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Abstract

Consider the (simplified) Leslie–Ericksen model for the flow of nematic liquid crystals in a bounded domain Ω ⊂R
n for n > 1. 

This article develops a complete dynamic theory for these equations, analyzing the system as a quasilinear parabolic evolution 
equation in an Lp − Lq -setting. First, the existence of a unique local strong solution is proved. This solution extends to a global 
strong solution, provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the 
underlying state space. In this case the solution converges exponentially to an equilibrium. Moreover, the solution is shown to be 
real analytic, jointly in time and space.
© 2014 

Résumé

On considère le modèle de Leslie–Ericksen pour les cristaux liquides nématiques dans un domaine borné Ω ⊂ R
n. On obtient 

une théorie dynamique complète pour ce système, analysé comme une équation d’évolution quasi-linéare dans le cadre Lp − Lq . 
En particulier, on démontre l’ existence et l’unicité locales d’une solution forte, qui s’étend en un solution forte globale si les 
conditions initiales sont près d’un équilibre. De plus, on montre que la solution est analytique réelle en espace et temps.
© 2014 
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1. Introduction

We consider the following system modeling the flow of nematic liquid crystal materials in a bounded domain 
Ω ⊂R

n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + (u · ∇)u − ν�u + ∇π = −λdiv
([∇d]T∇d

)
in (0, T ) × Ω,

∂td + (u · ∇)d = γ
(
�d + |∇d|2d)

in (0, T ) × Ω,

divu = 0 in (0, T ) × Ω,

(u, ∂νd) = (0,0) on (0, T ) × ∂Ω,

(u, d)|t=0 = (u0, d0) in Ω.

(1.1)

Here, the function u : (0, ∞) × Ω → R
n describes the velocity field, π : (0, ∞) × Ω → R is the pressure, and 

d : (0, ∞) × Ω → R
n represents the macroscopic molecular orientation of the liquid crystal. Due to the physical 

interpretation of d it is natural to impose the condition

|d| = 1 in (0, T ) × Ω. (1.2)

We will show in the following that this condition is indeed preserved by the above system; see Proposition 4.3 below 
for details.

The constants ν > 0, λ > 0, and γ > 0 represent viscosity, the competition between kinetic energy and potential 
energy and the microscopic elastic relaxation time for the molecular orientation field, respectively. For simplicity, we 
set ν = λ = γ = 1, which does not change our analysis.

The continuum theory of liquid crystals was developed by Ericksen and Leslie during the 1950’s and 1960’s in 
[10,19]. The Ericksen–Leslie theory is widely used as a model for the flow of liquid crystals, see for example the 
survey articles by Leslie in [11] and also [4,7,15,22].

The set of Eqs. (1.1) was considered first in [23], however for the situation where in the second equation of (1.1)
the term |∇d|2d is replaced by f (d) = ∇F(d), i.e.

dt + (u · ∇)d = γ
(
�d − f (d)

)
,

where F : R3 → R is a smooth, bounded function. Note that in this situation, the condition (1.2) cannot be preserved 
in general. Thus, this condition was replaced in [22] and [23] by the Ginzburg–Landau energy functional, i.e. f is 
assumed to satisfy f (d) = ∇F(d) = ∇ 1

ε2 (|d|2 − 1)2. In 1995, Lin and Liu [23] proved the existence of global weak 
solutions to (1.1) in dimension 2 or 3 under the assumptions that u0 ∈ L2(Ω), d0 ∈ H 1(Ω), and d0 ∈ H 3/2(∂Ω). 
Existence and uniqueness of global classical solutions were also obtained by them in dimension 2 provided u0 ∈
H 1(Ω), d0 ∈ H 2(Ω), and provided the viscosity ν is large in dimension 3. For regularity results of weak solutions in 
the spirit of Caffarelli–Kohn–Nirenberg we refer to [24].

Hu and Wang [16] considered in 2010 the case of f (d) = 0 and proved existence and uniqueness of a global strong 
solution for small initial data in this case. They proved moreover that whenever a strong solutions exist, all global 
weak solutions as constructed in [23] must be equal to this strong solution. The idea of their approach was to consider 
the above system (1.1) as a semilinear equation with a forcing term λ div([∇d]T∇d) on the right-hand side.

The system (1.1) with f (d) = |∇d|2d was revisited by Lin, Lin, and Wang in 2010. They proved in [21] interior 
and boundary regularity theorems under smallness condition in dimension 2 and established the existence of global 
weak solutions on bounded smooth domains Ω ⊂ R

2 that are smooth away from a finite set. Furthermore, Wang 
proved in [33] global well-posedness for this system for initial data being small in BMO−1 × BMO in the case of a 
whole space, i.e. Ω =R

n, by combining techniques of Koch and Tataru with methods from harmonic maps to certain 
Riemannian manifolds.

Let us emphasize at this point that the system (1.1) represents a simplification of the full Ericksen–Leslie system. 
In particular, stretching and rotational effects of the director field are not taken into account in (1.1). Coutand and 
Shkoller [6] considered in 2001 a modification of system (1.1) in which the second line of (1.1) is replaced by

∂td + u · ∇d − d · ∇u = γ

(
�d − 1

2

(|d|2 − 1
)
d

)
in (0, T ) × Ω. (1.3)
ε
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They proved local wellposedness for this system and gave as well a global existence result for small data within this 
setting. Note, however, that the presence of the stretching term d · ∇u causes the loss of the total energy balance and, 
moreover, condition (1.2), i.e. |d| = 1 in (0, T ) × Ω , cannot be preserved anymore. For these reasons and since we 
would like to keep the interpretation of d as an orientation vector, we do not follow these lines. For further results in 
this direction we refer to Wu, Xu and Liu in [34]. For results on thermodynamical consistent models including the 
above mentioned stretching term, see [12] and references therein.

The full Ericksen–Leslie system based on the general Oseen–Frank energy density functional takes into account 
stretching as well as rotational effects for the director field. In the special case of isotropic elasticity the equation for 
d reads then as

∂td + u · ∇d − V d + λ2

λ1
Dd = − 1

λ1

(
�d + |∇d|2d) + λ2

λ1
(Dd · d)d in (0, T ) × Ω. (1.4)

Here D = 1
2 ([∇u]T + ∇u) denotes the symmetric, V = 1

2 ([∇u]T − ∇u) the anti-symmetric part of the deformation 
tensor and λ1, λ2 ∈ R\{0} are material coefficients subject to Leslie’s relation. Wellposedness results concerning the 
full Ericksen–Leslie system will be subject of a forthcoming article.

The situation in which the fluid is modelled by a compressible fluid was treated e.g. by [17,25]. Here, local existence 
of strong solutions is proved. The latter turn out to be even local classical solution.

Summarizing, we observe that in particular results for local as well as global, strong solutions in the three dimen-
sional setting for the system (1.1), obeying also the condition (1.2), do not seem to exist so far.

Recently, Li and Wang claimed in [20] such a result. More precisely, they claimed the existence and uniqueness 
of a strong solutions to (1.1) in bounded, smooth domains (however, not satisfying (1.2)). Their idea was to rewrite 
(1.1) as a semilinear equation for the Stokes equation coupled to the heat equation with a right hand side of the 
form

F̃ (u, d) := (−(u · ∇)u − div
([∇d]T∇d

)
,−(u · ∇)d + |∇d|2d)

.

Unfortunately, their approach and their main result [20, Theorem 2.1] relies on an incorrect regularity property for 
the solution of the heat equation [20, Theorem 3.1]. This result would imply further regularity properties for d and 
hence for F̃ (u, d), which however are not true. Note that the (incorrect) assertion of [20, Theorem 3.1] is crucial for 
their approach. Thus, the theory for local as well as for global strong solutions to (1.1), also satisfying (1.2), needs 
clarification.

It is the aim of this paper to present a complete theory for global strong solutions to (1.1) satisfying (1.2) as well 
as for their dynamical behaviour in the n-dimensional setting, where n > 1.

Our main idea is to consider (1.1) not as a semilinear equation as done in all of the previous approaches but as a 
quasilinear evolution equation. We thus incorporate the term div([∇d]T∇d) into the quasilinear operator A given by

A(d) =
[
A PB(d)

0 D

]
,

where A denotes the Stokes operator, D the Neumann Laplacian, and B is given by[
B(d)h

]
i
:= ∂idl�hl + ∂kdl∂k∂ihl,

for which we employ the sum convention. Note that B(d)d = div([∇d]T∇d).
We then develop a complete dynamic theory for (1.1)–(1.2). In fact, first by local existence theory for abstract 

quasilinear parabolic problems, we prove the existence and uniqueness of a strong solution to (1.1)–(1.2) on a maximal 
time interval. Thus, (1.1)–(1.2) give rise to a local semi-flow in the natural state space.

Furthermore, the equilibria E of (1.1)–(1.2) are determined to be

E = {
(0, d∗) : d∗ ∈ R

n, |d∗| = 1
}
,

and the well-known energy functional

E = 1

2

∫ [|u|2 + |∇d|2]dx
Ω



400 M. Hieber et al. / Ann. I. H. Poincaré – AN 33 (2016) 397–408
for (1.1)–(1.2) is shown to be a strict Lyapunov-functional. In addition, the equilibria are shown to be normally stable, 
i.e. for an initial value close to E , the solution of (1.1)–(1.2) exists globally and the solution converges exponentially 
to an equilibrium. More generally, a solution, eventually bounded on its maximal interval of existence, exists globally 
and converges to an equilibrium exponentially fast.

Due to the polynomial character of the nonlinearities, we can even show that the solution of (1.1)–(1.2) is real 
analytic, jointly in time and space.

Our approach is based on the theory of quasilinear parabolic problems and relies in particular on the maximal 
Lp-regularity property for the heat and the Stokes equation. In particular, we refer here to [1,2,9,5,18,27,28,30].

The plan for this paper is as follows. We begin by collecting general results from the theory of quasilinear 
parabolic evolution equations. Then, in Section 3 we introduce our formulation of (1.1). Section 4 deals with lo-
cal well-posedness and regularity of solutions to (1.1)–(1.2); in particular we see that the solution is real analytic. The 
generalized principle of linearized stability yields the stability of equilibria and convergence of solutions is proved 
in Section 5. Moreover, by means of the associated energy functional, we prove convergence of a solution to an 
equilibrium, whenever the solution is eventually bounded in the natural state space.

2. Quasilinear evolution equations

Let X0 and X1 be Banach spaces such that X1
d

↪→ X0, i.e. X1 is continuously and densely embedded in X0. Let 
J = [0, a] for an a > 0. By a quasilinear autonomous parabolic evolution equation we understand an equation of the 
form

ż(t) + A
(
z(t)

)
z(t) = F

(
z(t)

)
, t ∈ J, z(0) = z0, (QL)

where A is a mapping from a real interpolation space Xγ,μ with suitable weights between X0 and X1 into L(X0, X1). 
Our approach relies on the maximal Lp-regularity of A(v) for v ∈ Xγ,μ. For details we refer e.g. to [9].

Eq. (QL) is investigated in spaces of the form Lp(J ; X0) with temporal weights. More precisely, for p ∈ (1, ∞)

and μ ∈ (1/p, 1], the spaces Lp,μ and H 1
p,μ are defined by

Lp,μ(J ;X1) := {
z:J → X1: t1−μz ∈ Lp(J ;X1)

}
,

H 1
p,μ(J ;X0) := {

z ∈ Lp,μ(J ;X0) ∩ W 1
1 (J ;X0): ż ∈ Lp,μ(J ;X0)

}
.

It is clear, that

Lp(J ;X) ↪→ Lp,μ(J ;X) and Lp

([0, a];X)
↪→ Lp,μ

([τ, a];X)
,

for all Banach spaces X and τ ∈ (0, a). It has been shown in [28, Theorem 2.4] that Lp-maximal regularity implies 
also Lp,μ-maximal regularity, provided p ∈ (1, ∞) and μ ∈ (1/p, 1]. The trace space of the maximal regularity class 
containing temporal weights,

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1)

has been characterized in [28, Theorem 2.4] as the real interpolation space (X0, X1)μ−1/p,p , i.e.

Xγ,μ = (X0,X1)μ−1/p,p,

provided p ∈ (1, ∞) and μ ∈ (1/p, 1]; see also [26, Theorem 4.2]. The space Xγ is given by Xγ := Xγ,1.
We now impose precise assumptions on A and F .

(A) A ∈ Cω(Xγ,μ; L(X1, X0)), and A(v) has maximal Lp-regularity for each v ∈ Xγ,μ.
(F) F ∈ Cω(Xγ,μ; X0).

Even under less restrictive Lipschitz type assumptions on A and F , local in time existence of (QL) was shown by 
Clément and Li [5] in the case μ = 1 and by Köhne, Prüss and Wilke [18, Theorem 2.1, Corollary 2.2] for the case 
μ ∈ (1/p, 1].
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Proposition 2.1. Let 1 < p < ∞, μ ∈ (1/p, 1], z0 ∈ Xγ,μ, and suppose that the assumptions (A) and (F) are satisfied. 
Then, there exists a > 0, such that (QL) admits a unique solution z on J = [0, a] in the regularity class

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1) ↪→ C(J ;Xγ,μ) ∩ C

(
(0, a];Xγ

)
.

The solution depends continuously on z0, and can be extended to a maximal interval of existence J (z0) = [0, t+(z0)).

Parabolic problems allow for additional smoothing effects. In this respect, a method due to Angenent [3] is well 
known. We only state here a variant of it which is adapted to (QL); see [27, Theorem 5.1] for the case μ = 1. By a 
slight adjustment of its proof to the situation of temporal weights, this result remains true also for maximal regularity 
classes using this type of weights.

Proposition 2.2. Let 1 < p < ∞, μ ∈ (1/p, 1], a > 0, and assume that (A) and (F) hold. Let z ∈ H 1
p,μ(J ; X0) ∩

Lp,μ(J ; X1) be a solution of (QL) on J = [0, a] and assume A(z(t)) has maximal Lp-regularity for all t > 0. Then

tk
[

d

dt

]k

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1), k ∈ N.

Furthermore, z is real analytic with values in X1 on (0, a).

We denote the set of equilibria of (QL) by

E = {
z∗ ∈ X1:A(z∗)z∗ = F(z∗)

}
.

The following result on global existence and stability was proved in [30, Theorem 2.1] assuming only that A and F
are of class C1.

Proposition 2.3. Let 1 < p < ∞ and assume that assumptions (A) and (F) hold. Furthermore assume, that every 
equilibrium of (QL) is contained in a manifold of dimension m ∈N. Let A0 be the linearization of (QL), i.e. let

A0w = A(z∗)w + (
A′(z∗)w

)
z∗ − F ′(z∗)w, w ∈ X1.

Suppose that z∗ ∈ E is normally stable equilibrium, i.e.

(i) near z∗ the set of equilibria E ⊂ X1 is a C1-manifold in X1 of dimension m,
(ii) the tangent space of E at z∗ is given by N(A0),

(iii) 0 is semi-simple eigenvalue of A0, i.e. N(A0) ⊕ R(A0) = X0,
(iv) σ(A0) \ {0} ⊂C+ = {x ∈C: Rex > 0}.

Then z∗ is stable in Xγ . Further, there exists a number ρ > 0 such that the unique solution z of (QL) with initial value 
z0 ∈ BXγ (0, ρ) exists on R+ and converges at an exponential rate to some u∞ ∈ E in Xγ as t → ∞.

We finish the section with another result on global existence result for (QL); see [18, Theorem 3.1].

Proposition 2.4. Let 1 < p < ∞, μ ∈ (1/p, 1], z0 ∈ Xγ,μ and let J = [0, a] or J = R+. Suppose that assumptions 

(A) and (F) are satisfied and that the embedding Xγ
c

↪→ Xγ,μ is compact. Assume furthermore that the solution z
of (QL) is eventually bounded in Xγ on its maximal interval of existence, i.e. that z satisfies

z ∈ BC
([

τ, t+(z0)
);Xγ

)
for some τ ∈ (0, t+(z0)). Then the solution z exists globally and for each δ > 0, the orbit {z(t)}t≥δ is relatively 
compact in Xγ . If in addition z0 ∈ Xγ , then {z(t)}t≥0 is relatively compact in Xγ .
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3. Nematic liquid crystals as quasilinear evolution equations

We now reformulate (1.1) equivalently as a quasilinear parabolic evolution equation for the unknown z = (u, d). 
To this end, for 1 < q < ∞ define the Banach spaces X0 by

X0 := Lq,σ (Ω) × Lq(Ω)n,

where Ω ⊂ R
n is a bounded domain with boundary ∂Ω ∈ C2. The subscript σ in Lq,σ (Ω) means as usual the 

subspace of Lq(Ω)n consisting of solenoidal vector fields.
The Neumann–Laplacian Dq in Lq(Ω) is defined by Dq = −� with domain

D(Dq) := {
d ∈ H 2

q (Ω)n : ∂νd = 0 on ∂Ω
}
.

It is well-known that Dq has the property of Lp-maximal regularity; see [9, Theorem 8.2].
Let P : Lq(Ω)n → Lq,σ (Ω) denote the Helmholtz projection. We then define the Stokes operator Aq = −P� in 

Lq,σ (Ω) with domain

D(Aq) = {
u ∈ H 2

q (Ω)n : divu = 0 in Ω, u = 0 on ∂Ω
}
.

It is also well-known that Aq has the property of Lp-maximal regularity; see e.g. [31,14,13].
Next, we define the space X1 by

X1 := D(Aq) × D(Dq),

equipped with its canonical norms. Then X1
d

↪→ X0 densely.
The quasilinear part A(z) of (QL) is given by the tri-diagonal matrix

A(z) =
[
Aq PBq(d)

0 Dq

]
,

where the operator Bq is given by[
Bq(d)h

]
i
:= ∂idl�hl + ∂kdl∂k∂ihl,

for which we employed the sum convention. Note that

Bq(d)d = div
([∇d]T∇d

)
.

Obviously, Bq(d) : X1 → X0 is bounded for each d ∈ C1(Ω)n and the map d �→ PBq(d) is polynomial, hence 
real analytic. By the tri-diagonal structure of A(z) and by the regularity of Bq one can easily see that A(z) also 
has the property of Lp-maximal regularity, for each z ∈ C1(Ω)2n. Indeed, for a fixed right-hand side (fu, fd) ∈
Lp(0, a; Xγ,μ) and initial values (u0, d0) ∈ Xγ,μ, we may use the maximal regularity of Dq to obtain a solution d̃ of 
the heat equation with Neumann boundary condition in the right maximal regularity class. By setting

f̃u := fu − PBq(d)d̃

as right-hand side for the Stokes equation, we obtain a solution ũ in the right maximal regularity class due to the fact 
that Bq(d) is linear and bounded.

The right-hand side F(z) of (QL) is defined by

F(z) = (−Pu · ∇u,−u · ∇d + |∇d|2d)
,

which is also polynomial, hence a real analytic mapping from C1(Ω)2n into X0.
Note that (A) and (F) hold, as soon as we have the embedding

Xγ,μ ↪→ C1(Ω)2n.

The space Xγ is given by

Xγ = (X0,X1)1−1/p,p = DAq
(1 − 1/p,p) × DDq

(1 − 1/p,p);
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see [1,8]. As explained in Section 2, we consider Lp-spaces with temporal weights. The trace space of the class

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1)

now reads

Xγ,μ = (X0,X1)μ−1/p,p = DAq
(μ − 1/p,p) × DDq

(μ − 1/p,p),

provided p ∈ (1, ∞) and μ ∈ (1/p, 1]; see [26, Theorem 4.12].
In order to obtain the embeddings Xγ ↪→ C1(Ω)2n and more generally Xγ,μ ↪→ C1(Ω)2n we impose on p, q ∈

(1, ∞) now the conditions

2

p
+ n

q
< 1,

1

2
+ 1

p
+ n

2q
< μ ≤ 1. (3.1)

Standard Sobolev embedding theorems can then be applied.
Further, we recall from [32, Theorem 4.3.3] and [2, Theorem 3.4], respectively, the following characterizations of 

the interpolation spaces involved,

d ∈ DDq
(μ − 1/p,p) ⇔ d ∈ B

2μ−2/p
qp (Ω)n, ∂νd = 0 on ∂Ω,

and

u ∈ DAq
(μ − 1/p,p) ⇔ u ∈ B

2μ−2/p
qp (Ω)n ∩ Lq,σ (Ω), u = 0 on ∂Ω.

Observe that both of these characterizations make sense, since the condition (3.1) guarantees the existence of the trace.

4. Existence, uniqueness, and regularity of solutions

We start this section by applying Proposition 2.1 to obtain the following result on local well-posedness of (1.1).

Theorem 4.1. Let p, q, μ be subject to (3.1), and assume z0 = (u0, d0) ∈ Xγ,μ, which means that u0, d0 ∈
B

2μ−2/p
qp (Ω)n satisfy the compatibility conditions

divu0 = 0 in Ω, u0 = ∂νd0 = 0 on ∂Ω.

Then for some a = a(z0) > 0, there is a unique solution

z ∈ H 1
p,μ(J,X0) ∩ Lp,μ(J ;X1), J = [0, a],

of (1.1) on J . Moreover,

z ∈ C
([0, a];Xγ,μ

) ∩ C
(
(0, a];Xγ

)
,

i.e. the solution regularizes instantly in time. It depends continuously on z0 and exists on a maximal time interval 
J (z0) = [0, t+(z0)). Therefore problem (1.1), i.e. (QL), generates a local semi-flow in its natural state space Xγ,μ.

Remark 4.2. Assuming that 2/p + n/q < 1, for ε > 0 we may choose μ subject to (3.1) such that

H
1+ n

q
+ε

q (Ω)n ↪→ B
2μ−2/p
qp (Ω)n ↪→ H

1+ n
q
−ε

q (Ω)n

due to Sobolev embeddings [32, Theorem 4.6.1]. Furthermore, we can choose p, q large with

C1+ε(Ω)n ↪→ B
2μ−2/p
qp (Ω)n.

Employing different time weights for u and d , an inspection of the above proofs shows that the assertion of the 
above theorem remains true provided u0 ∈ Cα(Ω).
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The following result tells that the condition (1.2) is preserved by (1.1).

Proposition 4.3. Suppose that μ, p, q are satisfying (3.1) and let z0 = (u0, d0) ∈ Xγ,μ with |d0| ≡ 1, a > 0. Let

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1)

be a solution of (1.1) on the interval J = [0, a]. Then |d(t)| ≡ 1 holds for all t ∈ [0, a].

Proof. Setting ϕ = |d|2 − 1 the elementary identities,

∂t |d|2 = 2d · ∂td, �|d|2 = 2�d · d + 2|∇d|2, ∇|d|2 = 2d · ∇d,

and multiplication with d of the second line in (1.1) yields the problem⎧⎨
⎩

∂tϕ + u · ∇ϕ = �ϕ + 2|∇d|2ϕ in Ω,

∂νϕ = 0 on ∂Ω,

ϕ(0) = 0 in Ω,

provided |d0| ≡ 1. Uniqueness of this parabolic convection–reaction–diffusion equations yields ϕ ≡ 0, i.e. |d| ≡
1. �

As the nonlinearities A and F are real analytic we may employ Angenent’s method (Proposition 2.2) to obtain 
further regularity of the solutions of (1.1).

Proposition 4.4. Suppose that μ, p, q satisfy (3.1), z0 ∈ Xγ,μ, and a > 0 and let

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1)

be a solution of (1.1) on the interval J = [0, a]. Then for each k ∈ N,

tk
[

d

dt

]k

z ∈ H 1
p,μ(J ;X0) ∩ Lp,μ(J ;X1).

Moreover, z ∈ Cω((0, a); X1).

We will employ Proposition 4.4 in the following to justify the regularity of time derivatives of the energy functional.

Remark 4.5. Employing scaling techniques jointly in time and space, it is possible to show via maximal regularity 
and the implicit function theorem that u, π, d are real analytic in (0, t+(z0)) × Ω ; see [27, Section 5] for parabolic 
problems, and specifically for a Navier–Stokes problem [29]. As we will not use this result below we omit the details, 
here.

5. Stability and convergence to equilibria

We consider the set E0 = {0} ×R
n, which is obviously equilibria of (1.1). This set forms an n-dimensional subspace 

of X1, hence a C1-manifold with tangent space {0} ×R
n at each point (0, d∗) ∈ E0. The linearization of (1.1) at z∗ ∈ E0

is given by the linear evolution equation

ż + A∗z = f, z(0) = z0,

in X0, where

A∗ = diag(Aq,Dq), D(A∗) = X1.

As Ω is bounded, the spectrum σ(Aq) consists only of positive eigenvalues and 0 /∈ σ(Aq). On the other hand, Dq

has 0 as an eigenvalue, which is semi-simple and the remaining part of σ(Dq) consists only of positive eigenvalues. 
Thus σ(A∗) \ {0} ⊂ [δ, ∞) for some δ > 0 and the kernel of A∗ is given by
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N(A∗) = {0} ×R
n,

which equals the tangent space. In Remark 2.2 of [30] it is shown that all equilibria close to z∗ are contained in a 
manifold M of dimension n = dim(N(A∗)). Since the dimension of E0 is also n, there exists an open set V ⊂ X1
with M ∩ V = E ∩ V = E0 ∩ V ; i.e. E ∩ V contains no other equilibrium. As a result we see that the equilibrium is 
normally stable.

Now we are in position to apply Proposition 2.3 to conclude the following stability result for the equilibria of (1.1).

Theorem 5.1. Let p, q satisfy the first inequality in (3.1). Then each equilibrium z∗ ∈ {0} × R
n is stable in Xγ , i.e. 

there exists ε > 0 such that a solution z(t) of (1.1) with initial value z0 ∈ Xγ , |z0 − z∗|Xγ ≤ ε, exists globally and 
converges exponentially to some z∞ ∈ {0} ×R

n in Xγ , as t → ∞.

We next consider the energy of the system given by

E = 1

2

∫
Ω

[|u|2 + |∇d|2]dx = Ekin + Epot. (5.1)

Let z = H 1
p,μ(J ; X0) ∩Lp,μ(J ; X1) be a solution of (1.1)–(1.2) on J = [0, a]; according to Proposition 4.4 it belongs 

to C1((0, a); X1). Using sum convention we have by an integration by parts

d

dt
Ekin(t) =

∫
Ω

∂tu · udx

=
∫
Ω

[−(u · ∇)u − ∇π + �u − div
([∇d]T∇d

]) · udx

= −
∫
Ω

|∇u|2dx +
∫
Ω

∂kdj ∂idj ∂kuidx,

as divu = 0 in Ω and u = 0 on ∂Ω . On the other hand, we have by another integration by parts∫
Ω

∣∣�d + |∇d|2d∣∣2
dx =

∫
Ω

[
�d + |∇d|2d][

∂td + (u · ∇)d
]
dx

= −
∫
Ω

[
∂t∇d : ∇d − |∇d|2∂t |d|2/2

]
dx

+
∫
Ω

[
(u · ∇)d · �d + |∇d|2(u · ∇)|d|2/2

]
dx

= − d

dt
Epot(t) −

∫
Ω

∂k(ui∂idj )∂kdj dx

= − d

dt
Epot(t) −

∫
Ω

∂kui∂idj ∂kdj dx,

by |d| ≡ 1 and the Neumann boundary condition for d . Combining these equations, we obtain the energy identity

d

dt
E(t) = −

∫
Ω

[|∇u|2 + |�d + |∇d|2d|2]dx. (5.2)

Therefore E(t) is non-increasing along solutions. But E is also a strict Lyapunov functional, i.e. strictly decreasing 
along non-constant solutions. In fact, if dE(t)/dt = 0 at some time instant, then by the energy equality we have 
∇u = 0 and �d + |∇d|2d = 0 in Ω . Therefore u = 0 by the no-slip condition on ∂Ω , and d satisfies the nonlinear 
eigenvalue problem
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⎧⎨
⎩

�d + |∇d|2d = 0 in Ω,

|d|2 = 1 in Ω,

∂νd = 0 on ∂Ω.

(5.3)

But, as the lemma below shows, this implies ∇d = 0 in Ω , hence d = d∗ is constant and z∗ := (0, d∗), |d∗| = 1 is an 
equilibrium of the problem.

Lemma 5.2. Suppose that d ∈ H 2
2 (Ω; Rn) satisfies (5.3). Then d is constant in Ω .

Proof. The idea is to reduce inductively the dimension N = n of the vector d . This can be achieved by introducing 
polar coordinates according to

d1 = c1 cos θ, d2 = c1 sin θ, dj = cj−1, j ≥ 3.

Simple computations yield

1 = |d|2 = |c|2, |∇d|2 = |∇c|2 + c2
1|∇θ |2,

and

�cj + [|∇c|2 + c2
1|∇θ |2]cj = 0 in Ω,

as well as ∂νcj = 0 on ∂Ω for j = 2, . . . , n − 1. Moreover, by an easy calculations we further obtain

−�c1 + c1|∇θ |2 = [|∇c|2 + c2
1|∇θ |2]c1 in Ω,

and

c1�θ + 2∇c1 · ∇θ = 0 in Ω,

as well as

∂νc1 = c1∂νθ = 0 on ∂Ω.

Multiplying the former equation by c1θ and integrating over Ω we deduce

0 =
∫
Ω

[
c1�θ + 2∇c1 · ∇θ

]
c1θdx =

∫
Ω

div
[
c2

1∇θ
]
θdx = −

∫
Ω

c2
1|∇θ |2dx,

hence c1∇θ = 0. This implies that c satisfies the problem (5.3) where the vector c has dimension N − 1. Inductively, 
we arrive at dimension N = 1 and if d is a solution of (5.3) with dimension 1, then d = 1 or d = −1 by connectedness 
of Ω . �

Note that the side condition |d| ≡ 1 is important at this point. Summarizing we proved the following result.

Proposition 5.3. The energy functional E defined on Xγ is a strict Lyapunov function for system (1.1)–(1.2). The 
equilibria of this system are given by the set

E = {
z∗ = (u∗, d∗) : u∗ = 0, d∗ ∈ R

n, |d∗| = 1
}
,

which forms a manifold of dimension n − 1. The corresponding pressures p∗ are constant as well.

Suppose finally that z is a solution of (1.1)–(1.2) which is eventually bounded in Xγ on its maximal interval of 
existence. Then, by Proposition 2.3 this solution is global and z([δ, ∞)) ⊂ Xγ is relatively compact. Therefore its 
limit set

ω(z0) = {
v ∈ Xγ :∃tn ↑ ∞ s.t. z(tn; z0) → v in Xγ

}
is nonempty. As E is a strict Lyapunov functional for (1.1)–(1.2), we obtain dist(z(t, z0), ω(z0)) → 0 in Xγ for 
t → ∞ and ω(z0) ⊂ E ⊂ X1. Now Theorem 5.1 applies and we may conclude that z(t) → z∞ ∈ E in Xγ as t → ∞. 
In summary we proved the following result.
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Theorem 5.4. Let μ, p, q satisfy (3.1). Let z0 = (u0, d0) ∈ Xγ,μ with |d0| ≡ 1 and suppose that the solution z(t) of 
(1.1) is eventually bounded in Xγ on its maximal interval of existence, i.e.

z ∈ BC
([

τ, t+(z0)
);Xγ

)
for some τ ∈ (0, t+(z0)). Then z(t) exists globally and converges to an equilibrium z∞ ∈ E in Xγ , as t → ∞. The 
converse is also true.
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