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Abstract

We consider the question of giving an upper bound for the first nontrivial eigenvalue of the Wentzell-Laplace operator of a
domain 2, involving only geometrical information. We provide such an upper bound, by generalizing Brock’s inequality concern-
ing Steklov eigenvalues, and we conjecture that balls maximize the Wentzell eigenvalue, in a suitable class of domains, which
would improve our bound. To support this conjecture, we prove that balls are critical domains for the Wentzell eigenvalue, in any
dimension, and that they are local maximizers in dimension 2 and 3, using an order two sensitivity analysis. We also provide some
numerical evidence.
© 2014 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Background. Letd > 2 and £2 be a bounded domain in R¥ (i.e. a bounded connected open set) supposed to be suf-
ficiently smooth (of class C3), and we denote by A the Laplace-Beltrami operator on 32. Motivated by generalized
impedance boundary conditions, we consider the eigenvalue problem for Wentzell boundary conditions

{—Au:O in 2

—BAu+0d,u=Au onas2 M

where B is a given real number and 9, denotes the outward unit normal derivative.
The coefficient B appears as a surface diffusion coefficient arising in a passage to the limit in the thickness of
the boundary layer for coated object (see [22,1,16]). A general derivation of Wentzell boundary conditions can be
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found in [15]. The coefficient can be either positive or negative. We first consider the case 8 > 0 where the obtained
boundary value problem is coercive.

This problem couples surface and volume effects through the Steklov eigenvalue problem in §2 with the Laplace—
Beltrami eigenvalue problem on 9£2. Let us recall some known facts about these two problems. The Steklov eigen-
value problem consists in solving

Au=0 in 2
duu=25u onds
It has a discrete spectrum consisting of a sequence
A(2)=0<r5(2) <25(2)... > +oo

where the AS are called Steklov eigenvalues. Brock—Weinstock inequality states that kf is maximized by the ball
among all open sets of fixed volume |£2]|. It was first proved in the case d = 2 by Weinstock and extended by Brock
to any dimension in [6] (Weinstock inequality is slightly stronger but restricted to simply-connected domains: he
proved indeed that the disk maximizes AIS among simply-connected sets of given perimeter). A quantitative form of
this inequality was recently obtained by Brasco, De Philippis and Ruffini who proved in [5] that

I-QAB(XaQ)I)Z}

2

1£2]
where 8, is an explicit nonnegative constant depending only on d, x3 is the center of mass of 92 and B(xjg) is the
ball centered in x5 with volume |£2|." Let us emphasize that no additional topological assumption is needed.

It is well-known that the spectrum of the Laplace-Beltrami operator on 952, that is numbers A such that the
equation —Au = Au on 952 has nontrivial solutions, is also discrete and satisfies:

ABB2)=0<atB02) <2 tB002)... — +oo

Again, one can ask if A]LB takes its maximal value on the euclidean sphere, among hypersurfaces of fixed
(d — 1)-dimensional volume. Here, the answer is more complicated than for the Steklov problem. It depends on
both the topology of the surface and the dimension. In [19], Hersch gave a positive answer if d = 3 for surfaces ho-
momorphic to the euclidean sphere. In the cases d > 3 or without topological restriction, the answer is negative (see
[3,10,11], and Section 2.1 for the 2-dimensional case).

When B > 0, the spectrum of the Laplacian with Wentzell conditions consists of an increasing countable se-
quence of eigenvalues

r0,8(82) =0 < A1,8(82) <A p(82)... > +00 3)

with corresponding real orthonormal (in L%(382)) eigenfunctions ug, uy, us, .... As in the previous cases, the first
eigenvalue is zero with constants as corresponding eigenfunctions. As usual, we adopt the convention that each
eigenvalue is repeated according to its multiplicity. Hence, the first eigenvalue of interest is Aj g. A variational char-
acterization of the eigenvalues is available: we introduce the Hilbert space

H(2) = {u e H(2), Trye ) e H'(352)},

where Tryg; is the trace operator, and we define on H(£2) the two bilinear forms

Aﬁ(u,v)=/Vu.Vvdx+ﬂ/V,u.V,vdU, B(u,v):fuv, 4)
Q 382 392

where V; is the tangential gradient. Since we assume $ is nonnegative, the two bilinear forms are positive and the
variational characterization for the k-th eigenvalue is

Ag(v,v)
B(v, v)

A (2) fkf(B)[l —8d<

)Lk,f;(.Q):min{ , ve H($), /vui:O, i:O,...,k—l} (@)
982

! The results in [5] are stated with the Fraenkel asymmetry, meaning that the previous inequality is stated for the ball B of volume |£2| that
minimizes |£2 A B|, but from the proof (see [5, Section 5]) we can conclude that the ball B(x3) of volume |£2| and such that fa.Q (x—x30)do =0
is in fact valid as well.
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In particular, when k = 1, the minimum is taken over the functions orthogonal to the eigenfunctions associated to
Ao, = 0, i.e. constant functions. To describe this spectrum, one can notice that the eigenvalue problem can be rewritten
purely on 952 as:

—BA;u+Du=Au

where D denotes the Dirichlet-to-Neumann map, that is a selfadjoint, positive pseudodifferential operator of order
one. Therefore, this problem can be seen as a compact perturbation of the usual Laplace—Beltrami operator. This point
of view was used in [4] where it is proven that high order eigenvalues of the Laplace—Wentzell problem look like those
of the Laplace—Beltrami operator.

However, we are interested in this work, in studying low order eigenvalues and more precisely in giving an upper
bound for the second eigenvalue A g involving only geometrical information. Please remark that we are not seeking
for lower bound, because even with very strong geometrical assumption, there is none. Indeed, a consequence of our
results is that

inf{A1 g(£2), 2 convex, |2|=m}=0 (6)

for any value of 8 > 0 and m > 0, see Remark 2.5. An important remark at this point is that the bilinear form Ag is
not homogeneous with respect to dilatation of the domain. Therefore, the volume of £2 plays a crucial role in A1 g.
As a surface term appears also in Ag (corresponding to the Laplace—Beltrami operator), the perimeter of 2 (i.e. the
volume of 9£2) should also play a crucial role.

Notice that when § = 0 we retrieve the Steklov eigenvalues, and we recover the Laplace—Beltrami eigenvalues by
considering l)\lg g and letting B go to +00, see Section 2.1.

Note also that the close but distinct eigenvalue problem

{—Au:ku in 2

Au—+adu+yu=0 ondf2 )

was considered by J.B. Kennedy in [21]. He transforms this problem into a Robin type problem to prove a Faber—Krahn
type inequality when the constants «, y are nonnegative: the ball is the best possible domain among those of given
volume.

The results of the paper. We first apply the strategy of F. Brock for the Steklov eigenvalue problem to the Wentzell
eigenvalue problem and obtain a first upper bound of A1 g(§2) in terms of purely geometric quantities (we actually
provide a refined version, using [5]):

Theorem 1.1. Let §2 be a smooth set such that fa o X =0. Let A[$2] be the spectral radius of the symmetric and

positive semidefinite matrix P($2) = (pij)i j=1,....d defined as
Dij = /(5,;/ —ninj), 3
a2
where n is the outward normal vector to 0§2. Then if § > 0, one has:
d 2 —1/d, q, dtL 2
1 0o |x dw 2|4 2AB
S(@)=7 > gl doy 12] [1+yd<g> } ©)
L0ip(@) T 120+ AIR] T |21+ BAIL] |B]
where
d+12Y4 -1
— S 10
Vd p 1 (10)

wq = |B1| and B is the ball of volume |$2| and centered at 0. Equality holds in (9) if §2 is a ball.

A consequence of Theorem 1.1 is the following upper bound for A1, g(£2).
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Corollary 1.2. With the same notations as in Theorem 1.1, if B > 0, it holds:
|$2] + pAIS2] _ |£2] + BALS2]

Jaa WP T o 21 14 va(G58))

rip(82) <d , Y

where B and v, are as in Theorem 1.1. Equality holds in (11) if §2 is a ball.

Note that the method used for the Wentzell eigenvalue problem also applies for the Laplace—Beltrami case and
provides an upper bound for AfB without any topological assumption on £2.

Theorem 1.3. With the same notations as in Theorem 1.1, it holds

d 2 —1/d d+1 2
1 [oo X2 dey 420" |2AB|
LB 082 d
082) := > > 1 12
SO =D im0 = Aer 2 Al [”d( B] 12
and
A[S2 A2
Moy <d o < AL (13)
Jag W12 7 w1215 [1 4 va (12551)%)

Equality holds in (12) and (13) if §2 is a ball.

It is expected in this type of extremal eigenvalue problem that balls are maximizers. We are not able to fully justify
the natural following conjecture:

Conjecture. The ball maximizes the first non-trivial Wentzell-Laplace eigenvalue among smooth open sets of given
volume and which are homeomorphic to the ball.

The topological restriction is motivated by the limit case § — 400 as we noticed before (see also Section 2.1). In
Section 2.2, we observe that the intermediate bound in (11) has both its numerator and denominator that are minimized
by the ball, under volume constraint, so there is a competition. In Section 2.3 we observe that in fact, the ball does
not minimize this bound in general (see Fig. 1). Therefore, we cannot deduce from this bound the maximality of balls
(though it might work for certain values of 8 and the volume constraint). About the upper bound (11), we show that
it is larger than A1 g(B) for every B > 0 (with equality for the ball) and hence again does not imply that balls are
maximizing A1 g. To check if balls are relevant candidates for maximizers in our case, we then turn our attention to a
shape sensitivity analysis of A1 g.

Therefore, we first wonder if the ball is a critical shape in any dimension. With respect to shape sensitivity, the
main difficulty is to handle multiple eigenvalues which leads to a nonsmooth dependency of 11 g with respect to 2.
However, for a fixed deformation field V € W3’°°(.Q, Rd), along the transport of £2 by 7; = I +tV, we prove the
existence of smooth branches of eigenvalues and eigenfunctions associated to the subspace generated by the group
of eigenvalues and provide a characterization of the derivative along the branches: A1 g is then the minimum value
among these d smooth branches.

Theorem 1.4. We distinguish the case of simple and multiple eigenvalue.

o If A=Ay g(82) is a simple eigenvalue of the Wentzell problem, then the application t — A(t)= A, g(§2;) (where
2 = (I +1tV)(82)) is differentiable and the derivative at t =0 is

2(0) = f Vo (IVeul? = 18,ul* — AHuo|* + B(H Iy — 2D*b)Vou.Viu) do,
082
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where u is the normalized eigenfunction associated to ), D?b is the Hessian of the signed distance function (see
(48)), H = Tr(D?b) is the mean curvature of 082, 1; is the identity matrix of size d, and V, =V - nyg is the
normal component of the deformation. Moreover, the shape derivative u’ at t = 0 of the eigenfunction satisfies

Au'=0 in$2,
—BAcu' + 81’ — du' = BAL (Vydyu) + Bdive (Vi (HIg — 2D?b) Veut) (14)
+div; (V,Veu) — Nu + AV, (0,u + Hu) onds2.
e Let A be a multiple eigenvalue of order m > 2. Let (uy)k=1,... m denote the eigenfunctions associated to A. Then
there exist m functions t — A g(t), k =1, ..., m, defined in a neighborhood of 0 such that
- Ak p(0) =2,
— for every t in a neighborhood of 0, A g(t) is an eigenvalue of $2; = (I +tV)(£2),
— the functions t — A g(t), k =1, ..., m, admit derivatives and their values at 0 are the eigenvalues of the

m x m matrix M= Mg (V,)) of entries (M;;) defined by

M;; = / Vi (Vrui.Vruj — OputjOquj — AHuju; +,3(H1d — 2D2b)Vrui.Vruj)dG.
952

Notice that in the notations above and contrary to (3), the functions Ax(¢) are no longer ordered. As a byproduct
of this result, notice that we can write the corresponding shape derivatives for the Steklov and Laplace—Beltrami
eigenvalue problem (see Appendix E). Another consequence of this result, regarding our conjecture, is that we are
able to check that balls are critical shapes for A1 g by computing the trace of the previously defined matrix M = Mp
(recall that A1 g(B) is an eigenvalue of multiplicity d, the dimension of the ambient space). But first, we make a short
remark about the notion of volume preserving deformation:

Remark 1.5. In the next results and in many places in the paper, we will consider volume preserving smooth defor-
mations of domains, that is to say £2; = 7;(§2) where t — T; satisfies:

To=1d,

for every ¢ near 0, T; is a W3 *°-diffeomorphism from £2 onto its image £2; = T;(£2),
the application ¢ — T; is real-analytic near t =0,

for every ¢ near O, |$2;| = |£2].

More generally, it can be sufficient to assume that the volume is preserved at the first or the second order, depending
on whether we are interested in first or second order conditions. For example, if one considers 7y = [ + ¢V the vector
field V is said to be volume preserving at first order if it satisfies fa o Vndo = 0; indeed for 2, = (I +tV)(£2), we
have %Mmﬂ = [,0 Vado.

When dealing with second order considerations as in Theorem 1.7, we need that the volume is preserved at the
second order, so 7; is volume preserving at second order if

d2

7215

= /(W + Vdy Vo + HV?) do =0,
52

t=0

where V = %(T, — 1), Vyisthe valueatt =0 of V - nj0,, and W denotes the derivative of V - nyg, with respect to ¢
att =0.

Proposition 1.6. Any ball B is a critical shape for Ay g with volume constraint, in the sense that for every volume
preserving deformations 'V,

d
Tr(Mp(Va)) = Y Aj 4(0) =0,
k=1

where (t = A, g(t))k=1..a are defined in Theorem 1.4.
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In particular, 0 € dA1 g(B; Vy) 1= [infj—1..4 A;’ﬁ(O), SUP;—1...4 kg,ﬁ(O)] the directional subdifferential associated to
the first nontrivial eigenvalue.

Moreover, this subdifferential reduces to {0} if V, is orthogonal to spherical harmonics of order two: in other
words, in that case, the directional derivative exists in the usual sense and vanishes.

Two situations can now occur: either the subdifferential in direction V,, is not reduced to {0} and then one can
deduce from the previous statement that B locally maximizes A1 g along 7 — B, (see for example (c) and (d) in
Fig. 5), or the subdifferential in direction V,, is {0} and then this first order shape calculus does not allow us to
conclude that the ball is a local maximizer of A1 g. Hence, for the directions V,, in H defined as the Hilbert space
generated by spherical harmonics of order greater or equal to three, we now consider the second order analysis
to wonder if the ball satisfies the second order necessary condition of optimality, and obtain the following result in
dimension two and three.

Theorem 1.7. Let B be a ball of radius R in R? or R3 (i.e.d =2 ord = 3) and t — B; = T;(B) a second order volume
preserving deformation. Ay g(B) is an eigenvalue of multiplicity d, the dimension, and we denote by t > Ay g(t),
k=1,...,d, the branches obtained in Theorem 1.4.

Then the functions t — Ay g(t), k=1,...,d, admit a second derivative and their values at 0 are the eigenvalues
of the d x d matrix E = Ep(V,) defined in Section 4. Moreover, there exists a nonnegative number u (= u(B))
independent of the radius R such that

d
TH(En(V) = 3/ 5(0) < —uK (R) / (Ve Va2 + 1Val2) do = —K ROVl
k=1 B
holds for all V,, € H, with K (R) = ==&

R2+dwd,1 .
As a consequence of Proposition 1.6 and Theorem 1.7, we have the result:
Corollary 1.8. If B is a ball in R? or R3, and t — T, € W3»*(B, R%) a smooth (second order) volume preserving
deformation, then
Apg(B) > )Ll,/g(Tt(B)), for t small enough.
Plan of the paper. The paper is organized as follows: in Section 2, we prove Theorem 1.1 by adapting the strategy of
Brock and present some numerical tests to illustrate the sharpness of the upper bound. The first order shape analysis

is presented in Section 3, while the second order shape analysis is presented in Section 4. The background material
for shape calculus and the proofs of technical intermediary results are postponed to the annexes.

2. Upper bound for 11 g
2.1. Preliminary remarks and results

Let us start by a few remarks on the proofs in the two limit cases 8 — +oo (that is the Laplace—Beltrami eigenvalue
problem), and 8 = O (that is the Steklov eigenvalue problem).

On the Laplace-Beltrami case: The case d = 2 is trivial: it suffices to argue on each connected component of 9§2. We
introduce y : [0, L] a parametrization by the arclength of a connected component I" of 352, then for any u € H! (32),
the Rayleigh quotient can be written as

Jr1Veul _ fylwoy))?
fF u’ fOL(MOV)z

Hence, the k{‘B(F) is nothing but the infimum of |ju/||

2
L2(0,L)

lulli20,) =1, that is to say 4% /L. 1t is a decreasing function of the length of the connected component of the

among periodic functions # with 0 mean value and
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boundary. Then, if £2 is simply connected, combined with the isoperimetric inequality, the previous computations
lead to ka(BQ) < ka(BB) where B is a disk of the same area as £2.

Moreover, if d§2 has more than one connected component, then A{‘B = 0 since the multiplicity of 0 as eigenvalue
is at least the number of connected component. To check that claim, it suffices to check that the functions taking
the value 1 on one of the connected component and 0 elsewhere are independent eigenfunctions associated to the
eigenvalue 0. We conclude that in dimension 2, AILB(BQ) < A]LB(aB), where B is a disk of the same area as £2.

The case d = 3 is more complex. There is a classical result of J. Hersch [19]: if 2 € R? is homeomorphic to the
ball, then

AEB(@52) <AFB@B), forall 2 such that [32| = |3 B|. (15)

We first extend Hersch statement to domains of the same volume by a classical homogeneity argument.

Lemma 2.1. If 2 C R? is homeomorphic to the ball, then
AP02)<AP0B) if|2]=BI.

Proof. One easily checks that £2 — A{‘B(B.Q) is homogeneous of degree —2, so §2 — k{‘B(.Q)|8S2|2/(d_1) is homo-
geneous of degree 0. Then we get from Hersch’s inequality (15), that

LB 74 <4 LB 7=
AT7(082)1082|7T < A7 (dB)[dB|aT, for all £2 such that [02| = |0 B]. (16)
Thanks to the invariance by translation of AILB and the perimeter, and using the 0-homogeneity of the previous product,
we get that the previous inequality is in fact valid for any ball B and any domain 2. We combine with the isoperimetric

inequality
d d
|9B|7-T  |982|a-T
=<
|B| 1£2]

to conclude. O

On the Steklov case: In the general case 8 > 0, we will adapt the original Brock’s proof; the main tool is an isoperi-
metric inequality for the moment of inertia of the boundary 92 with respect to the origin. The general form of the
weighted isoperimetric inequality due to F. Betta, F. Brock, A. Mercaldo and M.R. Posteraro [2] is:

Lemma 2.2. Let 2 C R? be an open set and let f be a continuous, nonnegative and nondecreasing function defined
on [0, co]. Moreover, we suppose that

t— (f(té) - f(O))tl_é is convex fort >0
Then

/ f(Ixl)do = f(R)|0BR|. (17)
082

where By is the ball centered at the origin such that |Br| = |2|.
Let us remark that the function ¢ — 7 satisfies the assumptions of the lemma as soon as p > 1 and in particular for
p = 2. In that case and in order to prove a refinement of Brock’s inequality, L. Brasco, G. De Philippis and B. Ruffini

established a qualitative refinement of this inequality (Theorem B of [5]):

Lemma 2.3. There exists an explicit dimensional constant yq such that for every bounded, open Lipschitz set §2 in R?,

s 5 |2ABR\?
|x|“do = R7|0BR|| 1 + y4 W , (18)
052

where By is the ball centered at the origin such that |Br| = |§2| and y, is the constant defined in (10).
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On the Wentzell case: An important remark for the sequel is the particular case when 2 is a ball Bg of radius R.
The eigenspace corresponding to A1, g is d-dimensional: it consists of the restrictions on the sphere Sjl(l of the linear
functions in R? spanned by the coordinate functions. It follows, from the theory of spherical harmonic functions that

d—-1B+R

R2 ’
The Laplace—Beltrami operator on d Bg and the Steklov operator also are diagonal on the basis of spherical harmonics,
hence

ALg(BR) =22 g(BRr)=...=XAq gBr) = (19)

h1.6(Br) =41 (Br) + B21" (9BR),
and more generally the eigenvalue associated to spherical harmonics of order / is

Il+d—-2B+R
R? )

But, this situation is specific to the ball: indeed, in general we only have the inequality

Ay (BR) = (20)

A.5(2) > 25 (2) + BrEB ().

Moreover, we can easily prove that for any smooth £2, limg_, » %M, p($2) = AILB (£2): indeed, we have a first trivial
inequality %AL p(£2) > AIL B(£2) for any B > 0, and using the variational formulation (5), we obtain Yv € H(£2) with
the additional condition [, v =0,

ﬂfﬂlvv|2+f89|v v|2 f39|vrv|2

faszv B farz v?

hm 1%1 B82) < 1
< p
which leads to the result.

For example if d = 3, combining Brock’s inequality and Lemma 2.1, we obtain that the right-hand side in the
previous inequality is maximized by the ball, among domains of given volume and homeomorphic to the ball. Unfor-
tunately, this is not enough to obtain that balls are maximizing the Wentzell eigenvalue.

So in order to obtain an estimate of A g, we look at the strategies used for the extremal problems, which are the
Steklov (8 = 0) and the Laplace—Beltrami (8 — +00) cases. The strategies of Brock and Hersch for those cases are
actually close but distinct: they use the coordinate functions as test functions in the Rayleigh quotient characterization
of eigenvalues. In the case of the Laplace—Beltrami operator though, J. Hersch had an additional step: he first transports
the surface 92 on the sphere by a conformal mapping, and uses the conformal invariance of the Dirichlet energy for
2-dimensional surfaces. In the following, we choose to follow the ideas of Brock. This allows to obtain an estimate
with no assumption on the topology or the dimension of the domain. Indeed, the above mentioned phenomenon of
decoupling between the different connected components does not appear in the Steklov case, due to the volume term,
and in fact Brock’s result is valid for every (smooth enough) domain. The same volume term appears in the Wentzell
case and the approach of Brock is then the natural one. However, one expects from these topological considerations
that it will not provide an optimal result.

2.2. Proof of Theorem 1.1

Our strategy to prove Theorem 1.1 is to use the following characterization for the inverse trace of eigenvalues
(stated by J. Hersch in [18] and proved by G. Hile and Z. Xu in [20])

d d
1 B(v;,

> o= max Z (i, vi) 20
}\i,ﬂ Aﬂ(vz»vl

i=1

where the functions (v;);—1
Ag-orthogonal.
Before proving Theorem 1.1, we now present some preliminary results.

4 are nonzero functions that are B-orthogonal to the constants and pairwise

.....
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Lemma 2.4. The matrix P[S2] defined by (8) is symmetric, positive definite. Its spectral radius A[S2] satisfies
d—1
(d—l)laf?le[-Q]leaﬂl- (22)

In particular, among sets of given volume, the spectral radius is minimal for the ball.

Proof. The matrix P (£2) is symmetric by definition. For y = (y1, - - -, yq) € R? with y # 0, we check that
d
Z yi@Sij —minj)y;=y'y— (yTn)2 >0
i, j=1
by Cauchy—Schwarz inequality. By integration over 952, P[$2] is positive semidefinite. Assume, by contradiction,
that P is not definite: then there is a vector y # 0 such that
d

0= Z yi< /(5,-; —ninj)>yj =4/(yTy— (yT”)z)'

i,j=1

The equality case of Cauchy—Schwarz inequality y’y — (y/n)? = 0 is therefore satisfied everywhere on 952, this
holds if and only if y and n are colinear. Hence, n is constant on 952 which contradicts the boundedness of 2.
The matrix P[£2] has positive eigenvalues. Their sum is the trace Tr(P[£2]), hence

d
Tr(P[2]) > A[R2] > Ir(PLeh with Tr(P[2]) =) /(1—nl?)=(d—1)|asz|.
i=lyo
Therefore
d—-1)32| > A[2] > (dd_ Dise)= (d; D o).

The last inequality is obtained by the usual isoperimetric inequality and assuming B is a ball such that [£2| = | B|. Let
us compute A[B]. From the invariance by rotation of the ball, there exists a real number a such that P[B] =al;. In
others words, we have

fnin]:o, i#j and /(1—n,.2)=f(1—n2), i=1,....d.
B B B

The real number a is determined using the trace of the matrix: we obtain that d A[B] = (d — 1)|0B|, and so A(£2) >
A(B). O

Remark 2.5. The inequalities in (22) are sharp. The lower bound is reached when £2 is a ball and the upper bound is
the limit of the collapsing stadium S, (union of a rectangle and two half-disks) of unit area and width ¢ when & tends
to 0: one checks by an explicit elementary calculus that:

2 2
10S:) ==+ 22 while A[S.] = ~.
e 2 &

This example is also useful to prove (6): indeed, we easily prove

2 a
f|x| -
£

A

where « is a universal constant, so using (11), we obtain (6) for d =2 and m = 1. The other cases can be handled
similarly.

Proof of Theorem 1.1. We first translate and rotate coordinates x;,i = 1,2, ...d, such that

Vi#je[[l,d]]z, /x,-zO and /xi-xj =0.

82 082
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We now construct a family which is pairwise Ag-orthogonal, and B-orthogonal to R. We consider a collection of a
family of functions wy, wo, ..., wg in the vector space spanned by the coordinate functions: there is a matrix C such
that

d
wiZZC,‘ij, iE[[l,d]].
j=1
Brock used directly the coordinate functions to deal with Ag. Here, we need an Ag-orthogonal family, hence the
matrix C will be chosen to that end. Since the coordinate functions are L? orthogonal to the constants, each w; is
L2-orthogonal to the constants (that is to say the eigenfunctions associated to the smallest eigenvalue Ao = 0).

Let us compute Ag(w;, w;). First, we get Vw; = (¢j1, 2, - ., cia)| then
d
/Vwi -Vw; :/ Z CikCjm = |‘Q|(CCT)1'J"
o Q k,m=1

To compute the second term of the sum occurring in Ag, we recall that
Vfw,’ . Vfwj = Vw,' . Vu)j — (Vw,- -n)(ij . nj).

We therefore get

d d d
k=1 k=1 k=1

982 082
d d
:f[chkc./k — Z C,'ijlnknl:|.
a0 Lk=1 k=1

We introduce P[£2] the matrix defined in (8) to get

/ Vew; - Vew;j = ) ik pimcjm = (CPIR1CT) .
02 kom
Gathering all the terms, it comes that

Ap(wi,wj) =|2|(ccT), +p(CPIRICT),

y (23)

Since P[$2] is a real symmetric matrix, we can choose an orthogonal matrix C such that C P[§2]C T is diagonal.
Hence, CCT = I and finally w; and w; are Ag-orthogonal if i # j while

< 82|+ BA[S2] (24)

ii —

Ap(wi, wy) =122| + B(CP[R]CT)

and we can apply Hile and Xu’s inequality (see [20]).
Since by assumption

/x,-xj =0

082

when i # j, it comes that

d
2 2
B(wi,wi)=zcik/xk
k=19
and then

S(2) = Xd: 1 - Z?:l ZZ:I cizk fasz xi% _ Z(If=l(fa(2 x/%)Z?zl Cizk _ fasz x|
Aip(82) — [2]| + BA[S2] [$2| + BA[S2] 12| + BA[£2)

i=1
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which is the first part of the result. Then using first the isoperimetric weighted inequality (17) for p = 2, we get

/|x|zzR2|aBR|,
082

and so

Jog X R*19Bgl R?

> = 1Bl , pAIRT”
[2] + BA[S2] ~ 2] + BA[S2] 08z] + ToBx

If 2 = Bg, we know that d|Br| = R|d Bg| and then
R? R? d

Bkl |, PABxl R | gd—1 ;
|3BRR\ + IBBRIT d +B d A1,p(BR)

and prove the equality case. By the quantitative version of the isoperimetric inequality for the moment of inertia of
052 with respect to the origin (18), we also get the precise version:

o lx]? R2|9B QABr\?
Jrg __ R’|3Bg] 1+yd<| R|>'

2] +BA[S2] — [2] + BA[S2] | BR]

Using the definition of R and |§2| = |Bg|, we obtain R?|3Bg| = da)gl/ d|Q|ddil and the desired inequality. O

Proof of Corollary 1.2. Since A1 g(£2) < A; g(£2) fori =1,...,d, we get
d__ 121+pAIR] _ d |21+ BAL2]

A1p(82) < < < .
5(£2) Jag IxP? 1+)/d('|9|§;ﬁm)2 doy 12|

Proof of Theorem 1.3. It is a direct adaptation of the previous proof to the Laplace-Beltrami case: it suffices to
replace the bilinear form Ag(u,v) by A(u,v) = f_Q Vu.Vv. Then Eq. (24) becomes A(w;, w;) = (CP[R]CT);; <
A[$£2] and the conclusion follows. O

2.3. On the sharpness of the upper bounds

Testing the sharpness. Let us denote by M1 (£2) the upper bound (11). In order to emphasize the improvement to
the inequality of Brasco, De Philippis and Ruffini, we also plot the rougher upper bound

12| + BA[S2]  182]+ BA[S2]
w2 R2|9 Bg|

M3(82) =

It is clear from the bound of A[£2] stated in (22) that
d 12| + BA[£2]

2ABr\2  R2
(1 +va 5 ) R*[0BR|

ALg(BR) = M(BR) < M2(£2) =

We also plot the shaper bound
|£2] + BA[S2]
Jag 112

This inequality means that proving that balls are maximizers would be strictly better than (11). Let us illustrate this
fact with some numerical illustrations. We compute A1 g(§2) and M;(£2) (i =1, 2) for several parametrized families
of plane domains when 8 = 1. In Fig. 1(a), we present the case of ellipses of area 7 (their semiaxis are e’ and e/, 7 is
in abscissa) while in Fig. 1(b) and 1(c) we present the case of the star-shaped domains £2; defined in polar coordinate
by r(0) = a(t)(2 + cos(kf)) where a(¢) is a constant chosen such that |§2;| = .

From these graphs, it seems that the upper bounds M, (§2) lack of precision when §2 is far from a ball and that the
maximality of balls is possible and would improve the upper bound given in Corollary 1.2.

M(2)=d
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Fig. 1. Comparison of 11,4(£2) and M;(£2). Here A1 g(B1) = 2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. 11,4(82) when £2 is an ellipse of volume |$2|. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Some numerical tests. It is natural to wonder if the ball has the largest A1 g among all the domains of the same
volume that are homeomorphic to the ball. This question cannot be solved with estimate (11), as Fig. 1(a) shows.
Therefore, to conclude this section, we would like to present some numerical experiments in favor of such property.

Let us start by computing the value of A1 g(§2) when £2 is an ellipse of fixed volume (see Fig. 2). We present here
the results of our numerical computations for 8 € {0.1, 1, 5, 10} when |§2| = 7, then when [£2| = 4x. In both figures,
the abscissa stands for the eccentricity of the ellipse. It seems that the ball maximizes A; g among ellipses of fixed
area.
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Fig. 3. (A1,8(821), A2, (£21), 23,5(£2¢)) when £2; is a parametrized ellipsoid of volume 47 /3. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Let us show some computations in dimension three. We consider families of ellipsoids with semi-axes defined by
(exp(a;it))i=1,2,3 where o] + a2 + a3 = 0 to insure the volume constraint. The ball B corresponds to t = 0. We remind
that in this case, A1,g(B) has multiplicity 3 at the sphere, we then have plotted the three corresponding eigenvalues
in two cases: first for the family such that @ = (2, —0.8, —1.2) in Fig. 3(a), then for ¢ = (2, —1, —1) in Fig. 3(b). In
the last case, the defined ellipsoids are of revolution and we observe that in this particular case A3 g ~ A4 g. One can
wonder if it is really the case.

Let E(a, b) be an ellipsoid of volume 47 /3 where a is the larger semiaxis and b the middle one. We now show
in Fig. 4 the surfaces z = A; g(E(a, b)) where i = 1,2, 3. The pictures have been obtained by interpolation after the
computations of the eigenvalues on 2700 ellipsoids. Again one can attest that the ball seems to maximize A1, g among
ellipsoids.

3. First order shape calculus

In order to go one step further, we adopt a shape optimization point of view and prove in this section that the ball is
a critical point. The main difficulty here is that the eigenvalue A g(B) has multiplicity the dimension of the ambient
space. We need some technical material on shape derivative and tangential calculus on manifold to justify the results
stated in this section; to simplify the reading of this work, we postpone these reminders in Appendix A.

Let us emphasize that from this point we do not make the assumption 8 > 0, and therefore all the results of this
section and the following are valid for any 8 € R. Thus from now on we drop the notation 8 in A1 g since there is no
possible confusion anymore.

3.1. Notations and preliminary result for shape deformation
We adopt the formalism of Hadamard’s shape calculus and consider the map ¢t +— T; = I +tV where V €

W32°(£2, R%) and ¢ is small enough. We denote
2, =T,(2)={x+1V(x),x e}

Remark 3.1. More generally the results and computations from this section are valid if # > T; satisfies:

o Ty=1d,
e for every t near 0, T, is a W3 *-diffeomorphism from £2 onto its image £2, = T,(£2),
o the application 7 — T; is real-analytic near t = 0.

We need to introduce the surface jacobian w; defined as

o, (x) = det(DT,(0)) [ (DT;()T) 'n(x)

)
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Fig. 4. (\1,5(£2), A2,8(£2), A3, (§2)) when §2 = E(a, b) is an ellipsoid of volume 47 /3. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

and the functions
A@=DLW) (DT, A @) =det(DT,(0)A(x),  C(x) = 0 () A, ().

We have to study the transport of the considered eigenvalue problem on the deformed domain £2;. To that end, we first
rewrite the deformed equation on the fixed domain £2 and its boundary d£2: we have to describe how are transported
the Laplace—Beltrami and the Dirichlet-to-Neumann operators.

Transport of the Dirichlet-to-Neumann map. Let us consider the Dirichlet-to-Neumann operator defined on its
natural space D; : H'20382,) > H12082). 1t maps a function ¢; in H'2(3£2,) onto the normal derivative of its
harmonic expansion in £2;, that is to say D;(¢;) = 9, u;, where u' solves the boundary values problem:

(25)

—Aut =0 in Qta
u[:¢t on 8.{2[

To compute the quantity D; such that D;(¢; o T;) = [D;(¢;)] o Ty, we transport the boundary value problem (25)
back on the domain £2. In others words, D; makes the following diagram commutative:
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H!2(302,) — = H2(582)
[
H12002,) — = H12(30)

To be more precise, we have the following result proved in [12].
Lemma 3.2. Given € H'/2(382), we denote by v' the solution of the boundary value problem

{ — diV(A,Vv’) =0 in$2, 26)

vi=1 on 382
and then define D,y € H=Y2(382) as:

Dy feH?02) /A[(x)vU’(x)-VE(f)(x)dx,
2

where E is a continuous extension operator from H 172(32) to HY(R2). Then the relation
(Drp) o Tt =Dylp o T1] (27)
holds for all functions ¢ € H'2(82)).

Setting u’ = u, o T;, we check from the variational formulation, that the function u’ is the unique solution of the
transported boundary value problem:

{—div(A,vuf) =0 in£2, 28)
u'=¢;oT; on 4£2.

Hence, setting y = T (x), x € §2 we get formally

DOT,)H 'n(x)  A@)n(x).Vu' (x)
DT ) n@)| (DT ()~ n(x)

Dy (1) (y) = Vaur (3).m: (y) = (DT (x) ) ™ Vs (x).

Here again, we can give a sense to the co-normal derivative A;n.Vu' thanks to the boundary value problem (28):
this quantity is defined in a weak sense as the previous Dirichlet-to-Neumann operator D;.

Transport of the Laplace-Beltrami operator. We recall now the expression of the transported Laplace—Beltrami
operator, relying on the relation

Yo € H2(8.Q,), (Ar@)o Ty = ﬁdiv, (C,(x)Vf(go o T,)(x)) on d52. 29)
t

Let us denote by L, the operator defined as

L1000 T () = ——div { C/(0Vip o Ty1r) — SOVIe o T2 () A,<x)n(x>} (30)
¢ (x) Ar(x)n(x).n(x)
for ¢ € H5/2(.{2t). In [12], we show the following lemma:
Lemma 3.3. The identity
[Acplo Ty =Li[poTy] (€1))

holds for all functions ¢ belonging to H>'*(82,).
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3.2. Regularity of the eigenfunctions and eigenvalues with respect to the parameter

The section is a slight variation of a theorem due to Ortega and Zuazua on the existence and regularity of eigenval-
ues and associated eigenfunctions in the case of Stokes system [24]. The difficulty comes from the possible multiple
eigenvalues. The main result is, for a fixed deformation field V € W3:20(§2, RY), the existence of smooth branches
of eigenvalue. In other words, the eigenvalues are not regular when sorted in the increasing order, but they can be
locally relabeled around the multiple point in order to remain smooth. The restriction is that this labeling depends on
the deformation field V hence one cannot hope to prove Fréchet-differentiability.

Theorem 3.4. Let 2 be an open smooth bounded domain of R?. Assume that X is an eigenvalue of multiplicity m of
the Wentzell-Laplace operator. We suppose that T, = I +tV for some V. € W3 (2, R)¢ and denote 2; = T;(£2).

Then there exist m real-valued continuous functions t — A;(t), i =1,2,...,m, and m functions t — uf € H%(.Q)
such that the following properties hold

L. 40 =xi=1,...,m.

2. The functions t — A;(t) and t — uﬁ, i=1,2,...,m, are analytic in a neighborhood of t = 0.

3. The functions u;; defined by u;j; o T, = u: are normalized eigenfunctions associated to A;i(t) on the moving
domain $2;. If one considers K compact subset such that K C §2; for all t small enough, then t — u;, 1k I8 also
an analytic function of t in a neighborhood of t = 0.

4. Let I C R be an interval such that I contains only the eigenvalue A of the Wentzell problem of multiplicity m.
Then there exists a neighborhood of t = 0 such that A;(t), i = 1,...,m, are the only eigenvalues of §2; which
belongs to I.

Proof. Let A be an eigenvalue of multiplicity m and let u1, ..., u,, be the orthonormal eigenfunctions associated to A.
Let (A(2), u;) be an eigenpair satisfying
—Aut = O in Qtv

P,
(Fo) { —BAzus + 0p,uy = A(t)u; on d82;.

Setting u’ = u; o T;, Lemmas 3.2 (transport of the Dirichlet-to-Neumann map) and 3.3 (transport of the Laplace—
Beltrami operator) show that the system (P;) above is equivalent to the following equation set on the boundary

(—BL; +DHu' =r(t)w;u’ ondsf. (32)
Consider the operator S(¢) defined on H3/2(392) by
v St v=—BLv+Dyv (33)

From their expressions computed for example in [ 17, Section 5-2] and the regularity assumption on 7y, all the operators
C;, A; and wy are analytic in a neighborhood of t = 0. Since det(DT;) > 0 for ¢ small enough, we deduce that all the
expressions involved in C;, £, and D; are analytic in a neighborhood of 1 = 0. This enables us to conclude that S(¢)
is also analytic in a neighborhood of zero.

To show that the eigenvalues and the corresponding eigenfunctions are analytic in a neighborhood of zero, we
apply the Lyapunov—Schmidt reduction in order to treat a problem on a finite dimensional space, namely the kernel of
S(0) — Al. To that end, we rewrite the problem (P;) on the fixed domain 952 as

S(t)(u') —Awu' =0.
From the decomposition
(S0) =) (u") = [(S©) = S®)) + [(A(1) = M)y + Ay — D]]u’,
u' is solution of the equation
(S0) — A)(u") = W(t, A(t) — M)u’, (34

where we have set R(t) = S(0) — S(#) +A(w; —1) and W (¢, @) = R(t) +aw;I. From the Lyapunov—Schmidt Theorem
(see [24, Lemma 3-2, p. 999]), we obtain that S(0) — A has a right inverse operator denoted by K. Hence the equation
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above implies that u’ = KW (¢, A(t) — Mu' + ¢, where ¢, € Ker(S(0) — 1), i.e. ¥, = > ;o ck(£)x where (¢) is a
basis of Ker(S(0) — A). Notice that I — KW (¢, A(#) — A) is invertible on Ker(S(0) — A7), the inverse of his operator
restricted to this kernel will be denoted by (I — KW (¢, A(¢) — 1)1 so that

W= (1= KW(t, ) —2)) " v

From (34), W(t, A(t) — A)u’ belongs to Im(S(0) — 1) = Ker(S(0) — 1) since S(0) is a Fredholm selfadjoint operator,
and then

m

D (W (1 1(0) = 1) (I = KW (t, 2() — 2) i) =0, i=1,2,....m, (35)

k=1

where (-, -) denotes the scalar product of L2(3$2). This shows that a vector of coefficients C = (¢ i)j=1,..m #01is a
solution if and only if the determinant of the m x m matrix M (¢, A(t) — X) with entries

M, @)= (W, a) (I — KW, @) ¢;, )
satisfies
det (M (7, 1(1) — 1)) =0.

Hence A () is an eigenvalue of our problem if and only if det (M (¢, L(t) — A)) = 0. Note that t — M (¢, A(?)) is analytic
around r = 0.

For small values of ¢ the operator (I — KW(t, «))~ ! is well defined since I — KW (0,0) =1 and t — (I —
KW, o) ! is analytic around ¢ = 0. On the other hand, if det M (¢, ®) = O then (35) has a nontrivial solution
c1(t), ..., cu(t) and this means that A(f) = A + « is an eigenvalue of (FP;).

We focus now on det M (¢, ) for @ € R. From the fact that W (0, «) = o/, it comes that for sufficiently small values
of «, the operator I — KW (0, @) is invertible on Ker(S(0) — A7) and from the Von Neumann expansion we write

(W(©,a)(1 — KW(0, a))*‘qs,», o) =a[5,~,- + Zak(qusi, ¢>j)];
k=1
hence
det (MO, c)) =™ + > pia" ' =a™ (1 + Zﬂiai>.
i=l1 i=1

Since det (M (0, «)) # O is the restriction on ¢t = 0 of det(M (¢, «)), we deduce from the Weierstrass preparation
theorem that there is neighborhood of (0, 0) such that det (M (¢, «)) is uniquely representable as

det(M(t, @) = Py (t,)h(t, o)

where

m
Pu(t,e)=a" + ) ap(nya™

k=1
and where
h(t,a) #0.
Furthermore, the coefficients ay(¢), k = 1,...,m, are real and analytic in a neighborhood of # = 0. Then

det(M(t,a)) =0 if and only if P, (t,a) =0. If o (¢), k =1, ..., m, are the real roots of the polynomial, we take
A1(t) = x4 a1(2) if o1 (¢) is not identically equal to zero.

We now have to find the (m — 1) other branches 1;(¢) and the corresponding eigenfunction u; , fori =2, ..., m.
We use the idea of the deflation method by considering the operator

$2(1) = §(1) = A P1(1)
where P; is the orthogonal projection on the subspace spanned by u; ;. At =0, we obtain

S0u; =SO)u; —Adyju;
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in other terms S>(0)u; = Auj, j =2,...,m, while §2(0)u; = 0. This shows that A is an eigenvalue of multiplicity
m — 1 of $>(0) with eigenvalues us, ..., u;,. One can show that these functions are the only linearly independent
eigenfunctions associated to A. Now we can apply the same recipe used before to the operator S; instead of S. We
then get a branch A,(#) such that # — A, (¢) is analytic in a neighborhood of ¢ = 0. Iterating the process, we get
at the end the m branches A;(¢), i =1, ..., m, such that each branch is analytic in a neighborhood of + = 0 and m

corresponding eigenfunctions forming an orthonormal set of functions in H 2 (082y).
The proof of the last item follows the same lines as the proof of Ortega and Zuazua for the Stokes system, see
[24]. O

Theorem 3.5. With the notations of Theorem 3.4, if t — (A(t), u;) is one of the smooth eigenpair path (A;(t), u; ;)
of §2; for the Wentzell problem, then the shape derivative u’ = (3;u;) ;=0 of the eigenfunction satisfies
Au' =0 in$2,
—BAu + dyu’ — A’ = BAL (Vydyu) — Bdive (V,(2D*b — HI4)Veu)
+dive (VuVeu) — A (O)u + AV, (3u + Hu) ondS2. (36)
Proof. The fact that ' is harmonic inside the domain is trivial. To derive the boundary condition satisfied by u’, we

use a test function ¢, defined on 92, with 9,¢; = 0 as used in the proof of Lemmas 3.2 and 3.3 in [12]. We get the
following weak formulation valid for all # small enough:

[ B9t 0.50ido+ [ it 00do~ 10y [ utgrdo; =0,
082, 082, 982,
We take the derivative with respect to ¢ and get at = 0:

d d J
ﬁE</Vfu(t,x).Vr¢rdot> ;=O+E</ Bn,u(t,x)qﬁzdat) ,:O:E<Mt)/u(t’x)¢’(x)da’>

082 952, 082

t=0

From [14] and [7], we get

d
E(/ Vfu(t,X).quﬁszz) :/(—Am/—A,(V,,anu)—i—divf ((2D*b — H14)V:u))¢ do.
t=0
982, 3982

After some lengthy but straightforward computations we also obtain

%(/Bmuqﬁtd(f,) _

:/3nu/¢d0—/VTVn.Vfu¢do+/Vn(a,,u+Hu)¢da
=0

2 2 392 352
and
d
E(/ k(t)uﬂj),da,) =k/(0)/u¢d0 +)\/u’¢d0 +k/3,,u¢da +AfHu¢dU.
082 =0 02 bYel bYel %2

To end the proof of this second point, it suffices to gather the relations. O
3.3. Shape derivative of simple eigenvalues of the Wentzell-Laplace problem

Let A be a simple eigenvalue of the Wentzell-Laplace equation (1) and let u be the corresponding normalized
eigenfunction. We give in this subsection the explicit formula for the shape derivative of the eigenvalue of the
Wentzell-Laplace operator associated to (1).

On £2; = (I +1tV)(£2) with ¢t small, there is a unique eigenvalue A(¢) near A which is an analytic function with
respect of the parameter ¢. The associated eigenfunction u;(x) = u(¢, x) is solution of the problem (1). The shape
derivative denoted by u’ is the partial derivative d,u(¢, x) evaluated at t = 0 and solves (36). Let us deduce the analytic
expression of A’(0):
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Theorem 3.6. If (A, u) is an eigenpair (with u normalized) for the Wentzell problem with the additional assumption
that A is simple then the application t — A(t) is analytic and its derivative at t =0 is
2 (0) = / Vo (IVeul* = 19,ul* — AH|u|* + B(H I — 2D*b) Vou.Vou) do.
a2

Proof. We start with the result of Theorem 3.5. Let us multiply the two sides of (36) the boundary condition satisfied
by u’ by the eigenfunction u and integrate over the boundary 9£2:

0=/v’(—ﬂA,u+8nu—ku)da+/.Vnanu(—ﬁAru)dU
a0 a0

+/ﬁV,,(HId—2Dzb)V,u.v,udo+/Vn|v,u|2—x/(0)/ |u|2—x/V,,(ua,,u+H|u|2)da.
952 052 952 952

Using the boundary condition satisfied by the eigenfunction: —fA u + d,u — Au = 0, it follows that

oz/Vnanu(,\u—anu)da+/ﬂv,,(H1d—2Dzb)vru.v,uda
982 052
+/V,,v,|u|2—x’(0)f|u|2—x/V,,(ua,,u+H|u|2)da
052 982 982

and the normalization condition fa o u’>do = 1 implies

A’(O):—/V,,|8nu|2da+/ﬁVn(HId—2D2b)Vfu.Vfud0+/Vn|Vfu|2—A/VnH|u|2da. o
052 982 a2 982

3.4. Shape derivative of multiple eigenvalues of the Wentzell-Laplace problem

3.4.1. The general result

We suppose that A is an eigenvalue of multiplicity m. For smooth deformation ¢ — £2;, there will be m eigenvalues
close to A (counting their multiplicities) for small values of . We know that such a multiple eigenvalue is no longer
differentiable in the classical sense. We are then led to compute the directional derivative of ¢ — X;(¢) at t = 0 where
Ai(t), j=1,...,m, are given by Theorem 3.4. This is the second part of Theorem 1.4 that we recall here:

Theorem 3.7. Let ). be a multiple eigenvalue of order m > 2. Then each t — A;(t) fori € [1,d] given by Theorem 3.4
has a derivative near 0, and the values of ()\;(O))ie[[lﬁd]] are the eigenvalues of the matrix M(V,) = (M ji)1<j k<m
defined by

M= / Vi (Vruj.Vfuk — Ot jOpug — AHu jug + ,B(Hld — 2D2b)Vru./.Vruk) do. 37
FY;

Proof. Let t — (u(z,x), A(t) = A(£2;)) be a smooth path of eigenpair of the Laplace—Wentzell problem, so that it
satisfies

Au(t,x)=0 in £2;
{ —BAu(t,x)~+ opu(t,x) =A(t)u(t,x) onas2,.

We have proved that u’ = 8,u(0, x) is harmonic in £2 and satisfies the boundary condition (36) on 3£2. We use the
decomposition of u = u(0, x) as

m
u = E cjuj
j=1
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for some ¢ = (c1,¢2, ..., cm)T % 0. Multiplying the two sides of Eq. (36) by uy, we get after some integration by
parts the eigenvalue equation

A (0)c=Mc

where M = (M j1)1<i, j<m is defined by (37). From this, we deduce that the set of derivatives ()\; (0)),-6[[1,(1]] is exactly
the set of eigenvalues of the matrix M, which achieves the proof of Theorem 3.7. O

3.4.2. The case of balls

We consider now the case where the domain is a ball of radius R. The problem is invariant under translation. In
order to remove the invariance, we fix the center of mass of the boundary of the domain, as in Section 2.

The coordinate functions x; are eigenfunctions of the Wentzell-Laplace operator, so we get

A:ﬂ(d—l)JrR
R2

Xi Xi
IxillL20Br)  wgRITH!

Corollary 3.8. Let 2 = Br be a ball of radius R, Ay its first non-trivial eigenvalue, which is of multiplicity d.

, and u;(x)=

The shape derivatives of the maps t +— Ai(t), i = 1,...,d, given by Theorem 3.4 are the eigenvalues of the matrix
Mpy (Vn) = (Mjk) jk=1,....a defined by
My = ik (1+,3d_3>/v —Cc R)/Vx-xkda (38)
5T g RAF R " ’ n
3Bk 3Bg

@+)(1+p4%%)
wde+3

where C(d, R) =

Proof. We use (37). On one hand we check the geometric quantities:
d—1

1 1
HZT’ Dzb(X)=Eld— F(xixj)i,j

so since Viuj, Vouy are in the tangent space of 0 Bg, we obtain that

d—3
(HI; — 2D*b(x))Veuj . Veug = TVruj.Vfuk

and on the other hand:

Xi 1 XX
_— Voeu; Veup =———\6ix — —
Ry wyRA+1 ol Vel a)dRH‘d( Jk R? )

Therefore, the matrix M = M p, has the following entries

1 XjXk XXk d—1 d-—3 XjXk
Mjk:_a)de‘H Vil Sk — 2 ) R —A R ijk-i—ﬂ—R 8jk——R2 do
d

Bg

—1)%+d-3
8k d—3 d+ 1+ pla=ltd=3
:a)de_H(l-i—ﬂ R )/Vn—|: 0y RIS /an]'xkd(f.

dBg 3BR

This leads to the result since (d — 1) +d —3=(d 4+ 1)(d —2). O

3,114]' =

From this formula, we deduce a first interesting result:
Proposition 3.9. If V is a volume preserving deformation, then the following statements are equivalent:

(i) Vy is orthogonal (in L?(d Bg)) to homogeneous harmonic polynomials of degree 2,
(ii) Mp,(V,) =0.
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Proof. We denote by H; the space of homogeneous harmonic polynomials of degree 2 (therefore we use here a
slightly different notation than in Section 4). Let us suppose that M (V,,) = 0 this means that |, By VnXjXk do =0, for
all j,k=1,...,d, and in particular V,, is orthogonal to H,.

If we assume now that V,, is orthogonal to H>, using that

Hy=span{xjxi, j#ke(l,....d}, x{ —x3,j=2,....d}

and moreover that f 9Bg V, =0, we obtain

d d
d / Vox? = Z / Vn()cl2 _sz) + / Zx% =0,
dBp jIZaBR dBp j=1
and therefore

/anjzz / Vn(xj.—x%)=0,

dBR dBR
which concludes the proof. O

In the case where Mg, (V,) # 0, we compute the trace of the matrix Mp,(V,) to obtain information on its eigen-
values.

Proposition 3.10. When $2 is a ball of radius R, then
Tr(Mp, (V) =0 (39)

for all volume preserving deformations.

Proof. It comes that

d d
Tr(Mp, (Vs)) = —C(d, R) / > x3Vydo=—CWd.R)Y x; / V,do =0
9B J=I J=1" 9B
since we are concerned with deformations preserving the volume. O

As a consequence of Proposition 3.9 and Proposition 3.10, there is the following alternative: either the only eigen-
value of M (V,) is 0, or M (V,,) has at least one nonnegative and one nonpositive eigenvalue. Each 7 — A;(¢) given by
Theorem 3.4 has a directional derivative at = 0 denoted by k; (0). We then define, as usual [8], dA| the subgradient
of A1 by 0A; = [infj=1...4 A; (0), sup;_1...4 )L;(O)]. With this notation, 0 € 911 and we say the ball is a critical shape.

3.5. Numerical illustrations

In order to illustrate Proposition 3.10, we consider the two dimensional case and consider perturbations of the disk
given in polar coordinates by

pi(0) =R +1f(0)

where f has zero mean value.

In Fig. 5, the computations are made in the case R = 1 and 8 = 10, the deformation parameter ¢ appears in the
abscissa.

In both collection of figures, we can see the derivatives of the second and third eigenvalues vanish at the ball in
every case except when f(6) = cos(20), where the regular lines cross, leading to a really nondifferentiable second
eigenvalue. This is coherent with Proposition 3.9. Let us explicit the case V,, = R? cos 26, where we are led to compute
the eigenvalues of the following symmetric matrix

u 3 (f()z” cos 26 cos2 0 do 0 )
E 0 f027r cos 20 sin% 6 do

whose eigenvalues are o) = — % and ap = %.



430 M. Dambrine et al. / Ann. I. H. Poincaré — AN 33 (2016) 409-450

11.004 11.05 11.05
11.003 " 1
10.95
11.002 1095
11.001 10.9
10.85 10.9
11
10.8 10.85
10.999 1075
10.998 — 107 E— 10.8 Y
10.997 A 10.65 A 10.75 A,
10.996 10.7
Z041  -006 -0.02 0 002 006 0.1 -08 -0.6 -0.4 02 0 0.2 0.4 06 08 ~041  -0.06 -0.02 0 0.02 006 0.1
(a) f(0) = cos(0) (b) f(0) = sin(0) (c) f(0) = cos(20)
12 11.05 11.2
77»1 11 1.1
11
Ay 10.95 "
10 109 109
1085 10.8
9 108 10.7
107-5 106
8 .
10.5
, — M 10.7 E— 104 M
A, 10.65 Ay 103 A
6
~0.8 06 -04 -02 0 02 04 06 08 -01 -006 -0.02 0 002 006 0. -01  -006 -0.02 0 0.02 006 0.1
(d) f(0) = sin(20) (e) f(0) = cos(30) (f) f(0) = cos(40)

Fig. 5. A1(£2) and X, (£2) in the direction of f(6) — |Bg| =, B = 10. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

4. Testing if the ball is a local maximum for A;: second order arguments

We know that any ball is a critical point for volume preserving deformations. Therefore, if the subgradient
or1(B; V) # {0}, then the ball is a local maximizer. It remains to deal with the case where all the eigenvalues of
Mp (V) are 0; this case corresponds to V;, orthogonal to the harmonics of order two. Then, we aim at proving that the
second derivative of A along at least one of the smooth branches is nonpositive.

The necessary order two conditions of optimality are: the second derivative of the Lagrangian should be nonpositive
on the subspace orthogonal to the space generated by the gradient of the volume constraint. We compute:

Vol (0) = / Vi (40)
dBRr

Hence Vol (0) = 0 if and only if V,, € (Ho)* where H; denotes the linear space of spherical harmonics of order k. Due
to the previous remarks, we hence consider deformation field in the hilbertian space H spanned by all the spherical
harmonics of order / € I =N\ {0, 2}. The normal component of such a field is orthogonal to spherical harmonics of
order 0 and 2.

The goal of this section is to present the different steps for the computations. We will characterize the matrix E
whose eigenvalues are the second order derivatives of the smooth branches of eigenvalues. It turns out that this com-
putation is hard even in the case of a ball. Nevertheless, the computation of Tr(E) is much simpler than the individual
computations of the entries. In order to prove that the ball is a local maximum of A1, it suffices to prove that its trace
is nonpositive: therefore at least one smooth branch of eigenvalues has a nonpositive second order derivative.

In this section, we consider deformations preserving the volume at second order and not only at first order. Hence,
we cannot consider deformation 7T; of type I 4+ ¢V with V independent of ¢ and introduce deformations S; that are the
flow at time ¢ of a vector field V (see also Remark 1.5). Notice that S; = I +tV 4+ o(¢) so that T; — S; = o(t) and first
order shape derivatives are unchanged. In particular, one has
@ Vol (S, ($2 i 0 L
——Vol(5,(£2)) = / <§(Vn<r>) + Vnm%(‘/nm) + an(t)) o

dr?
AR
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and the volume preservation at second order means that

d2 9 0 2
ﬁvm(st(sz)) = / 37 Va) + Ve (D) Vaw) + HV,
982

do =0. (41)
=0

t=0 t=

4.1. Construction of the matrix E of the second derivatives

Let (u(t, x), A(t) = A(§2;)) be an eigenpair of the Laplace—Wentzell problem, that is to say it solves

Au(t,x)=0 in £2;
{ —BAru(t,x)+ 0,u(t,x) =r@)u(t,x) onds

We use the decomposition of u = u(0, x) in the basis of eigenfunctions:

d
MZZCJ'UJ'
Jj=1

for some ¢y, c3, ..., cqg not all zero. We have shown that the vector ¢ = (¢, c2, ..., cd)T is solution of
A (0)c=MV,)c

where the matrix M (V,) = (M i) 1<i, j<a is defined by (37).

To compute the second derivative at ¢+ = 0, one has to compute the first shape derivative u’(x) = u(0, x).
Fredholm’s alternative insures the existence of a unique harmonic function i; orthogonal to the eigenfunctions
ui,ua,...,uq and satisfying on 92 the boundary condition

—BAziij + it — Aitj = B[ Ar[Vadyu ;] + dive [V (HIg — 2Db) - Vouj]]

+dive [V Veuj 1+ 2 uj 4+ AV, (0quj + Huj). (42)
It follows that
d d
u/zzgjuj-i-ZCjﬁj (43)
j=1 j=1
for some c;,¢; when j =1,...,d. We point out that the (c;) are the same coefficients as the decomposition of # in

the’lljl?zlztr(gfé:;y is straightforward: we have to consider the equation satisfied by u’ on the boundary 92 and take its
shape derivative again. A first look at the second derivative shows that we will encounter three operators:
e the first contains only u” and its expression is the following
EQ =_gAu" +8,u” — ru”
e concerning the term in u” and A’ = 0 we have
EW = 228A. (Vydu') — 2dive (VoI + BAYVou') = 2[N + AV, (91’ + Hu')|
where A = HI — 2D?b is the deviatoric part of the curvature tensor.

e The remaining term E® contains only u; we give a more explicit expression below.

Green—Riemann identity tells us that (E©, u;) = (u”, —BA;u; + d,u; — iu;) =0,i =1,...,d. This means that the
term E© will have no influence on the determination of the second derivative of the eigenvalue. We will focus only
on EM and E@.

Construction of E®: The computations are very technical. We need first to use a test function ¢ which is the
restriction of a test function @ defined on a tubular neighborhood of the boundary such that its normal derivative
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on 052 is zero. This kind of extension is well discussed in the book [13] of Delfour and Zolésio. Taking the shape
derivative of the boundary condition (36) (in the multiple case) we need to compute

d
(E / VuViu. Vg dcr,)
a0

t

B <% / A(I)VnVTu.qubdol)
352

_i< f [Mu+r(u" + Vidau + V,,Hu)](pdot)

= (A(])u’, o)+ <A(2)u, ),
=0

= (B(l)u’, ®)+ (B(z)u, ?).
t=0

— (C(O)u//, ¢) + <C(1)u’, ¢) + <C(2)u, ¢>’

dt =0

082,

— (D(l)u/, ¢) + <D(2)u, ¢)
t=0

d
B <E / Vi (VuVe anu)-vr¢d0t>

t
The remaining E® containing only u is then given by
E@ =AYy 4+ B®u+CcPu+DPu.

For an operator L involved in ED i =1,2,3, we denote by (Lij)i, j=1,...a the matrix of L in the basis of the
eigenvalues. After calculations (see also Remark D.1 in Appendix D), we get the following linear equation

(M'I = E)e+2(=MVy) +A'1)¢=0
(corresponding to the second derivation) together with
(=M (V) + X' T)c=0

(corresponding to the first derivation) where the matrix E = (E;;) is split into £ = E M + E@ where the terms
involving u’ are gathered in £V and the terms involving u are gathered in E®.

4.2. Computation of the trace

Since the direct computations of the eigenvalues are difficult, we restrict ourselves to the cases d =2 or d = 3, and
we will focus on the trace of E and prove that Tr(E) is nonpositive. We start with the trace of E®):

Lemma 4.1. Assume d € {2, 3}. With K(R) = RH+W], we have

Tr(E®) = —(dB + R)RK (R) / |V Vu|’do — K(R) / Vido (44)
0BRr dBr

for all deformations preserving volume and such that V,, is orthogonal to spherical harmonics of order two.

Proof. The computation of E® is done in the Appendix C, and to obtain the result, we sum all the traces given by
Lemmas C.1,C.2,C3and C4. O

Concerning Tr(E M)y, we start with the following lemma which is straightforward (see also Remark D.1):

Lemma 4.2. We have that

d
Tr(ED) = 2/ Vi Y (=it joquj — Haitjuj + (I + B(HIg — 2D*b))Veii ;. Vouj) do 45)
g J=I

holds for all deformations preserving volumes such that V,, is orthogonal to spherical harmonics of order two.

From this result we deduce the following, which is proved in Appendix D:
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Proposition 4.3. Assume d = 3 and set o = % We denote by Y[, m = —1, ..., m, any spherical harmonic of order
lel. If
!
v, = ZRI( > Y)
lel m=—I[
then

1
Tr(EW) = —K(R)(Z[Az,a +Bia IR Y |v1,m|2)

lel m=—I[

where

I 142 1 +aB—1) I+11—1 | +al+1)
= T a2 T g Bl = g 42— D
a2 agy @ Bes e Gt DA

l,a

Since TrE = Tr(EW) + Tr(E®), we will then deduce the following result:

Proposition 4.4. Assume d € {2, 3}. Then there exists a nonnegative constant . such that

Tr(E) < —K (R)pt / Ve Val? + Vo |* do
dBR

holds for all preserving volume deformations such that V,, is orthogonal to H.

Proof. We distinguish the cases d =2 and d = 3.

The case d = 2. Let us compute the trace of the matrix E. Gathering all the results of Lemma 4.1 with the computa-
tions of Appendix D concerning the trace of the different matrices involved in the matrix E, we obtain the following

formula: when

Rl
V, = Z ﬁ(vy) cosld + v sinlg), lel,

lel
we have
TH(E) = =K (R) 3 Gl D+ DR () + (0")), 6)
lel
where
2 5 2 o2 ~ )

T 20+ (=21 +al)
Let us remark that G (e, 1) = 0. This could have been guessed since the Wentzell eigenvalues are translation invari-
ance: we recall that, denoting by Bar the center of mass of the boundary, we have

Bar’(O):/an
dBRr

so that deformations orthogonal to spherical harmonics of order 1 preserve at first order the center of mass. A close
look at the fraction G shows that it has no pole for ¢ > 0 and / > 3, that it is nonnegative for / > 2 and that G(/, o) — 1
when [ — +00; then there is a nonnegative constant p such that for all/ > 3, u < G(l, ). This gives

Tr(E)S—K(R)M/ IV Val? + |Vl do.

dBp

The case d = 3. The strategy is the same, and we use again Lemma 4.1 and the detailed computations from Sec-
tion D.2: we getfor/ € I:
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!
i DyP
= YR Y 0,
lel p=—1
i

Tr(E) = —K(R) Y Fla. DA+ D)+ )R S (D)2,

lel p=—I
where F(w, ) is the fraction
_ (L= 1) 35 o Pn(Da™
A0+ D+ DIA +al+ 1)1+ DI —2)(1 +al +3))’

and where the polynomials P, are defined as

F(a, 1)

Py(X)=2X*+5x3+16X%> -3,

Pi(X)=4X> +18X* +40X> + 68X> — 28X — 56,

Py (X)=2X0+21X° +42X* +35X3 + 16X — 112,

P3(X) =8X% +18X° +24X* — 68X> — 144X? — 112X — 64.

Let us remark that F(«, 1) = 0 for the same reason as in dimension two. By Descartes’s rule of signs, the polynomi-
als P, have at most one positive root. Since P, (0) <0 and P, (2) > 0 form =0, ...3, P, has exactly one positive
root which is in [0, 2]. Since / > 2, there exists a nonnegative constant u such that for all k > 3, u < F(k, o) and

Tr(E)s—K(Rmf VeVul? 4 ValPdo. O
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Appendix A. Some classical results on tangential differential calculus

We recall some facts about tangential operators acting on functions defined on 9§2. The formulas involve the ex-
tensions of functions and the differential calculus becomes easier since we will use the classical euclidean differential
calculus in a neighborhood of 9£2. The canonical extension will be provided thanks to the oriented distance and
the orthogonal projection on the tangent plane. For more details, the interested reader will consult the book [13] of
M. Delfour and J.P. Zolésio from which we borrowed the necessary material.

A.l. Notations and definitions. Preliminary results

We recall some essential notations and definitions that are needed for the computations of shape derivatives. Given
a smooth function f : 982 — R, we define its tangential gradient V; as

V.f=Vf—Vfnn 47)

where f is any extension of f in a tubular neighborhood of 9£2. An extension is easily obtained when 92 is smooth.
The tangential gradient does not depend on the extension.
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It is also useful to define the tangential gradient as the normal projection of V f to the tangent hyperplane of 9£2;
in other words

V.f=Vf—n®nVf, onds.

We also need the definition of the tangential divergence: for a tensor v, we define the surface divergence as
div; u = Tr(Viu)

For regular functions we define the surface Laplacian or Laplace—Beltrami operator as
A f =div; (V¢ f).

We recall the definition of the oriented distance byg:

do(x)  forx e RI\Q2

b (x) =
a2 (¥) {—dg(x) forx € 2,

(48)

where the notation do stands for the distance function for a subset £2 C R¥:
do(x) = inf [x —y|
yes2

We shall sometimes write b instead of by ; its gradient is an extension of the normal vector field n in a neighborhood
of 082.

Let Db be the Weingarten operator with entries (V. );n j where n is the j-th component of n. The normal vector
is known to be in the kernel of D?b, while the other eigenfunctions are tangential with the corresponding eigenvalues
given by the principal curvatures of 9£2.

Letk;, i =1,...,d — 1, be the nonzero eigenvalues of D?%b. We define the mean curvature H as

d-1
H= Z,q =Tr(D*b) = Ab, on Q. (49)
i=1
An important result about the normal derivative of these quantities is:

Proposition A.1. Suppose that the boundary 32 is of class C3. Then the normal derivative of the mean curvature H
is

d—1

O H ==Y k. (50)

Other known identities: we denote by x the identity function. We have
—A;x=Hn
div,n= Hn
Tangential integral formula: Given two functions f (scalar) and v smooth enough, we have
/ fdivy v+ / V:fv= f Hfvn
a0 302 882
Shape derivative of the main curvature H and of the normal n in the direction of a velocity V:

Proposition A.2. Let a surface 382 be of class C%. The shape derivatives of the normal n and of the mean curvature H
in the direction of the velocity vector V are

n=-V.V,
H =—-A.V, (G29)]

where V,, = (V, n) denotes the normal component of the vector deformation V.
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A.2. A commutation lemma

Here f and g are two smooth functions defined on U/ a neighborhood of 92; the notation b stands for the oriented
distance. Recall that its gradient is an extension of the normal field n on 92.

Proposition A.3. We have
(Ve f.Vrg) +2(D*bV; f).Vg = Ve (3nf).Veg + Vr (3ng). Ve f (52)

Proof. A straightforward computation gives
m(VfVg) = (D*fVg)m+ (D*¢Vf)n

and

V(dnf).Vg=V(Vfn).Vg
= (D*fn).Vg + (D*bV f).Vg
hence

V(30 f).Vg+V(0ng).Vf =2(D*»Vf).Vg+ (D*fn).Vg + (D*¢gn).V f
=2(D*bV f).Vg+ (VS .Vg)

We use now the decomposition of V into its normal and tangential components and the well known identity
D?bn.n = 0. We get

3%fdg 9%gaf
on2 dn  9n? dn
9*fog  0*gof

=2(D?bV, f).V O (Vy £.V —— 45 53
( rf) 18+ (Vi f. Tg)+8n28n+8n28n (53)

Ve(Onf).Vig + Ve (0ng). Ve f +

hence

Ve (@nf)-Veg + Ve(0ng) Ve f = 2(D*bV:e f).Veg + (Ve f.Veg) D
Appendix B. Spherical harmonics

In order to explicit the shape hessian under consideration, a useful tool is the surface spherical harmonics defined as
the restriction to the surface of the unit sphere of harmonic polynomials in the special case d = 3. We recall here facts
from [25, pages 139—141]. Spherical harmonics are defined as restrictions of homogeneous harmonic polynomials to
the unit sphere. The spherical harmonics are said to be of order £ when the harmonic homogeneous polynomial is of
degree k. We denote by H; the space of spherical harmonics of degree k. We show that is also the eigenspace of the
Laplace—Beltrami operator on the unit sphere associated with the eigenvalue k(k + 1). Its dimension is

diy =2k + 1.

Let (Y,f),kflfk be an orthonormal basis of H; with respect to the L2(3B;) scalar product. The (Hy)ren Spans a
vector space dense in L2(3B;) and the family (Y,f)keN,_kgSk is a Hilbert basis of L2(dB;). To be more precise, if
f € L>(3By), then there exists a unique representation

o
f=2 Y
k=0
where the series converge to f in the L? norm and

k
Yi=) biYl et
I=—k
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If x = (x1,x2, x3) € R3, it is natural to use on a sphere the spherical coordinates (r, 6, ¢) where r is the radius and 6
and ¢ are the Euler angles. The spherical harmonic Y, ,i is defined with the Euler angles (6, ¢) as

k+ 4 (k=1
27 (k+1D)!

Yl = (-1 [ ]eM]P’i(cosQ), —k<l<k,
where the polynomial IP’;( is the associated Legendre polynomial. The formula giving the explicit form of these poly-
nomials can be found in the book of Nédélec [23, page 24].

When k # k', we have also the orthogonality property

/ Y. Ypdo =0

0B
when Y; € H; and Yy € Hy. A homogeneity argument shows that any function ¢ in L?(d Bg) can be decomposed
as the Fourier series:

p(x) = ZR"<
k=0

Then, by construction, the function u defined by

oo dy
u(x)=y |x|k<2ak,l(¢)Yé<|i—|)>, for |x| < R,
k=0 =1

being harmonic in By and satisfying u = ¢ on 9 Bg.

We recall now some results about the integration of three spherical harmonics, they will enable us to estimate
Tr(E) in dimension three. When we integrate three spherical harmonics, we use coefficients called Clebsch—Gordon
coefficients or Wigner-3; coefficients. The Wigner-3j coefficients are mostly used; they are related to Clebsch—
Gordon coefficients via some known formula that the interested reader will find in the book of Cohen Tannoudji et al.
[9, Tome 2, Annex B].

The first general result concerns the product of two spherical harmonics; it is given by the following proposition.

k X
Zak,z(w)nﬁ(—> . for x| = R.
x|

I=—k

Proposition B.1. Given 1, > 0 two natural integers and —l] <m| <1y, —l, <my <, we have

11+
leymzz(_l)m1+m2 12:2 Ch+D2L+1D)2L+1) i L L I ) L Ym1+m2
hok L=l —1| 4 0 0 0)\m my —my—mp) L ’
=|li—h

where (16 Ié é) and (’,11‘1 ’532 m lL_mQ) are the Wigner-3j symbols.

The second result concerns the integration of three spherical harmonics.

Proposition B.2. We have:

21 1)(21 2l 1
/Y[T]YZ?ZYIZL3: ( 1+ )( 2+ )( 3+ )(ll lz l3>(11 lz 13)'

47 0 0 O mp my; m3

3B,

In particular it holds
Proposition B.3. Let [ be a natural integer and m an integer. We have:

1. If =l <m <l then

— 1
0
[ =g

dB;
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and

V 87 QI+ 1DHQ2I-1)
dB
2. If =l —1<m<Il+1then

— [3 |a Dl —m+1
fylmyloyl,il: _\/(+m+ I —m+1)

4n Q2+ 1)(2[ +3)
dB
3. If -1 —2<m < then
/mely—m+1= 3 Jd+m+DU+m+2)
PO TN g T @t D@ +3)
dB]

Appendix C. Intermediate results for the second shape derivative matrix

We need to construct the matrix associated to the second shape derivative. To that end, we have to compute the
explicit formula for all the shape derivatives of order one involved in the formula giving A" (see Theorem 3.6). In this
appendix, we focus on the term E® introduced in Section 4.1. Since these computations are very technical, we only
give the main line and the used arguments, omitting a couple of details. In the following lines, we denote by H (¢) the
mean curvature associated to the boundary of £2; and .A(¢) the deviatoric part defined on 92, as

A(t)=H@®)I —2D*b(t)

(see [13] for the terminology).

In order to deal with the weak formulation on the boundary 952;, we will make use of a test function ¢ which is
the restriction of a test function @ defined on a tubular neighborhood of the boundary such that its normal derivative
is zero. This kind of extension is well discussed in the book [13] of Delfour and Zolésio.

In this differentiation, nineteen terms arise and we introduce some notations to study them separately. For all
function test ¢ € H'(8£2), we will need in the sequel the following quantities:

A(M, u/’ ¢) = (% / anru.vf¢d01)

t

B(u,u/’(b):ﬂ(%/A(t)V,,V,u.V,d)d(r,)
082;

’

t=0

’

=0
C(u, u' u”, qb) = —%( / [A/u —I—A(M’ + V, 0,u + VnHu)]qbdat) ,
92, t=0
, d
D(u,u',9)=p T f Ve (V). Ve doy
t 1=0

1

We will now study independently each term A, B, C and D, when §2 = B C R? or R3, and ¢ — £2; is volume
preserving.

Study of D(u, u’, ¢). First, we denote

w d(V )
= — -n
dt s

t=0

From the derivative formula of boundary integrals, we know that we have to compute three main terms: the first
corresponds to the shape derivative, the second concerns the normal derivative of the integrand and the third is related
to the term related to the mean curvature H. The first term is
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d
ﬂ( f E[Vf(vnanu).vm]daz)

=0
982,
:,3< / Ve (Va0 =V, Veu Ve V,). Ve do + / v,(v,;.anu).v,qsda)
dBR dBR
+,3/3n(VnanM)VrVn-Vr¢dCf
dBR
__,3/ (Vi 0t ¢do+,3/ (Vyy.0qu).Vepdo
9BR 9BR
+/3/8,1(Vn8nu)V,Vn.Vf¢d6+/3/AT(VnV,u.V,Vn)qﬁda.
9BR 9BR

The third term is

8 / HV,V:(Vy8,u).Vipdo = — / dive (HV,V; (V,0,u))¢ do.
dBr dBr
We focus now on the second term. We have

B / ViOn[ Ve (Vi 0u). Ve do

dBR

:,3/vnv,[a,,(v,,anu)].vrwo—zﬁ / Vo (D*bV [V duul). Ve do

dBpr 0BR
:,3( / vnv,[an(vna,,u)].v,qbda—z/ Vn(D2bVT[Vn8,,u]).V,¢dJ>
dBRr dBR

=-p / dive [Va Ve [8,udy Vil — 2V, D*bV, [V, dul]¢ do.

3Bg

We expand D(u, ¢) into a sum (DWDu’, ¢) + (DPu, ¢). For DP, we will set D? = Z,f:l DK where

(DD, ¢) = ,6/ [Va Bnu]qust——ﬂ/ [Viduu'|pdo

dBr dBr
(D(z’l)u,d)):ﬁ[ [ ~adwauipdo — [ dive [V,,v,9cloyull do
dBR dBg
- [ av. [anwvnanu)]cpda},
dBRr
(D®Pu, ¢)=—p / divy [8,u8, Va Ve Valp do + B / A [V d,uV: Val¢ do,
0Bgr dBgr

(D*Vu, ¢) =28 / div; [VuD?b - V[V, d,ul]¢ do.
dBR

We denote by D) and D?X, k = 1,2, 3, the matrices whose elements are defined by

D(l) <D(1)u u,) and D(Zk) (D(zk)u u,) i,j=1,2,...,d.



440 M. Dambrine et al. / Ann. I. H. Poincaré — AN 33 (2016) 409-450

We give a result concerning the traces of the matrices.

Lemma C.1. We have

Te(D?D) =Te(D??) =0 and Tr(D(2’3))=—w / V2d

9BR

d

with the normalization constant K (R) = B

Proof. We have

d d
Tr(D(z’l))z,B|: / —A,(Wzanui>uida— / div, (v,,ananv,(anu,-))uido
dBr

i=1 9Bx i=1

d
> " dive (HV, Ve (Vidui) u; do:|

9By =1
—ﬂ/V(d—l)Z|au| —+,3fV8VZV(8u) V.u; do
dBg dBR

+,3/HVZZV(8M) Vuldo+,8/HZE)nu Vo VeV - Veui.do

3B i=1 9Br i=1

Combining the two facts (coming from algebraic properties of spherical harmonics, see Appendix B),

d 2 d
ani dd
@-ny! 1‘;' =va(anu,»)~vrui=# (d - DK(R)

and
d
Vi Z Ontt; Ve Vi - Veu; =0,
aBy =1
we get

do
Tr(D*V) = (d - 1)Z|8u| / W—l—VnanVn—i-HVnz)?
dBR

(54)

(55)

(56)

Since we assumed the deformation to be volume preserving up to the second order (41), we have Tr(D1) = 0. The

same strategy applies for Tr(D>2)).
We focus now on Tr(D(2*3)), We first expand the second term in the definition of D™:

Tr(D@?) ,BZ / Vp0nti Ve [0 V. Vetj — 2V 8,u; D*bV, Vy, - Vo do
i= IBBR
d
-8 [ 2VZD?bV, (Baui) - Vou; do.
i=lypg
We follow the same argument thanks to the relations (55)—(56) and the fact
(d—1K(R)

d
ZDsz,(anui).Vfui - 2

i=1

on the sphere. Recall that on the sphere D?h = I;/R when restricted to the tangent space. [
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Study of B(u, u’, ¢). In the same manner, we begin to compute the derivative of the integrand:

d
7 (A(t)VnV,u.qub) =AV,Vou Ve + AV, Vou. Ve + AV, Vou' Vep — AV, 3,uV. V,, V.

t=0

Denote A = (a;;)1<i, j<a and A= (0naij)1<i, j<a- Thanks to Lemma A.3, we get
Vidy (VoA - Vo Vo) = VEA-Vou Vo 4 Viydy Ve A - Veu Ve + V2ZA3,[Vou. Ve ).

From the relation

d d
ﬂ—d /A(z)vnvag,u.vm,zpdo, = / —(A@) VaVag,u.Vag,¢)
t (=0 dt

= t=0
082, dBR

+ / Vo (AV, Veu. Vo) do + / HV2AV,u.V.$do,,
dBr dBR

we gather all the terms and obtain B(u, ¢) = (BVu’, ¢) + (BPu’, ¢); we then set

4
(B®u,¢) = "(B®)u, ¢),
i=1
where
(B0 g)= 5 / dive [V Ve Jodor
dBRr
dBR

(B®Pu, ¢)=—p / dive [3pu VA - VeV, 1o do,
dBgr

<B(23)u (;5 —B / leT V.A & u]¢d0

3Bg

(5O 0= [ VELA- Vo Vig1do.
dBRr

We get
(B®Yu, ¢) = ,3/ ([ Al VeV, da+,3/ VZA- V. 3,u.V, d)do—,B/ (D*bA) - Vou.V.pdo
0B 0Br

=-p / dive [V (A Veu + A - Ve[8,u]) —2D*bA - Veu) ¢ do

3BR

Let B®® k=1,2,3,4, denote the respective matrices associated to the operator with respect to the basis of eigen-
vectors. We have the following result:

Lemma C.2. We have

Tr(ZB@l)) /B(d—l)RK(R)/IV Vo|*do +2’3 (R )/vz

3Bg 9Bgr
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Proof. Using the same arguments as before, we prove easily that Tr(B>D) = Tr(B*?) =0.
For the other terms, above all we have to focus on the term

d
Tr(B(2’3)) =B / Vi Z(A/ . Vfu,').Vrui do.
9Bg =1

We have, thanks to the expression of shape derivation of the normal vector and of the mean curvature given in Propo-
sition A.2:

At)y=H() —2D’b(t) = A =—A;V,+2D(V.Vy);

then
d
Tr(B*Y) = p f Vi Y (A Veui) Ve do
aBg =1
_—,B/VA V, Z|V,u| do+2/3/ ZD(V Vo) Veu; | Veu; do
9BR dBR
d
=_,3/v,,A VnZ|Vtu,| do +28 f Va Y [Dr(Ve Vi) - Veu; | Veui do
9By i=1 9Bg =1
d
:—ﬂ/VA anW uil?>do +28 / v, Z[D2v -Veu;].Veu; do
3B aBr =l
d
=-B / VALV, ZW uil*do + 28 / VaTr(D2Va) Y [Veui P do
3B 3B i=l

Since Tr(D%V,,) = A;V,, and since Zflzl |Vzu; |2 = RK(R), on dBr we get

Tr(BY) ﬁ/VA VZ|Vu| da—,B(d—l)RK(R)/VA V, do.

3Bk i=l 3B
Concerning Tr(B®#), we have to distinguish the case d = 2 from the case d = 3. If d = 3 then A = 0; this implies
that Tr(B2¥) is reduced to
Tr(B®Y) = (d - 1)K(R)% / VZdo.

3Bg

Ifd =2, then A+ A is a null matrix and this leads to

d
Tr(B>Y) =28 / VZZD2b~Vu,~.VTu,-da
JdBR
=2K(R) % / VZdo.
BBR
Then for d =2, 3 we get

K(R
T( (24)) pY s ()
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Study of A(u, u’, p). We have

d
E( / V,,Vfu.V,(ﬁda,) = / WV.u.Vipdo + / V. Veu!' Vepdo
t=0

52, dBRr 0BR

+ / VaVe Vi [0puVe @ + 8,0 Viul
dBR
+ (Vadu[ Vi Ve Vel + HV2V u. V. $) do.
Since 9,¢ = 0, it comes that

1
/VnVrVn-[antird)-i-3n¢VrM]d0=—— / V. [OnttAcp + Ve [0,u]. Vo]

2
dBR dBR

1
=—7 / V2 (0u[Veut.Ve$] + 2DV, Vo g) do

1
-5 / V2,un ¢ do

IBg
Hence, gathering the equivalent terms we get

d
EanVru.V,¢d0, = / WVu' Vopdo + / V., Vo' Vepdo
%2 =0 B aBR
1
-5 / Ac[V2duuld — 8, (VIViu.Veg) do
JdBR

+ f (HI; — D*b)V}Vou.V: ¢ do.
9Br

We split these terms into A(u, ) = (ADW, ¢) + (A®Pu, ). As before, we set (APu, ) =3 3_ (ADu, ¢) where
(ADW, ¢) = / —div; [V, V.u']¢ do,
dBR

(A% Dy, ¢) = / —dive [(W + HV? + V8, V) Veu]g do,
9Bg

(A%Pu, ¢) = / dive [0,uV, Vi Vylo do,
dBRr

(ACDu, ¢) = / div, [Vi2(2D*bVou — Vo (3,u)) ] do.
JdBg
We have

Lemma C.3. We have

Tr(A®D)=0, Tr(A%?)=0 and Tr(A®Y)=-K(R) f V?2do.

3Bgr
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The proof of Lemma C.3 follows the lines of the proof of Lemma C.2.

Study of C(u,u’,u”, ¢). We decompose C(u,u’, u”, ¢) as follows:
Cu, )= <C(0)u”, ¢) + (C(l)u/, ¢)+ (C(2)u, ¢>

with (C@u, ¢) = 38 (C®Du, ¢) where

(C(O)u”,¢>= —A / uw'¢do
dBp
<C(1)M,,¢>= _ / ()Ju’—l—)an(an“'-F Hw))t]ﬁda
dBRr
<C(2’l)u, ¢> =" / up — 1 / Vaiduugpdo
JdBR dBr
(CCDu, ¢) = -2 / (W + Vada Vo + HV) (Ot + Hu)p do
dBR
(C(2’3)u, ¢> —_a / Vn(_vtv,,.V,u + H’u)¢do
JBR

=A/Vn(V,Vn.Vfu+A,Vnu)¢do

0BRr
d—1
<C(2’4)u, ¢> =—-X / Vn2 (8514 —u ZKIZ + Hanu>¢d0
9B i=1
=0.

Denoting by (C(z*j)), j=1,2,3,4, the matrices associated to the linear operators c@p, p=1,2,3,4, in the basis
of eigenvectors, we get:

Lemma C.4. We have

4
ZTr(C(z’j))=AR3K(R)/VnATVndoz—((d—1)ﬂ+R)RK(R) / IV, V, | do.
j=1 9Bg dBR

Proof. The proof is straightforward and obeys to the same arguments used before. The only nonnull trace concerns
the factorin —H' = A.V,. O

Appendix D. Computing z’
In this section, we focus on the computation of the trace of £ M introduced in Section 4.1. We recall that ¢ —
(A(t), u(t,-)) is solution of
Au=0 in T; (Bg),
t(DR 57)
—BAru~+ d,u —A(t)u=0 ondT;(BR).

To compute the second derivative, one must know u” = u’(0). For the reader convenience, we recall the problem (36)
solved by u’.
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Au'=0 in Bg,
—BAU + ' — 2 = BAL(Vydyu) — Bdive (V,(2D*b — HI4)Veu)
+divy (V,Veu) — MNu+ AV, (0,u + Hu) on dBg.

First, Fredholm’s alternative insures the existence of a unique harmonic function #; orthogonal to the eigenfunctions

ui,ua,...,uq and satisfying on d Bg the boundary condition
—BAzilj + dyitj — hitj = B[ Ac[Vidyu 1+ dive [Va(HIg — 2D%b) - Vo]
+dive [V Veujl+ 2 uj 4+ AV, (8puj + Huj). (58)
It follows that
d m
W= "G+ Y cji (59)
j=1 j=1
for some c¢;,c; when j =1,...,d. We point out that the (c;) are the same coefficients as the decomposition of # in

the basis (u;) of the eigenspace associated to A: u = ciuj + -+ cqugq.

Remark D.1. We recall that we only need the terms i ;: we inject this decomposition of u” in E M,

d
R+B(d-3
E<1>¢=_2ZEJ~[ / VOt j0pp do Lo REPEI) f VnVruj.V,¢doi|

X R
=1 T 3B
m
R d-3
—2Zc,~[ / Vnanﬁja,,q&da—i—ZL/VnVTﬁ/.VTq)da
7=l TyBg 3B
—2A/ VnHuj¢dU—2A/ V,,Hﬁjzi)do].
dBr dBR

By construction the first sum cancels and we simply get

E;}g = 2/ Voo (=it j dpur — HAdl juy + (I + B(HIy — 2D*b))Vyit ). Voug) do
982

D.1. Explicit resolution of (58) to compute u ;

Let us now compute i ; solution of (58). This step consists in technical computations. For the completeness of the
presentation, we present the case of dimension three, we will then simply state the results in dimension two. From
now on, we do not consider the case d > 4 for technical reasons.

D.1.1. Explicit representation of u j in the case d =2
We illustrate the computation of the elements i;, i = 1, 2 in the case d = 2. The eigenfunctions are the normalized
coordinate functions that is (u, us) given by

cosf sin @
ui(r,0)=r and wup(r,0)=r

vV R3 7R3

We have

Lemma D.2. Let V be a deformation of normal component V,, = Rk(vik) coskb + Uék) sink6), then

rk+1 1—

2J7R? K
N rk=1 1+k[,8(2—k)+R
2ymRI k=21 kB+R

k
iy (r, 0) = [0 cos (k 4+ 1)6 + v& sin (k + 1)6]

i|[v§k) cos (k — 1)@ + v5 sin (k — 1)6] (60)
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and
~ B rk+1 1—% ® ‘.
ur(r,0) = > —[—v2 cos (k + 1)0 + v} sin (k + 1)9]
2/7TRY K
k=1 14 k[BQR—=k) +R
r_F [’3( s }[ug")cos(k—1)9—v§<sin(k—1)9] ©1)
2/mR3 k=21 kB+R

In order to justify these formulae, one has to compute a, b, ¢, d the coefficients
ii; =a® cos (k + 18 +b® sin (k + 18 + ¢ cos (k — 1§ +d® cos (k — 1)8

such that it ; satisfies (58) with u; . We left the tedious computations to the reader.

— Xi
[lx; ”LZ(Z‘)BR)

D.1.2. Explicit representation of it j in the case d =3
We begin with the case where V,, = rlYlm and ¢, = rYlp where — <m <[ and —1 < p < 1. We introduce the
coefficients:

Cu,l,m,p):(_1)m+p\/3(2l—1)<2l+1) L1 =1 \(1 1 I-1
I=Lp 4 m p —-m—p)\0 0 )

C(z,l,m,w=(_1)m+,,\/3(21+1>(2l+3) N Y S
I+1.p 4 m p -m—p)J\0 O 0 )’

where we use the Wigner 3 symbol and Clebsch—Gordon coefficients. We set « = /R in order to obtain an adimen-
sional constant.

=)

and

Lemma D.3. Let | # 0 be a natural integer and let —] <m <. Let V,, = rlYlm and u, = rYlp where —1 < p < 1. The
unique solution of (58) that is orthogonal to Span(Yl_l, Y]0 Y 11) is given by

I+1
-~ _ (,1,m,p) |—1ym+p ¢ 1Lm,pyT m+p
Up=a;’y o T YL a0 R2 141

where
(,1,m,p) _ [+214+aB -1 (,1,m,p)

a _ (l,l,m,p)_l_1 1+O{(4+l) ,1,m,p)
I=hpe =y 21l +1) Fhe

Prbpe = a0 P

and a

Proof. We first decompose the right hand side of (58) into the basis of spherical harmonics. Taking into account that

L I, LY _
( 0 0 O ) =0
whenever (1, [, L) satisfies the triangular inequality and /1 + /> + L is odd, we get

BVudaup, = BRYYF = RI[CLI Py P L Py

I-1,p +1,p I+1
and then
BA(Vydyup) =R~ [1(1 — z)c}ﬁ};;”’” Y+ 1)+ 2)0}113’;}””13’1?’].

We also have

1
VeV Viu, = E[AT(Vnul,) = ValAcup —upAcVy]
-1

)

I, 1,m,p)y,m+p (,1,m,p)y,m+p
+2C, 20, Y L T+ 2C T

I+ DCE T 10+ DY

_ pl-1 (,1,m,p)y,m+p (0, 1,m,p)y,m+p
=R+ Dy —ic Y]

I1,m, 1,1,m,
(10 = DC PP — @4 )+ 2y
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Since div; V,,Veup =V V,, . Vouy, + Vi Aruy, it comes

dive V, Veup = R0 = D Py — @+ 2 Py

Hence, gathering the various terms on the right hand side of (58), we see that i, is solution of

—B Ay + iy — Al
=R +2)(1+aBG-D)CT PV + (A = D(1+a@+D)CLT Py

After identification, we obtain:

1+1
(.L,m,p) 1— 1Ym+p+ @ 1m,p" m—+p
ul’_ I-1,p,« al+l,p,o¢ R2 I+1 >

where the coefficients al( ii P) are defined in Lemma D.3. O

As a corollary, we deduce the general case for V,.

Corollary D.4. If
oo 1 1
=Zrl Z v YY" and u,= Z Olelp,
=2 m=-I p=—1
then

E 5 (@l =ty i
~ m,p m+p ,m,p m+p
=3 2 3 apaal i e iy o ]

=2 m=—I p=—1

D.2. The explicit expression of the trace of EV
We leave the tedious but easy computations of the case d = 2 to the reader; the obtained result is written in (46).

We focus here on the muph more teg:hnical case d=3.
We set u; = K(R)(ot’lel_l —i—a(l)Y{) +allY11) for 1 < j <3 where

al | =1/v2, al=0, ol =1/V2,
a2, =0, =1, =0,
o =—i/V2,  ag=0, af=i/V2.

On the sphere in dimension 3, the deviatoric part of the curvature cancels and the entries of E(1) are

3
Tr(EV) =Y E')  where E{) = / Vi (=il 8yt j — Hdi juj + Veilj.Vouj) do,
j=l a2
where each i ; corresponding to u; is computed thanks to Corollary D.4.
We first state a technical result to perform this summation. We postpone its proof to the end of the section.
LemmaD.5. Let V,, = R'Y", —1 <m <1 and
v =rY/

for =1 <p<1.Letm' and p’ be integers such that —l <m’ <l and —1 < p’ <1 and suppose

+1
¥ I—1ym'+p m+p’
Y=arY,_, +bR Y 7.

Then
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[ Vasuiany — 3Gy + VeV do
dBg

— —a(da + 20 R¥™! / Yy y P — bda +2) R / Yyt

3B, 3B,

As a consequence, we get for j =1,2,3

2
n 2t I+214+aB+1) yrr P
Ejj = KRR [(4 +21) —21+a(l+) Z Z °‘1’| vt ? e g
0B

11+oe(4+l) S ymy 2
+ o+ TGt - Z Z|%| V1, ] (/ Yy
0B

We are now in a position to prove Proposition 4.3 concerning the trace of E(V) in dimension d = 3.

Proof of Proposition 4.3. We have to sum the E x) obtained before the statement of Proposition 4.3. By the nor-

malization condition ) j |oe}, |> = 1, our main task is to compute the sum over p = —1, 0, 1 of the integrals involving
three spherical harmonics. The values of this type of integral is recalled in Propositions B.2 and B.3. Elementary
computations then give

m+p 4 ? 3 ! m+P my P ? 3 I+1
Z Z Yl Y ZEZI—H and Z Z l+1 Y Y ZEZI—_H O

m=—I p=—1 =—I p=—1

Proof of Lemma D.5. We compute:

—Va0u o = —R¥ " al — DY P b+ DY vy,

L HV, iy = =R (da + D) [a¥)" T by T vy

We have also

- 1 - - -
fvnvﬂ/f.vrw=5 / Va[Ac () — Y ALY — YA Y]

3BR dBg

1 ’ / / /
==+ DR [ @ by ey 4 R [ @ vy

0B B
1 I
L /[aza— DY 4 b+ DA+ 2y vy

0B

— -1 /[a(l— 1)Y1’11+p +b(l+2)Ylﬁ;“p]Ylef.

dB

We obtain the result by summing the three terms. O
Appendix E. Shape Derivatives of Steklov and Laplace-Beltrami eigenvalues problem
The following result is obtained by taking 8 = 0 in Theorem 1.4.

Theorem E.1 (Steklov eigenvalues). We distinguish the case of simple and multiple eigenvalue.



M. Dambrine et al. / Ann. I. H. Poincaré — AN 33 (2016) 409-450 449

o If A= A (82) is a simple eigenvalue of the Steklov problem and u an associated eigenfunction, then the application
t — A(t) = (I +1V)(82)) is differentiable and the derivative at t =0 is

)/(O):/V,,(|Vfu|2—|8nu|2—AH|u|2)da.
982

The shape derivative u’ of the eigenfunction satisfies
Au' =0 in$2,
Ouu’ — A’ =dive (V,Veu) — M (0 u + AV, (0u + Hu) onds2.
o Let ) be a multiple eigenvalue of order m > 2. Let (u ) for 1 < j < m denote the eigenfunctions associated to A.
Then there exist m functions t +— A (t), k =1, ..., m, defined in a neighborhood of 0 such that
— for every t in a neighborhood of 0, A (t) is a Steklov eigenvalue of $2; = (I +tV)(£2),

— the functions t — A(t), k = 1,...,m, admit derivatives which are the eigenvalues of the m X m matrix
M= Mg (V,) of entries (M;;) defined by

M = / Vi (—0pu j0puy — HAujug + Vou ;. Voug)do.
02

The following result is obtain by taking 8 — +o0 in Theorem 1.4.
Theorem E.2 (Laplace—Beltrami eigenvalues). We distinguish the case of simple and multiple eigenvalue.

o If A= i (82) is a simple eigenvalue of the Laplace—Beltrami problem and u an associated eigenfunction, then the
application t — M(t) = A ((I +tV)(82)) is differentiable and the derivative at t =0 is

A (0) = / Va((H1y — 2D*b)Vou.Veou) do.
82

The shape derivative v' of the eigenfunction satisfies

Au' =0 in £,
—Actt = Ay (Vydgu) — dive (V, (2D*b — Hlg)Veu) — V' (0)u  on 382

o Let ) be a multiple eigenvalue of order m > 2. Let (u;) for 1 < j < m denote the eigenfunctions associated to A.
Then there exists m functions t — A (t), k=1, ... ,m, defined in a neighborhood of 0 such that
- Ak (0) =2,
— for every t in a neighborhood of 0, A (t) is a Laplace—Beltrami eigenvalue of 2, = (I +tV)(52),
— the functions t — A(t), k = 1,...,m, admit derivatives which are the eigenvalues of the m X m matrix
M= Mg (V,) of entries (M;;) defined by

Mj = f Vo ((HIy — 2D*b)V,u;.Vou ;) do.
982
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