2
∂Φ

∂n

∣∣∣∣
Σ

=
(
∂Φ

∂y
− ∇xη · ∇xΦ

)∣∣∣∣
Σ

= (Λ1Φ̃ − ∇xη ·Λ2Φ̃)|z=0 = (Λ1Φ̃ − ∇xρ ·Λ2Φ̃)|z=0 (3.18)

where Φ is the solution described in Lemma 3.3 and Λj is as defined by (3.17). Our aim is to prove the following 
theorem.

Theorem 3.8. Let d ≥ 1 and η ∈ W 1,∞(Rd). Then the Dirichlet–Neumann operator is well defined on H
1
2

ul (R
d) by 

(3.18). Moreover there exists a non-decreasing function F : R+ → R+ such that for all η ∈W 1,∞(Rd)∥∥G(η)ψ∥∥
H

− 1
2

ul (Rd )

≤ F
(‖η‖W 1,∞(Rd )

)‖ψ‖
H

1
2

ul (R
d )

.

Proof. Set U =Λ1Φ̃ − ∇xρ ·Λ2Φ̃ and J = (−1, 0). We shall prove that for all q ∈ Zd ,

‖χqU‖L2(J,L2) ≤ F
(‖η‖W 1,∞

)‖ψ‖
H

1
2

ul

, (3.19)

‖χq∂zU‖L2(J,H−1) ≤ F
(‖η‖W 1,∞

)‖ψ‖
H

1
2

ul

, (3.20)

where F : R+ → R+ is independent of q and η. Then Theorem 3.8 will follow from (3.19), (3.20) and Lemma 7.12. 
Recall that Φ̃ = ũ+ ψ̃ . Now the estimate (3.19) follows from (3.11), (3.17) and Corollary 7.11 with σ = 0 and m = 1. 
To prove (3.20) we observe that

∂zU = −∇x · ((∂zρ)Λ2Φ̃
)
. (3.21)

Indeed we have

∂zU = ∂zΛ1Φ̃ − ∇x∂zρ ·Λ2Φ̃ − ∇xρ · ∂zΛ2Φ̃

= (∂zρ)Λ
2
1Φ̃ − ∇x∂zρ ·Λ2Φ̃ + (∂zρ)(Λ2 − ∇x) ·Λ2Φ̃

= (∂zρ)
(
Λ2

1 +Λ2
2

)
Φ̃ − ∇x · ((∂zρ)Λ2Φ̃

)
so (3.21) follows from the fact that (Λ2

1 +Λ2
2)Φ̃ = 0. Then (3.20) follows from the estimates used to bound (3.19)

and the Poincaré inequality (3.3). The proof of Theorem 3.8 is complete. �
We state now a consequence of the previous estimates which will be used in the sequel. Notice first that the equation 

(Λ2
1 +Λ2

2)Φ̃ = 0 is equivalent to the equation(
∂2
z + α�x + β · ∇x∂z − γ ∂z

)
Φ̃ = 0, (3.22)
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where

α := (∂zρ)
2

1 + |∇xρ|2 , β := −2
∂zρ∇xρ

1 + |∇xρ|2 , γ := 1

∂zρ

(
∂2
z ρ + α�xρ + β · ∇x∂zρ

)
. (3.23)

Corollary 3.9. Let s > 1 + d
2 and J = (−1, 0). There exists a non-decreasing function F : R+ → R+ such that

‖∇x,zΦ̃‖
X

− 1
2

ul (J )

≤ F
(‖η‖

H
s+ 1

2
ul (Rd )

)‖ψ‖
H

1
2

ul (R
d )

(3.24)

where the spaces Xσ
ul(J ), σ ∈ R, are defined in Definition 7.4.

Proof. Recall that Φ̃ = ψ̃ + ũ. First of all the estimate

‖∇x,zψ̃‖
X

− 1
2

ul (J )

≤ C‖ψ‖
H

1
2

ul

follows from Corollary 7.11 with δ = 1, m = 0, 1 and σ = 0.
On the other hand we notice that ∂z = (∂zρ)Λ1 and ∇x =Λ2 + (∇xρ)Λ1. Let χ̃ ∈ C∞

0 (Rd), ̃χ = 1 on the support 
of χ . Since s > 1 + d

2 , using Corollary 7.11 with σ = s we can write

‖χ̃k∇x,zρ‖L∞(J×Rd ) ≤ C‖χ̃k∇x,zρ‖
L∞(J,H

s− 1
2 )

≤ C′‖∇x,zρ‖
L∞(J,H

s− 1
2 )ul

≤ C′′(1 + ‖η‖
H
s+ 1

2
ul

)
.

It follows from (3.11) that ‖∇x,zũ‖L2(J,L2)ul
≤ F(‖η‖

H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

, which implies that

‖∇x,zΦ̃‖L2(J,L2)ul
≤ F

(‖η‖
H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

. (3.25)

Now using Lemma 7.12 we have

‖χk∇xΦ̃‖
L∞(J,H

− 1
2 )

≤C
(‖χk∇xΦ̃‖L2(J,L2) + ‖χk∂z∇xΦ̃‖L2(J,H−1)

)
.

The first term in the right hand side is estimated using (3.25). For the second term using (3.25) we have

‖χk∂z∇xΦ̃‖L2(J,H−1) ≤ ∥∥(∇xχk)∂zΦ̃
∥∥
L2(J,H−1)

+ ‖χk∂zΦ̃‖L2(J,L2)

≤ C‖∂zΦ̃‖L2(J,L2)ul
≤ F

(‖η‖
H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

. (3.26)

Therefore

‖∇xΦ̃‖
L∞(J,H

− 1
2 )ul

≤F
(‖η‖

H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

. (3.27)

Eventually

‖χk∂zΦ̃‖
L∞(J,H

− 1
2 )

≤ C
(‖χk∂zΦ̃‖L2(J,L2) +

∥∥χk∂2
z Φ̃

∥∥
L2(J,H−1)

)
. (3.28)

The first term in the right hand side is estimated using (3.25). For the second term using (3.22) we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥∥χk∂2
z Φ̃

∥∥
L2(J,H−1)

≤A1 +A2 +A3,

A1 = ‖χkα�xΦ̃‖L2(J,H−1),

A2 = ‖χkβ∂z∇xΦ̃‖L2(J,H−1),

A3 = ‖χkγ ∂zΦ̃‖L2(J,H−1).

Now using (7.5), (3.25) and (3.26) we obtain
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A1 ≤ ‖α‖
L∞(J,H

s− 1
2 )ul

‖�xΦ̃‖L2(J,H−1)ul
≤F

(‖η‖
H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

,

A2 ≤ ‖β‖
L∞(J,H

s− 1
2 )ul

‖∂z∇xΦ̃‖L2(J,H−1)ul
≤ F

(‖η‖
H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

,

A3 ≤ ‖γ ‖
L∞(J,H

s− 3
2 )ul

‖∂zΦ̃‖L2(J,L2)ul
≤ F

(‖η‖
H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

.

Therefore using (3.28) we obtain

‖∂zΦ̃‖
L∞(J,H

− 1
2 )ul

≤ F
(‖η‖

H
s+ 1

2
ul

)‖ψ‖
H

1
2

ul

which completes the proof of Corollary 3.9. �
3.4. Higher estimates for the Dirichlet–Neumann operator

In this section we prove the following results.

Theorem 3.10. Let d ≥ 1 and s0 > 1 + d
2 .

Case 1. There exists F : R+ → R+ non-decreasing such that for − 1
2 ≤ σ ≤ s0 − 1, every η ∈H

s0+ 1
2

ul (Rd) satisfy-

ing (3.2) and every ψ ∈Hσ+1
ul (Rd) we have∥∥G(η)ψ∥∥

Hσ
ul

≤ F
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
Hσ+1

ul
.

Case 2. For every s ≥ s0, there exists F : R+ → R+ non-decreasing such that for every η ∈ H
s+ 1

2
ul (Rd) satisfy-

ing (3.2), every s0 − 1 ≤ σ ≤ s − 1
2 and every ψ ∈Hσ+1

ul (Rd) we have∥∥G(η)ψ∥∥
Hσ

ul
≤ F

(∥∥(η,ψ)∥∥
H
s0+ 1

2
ul ×Hs0

ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
Hσ+1

ul
+ 1

}
.

We set

R(η)ψ :=G(η)ψ − Tλψ (3.29)

where Tλ is the paradifferential operator (see Section 7.5) with symbol

λ= ((
1 + |∇xη|2

)|ξ |2 − (∇xη · ξ)2) 1
2 .

Theorem 3.11. Let d ≥ 1 and s0 > 1 + d
2 .

Case 1. There exists F : R+ → R+ non-decreasing such that for 0 ≤ t ≤ s0 − 1
2 , η ∈H

s0+ 1
2

ul (Rd) satisfying (3.2)
we have∥∥R(η)ψ∥∥

Ht
ul

≤ F
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
H
t+ 1

2
ul

for every ψ ∈H
t+ 1

2
ul (Rd).

Case 2. For all s ≥ s0 there exists F : R+ → R+ non-decreasing such that for every η ∈H
s+ 1

2
ul (Rd) satisfying (3.2), 

every s0 − 1
2 ≤ t ≤ s − 1

2 and every ψ ∈H
t+ 1

2
ul (Rd) we have∥∥R(η)ψ∥∥

Ht
ul

≤ F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0

ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
H
t+ 1

2
ul

+ 1
}
.

The main step in the proof of the above theorems is the following elliptic regularity result.
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Theorem 3.12. Let d ≥ 1, J = (−1, 0), s0 > 1 + d
2 . Let ṽ be a solution of the problem{(

∂2
z + α�x + β · ∇x∂z − γ ∂z

)
ṽ = F in Rd × J,

ṽ|z=0 =ψ.
(3.30)

Case 1. For − 1
2 ≤ σ ≤ s0 − 1 let η ∈H

s0+ 1
2

ul (Rd) satisfying (3.2), ψ ∈Hσ+1
ul (Rd), F ∈ Yσul(J ) (see Definition 7.4) 

and

‖∇x,zṽ‖
X

− 1
2

ul (J )

<+∞. (3.31)

Then for every z0 ∈ (−1, 0) one has ∇x,zṽ ∈ Xσ
ul(z0, 0) and one can find F : R+ → R+ non-decreasing, depending 

only on (s0, d) such that

‖∇x,zṽ‖Xσ
ul(z0,0) ≤ F

(‖η‖
H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖Yσul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

}
.

Case 2. For s ≥ s0, and s0 − 1 ≤ σ ≤ s − 1
2 let η ∈H

s+ 1
2

ul (Rd) satisfying (3.2), ψ ∈Hσ+1
ul (Rd), F ∈ Yσul(J ) and

‖∇x,zṽ‖
X
s0−1
ul (J )

<+∞. (3.32)

Then for every z0 ∈ (−1, 0) one has ∇x,zṽ ∈ Xσ
ul(z0, 0) and one can find F : R+ → R+ non-decreasing, depending 

only on (s0, s, d) such that

‖∇x,zṽ‖Xσ
ul(z0,0)

≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0

ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖Yσul (J )

+ (‖η‖
H
s+ 1

2
ul

+ 1
)‖∇x,zṽ‖

X
s0−1
ul (J )

}
.

Corollary 3.13. Let s0 > 1 + d
2 . Let Φ be defined in Proposition 3.3.

Case 1. For − 1
2 ≤ σ ≤ s0 − 1 assume that η ∈H

s0+ 1
2

ul (Rd) satisfying (3.2) and ψ ∈Hσ+1
ul (Rd). Then there exists 

F : R+ → R+ non-decreasing depending only on (s0, d) such that

‖Φ̃‖
Xσ+1

ul (z0,0)
+ ‖∇x,zΦ̃‖Xσ

ul(z0,0) ≤ F
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
Hσ+1

ul
.

Case 2. For s ≥ s0, s0 − 1 ≤ σ ≤ s− 1
2 assume that η ∈H

s+ 1
2

ul (Rd) satisfying (3.2) and ψ ∈Hσ+1
ul (Rd). Then there 

exists F : R+ → R+ non-decreasing depending only on (s0, s, d) such that

‖Φ̃‖
Xσ+1

ul (z0,0)
+ ‖∇x,zΦ̃‖Xσ

ul(z0,0)

≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0

ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
Hσ+1

ul
+ 1

}
.

Proof. Indeed Φ̃ satisfies (3.30) with F = 0 and it is proved in Corollary 3.9 that

‖∇x,zΦ̃‖
X

− 1
2

ul (z0,0)
≤F

(‖η‖
H
s0+ 1

2
ul

)‖ψ‖
H

1
2

ul

<+∞.

Moreover the estimate of Φ̃ in Xσ
ul(z0, 0) is obtained by the Poincaré inequality from the estimate of ∂zΦ̃ . �

Proof of Theorem 3.10 given Corollary 3.13. Let us set

U =Λ1Φ̃ − ∇xρ ·Λ2Φ̃. (3.33)

By (3.18) we have U |z=0 =G(η)ψ and by (3.21)

∂zU = −∇x · ((∂zρ)Λ2Φ̃
)= −∇x · ((∂zρ)∇x − (∇xρ)∂z

)
Φ̃. (3.34)

Using Lemma 7.12 with f = χqU , we deduce that
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∥∥χqG(η)ψ∥∥Hσ ≤C
[‖χqU‖

L2(J,H
σ+ 1

2 )
+ ‖χq∂zU‖

L2(J,H
σ− 1

2 )

]
.

Moreover by (3.34) we have

‖χq∂zU‖
L2(J,H

σ+ 1
2 )

≤ C′[∥∥(∂zρ)∇xΦ̃
∥∥
L2(J,H

σ+ 1
2 )ul

+ ∥∥(∇xρ)∂zΦ̃
∥∥
L2(J,H

σ+ 1
2 )ul

]
.

Case 1. If − 1
2 ≤ σ ≤ s0 − 1 we use the estimate

‖fg‖
L2(J,H

σ+ 1
2 )ul

≤ C‖f ‖
L∞(J,H

s0− 1
2 )ul

‖g‖
L2(J,H

σ+ 1
2 )ul

which follows from Proposition 7.3 with σ0 = σ + 1
2 , σ1 = s0 − 1

2 , σ2 = σ + 1
2 , the estimates on ρ and Corollary 3.13.

Case 2. If s0 − 1 ≤ σ ≤ s − 1
2 we use the inequality

‖fg‖
L2(J,H

σ+ 1
2 )ul

≤ C
(‖f ‖L∞(J,Hs0−1)ul

‖g‖Xσ
ul(J )

+ ‖g‖L∞(J,Hs0−1)ul
‖f ‖Xσ

ul(J )

)
,

the estimates on ρ and again Corollary 3.13 to obtain Theorem 3.10. �
Theorem 3.12 will be a consequence of the following two results.

Proposition 3.14. Let s0 > 1 + d
2 . There exists F : R+ → R+ non-decreasing such that for −1 < z0 < z1 < 0, 

− 1
2 ≤ σ ≤ s0 − 1 and k ∈ Zd we have

‖∇x,zṽk‖Xσ (z1,0) ≤F
(‖η‖

H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖Yσul (J )

+ ‖∇x,zṽk‖
X

− 1
2 (z0,0)

}
, (Hσ )

where ṽk = χkṽ.

Proposition 3.15. Let s0 > 1 + d
2 , and s ≥ s0. Then there exists F : R+ → R+ non-decreasing such that for −1 <

z0 < z1 < 0, s0 − 1 ≤ σ ≤ s − 1
2 and k ∈ Zd we have

‖∇x,zṽk‖Xσ (z1,0) ≤F
(‖η‖

H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖Yσul (J )

+ (
1 + ‖η‖

H
s+ 1

2
ul

)‖∇x,zṽk‖
X
s0−1
ul (z0,0)

}
, (Kσ )

where ṽk = χkṽ.

We shall prove these two results by induction on σ and by the same method. However we have to distinguish them 
since we want the right hand side of these estimates to be linear with respect to the higher norms of (ψ, η). Since 
(H− 1

2
) and (Ks0−1) are trivially satisfied if F ≥ 1 these propositions will be a consequence of the following one.

Proposition 3.16. Case 1. Let s0 > 1 + d
2 . If (Hσ ) is satisfied for some − 1

2 ≤ σ ≤ s0 − 1 then (H
σ+ 1

2
) is true as long 

as σ + 1
2 ≤ s0 − 1.

Case 2. Let s0 > 1 + d
2 and s ≥ s0. If (Kσ ) is satisfied for some s0 − 1 ≤ σ ≤ s − 1

2 then (K
σ+ 1

2
) is true as long as 

σ + 1
2 ≤ s − 1

2 .

In the sequel, Case 1 will refer to Proposition 3.14 and Case 2 to Proposition 3.15.

3.5. Nonlinear estimates

We begin by estimating the coefficients α, β, γ , defined in (3.23). We set J = (z0, 0).

Lemma 3.17. Case 1. Let s0 > 1 + d
2 . Then there exists F : R+ → R+ non-decreasing such that

‖α‖
X
s0− 1

2 (J )

+ ‖β‖
X
s0− 1

2 (J )

+ ‖γ ‖
X
s0− 3

2 (J )

≤F
(‖η‖

H
s0+ 1

2

)
.

ul ul ul ul
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Case 2. Let s0 > 1 + d
2 . Then for s ≥ s0 there exists F1 : R+ → R+ non-decreasing such that

‖α‖
X
s− 1

2
ul (J )

+ ‖β‖
X
s− 1

2
ul (J )

+ ‖γ ‖
X
s− 3

2
ul (J )

≤ F1
(‖η‖

H
s0+ 1

2
ul

)(‖η‖
H
s+ 1

2
ul

+ 1
)
.

Proof. Since

ρ = (1 + z)eδz〈Dx 〉η− z
(
e−δ(1+z)〈Dx 〉η− h

)
Corollary 7.11 shows that for all t ∈ R, k ∈ N and all a ∈ Sm1,0 we have∥∥∂kz a(D)ρ∥∥Xt

ul(J )
≤ C

(
1 + ‖η‖

Ht+m+k
ul

)
. (3.35)

Then according to (3.23) we write

α = (∂zρ)
2 − (∂zρ)

2G1(∇xρ), G1(ξ)= |ξ |2
1 + |ξ |2 .

Case 1: The estimate for α follows from (7.3) and (7.5) with μ = s0 − 1
2 . The estimate for β is similar. Now we 

can write

γ = ∂2
z ρ

∂zρ
+ (

∂zρ − (∂zρ)G1(∇xρ)
)
�xρ +G2(∇xρ) · ∇x∂zρ, G2(ξ)= ξ

1 + |ξ |2 .
To estimate γ we first use the embedding

X
s0− 1

2
ul ×X

s0− 3
2

ul ⊂X
s0− 3

2
ul

which is a consequence of Lemma 7.5 with p = +∞, σ0 = σ1 = s0 − 3
2 , σ2 = s0 − 1

2 and p = 2, σ0 = σ2 = s0 − 1, 
σ1 = s0 − 1

2 . Then we use (7.5) and (3.35).
Case 2: The estimates of α and β follow from (7.3) and (7.5) with μ = s − 1

2 and from (3.35). The estimate of γ
follows from (7.4) with μ = s − 1

2 and (3.35) with t = s0 − 3
2 , m + k = 2. �

According to (3.30) we have⎧⎨⎩
(
∂2
z + α�x + β · ∇x∂z

)
(χkṽ)= χkF + F0 + F1

F0 := α∇xχk · ∇x ṽ + α(�xχk)ṽ + β · ∇xχk∂zṽ

F1 := γχk∂zṽ.

(3.36)

Lemma 3.18. Case 1. Let s0 > 1 + d
2 . There exists F : R+ → R+ non-decreasing such that for − 1

2 ≤ σ ≤ s0 − 1 with 
σ + 1

2 ≤ s0 − 1

1∑
j=0

‖Fj‖
Y
σ+ 1

2 (J )
≤F

(‖η‖
H
s0+ 1

2
ul

)‖∇x,zṽ‖Xσ
ul(J )

.

Case 2. Assume s0 > 1 + d
2 . Then for all s ≥ s0 there exists F : R+ → R+ non-decreasing such that for s0 − 1 ≤

σ ≤ s − 1
2 with σ + 1

2 ≤ s − 1
2 we have

1∑
j=0

‖Fj‖
Y
σ+ 1

2 (J )
≤F

(‖η‖
H
s0+ 1

2
ul

){‖∇x,zṽ‖Xσ
ul(J )

+ (‖η‖
H
s+ 1

2
ul

+ 1
)‖∇x,zṽ‖

X
s0−1
ul (J )

}
.

Proof. Case 1: The terms F0 and F1 have the same structure but F1 is worse since, according to Lemma 3.17, γ is 
bounded in a weaker norm.

Let us look at F1. We can use Proposition 7.5 with p = 2, σ0 = σ , σ1 = σ , σ2 = s0 −1. Indeed we have σ1 +σ2 > 0
since s0 > 1 + d , σ0 = σ1, σ0 ≤ σ2 due to the definition of σ , eventually σ0 < σ1 +σ2 − d since s0 > 1 + d . We obtain
2 2 2
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‖γχk∂zṽ‖L2(J,Hσ ) ≤ C‖χ̃kγ ‖L2(J,Hs0−1)‖χk∂zṽ‖L∞(J,Hσ )

(where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ ) and we use Lemma 3.17 to conclude.

Case 2: Using (7.4) with μ = σ − 1
2 we obtain

‖γχk∂zṽ‖L2(J,Hσ ) ≤ C
(‖γ ‖

X
σ− 1

2
ul

‖∂zṽ‖
X
s0−1
ul

+ ‖γ ‖
X
s0− 3

2
ul

‖∂zṽ‖Xσ
ul

)
.

Since σ − 1
2 ≤ s − 3

2 we can use Lemma 3.17 to conclude. �
Our next step is to replace the multiplication by α (resp. β) by the paramultiplication by Tα (resp. Tβ ). Recall that 

we see that Eq. (3.36) can be written as(
∂2
z + α�x + β · ∇x∂z

)
ṽk = F + F0 + F1. (3.37)

Then we have the following result.

Lemma 3.19. Let J = (z0, 0), s0 > 1 + d
2 and s ≥ s0. There exists F : R+ → R+ non-decreasing such that, for all 

I ⊂ J , ṽk satisfies the paradifferential equation(
∂2
z + Tα�x + Tβ · ∇x∂z

)
ṽk = F + F0 + F1 + F2 (3.38)

for some remainder F2 satisfying
Case 1: if 0 ≤ σ ≤ s0 − 1 with σ + 1

2 ≤ s0 − 1

‖F2‖
Y
σ+ 1

2 (I )
≤ F

(‖η‖
H
s0+ 1

2
ul

)‖∇x,zṽ‖Xσ
ul(I )

; (3.39)

Case 2: if s0 − 1 ≤ σ ≤ s − 1
2 with σ + 1

2 ≤ s − 1
2

‖F2‖
Y
σ+ 1

2 (I )
≤ F

(‖η‖
H
s0+ 1

2
ul

)(‖η‖
H
s+ 1

2
ul

+ 1
)‖∇x,zṽ‖

X
s0−1
ul (J )

. (3.40)

Proof. Case 1: Using Proposition 7.18 with γ = σ, r = s0 − 1
2 , μ = σ − 1

2 which satisfy all the conditions we obtain∥∥(α − Tα)�xṽk
∥∥
L2(J,Hσ )

≤C‖α‖
L∞(J,H

s0− 1
2 )ul

‖∇x,zṽk‖
L2(J,H

σ+ 1
2 )
,∥∥(β − Tβ) · ∇x∂zṽk

∥∥
L2(J,Hσ )

≤ C‖β‖
L∞(J,H

s0− 1
2 )ul

‖∇x,zṽk‖
L2(J,H

σ+ 1
2 )
.

The result follows then from Lemma 3.17.
Case 2: By Theorem 2.10 in [2] we have the following estimate for σ > 0∥∥(α − Tα)u

∥∥
Hσ ≤ C‖u‖

C
− 1

2∗
‖α‖

H
σ+ 1

2

where the space C
− 1

2∗ has been defined in (2.4).
Let χ̃ ∈ C∞

0 (Rd) equal to one on the support of χ . We write

(α − Tα)�xṽk = (χ̃kα − Tχ̃kα)�xṽk + T(χ̃k−1)α�xṽk.

It follows from Proposition 7.18 and the above inequality that∥∥(α − Tα)�xṽk
∥∥
Hσ ≤ C‖�xṽk‖

C
− 1

2∗
‖χ̃kα‖

H
σ+ 1

2
.

Since Hs0− 1
2 ⊂ C

1
2∗ and σ ≤ s − 1 we obtain∥∥(α − Tα)�xṽk

∥∥
L2(J,Hσ )

≤C‖∇x ṽ‖
X
s0−1
ul (J )

‖α‖
X
s− 1

2
ul (J )

which in view of Lemma 3.17 Case 2, proves (3.40). �
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Then as in [2] we perform a decoupling in a forward and a backward parabolic evolution equations. Recall that 

η ∈H
s+ 1

2
ul (Rd), in particular η ∈W

3
2 ,∞(Rd). We can apply Lemma 3.29 in [2] to obtain the following result.

Lemma 3.20. Let s0 > 1 + d
2 . There exist two symbols a, A in Γ 1

1
2
(Rd × J ) (see Definition 7.15), F : R+ → R+

non-decreasing and a remainder term F3 such that

(∂z − Ta(z))(∂z − TA(z))ṽk = F + F0 + F1 + F2 + F3 (3.41)

with

sup
z∈(−1,0)

(
M1

1
2

(
a(z)

)+M1
1
2

(
A(z)

))≤ F
(‖η‖

H
s0+ 1

2
ul (Rd )

)
(3.42)

(see (7.18)) and

‖F3‖
Y
σ+ 1

2 (J )
≤ F

(‖η‖
H
s0+ 1

2
ul (Rd )

)‖∇x,zṽ‖Xσ
ul(J )

(3.43)

for all σ ∈ R.

Proof. We follow closely the proof of Lemma 3.29 in [2]. We set

a = 1

2

(−iβ · ξ −
√

4α|ξ |2 − (β · ξ)2)
A= 1

2

(−iβ · ξ +
√

4α|ξ |2 − (β · ξ)2). (3.44)

We claim the there exists c > 0 depending only on ‖η‖
H
s0+ 1

2
ul (Rd )

such that√
4α|ξ |2 − (β · ξ)2 ≥ c|ξ |. (3.45)

Indeed according to (3.23) we see by an elementary computation that

4α|ξ |2 − (β · ξ)2 ≥ 4(∂zρ)2

(1 + |∇xρ|2)2 |ξ |2.
Then our claim follows from (3.16).

Since we have s0 > 1 + d
2 we deduce from the paradifferential symbolic calculus that

(∂z − Ta)(∂z − TA)= ∂2
z + Tα�x + Tβ · ∇x∂z +R0 +R1

where

R0(z) := Ta(z)TA(z) − Tα�x is of order
3

2

R1(z) := −T∂zA(z) is of order
3

2
together with the estimates

sup
z∈(−1,0)

(∥∥R0(z)
∥∥
H
t+ 3

2 →Ht
+ ∥∥R1(z)

∥∥
H
t+ 3

2 →Ht

)≤ F
(

sup
z∈(−1,0)

(
M1

1
2

(
A(z)

)+M1
1
2

(
a(z)

)))
.

Now the semi-norms M1
1
2
(A(z)) and M1

1
2
(a(z)) are bounded by the W

1
2 ,∞(Rd) norms of α and β . Since for f = α, β

we have∥∥f (z)∥∥
W

1
2 ,∞(Rd )

≤ C
∥∥f (z)∥∥

H
s0− 1

2
ul (Rd )

we deduce from Lemma 3.17 and the fact that the symbols of Rj vanish near the origin that for j = 0, 1∥∥Rj (z)ṽk∥∥Hσ ≤ F
(‖η‖

H
s0+ 1

2
ul

)‖∇x ṽk‖
H
σ+ 1

2
.

The proof is complete. �
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3.6. Proof of Proposition 3.16

Case 1. Assume that (Hσ ) is satisfied, which means that there exists I0 = (z0, 0) such that

‖∇x,zṽk‖Xσ (I0) ≤F
(‖η‖

H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖Yσul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

}
. (3.46)

From this estimate and the Poincaré inequality we deduce that

‖∇x,zṽ‖Xσ (I0) ≤ F
(‖η‖

H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖Yσul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

}
. (3.47)

Let z1 > z0 and I1 = (z1, 0). We want to prove that

‖∇x,zṽk‖
X
σ+ 1

2 (I1)
≤F1

(‖η‖
H
s0+ 1

2
ul

){‖ψ‖
H
σ+ 3

2
ul

+ ‖F‖
Y
σ+ 1

2
ul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

}
. (3.48)

Introduce a cutoff function θ such that θ(z0) = 0, θ(z) = 1 for z≥ z1. Set

w̃k(z, ·) := θ(z)(∂z − TA)ṽk(z, ·). (3.49)

It follows from Lemma 3.20 for z≥ z0 that

∂zw̃k − Taw̃k = θ(z)

(
F +

3∑
j=0

Fj

)
+ F4 (3.50)

where

F4 = θ ′(z)(∂z − TA)ṽk.

We deduce from Lemma 3.18, Lemma 3.19, Lemma 3.20 and (3.47) that

3∑
j=0

‖θFj‖
Y
σ+ 1

2 (I0)
≤ F

(‖η‖
H
s0+ 1

2
ul

){‖F‖
Y
σ+ 1

2
ul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

+ ‖ψ‖
Hσ+1

ul

}
(3.51)

and we see easily using (3.46) that

‖F4‖
Y
σ+ 1

2 (I0)
≤ F

(‖η‖
H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖

Y
σ+ 1

2
ul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

}· (3.52)

Now using Proposition 2.18 in [2] and (3.50), (3.51) and (3.52) we see, since w̃k|z=z0 = 0, that

‖w̃k‖
X
σ+ 1

2 (I0)
≤ F

(‖η‖
H
s0+ 1

2
ul

){‖ψ‖
Hσ+1

ul
+ ‖F‖

Y
σ+ 1

2
ul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

}
. (3.53)

Now notice that on I1 we have θ(z) = 1 so that

(∂z − TA)ṽk = w̃k. (3.54)

We may apply again Proposition 2.18 in [2] and write

‖∇x ṽk‖
X
σ+ 1

2 (I1)
≤ ‖ṽk‖

X
σ+1+ 1

2 (I1)

≤ F
(‖η‖

H
s0+ 1

2
ul

)(‖w̃k‖
Y
σ+ 3

2 (I1)
+ ‖ψ‖

H
σ+ 3

2
ul

)
≤ F

(‖η‖
H
s0+ 1

2
ul

)(‖w̃k‖
X
σ+ 1

2 (I1)
+ ‖ψ‖

H
σ+ 3

2
ul

)
≤ F

(‖η‖
H
s0+ 1

2
ul

)(‖ψ‖
H
σ+ 3

2
ul

+ ‖F‖
Y
σ+ 1

2
ul (J )

+ ‖∇x,zṽ‖
X

− 1
2

ul (J )

)
.

The same estimate for ∂zṽk follows then from (3.54) and (3.53). Thus we have proved (3.48) which completes the 
induction.

Case 2. Assuming that (Kσ ) is true, the exact same method shows that (K
σ+ 1

2
) holds as long as σ + 1

2 ≤ s − 1
2 . 

Details are left to the reader.
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3.7. Proof of Theorem 3.11

Let 0 ≤ t ≤ s − 1
2 . Recall that

G(η)ψ = g1∂zΦ̃ − g2 · ∇xΦ̃|z=0, g1 = 1 + |∇xρ|2
∂zρ

, g2 = ∇xρ.

We shall set

gj |z=0 = g0
j , j = 1,2, A|z=0 =A0, a|z=0 = a0.

We recall that we have set χkΦ̃ = Φ̃k where Φ̃|z=0 =ψ and w̃k = (∂z − TA)Φ̃k (see (3.49)) for z ∈ I1. It follows that 
we can write

χkG(η)ψ = g0
1(∂zΦ̃k)|z=0 − χkg

0
2 · ∇xψ

= g0
1w̃k|z=0 + g0

1[TA0 , χk]ψ + χk
(
g0

1TA0 − g0
2 · ∇x

)
ψ. (3.55)

We shall set

R1 = (
χ̃kg

0
1

)[TA0, χk]ψ, R2 = (
χ̃kg

0
1

)
w̃k|z=0 (3.56)

where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ so

χkG(η)ψ = χk
(
g0

1TA0 − g0
2 · ∇x

)
ψ +R1 +R2. (3.57)

Let us set U = [TA0 , χk]ψ . By the symbolic calculus, since H
s0+ 1

2
ul ⊂W

1
2 ,∞ we have for all σ ∈ R

‖U‖Hσ ≤F
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
H
σ+ 1

2
ul

. (3.58)

If 0 ≤ t ≤ s0 − 1
2 the product law in Proposition 7.3 gives∥∥χ̃kg0

1U
∥∥
Ht ≤ ∥∥χ̃kg0

1

∥∥
H
s0− 1

2
‖U‖Ht ≤ F

(‖η‖
H
s0+ 1

2
ul

)‖U‖Ht .

If s0 − 1
2 ≤ t ≤ s − 1

2 we use the estimation∥∥χ̃kg0
1U

∥∥
Ht ≤ C

(∥∥χ̃kg0
1

∥∥
Hs0−1‖U‖Ht + ∥∥χ̃kg0

1

∥∥
Ht ‖U‖Hs0−1

)
.

Therefore using (3.58) and (7.5) we obtain∥∥χ̃kg0
1U

∥∥
Ht ≤ F

(∥∥(η,ψ)∥∥
H
s0+ 1

2
ul ×Hs0+ 1

2
ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
H
t+ 1

2
ul

+ 1
}
.

It follows that we have

‖R1‖Ht ≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
H
t+ 1

2
ul

+ 1
}
. (3.59)

By the same argument as above we have

‖R2‖Ht ≤F
(‖η‖

H
s0+ 1

2
ul

){‖w̃k|z=0‖Ht
ul

+ ‖η‖
H
s+ 1

2
ul

‖w̃k|z=0‖
H
s0−1
ul

}
. (3.60)

Now using (3.53) with σ = t − 1
2 we obtain in particular

‖w̃k‖
L2(I1,H

t+ 1
2 )

≤ F
(‖η‖

H
s0+ 1

2
ul

)(‖ψ‖
H
t+ 1

2
ul

+ 1
)
. (3.61)

Moreover we deduce from (3.50) that

‖∂zw̃k‖
L2(I1,H

t− 1
2 )

≤ ‖Taw̃k‖
L2(I1,H

t− 1
2 )

+
4∑

‖Fj‖
L2(I1,H

t− 1
2 )
.

j=0
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It follows from (3.61) and the estimates already obtained on the Fj ’s that

‖∂zw̃k‖
L2(I1,H

t− 1
2 )

≤F
(‖η‖

H
s0+ 1

2
ul

)(‖ψ‖
H
t+ 1

2
ul

+ 1
)
. (3.62)

Applying Lemma 7.12 to χqw̃k we obtain, for 0 ≤ t ≤ s − 1
2

‖w̃k|z=0‖Ht
ul

≤F
(‖η‖

H
s0+ 1

2
ul

)(‖ψ‖
H
t+ 1

2
ul

+ 1
)
. (3.63)

Combining with (3.60) we obtain

‖R2‖Ht ≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
H
t+ 1

2
ul

+ 1
}
. (3.64)

Now we have

χk
(
g0

1TA0 − g0
2 · ∇x

)
ψ = χkTg0

1A0−iξ ·g0
2
ψ +R3 +R4,

R3 = χk
{(
g0

1 − Tg0
1

)
TA0ψ − (

g0
2 − Tg0

2

) · ∇xψ
}

R4 = χk{Tg0
1
TA0 − Tg0

1A0
}. (3.65)

If 0 ≤ t ≤ s0 − 1
2 we use Proposition 7.18 with γ = t , r = s0 − 1

2 , μ = t − 1
2 which satisfy the conditions and we 

obtain∥∥χk(g0
1 − Tg0

1

)
TA0ψ

∥∥
Ht ≤ C

∥∥g0
1

∥∥
H
s0− 1

2
ul

‖TA0ψ‖
H
t− 1

2
ul

and an analogue estimate for the term containing g0
2, from which we deduce

‖R3‖Ht ≤F
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
H
t+ 1

2
ul

. (3.66)

From Theorem 7.16(ii) with ρ = 1
2 we have

‖R4‖Ht ≤F
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
H
t+ 1

2
ul

. (3.67)

Summing up, using (3.57), (3.59), (3.64), (3.66), and (3.67), we obtain

χkG(η)ψ = χkTg0
1A0−iξ ·g0

2
ψ +R5

with

‖R5‖Ht ≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

){‖η‖
H
s+ 1

2
ul

+ ‖ψ‖
H
t+ 1

2
ul

+ 1
}
.

So Theorem 3.11 follows from the fact that

g0
1A0 − iξ · g0

2 =
√(

1 + |∇xη|2
)|ξ |2 − (∇xη · ξ)2.

4. A priori estimates in the uniformly local Sobolev space

4.1. Reformulation of the equations

We introduce the following unknowns

ζ = ∇xη, B = (∂yΦ)|y=η, V = (∇xΦ)|y=η, a = −(∂yP )|y=η (4.1)

where Φ is the velocity potential and the pressure P is given by

P =Q− 1

2
|∇x,yΦ|2 − gy,

where Q is obtained from B, V, η by solving a variational problem (see Section 4.2 below for details).
We begin by a useful formula.
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Lemma 4.1. Let I = [0, T ] and s0 > 1 + d
2 . For all s ≥ s0 one can find F : R+ → R+ non-decreasing such that

G(η)B = −divV + γ, with

‖γ ‖
L∞(I,H

s− 1
2 )ul

≤ F
(∥∥(η,ψ)∥∥

L∞(I,H
s0+ 1

2 ×Hs0+ 1
2 )ul

){
1 + ‖η‖

L∞(I,H
s+ 1

2 )ul

}
,

where Hσ =Hσ (Rd).

Proof. The estimate of the lemma will be proved first with fixed t which therefore will be skipped. Let θ be the 
variational solution of the problem

�x,yθ = 0 in Ω, θ |y=η(x) = B,
∂θ

∂ν

∣∣∣∣
Γ

= 0.

Then G(η)B = (∂yθ − ∇xη · ∇xθ)|y=η(x). On the other hand since Vi(x) = ∂iΦ(x, η(x)) we have

div V = (�xΦ + ∇xη · ∇x∂yΦ)
(
x,η(x)

)
= (−∂2

yΦ + ∇xη · ∇x∂yΦ
)(
x,η(x)

)
= −(∂y − ∇xη · ∇x)∂yΦ

(
x,η(x)

)
.

It follows that

G(η)B + divV = γ, γ = (∂y − ∇xη · ∇x)(θ − ∂yΦ)
(
x,η(x)

)
.

Setting Θ = θ − ∂yΦ we see that �x,yΘ = 0 in Ω , and Θ|y=η = 0. Therefore we may apply Theorem 3.12 with 
σ = s − 1

2 to deduce that

‖∇x,zΘ̃‖
X
s− 1

2
ul (z0,0)

≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

)(
1 + ‖η‖

H
s+ 1

2
ul

)
where Θ̃(x, z) =Θ(x, ρ(x, z)). Using (7.3) with μ = s − 1

2 we deduce that

‖∇x,zγ̃ ‖
X
s− 1

2
ul (z0,0)

≤F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

)(
1 + ‖η‖

H
s+ 1

2
ul

)
.

Now using the equation satisfied by Θ , Lemma 3.17 and Lemma 7.12 we obtain the desired conclusion. �
Proposition 4.2. Let s0 > 1 + d

2 . Then for all s ≥ s0 we have

(∂t + V · ∇x)B = a − g, (4.2)

(∂t + V · ∇x)V + aζ = 0, (4.3)

(∂t + V · ∇x)ζ =G(η)V + ζG(η)B +R, (4.4)

where the remainder term R =R(η, ψ, V, B) satisfies the estimate

‖R‖
L∞(I,H

s− 1
2

ul )

≤F
(∥∥(η,ψ,V )∥∥

L∞(I,H
s0+ 1

2 ×Hs0+ 1
2 ×Hs0 )ul

)(
1 + ‖η‖

L∞(I,H
s+ 1

2 )ul

)
(4.5)

where Hσ =Hσ (Rd).

Proof. According to Proposition 4.3 in [2] the only point to be proved is the estimate (4.5). Let us recall how R is 
defined. Let θi , Φ be the variational solutions of the problems

�x,yθi = 0 in Ω, θi |y=η = Vi,
∂θi

∂ν

∣∣∣∣
Γ

= 0, i = 1, . . . , d (4.6)

�x,yθd+1 = 0 in Ω, θd+1|y=η = B,
∂θd+1

∂ν

∣∣∣∣
Γ

= 0, (4.7)

�x,yΦ = 0 in Ω, Φ|y=η =ψ,
∂Φ

∂ν

∣∣∣∣ = 0. (4.8)

Γ
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Then (see [2, Proposition 4.3])

Ri = (∂y − ∇xη · ∇x)Ui |y=η, Ui = ∂iΦ − θi, i = 1, . . . , d (4.9)

Rd+1 = (∂y − ∇xη · ∇x)Ud+1|y=η, Ud+1 = ∂yΦ − θd+1. (4.10)

First of all for i = 1, . . . , d we have �x,yUi = 0 in Ω and Ui |y=η = 0 since ∂iΦ|y=η = Vi . Denoting by Ũi the image 
of Ui by the diffeomorphism (3.15) we see that Ũi satisfies Eq. (3.30) with F =ψ = 0. It follows from Theorem 3.12
wit σ = s − 1

2 that

‖∇x,zŨi‖
X
s− 1

2
ul (J )

≤ F
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

)(
1 + ‖η‖

H
s+ 1

2
ul

)‖∇x,zŨi‖
X

− 1
2

ul (J )

. (4.11)

We are left with the condition (3.31), that is,

‖∇x,zŨi‖
X

− 1
2

ul (J )

<+∞.

Indeed, since θi is the variational solution of (4.6) Corollary 3.13 shows that

‖∇x,zθ̃i‖
X

− 1
2

ul (J )

≤ F
(‖η‖

H
s0+ 1

2
ul

)‖Vi‖
H

1
2

ul

.

Now ∂̃iΦ = (∂i − ∂iρ
∂zρ

∂z)Φ̃ . It follows that

‖∇x ∂̃iΦ‖
X

− 1
2

ul (J )

≤ ‖∂̃iΦ‖
X

1
2
ul (J )

≤ ‖∂iΦ̃‖
X

1
2
ul (J )

+
∥∥∥∥ ∂iρ∂zρ ∂zΦ̃

∥∥∥∥
X

1
2
ul (J )

.

Now we use the following facts: since s0 > 1 + d
2 one has X

s0− 1
2

ul (J ) ⊂X
1
2
ul(J ); moreover X

s0− 1
2

ul (J ) is an algebra and 
eventually ‖ ∂iρ

∂zρ
‖
X
s0−1
ul (J )

≤F(‖η‖
H
s0+ 1

2
ul

). We deduce using Corollary 3.13 that

‖∇x ∂̃iΦ‖
X

− 1
2

ul (J )

≤ F1
(‖η‖

H
s0+ 1

2
ul

)‖ψ‖
H
s0+ 1

2
ul

.

To estimate the term ‖∂z∂̃iΦ‖
X

− 1
2

ul (J )

we follow the same path using furthermore Eq. (3.30) with F = 0 satisfied by Φ̃ . 

We obtain eventually

‖∇x,zŨi‖
X

− 1
2

ul (J )

≤ F2
(∥∥(η,ψ,V )∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul ×Hs0

ul

)
.

Using (4.11) we obtain

‖∇x,zŨi‖
X
s− 1

2
ul (J )

≤ F
(∥∥(η,ψ,V )∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul ×Hs0

ul

){
1 + ‖η‖

H
s+ 1

2
ul

}
. (4.12)

Now from (4.9) we have

Ri := Ri |z=0, Ri =
(

1 + |∇xρ|2
∂zρ

∂z − ∇xρ · ∇x

)
Ũi =: (g1∂z − g2 · ∇x)Ũi . (4.13)

Using (7.3) with μ = s − 1
2 and (4.12) with s and s0 we obtain

‖Ri‖
X
s− 1

2
ul (J )

≤ F
(∥∥(η,ψ,V )∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul ×Hs0

ul

){
1 + ‖η‖

H
s+ 1

2
ul

}· (4.14)

Now we claim that

‖∂zRi‖
X
s− 3

2
ul (J )

≤F
(∥∥(η,ψ,V )∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul ×Hs0

ul

){
1 + ‖η‖

H
s+ 1

2
ul

}
. (4.15)

Indeed we can write

∂zRi = (∂zA)∂zŨi + (∂zB) · ∇xŨi − (divB)∂zŨi + ∇x · (B∂zŨi)+A∂2
z Ũi .
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The first three terms are bounded using (7.4) with μ = s − 3
2 and (4.12), the fourth is estimated using (7.3) with 

μ = s − 1
2 and (4.12), eventually for the last term we use the fact that ∂2

z Ũi = −(α�x + β · ∇x∂z − γ ∂z)Ũi together 
with (7.3), (7.4), and (4.12). Finally from (4.14) and (4.15), using Lemma 7.12 we obtain (4.5) for Ri .

We use exactly the same argument to estimate ‖Rd+1‖
H
s− 1

2
ul (Rd )

. This completes the proof of Proposition 4.2. �
4.2. Estimate of the Taylor coefficient

Proposition 4.3. Let I = [0, T ], s0 > 1 + d
2 . For all s ≥ s0 there exists F : R+ → R+ non-decreasing such that, with 

Hσ =Hσ (Rd)

‖a − g‖
L∞(I,H

s− 1
2 )ul

≤ F
(∥∥(η,ψ,V,B)∥∥

L∞(I,H
s0+ 1

2 ×Hs0+ 1
2 ×Hs0×Hs0 )ul

)
× {

1 + ‖η‖
L∞(I,H

s+ 1
2 )ul

+ ‖B‖L∞(I,Hs)ul + ‖V ‖L∞(I,Hs)ul

}
. (4.16)

For convenience we shall set in what follows

F0 =:F(∥∥(η,ψ,V,B)∥∥
L∞(I,H

s0+ 1
2 ×Hs0+ 1

2 ×Hs0×Hs0 )ul

)
(4.17)

where F : R+ → R+ is a non-decreasing function which may change from line to line. Before giving the proof of this 
result let us recall how a is defined. As in [2] the pressure is defined as follows. Let Q be the variational solution of 
the problem

�x,yQ= 0 in Ω, Q|y=η = 1

2
B2 + 1

2
|V |2 + gη,

∂Q

∂ν

∣∣∣∣
Γ

= 0. (4.18)

Then

P =Q− 1

2
|∇x,yΦ|2 − gy. (4.19)

It is shown in [2] that Q = −∂tΦ . Then

a = −∂yP |y=η. (4.20)

We deduce from (4.18), (4.19) that P is solution of the problem

�x,yP = −∣∣∇2
x,yΦ

∣∣2, P |y=η = 0. (4.21)

Denoting, as usual, by P̃ , Q̃, Φ̃ the images of P , Q, Φ by the diffeomorphism (3.15) we have, using the nota-
tion (3.17),

P̃ = Q̃− 1

2
(Λ1Φ̃)

2 − 1

2
|Λ2Φ̃|2 − gρ

and we see that P̃ is a solution of the problem in Rd × J ,

(
∂2
z + α�x + β · ∇x∂z − γ ∂z

)
P̃ = −α

2∑
i,j=1

|ΛiΛj Φ̃|2, P̃ |z=0 = 0. (4.22)

Notice that we have

Λ1Φ̃|z=0 = B, Λ2Φ̃|z=0 = V. (4.23)

Proof of Proposition 4.3. Below the time is fixed and we will skip it. We want to apply Theorem 3.12 with σ = s− 1
2 , 

so we must estimate the source term and show that the condition (3.31) is satisfied. We claim that (see (4.17))

‖∇x,zP̃‖ − 1
2

≤ F0. (4.24)

Xul (J )
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First of all since Q is the variational solution of (4.18) we have according to Corollary 3.9

‖∇x,zQ̃‖
X

− 1
2

ul

≤ F
(‖η‖

H
s0+ 1

2
ul

)(∥∥B2
∥∥
H

1
2

ul

+ ∥∥|V |2∥∥
H

1
2

ul

+ ‖η‖
H

1
2

ul

)
.

Using the fact that Hs0
ul (R

d) is an algebra contained in H
1
2

ul (R
d) we obtain

‖∇x,zQ̃‖
X

− 1
2

ul

≤ F0. (4.25)

The estimate of ‖∇x,zρ‖
X

− 1
2

ul (J )

by the right hand side of (4.24) is straightforward. Now, for j = 1, 2 since X
s0− 1

2
ul (J )

is an algebra contained in X
1
2
ul(J ) we have∥∥∇x |ΛjΦ̃|2∥∥

X
− 1

2
ul (J )

≤ C
∥∥|ΛjΦ̃|2∥∥

X
1
2
ul (J )

≤ C′‖ΛjΦ̃‖2

X
s0− 1

2
ul (J )

so using Corollary 3.13 with σ = s0 − 1
2 and the estimates on ρ we obtain∥∥∇x |ΛjΦ̃|2∥∥

X
− 1

2
ul (J )

≤ F3
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

)
. (4.26)

The same kind of arguments shows that∥∥∂z|ΛjΦ̃|2∥∥
X

− 1
2

ul (J )

≤F3
(∥∥(η,ψ)∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul

)
. (4.27)

Using (4.25), (4.26), and (4.27) we obtain the claim (4.24). Now we estimate the source term F =
−α∑2

i,j=1 |ΛiΛj Φ̃|2 in Eq. (4.22). Since s − 1
2 >

d
2 we can write

‖F‖
Y
s− 1

2
ul (J )

≤ ‖F‖
L1(J,H

s− 1
2 )ul

≤ C‖α‖
L∞(J,H

s− 1
2 )ul

2∑
i,j=1

‖ΛiΛj Φ̃‖2

L2(J,H
s− 1

2 )ul

.

Since (Λ2
1 +Λ2

2)Φ̃ = 0 and Λ1, Λ2 commute, we have for j = 1, 2(
Λ2

1 +Λ2
2

)
ΛjΦ̃ = 0, (Λ1Φ̃,Λ2Φ̃)|z=0 = (B,V ) ∈Hs

ul ×Hs
ul.

Since we have (see (4.17))

‖ΛjΦ̃‖
X

− 1
2

ul (J )

≤F0

we can apply Theorem 3.12 with σ = s − 1 and conclude that

‖∇x,zΛj Φ̃‖
L2(J,H

s− 1
2 )ul

≤F0 · (1 + ‖η‖
H
s+ 1

2
ul

+ ‖B‖Hs
ul

+ ‖V ‖Hs
ul

)
.

Since Λ1 = 1
∂zρ

∂z, Λ2 = ∇x − ∇xρ
∂zρ

∂z, using (7.3), the estimates on ρ, the above inequality for s = s0 and for s we 
obtain

‖ΛiΛj Φ̃‖
L2(J,H

s− 1
2 (Rd ))ul

≤ F0 · (1 + ‖η‖
H
s+ 1

2
ul

+ ‖B‖Hs
ul

+ ‖V ‖Hs
ul

)
. (4.28)

It follows easily that

‖F‖
Y
s− 1

2 (J )

≤ F0 · (1 + ‖η‖
H
s+ 1

2
+ ‖B‖Hs

ul
+ ‖V ‖Hs

ul

)
. (4.29)
ul ul
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Using (4.22), (4.24), (4.29), Theorem 3.12 and X
s− 1

2
ul (J ) ⊂ L2((J ), Hs)ul we obtain, using (4.17)

‖∇x,zP̃‖L2((J ),Hs)ul
≤F0 · (1 + ‖η‖

H
s+ 1

2
ul

+ ‖B‖Hs
ul

+ ‖V ‖Hs
ul

)
. (4.30)

We claim that

‖∂2
z P̃ ‖L2((J ),Hs−1)ul

≤F0 · (1 + ‖η‖
H
s+ 1

2
ul

+ ‖B‖Hs
ul

+ ‖V ‖Hs
ul

)
.

Indeed this follows from (4.22), (4.28), (7.3), (7.4), (4.30).
Noticing that a = − 1

∂zρ
∂zP̃ |z=0 and applying Lemma 7.12 we obtain the conclusion of Proposition 4.3. �

4.3. Paralinearization of the system

As in [2] for s > 1 + d
2 we set{

Us = 〈Dx〉sV + Tζ 〈Dx〉sB,
ζs = 〈Dx〉sζ, (4.31)

and we recall that we have set (see the statement of Theorem 3.11)

λ(t, x, ξ) :=
√(

1 + ∣∣∇xη(t, x)
∣∣2)|ξ |2 − (∇xη(t, x) · ξ)2

. (4.32)

Proposition 4.4. Let s0 > 1 + d
2 . For all s ≥ s0 there exists F : R+ → R+ non-decreasing such that

(∂t + TV · ∇x)Us + Taζs = f1, (4.33)

(∂t + TV · ∇x)ζs − TλUs = f2, (4.34)

where for each time t ∈ [0, T ]∥∥(f1(t), f2(t)
)∥∥

L2
ul×H

− 1
2

ul

≤ F
(∥∥(η(t),ψ(t),V (t),B(t))∥∥

H
s0+ 1

2
ul ×Hs0+ 1

2
ul ×Hs0

ul ×Hs0
ul

)
× {

1 + ∥∥η(t)∥∥
H
s+ 1

2
ul

+ ∥∥B(t)∥∥
Hs

ul
+ ∥∥V (t)∥∥

Hs
ul

}
. (4.35)

Proof. We follow the proof of Proposition 4.8 in [2]. First of all we shall say that a positive quantity A(t) is controlled 
if it is bounded by the right hand side of (4.35). Here t will be fixed so we will skip it, taking care that the estimates 
are uniform with respect to t ∈ [0, T ]. We also set

L0 = ∂t + TV · ∇x.

4.3.1. Paralinearization of the first equation
We begin by proving that

L0V + Taζ + TζL0B = h1 (4.36)

where ‖h1‖Hs
ul

is controlled. Indeed using (4.2), (4.3) and the fact that Tζg = 0 we see that h1 = (TV − V ) · ∇xV +
Tζ (TV −V ) · ∇xB +R(a, ζ ). By Proposition 7.18 with γ = s, r = s, μ = s0 − 1 we see that ‖(TV −V ) · ∇xV ‖Hs

ul
≤

C‖V ‖Hs
ul
‖V ‖

H
s0
ul

. On the other hand since s0 > 1 + d
2 , Proposition 7.17 with α = s − 1

2 , β = s0 − 1
2 shows that∥∥R(a, ζ )∥∥

Hs
ul(R

d )
≤ C‖a‖

H
s− 1

2
ul (Rd )

‖∇xη‖
H
s0− 1

2
ul (Rd )

.

These estimates together with Proposition 4.3 prove that h1 is controlled.
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4.3.2. Higher order energy estimates
Now we apply the operator 〈Dx〉s = (I −�x)

s
2 to Eq. (4.36) and we commute. We claim that we obtain

L0〈Dx〉sV + Ta〈Dx〉sζ + TζL0〈Dx〉sB = h2 (4.37)

where ‖h2(t)‖L2
ul(R

d ) is controlled. Indeed this is a consequence of the following estimates∥∥[TV · ∇x, 〈Dx〉s
]∥∥

Hs
ul→L2

ul
≤ C‖V ‖W 1,∞ ≤ C′‖V ‖

H
s0
ul
,∥∥[Ta, 〈Dx〉s

]∥∥
H
s− 1

2
ul →L2

ul

≤ C‖a‖
W

1
2 ,∞

≤C′‖a‖
H
s0− 1

2
ul

,∥∥[Tζ , 〈Dx〉s
]∥∥

H
s− 1

2
ul →L2

ul

≤ C‖ζ‖
W

1
2 ,∞

≤ C′‖ζ‖
H
s0− 1

2
ul

,

which follow from Theorem 7.16. Now Lemma 7.20 shows that∥∥[Tζ ,L0]〈Dx〉sB
∥∥
L2

ul
≤ C

(‖ζ‖L∞‖V ‖W 1+ε,∞ + ‖L0ζ‖L∞
)‖B‖Hs

ul
.

Since s0 > 1 + d
2 one can find ε > 0 such that Hs0

ul (R
d) is continuously embedded in W 1+ε,∞(Rd). Therefore we 

obtain∥∥[Tζ ,L0]〈Dx〉sB
∥∥
L2

ul
≤ F

(∥∥(η,B,V )∥∥
H
s0+ 1

2
ul ×Hs0

ul ×Hs0
ul

)‖B‖Hs
ul

which shows that ‖[Tζ , L0]〈Dx〉sB‖L2
ul

is controlled. Using (4.37) and (4.31) we obtain (4.33).

4.3.3. Paralinearization of the second equation

(∂t + V · ∇x)ζ =G(η)V + ζG(η)B +R. (4.38)

We first replace V by TV modulo a controlled term. To do this we use Proposition 7.18 with γ = s − 1
2 , r = s, 

μ = s0 − 3
2 and we obtain∥∥(V − TV ) · ∇xζ

∥∥
H
s− 1

2
ul

≤ C‖V ‖Hs
ul
‖η‖

H
s0+ 1

2
ul

. (4.39)

Next we paralinearize the Dirichlet–Neumann part. To achieve this paralinearization we use the analysis performed in 
Section 7. Using Theorem 3.11 with t = s − 1

2 we can write

G(η)V + ζG(η)B = TλU +R (4.40)

where

U = V + TζB

R= [Tζ , Tλ]B +R(η)V + ζR(η)B + (ζ − Tζ )TλB, (4.41)

and ∥∥R(η)V ∥∥
H
s− 1

2
ul

+ ∥∥ζR(η)B∥∥
H
s− 1

2
ul

≤ F
(∥∥(η,B,V )∥∥

H
s0+ 1

2
ul ×Hs0

ul ×Hs0
ul

)(
1 + ‖η‖

H
s+ 1

2
ul

+ ‖B‖Hs
ul

+ ‖V ‖Hs
ul

)
.

Using again Proposition 7.18 with γ = s − 1
2 , r = s − 1

2 , μ = s0 − 1 and Theorem 7.16(i) we can write∥∥(ζ − Tζ )TλB
∥∥
H
s− 1

2
ul

≤ C‖η‖
H
s+ 1

2
ul

M1
0 (λ)‖B‖

H
s0
ul

≤F
(‖η‖

H
s+ 1

2
ul

)‖B‖
H
s0
ul
,

which shows that this term is controlled. Eventually, by Theorem 7.16(ii), the term ‖[Tζ , Tλ]B‖
H
s− 1

2
ul

is also controlled. 

Therefore we have the equality (4.40) with ‖R‖
s− 1

2
controlled. It follows from (4.38), (4.39) and (4.40) that
Hul



T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395 365
L0ζ = TλU +R

where ‖R‖
H
s− 1

2
ul

is controlled. By commuting Eq. (4.39) with 〈Dx〉s we obtain Eq. (4.34). This completes the proof 

of Proposition 4.4. �
4.4. Symmetrization of the equations

As in [2] before proving an L2 estimate for our system we begin by performing a symmetrization of the non-
diagonal part. Recall that L0 = ∂t + TV · ∇x .

Proposition 4.5. Introduce the symbols

γ = √
aλ, q =

√
a

λ
,

where a is the Taylor coefficient and λ is recalled in (4.32). Set θs = Tqζs and L0 = ∂t + TV · ∇x . Then

L0Us + Tγ θs = F1 (4.42)

L0θs − TγUs = F2 (4.43)

where F1, F2 satisfy, with L2
ul = L2

ul(R
d), Hσ

ul =Hσ
ul(R

d),∥∥(F1(t),F2(t)
)∥∥

L2
ul×L2

ul
≤ F

(∥∥(η(t),B(t),V (t))∥∥
H
s0+ 1

2
ul ×Hs0

ul ×Hs0
ul

)
× (

1 + ∥∥η(t)∥∥
H
s+ 1

2
ul

+ ∥∥B(t)∥∥
Hs

ul
+ ∥∥V (t)∥∥

Hs
ul

)
,

for some non-decreasing function F : R+ → R+ and all t ∈ [0, T ].

Proof. We follow [2]. From (4.33) and (4.34) we have

F1 =: f1 + (Tγ Tq − Ta)ζs

F2 =: Tqf2 + (TqTλ − Tγ )Us − [Tq,L0]ζs .
Then the proposition follows from Lemma 7.20 and from the symbolic calculus. �

We can now state our L2 estimate. Let us set with Hσ
ul =Hσ

ul(R
d)⎧⎪⎨⎪⎩

Ms(0)= ∥∥(η(0),ψ(0),B(0),V (0))∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul ×Hs

ul×Hs
ul

,

Ms(T )= sup
t∈[0,T ]

∥∥(η(t),ψ(t),B(t),V (t))∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul ×Hs

ul×Hs
ul

.

Proposition 4.6. There exists F : R+ → R+ non-decreasing such that

(i)
∥∥Us(t)∥∥L2

ul
+ ∥∥θs(t)∥∥L2

ul
≤ F

(
Ms0(t)

)
Ms(t), t ∈ I =: [0, T ],

(ii) ‖Us‖L∞(I,L2)ul
+ ‖θs‖L∞(I,L2)ul

≤F
(
TMs0(T )

){
Ms(0)+ √

TMs(T )
}
.

Proof. (i) This follows easily from the definition of Us and θs given in (4.31) and in Proposition 4.5.
(ii) Let χk be as in (2.3). Then we have{L0(χkUs)+ Tγ (χkθs)=G1

L0(χkθs)− Tγ (χkUs)=G2
(4.44)

where G1, G2 are given by
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G1 = χkF1 + [TV · ∇x,χk]Us + [Tγ ,χk]θs
G2 = χkF2 + [TV · ∇x,χk]θs − [Tγ ,χk]Us.

We claim that for all t ∈ [0, T ] we have∥∥(G1(t),G2(t)
)∥∥

L2×L2 ≤ F
(∥∥(η(t),B(t),V (t))∥∥

H
s0+ 1

2
ul ×Hs0

ul ×Hs0
ul

)
× (

1 + ∥∥η(t)∥∥
H
s+ 1

2
ul

+ ∥∥B(t)∥∥
Hs

ul
+ ∥∥V (t)∥∥

Hs
ul

)
. (4.45)

According to Proposition 4.5 this is true for the terms coming from χkFj , j = 1, 2. Now according to Theorem 7.16
we have (for fixed t which is skipped)∥∥[TV · ∇x,χk]Us

∥∥
L2 ≤C‖V ‖W 1,∞‖Us‖L2

ul

≤C′‖V ‖
H
s0
ul

(‖V ‖Hs
ul(R

d ) + ‖∇xη‖
H
s0+ 1

2
ul

‖B‖Hs
ul

)
≤F

(∥∥(η,V )∥∥
H
s0+ 1

2
ul ×Hs0

ul

)(
1 + ‖B‖Hs

ul
+ ‖V ‖Hs

ul

)
.

The same estimate holds for ‖[TV · ∇x, χk]θs‖L2 . Eventually we have∥∥[Tγ ,χk]θs∥∥L2 ≤F
(∥∥(η,B,V )∥∥

H
s0+ 1

2
ul ×Hs0

ul ×Hs0
ul

)(
1 + ‖η‖

H
s+ 1

2
ul

+ ‖B‖Hs
ul

+ ‖V ‖Hs
ul

)
.

This proves our claim.
Now we compute the quantity d

dt
{‖χkUs(t)‖2

L2 + ‖χkθs(t)‖2
L2}. Using Eqs. (4.42), (4.43), the point (i), the fact 

that ∥∥(TV (t) · ∇x)
∗ + TV (t) · ∇x

∥∥
L2→L2 ≤ CMs0(t)∥∥Tγ (t) − (Tγ (t))

∗∥∥
L2→L2 ≤ CMs0(t)

and (4.45) we obtain easily (ii). �
4.5. Back to the original unknowns

Recall that

Us = 〈Dx〉sV + T∇xη〈Dx〉sB,
θs = T√ a

λ

〈Dx〉s∇xη.

From the estimate in Proposition 4.6 we would like to recover estimates of the original unknowns ψ, η, V, B . We 
follow closely [2]. The result is as follows.

Proposition 4.7. Let s0 > 1 + d
2 . For all s ≥ s0 one can find F : R+ → R+ non-decreasing such that

Ms(T )≤F
(
Ms0(0)+ TMs0(T )

){
Ms(0)+ TMs(T )

}
.

The proposition will be implied by the following lemmas.

Lemma 4.8. There exists F : R+ → R+ non-decreasing such that with I = [0, T ] and Hσ
ul =Hσ

ul(R
d) we have

‖η‖L∞(I,Hs)ul + ∥∥(B,V )∥∥
L∞(I,H

s− 1
2 ×Hs− 1

2 )ul

≤ F
(
Ms0(0)+ √

TMs0(T )
){
Ms(0)+ √

TMs(T )
}
.
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Proof. Set L1 = ∂t + V · ∇x . According to Proposition 4.2 we have L1B = a − g, L1V = −a∇xη and from the 
definition of V , B and the equations we have L1η = B . Then the lemma follows from Lemma 7.19 with μ = s, 
μ = s − 1

2 and Proposition 4.3. �
Lemma 4.9. Let s0 > 1 + d

2 . For s ≥ s0 one can find F : R+ → R+ non-decreasing such that, with Hσ
ul =Hσ

ul(R
d), 

we have

(i) ‖η‖
L∞(I,H

s+ 1
2 )ul

≤ F
(
Ms0(0)+ √

TMs0(T )
){
Ms(0)+ √

TMs(T )
}
,

(ii)
∥∥(V ,B)∥∥

L∞(I,Hs)ul
≤ F

(
Ms0(0)+ √

TMs0(T )
){
Ms(0)+ √

TMs(T )
}
,

(iii) ‖ψ‖
L∞(I,H

s+ 1
2 )ul

≤F
(
Ms0(0)+ √

TMs0(T )
){
Ms(0)+ √

TMs(T )
}
.

Proof. (i) By Lemma 4.8 it is sufficient to bound A = ‖∇xη‖
L∞(I,H

s− 1
2

ul )

. Recall that q =
√

a
λ

, θs = Tqζs , and 

ζs = 〈Dx〉s∇xη. By Theorem 7.16(ii) we can write ζs = T 1
q
Tqζs + Rζs where ‖R‖

L∞(I,Hμ)ul→L∞(I,H
μ+ 1

2 )ul
≤

C(‖a‖
L∞(I,H

s0− 1
2 )ul

+ ‖η‖
L∞(I,H

s0+ 1
2 )ul

). Then we have

A= ∥∥〈Dx〉− 1
2 ζs

∥∥
L∞(I,L2)ul

≤ ∥∥〈Dx〉− 1
2 T 1

q
θs
∥∥
L∞(I,L2)ul

+ ∥∥〈Dx〉− 1
2Rζs

∥∥
L∞(I,L2)ul

.

Using Theorem 7.16(i), the above estimate on the norm of R with μ = −1, Lemma 4.8 and Proposition 4.3 we deduce 
that

A≤ F
(
Ms0(0)+ √

TMs0(T )
){‖θs‖L∞(I,L2)ul

+ ‖η‖L∞(I,Hs)ul

}
.

Then the conclusion follows from Proposition 4.6 and Lemma 4.8.

(ii) Recall that U = V + TζB . The commutator [〈D〉s, Tζ ] is of order s − 1
2 which norm from L∞(I, Hs− 1

2 )ul to 
L∞(I, L2)ul is bounded by C‖η‖

L∞(I,C
3
2∗ )

thus by C′‖η‖
L∞(I,H

s0+ 1
2 )ul

. Therefore we deduce from Proposition 4.6

and Lemma 4.8 that

‖U‖L∞(I,Hs)ul ≤F
(
Ms0(0)+ √

TMs0(T )
)(
Ms(0)+ √

TMs(T )
)
. (4.46)

Now by Lemma 4.1 we have

divU = divV + Tdiv ζB + Tζ · ∇xB = −G(η)B + Tiζ ·ξ+div ζB + γ

= −TλB +R(η)B + Tiζ ·ξ+div ζB + γ = TeB + Tdiv ζB + γ +R(η)B

where e= −λ + iζ · ξ . Writing B = T 1
e
TeB + (I − T 1

e
Te)B we obtain

B = T 1
e

divU − T 1
e
γ + SB.

Then using (4.46), Lemma 4.1 we obtain the desired estimate on B and since V =U −TζB the estimate on V follows 
as well.

(iii) We have ∇xψ = V + B∇xη. Since the L∞(I, Hs− 1
2 )ul norm of (∇xη, V, B) has been already estimated, it 

remains to bound ‖ψ‖L∞(I,L2)ul
. Now from (2.1) and (2.2) by a simple computation we see that

(∂t + V · ∇x)ψ = −gη+ 1

2
|V |2 + 1

2
B2.

Then the conclusion follows from Lemma 7.19 with μ = s and (ii). �
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5. Contraction and well posedness

5.1. Contraction

In this section we shall prove estimates on the difference of two solutions of the system described in (4.2), (4.3), 
(4.4) which will prove the uniqueness and also enter in the proof by contraction of the existence. Let (ηj, ψj , Vj , Bj ), 
j = 1, 2 be two solutions on [0, T0] of the system⎧⎨⎩

(∂t + Vj · ∇x)Bj = aj − g,

(∂t + Vj · ∇x)Vj + aj ζj = 0,

(∂t + Vj · ∇x)ζj =G(ηj )Vj + ζjG(ηj )Bj + γj , ζj = ∇xηj ,

(5.1)

where γj is the remainder term given by (4.4).

Theorem 5.1. Let s > 1 + d
2 . We assume that the condition (3.2) holds for 0 ≤ t ≤ T0 and that there exists a positive 

constant c such that for all 0 ≤ t ≤ T0 and for all x ∈ Rd , we have aj (t, x) ≥ c for j = 1, 2. Set

Mj := sup
t∈[0,T0]

∥∥(ηj ,ψj ,Vj ,Bj )(t)∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul ×Hs

ul×Hs
ul

,

η := η1 − η2, ψ :=ψ1 −ψ2, V := V1 − V2, B := B1 −B2.

Then we have∥∥(η,ψ,V,B)∥∥
L∞((0,T0),H

s− 1
2 ×Hs− 1

2 ×Hs−1×Hs−1)ul

≤ K(M1,M2)
∥∥(η,ψ,V,B)|t=0

∥∥
H
s− 1

2
ul ×Hs− 1

2
ul ×Hs−1

ul ×Hs−1
ul

. (5.2)

Let

N(T ) := sup
t∈[0,T ]

∥∥(η,ψ,V,B)(t)∥∥
H
s− 1

2
ul ×Hs− 1

2
ul ×Hs−1

ul ×Hs−1
ul

.

Our goal is to prove an estimate of the form

N(T )≤ K(M1,M2)N(0)+ TK(M1,M2)N(T ), (5.3)

for some non-decreasing function K depending only on s and d . Then, by choosing T small enough, this im-
plies N(T ) ≤ 2K(M1, M2)N(0) for T1 smaller than the minimum of T0 and 1/2K(M1, M2), and iterating the estimate 
between [T1, 2T1], . . . , [T − T1, T1] implies Theorem 5.1.

Remark 5.2. Notice that we prove a Lipschitz property in weak norms. This is a general fact related to the fact that 
the flow map of a quasi-linear equation is not expected to be Lipschitz in the highest norms (this means that one does 
not expect to control the difference (η, ψ, V, B) in L∞([0, T0], Hs+ 1

2 ×Hs+ 1
2 ×Hs ×Hs)ul).

The proof of Theorem 5.1 follows the same lines as the proof of the similar result [2, Theorem 5.1]. It follows 
4 steps: first we prove a Lipschitz estimate for the Dirichlet–Neumann operator. Then we paralinearize the system 
satisfied by (η, ψ, V, B), symmetrize this system, estimate the good unknowns of the symmetrized system and finally 
estimate (η, ψ, V, B). The Lipschitz estimate of the Dirichlet–Neumann operator is the crucial one and we shall give 
some details. Having established the paradifferential calculus in uniformly local spaces, the other steps are identical 
mutatis mutandi as in [2] and we shall skip the proofs.

5.2. Contraction for the Dirichlet–Neumann operator

In this section the time being fixed we will skip it.
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Lemma 5.3. Assume s > 1 + d
2 . Then there exists F : R+ → R+ non-decreasing such that for all η1, η2 ∈H

s+ 1
2

ul and 
all f ∈Hs

ul we have∥∥(G(η1)−G(η2)
)
f
∥∥
H
s− 3

2
ul

≤F
(∥∥(η1, η2, f )

∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul ×Hs

ul

)‖η1 − η2‖
H
s− 1

2
ul

(5.4)

where Hσ
ul =Hσ

ul(R
d).

Proof. We follow closely [2]. As in (3.15), (3.23) we introduce ρj , ũj , αj , βj , γj for j = 1, 2. Then if ũj |z=0 = f

we have

G(ηj )f =
(

1 + |∇xρj |2
∂zρj

∂zũj − ∇xρj · ∇xũj

)∣∣∣∣
z=0

. (5.5)

We set ũ= ũ1 − ũ2. Then(
∂2
z + α1�x + β1 · ∇x∂z − γ1∂z

)
ũ= F

where

F = {
(α2 − α1)�x + (β2 − β1) · ∇x∂z − (γ2 − γ1)∂z

}
ũ2.

Since s > 1 + d
2 , Lemma 7.5 with s0 = s−2, s1 = s−2, s2 = s−1, p = 2 gives (with J = (z0, 0) and Hμ

ul =H
μ
ul (R

d))

‖F‖L2(J,Hs−2)ul
≤K

{‖α2 − α1‖L2(J,Hs−1)ul
‖�ũ2‖L∞(J,Hs−2)ul

+ ‖β2 − β1‖L2(J,Hs−1)ul
‖∇x∂zũ2‖L∞(J,Hs−2)ul

+ ‖γ2 − γ1‖L2(J,Hs−2)ul
‖∂zũ2‖L∞(J,Hs−1)ul

}
.

Using (3.23) and Lemma 7.5 we can find a non-decreasing function F : R+ → R+ such that

‖α2 − α1‖L2(J,Hs−1)ul
+ ‖β2 − β1‖L2(J,Hs−1)ul

+ ‖γ2 − γ1‖L2(J,Hs−2)ul

≤F
(∥∥(η1, η2)

∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul

)‖η1 − η2‖
H
s− 1

2
ul

.

On the other hand by Theorem 3.12 with σ = s − 1 we have

‖∇x,zũ2‖L∞((z0,0),H s−1)ul
≤ F

(‖η2‖
H
s+ 1

2
ul

)‖f ‖Hs
ul
.

Combining these estimates we obtain eventually

‖F‖L2(J,Hs−2)ul
≤F

(∥∥(η1, η2, f )
∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul ×Hs

ul

)‖η1 − η2‖
H
s− 1

2
ul

.

Since ũ vanishes at z= 0 Theorem 3.12 with σ = s − 3
2 gives

‖∇x,zũ‖
C0((z0,0),H

s− 3
2 )ul

≤ F
(∥∥(η1, η2, f )

∥∥
H
s+ 1

2
ul ×Hs+ 1

2
ul ×Hs

ul

)‖η1 − η2‖
H
s− 1

2
ul

.

Using (5.5) and Proposition 7.3(i) we obtain (5.4). �
5.3. Paralinearization of the equations

Notice that it is enough to estimate η, B , V . Indeed, since Vj = ∇xψj − Bj∇xηj , one can estimate the

L∞([0, T ], Hs− 3
2 )ul-norm of ∇xψ from the identity

∇xψ = V +B∇xη1 +B2∇xη.
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Lemma 5.4. (See [2, Lemma 5.6].) The differences ζ, B, V satisfy a system of the form{
(∂t + V1 · ∇)(V + ζ1B)+ a2ζ = f1,

(∂t + V2 · ∇)ζ −G(η1)V − ζ1G(η1)B = f2,
(5.6)

for some remainders such that∥∥(f1, f2)
∥∥
L∞([0,T ],H s−1×Hs− 3

2 )ul
≤K(M1,M2)N(T ).

5.4. Estimates for the good unknown

In this section we introduce the good-unknown of Alinhac in [4,1,5,6] and symmetrize the system. Let I = [0, T ].

Lemma 5.5. (See [2, Lemma 5.7].) Set

� :=√
λ1a2, ϕ := T√

λ1
(V + ζ1B), ϑ := T√

a2ζ.

Then

(∂t + TV1 · ∇)ϕ + T�ϑ = g1, (5.7)

(∂t + TV2 · ∇)ϑ − T�ϕ = g2, (5.8)

where∥∥(g1, g2)
∥∥
L∞(I,H

s− 3
2 ×Hs− 3

2 )ul
≤ K(M1,M2)N(T ).

Once this symmetrization has been performed, simple energy estimates allow to prove

Lemma 5.6. (See [2, Lemma 5.8].) Let

N ′(T ) := sup
t∈I

{∥∥ϑ(t)∥∥
H
s− 3

2
ul

+ ∥∥ϕ(t)∥∥
H
s− 3

2
ul

}
.

We have

N ′(T )≤ K(M1,M2)
(
N(0)+ TN(T )

)
. (5.9)

5.5. Back to the original unknowns

From the estimates in Lemma 5.6, it is fairly easy to recover estimates for η.

Lemma 5.7. (See [2, Lemma 5.9].)

‖η‖
L∞(I ;Hs− 1

2 )ul
≤K(M1,M2)

{
N(0)+ TN(T )

}
. (5.10)

We now estimate (V , B).

Proposition 5.8. (Se [2, Proposition 5.10].)∥∥(V ,B)∥∥
L∞(I,Hs−1×Hs−1)ul

≤ K(M1,M2)
{
N(0)+ TN(T )

}
. (5.11)

The proof will require several preliminary lemmas. We begin by noticing that it is enough to estimate B . Indeed, if

‖B‖L∞(I,Hs−1)ul
≤ K(M1,M2)

{
N(0)+ TN(T )

}
,

then, the estimate of ϕ in (5.9) above allows to recover an estimate for V + ζ1B (by applying T√
λ1

−1 ), which in turn 
implies the estimate for V .
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Let v = φ̃1 − φ̃2, where φ̃j is the harmonic extension in Ω̃ of the function ψj and set

b2 := ∂zφ̃2

∂zρ2
, w = v − Tb2ρ.

We have

w|z=0 =ψ − TB2η. (5.12)

We first state the following result.

Lemma 5.9. (See [2, Lemma 5.11].) We have

‖ψ − TB2η‖L∞(I,Hs)ul ≤K(M1,M2)
{
N(0)+ TN(T )

}
. (5.13)

We next relate w, ρ and B .

Lemma 5.10. (See [2, Lemma 5.12].) We have

B =
[

1

∂zρ1

(
∂zw− (b2 − Tb2)∂zρ + T∂zb2ρ

)]∣∣∣∣
z=0

.

Lemma 5.11. (See [2, Lemma 5.13].) Recall that b2 := ∂zφ̃2
∂zρ2

. For k = 0, 1, 2, we have∥∥∂kz b2
∥∥
C0([−1,0],L∞(I,H

s− 1
2 −k

)ul)
≤C‖ψ2‖

L∞(H
s+ 1

2 )ul

for some constant C depending only on ‖η2‖
L∞(H

s+ 1
2 )ul

.

Notice that η and hence ρ are estimated in L∞(I ; Hs− 1
2 ) (see (5.10)). To complete the proof of Proposition 5.8, it 

remains only to estimate ∂zw|z=0 in L∞(I, Hs−1
ul ).

Lemma 5.12. (See [2, Lemma 5.14].) For t ∈ [0, T ] we have

‖∇x,zw‖C0([−1,0],H s−1)ul
≤K(M1,M2)

{
N(0)+ TN(T )

}
. (5.14)

5.6. Well posedness

The proof goes as follows. In a first step we prove the main theorem for very smooth data, using a parabolic 
regularization. Then, when the data are rough, we regularize them, thus obtaining a sequence of solutions living on an 
interval depending on a small parameter ε. In a second step, using the tame estimates proved in Proposition 4.7, we 
show that this sequence exists on a fixed interval. In the last step, using the results stated in Section 7, we prove that it 
is a Cauchy sequence and we conclude. Let us notice that most of this work has been already done in [2] in the case 
of the classical Sobolev spaces. Therefore we will only sketch here the main points.

5.7. Parabolic regularization

We assume first that (η0, ψ0) ∈Hs
ul ×Hs

ul for s ≥ n0 + d
2 , n0 large enough, and we consider for ε > 0 the problem⎧⎪⎪⎨⎪⎪⎩

∂tη=G(η)ψ + ε�xη,

∂tψ = −1

2
|∇xψ |2 + 1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2 − gη+ ε�xψ

(η,ψ)| = (η ,ψ ).

(5.15)
t=0 0 0
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Setting U = (η, ψ) we can rewrite this problem as

U(t)= eεt�xU0 +
tˆ

0

eε(t−τ)�x
[
A
(
U(τ)

)]
dτ. (5.16)

We set I = [0, T ] and we introduce the space

Es = L∞(
I,Hs

)
ul ∩L2(I,Hs+1)

ul.

According to Lemma 7.10 we have ‖eεt�xU0‖Es ≤ Cε‖U0‖Hs
ul

=:R. Then using the estimates∥∥A(U)∥∥
L2(I,Hs)ul

≤ F
(‖U‖L∞(I,Hs)ul

)‖U‖L2(I,Hs+1)ul∥∥A(U1)−A(U2)
∥∥
L2(I,Hs)ul

≤ F
(∥∥(U1,U2)

∥∥
L∞(I,Hs×Hs)ul

)‖U1 −U2‖L2(I,Hs+1)ul
(5.17)

we can show that, if T = Tε is small enough, the right hand side of (5.16) maps the ball of radius 2R in Es into itself 
and is contracting. By the Banach principle Eq. (5.16) has a maximal solution on [0, T ∗

ε ). Moreover if Tε <+∞ then

lim
t→T ∗

ε

∥∥(η,ψ)(t)∥∥
Hs

ul×Hs
ul

= +∞. (5.18)

Now with this large s we set

Mε
s (T )= sup

t∈[0,T ]

∥∥(ηε,ψε,V ε,Bε
)
(t)

∥∥
Hs

ul×Hs
ul×Hs−1

ul ×Hs−1
ul

.

Using the same computations as in [2] and the method of proof of Proposition 4.7 (but in an easier way since here s
is large) we deduce that one can find F : R+ → R+ strictly increasing such that

Mε
s (T )≤F

(
Mε
s (0)+ √

TMε
s (T )

)
.

Since Mε
s (0) = Ms(0) does not depend on ε, this will imply that there exists T0 > 0 independent of ε such that 

Mε
s (T ) ≤ F(2Ms(0)) for T ∈ [0, T0]. Using this uniform bound on this fixed interval and the arguments of [2] we can 

pass to the limit in Eqs. (5.15) to obtain a solution (η, ψ) of the water wave system.

5.8. Regularizing the data, a priori estimates

Assume (η0, ψ0, V0, B0) belongs to H
s0+ 1

2
ul ×H

s0+ 1
2

ul ×H
s0
ul ×H

s0
ul where s0 > 1 + d

2 . Let j ∈ C∞
0 (Rd), j (ξ) = 1

when |ξ | ≤ 1. We regularize the data in setting f ε0 = j (εD)f0 if f0 is one of them. Then the regularized data belong 
to Hs

ul for s large. Therefore applying Step 1 we get a very regular solution Uε = (ηε, ψε, Vε, Bε) of the water wave 
system, on an interval [0, Tε] which satisfies Mε

s (Tε) <+∞ and ηε(t, x) − η∗(x) > h
2 for all t ∈ [0, Tε], x ∈ Rd .

Let T ∗
ε > 0 be the supremum of such Tε.

If T ∗
ε <+∞ then either{ limT→T ∗

ε
Mε
s (T )= +∞ or

limT→T ∗
ε
ηε(t, x)− η∗(x)= h

2 , for some x ∈ Rd .
(5.19)

Recall (see Theorem 2.3) that η0(x) − η∗(x) ≥ 2h for all x ∈ Rd . From now on we consider ε > 0 so small that

η0
ε(x)− η∗(x)≥ 3h

2
, ∀x ∈ Rd . (5.20)

We first apply Proposition 4.7 with s = s0 and we obtain

Mε
s0
(T )≤ F1

(
Mε
s0
(0)+ √

TMε
s0
(T )

)
.

Since there exists A0 > 0, independent of ε, such that Mε
s0
(0) ≤ A0, for all ε > 0 small, we deduce that one can find 

T0 > 0 independent of ε such that Mε
s (T ) ≤ F1(2A0) for all T ≤ min(T0, T ∗

ε ). We apply again Proposition 4.7 with

0
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s large and we get

Mε
s (T )≤ F

(
A0 +√

T0F1(2A0)
)(
Mε
s (0)+ √

TMε
s (T )

)
.

Let 0 < T1 ≤ T0 be such that 
√
T1F(A0 + √

T0F1(2A0)) ≤ 1
2 . Then

Mε
s (T )≤ 2F

(
A0 +√

T0F1(2A0)
)
A0 =:K0, T ≤ min

(
T1, T

∗
ε

)
. (5.21)

Now on [0, T ] we can write

ηε(t, x)− η0
ε(x)=

tˆ

0

∂tηε(s, x) ds =
tˆ

0

(
G(ηε)ψε

)
(s, x) ds

from which we deduce, since s is large∥∥ηε(t, ·)− η0
ε(·)

∥∥
L∞(Rd )

≤ T sup
t∈[0,T ]

∥∥(G(ηε)ψε)(t, ·)∥∥Hs−2(Rd )

≤ TF2
(
Mε
s (T )

)≤ TF2(K0).

Let 0 < T2 ≤ T1 be such that T2F2(K0) ≤ h
10 . It follows that

ηε(t, x)− η∗(x)≥ h, ∀t ∈ [
0,min

(
T2, T

∗
ε

))
, ∀x ∈ Rd . (5.22)

This implies that T ∗
ε ≥ T2 for all small ε. Indeed if there exists an ε0 such that T ∗

ε0
≤ T2 then we would have (5.21)

and (5.22) on [0, T ∗
ε0
) which would contradict (5.19).

This shows that our solution (ηε, ψε, Vε, Bε) exists on a fixed interval [0, T2]. Moreover, as seen above, Mε
s (T ) is 

uniformly bounded on this interval.

5.9. Passing to the limit

According to Theorem 5.1, (ηε, ψε, Vε, Bε) which is, according to Section 5.8, bounded in

L∞(
(0, T );Hs0+ 1

2
ul ×H

s0+ 1
2

ul ×H
s0
ul ×H

s0
ul

)
,

is convergent in

L∞(
(0, T );Hs0− 1

2
ul ×H

s0− 1
2

ul ×H
s0−1
ul ×H

s0−1
ul

)
,

and hence also for any δ > 0 in

L∞(
(0, T );Hs0+ 1

2 −δ
ul ×H

s0+ 1
2 −δ

ul ×H
s0−δ
ul ×H

s0−δ
ul

)
.

To get the existence of solutions, it remains to pass to the limit in the equations (the uniqueness follows once again 
from Theorem 5.1). For this step, we rewrite the system (2.1), (2.2) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tηε =G(ηε)ψε,

∂tψε + Vε · ∇xψε = 1

2

(
V 2
ε +B2

ε

)− gηε,

Bε = ∇xηε · ∇xψε +G(ηε)ψε

1 + |∇xηε|2 ,

Vε = ∇xψε −Bε∇xηε.

(5.23)

Choosing δ > 0 such that s − δ − 1 > d (so that Hs−δ− 1
2 is an algebra), we deduce that
2 2



374 T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395
∂tηε ⇀ ∂tη in D′((0, T )× Rd
)

∂tψε ⇀ ∂tψ in D′((0, T )× Rd
)

Vε · ∇xψε → V · ∇xψ in L∞(
(0, T );Hs−δ− 1

2
ul

)
V 2
ε +B2

ε → V 2 +B2 in L∞(
(0, T );Hs−δ

ul

)
∇xηε · ∇xψε → ∇xη · ∇xψ in L∞(

(0, T );Hs−δ− 1
2

ul

)⊂ L∞(
(0, T );L2

ul

)
|∇xηε|2 → |∇xη|2 in L∞(

(0, T );Hs−δ− 1
2

ul

)⊂ L∞(
(0, T );C0 ∩L∞(

Rd
))

(5.24)

On the other hand, according to Lemma 5.3, we get

G(ηε)ψε −G(η)ψ =G(ηε)(ψε −ψ)+ (
G(ηε)−G(η)

)
ψ → 0,

in

L∞(
(0, T );Hs− 3

2 −δ
ul

)⊂ L∞(
(0, T );L2

ul

)
,

which allows to pass to he limit in (5.23) and show that the same system of equations is satisfied by (η, ψ, V, B) in 
D′((0, T ) × Rd).

5.10. Continuity in time

We now prove that (η, ψ, V, B) is continuous in time with values in H
s0+ 1

2 −δ
ul ×H

s0+ 1
2 −δ

ul ×H
s0−δ
ul ×H

s0−δ
ul . From 

the equation, and product rules, its time derivative is clearly in

L∞(
(0, T );Hs0− 1

2
ul ×H

s0− 1
2

ul ×H
s0− 3

2
ul ×H

s0− 3
2

ul

)
and consequently (interpolating with the a priori estimate), for any δ > 0,

(η,ψ,V,B) ∈C0([0, T );Hs0+ 1
2 −δ

ul ×H
s0+ 1

2 −δ
ul ×H

s0−δ
ul ×H

s0−δ
ul

)
. (5.25)

6. The canal

We consider now the case of a canal having vertical walls near the free surface or the case of a rectangular basin.
The propagation of waves whose crests are orthogonal to the walls is one of the main motivation for the anal-

ysis of 2D waves. It was historically at the heart of the analysis of water waves. The study of the propagation of 
three-dimensional water waves for the linearized equations goes back to Boussinesq (see [9]). However, there are 
no existence results for the nonlinear equations in the general case where the waves can be reflected on the walls of 
the canals (except the analysis of 3D-periodic traveling waves which correspond to the reflexion of a 2D-wave off a 
vertical wall, see Reeder and Shinbrot [29], Craig and Nicholls [13] and Iooss and Plotnikov [21]).

We hence consider a fluid domain which at time t is of the form

Ω(t)= {
(x1, x2, y) ∈M × R : b(x) < y < η(t, x), x = (x1, x2)

}
,

where M = (0, 1) × R in the case of the canal and M = (0, 1) × (0, L) in the case of a rectangular basin, and b is a 
fixed continuous function on M describing the bottom.

Denote by Σ the free surface and by Γ the fixed boundary of the canal:

Σ(t)= {
(x1, x2, y) ∈M × R : y = η(t, x)

}
,

and we set Γ = ∂Ω(t) \Σ(t) (which does not depend on time). We have

Γ = Γ1 ∪ Γ2,

Γ1 = {
(x1, x2, y) ∈M × R;b(x)= y

}
Γ2 = {

(x1, x2, y) ∈ ∂M × R;b(x) < y < η
(
x1, x

′)}. (6.1)
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Fig. 1. Two-dimensional section of the fluid domain, exhibiting the right-angles at the interface Σ ∩ Γ .

Denote by n the normal to the boundary Γ and denote by ν the normal to the free surface Σ . The irrotational 
water-waves system is then the following: the Eulerian velocity field v: Ω → R3 solves the incompressible Euler 
equation

∂tv + v · ∇x,yv + ∇x,yP = −gey, divx,y v = 0, curlx,y v = 0 in Ω, (6.2)

where −gey is the acceleration of gravity (g > 0) and where the pressure term P can be recovered from the velocity 
by solving an elliptic equation. The problem is then given by three boundary conditions. They are⎧⎨⎩

v · n= 0 on Γ,

∂tη=√
1 + |∇η|2v · ν on Σ,

P = 0 on Σ.

(6.3)

We notice that the first condition in (6.3) expresses the fact that the particles in contact with the rigid bottom remain 
in contact with it. Notice that to fully make sense, this condition requires some smoothness on Γ , but in general it has 
a weak variational meaning (see Section 3).

Finally we impose the initial condition

(η, v)|t=0 = (η0, v0), (6.4)

where v0 satisfies

divx,y v0 = 0, curlx,yv0 = 0 in Ω0, v0 · n= 0, on Γ.

It follows that there exists a function φ0 :Ω0 → R such that

v0 = ∇x,yφ0 in Ω0, with �x,yφ0 = 0.

We set

ψ0 = φ0|y=η0(x)

and introduce the trace of the velocity field v0 = (v0,x1 , v0,x2 , v0,y) on Σ0 = {(x, η0(x))} in setting

v0,x1 |y=η0 = V0,x1 , v0,x2 |y=η0 = V0,x2 , v0,y |y=η0 = B0, V0 = (V0,x1 ,V0,x2).

Similarly, to a solution v of (6.2)–(6.3) we associate φ, ψ and (V , B) = v|y=η as above.
The stability of the waves is dictated by the Taylor sign condition, which is the assumption that there exists a 

positive constant c such that

a(t, x) := −(∂yP )
(
t, x, η(t, x)

)≥ c > 0. (6.5)

6.1. A simple observation

We begin with an elementary calculation showing that, at least for regular enough solutions, as soon as the Taylor 
sign condition (6.5) is satisfied, in the case of vertical walls, it is necessary that at the points where the free surface 
and the boundary of the canal meet (Σ(t) ∩ Γ ), the scalar product between the two normals (to the free surface and 
to the boundary of the canal) vanishes: ν · n = 0 on Σ ∩ Γ , which means that the free surface Σ necessarily makes a 
right-angle with the rigid walls (see Fig. 1).
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Proposition 6.1. Let (η, v) be a classical solution of system (6.2), (6.3) such that the Taylor coefficient a is continuous 
and non-vanishing and η(t, x) ≥ b(x) +h for some positive constant h. Then the angle between the free surface, Σ(t)
and the boundary of the canal Γ is a right angle:

∀t ∈ [0, T ], ∀x ∈Σ(t)∩ Γ, n · ν(t, x)= 0,

which is equivalent to

∂x1η(t, x1, x2)|x1=0,1 = 0. (6.6)

Remark 6.2. Notice that here, to get the right angle property, we assume that the Taylor coefficient does not vanish. 
It could happen that this is not the case, in which case, this right angle property could be violated.

Proof of Proposition 6.1. We give the proof in the case of a canal, the proof for the rectangular basin is similar. Since 
η0(x) ≥ b(x) +h at a point m0 where Σ(t) and Γ meet we have m0 = (ε, x0

2 , y
0) where ε = 0 or 1. Let m = (ε, x2, y)

be a point on Γ near m0. At m the normal n to Γ is n = (±1, 0, 0). Taking the scalar product of Eq. (6.2) with n we 
obtain, since ey · n = 0,

(∇x,yP ) · n= −(∂tv) · n− (
(v · ∇x,y)v

) · n at m. (6.7)

Denote by (vx1 , vx2, vy) the three components of the velocity field v. The first condition in (6.3) implies that
(v · n)(m) = ±vx1(t, ε, x2, y) = 0. It follows that (∂tv) · n = ∂t (v · n) = 0 at m. Moreover on Γ near m0 we have[(

(v · ∇x,y)v
) · n](t, ε, x2, y)= ±[

(v · ∇x,y)vx1

]
(t, ε, x2, y)

= ±[
(vx2∂x2 + vy∂y)vx1

]
(t, ε, x2, y)

= ±[
(vx2∂x2 + vy∂y)

](
vx1(t, ε, x2, y)

)= 0.

It follows from (6.7) that

(∇x,yP ) · n= 0 at m. (6.8)

Now by the third condition in (6.3) we have P = 0 on Σ and by (6.5) and our hypothesis on the Taylor coefficient we 
have ∇x,yP = 0 on Σ . It follows that ∇x,yP is proportional to the normal ν at Σ and by continuity at Σ ∩ Γ . We 
deduce from (6.8) that ν · n = 0 at m0. �

Once this right angle property is ensured, it is easy to show that some additional compatibility conditions have also 
to be fulfilled. Namely, for f = B0, V0,x2 , ∂x1V0,x1 , using (6.3), as soon as the function φ is smooth enough so that all 
terms below are defined, we have with m = (ε, x2) (ε = 0 or 1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x1ψ0(m)= ∂x1φ0
(
m,η0(m)

)+ ∂yφ0
(
m,η0(m)

)
∂x1η0(m)= 0,

∂x1B0(m)= ∂x1∂yφ0
(
m,η0(m)

)+ ∂2
yφ0

(
m,η0(m)

)
∂x1η0(m)= 0,

∂x1V0,x2(m)= ∂x1∂x2φ0
(
m,η0(m)

)+ ∂y∂x2φ0
(
m,η0(m)

)
∂x1η0(m)= 0,

∂2
x1
V0,x1(m)= ∂3

x1
φ0
(
m,η0(m)

)+ 2∂y∂2
x1
φ0
(
m,η0(m)

)
∂x1η0(m)

+ ∂2
y ∂x1φ0

(
m,η0(m)

)(
∂x1η0(m)

)2 + ∂y∂x1φ0
(
m,η0(m)

)
∂2
x1
η0(m)

= 0,

(6.9)

where in the last equality, we used that ∂3
x1
φ = −(∂2

x2
+ ∂2

y )∂x1φ, since φ is harmonic.

6.2. The result

As before, we denote by x1 (resp. x2) the variable in (0, 1) (resp. in R). To state our results we need to in-
troduce the uniformly local Sobolev spaces in the x2 direction (these spaces are introduced by Kato in [22]). Let
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1 =∑
k∈Z χ(x2 − k) be a partition of unity and define for any s ∈ R,

Hs
ul

(
(0,1)× R

)=
{
u ∈Hs

loc

(
(0,1)× R

) : sup
k

∥∥χ(x2 − k)u
∥∥
Hs((0,1)×R) <+∞

}
.

These are Banach spaces when endowed with the norm

‖u‖Hs
ul

= sup
k

∥∥χ(x2 − k)u
∥∥
Hs((0,1)×R).

In Section 6.1 we showed that in order to get smooth solutions, a set of compatibility conditions (6.6), (6.9) have to 
be assumed. Here we prove that these conditions are not only necessary, but they are sufficient.

Theorem 6.3. Set M = (0, 1) × R. Let s ∈ (2, 3), s = 5
2 , and

Hs(M)=H
s+ 1

2
ul (M)×H

s+ 1
2

ul (M)×Hs
ul(M)×Hs

ul(M).

Consider (η0, ψ0, V0, B0) ∈ Hs(M) and assume that, with ε= 0, 1

(H1) V0,x1(ε, x2) = 0 and ∂x1f (ε, x2) = 0 when f = η0, ψ0, B0, V0,x2 . Furthermore, ∂2
x1
V0,x1(ε, x2) = 0 if s > 5/2.

(H2) The Taylor sign condition, a0(x) ≥ c > 0 is satisfied at time t = 0.
(H3) η0(x) ≥ b(x) + h for some positive constant h.

Then there exists a time T > 0 and a unique solution (η, v = ∇x,yφ) of the system (6.2), (6.3), (6.4) such that

i) (η, φ|Σ, V, B) ∈ C([0, T ); Hs(M)),
ii) the Taylor sign condition is satisfied at time t and η(t) ≥ b+ h/2.

In the case of a rectangular basin we have the following result.

Theorem 6.4. Set M = (0, 1) × (0, L). Let s ∈ (2, 3), s = 5
2 , and

Hs(M)=Hs+ 1
2 (M)×Hs+ 1

2 (M)×Hs(M)×Hs(M).

Consider initial data (η0, ψ0, V0, B0) ∈ Hs(M), such that

(C1) V0,x1(ε, x2) = 0 and ∂x1f (ε, x2) = 0 when f = η0, ψ0, B0, V0,x2 . Furthermore, ∂2
x1
V0,x1(ε, x2) = 0 if s > 5/2. 

Here ε = 0 or 1.
(C2) V0,x2(x1, δ) = 0 and ∂x2f (x1, δ) = 0 when f = η0, ψ0, B0, V0,x1 . Furthermore, ∂2

x2
V0,x2(x1, δ) = 0 if s > 5/2. 

Here δ = 0 or L.
(C3) The Taylor sign condition, a0(x) ≥ c > 0 is satisfied at time t = 0.
(C4) η0(x) ≥ b(x) + h for some positive constant h.

Then there exists T > 0 and a unique solution (η, v = ∇x,yφ) of (6.2)–(6.4) such that

(1) (η, φ|Σ, V, B) ∈ C([0, T ); Hs(M)),
(2) the Taylor sign condition is satisfied at time t and η(t) ≥ b+ h/2.

Remark 6.5. (i) Our results exclude the case s = 5
2 for technical reasons. It would be possible (but unnecessarily 

complicated) to include this case.
(ii) In the case of a flat bottom (say b(x) = −1) we do not need assumption (H2) (and (C3)) which is in this case 

always satisfied as proved by Wu [31,30], see also [24]. Also, this condition is satisfied under a smallness assumption.
(iii) Condition (H1), when f = η0, says that at t = 0 the fluid has to be orthogonal to the fixed vertical walls.
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Fig. 2. Two-dimensional section of the extended fluid domain.

6.3. Proof of the result

Following Boussinesq (see [9, p. 37]) the strategy of proof is to perform a symmetrization process (following the 
process which is illustrated on Fig. 2).

Once this symmetrization process is performed, we will apply our result [3, Theorem 2.3] to conclude.

6.3.1. The periodization process
Without additional assumptions, the reflection procedure should yield in general a Lipschitz singularity. However, 

here the possible singularities are weaker according to the physical hypothesis (H1).
For a function v defined on (0, +∞), define vev and vod to be the even and odd extensions of v to (−∞, +∞)

defined by

vev(y)=
{
v(−y), if y < 0

v(y) if y ≥ 0.

vod(y)=
{−v(−y), if y < 0

v(y) if y ≥ 0.
(6.10)

We have the following result:

Proposition 6.6. We have

(1) Assume that 0 ≤ s < 3
2 . Then the map v �→ vev is continuous from Hs(0, +∞) to Hs(R).

(2) Assume that 3
2 < s < 7

2 . Then the map v �→ vev is continuous from the space {v ∈ Hs(0, +∞) : v′(0) = 0} to 
Hs(R).

(3) Assume that 0 ≤ s < 1
2 . Then the map v �→ vod is continuous from Hs(0, +∞) to Hs(R).

(4) Assume that 1
2 < s < 5

2 . Then the map v �→ vod is continuous from the space {v ∈ Hs(0, +∞) : v(0) = 0} to 
Hs(R).

(5) Assume that 5
2 < s ≤ 4. Then the map v �→ vod is continuous from the space {v ∈Hs(0, +∞) : v(0) = v′′(0) = 0}

to Hs(R).

Proof. Let I = (0, +∞). Then C∞
0 (I ) is dense in Hs(I) for all s ∈ R.

(1) The case s = 0 is trivial since ‖vev‖2
L2(R)

= 2‖v‖2
L2(I )

. Consider now the case 0 < s < 1. Then the square of 
the Hs(R)-norm of vev is equivalent to∥∥vev

∥∥2
L2(R) +A, A=:

¨

R×R

|vev(x)− vev(y)|2
|x − y|1+2s

dxdy.

Then we can write

A= 2
¨

I×I

|v(x)− v(y)|2
|x − y|1+2s

dxdy + 2
¨

I×I

|v(x)− v(y)|2
|x + y|1+2s

dxdy :=A1 +A2.

We have

A1 ≤ 2‖v‖2
Hs(I), A2 ≤ 2‖v‖2

Hs(I)



T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395 379
since 1
(x+y)1+2s ≤ 1

|x−y|1+2s . The case s = 1 being straightforward consider the case 1 < s < 3
2 . Set σ = s − 1 ∈ (0, 12 ). 

Then ∥∥vev
∥∥2
Hs(R) = ∥∥vev

∥∥2
L2(R) +

∥∥∂xvev
∥∥2
Hσ (R).

Since 0 < σ < 1 we have∥∥∂xvev
∥∥2
Hσ (R) ≤ C(A0 +A1 +A2)

A0 = ∥∥∂xvev
∥∥2
L2(R) ≤ C1

∥∥v′∥∥2
L2(I )

≤ C1‖v‖2
Hs(I)

A1 =
¨

I×I

|v′(x)− v′(y)|2
|x − y|1+2σ

dxdy ≤ C2
∥∥v′∥∥2

Hσ (I)
≤ C2‖v‖2

Hs(I)

A2 =
¨

I×I

|v′(x)+ v′(y)|2
|x + y|1+2σ

dxdy.

Eventually we have

A2 ≤ C3

ˆ

I

|v′(x)|2
|x|2σ dx ≤ C4

∥∥v′∥∥
Hσ (I)

≤C4‖v‖Hs(I)

by Theorem 11.2 in [27], since 0 < σ < 1
2 . This completes the proof of (1).

(2) If 3
2 < s < 2 let σ = s − 1 ∈ ( 1

2 , 1); arguing as above we see that∥∥vev
∥∥2
Hs(R) ≤C

(
‖v‖2

Hs(I) +
ˆ

I

|v′(x)|2
|x|2σ dx

)
.

Now since v′ ∈Hσ (I) and v′(0) = 0 we can apply Theorem 11.3 in [27] which ensures that the integral in the right 
hand side can be estimated by C‖v‖2

Hs(I). The case s = 2 being straightforward let 2 < s ≤ 7
2 . Then∥∥vev

∥∥2
Hs(R) ≤C

(∥∥vev
∥∥2
L2(R) +

∥∥∂2
xv

ev
∥∥2
Hs−2(R)

)
.

Since 0 < s−2 < 3
2 and v′(0) = 0 we may apply the same argument as in the case (1) to ensure that ‖∂2

xv
ev‖2

Hs−2(R)
≤

C‖v‖2
Hs(I)

.
The cases (3) to (5) are proved by exactly the same arguments. �
To state the reflection procedure in higher dimension we need to introduce the uniformly local Sobolev spaces 

in Rn, n ≥ 2.
Let 1 =∑

k∈Zn χ(x − k) be a partition of unity in Rn and define for any s ∈ R,

Hs
ul

(
Rn

)=
{
u ∈Hs

loc

(
Rn

) : sup
k

∥∥χ(· − k)u
∥∥
Hs(Rn)

<+∞
}
.

These are Banach spaces when endowed with the norm

‖u‖Hs
ul

= sup
k

∥∥χ(· − k)u
∥∥
Hs(Rn)

.

Now, if v is a function on M = (0, 1) × Rd we define the even (resp. odd) periodic extensions on T × Rd , vev

(resp. vod), by

vev(x1, x
′)=

⎧⎨⎩v(−x1, x
′), if −1< x1 < 0,

v(x1, x
′), if 0 ≤ x1 < 1,

v(x1 − 2k, x′), if x1 − 2k ∈ (−1,1), k ∈ Z.

vod(x1, x
′)=

⎧⎨⎩−v(−x1, x
′), if −1< x1 < 0,

v(x1, x
′), if 0 ≤ x1 < 1,

v(x1 − 2k, x′), if x1 − 2k ∈ (−1,1), k ∈ Z.
(6.11)
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Corollary 6.7. Let M = (0, 1) × R.
(1) Assume 0 ≤ s < 3

2 ; then the map v �→ vev is continuous from Hs
ul(M) to Hs

ul(R
2).

(2) Assume 3
2 < s < 7

2 . Let

Es = {
u ∈Hs

ul(M) : ∂x1u(ε, x2)= 0, ε = 0,1,∀x2 ∈ R
}
.

Then the map v �→ vev is continuous from Es to Hs
ul(R

2).
(3) Assume 0 ≤ s < 1

2 ; then the map v �→ vod is continuous from Hs
ul(M) to Hs

ul(R
2).

(4) Assume 1
2 < s < 5

2 . Let

Fs = {
u ∈Hs

ul(M) : u(ε, x2)= 0, ε = 0,1,∀x2 ∈ R
}
.

Then the map v �→ vod is continuous from Fs to Hs
ul(R

2).
(5) Assume 5

2 < s ≤ 4. Let

Gs = {
u ∈Hs

ul(M) : u(ε, x2)= ∂2
x1
u(ε, x2)= 0, ε = 0,1,∀x2 ∈ R

}
.

Then the map v �→ vod is continuous from Gs to Hs
ul(R

2).

Proof. Since (Dα
x2
v)ev =Dα

x2
(vev), (Dα

x2
v)od =Dα

x2
(vod) the result is clearly a one dimensional result and it is enough 

to prove it for the one dimensional case, in which case it is a direct consequence of Proposition 6.6 and a localization 
argument. �

Consider now an initial data (η0, ψ0 = φ0|Σ0, V0, B0) satisfying the assumptions in Theorem 6.3 and define

η̃0 = ηev
0 , ψ̃0 =ψev

0 , Ṽ0,x1 = V od
0,x1

, Ṽ0,x2 = V ev
0,x2

, B̃0 = Bev
0

on T × R.
Recall (see Theorem 6.3) that, with M = (0, 1) × R, we have set

Hs(M)=H
s+ 1

2
ul (M)×L2

ul(M)×Hs
ul(M)×Hs

ul(M),

and introduce

Hs
(
R2)=H

s+ 1
2

ul

(
R2)×L2

ul

(
R2)×Hs

ul

(
R2)×Hs

ul

(
R2).

Then we have the following lemma.

Lemma 6.8. Let 2 < s < 3, s = 5
2 and (η0, ψ0, V0, B0) ∈ Hs(M) satisfying the hypothesis (H1) in Theorem 6.3. Then 

(η̃0, ψ̃0, ̃V0, ̃B0) ∈ Hs(R2) and are 2-periodic with respect to the x1 variable.

Proof. This follows immediately from the hypothesis (H1) and Corollary 6.7. �
In the case of a rectangular basin, performing both reflection and periodizations with respect to the x1 and the x2

variables leads similarly to extensions

(η̃0, ψ̃0, Ṽ0, B̃0) ∈H
s+ 1

2
ul

(
R2)×L2

ul

(
R2)×Hs

ul

(
R2)×Hs

ul

(
R2)

which are 2-periodic with respect to the x1 variable and 2L periodic with respect to the x2 variable.

6.3.2. Conclusion
We are now in position to apply Theorem 2.3. We consider first the case of the canal. Starting from (η0, ψ0, V0, B0), 

we define (η̃0, ψ̃0, ̃V0, ̃B0) their periodized extensions following the process in Section 6.3.1. Let (η̃, ṽ) be the solution 
of the free surface water waves system given by Theorem 2.3. Since the initial data (η̃0, ψ̃0, ̃V ′

0, ̃B0) are even while 
Ṽ0,x1 is odd, our uniqueness result guarantees that the solution satisfies the same symmetry property (because if we 
consider our solution, the function obtained by symmetrization is also a solution with same initial data). The same 
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argument shows that as the initial data are 2-periodic with respect to the variable x1, so is the solution. As a conse-
quence if we define v, η, P as the trace of ṽ, η̃, P̃ on (0, 1) × R, we get that they satisfy trivially the incompressible 
Euler equation with free surface

∂tv + v · ∇x,yv + ∇x,yP = −gey, divx,y v = 0, curlx,y v = 0 in Ω,

∂tη=
√

1 + |∇η|2 v · ν on Σ,

P = 0 on Σ, (6.12)

and to conclude on the existence point in Theorem 6.3, it only remains to check that the “solid wall condition”

v · n= 0, on Γ = Γ1 ∪ Γ2 (6.13)

is satisfied. On Γ1 it is a straightforward consequence of the condition ṽ · ñ= 0, while on Γ2 it is simply consequence 
of the fact that the component of the velocity field along x1, ṽx1 is odd and 2-periodic. To prove the uniqueness part 
in Theorem 6.3, starting from a solution of (6.12), (6.13), on the time interval [−T , T ], if we define the function ṽ, η̃
at each time t following the same procedure, we end up with a solution of (6.2), (6.3) in the domain {(t, x, y); t ∈
(−T , T ), (x, y) ∈ Ω̃(t)}, at the same level of regularity. Indeed, the jump formula gives

∂t ṽ + ṽ · ∇x,y ṽ + ∇x,yP̃ = −gey + [vx1 · ∂x1v] ⊗ δΓ2 = −gey,
where in the last equality we used that the component of the velocity field along x1 vanishes on Γ2. The uniqueness 
part in Theorem 6.3 consequently follows from the uniqueness part in Theorem 2.3. The case of a rectangular basin is 
similar.

7. Technical results

7.1. Invariance

The following result shows that the definition of the uniformly local Sobolev spaces does not depend on the choice 
of the function χ satisfying (2.3).

Lemma 7.1. Let E be a normed space of functions from Rd to C such that

∀θ ∈W∞,∞(
Rd

) ∃C > 0: ‖θu‖E ≤ C‖u‖E ∀u ∈E

where C depends only on a finite number of semi-norms of θ in W∞,∞(Rd). Let χ ∈ C∞
0 (Rd) satisfying (2.3). Then 

for any χ̃ ∈ C∞
0 (Rd) there exists C′ > 0 such that

sup
k∈Zd

‖χ̃ku‖E ≤ C′ sup
q∈Zd

‖χqu‖E (7.1)

where χq(x) = χ(x − q) and χ̃k(x) = χ̃ (x − k).

Proof. Let χ ∈ C∞
0 (Rd) be equal to one on the support of χ . We write with N = d + 1

χ̃kχqu= 〈k − q〉−N
[ 〈k − q〉N
〈x − q〉N χ̃k

][〈x − q〉Nχq
]
χqu.

Since the two functions inside the brackets belong to W∞,∞(Rd) with semi-norms independent of k, q , using the 
assumption in the lemma we deduce that

‖χ̃ku‖E ≤
∑
q∈Zd

‖χ̃kχqu‖E ≤C
∑
q∈Zd

〈k− q〉−N sup
q∈Zd

‖χqu‖E,

which completes the proof. �



382 T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395
Lemma 7.2. Let μ ∈ R and N ≥ d + 1. Then there exists C > 0 such that

sup
x∈Rd

∥∥〈x − ·〉−Nu∥∥
Hμ(Rd )

≤ C‖u‖Hμ
ul (R

d ) (7.2)

for all u ∈H
μ
ul(R

d).

Proof. Indeed we have∥∥〈x − ·〉−Nu∥∥
Hμ ≤

∑
q∈Zd

∥∥〈x − ·〉−Nχqu
∥∥
Hμ

and we write

〈x − y〉−Nχq(y)u(y)= 1

〈x − q〉N
〈x − q〉N
〈x − y〉N χ̃q(y)χq(y)u(y)

where χ̃ ∈ C∞
0 (Rd), ̃χ = 1 on the support of χ . This implies that

∑
q∈Zd

∥∥〈x − ·〉−Nχqu
∥∥
Hμ ≤ CN

∑
q∈Zd

1

〈x − q〉N ‖u‖Hμ
ul

≤ C′
N‖u‖Hμ

ul
,

since the function y �→ 〈x−q〉N
〈x−y〉N χ̃q(y) belongs to W∞,∞(Rd) with semi-norms uniformly bounded (independently of 

x and q). �
7.2. Product laws

Proposition 7.3. (i) Let σj ∈ R, j = 1, 2 be such that σ1 +σ2 > 0 and uj ∈H
σj
ul (R

d), j = 1, 2. Then u1u2 ∈H
σ0
ul (R

d)

for σ0 ≤ σj and σ0 < σ1 + σ2 − d
2 . Moreover we have

‖u1u2‖Hσ0
ul (R

d )
≤C‖u1‖Hσ1

ul (R
d )

‖u2‖Hσ2
ul (R

d )
.

(ii) Let s ≥ 0 and uj ∈Hs
ul(R

d) ∩L∞(Rd), j = 1, 2. Then u1u2 ∈Hs
ul(R

d) and

‖u1u2‖Hs
ul(R

d ) ≤ C
(‖u1‖L∞(Rd )‖u2‖Hs

ul(R
d ) + ‖u2‖L∞(Rd )‖u1‖Hs

ul(R
d )

)
.

(iii) Let F ∈ C∞(RN, C) be such that F(0) = 0. Let s > d
2 . If U ∈ (H s

ul(R
d))N then F(U) ∈Hs

ul(R
d) and∥∥F(U)∥∥

Hs
ul(R

d )
≤G

(‖U‖(L∞(Rd ))N
)‖U‖(Hs

ul(R
d ))N

for an increasing function G : R+ → R+.

Proof. The proofs are straightforward extensions of the proofs in the classical Sobolev spaces case. Indeed let us 
show (i) for instance. Let χq be defined in (2.3) and χ̃ ∈C∞

0 (Rd) be equal to one on the support of χ . Then from the 
classical case we can write

‖χqu1u2‖Hσ0 = ‖χqu1χ̃qu2‖Hσ0 ≤C‖χqu1‖Hσ1 ‖χ̃qu2‖Hσ2

≤ C‖u1‖Hσ1
ul

‖u2‖Hσ2
ul
.

The proofs of (ii) and (iii) are similar. �
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The following spaces will be used in the sequel:

Definition 7.4. Let p ∈ [1, +∞], J = (z0, 0), z0 < 0 and σ ∈ R.

(1) The space Lp(J, Hσ (Rd))ul is defined as the space of measurable functions u from Rd
x × Jz to C such that

‖u‖Lp(J,Hσ (Rd ))ul
:= sup

q∈Zd

‖χqu‖Lp(J,Hσ (Rd )) <+∞.

(2) We set

Xσ
ul(J )= L∞(

J,Hσ
(
Rd

))
ul ∩L2(J,Hσ+ 1

2
(
Rd

))
ul

Yσul(J )= L1(J,Hσ
(
Rd

))
ul +L2(J,Hσ− 1

2
(
Rd

))
ul

endowed with their natural norms.
(3) We define the spaces Xσ(J ), Yσ (J ) by the same formulas without the subscript ul.

Notice that L∞(J, Hσ (Rd))ul = L∞(J, Hσ
ul(R

d)).

Lemma 7.5. Let σ0, σ1, σ2 be real numbers such that σ1 + σ2 > 0, σ0 ≤ σj , j = 1, 2, σ0 < σ1 + σ2 − d
2 and 1 ≤

p ≤ +∞. Then

‖uv‖Lp(J,Hσ0 (Rd ))ul
≤ C‖u‖L∞(J,Hσ1 (Rd ))ul

‖v‖Lp(J,Hσ2 (Rd ))ul

whenever the right hand side is finite.
The same inequality holds for the spaces without the subscript ul.

Proof. This follows immediately from Proposition 7.3(i) and (7.1). �
Lemma 7.6. If σ > d

2 the spaces Xσ
ul(J ) and Xσ (J ) are algebras.

Lemma 7.7. Let s0 > 1 + d
2 , μ > 0 and J = (−1, 0). Then we have

‖fg‖Xμ
ul

≤ C
(‖f ‖L∞(J,Hs0−1)ul

‖g‖Xμ
ul

+ ‖g‖L∞(J,Hs0−1)ul
‖f ‖Xμ

ul

)
, (7.3)

‖fg‖Xμ
ul

≤ C
(‖f ‖L∞(J,Hs0−1)ul

‖g‖Xμ
ul

+ ‖g‖
L∞(J,H

s0− 3
2 )ul

‖f ‖
X
μ+ 1

2
ul

)
. (7.4)

Let F ∈ C∞(RN, C) be such that F(0) = 0. Then there exists a non-decreasing function F : R+ → R+ such that for 
μ > d

2 we have∥∥F(U)∥∥
X
μ
ul

≤ F
(‖U‖L∞(J,Hs0−1)ul

)‖U‖Xμ
ul
. (7.5)

Proof. The first and the third estimates follow easily from (ii), (iii) in Proposition 7.3. To prove the second one we 
start from the inequality (see [2, Corollary 2.12])

‖χkfg‖Ht ≤C
(‖χkf ‖L∞‖χ̃kg‖Ht + ‖χ̃kg‖

C
− 1

2∗
‖χkf ‖

H
t+ 1

2

)
, t > 0

where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ . Then we use the continuous embeddings: Hs0−1 ⊂ L∞, 

Hs0− 3
2 ⊂ C

− 1
2∗ and the above inequality for t = μ, t = μ + 1

2 . �
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7.3. Continuity of the pseudo-differential operators

We have the following result which reflects the pseudo-local character of the pseudo-differential operators. Recall 
that Sm1,0 is the set of symbols p ∈C∞(Rd × Rd) such that∣∣Dα

ξ D
β
x p(x, ξ)

∣∣≤ Cα,β
(
1 + |ξ |)m−|α| ∀α,β ∈ Nd, ∀(x, ξ) ∈ Rd × Rd .

Proposition 7.8. Let P be a pseudo-differential operator whose symbol belongs to the class Sm1,0. Then for every s ∈ R
there exists a constant C > 0 such that

‖Pu‖Hs
ul(R

d ) ≤C‖u‖Hs+m
ul (Rd ),

for every u ∈Hs+m
ul (Rd), where C depends only on semi-norms of the symbol in Sm1,0.

Proof. Write

χkPu=
∑

|k−q|≤2

χkPχqu+
∑

|k−q|≥3

χkPχqu=:A+
∑

|k−q|≥3

Bk,q . (7.6)

The first sum is finite depending only on the dimension. To bound it in Hs(Rd) we use the usual continuity of 
pseudo-differential operators. For the second one let n0 ∈ N, n0 ≥ s. We shall prove that∥∥Dα

xBk,q
∥∥
L2(Rd )

≤ Cd

〈k− q〉d+1
‖u‖Hs+m

ul
, |α| ≤ n0 (7.7)

which will complete the proof of Proposition 7.8.
Notice that, due to the presence of χk , we have ‖Dα

xBk,q‖L2 ≤C‖Dα
xBk,q‖L∞ . We have

Dα
xBk,q(x)= 〈

Dα
xK(x, ·),χqu

〉
with

K(x,y)= (2π)−d
ˆ

Rd

ei(x−y)·ξp(x, ξ)dξ χk(x)χ̃q(y)

where χ̃ ∈ C∞
0 (Rd), ̃χ = 1 on the support of χ .

Now on the support of χk(x)χ̃q(y) we have |x − y| ≥ δ|k − q|, δ > 0. Integrating by parts N times (with large N
depending on d, n0) with the vector field L =∑d

j=1
xj−yj
|x−y|2 ∂ξj we see that for all β ∈ Nd we have

∣∣Dβ
xK(x, y)

∣∣≤ Cd,β

〈k − q〉d+1

∣∣χ̃q(y)∣∣, ∀(x, y) ∈ Rd × Rd .

It follows that∣∣Dα
xBk,q(x)

∣∣≤ ∥∥Dα
xK(x, ·)

∥∥
H−(s+m)‖χqu‖Hs+m

≤ Cd,β

〈k− q〉d+1
‖χqu‖Hs+m

which proves (7.7) and hence concludes the proof. �
In a particular case the proof above gives the following more precise result.

Proposition 7.9. Let m ∈ R, h(ξ) = h̃(
ξ
|ξ | )|ξ |mψ(ξ) where h̃ ∈ C∞(Sd−1) and ψ ∈ C∞(Rd) is such that ψ(ξ) = 1 if 

|ξ | ≥ 1, ψ(ξ) = 0 if |ξ | ≤ 1
2 . Then for every μ ∈ R there exists a constant C such that∥∥h(Dx)u

∥∥
H
μ
ul (R

d )
≤ C‖h̃‖Hd+1(Sd−1)‖u‖Hμ+m

ul (Rd )

for all u ∈H
μ+m

(Rd).
ul
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We shall use the following result when p(ξ) = 〈ξ 〉 and p(ξ) = |ξ |2.

Lemma 7.10. Let d ≥ 1, r > 0, m ∈ R. Let p ∈ Sr1,0(R
d), a ∈ Sm1,0(R

d) be two symbols with constant coefficients. We 
assume that one can find c0 > 0 such that for all ξ ∈ Rd we have p(ξ) ≥ c0|ξ |r . Then for all σ ∈ R and every interval 
I = [0, T ], one can find a positive constant C such that, with Hs =Hs(Rd)∥∥e−tp(Dx)a(Dx)u

∥∥
L∞(I,Hσ )ul

+ ∥∥e−tp(Dx)a(Dx)u
∥∥
L2(I,H

σ+ r
2 )ul

≤ C‖u‖Hσ+m
ul

(7.8)

for all u ∈Hσ+m
ul .

Proof. The estimate of the first term in (7.8) follows from Proposition 7.8 since e−tp(D)a(D) is a pseudo-differential 
operator of order m whose symbol has semi-norms in Sm1,0 bounded by constants depending only on T . Let us look at 
the second term. Set

Iq = ∥∥χqe−tp(D)a(D)u∥∥
L2(I,H

σ+ r
2 )
.

One can write⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Iq =Aq +Bq

Aq =
∑

|k−q|≤2

∥∥χqe−tp(Dx)a(Dx)χku
∥∥
L2(I,H

σ+ r
2 )
,

Bq =
∑

|k−q|≥3

∥∥χqe−tp(Dx)a(Dx)χku
∥∥
L2(I,H

σ+ r
2 )
.

(7.9)

Since the number of terms in the sum defining Aq is bounded by a fixed constant (depending only on d) using a 
classical computation we can write

Aq ≤C1 sup
k∈Zd

∥∥e−tp(Dx)a(Dx)χku
∥∥
L2(I,H

σ+ r
2 )

Aq ≤C2 sup
k∈Zd

∥∥a(Dx)χku
∥∥
Hσ ≤ C3 sup

k∈Zd

‖χku‖Hσ+m ≤ C3‖u‖Hσ+m
ul

. (7.10)

Let us look at the term Bq . Let N0 be an integer such that N0 ≥ σ + r
2 . Then Bq is bounded by a finite sum of terms 

of the form∑
|k−q|≥3

∥∥(Dα
x χq

)(
Dβ
x e

−tp(Dx)a(Dx)
)
χku

∥∥
L2(I,L2)

with |α| + |β| ≤N0. Due to the presence of the function Dαχq , Bq is therefore bounded by a finite number of terms 
of the form∑

|k−q|≥3

∥∥(Dα
x χq

)(
Dβ
x e

−tp(Dx)a(Dx)
)
χku

∥∥
L2(I,L∞).

Now we can write

F(t, x) := (
Dα
x χq

)(
Dβ
x e

−tp(Dx)a(Dx)
)
χku(x)= 〈

K(t, x, ·), (χku)(·)
〉

(7.11)

with

K(t, x, y)= (2π)−d
(
Dα
x χq

)
(x)χ̃k(y)

ˆ

Rd

ei(x−y)·ξ q(t, ξ) dξ

where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ and q(t, ξ) = ξβe−tp(ξ)a(ξ). It follows that for fixed (t, x) we 

have ∣∣F(t, x)∣∣≤ ∥∥K(t, x, ·)∥∥ −(σ+m)‖χku‖Hσ+m. (7.12)

H
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Let N1 ∈ N be fixed such that N1 ≥ −(σ +m). We shall show that for every N ∈ N one can find CN = CN(T ) > 0
such that for every (t, x) ∈ I × Rd we have

∥∥K(t, x, ·)∥∥
HN1 ≤ CN

〈k − q〉N
∣∣(Dαχq

)
(x)

∣∣. (7.13)

Indeed for |μ| ≤N1, Dμ
y K(t, x, y) is a finite linear combination of terms of the form

J (t, x, y) := (
Dα
x χq

)
(x)

(
Dν
yχ̃k

)
(y)

ˆ
ei(x−y)·ξ ξλq(t, ξ)dξ

where |ν| + |λ| = |μ|.
We notice that for all γ ∈ Nd we have∣∣Dγ

ξ

(
ξλq(t, ξ)

)∣∣≤ Cγ (T )〈ξ 〉N0+N1+m−|γ |. (7.14)

Now let N ∈ N be such that N ≥ max(d + 1, N0 +N1 +m + d + 1) and γ ∈ Nd with |γ | =N . Then

(x − y)γ J (t, x, y)= (
Dα
x χq

)
(x)

(
Dν
yχ̃k

)
(y)

ˆ
ei(x−y)·ξ (−Dξ)

γ
(
ξλq(t, ξ)

)
dξ.

It follows from (7.14) that∣∣(x − y)γ J (t, x, y)
∣∣≤ C1(T )

∣∣(Dα
x χq

)
(x)

∣∣∣∣(Dν
yχ̃k

)
(y)

∣∣.
Now since |k− q| ≥ 3, on the support of (Dα

x χq)(x)(D
ν
y χ̃k)(y) we have |x − y| ≥ 1

3 |k − q|. It follows that

∣∣J (t, x, y)∣∣≤ C2(T )

〈k − q〉N
∣∣(Dα

x χq
)
(x)

∣∣∣∣(Dν
yχ̃k

)
(y)

∣∣
which proves (7.13). According to (7.12) and (7.13) we obtain

‖F‖L2(I,L∞) ≤ C3(T )

〈k − q〉N ‖χku‖Hσ+m ≤ C3(T )

〈k− q〉N ‖u‖Hσ+m
ul

which implies that Bq ≤ C4(T )‖u‖Hσ+m
ul

. Combined with (7.9) and (7.10) this proves the estimate of the second term 
in (7.8). �
Corollary 7.11. Let m ∈ R and a ∈ Sm1,0(R

d). Then for every σ ∈ R there exists C > 0 such that∥∥eδz〈Dx 〉a(Dx)u
∥∥
X
σ− 1

2
ul (−1,0)

≤ C‖u‖
H
σ+m− 1

2
ul (Rd )

for every δ > 0 and every u ∈Hσ+m− 1
2

ul (Rd).

7.4. An interpolation lemma

We shall use the following interpolation lemma for which we refer to [27, Théorème 3.1].

Lemma 7.12. Let J = (−1, 0) and t ∈ R. Let f ∈ L2
z(J, H

t+ 1
2 (Rd)) be such that ∂zf ∈ L2

z(J, H
t− 1

2 (Rd)). Then 
f ∈C0

z ([−1, 0], Ht(Rd)) and there exists an absolute constant C > 0 such that

sup
z∈[−1,0]

∥∥f (z, ·)∥∥
Ht (Rd )

≤ C‖f ‖
L2
z(J,H

t+ 1
2 (Rd ))

+C‖∂zf ‖
L2
z(J,H

t− 1
2 (Rd ))

.
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7.5. Paradifferential operators

7.5.1. Symbolic calculus
In this section we quote some results which concern the symbolic calculus for paradifferential operators in the 

framework of the uniformly local Sobolev spaces. Of course, here, the theory for the classical Sobolev spaces will be 
assumed to be known (see [8] and [28]).

The following technical lemma will be used in the sequel. Here D=Dx .

Lemma 7.13. Let χ ∈ C∞
0 (Rd) and χ̃ ∈ C∞

0 (Rd) be equal to one on the support of χ . Let ψ, θ ∈ S(Rd). For every 
m, σ ∈ R one can find a constant C > 0 such that∑

j≥−1

∥∥χkψ(2−jD
)(
(1 − χ̃k)u

)
θ
(
2−jD

)
v
∥∥
Hm(Rd )

≤C‖u‖Hσ
ul(R

d )‖v‖L∞(Rd ). (7.15)

For every m, σ, t ∈ R one can find a constant C > 0 such that∑
j≥−1

∥∥χkψ(2−jD
)(
(1 − χ̃k)u

)
θ
(
2−jD

)
v
∥∥
Hm(Rd )

≤C‖u‖Hσ
ul(R

d )‖v‖Ht
ul(R

d ). (7.16)

Proof. We may assume m ∈ N. Let us call Ak,j the term inside the sum in the left hand side of (7.15). Due to χk , the 
term Ak,j is bounded by finite sum of terms of the form

Ak,j,α := 2jm
∥∥(Dα1χk

)
ψα2

(
2−jD

)(
(1 − χ̃k)u

)
χ̃kθα3

(
2−jD

)
v
∥∥
L∞

where |α1| + |α2| + |α3| ≤m and ψα2 = xα2ψ, θα3 = xα3θ . We are going to show that for large N ∈ N we have

(i)
∥∥(Dα1χk

)
ψα2

(
2−jD

)(
(1 − χ̃k)u

)∥∥
L∞ ≤CN2jM1(d,σ )2−jN‖u‖Hσ

ul

(ii)
∥∥χ̃kθα3

(
2−jD

)
v
∥∥
L∞ ≤ C‖v‖L∞

(iii)
∥∥χ̃kθα3

(
2−jD

)
v
∥∥
L∞ ≤ C2jM2(d,t)‖v‖Ht

ul

where, as indicated, Mj are fixed constants depending only on d, σ, t . Then the lemma will follow from these esti-
mates.

To prove (i) we write(
Dα1χk(x)

)
ψα2

(
2−jD

)(
(1 − χ̃k)u

)
(x)

= (2π)−d2jd2−jN ×
〈(

2j |x − ·|)Nψ̂α2

(
2j (· − x)

)
,
〈x − ·〉N
|x − ·|N

(
Dα1χk(x)

)(
1 − χ̃k(·)

)〈x − ·〉−Nu
〉
.

The function y �→ 〈x−y〉N
|x−y|N (D

α1χk(x))(1 − χ̃k(y)) belongs to W∞,∞ with semi-norms uniformly bounded in x. Using 

the duality H−σ –Hσ we deduce that∥∥(Dα1χk
)
ψα2

(
2−jD

)(
(1 − χ̃k)u

)∥∥
L∞ ≤CN2jM1(d,σ )2−jN∥∥〈x − ·〉−Nu∥∥

Hσ ,

and we conclude using Lemma 7.2.
The estimate (ii) is easy. To prove (iii) we take χ̌ ∈ C∞

0 (Rd) equal to one on the support of χ̃ and we write∥∥χ̃kθα3

(
2−jD

)
v
∥∥
L∞ ≤ ∥∥χ̃kθα3

(
2−jD

)
χ̌kv

∥∥
L∞ + ∥∥χ̃kθα3

(
2−jD

)
(1 − χ̌k)v

∥∥
L∞ .

The second term is bounded exactly by the same method as (i). For the first one we write

χ̃kθα3

(
2−jD

)
χ̌kv(x)= (2π)−d2jd χ̃k(x)

〈
θ̂α3

(
2j (· − x)

)
, χ̌k(·)v(·)

〉
and we use the H−t–Ht duality. �
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Remark 7.14. (i) Notice that the same estimates in (7.15), (7.16) hold if in the left hand side one 2−j is replaced by 
2−j−j0 where j0 ∈ Z is fixed.

(ii) Notice also that in the above proof we have proved that for all real numbers m, σ , all N ∈ N and all ψ ∈C∞
0 (Rd)

one can find a positive constant CN,m,σ such that∥∥χkψ(2−jD
)
(1 − χ̃k)u

∥∥
Hm(Rd )

≤ CN,m,σ2−jN‖u‖Hσ
ul(R

d ) (7.17)

for every j ∈ N and every k ∈ Zd .

We introduce now the para-differential calculus.

Definition 7.15. Given m ∈ R, ρ ∈ [0, 1], Γ m
ρ (R

d) denotes the space of locally bounded functions on Rd × (Rd \ {0})
which are C∞ with respect to ξ , such that for all α ∈ Nd the function x �→ ∂αξ a(x, ξ) belongs to Wρ,∞(Rd) and there 
exists a constant Cα > 0 such that∥∥∂αξ a(·, ξ)∥∥Wρ,∞(Rd )

≤ Cα
(
1 + |ξ |)m−|α|

, ∀|ξ | ≥ 1

2
.

For such a we set

Mm
ρ (a)= sup

|α|≤2d+2
sup

|ξ |≥ 1
2

∥∥(1 + |ξ |)|α|−m
∂αξ a(·, ξ)

∥∥
Wρ,∞(Rd )

. (7.18)

Then Γ̇ m
ρ (R

d) denotes the subspace of Γ m
ρ (R

d) which consists of symbols a(x, ξ) which are homogeneous of 
degree m with respect to ξ .

Given a symbol a we denote by Ta the associated para-differential operator which is given by the formula

T̂au(ξ)= (2π)−d
ˆ

Rd

θ(ξ − η,η)â(ξ − η,η)ψ(η)û(η)dη

where â(ζ, η) = ´
Rd e

−ix·ζ a(x, η)dx is the Fourier transform of a with respect to the first variable, ψ, θ are two fixed 
C∞ functions on Rd such that for 0 < ε1 < ε2 small enough

ψ(η)= 1 if |η| ≥ 1, ψ(η)= 0 if |η| ≤ 1

2
(7.19)

θ(ζ, η)= 1 if |ζ | ≤ ε1|η|, θ(ζ, η)= 0 if |ζ | ≥ ε2|η|. (7.20)

Notice that if the symbol a is independent of ξ the associated operator Ta is called a paraproduct.

Theorem 7.16. Let m, m′ ∈ R, ρ ∈ [0, 1].
(i) If a ∈ Γ m

0 (Rd), then for all μ ∈ R Ta is continuous from Hμ
ul(R

d) to Hμ−m
ul (Rd) with norm bounded by 

CMm
0 (a).

(ii) If a ∈ Γ m
ρ (R

d), b ∈ Γ m′
ρ (Rd) then, for all μ ∈ R, TaTb − Tab is continuous from Hμ

ul(R
d) to Hμ−m−m′+ρ

ul (Rd)

with norm bounded by

C
(
Mm
ρ (a)M

m′
0 (b)+Mm

0 (a)M
m′
ρ (b)

)
.

(iii) Let a ∈ Γ m
ρ (R

d). Denote by (Ta)∗ the adjoint operator of Ta and by a the complex conjugate of a. Then for 

all μ ∈ R (Ta)
∗ − Ta is continuous from Hμ

ul(R
d) to Hμ−m+ρ

ul (Rd) with norm bounded by CMm
ρ (a).

Proof. All these points are proved along the same lines. We shall only prove the first one and for simplicity we shall 
consider symbols in Γ̇ m

ρ (R
d). We begin by the case where a is a bounded function. Then we write

χkTau= χkTa(χ̃ku)+ χkTa
(
(1 − χ̃k)u

)
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where χ̃ ∈ C∞
0 (Rd), ̃χ = 1 on the support of χ . By the classical theory we have∥∥χkTa(χ̃ku)∥∥Hμ ≤ C‖a‖L∞‖χ̃ku‖Hμ ≤C‖a‖L∞‖u‖Hμ

ul
.

Now we write

χkTa
(
(1 − χ̃k)u

)=
∑
j

χk
{
ψ
(
2−jD

)
a
}{
ϕ
(
2−jD

)(
(1 − χ̃k)u

)}
,

and the desired estimate follows immediately from the first inequality in Lemma 7.13.
We now assume a(x, ξ) = b(x)h(ξ) where h(ξ) = |ξ |mh̃( ξ|ξ | ) with h̃ ∈ C∞(Sd−1). Then directly from the defini-

tion we have Ta = Tbψ(Dx)h(Dx) and our estimate in (i) follows from the first step and from the estimate proved in 
Proposition 7.9∥∥ψ(D)h(D)v∥∥

Hμ ≤ C‖h̃‖Hd+1(Sd−1)‖u‖Hμ+m.

In the last step we introduce (h̃ν)ν∈N∗ an orthonormal basis of L2(Sd−1) consisting of eigenfunctions of the (self 
adjoint) Laplace Beltrami operator �ω =�Sd−1 on L2(Sd−1), i.e. �ωh̃ν = λ2

νh̃ν . By the Weyl formula we know that 

λν ∼ cν
1
d . Setting hν = |ξ |mh̃ν(ω), ω= ξ

|ξ | when ξ = 0, we can write

a(x, ξ)=
∑
ν∈N∗

bν(x)hν(ξ) where bν(x)=
ˆ

Sd−1

a(x,ω)h̃ν(ω)dω.

Since

λ2d+2
ν bν(x)=

ˆ

Sd−1

�d+1
ω a(x,ω)h̃ν(ω)dω

we deduce that

‖bν‖L∞(Rd ) ≤Cλ−(2d+2)
ν Mm

0 (a). (7.21)

Moreover there exists a positive constant K such that for all ν ≥ 1

‖h̃ν‖Hd+1(Sd−1) ≤Kλd+1
ν . (7.22)

Now using the steps above and Proposition 7.9 we obtain

‖Tau‖Hμ
ul

≤
∑
ν≥1

∥∥Tbνψ(Dx)hν(Dx)u
∥∥
H
μ
ul

≤ C
∑
ν≥1

‖bν‖L∞(Rd )‖h̃ν‖Hd+1(Sd−1)‖u‖Hμ+m
ul

≤ CMm
0 (a)‖u‖Hμ+m

ul

∑
ν≥1

λ−(d+1)
ν

and λ−(d+1)
ν ∼ cν−(1+ 1

d
). �

7.5.2. Paraproducts
We have the following result of paralinearization of a product.

Proposition 7.17. Given two functions a ∈Hα
ul(R

d), u ∈H
β

ul(R
d) with α + β > 0 we can write

au= Tau+ Tua +R(a,u)

with ∥∥R(a,u)∥∥
H
α+β− d

2
ul (Rd )

≤ C‖a‖Hα
ul(R

d )‖u‖Hβ
ul(R

d )
. (7.23)
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Proof. We have

R(a,u)=
∑
j≥−1

∑
|k−j |≤1

ϕ
(
2−jD

)
a · ϕ(2−kD

)
u.

We take χ ∈ C∞
0 (Rd) satisfying (2.3), χ̃ ∈ C∞

0 (Rd) equal to one on the support of χ and we write a = χ̃ka + (1 −
χ̃k)a, u = χ̃ku + (1 − χ̃k)u. It follows that

χkR(a,u)= χkR(χ̃ka, χ̃ku)+ χkSk(a,u).

The term χkR(χ̃ka, ̃χku) is estimated by the right hand side of (7.23) using Theorem 2.11 in [2]. The remainder 
χkSk(a, u) is estimated using (7.16). �
Proposition 7.18. Let γ, r, μ be real numbers such that

r +μ> 0, γ ≤ r, γ < r +μ− d

2
.

There exists a constant C > 0 such that∥∥(a − Ta)u
∥∥
H
γ

ul(R
d )

≤ C‖a‖Hr
ul(R

d )‖u‖Hμ
ul (R

d ) (7.24)

whenever the right hand side is finite.

Proof. We write

χk(a − Ta)u= χk(χ̃ka − Tχ̃ka)χ̃ku+R1,ku+R2,ku (7.25)

R1,ku= χk(χ̃ka − Tχ̃ka)(1 − χ̃k)u (7.26)

R2,k = −χkT(1−χ̃k)au= −χk
∑
j

Sj
(
(1 − χ̃k)a

)
�j(u) (7.27)

where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ . According to Proposition 2.12 in [2] we have∥∥χk(χ̃ka − Tχ̃ka)χ̃ku

∥∥
Hγ ≤ C‖a‖Hr

ul
‖u‖Hμ

ul
. (7.28)

Now

R1,k = χkT(1−χ̃ku)χ̃ka + χkR(1 − χ̃ku, χ̃ka)

= χk
∑
j

Sj
(
(1 − χ̃k)u

)
�j(χ̃ka)+ χk

∑
|i−j |≤1

�i

(
(1 − χ̃k)u

)
�j(χ̃ka).

Therefore we can apply (7.16) in Lemma 7.13 to R1,k and R2,k to conclude that the estimate (7.24) holds for these 
terms. �
7.6. On transport equations

We will be using the following result about solutions of vector fields.

Lemma 7.19. Let I = [0, T ], s0 > 1 + d
2 and μ > 0. Then there exists F : R+ → R+ non-decreasing such that 

for Vj ∈ L∞(I, Hs0(Rd))ul ∩L∞(I, Hμ(Rd))ul j = 1, . . . , d , f ∈ L1(I, Hμ(Rd))ul, u0 ∈H
μ
ul (R

d) and any solution 
u ∈L∞(I, Hs0(Rd))ul of the problem

(∂t + V · ∇x)u= f, u|t=0 = u0

we have
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‖u‖L∞(I,Hμ)ul ≤F
(
T ‖V ‖L∞(I,Hs0 )ul

){‖u0‖Hμ
ul

+ ‖f ‖L1(I,Hμ)ul

+ sup
k∈Zd

( T̂

0

∥∥u(σ)∥∥
H
s0
ul

∥∥χ̃kV (σ )∥∥Hμ dσ

)}

where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ .

Proof. Set Vk = χ̃kV . We have

(∂t + TVk · ∇x)(χku)= χkf + Vk · (∇xχk)χ̃ku+ (TVk − Vk) · ∇x(χku)=: gk. (7.29)

Now computing the quantity d
dt

‖χku(t)‖2
L2 , using the above equation, the fact that ‖TV · ∇x + (TV · ∇x)

∗‖L2→L2 ≤
C‖V (t)‖W 1,∞ and the Gronwall inequality we obtain

∥∥χku(t)∥∥L2 ≤F
(‖V ‖L1(I,W 1,∞)

){‖χku0‖L2 +
tˆ

0

∥∥gk(σ )∥∥L2 dσ

}
. (7.30)

Now we can write

(∂t + TVk · ∇x)〈Dx〉μ(χku)= 〈Dx〉μgk + [
TVk , 〈Dx〉μ

] · ∇x(χku).

By the symbolic calculus (see Theorem 7.16(ii)) we have∥∥[TVk , 〈Dx〉μ
] · ∇x(χku)(t)

∥∥
L2 ≤ C

∥∥V (t)∥∥
W 1,∞‖χku(t)‖Hμ.

Therefore using (7.30) and the Gronwall inequality we obtain

∥∥χku(t)∥∥Hμ ≤F
(‖V ‖L1(I,W 1,∞)

){‖χku0‖Hμ +
tˆ

0

∥∥gk(σ )∥∥Hμ dσ

}
. (7.31)

Coming back to the definition of g given in (7.29) we have∥∥Vk · (∇xχk)χ̃ku(t)
∥∥
Hμ ≤ C

(∥∥V (t)∥∥
L∞

∥∥χ̃ku(t)∥∥Hμ + ∥∥u(t)∥∥
L∞

∥∥Vk(t)∥∥Hμ

)
.

On the other hand we have

(Vk − TVk ) · ∇x(χku)= T∇x(χku) · Vk +R
(
Vk,∇x(χku)

)
.

By Theorem 7.16(i) and an easy computation we see that∥∥T∇x(χku)(t) · Vk(t)
∥∥
Hμ + ∥∥R(Vk,∇x(χku)

)∥∥≤ C
∥∥u(t)∥∥

W 1,∞
∥∥Vk(t)∥∥Hμ.

Using (7.31), the Gronwall inequality, the embedding of Hs0
ul in W 1,∞ and the above estimates we obtain the desired 

conclusion. �
7.7. Commutation with a vector field

Lemma 7.20. Let I = [0, T ], V ∈ C0(I, W 1+ε,∞(Rd)) for some ε > 0 and consider a symbol p= p(t, x, ξ) which is 
homogeneous of order m. Then there exists a positive constant K (independent of p, V ) such that for any t ∈ I and 
any u ∈ C0(I, Hm

ul (R
d)) we have∥∥[Tp, ∂t + TV · ∇x]u(t, ·)

∥∥
L2

ul(R
d )

≤KC(p,V )
∥∥u(t, ·)∥∥

Hm
ul (R

d )
(7.32)

where

C(p,V ) :=Mm
0 (p)‖V ‖C0(I,W 1+ε,∞(Rd )) +Mm

0 (∂tp+ V · ∇xp)‖V ‖L∞(I×Rd ).



392 T. Alazard et al. / Ann. I. H. Poincaré – AN 33 (2016) 337–395
Proof. We proceed as in the proof of Theorem 7.16 and we begin by the case where m = 0 and p is a function. 
We denote by R the set of continuous operators R(t) from L2

ul(R
d) to L2(Rd) such that supt∈I ‖R(t)u(t)‖L2(Rd ) is 

bounded by the right hand side of (7.32). We write

χk[Tp, ∂t + TV · ∇x] = χk[Tp, ∂t + TV · ∇x]χ̃k + χk[Tp, ∂t + TV · ∇x](1 − χ̃k)

where χ̃ ∈ C∞
0 (Rd) is equal to one on the support of χ . By Lemma 2.17 in [2] the first operator in the right hand side 

of the above equality belongs to R. Let us look at the second term. It is equal to

−χkT∂tp(1 − χ̃k)+ χkTpTV · ∇x(1 − χ̃k)− χkTV · ∇xTp(1 − χ̃k)=:A+B +C.

We can write

A= −χkT∂tp+V ·∇xp(1 − χ̃k)+ χkTV ·∇xp(1 − χ̃k)=:A1 +A2.

By Theorem 7.16(i) the term A1 belongs to R. Now

A2u= χkTdiv(pV )−p div V (1 − χ̃k)u

=
∑
j≥−1

ψ
(
2−jD

)(
div(pV )− p divV

)
χkϕ

(
2−jD

)(
(1 − χ̃k)u

)
.

Since ∥∥ψ(2−jDx

)(
div(pV )− p divV

)∥∥
L∞ ≤C2j‖p‖L∞‖V ‖W 1,∞

we deduce from Remark 7.14 that A2 ∈ R.
Let χ ∈ C∞

0 (Rd) such that χ̃ = 1 on the support of χ and χ = 1 on the support of χ . We write

B = χkTpχkTV · ∇x(1 − χ̃k)+ χkTp(1 − χk)TV · ∇x(1 − χ̃k)=: B1 +B2.

By Theorem 7.16(i) we have

‖B1u‖L2 ≤C‖p‖L∞
∥∥χkTV · ∇x(1 − χ̃k)u

∥∥
L2

≤C‖p‖L∞
∑
j≥−1

∥∥(ψ(2−jDx

)
V
)
2jχkϕ1

(
2−jD

)
(1 − χ̃k)u

∥∥
L2

≤C‖p‖L∞‖V ‖L∞
∑
j≥−1

2j
∥∥χkϕ1

(
2−jD

)
(1 − χ̃k)u

∥∥
L2

and Remark 7.14 shows that B1 ∈R.
Now by (7.15) and Theorem 7.16 we can write

‖B2u‖L2 ≤C‖p‖L∞
∥∥TV · ∇x(1 − χ̃k)u

∥∥
H−1

ul

≤C‖p‖L∞‖V ‖L∞‖u‖L2
ul

so B2 ∈ R. The term C is estimated exactly by the same way, introducing a cut-off χk after the operator TV · ∇x . Thus 
C ∈R.

The case where p = a(t, x)h(ξ) and then were p is a general homogeneous symbol of order m is handled as in the 
proof of Theorem 7.16. �
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Appendix A

Let α ∈ (0, +∞), α = 1 and S(t) = e−it |Dx |α . Our aim is to prove the following result.

Proposition A.1. Let s, σ ∈ R. Assume that there exists t0 = 0 such that S(t0) is continuous from Cσ∗ (Rd) to Cs∗(Rd). 
Then s ≤ σ − dα

2 .

Proof. Without loss of generality we can assume that t0 = −1. Our hypothesis reads

∃C > 0:
∥∥S(−1)u

∥∥
Cs∗(Rd )

≤ C‖u‖Cσ∗ (Rd ), ∀u ∈Cσ∗
(
Rd

)
. (A.1)

Now if u ∈ L∞(Rd) we set �̂ju(ξ) = ϕ(2−j ξ)û(ξ), where ϕ ∈ C∞
0 (Rd), with suppϕ ⊂ {ξ : 1

2 ≤ |ξ | ≤ 2}. Then for 
fixed j ∈ N we have �ju ∈ Cσ∗ (Rd) and

‖�ju‖Cσ∗ (Rd ) ≤ C2jσ‖�ju‖L∞(Rd ) ≤C′2jσ‖u‖L∞(Rd ).

This follows from the fact that ‖�ju‖Cσ∗ (Rd ) = supk∈N 2kσ‖�k�ju‖L∞(Rd ) and the fact that �k�j = 0 if |j − k| ≥ 2. 
Since �j commutes with S(−1), we see that

2js
∥∥S(−1)�j�ju

∥∥
L∞(Rd )

≤ ∥∥S(−1)�ju
∥∥
Cs∗(Rd )

.

It follows from (A.1) applied to �ju with u ∈L∞(Rd) that one can find a positive constant C such that

2js
∥∥S(−1)�j�ju

∥∥
L∞(Rd )

≤ C2jσ‖u‖L∞(Rd ) ∀u ∈L∞(
Rd

)
, ∀j ∈ N. (A.2)

Let us set Tj = S(−1)�j�j . Then (A.2) shows that

‖Tj‖L∞→L∞ ≤ C2j (σ−s). (A.3)

Now

Tju(x)= (2π)−d
¨

ei[(x−y)·ξ+|ξ |α ]ϕ2(2−j ξ
)
u(y)dy dξ.

We shall set h = 2−j and take j large enough. Then setting η= hξ we obtain

Tju(x)=
ˆ

Rd

Kh(x − y)u(y) dy

where

Kh(z)= (2πh)−d
ˆ

Rd

e
i
h
(z·η+h1−α |η|α)ϕ2(η) dη.

We shall use the following well known lemma.

Lemma A.2. Let K ∈ C0(Rd × Rd) be such that supx∈Rd

´ |K(x, y)| dy < +∞. Then the operator T defined by 
T u(x) = ´

K(x, y)u(y) dy is continuous from L∞(Rd) to L∞(Rd) and ‖T ‖L∞→L∞ = supx∈Rd

´ |K(x, y)| dy.

It follows from this lemma that in our case we have

‖Tj‖L∞→L∞ =
ˆ

Rd

∣∣Kh(z)
∣∣dz.

Setting z= h1−αs and K̃h(s) =Kh(h
1−αs) we find that

‖Tj‖L∞→L∞ = hd(1−α)
ˆ

d

∣∣K̃h(s)
∣∣ds (A.4)
R
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with

K̃h(s)= (2πh)−d
ˆ

Rd

eih
−αφ(s,η)ϕ2(η) dη, φ(s, η)= s · η+ |η|α. (A.5)

Recall that suppϕ ⊂ {η : 1
2 ≤ |η| ≤ 2}. We have ∂φ

∂η
= s + α

η

|η|2−α .

Case 1: |s| ≤ 1
2

α

2|1−α| . Here, on the support of ϕ, we have∣∣∣∣∂φ∂η (s, η)
∣∣∣∣≥ α

|η|1−α − |s| ≥ 1

2

α

2|1−α| .

Therefore integrating by parts in the right hand side of (A.5) using the vector field L = hα

i
1

|∂ηφ|2
∑d

k=1
∂φ
∂ηk

∂
∂ηk

we 

obtain∣∣K̃h(s)
∣∣≤CNh

N, ∀N ∈ N. (A.6)

Case 2: |s| ≥ 21+|α−1|α. On the support of ϕ we have∣∣∣∣∂φ∂η (s, η)
∣∣∣∣≥ |s| − α

|η|1−α ≥ 2|α−1|α.

Then using the same vector field as in the first case and noticing that ∂αη φ is independent of s when |α| ≥ 2 we obtain∣∣K̃h(s)
∣∣≤CN |s|−NhN, ∀N ∈ N. (A.7)

Case 3: 1
2

α

2|1−α| ≤ |s| ≤ 21+|α−1|α. Here the function φ has a critical point given by η

|η|2−α = − s
α

. It follows that 
1

|η|1−α = |s|
α

, which implies that ηc = cαs|s| 2−α
α−1 . Moreover we have

∂2φ

∂ηj ∂ηk
= α|η|α−2mjk, mjk = δjk − (α − 2)ωjωk, ω= η

|η| .

Since det(mjk) = c0 = 0 we obtain (| det( ∂2φ
∂ηj ∂ηk

(s, ηc))|) 1
2 = cα,d |s|

(α−2)d
2(α−1) . The stationary phase formula implies that 

there exists Cd > 0 such that

K̃h(s)= Cα,dh
−dh

αd
2

{
eih

−αφ(s,ηc)

|s| (α−2)d
2(α−1)

ϕ2(ηc)+O
(
hα
)}
. (A.8)

Using (A.4), (A.6), (A.7), (A.8) we can conclude that for j large enough we have

‖Tj‖L∞→L∞ ≥ Chd(1−α)h−dh
dα
2 −CNh

N ≥ C′h− dα
2 .

Recalling that h = 2−j we obtain

‖Tj‖L∞→L∞ ≥ C′2j
dα
2 . (A.9)

Then Proposition A.1 follows from (A.3) and (A.9). �
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