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Abstract

We give a new proof of a classical uniqueness theorem of Alexandrov [4] using the weak uniqueness continuation theorem of 
Bers–Nirenberg [8]. We prove a version of this theorem with the minimal regularity assumption: the spherical Hessians of the 
corresponding convex bodies as Radon measures are nonsingular.
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We give a new proof of the following uniqueness theorem of Alexandrov, using the weak unique continuation 
theorem of Bers–Nirenberg [8].

Theorem 1. (See Theorem 9 in [4].) Suppose M1 and M2 are two closed strictly convex C2 surfaces in R3, suppose 
f (y1, y2) ∈ C1 is a function such that ∂f

∂y1

∂f
∂y2

> 0. Denote by κ1 ≥ κ2 the principal curvatures of surfaces, and denote 
by νM1 and νM2 the Gauss maps of M1 and M2 respectively. If

f
(
κ1

(
ν−1
M1

(x), κ2
(
ν−1
M1

(x)
))) = f

(
κ1

(
ν−1
M2

(x), κ2
(
ν−1
M2

(x)
)))

, ∀x ∈ S
2 (1)

then M1 is equal to M2 up to a translation.

This classical result was first proved for analytical surfaces by Alexandrov in [3], for C4 surfaces by Pogorelov 
in [20], and Hartman and Wintner [14] reduced regularity to C3, see also [21]. Pogorelov [22,23] published certain 
uniqueness results for C2 surfaces, these general results would imply Theorem 1 in C2 case. It was pointed out 
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in [19] that the proof of Pogorelov is erroneous, it contains an uncorrectable mistake (see pp. 301–302 in [19]). 
There is a counter-example of Martinez-Maure [15] (see also [19]) to the main claims in [22,23]. The results by 
Han–Nadirashvili–Yuan [13] imply two proofs of Theorem 1, one for C2 surfaces and another for C2,α surfaces. The 
problem is often reduced to a uniqueness problem for linear elliptic equations in appropriate settings, either on S2 or 
in R3, we refer to [4,21]. Here we will concentrate on the corresponding equation on S2, as in [11]. The advantage in 
this setting is that it is globally defined.

If M is a strictly convex surface with support function u, then the principal curvatures at ν−1(x) are the reciprocals 
of the principal radii λ1, λ2 of M , which are the eigenvalues of spherical Hessian Wu(x) = (uij (x) + u(x)δij ) where 
uij are the covariant derivatives with respect to any given local orthonormal frame on S2. Set

F̃ (Wu) =: f
(

1

λ1(Wu)
,

1

λ2(Wu)

)
= f (κ1, κ2). (2)

In view of Lemma 1 in [5], if f satisfies the conditions in Theorem 1, then F̃ ij = ∂F̃
∂wij

∈ L∞ is uniformly elliptic. In 
the case n = 2, it can be read off from the explicit formulas

λ1 = σ1(Wu) − √
σ1(Wu)2 − 4σ2(Wu)

2
, λ2 = σ1(Wu) + √

σ1(Wu)2 − 4σ2(Wu)

2
.

As noted by Alexandrov in [5], F̃ ij in general is not continuous if f (y1, y2) is not symmetric (even f is analytic).
We want to address when Theorem 1 remains true for convex bodies in R3 with weakened regularity assumption. 

In the Brunn–Minkowski theory, the uniqueness of Alexandrov–Fenchel–Jessen [1,2,10] states that, if two bounded 
convex bodies in Rn+1 have the same kth area measures on Sn, then these two bodies are the same up to a rigidity 
motion in Rn+1. Though for a general convex body, the principal curvatures of its boundary may not be defined. But 
one can always define the support function u, which is a function on S2. By the convexity, then Wu = (uij + uδij ) is 
a Radon measure on S2. Also, by Alexandrov’s theorem for the differentiability of convex functions, Wu is defined 
for almost every point x ∈ S

2. Denote N to be the space of all positive definite 2 × 2 matrices, and let G be a 
function defined on N . For a support function u of a bounded convex body Ωu, G(Wu) is defined for a.e. x ∈ S

2. 
For fixed support functions ul of Ωul , l = 1, 2, there is Ω ⊂ S

2 with |S2 \ Ω| = 0 such that Wu1 , Wu2 are pointwise 
finite in Ω . Set Pu1,u2 = {W ∈ N | ∃x ∈ Ω, W = Wu1(x), or W = Wu2(x)}, let Pu1,u2 be the convex hull of Pu1,u2

in N .
We establish the following slightly more general version of Theorem 1.

Theorem 2. Suppose Ω1 and Ω2 are two bounded convex bodies in R3. Let ul , l = 1, 2 be the corresponding 
supporting functions respectively. Suppose the spherical Hessians Wul = (ul

ij + δiju
l) (in the weak sense) are two 

non-singular Radon measures. Let G :N → R be a C0,1 function such that

ΛI ≥ (
Gij

)
(W) :=

(
∂G

∂Wij

)
(W) ≥ λI > 0, ∀W ∈ Pu1,u2,

for some positive constants Λ, λ. If

G(Wu1) = G(Wu2), (3)

at almost every parallel normal x ∈ S
2, then Ω1 is equal to Ω2 up to a translation.

Suppose u1, u2 are the support functions of two convex bodies Ω1, Ω2 respectively, and suppose Wul , l = 1, 2 are 
defined and they satisfy Eq. (3) at some point x ∈ S

2. Then, for u = u1 − u2, Wu(x) satisfies equation

F ij (x)
(
Wu(x)

) = 0, (4)

with F ij (x) = ∫ 1
0

∂F̃
∂Wij

(tWu1(x) + (1 − t)Wu2(x))dt . By the convexity, Wul , l = 1, 2 exist almost everywhere on S2. If 

they satisfy Eq. (3) almost everywhere, Eq. (4) is verified almost everywhere. Note that u may not be a solution (even 
in a weak sense) of partial differential equation (4). The classical elliptic theory (e.g., [16,18,8]) requires u ∈ W 2,2 in 
order to make sense of u as a weak solution of (4). A main step in the proof of Theorem 2 is to show that with the 
assumptions in the theorem, u = u1 − u2 is indeed in W 2,2(S2). The proof will appear in the last part of the paper.
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Let’s now focus on W 2,2 solutions of differential equation (4), with general uniformly elliptic condition on ten-
sor F ij on S

2:

λ|ξ |2 ≤ F ij (x)ξiξj ≤ Λ|ξ |2, ∀x ∈ S
2, ξ ∈ R

2, (5)

for some positive numbers λ, Λ. The aforementioned proofs of Theorem 1 [20,14,21,13] all reduce to the statement 
that any solution of (5) is a linear function, under various regularity assumptions on F ij and u. Eq. (4) is also related 
to minimal cone equation in R3 [13]. The following result was proved in [13].

Theorem 3. (See Theorem 1.1 in [13].) Suppose F ij (x) ∈ L∞(S2) satisfies (5), suppose u ∈ W 2,2(S2) is a solution 
of (4). Then, u(x) = a1x1 + a2x2 + a3x3 for some ai ∈R.

There the original statement in [13] is for 1-homogeneous W 2,2
loc (R3) solution v of equation

3∑
i,j=1

aij (X)vij (X) = 0. (6)

These two statements are equivalent. To see this, set u(x) = v(X)
|X| with x = X

|X| . By the homogeneity assumption, 

the radial direction corresponds to null eigenvalue of ∇2v, the other two eigenvalues coincide the eigenvalues of the 
spherical Hessian of W = (uij + uδij ). v(X) ∈ W

2,2
loc (R3) is a solution to (6) if and only if u ∈ W 2,2(S2) is a solution 

to (4) with F ij (x) = 〈ei, Aej 〉, where A = (aij ( X
|X| )) and (e1, e2) is any orthonormal frame on S2.

The proof in [13] uses gradient maps and support planes introduced by Alexandrov, as in [3,20,21]. We give a 
different proof of Theorem 3 using the maximum principle for smooth solutions and the unique continuation theorem 
of Bers–Nirenberg [8], working purely on solutions of Eq. (4) on S2.

Note that F in Theorem 2 (and Theorem 1) is not assumed to be symmetric. The weak assumption F ij ∈ L∞ is 
needed to deal with this case. This assumption also fits well with the weak unique continuation theorem of Bers–
Nirenberg. This beautiful result of Bers–Nirenberg will be used in a crucial way in our proof. If u ∈ W 2,2(S2), 
u ∈ Cα(S2) for some 0 < α < 1 by the Sobolev embedding theorem. Eq. (4) and C1,α estimates for 2-d linear el-
liptic PDE (e.g., [16,18,8]) imply that u is in C1,α(S2) for some α > 0 depending only on ‖u‖C0 and the ellipticity 
constants of F ij . This fact will be assumed in the rest of the paper.

The following lemma is elementary.

Lemma 4. Suppose F ij ∈ L∞(S2) satisfies (5), suppose at some point x ∈ S
2, Wu(x) = (uij (x) +u(x)δij ) satisfies (4). 

Then,

|Wu|2(x) ≤ −2Λ

λ
detWu(x).

Proof. At x, by Eq. (4),

detWu = − 1

F 22

(
F 11W 2

11 + 2F 12W11W12 + F 22W 2
12

) ≤ − λ

Λ

(
W 2

11 + W 2
12

)
, (7)

and similarly, detWu ≤ − λ
Λ

(W 2
22 + W 2

21). Thus,

(
W 2

11 + W 2
12 + W 2

21 + W 2
22

) ≤ −2Λ

λ
detWu. � (8)

For each u ∈ C1(S2), set Xu = ∑
i uiei + uen+1. For any unit vector E in R3, define

φE(x) = 〈
E,Xu(x)

〉
, and ρu(x) = ∣∣Xu(x)

∣∣2
, (9)

where 〈 , 〉 is the standard inner product in R3. The function ρ was introduced by Weyl in his study of Weyl’s prob-
lem [25]. It played important role in Nirenberg’s solution of Weyl’s problem in [17]. Our basic observation is that 
there is a maximum principle for ρu and φE .
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Lemma 5. Suppose U ⊂ S
2 is an open set, F ij ∈ C1(U) is a tensor in U and u ∈ C3(U) satisfies Eq. (4), then there 

are two constants C1, C2 depending only on the C1-norm of F ij such that

F ij (ρu)ij ≥ −C1|∇ρu|, F ij (φE)ij ≥ −C2|∇φE | in U. (10)

Proof. Picking any orthonormal frame e1, e2, we have

(Xu)i = Wijej , (Xu)ij = Wijkek − Wij �x. (11)

By Codazzi property of W and (4),

1

2
F ij (ρu)ij = 〈

Xu,F
ijWijkek

〉 + F ijWikWkj = −ukF
ij
,k Wij + F ijWikWkj .

On the other hand, ∇ρu = 2W · (∇u). At the non-degenerate points (i.e., detW �= 0), ∇u = 1
2W−1 · ∇ρu, where 

W−1 denotes the inverse matrix of W . Now,

2ukF
ij
,k Wij = Wkl(ρu)lF

ij
,k Wij = (ρu)lF

ij
,k

AklWij

detW
, (12)

where Akl denotes the co-factor of Wkl .
The first inequality in (10) follows from (8) and (12).
The proof for φE follows the same argument and the following facts:

F ij (φE)ij = −〈E,ek〉F ij
,k Wij , ∇φE = W · 〈E,ek〉. �

Lemma 5 yields immediately Theorem 1 in C3 case, which corresponds to the Hartman–Wintner theorem [14].

Corollary 6. Suppose f ∈ C2 and is symmetric, M1, M2 are two closed convex C3 surfaces satisfy conditions in 
Theorem 1, then the surfaces are the same up to a translation.

Proof. Since f ∈ C2 is symmetric, F ij in (4) is in C1(S2) and u ∈ C3(S2). By Lemma 5 and the strong maximum 
principle, Xu is a constant vector. �

To precede further, set

M =
{
p ∈ S

2 : ρu(p) = max
q∈S2

ρu(q)
}
,

for each unit vector E ∈ R
3,

ME =
{
p ∈ S

2 : φE(p) = max
q∈S2

φE(q)
}
.

Lemma 7. M and ME have no isolated points.

Proof. We prove the lemma for M, the proof for ME is the same. If point p0 ∈ M is an isolated point, we may 
assume p0 = (0, 0, 1). Pick Ū a small open geodesic ball centered at p0 such that Ū is properly contained in S2+, and 

pick a sequence of smooth 2-tensor (F ij
ε ) > 0 which is convergent to (F ij ) in L∞-norm in Ū . Consider{

F
ij
ε

(
uε

ij + uεδij

) = 0 in Ū

uε = u on ∂Ū .

(13)

Since x3 > 0 in S2+, one may write uε = x3v
ε in Ū . As (x3)ij = −x3δij , it easy to check that vε satisfies

F ij
ε vε

ij + bkv
ε
k = 0 in Ū .

Therefore, (13) is uniquely solvable.
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Since p0 ∈ M is an isolated point, there are open geodesic balls Ū ′ ⊂ Ū centered at p0 and a small δ > 0 such 
that

ρu(p0) − ρu(p) ≥ δ for ∀p ∈ ∂Ū ′. (14)

By the C1,α estimates for linear elliptic equation in dimension two and the uniqueness of the Dirichlet problem [16,
8,18], ∃εk such that∥∥u − uεk

∥∥
C1,α(Ū ′) → 0, ‖ρu − ρuεk ‖Cα(Ū ′) → 0.

Together with (14), if εk is small enough, there is a local maximal point of ρuεk in Ū ′ ⊂ Ū . Since uεk , F ij
ε ∈ C∞(Ū ′)

satisfy (13), it follows from Lemma 5 and the strong maximum principle that ρuεk must be constant in Ū ′, when εk is 
small enough. This implies that ρ is constant in Ū ′. A contradiction. �

We now prove Theorem 3.

Proof of Theorem 3. For any p0 ∈ M, if ρu(p0) = 0, then u ≡ 0. We may assume ρu(p0) > 0. Set E := Xu(p0)|Xu(p0)| . 
Choose another two unit constant vectors β1, β2 with 〈βi, βj 〉 = δij , βi ⊥ E for i, j = 1, 2. Under these orthogonal 
coordinates in R3,

Xu(p) = a(p)E + b1(p)β1 + b2(p)β2, ∀p ∈ME. (15)

On the other hand, φE(p) = ρ
1/2
u (p0), ∀p ∈ME . Thus,

a(p) = ρ
1/2
u (p0), b1(p) = b2(p) = 0, ∀p ∈ ME. (16)

Consider the function ũ(x) = u(x) − ρ
1/2
u (p0)E · x. (15) and (16) yield, ∀p ∈ME ,

∇ei
ũ(p) = ∇ei

u(p) − ρ
1/2
u (p0)〈E,ei〉 = 〈

Xu(p), ei

〉 − ρ
1/2
u (p0)〈E,ei〉 = 0. (17)

Moreover, ũ(x) also satisfies Eq. (4). As pointed out in [8], if ũ satisfies an elliptic equation, ∇ũ satisfies an elliptic 
system of equations. Lemma 7, (17) and the unique continuation theorem of Bers–Nirenberg (p. 113 in [7]) imply 
∇ũ ≡ 0. Thus, ũ(x) ≡ ũ(p0) = 0 and u(x) is a linear function on S2. �

Theorem 1 is a direct consequence of Theorem 3. We now prove Theorem 2.

Proof of Theorem 2. The main step is to show u = u1 − u2 ∈ W 2,2(S2), using the assumption that Wul , l = 1, 2 are 
non-singular Radon measures. It follows from the convexity, the spherical Hessians Wul , l = 1, 2 and Wu are defined 
almost everywhere on S2 (Alexandrov’s theorem). So, we can define G(Wul ), l = 1, 2 almost everywhere in S2. As 
Wl

u, l = 1, 2 are nonsingular Radon measures, Wul ∈ L1(S2) (see [9]), we also have Wu ∈ L1(S2). Since u1, u2 satisfy 
G(Wu1) = G(Wu2) for almost every parallel normal x ∈ S

2, there is Ω ⊂ S
2 with |S2 \ Ω| = 0, such that Wu satisfies 

the following equation pointwise in Ω ,

Gij (x)
(
uij (x) + u(x)δij

) = 0, x ∈ Ω,

where Gij = ∫ 1
0

∂G
∂wij

(tW 1
u + (1 − t)W 2

u )dt . By Lemma 4, we can obtain that

|Wu|2 = W 2
11 + W 2

12 + W 2
21 + W 2

22 ≤ −2Λ

λ
detWu, x ∈ Ω.

On the other hand,

detWu ≤ detWũ,

where ũ = u1 + u2. Thus, to prove u ∈ W 2,2(S2), it suffices to get an upper bound for 
∫
S2 detWũ.

Recall that Wul ∈ L1(S2), so ul ∈ W 2,1(S2), l = 1, 2 and the same for ũ. This allows us to choose two sequences of 
smooth convex bodies Ωl

ε with supporting functions ul
ε such that ‖ũε − ũ‖W 2,1(S2) → 0 as ε → 0. By Fatou’s Lemma 

and continuity of the area measures,
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∫
S2

detWũ =
∫
Ω

detWũ ≤ lim inf
ε→0

∫
S2

detWũε
≤ V

(
Ω1) + V

(
Ω2) + 2V

(
Ω1,Ω2),

where V (Ω1), V (Ω2) denote the volumes of the convex bodies Ω1 and Ω2 respectively and V (Ω1, Ω2) is the mixed 
volume.

It follows that Wu ∈ L2(S2) and thus, u ∈ W 2,2(S2). This implies that u is a W 2,2 weak solution of the differential 
equation

Gij (x)
(
uij (x) + u(x)δij

) = 0, ∀x ∈ S
2.

Finally, the theorem follows directly from Theorem 3. �
Remark 8. Alexandrov proved in [3] that, if u is a homogeneous degree 1 analytic function in R3 with ∇2u definite 
nowhere, then u is a linear function. As a consequence, Alexandrov proved in [6] that if an analytic closed convex 
surface in R3 satisfies the condition (κ1 − c)(κ2 − c) ≤ 0 at every point for some constant c, then it is a sphere. 
Martinez-Maure gave a C2 counter-example in [15] to this statement, see also [19]. The counter-examples in [15,19]
indicate that Theorem 3 is not true if F ij is merely assumed to be degenerate elliptic. It is an interesting question that 
under what degeneracy condition on F ij so that Theorem 3 is still true, even in smooth case. This question is related 
to similar questions in this nature posted by Alexandrov [4] and Pogorelov [21].

We shall wrap up this paper by mention a stability type result related with uniqueness. Indeed, by using the unique-
ness property proved in Theorem 3, we can prove the following stability theorem via compactness argument.

Proposition 9. Suppose F ij (x) ∈ L∞(S2) satisfies (5), and u(x) ∈ W 2,2(S2) is a solution of the following equation

F ij (x)(Wu)ij = f (x), ∀x ∈ S
2. (18)

Assume that f (x) ∈ L∞(S2) and there exists a point x0 ∈ S
2 such that ρu(x0) = 0 (see (9) for the definition of ρu). 

Then,

‖u‖L∞(S2) ≤ C3‖f ‖L∞(S2) (19)

holds for some positive constant C3 only depending on the ellipticity constants λ, Λ.

Proof. As mentioned above, we will prove this proposition by a compactness argument. Suppose the desired esti-
mate (19) does not hold, then there exists a sequence of functions {fn(x)}∞n=1 on S2 with ‖f ‖L∞(S2) ≤ C4 and a 

sequence of points {xn}∞n=1 ⊂ S
2 such that ρun(xn) = 0 and Kn := ‖u‖

L∞(S2)

‖f ‖
L∞(S2)

→ +∞, where un(x) is the solution of 

Eq. (18) with right hand side replaced by fn(x).
Let vn(x) = un(x)

Kn‖f ‖
L∞(S2)

, then ‖vn‖L∞(S2) = 1 and vn(x) satisfies

F ij (x)(Wvn)ij = f̃n := fn(x)

Kn‖fn‖L∞(S2)

. (20)

By the interior C1,α estimates for linear elliptic equation in dimension two [16,8,18], we have

‖vn‖C1,α(S2) ≤ C5
(‖vn‖L∞(S2) + ‖f̃n‖L∞(S2)

) ≤ 2C5

for some positive constant C5 = C5(λ, Λ). In particular, this gives that ‖∇vn‖L∞(S2) ≤ C6. Now, apply the a priori
W 2,2 estimate for linear elliptic equation in dimension two [16,8,18,12], we see that ‖vn‖W 2,2(S2) ≤ C7 for some 
constant C7 = C7(λ, Λ, C6). It follows from this uniform estimate that, up to a subsequence, {vn(x)}∞n=1 converges to 
some function v(x) ∈ W 2,2(S2) and v(x) satisfies

F ij (x)(Wv)ij = 0, a.e. x ∈ S
2.

Then, the previous uniqueness result Theorem 3 tells that v(x) must be a linear function, i.e., there exists a constant 
vector �a = (a1, a2, a3) ∈ R

3 such that v(x) = a1x1 + a2x2 + a3x3.
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On the other hand, recall that, by the assumption at the beginning, there exists xn ∈ S
2 such that ρvn(xn) = 0. 

Then, up to a subsequence, xn → x∞ ∈ S
2 and ρv(x∞) = 0. This together with the linear property of v(x) imply that 

v(x) ≡ 0. However, this contradicts with the fact that ‖v‖L∞(S2) = 1 as ‖vn‖L∞(S2) = 1. �
As a direct corollary, we have the following stability property for convex surfaces.

Theorem 10. Suppose M1, M2 and f satisfy the same assumptions as in Theorem 3. Define μ1(x) := f (κ1(ν
−1
M1

(x),

κ2(ν
−1
M1

(x)))) and μ2(x) := f (κ1(ν
−1
M2

(x), κ2(ν
−1
M2

(x)))) for ∀x ∈ S
2. If ‖μ1 − μ2‖L∞(S2) < ε, then, module a linear 

translation, M1 is very close to M2. More precisely, suppose u1, u2 are the supporting functions of M1 and M2 after 
module the linear translation, then there exists a constant C such that

‖u1 − u2‖L∞(S2) ≤ C‖μ1 − μ2‖L∞(S2). (21)

Finally, it is worth to remark that there are many stability type results for convex surfaces proved in the literature 
(see [24]). However, almost all the proofs need to use the assumption that f (κ1, κ2, · · · , κn) satisfies divergence 
property. Here, we do not make such kind assumption in this dimension two case. There is one drawback in the above 
stability result: one could not get the sharp constant via the compactness argument. It would be an interesting question 
to derive a sharp estimate for (21).
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