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Abstract

We consider the question of giving an upper bound for the first nontrivial eigenvalue of the Wentzell–Laplace operator of a 
domain Ω , involving only geometrical information. We provide such an upper bound, by generalizing Brock’s inequality concern-
ing Steklov eigenvalues, and we conjecture that balls maximize the Wentzell eigenvalue, in a suitable class of domains, which 
would improve our bound. To support this conjecture, we prove that balls are critical domains for the Wentzell eigenvalue, in any 
dimension, and that they are local maximizers in dimension 2 and 3, using an order two sensitivity analysis. We also provide some 
numerical evidence.
© 2014 
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1. Introduction

Background. Let d ≥ 2 and Ω be a bounded domain in Rd (i.e. a bounded connected open set) supposed to be suf-
ficiently smooth (of class C3), and we denote by �τ the Laplace–Beltrami operator on ∂Ω . Motivated by generalized 
impedance boundary conditions, we consider the eigenvalue problem for Wentzell boundary conditions{−�u = 0 in Ω

−β�τu + ∂nu = λu on ∂Ω
(1)

where β is a given real number and ∂n denotes the outward unit normal derivative.
The coefficient β appears as a surface diffusion coefficient arising in a passage to the limit in the thickness of 

the boundary layer for coated object (see [22,1,16]). A general derivation of Wentzell boundary conditions can be 
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found in [15]. The coefficient can be either positive or negative. We first consider the case β ≥ 0 where the obtained 
boundary value problem is coercive.

This problem couples surface and volume effects through the Steklov eigenvalue problem in Ω with the Laplace–
Beltrami eigenvalue problem on ∂Ω . Let us recall some known facts about these two problems. The Steklov eigen-
value problem consists in solving{

�u = 0 in Ω

∂nu = λSu on ∂Ω
(2)

It has a discrete spectrum consisting of a sequence

λS
0 (Ω) = 0 < λS

1 (Ω) ≤ λS
2 (Ω) . . . → +∞

where the λS are called Steklov eigenvalues. Brock–Weinstock inequality states that λS
1 is maximized by the ball 

among all open sets of fixed volume |Ω|. It was first proved in the case d = 2 by Weinstock and extended by Brock 
to any dimension in [6] (Weinstock inequality is slightly stronger but restricted to simply-connected domains: he 
proved indeed that the disk maximizes λS

1 among simply-connected sets of given perimeter). A quantitative form of 
this inequality was recently obtained by Brasco, De Philippis and Ruffini who proved in [5] that

λS
1 (Ω) ≤ λS

1 (B)

[
1 − δd

( |Ω�B(x∂Ω)|
|Ω|

)2]
,

where δd is an explicit nonnegative constant depending only on d , x∂Ω is the center of mass of ∂Ω and B(x∂Ω) is the 
ball centered in x∂Ω with volume |Ω|.1 Let us emphasize that no additional topological assumption is needed.

It is well-known that the spectrum of the Laplace–Beltrami operator on ∂Ω , that is numbers λ such that the 
equation −�τu = λu on ∂Ω has nontrivial solutions, is also discrete and satisfies:

λLB
0 (∂Ω) = 0 < λLB

1 (∂Ω) ≤ λLB
2 (∂Ω) . . . → +∞

Again, one can ask if λLB
1 takes its maximal value on the euclidean sphere, among hypersurfaces of fixed 

(d − 1)-dimensional volume. Here, the answer is more complicated than for the Steklov problem. It depends on 
both the topology of the surface and the dimension. In [19], Hersch gave a positive answer if d = 3 for surfaces ho-
momorphic to the euclidean sphere. In the cases d > 3 or without topological restriction, the answer is negative (see 
[3,10,11], and Section 2.1 for the 2-dimensional case).

When β ≥ 0, the spectrum of the Laplacian with Wentzell conditions consists of an increasing countable se-
quence of eigenvalues

λ0,β(Ω) = 0 < λ1,β(Ω) ≤ λ2,β(Ω) . . . → +∞ (3)

with corresponding real orthonormal (in L2(∂Ω)) eigenfunctions u0, u1, u2, . . . . As in the previous cases, the first 
eigenvalue is zero with constants as corresponding eigenfunctions. As usual, we adopt the convention that each 
eigenvalue is repeated according to its multiplicity. Hence, the first eigenvalue of interest is λ1,β . A variational char-
acterization of the eigenvalues is available: we introduce the Hilbert space

H(Ω) = {u ∈ H1(Ω), Tr∂Ω(u) ∈ H1(∂Ω)
}
,

where Tr∂Ω is the trace operator, and we define on H(Ω) the two bilinear forms

Aβ(u, v) =
∫
Ω

∇u.∇v dx + β

∫
∂Ω

∇τ u.∇τ v dσ, B(u, v) =
∫

∂Ω

uv, (4)

where ∇τ is the tangential gradient. Since we assume β is nonnegative, the two bilinear forms are positive and the 
variational characterization for the k-th eigenvalue is

λk,β(Ω) = min

{
Aβ(v, v)

B(v, v)
, v ∈ H(Ω),

∫
∂Ω

vui = 0, i = 0, . . . , k − 1

}
(5)

1 The results in [5] are stated with the Fraenkel asymmetry, meaning that the previous inequality is stated for the ball B of volume |Ω| that 
minimizes |Ω�B|, but from the proof (see [5, Section 5]) we can conclude that the ball B(x∂Ω) of volume |Ω| and such that 

∫
∂Ω(x −x∂Ω)dσ = 0

is in fact valid as well.
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In particular, when k = 1, the minimum is taken over the functions orthogonal to the eigenfunctions associated to 
λ0,β = 0, i.e. constant functions. To describe this spectrum, one can notice that the eigenvalue problem can be rewritten 
purely on ∂Ω as:

−β�τu + Du = λu

where D denotes the Dirichlet-to-Neumann map, that is a selfadjoint, positive pseudodifferential operator of order 
one. Therefore, this problem can be seen as a compact perturbation of the usual Laplace–Beltrami operator. This point 
of view was used in [4] where it is proven that high order eigenvalues of the Laplace–Wentzell problem look like those 
of the Laplace–Beltrami operator.

However, we are interested in this work, in studying low order eigenvalues and more precisely in giving an upper 
bound for the second eigenvalue λ1,β involving only geometrical information. Please remark that we are not seeking 
for lower bound, because even with very strong geometrical assumption, there is none. Indeed, a consequence of our 
results is that

inf
{
λ1,β(Ω), Ω convex, |Ω| = m

}= 0 (6)

for any value of β ≥ 0 and m ≥ 0, see Remark 2.5. An important remark at this point is that the bilinear form Aβ is 
not homogeneous with respect to dilatation of the domain. Therefore, the volume of Ω plays a crucial role in λ1,β . 
As a surface term appears also in Aβ (corresponding to the Laplace–Beltrami operator), the perimeter of Ω (i.e. the 
volume of ∂Ω) should also play a crucial role.

Notice that when β = 0 we retrieve the Steklov eigenvalues, and we recover the Laplace–Beltrami eigenvalues by 
considering 1

β
λ1,β and letting β go to +∞, see Section 2.1.

Note also that the close but distinct eigenvalue problem{−�u = λu in Ω

�u + α∂nu + γ u = 0 on ∂Ω
(7)

was considered by J.B. Kennedy in [21]. He transforms this problem into a Robin type problem to prove a Faber–Krahn 
type inequality when the constants α, γ are nonnegative: the ball is the best possible domain among those of given 
volume.

The results of the paper. We first apply the strategy of F. Brock for the Steklov eigenvalue problem to the Wentzell 
eigenvalue problem and obtain a first upper bound of λ1,β(Ω) in terms of purely geometric quantities (we actually 
provide a refined version, using [5]):

Theorem 1.1. Let Ω be a smooth set such that 
∫
∂Ω

x = 0. Let Λ[Ω] be the spectral radius of the symmetric and 
positive semidefinite matrix P(Ω) = (pij )i,j=1,...,d defined as

pij =
∫

∂Ω

(δij − ninj ), (8)

where n is the outward normal vector to ∂Ω . Then if β ≥ 0, one has:

S(Ω) :=
d∑

i=1

1

λi,β(Ω)
≥

∫
∂Ω

|x|2
|Ω| + βΛ[Ω] ≥ dω

−1/d
d |Ω| d+1

d

|Ω| + βΛ[Ω]
[

1 + γd

( |Ω�B|
|B|

)2]
, (9)

where

γd = d + 1

d

21/d − 1

4
, (10)

ωd = |B1| and B is the ball of volume |Ω| and centered at 0. Equality holds in (9) if Ω is a ball.

A consequence of Theorem 1.1 is the following upper bound for λ1,β(Ω).
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Corollary 1.2. With the same notations as in Theorem 1.1, if β ≥ 0, it holds:

λ1,β(Ω) ≤ d
|Ω| + βΛ[Ω]∫

∂Ω
|x|2 ≤ |Ω| + βΛ[Ω]

ω
−1/d
d |Ω| d+1

d

[
1 + γd

( |Ω�B|
|B|

)2] , (11)

where B and γd are as in Theorem 1.1. Equality holds in (11) if Ω is a ball.

Note that the method used for the Wentzell eigenvalue problem also applies for the Laplace–Beltrami case and 
provides an upper bound for λLB

1 without any topological assumption on Ω .

Theorem 1.3. With the same notations as in Theorem 1.1, it holds

SLB(∂Ω) :=
d∑

i=1

1

λLB
i (∂Ω)

≥
∫
∂Ω

|x|2
Λ[Ω] ≥ dω

−1/d
d |Ω| d+1

d

Λ[Ω]
[

1 + γd

( |Ω�B|
|B|

)2]
(12)

and

λLB
1 (∂Ω) ≤ d

Λ[Ω]∫
∂Ω

|x|2 ≤ Λ[Ω]
ω

−1/d
d |Ω| d+1

d

[
1 + γd

( |Ω�B|
|B|

)2] . (13)

Equality holds in (12) and (13) if Ω is a ball.

It is expected in this type of extremal eigenvalue problem that balls are maximizers. We are not able to fully justify 
the natural following conjecture:

Conjecture. The ball maximizes the first non-trivial Wentzell–Laplace eigenvalue among smooth open sets of given 
volume and which are homeomorphic to the ball.

The topological restriction is motivated by the limit case β → +∞ as we noticed before (see also Section 2.1). In 
Section 2.2, we observe that the intermediate bound in (11) has both its numerator and denominator that are minimized 
by the ball, under volume constraint, so there is a competition. In Section 2.3 we observe that in fact, the ball does 
not minimize this bound in general (see Fig. 1). Therefore, we cannot deduce from this bound the maximality of balls 
(though it might work for certain values of β and the volume constraint). About the upper bound (11), we show that 
it is larger than λ1,β(B) for every β > 0 (with equality for the ball) and hence again does not imply that balls are 
maximizing λ1,β . To check if balls are relevant candidates for maximizers in our case, we then turn our attention to a 
shape sensitivity analysis of λ1,β .

Therefore, we first wonder if the ball is a critical shape in any dimension. With respect to shape sensitivity, the 
main difficulty is to handle multiple eigenvalues which leads to a nonsmooth dependency of λ1,β with respect to Ω . 
However, for a fixed deformation field V ∈ W 3,∞(Ω, Rd), along the transport of Ω by Tt = I + tV , we prove the 
existence of smooth branches of eigenvalues and eigenfunctions associated to the subspace generated by the group 
of eigenvalues and provide a characterization of the derivative along the branches: λ1,β is then the minimum value 
among these d smooth branches.

Theorem 1.4. We distinguish the case of simple and multiple eigenvalue.

• If λ= λk,β(Ω) is a simple eigenvalue of the Wentzell problem, then the application t 	→ λ(t)= λk,β(Ωt ) (where 
Ωt = (I + tV )(Ω)) is differentiable and the derivative at t = 0 is

λ′(0) =
∫

Vn

(|∇τ u|2 − |∂nu|2 − λH |u0|2 + β
(
HId − 2D2b

)∇τ u.∇τ u
)
dσ ,
∂Ω
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where u is the normalized eigenfunction associated to λ, D2b is the Hessian of the signed distance function (see 
(48)), H = Tr(D2b) is the mean curvature of ∂Ω , Id is the identity matrix of size d , and Vn = V · n∂Ω is the 
normal component of the deformation. Moreover, the shape derivative u′ at t = 0 of the eigenfunction satisfies⎧⎪⎨

⎪⎩
�u′ = 0 in Ω,

−β�τu
′ + ∂nu

′ − λu′ = β�τ (Vn∂nu) + βdivτ

(
Vn

(
HId − 2D2b

)∇τ u
)

+ divτ (Vn∇τ u) − λ′u + λVn(∂nu + Hu) on ∂Ω.

(14)

• Let λ be a multiple eigenvalue of order m ≥ 2. Let (uk)k=1,...,m denote the eigenfunctions associated to λ. Then 
there exist m functions t 	→ λk,β(t), k = 1, . . . , m, defined in a neighborhood of 0 such that
– λk,β(0) = λ,
– for every t in a neighborhood of 0, λk,β(t) is an eigenvalue of Ωt = (I + tV )(Ω),
– the functions t 	→ λk,β(t), k = 1, . . . , m, admit derivatives and their values at 0 are the eigenvalues of the 

m × m matrix M= MΩ(Vn) of entries (Mij ) defined by

Mij =
∫

∂Ω

Vn

(∇τ ui .∇τ uj − ∂nui∂nuj − λHuiuj + β
(
HId − 2D2b

)∇τ ui .∇τ uj

)
dσ.

Notice that in the notations above and contrary to (3), the functions λk(t) are no longer ordered. As a byproduct 
of this result, notice that we can write the corresponding shape derivatives for the Steklov and Laplace–Beltrami 
eigenvalue problem (see Appendix E). Another consequence of this result, regarding our conjecture, is that we are 
able to check that balls are critical shapes for λ1,β by computing the trace of the previously defined matrix M = MB

(recall that λ1,β(B) is an eigenvalue of multiplicity d , the dimension of the ambient space). But first, we make a short 
remark about the notion of volume preserving deformation:

Remark 1.5. In the next results and in many places in the paper, we will consider volume preserving smooth defor-
mations of domains, that is to say Ωt = Tt (Ω) where t 	→ Tt satisfies:

• T0 = Id,
• for every t near 0, Tt is a W 3,∞-diffeomorphism from Ω onto its image Ωt = Tt (Ω),
• the application t 	→ Tt is real-analytic near t = 0,
• for every t near 0, |Ωt | = |Ω|.

More generally, it can be sufficient to assume that the volume is preserved at the first or the second order, depending 
on whether we are interested in first or second order conditions. For example, if one considers Tt = I + tV the vector 
field V is said to be volume preserving at first order if it satisfies 

∫
∂Ω

Vndσ = 0; indeed for Ωt = (I + tV )(Ω), we 
have d

dt |t=0|Ωt | =
∫
∂Ω

Vndσ .
When dealing with second order considerations as in Theorem 1.7, we need that the volume is preserved at the 

second order, so Tt is volume preserving at second order if

d2

dt2
|Ωt |

∣∣∣∣
t=0

=
∫

∂Ω

(
W + Vn∂nVn + HV 2

n

)
dσ = 0,

where V = 1
t
(Tt − I ), Vn is the value at t = 0 of V · n∂Ωt , and W denotes the derivative of V · n∂Ωt with respect to t

at t = 0.

Proposition 1.6. Any ball B is a critical shape for λ1,β with volume constraint, in the sense that for every volume 
preserving deformations V ,

Tr
(
MB(Vn)

)= d∑
k=1

λ′
k,β(0) = 0,

where (t 	→ λk,β(t))k=1...d are defined in Theorem 1.4.
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In particular, 0 ∈ ∂λ1,β(B; Vn) := [infi=1···d λ′
i,β(0), supi=1···d λ′

i,β(0)] the directional subdifferential associated to 
the first nontrivial eigenvalue.

Moreover, this subdifferential reduces to {0} if Vn is orthogonal to spherical harmonics of order two: in other 
words, in that case, the directional derivative exists in the usual sense and vanishes.

Two situations can now occur: either the subdifferential in direction Vn is not reduced to {0} and then one can 
deduce from the previous statement that B locally maximizes λ1,β along t 	→ Bt (see for example (c) and (d) in 
Fig. 5), or the subdifferential in direction Vn is {0} and then this first order shape calculus does not allow us to 
conclude that the ball is a local maximizer of λ1,β . Hence, for the directions Vn in H defined as the Hilbert space 
generated by spherical harmonics of order greater or equal to three, we now consider the second order analysis 
to wonder if the ball satisfies the second order necessary condition of optimality, and obtain the following result in 
dimension two and three.

Theorem 1.7. Let B be a ball of radius R in R2 or R3 (i.e. d = 2 or d = 3) and t 	→ Bt = Tt (B) a second order volume 
preserving deformation. λ1,β(B) is an eigenvalue of multiplicity d , the dimension, and we denote by t 	→ λk,β(t), 
k = 1, . . . , d , the branches obtained in Theorem 1.4.

Then the functions t 	→ λk,β(t), k = 1, . . . , d , admit a second derivative and their values at 0 are the eigenvalues 
of the d × d matrix E = EB(Vn) defined in Section 4. Moreover, there exists a nonnegative number μ (= μ(β))

independent of the radius R such that

Tr
(
EB(Vn)

)= d∑
k=1

λ′′
k,β(0) ≤ −μK(R)

∫
∂B

(|∇τVn|2 + |Vn|2
)
dσ = −μK(R)‖Vn‖2

H1(∂B)

holds for all Vn ∈ H, with K(R) = d

R2+dωd−1
.

As a consequence of Proposition 1.6 and Theorem 1.7, we have the result:

Corollary 1.8. If B is a ball in R2 or R3, and t 	→ Tt ∈ W 3,∞(B, Rd) a smooth (second order) volume preserving 
deformation, then

λ1,β(B) ≥ λ1,β

(
Tt (B)

)
, for t small enough.

Plan of the paper. The paper is organized as follows: in Section 2, we prove Theorem 1.1 by adapting the strategy of 
Brock and present some numerical tests to illustrate the sharpness of the upper bound. The first order shape analysis 
is presented in Section 3, while the second order shape analysis is presented in Section 4. The background material 
for shape calculus and the proofs of technical intermediary results are postponed to the annexes.

2. Upper bound for λ1,β

2.1. Preliminary remarks and results

Let us start by a few remarks on the proofs in the two limit cases β → +∞ (that is the Laplace–Beltrami eigenvalue 
problem), and β = 0 (that is the Steklov eigenvalue problem).

On the Laplace–Beltrami case: The case d = 2 is trivial: it suffices to argue on each connected component of ∂Ω . We 
introduce γ : [0, L] a parametrization by the arclength of a connected component Γ of ∂Ω , then for any u ∈ H1(∂Ω), 
the Rayleigh quotient can be written as∫

Γ
|∇τ u|2∫
Γ

u2
=
∫ L

0 [(u ◦ γ )′]2∫ L

0 (u ◦ γ )2
.

Hence, the λLB
1 (Γ ) is nothing but the infimum of ‖u′‖2

L2(0,L)
among periodic functions u with 0 mean value and 

‖u‖L2(0,L) = 1, that is to say 4π2/L2. It is a decreasing function of the length of the connected component of the 
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boundary. Then, if Ω is simply connected, combined with the isoperimetric inequality, the previous computations 
lead to λLB

1 (∂Ω) ≤ λLB
1 (∂B) where B is a disk of the same area as Ω .

Moreover, if ∂Ω has more than one connected component, then λLB
1 = 0 since the multiplicity of 0 as eigenvalue 

is at least the number of connected component. To check that claim, it suffices to check that the functions taking 
the value 1 on one of the connected component and 0 elsewhere are independent eigenfunctions associated to the 
eigenvalue 0. We conclude that in dimension 2, λLB

1 (∂Ω) ≤ λLB
1 (∂B), where B is a disk of the same area as Ω .

The case d = 3 is more complex. There is a classical result of J. Hersch [19]: if Ω ⊂ R
3 is homeomorphic to the 

ball, then

λLB
1 (∂Ω) ≤ λLB

1 (∂B), for all Ω such that |∂Ω| = |∂B|. (15)

We first extend Hersch statement to domains of the same volume by a classical homogeneity argument.

Lemma 2.1. If Ω ⊂R
3 is homeomorphic to the ball, then

λLB
1 (∂Ω) ≤ λLB

1 (∂B) if |Ω| = |B|.

Proof. One easily checks that Ω 	→ λLB
1 (∂Ω) is homogeneous of degree −2, so Ω 	→ λLB

1 (Ω)|∂Ω|2/(d−1) is homo-
geneous of degree 0. Then we get from Hersch’s inequality (15), that

λLB
1 (∂Ω)|∂Ω| 2

d−1 ≤ λLB
1 (∂B)|∂B| 2

d−1 , for all Ω such that |∂Ω| = |∂B|. (16)

Thanks to the invariance by translation of λLB
1 and the perimeter, and using the 0-homogeneity of the previous product, 

we get that the previous inequality is in fact valid for any ball B and any domain Ω . We combine with the isoperimetric 
inequality

|∂B| d
d−1

|B| ≤ |∂Ω| d
d−1

|Ω|
to conclude. �
On the Steklov case: In the general case β ≥ 0, we will adapt the original Brock’s proof; the main tool is an isoperi-
metric inequality for the moment of inertia of the boundary ∂Ω with respect to the origin. The general form of the 
weighted isoperimetric inequality due to F. Betta, F. Brock, A. Mercaldo and M.R. Posteraro [2] is:

Lemma 2.2. Let Ω ⊂ R
d be an open set and let f be a continuous, nonnegative and nondecreasing function defined 

on [0, ∞]. Moreover, we suppose that

t 	→ (
f
(
t

1
d
)− f (0)

)
t1− 1

d is convex for t ≥ 0

Then ∫
∂Ω

f
(|x|)dσ ≥ f (R)|∂BR|, (17)

where BR is the ball centered at the origin such that |BR| = |Ω|.

Let us remark that the function t 	→ tp satisfies the assumptions of the lemma as soon as p ≥ 1 and in particular for 
p = 2. In that case and in order to prove a refinement of Brock’s inequality, L. Brasco, G. De Philippis and B. Ruffini 
established a qualitative refinement of this inequality (Theorem B of [5]):

Lemma 2.3. There exists an explicit dimensional constant γd such that for every bounded, open Lipschitz set Ω in R
d ,∫

∂Ω

|x|2dσ ≥ R2|∂BR|
[

1 + γd

( |Ω�BR|
|BR|

)2]
, (18)

where BR is the ball centered at the origin such that |BR| = |Ω| and γd is the constant defined in (10).
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On the Wentzell case: An important remark for the sequel is the particular case when Ω is a ball BR of radius R. 
The eigenspace corresponding to λ1,β is d-dimensional: it consists of the restrictions on the sphere Sd−1

R of the linear 
functions in Rd spanned by the coordinate functions. It follows, from the theory of spherical harmonic functions that

λ1,β(BR) = λ2,β(BR) = . . . = λd,βBR) = (d − 1)β + R

R2
. (19)

The Laplace–Beltrami operator on ∂BR and the Steklov operator also are diagonal on the basis of spherical harmonics, 
hence

λ1,β(BR) = λS
1 (BR) + βλLB

1 (∂BR),

and more generally the eigenvalue associated to spherical harmonics of order l is

λ(l)(BR) = l(l + d − 2)β + R

R2
. (20)

But, this situation is specific to the ball: indeed, in general we only have the inequality

λ1,β(Ω) ≥ λS
1 (Ω) + βλLB

1 (Ω).

Moreover, we can easily prove that for any smooth Ω , limβ→∞ 1
β
λ1,β(Ω) = λLB

1 (Ω): indeed, we have a first trivial 

inequality 1
β
λ1,β(Ω) ≥ λLB

1 (Ω) for any β ≥ 0, and using the variational formulation (5), we obtain ∀v ∈ H(Ω) with 
the additional condition 

∫
∂Ω

v = 0,

lim
β→∞

1

β
λ1,β(Ω) ≤ lim

β→∞

1
β

∫
Ω

|∇v|2 + ∫
∂Ω

|∇τ v|2∫
∂Ω

v2
=
∫
∂Ω

|∇τ v|2∫
∂Ω

v2

which leads to the result.
For example if d = 3, combining Brock’s inequality and Lemma 2.1, we obtain that the right-hand side in the 

previous inequality is maximized by the ball, among domains of given volume and homeomorphic to the ball. Unfor-
tunately, this is not enough to obtain that balls are maximizing the Wentzell eigenvalue.

So in order to obtain an estimate of λ1,β , we look at the strategies used for the extremal problems, which are the 
Steklov (β = 0) and the Laplace–Beltrami (β → +∞) cases. The strategies of Brock and Hersch for those cases are 
actually close but distinct: they use the coordinate functions as test functions in the Rayleigh quotient characterization 
of eigenvalues. In the case of the Laplace–Beltrami operator though, J. Hersch had an additional step: he first transports 
the surface ∂Ω on the sphere by a conformal mapping, and uses the conformal invariance of the Dirichlet energy for 
2-dimensional surfaces. In the following, we choose to follow the ideas of Brock. This allows to obtain an estimate 
with no assumption on the topology or the dimension of the domain. Indeed, the above mentioned phenomenon of 
decoupling between the different connected components does not appear in the Steklov case, due to the volume term, 
and in fact Brock’s result is valid for every (smooth enough) domain. The same volume term appears in the Wentzell 
case and the approach of Brock is then the natural one. However, one expects from these topological considerations 
that it will not provide an optimal result.

2.2. Proof of Theorem 1.1

Our strategy to prove Theorem 1.1 is to use the following characterization for the inverse trace of eigenvalues 
(stated by J. Hersch in [18] and proved by G. Hile and Z. Xu in [20])

d∑
i=1

1

λi,β

= max
v1,···,vd

d∑
i=1

B(vi, vi)

Aβ(vi, vi)
, (21)

where the functions (vi)i=1,...,d are nonzero functions that are B-orthogonal to the constants and pairwise 
Aβ -orthogonal.

Before proving Theorem 1.1, we now present some preliminary results.
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Lemma 2.4. The matrix P [Ω] defined by (8) is symmetric, positive definite. Its spectral radius Λ[Ω] satisfies

(d − 1)|∂Ω| ≥ Λ[Ω] ≥ d − 1

d
|∂Ω|. (22)

In particular, among sets of given volume, the spectral radius is minimal for the ball.

Proof. The matrix P(Ω) is symmetric by definition. For y = (y1, · · · , yd) ∈ R
d with y �= 0, we check that

d∑
i,j=1

yi(δij − ninj )yj = yT y − (yT n
)2 ≥ 0

by Cauchy–Schwarz inequality. By integration over ∂Ω , P [Ω] is positive semidefinite. Assume, by contradiction, 
that P is not definite: then there is a vector y �= 0 such that

0 =
d∑

i,j=1

yi

( ∫
∂Ω

(δij − ninj )

)
yj =

∫
∂Ω

(
yT y − (yT n

)2)
.

The equality case of Cauchy–Schwarz inequality yT y − (yT n)2 = 0 is therefore satisfied everywhere on ∂Ω , this 
holds if and only if y and n are colinear. Hence, n is constant on ∂Ω which contradicts the boundedness of Ω .

The matrix P [Ω] has positive eigenvalues. Their sum is the trace Tr(P [Ω]), hence

Tr
(
P [Ω])≥ Λ[Ω] ≥ Tr(P [Ω])

d
with Tr

(
P [Ω])= d∑

i=1

∫
∂Ω

(
1 − n2

i

)= (d − 1)|∂Ω|.

Therefore

(d − 1)|∂Ω| ≥ Λ[Ω] ≥ (d − 1)

d
|∂Ω| ≥ (d − 1)

d
|∂B|.

The last inequality is obtained by the usual isoperimetric inequality and assuming B is a ball such that |Ω| = |B|. Let 
us compute Λ[B]. From the invariance by rotation of the ball, there exists a real number a such that P [B] = aId . In 
others words, we have∫

∂B

ninj = 0, i �= j and
∫
∂B

(
1 − n2

i

)= ∫
∂B

(
1 − n2

1

)
, i = 1, . . . , d.

The real number a is determined using the trace of the matrix: we obtain that dΛ[B] = (d − 1)|∂B|, and so Λ(Ω) ≥
Λ(B). �
Remark 2.5. The inequalities in (22) are sharp. The lower bound is reached when Ω is a ball and the upper bound is 
the limit of the collapsing stadium Sε (union of a rectangle and two half-disks) of unit area and width ε when ε tends 
to 0: one checks by an explicit elementary calculus that:

|∂Sε| = 2

ε
+ πε

2
while Λ[Sε] = 2

ε
.

This example is also useful to prove (6): indeed, we easily prove∫
∂Sε

|x|2 ≥ α

ε3
,

where α is a universal constant, so using (11), we obtain (6) for d = 2 and m = 1. The other cases can be handled 
similarly.

Proof of Theorem 1.1. We first translate and rotate coordinates xi , i = 1, 2, . . . d , such that

∀i �= j ∈ �1, d�2,

∫
xi = 0 and

∫
xixj = 0.
∂Ω ∂Ω
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We now construct a family which is pairwise Aβ-orthogonal, and B-orthogonal to R. We consider a collection of a 
family of functions w1, w2, . . . , wd in the vector space spanned by the coordinate functions: there is a matrix C such 
that

wi =
d∑

j=1

cij xj , i ∈ �1, d�.

Brock used directly the coordinate functions to deal with A0. Here, we need an Aβ -orthogonal family, hence the 
matrix C will be chosen to that end. Since the coordinate functions are L2 orthogonal to the constants, each wi is 
L2-orthogonal to the constants (that is to say the eigenfunctions associated to the smallest eigenvalue λ0 = 0).

Let us compute Aβ(wi, wj). First, we get ∇wi = (ci1, ci2, . . . , cid)T then

∫
Ω

∇wi · ∇wj =
∫
Ω

d∑
k,m=1

cikcjm = |Ω|(CCT
)
ij
.

To compute the second term of the sum occurring in Aβ , we recall that

∇τwi · ∇τwj = ∇wi · ∇wj − (∇wi · n)(∇wj · nj ).

We therefore get

∫
∂Ω

∇τwi · ∇τwi =
∫

∂Ω

[
d∑

k=1

cikcjk −
(

d∑
k=1

ciknk

)(
d∑

k=1

cjknk

)]

=
∫

∂Ω

[
d∑

k=1

cikcjk −
d∑

k,l=1

cikcjlnknl

]
.

We introduce P [Ω] the matrix defined in (8) to get∫
∂Ω

∇τwi · ∇τwj =
∑
k,m

cikpkmcjm = (CP [Ω]CT
)
ij
.

Gathering all the terms, it comes that

Aβ(wi,wj ) = |Ω|(CCT
)
ij

+ β
(
CP [Ω]CT

)
ij

(23)

Since P [Ω] is a real symmetric matrix, we can choose an orthogonal matrix C such that CP [Ω]CT is diagonal. 
Hence, CCT = I and finally wi and wj are Aβ -orthogonal if i �= j while

Aβ(wi,wi) = |Ω| + β
(
CP [Ω]CT

)
ii

≤ |Ω| + βΛ[Ω] (24)

and we can apply Hile and Xu’s inequality (see [20]).
Since by assumption∫

∂Ω

xixj = 0

when i �= j , it comes that

B(wi,wi) =
d∑

k=1

c2
ik

∫
∂Ω

x2
k

and then

S(Ω) =
d∑ 1

λi,β(Ω)
≥
∑d

i=1
∑d

k=1 c2
ik

∫
∂Ω

x2
k

|Ω| + βΛ[Ω] =
∑d

k=1(
∫
∂Ω

x2
k )
∑d

i=1 c2
ik

|Ω| + βΛ[Ω] =
∫
∂Ω

|x|2
|Ω| + βΛ[Ω] ,
i=1
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which is the first part of the result. Then using first the isoperimetric weighted inequality (17) for p = 2, we get∫
∂Ω

|x|2 ≥ R2|∂BR|,

and so ∫
∂Ω

|x|2
|Ω| + βΛ[Ω] ≥ R2|∂BR|

|Ω| + βΛ[Ω] = R2

|BR |
|∂BR | + βΛ[Ω]

|∂BR |
.

If Ω = BR , we know that d|BR| = R|∂BR| and then

R2

|BR |
|∂BR | + βΛ[BR ]

|∂BR |
= R2

R
d

+ β d−1
d

= d

λ1,β(BR)
,

and prove the equality case. By the quantitative version of the isoperimetric inequality for the moment of inertia of 
∂Ω with respect to the origin (18), we also get the precise version:∫

∂Ω
|x|2

|Ω| + βΛ[Ω] ≥ R2|∂BR|
|Ω| + βΛ[Ω]

[
1 + γd

( |Ω�BR|
|BR|

)2]
.

Using the definition of R and |Ω| = |BR|, we obtain R2|∂BR| = dω
−1/d
d |Ω| d+1

d and the desired inequality. �
Proof of Corollary 1.2. Since λ1,β(Ω) ≤ λi,β(Ω) for i = 1, . . . , d , we get

λ1,β(Ω) ≤ d

S(Ω)
≤ d

|Ω| + βΛ[Ω]∫
∂Ω

|x|2 ≤ d

1 + γd

( |Ω�BR |
|BR |

)2 |Ω| + βΛ[Ω]
dω

−1/d
d |Ω| d+1

d

. �

Proof of Theorem 1.3. It is a direct adaptation of the previous proof to the Laplace–Beltrami case: it suffices to 
replace the bilinear form Aβ(u, v) by A(u, v) = ∫

Ω
∇u.∇v. Then Eq. (24) becomes A(wi, wi) = (CP [Ω]CT )ii ≤

Λ[Ω] and the conclusion follows. �
2.3. On the sharpness of the upper bounds

Testing the sharpness. Let us denote by M1(Ω) the upper bound (11). In order to emphasize the improvement to 
the inequality of Brasco, De Philippis and Ruffini, we also plot the rougher upper bound

M3(Ω) = |Ω| + βΛ[Ω]
ω

−1/d
d |Ω| d+1

d

= d
|Ω| + βΛ[Ω]

R2|∂BR| .

It is clear from the bound of Λ[Ω] stated in (22) that

λ1,β(BR) = M1(BR) ≤ M2(Ω) = d(
1 + γd

|Ω�BR |
|BR |

)2 |Ω| + βΛ[Ω]
R2|∂BR| .

We also plot the shaper bound

M1(Ω) = d
|Ω| + βΛ[Ω]∫

∂Ω
|x|2 .

This inequality means that proving that balls are maximizers would be strictly better than (11). Let us illustrate this 
fact with some numerical illustrations. We compute λ1,β(Ω) and Mi(Ω) (i = 1, 2) for several parametrized families 
of plane domains when β = 1. In Fig. 1(a), we present the case of ellipses of area π (their semiaxis are et and e−t , t is 
in abscissa) while in Fig. 1(b) and 1(c) we present the case of the star-shaped domains Ωt defined in polar coordinate 
by r(θ) = a(t)(2 + cos(kθ)) where a(t) is a constant chosen such that |Ωt | = π .

From these graphs, it seems that the upper bounds Mi(Ω) lack of precision when Ω is far from a ball and that the 
maximality of balls is possible and would improve the upper bound given in Corollary 1.2.
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Fig. 1. Comparison of λ1,β (Ω) and Mi(Ω). Here λ1,β (B1) = 2. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 2. λ1,β (Ω) when Ω is an ellipse of volume |Ω|. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Some numerical tests. It is natural to wonder if the ball has the largest λ1,β among all the domains of the same
volume that are homeomorphic to the ball. This question cannot be solved with estimate (11), as Fig. 1(a) shows. 
Therefore, to conclude this section, we would like to present some numerical experiments in favor of such property.

Let us start by computing the value of λ1,β(Ω) when Ω is an ellipse of fixed volume (see Fig. 2). We present here 
the results of our numerical computations for β ∈ {0.1, 1, 5, 10} when |Ω| = π , then when |Ω| = 4π . In both figures, 
the abscissa stands for the eccentricity of the ellipse. It seems that the ball maximizes λ1,β among ellipses of fixed 
area.
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Fig. 3. (λ1,β (Ωt ), λ2,β (Ωt ), λ3,β (Ωt )) when Ωt is a parametrized ellipsoid of volume 4π/3. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Let us show some computations in dimension three. We consider families of ellipsoids with semi-axes defined by 
(exp(αi t))i=1,2,3 where α1 +α2 +α3 = 0 to insure the volume constraint. The ball B corresponds to t = 0. We remind 
that in this case, λ1,β(B) has multiplicity 3 at the sphere, we then have plotted the three corresponding eigenvalues 
in two cases: first for the family such that α = (2, −0.8, −1.2) in Fig. 3(a), then for α = (2, −1, −1) in Fig. 3(b). In 
the last case, the defined ellipsoids are of revolution and we observe that in this particular case λ3,β ≈ λ4,β . One can 
wonder if it is really the case.

Let E(a, b) be an ellipsoid of volume 4π/3 where a is the larger semiaxis and b the middle one. We now show 
in Fig. 4 the surfaces z = λi,β(E(a, b)) where i = 1, 2, 3. The pictures have been obtained by interpolation after the 
computations of the eigenvalues on 2700 ellipsoids. Again one can attest that the ball seems to maximize λ1,β among 
ellipsoids.

3. First order shape calculus

In order to go one step further, we adopt a shape optimization point of view and prove in this section that the ball is 
a critical point. The main difficulty here is that the eigenvalue λ1,β(B) has multiplicity the dimension of the ambient 
space. We need some technical material on shape derivative and tangential calculus on manifold to justify the results 
stated in this section; to simplify the reading of this work, we postpone these reminders in Appendix A.

Let us emphasize that from this point we do not make the assumption β ≥ 0, and therefore all the results of this 
section and the following are valid for any β ∈ R. Thus from now on we drop the notation β in λ1,β since there is no 
possible confusion anymore.

3.1. Notations and preliminary result for shape deformation

We adopt the formalism of Hadamard’s shape calculus and consider the map t 	→ Tt = I + tV where V ∈
W 3,∞(Ω, Rd) and t is small enough. We denote

Ωt = Tt (Ω) = {x + tV (x), x ∈ Ω
}
.

Remark 3.1. More generally the results and computations from this section are valid if t 	→ Tt satisfies:

• T0 = Id,
• for every t near 0, Tt is a W 3,∞-diffeomorphism from Ω onto its image Ωt = Tt (Ω),
• the application t 	→ Tt is real-analytic near t = 0.

We need to introduce the surface jacobian ωt defined as

ωt(x) = det
(
DTt(x)

)∥∥(DTt(x)T
)−1n(x)

∥∥,
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Fig. 4. (λ1,β (Ω), λ2,β (Ω), λ3,β (Ω)) when Ω = E(a, b) is an ellipsoid of volume 4π/3. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

and the functions

At(x) = (DTt(x)
)−1(

DTt(x)T
)−1

, Ãt (x) = det
(
DTt(x)

)
At(x), Ct (x) = ωt(x)At (x).

We have to study the transport of the considered eigenvalue problem on the deformed domain Ωt . To that end, we first 
rewrite the deformed equation on the fixed domain Ω and its boundary ∂Ω : we have to describe how are transported 
the Laplace–Beltrami and the Dirichlet-to-Neumann operators.

Transport of the Dirichlet-to-Neumann map. Let us consider the Dirichlet-to-Neumann operator defined on its 
natural space Dt : H 1/2(∂Ωt ) → H−1/2(∂Ωt ). It maps a function φt in H 1/2(∂Ωt ) onto the normal derivative of its 
harmonic expansion in Ωt , that is to say Dt (φt ) = ∂nt ut , where ut solves the boundary values problem:{−�ut = 0 in Ωt,

ut = φt on ∂Ωt .
(25)

To compute the quantity Dt such that Dt (φt ◦ Tt ) = [Dt (φt )] ◦ Tt , we transport the boundary value problem (25)
back on the domain Ω . In others words, Dt makes the following diagram commutative:
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H1/2(∂Ωt )
Tt

Dt

H1/2(∂Ω)

Dt

H−1/2(∂Ωt )
Tt H−1/2(∂Ω)

To be more precise, we have the following result proved in [12].

Lemma 3.2. Given ψ ∈ H 1/2(∂Ω), we denote by vt the solution of the boundary value problem{−div
(
Ãt∇vt

)= 0 in Ω,

vt = ψ on ∂Ω
(26)

and then define Dtψ ∈ H−1/2(∂Ω) as:

Dtψ : f ∈ H 1/2(∂Ω) 	→
∫
Ω

Ãt (x)∇vt (x) · ∇E(f )(x)dx,

where E is a continuous extension operator from H 1/2(∂Ω) to H 1(Ω). Then the relation

(Dt ϕ) ◦ Tt =Dt [ϕ ◦ Tt ] (27)

holds for all functions ϕ ∈ H 1/2(Ωt ).

Setting ut = ut ◦ Tt , we check from the variational formulation, that the function ut is the unique solution of the 
transported boundary value problem:{−div

(
Ãt∇ut

)= 0 in Ω,

ut = φt ◦ Tt on ∂Ω.
(28)

Hence, setting y = Tt (x), x ∈ Ω we get formally

Dt (φt )(y) = ∇ut (y).nt (y) = (DTt(x)T
)−1∇vt (x).

(DTt (x)T )−1n(x)

‖(DTt (x)T )−1n(x)‖ = At(x)n(x).∇ut (x)

‖(DTt (x)T )−1n(x)‖ .

Here again, we can give a sense to the co-normal derivative Atn.∇ut thanks to the boundary value problem (28): 
this quantity is defined in a weak sense as the previous Dirichlet-to-Neumann operator Dt .

Transport of the Laplace–Beltrami operator. We recall now the expression of the transported Laplace–Beltrami 
operator, relying on the relation

∀ϕ ∈ H 2(∂Ωt ), (�τϕ) ◦ Tt = 1

ωt(x)
divτ

(
Ct(x)∇τ (ϕ ◦ Tt )(x)

)
on ∂Ω. (29)

Let us denote by Lt the operator defined as

Lt [ϕ ◦ Tt ](x) = 1

ωt(x)
divτ

{
Ct(x)∇[ϕ ◦ Tt ](x) − Ct(x)∇[ϕ ◦ Tt ](x).n(x)

At (x)n(x).n(x)
At (x)n(x)

}
(30)

for ϕ ∈ H 5/2(Ωt ). In [12], we show the following lemma:

Lemma 3.3. The identity

[�τϕ] ◦ Tt = Lt [ϕ ◦ Tt ] (31)

holds for all functions ϕ belonging to H 5/2(Ωt ).



424 M. Dambrine et al. / Ann. I. H. Poincaré – AN 33 (2016) 409–450
3.2. Regularity of the eigenfunctions and eigenvalues with respect to the parameter

The section is a slight variation of a theorem due to Ortega and Zuazua on the existence and regularity of eigenval-
ues and associated eigenfunctions in the case of Stokes system [24]. The difficulty comes from the possible multiple 
eigenvalues. The main result is, for a fixed deformation field V ∈ W 3,∞(Ω, Rd), the existence of smooth branches 
of eigenvalue. In other words, the eigenvalues are not regular when sorted in the increasing order, but they can be
locally relabeled around the multiple point in order to remain smooth. The restriction is that this labeling depends on 
the deformation field V hence one cannot hope to prove Fréchet-differentiability.

Theorem 3.4. Let Ω be an open smooth bounded domain of Rd . Assume that λ is an eigenvalue of multiplicity m of 
the Wentzell–Laplace operator. We suppose that Tt = I + tV for some V ∈ W 3,∞(Ω, R)d and denote Ωt = Tt (Ω). 
Then there exist m real-valued continuous functions t 	→ λi(t), i = 1, 2, . . . , m, and m functions t 	→ ut

i ∈ H
5
2 (Ω)

such that the following properties hold

1. λi(0) = λ, i = 1, . . . , m.
2. The functions t 	→ λi(t) and t 	→ ut

i , i = 1, 2, . . . , m, are analytic in a neighborhood of t = 0.
3. The functions ui,t defined by ui,t ◦ Tt = ut

i are normalized eigenfunctions associated to λi(t) on the moving 
domain Ωt . If one considers K compact subset such that K ⊂ Ωt for all t small enough, then t 	→ ui,t |K is also 
an analytic function of t in a neighborhood of t = 0.

4. Let I ⊂ R be an interval such that I contains only the eigenvalue λ of the Wentzell problem of multiplicity m. 
Then there exists a neighborhood of t = 0 such that λi(t), i = 1, . . . , m, are the only eigenvalues of Ωt which 
belongs to I .

Proof. Let λ be an eigenvalue of multiplicity m and let u1, . . . , um be the orthonormal eigenfunctions associated to λ. 
Let (λ(t), ut ) be an eigenpair satisfying

(Pt )

{−�ut = 0 in Ωt,

−β�τut + ∂nt ut = λ(t)ut on ∂Ωt .

Setting ut = ut ◦ Tt , Lemmas 3.2 (transport of the Dirichlet-to-Neumann map) and 3.3 (transport of the Laplace–
Beltrami operator) show that the system (Pt) above is equivalent to the following equation set on the boundary

(−βLt +Dt )u
t = λ(t)ωtu

t on ∂Ω. (32)

Consider the operator S(t) defined on H3/2(∂Ω) by

v 	→ S(t)v = −βLt v +Dt v (33)

From their expressions computed for example in [17, Section 5-2] and the regularity assumption on Tt , all the operators 
Ct , At and ωt are analytic in a neighborhood of t = 0. Since det(DTt ) > 0 for t small enough, we deduce that all the 
expressions involved in Ct , Lt and Dt are analytic in a neighborhood of t = 0. This enables us to conclude that S(t)

is also analytic in a neighborhood of zero.
To show that the eigenvalues and the corresponding eigenfunctions are analytic in a neighborhood of zero, we 

apply the Lyapunov–Schmidt reduction in order to treat a problem on a finite dimensional space, namely the kernel of 
S(0) − λI . To that end, we rewrite the problem (Pt) on the fixed domain ∂Ω as

S(t)
(
ut
)− λ(t)ωtu

t = 0.

From the decomposition(
S(0) − λ

)(
ut
)= [(S(0) − S(t)

)+ [(λ(t) − λ
)
ωt + λ(ωt − 1)

]]
ut ,

ut is solution of the equation(
S(0) − λ

)(
ut
)= W

(
t, λ(t) − λ

)
ut , (34)

where we have set R(t) = S(0) −S(t) +λ(ωt −1) and W(t, α) = R(t) +αωtI . From the Lyapunov–Schmidt Theorem 
(see [24, Lemma 3-2, p. 999]), we obtain that S(0) − λ has a right inverse operator denoted by K . Hence the equation 
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above implies that ut = KW(t, λ(t) − λ)ut + ψt where ψt ∈ Ker(S(0) − λ), i.e. ψt =∑m
k=1 ck(t)φk where (φk) is a 

basis of Ker(S(0) − λ). Notice that I − KW(t, λ(t) − λ) is invertible on Ker(S(0) − λI), the inverse of his operator 
restricted to this kernel will be denoted by (I − KW(t, λ(t) − λ))−1 so that

ut = (I − KW
(
t, λ(t) − λ

))−1
ψt .

From (34), W(t, λ(t) −λ)ut belongs to Im(S(0) −λ) = Ker⊥(S(0) −λ) since S(0) is a Fredholm selfadjoint operator, 
and then

m∑
k=1

ck(t)
〈
W
(
t, λ(t) − λ

)(
I − KW

(
t, λ(t) − λ

))−1
φk,φi

〉= 0, i = 1,2, . . . ,m, (35)

where 〈· , ·〉 denotes the scalar product of L2(∂Ω). This shows that a vector of coefficients C = (cj )j=1,...,m �= 0 is a 
solution if and only if the determinant of the m × m matrix M(t, λ(t) − λ) with entries

M(t,α)i,j = 〈W(t,α)
(
I − KW(t,α)

)−1
φj ,φi

〉
satisfies

det
(
M
(
t, λ(t) − λ

))= 0.

Hence λ(t) is an eigenvalue of our problem if and only if det (M(t, λ(t) − λ)) = 0. Note that t 	→ M(t, λ(t)) is analytic 
around t = 0.

For small values of t the operator (I − KW(t, α))−1 is well defined since I − KW(0, 0) = I and t 	→ (I −
KW(t, α))−1 is analytic around t = 0. On the other hand, if detM(t,α) = 0 then (35) has a nontrivial solution 
c1(t), . . . , cm(t) and this means that λ(t) = λ + α is an eigenvalue of (Pt ).

We focus now on detM(t,α) for α ∈R. From the fact that W(0, α) = αI , it comes that for sufficiently small values 
of α, the operator I − KW(0, α) is invertible on Ker(S(0) − λI) and from the Von Neumann expansion we write

〈
W(0, α)

(
I − KW(0, α)

)−1
φi,φj

〉= α

[
δij +

∞∑
k=1

αk
〈
Kkφi,φj

〉];
hence

det
(
M(0, α)

)= αm +
∞∑
i=1

βiα
m+i = αm

(
1 +

∞∑
i=1

βiα
i

)
.

Since det (M(0, α)) �= 0 is the restriction on t = 0 of det (M(t,α)), we deduce from the Weierstrass preparation 
theorem that there is neighborhood of (0, 0) such that det (M(t,α)) is uniquely representable as

det
(
M(t,α)

)= Pm(t,α)h(t, α)

where

Pm(t,α) = αm +
m∑

k=1

ak(t)α
m−k

and where

h(t,α) �= 0.

Furthermore, the coefficients ak(t), k = 1, . . . , m, are real and analytic in a neighborhood of t = 0. Then 
det (M(t,α)) = 0 if and only if Pm(t, α) = 0. If αk(t), k = 1, . . . , m, are the real roots of the polynomial, we take 
λ1(t) = λ + α1(t) if α1(t) is not identically equal to zero.

We now have to find the (m − 1) other branches λi(t) and the corresponding eigenfunction ui,t for i = 2, . . . , m. 
We use the idea of the deflation method by considering the operator

S2(t) = S(t) − λ1P1(t)

where P1 is the orthogonal projection on the subspace spanned by u1,t . At t = 0, we obtain

S2(0)uj = S(0)uj − λδ1j uj
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in other terms S2(0)uj = λuj , j = 2, . . . , m, while S2(0)u1 = 0. This shows that λ is an eigenvalue of multiplicity 
m − 1 of S2(0) with eigenvalues u2, . . . , um. One can show that these functions are the only linearly independent 
eigenfunctions associated to λ. Now we can apply the same recipe used before to the operator S2 instead of S. We 
then get a branch λ2(t) such that t 	→ λ2(t) is analytic in a neighborhood of t = 0. Iterating the process, we get 
at the end the m branches λi(t), i = 1, . . . , m, such that each branch is analytic in a neighborhood of t = 0 and m
corresponding eigenfunctions forming an orthonormal set of functions in H

3
2 (∂Ωt ).

The proof of the last item follows the same lines as the proof of Ortega and Zuazua for the Stokes system, see 
[24]. �
Theorem 3.5. With the notations of Theorem 3.4, if t 	→ (λ(t), ut ) is one of the smooth eigenpair path (λi(t), ui,t )

of Ωt for the Wentzell problem, then the shape derivative u′ = (∂tut )|t=0 of the eigenfunction satisfies

�u′ = 0 in Ω,

−β�τu
′ + ∂nu

′ − λu′ = β�τ (Vn∂nu) − βdivτ

(
Vn

(
2D2b − HId

)∇τ u
)

+ divτ (Vn∇τ u) − λ′(0)u + λVn(∂nu + Hu) on ∂Ω. (36)

Proof. The fact that u′ is harmonic inside the domain is trivial. To derive the boundary condition satisfied by u′, we 
use a test function φt defined on ∂Ωt with ∂nφt = 0 as used in the proof of Lemmas 3.2 and 3.3 in [12]. We get the 
following weak formulation valid for all t small enough:∫

∂Ωt

β∇τ u(t, x).∇τ φt dσt +
∫

∂Ωt

∂nt u(t, x)φt dσt − λ(t)

∫
∂Ωt

u(t, x)φt dσt = 0.

We take the derivative with respect to t and get at t = 0:

β
d

dt

( ∫
∂Ωt

∇τ u(t, x).∇τ φt dσt

)∣∣∣∣
t=0

+ d

dt

( ∫
∂Ωt

∂nt u(t, x)φt dσt

)∣∣∣∣
t=0

= d

dt

(
λ(t)

∫
∂Ωt

u(t, x)φt (x) dσt

)∣∣∣∣
t=0

.

From [14] and [7], we get

d

dt

( ∫
∂Ωt

∇τ u(t, x).∇τ φt dσt

)∣∣∣∣
t=0

=
∫

∂Ω

(−�τu
′ − �τ(Vn∂nu) + divτ

((
2D2b − HId

)∇τ u
))

φ dσ.

After some lengthy but straightforward computations we also obtain

d

dt

(∫
Ωt

∂nt uφt dσt

)∣∣∣∣
t=0

=
∫

∂Ω

∂nu
′φ dσ −

∫
∂Ω

∇τVn.∇τ uφ dσ +
∫

∂Ω

Vn(∂nu + Hu)φ dσ

and

d

dt

(∫
∂Ωt

λ(t)utφt dσt

)∣∣∣∣
t=0

= λ′(0)

∫
∂Ω

uφ dσ + λ

∫
∂Ω

u′φ dσ + λ

∫
∂Ω

∂nuφ dσ + λ

∫
∂Ω

Huφ dσ.

To end the proof of this second point, it suffices to gather the relations. �
3.3. Shape derivative of simple eigenvalues of the Wentzell–Laplace problem

Let λ be a simple eigenvalue of the Wentzell–Laplace equation (1) and let u be the corresponding normalized 
eigenfunction. We give in this subsection the explicit formula for the shape derivative of the eigenvalue of the 
Wentzell–Laplace operator associated to (1).

On Ωt = (I + tV )(Ω) with t small, there is a unique eigenvalue λ(t) near λ which is an analytic function with 
respect of the parameter t . The associated eigenfunction ut(x) = u(t, x) is solution of the problem (1). The shape 
derivative denoted by u′ is the partial derivative ∂tu(t, x) evaluated at t = 0 and solves (36). Let us deduce the analytic 
expression of λ′(0):
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Theorem 3.6. If (λ, u) is an eigenpair (with u normalized) for the Wentzell problem with the additional assumption 
that λ is simple then the application t → λ(t) is analytic and its derivative at t = 0 is

λ′(0) =
∫

∂Ω

Vn

(|∇τ u|2 − |∂nu|2 − λH |u|2 + β
(
HId − 2D2b

)∇τ u.∇τ u
)
dσ.

Proof. We start with the result of Theorem 3.5. Let us multiply the two sides of (36) the boundary condition satisfied 
by u′ by the eigenfunction u and integrate over the boundary ∂Ω :

0 =
∫

∂Ω

v′(−β�τu + ∂nu − λu)dσ +
∫

∂Ω

Vn∂nu(−β�τu)dσ

+
∫

∂Ω

βVn

(
HId − 2D2b

)∇τ u.∇τ udσ +
∫

∂Ω

Vn|∇τ u|2 − λ′(0)

∫
∂Ω

|u|2 − λ

∫
∂Ω

Vn

(
u∂nu + H |u|2)dσ.

Using the boundary condition satisfied by the eigenfunction: −β�τu + ∂nu − λu = 0, it follows that

0 =
∫

∂Ω

Vn∂nu(λu − ∂nu)dσ +
∫

∂Ω

βVn

(
HId − 2D2b

)∇τ u.∇τ udσ

+
∫

∂Ω

Vn∇τ |u|2 − λ′(0)

∫
∂Ω

|u|2 − λ

∫
∂Ω

Vn

(
u∂nu + H |u|2)dσ

and the normalization condition 
∫
∂Ω

u2 dσ = 1 implies

λ′(0) = −
∫

∂Ω

Vn|∂nu|2 dσ +
∫

∂Ω

βVn

(
HId − 2D2b

)∇τ u.∇τ udσ +
∫

∂Ω

Vn|∇τ u|2 − λ

∫
∂Ω

VnH |u|2 dσ. �

3.4. Shape derivative of multiple eigenvalues of the Wentzell–Laplace problem

3.4.1. The general result
We suppose that λ is an eigenvalue of multiplicity m. For smooth deformation t 	→ Ωt , there will be m eigenvalues 

close to λ (counting their multiplicities) for small values of t . We know that such a multiple eigenvalue is no longer 
differentiable in the classical sense. We are then led to compute the directional derivative of t 	→ λi(t) at t = 0 where 
λi(t), j = 1, . . . , m, are given by Theorem 3.4. This is the second part of Theorem 1.4 that we recall here:

Theorem 3.7. Let λ be a multiple eigenvalue of order m ≥ 2. Then each t 	→ λi(t) for i ∈ �1, d� given by Theorem 3.4
has a derivative near 0, and the values of (λ′

i(0))i∈�1,d� are the eigenvalues of the matrix M(Vn) = (Mjk)1≤j,k≤m

defined by

Mjk =
∫

∂Ω

Vn

(∇τ uj .∇τ uk − ∂nuj ∂nuk − λHujuk + β
(
HId − 2D2b

)∇τ uj .∇τ uk

)
dσ. (37)

Proof. Let t 	→ (u(t, x), λ(t) = λ(Ωt)) be a smooth path of eigenpair of the Laplace–Wentzell problem, so that it 
satisfies{

�u(t, x) = 0 in Ωt

−β�τu(t, x) + ∂nu(t, x) = λ(t)u(t, x) on ∂Ωt .

We have proved that u′ = ∂tu(0, x) is harmonic in Ω and satisfies the boundary condition (36) on ∂Ω . We use the 
decomposition of u = u(0, x) as

u =
m∑

cjuj
j=1
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for some c = (c1, c2, . . . , cm)T �= 0. Multiplying the two sides of Eq. (36) by uk , we get after some integration by 
parts the eigenvalue equation

λ′(0)c = Mc

where M = (Mjk)1≤i,j≤m is defined by (37). From this, we deduce that the set of derivatives (λ′
i(0))i∈�1,d� is exactly 

the set of eigenvalues of the matrix M , which achieves the proof of Theorem 3.7. �
3.4.2. The case of balls

We consider now the case where the domain is a ball of radius R. The problem is invariant under translation. In 
order to remove the invariance, we fix the center of mass of the boundary of the domain, as in Section 2.

The coordinate functions xi are eigenfunctions of the Wentzell–Laplace operator, so we get

λ = β(d − 1) + R

R2
, and ui(x) = xi

‖xi‖L2(∂BR)

= xi√
ωdRd+1

.

Corollary 3.8. Let Ω = BR be a ball of radius R, λ1 its first non-trivial eigenvalue, which is of multiplicity d . 
The shape derivatives of the maps t 	→ λi(t), i = 1, . . . , d , given by Theorem 3.4 are the eigenvalues of the matrix 
MBR

(Vn) = (Mjk)j,k=1,...,d defined by

Mjk = δjk

ωdRd+1

(
1 + β

d − 3

R

) ∫
∂BR

Vn − C(d,R)

∫
∂BR

Vnxjxk dσ (38)

where C(d, R) = (d+1)(1+β d−2
R

)

ωdRd+3 .

Proof. We use (37). On one hand we check the geometric quantities:

H = d − 1

R
, D2b(x) = 1

R
Id − 1

R3
(xixj )i,j

so since ∇τ uj , ∇τ uk are in the tangent space of ∂BR , we obtain that

(
HId − 2D2b(x)

)∇τ uj .∇τ uk = d − 3

R
∇τ uj .∇τ uk

and on the other hand:

∂nuj = xi

R
√

ωdRd+1
∇τ uj .∇τ uk = 1

ωdR1+d

(
δjk − xjxk

R2

)

Therefore, the matrix M = MBR
has the following entries

Mjk = 1

ωdRd+1

∫
∂BR

Vn

[(
δjk − xjxk

R2

)
− xjxk

R2
− λ

d − 1

R
xjxk + β

d − 3

R

(
δjk − xjxk

R2

)]
dσ

= δjk

ωdRd+1

(
1 + β

d − 3

R

) ∫
∂BR

Vn −
[
d + 1 + β

(d−1)2+d−3
R

ωdRd+3

] ∫
∂BR

Vnxjxk dσ.

This leads to the result since (d − 1)2 + d − 3 = (d + 1)(d − 2). �
From this formula, we deduce a first interesting result:

Proposition 3.9. If V is a volume preserving deformation, then the following statements are equivalent:

(i) Vn is orthogonal (in L2(∂BR)) to homogeneous harmonic polynomials of degree 2,
(ii) MBR

(Vn) = 0.
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Proof. We denote by H2 the space of homogeneous harmonic polynomials of degree 2 (therefore we use here a 
slightly different notation than in Section 4). Let us suppose that M(Vn) = 0; this means that 

∫
∂BR

Vnxjxk dσ = 0, for 
all j, k = 1, . . . , d , and in particular Vn is orthogonal to H2.

If we assume now that Vn is orthogonal to H2, using that

H2 = span
{
xjxk, j �= k ∈ {1, . . . , d}, x2

1 − x2
j , j = 2, . . . , d

}
and moreover that 

∫
∂BR

Vn = 0, we obtain

d

∫
∂BR

Vnx
2
1 =

d∑
j=2

∫
∂BR

Vn

(
x2

1 − x2
j

)+ ∫
∂BR

d∑
j=1

x2
j = 0,

and therefore∫
∂BR

Vnx
2
j =

∫
∂BR

Vn

(
x2
j − x2

1

)= 0,

which concludes the proof. �
In the case where MBR

(Vn) �= 0, we compute the trace of the matrix MBR
(Vn) to obtain information on its eigen-

values.

Proposition 3.10. When Ω is a ball of radius R, then

Tr
(
MBR

(Vn)
)= 0 (39)

for all volume preserving deformations.

Proof. It comes that

Tr
(
MBR

(Vn)
)= −C(d,R)

∫
∂BR

d∑
j=1

x2
j Vn dσ = −C(d,R)

d∑
j=1

x2
j

∫
∂BR

Vn dσ = 0

since we are concerned with deformations preserving the volume. �
As a consequence of Proposition 3.9 and Proposition 3.10, there is the following alternative: either the only eigen-

value of M(Vn) is 0, or M(Vn) has at least one nonnegative and one nonpositive eigenvalue. Each t 	→ λi(t) given by 
Theorem 3.4 has a directional derivative at t = 0 denoted by λ′

i (0). We then define, as usual [8], ∂λ1 the subgradient 
of λ1 by ∂λ1 = [infi=1···d λ′

i (0), supi=1···d λ′
i (0)]. With this notation, 0 ∈ ∂λ1 and we say the ball is a critical shape.

3.5. Numerical illustrations

In order to illustrate Proposition 3.10, we consider the two dimensional case and consider perturbations of the disk 
given in polar coordinates by

ρt (θ) = R + tf (θ)

where f has zero mean value.
In Fig. 5, the computations are made in the case R = 1 and β = 10, the deformation parameter t appears in the 

abscissa.
In both collection of figures, we can see the derivatives of the second and third eigenvalues vanish at the ball in 

every case except when f (θ) = cos(2θ), where the regular lines cross, leading to a really nondifferentiable second 
eigenvalue. This is coherent with Proposition 3.9. Let us explicit the case Vn = R2 cos 2θ , where we are led to compute 
the eigenvalues of the following symmetric matrix

M = − 3

πR

(∫ 2π

0 cos 2θ cos2 θ dθ 0

0
∫ 2π

0 cos 2θ sin2 θ dθ

)

whose eigenvalues are α1 = − 3 and α2 = 3 .
2R 2R
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Fig. 5. λ1(Ω) and λ2(Ω) in the direction of f (θ) – |BR | = π , β = 10. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

4. Testing if the ball is a local maximum for λ1: second order arguments

We know that any ball is a critical point for volume preserving deformations. Therefore, if the subgradient 
∂λ1(B; Vn) �= {0}, then the ball is a local maximizer. It remains to deal with the case where all the eigenvalues of 
MB(Vn) are 0; this case corresponds to Vn orthogonal to the harmonics of order two. Then, we aim at proving that the 
second derivative of λ1 along at least one of the smooth branches is nonpositive.

The necessary order two conditions of optimality are: the second derivative of the Lagrangian should be nonpositive
on the subspace orthogonal to the space generated by the gradient of the volume constraint. We compute:

Vol′(0) =
∫

∂BR

Vn (40)

Hence Vol′(0) = 0 if and only if Vn ∈ (H0)
⊥ where Hk denotes the linear space of spherical harmonics of order k. Due 

to the previous remarks, we hence consider deformation field in the hilbertian space H spanned by all the spherical 
harmonics of order l ∈ I = N \ {0, 2}. The normal component of such a field is orthogonal to spherical harmonics of 
order 0 and 2.

The goal of this section is to present the different steps for the computations. We will characterize the matrix E

whose eigenvalues are the second order derivatives of the smooth branches of eigenvalues. It turns out that this com-
putation is hard even in the case of a ball. Nevertheless, the computation of Tr(E) is much simpler than the individual 
computations of the entries. In order to prove that the ball is a local maximum of λ1, it suffices to prove that its trace 
is nonpositive: therefore at least one smooth branch of eigenvalues has a nonpositive second order derivative.

In this section, we consider deformations preserving the volume at second order and not only at first order. Hence, 
we cannot consider deformation Tt of type I + tV with V independent of t and introduce deformations St that are the 
flow at time t of a vector field V (see also Remark 1.5). Notice that St = I + tV + o(t) so that Tt − St = o(t) and first 
order shape derivatives are unchanged. In particular, one has

d2

dt2
Vol
(
St (Ω)

)= ∫ (
∂

∂t
(Vn(t)) + Vn(t)

∂

∂n(t)
(Vn(t)) + HV 2

n(t)

)
dσ
∂Ω(t)
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and the volume preservation at second order means that(
d2

dt2
Vol
(
St (Ω)

))∣∣∣∣
t=0

=
∫

∂Ω

(
∂

∂t
(Vn(t)) + Vn(t)

∂

∂n(t)
(Vn(t)) + HV 2

n(t)

)∣∣∣∣
t=0

dσ = 0. (41)

4.1. Construction of the matrix E of the second derivatives

Let (u(t, x), λ(t) = λ(Ωt)) be an eigenpair of the Laplace–Wentzell problem, that is to say it solves{
�u(t, x) = 0 in Ωt

−β�τu(t, x) + ∂nu(t, x) = λ(t)u(t, x) on ∂Ωt

We use the decomposition of u = u(0, x) in the basis of eigenfunctions:

u =
d∑

j=1

cjuj

for some c1, c2, . . . , cd not all zero. We have shown that the vector c = (c1, c2, . . . , cd)T is solution of

λ′(0)c = M(Vn)c

where the matrix M(Vn) = (Mjk)1≤i,j≤d is defined by (37).
To compute the second derivative at t = 0, one has to compute the first shape derivative u′(x) = u′(0, x). 

Fredholm’s alternative insures the existence of a unique harmonic function ũj orthogonal to the eigenfunctions 
u1, u2, . . . , ud and satisfying on ∂Ω the boundary condition

−β�τ ũj + ∂nũj − λũj = β
[
�τ [Vn∂nuj ] + divτ

[
Vn

(
HId − 2D2b

) · ∇τ uj

]]
+ divτ [Vn∇τ uj ] + λ′uj + λVn(∂nuj + Huj ). (42)

It follows that

u′ =
d∑

j=1

c̃j uj +
d∑

j=1

cj ũj (43)

for some cj , c̃j when j = 1, . . . , d . We point out that the (cj ) are the same coefficients as the decomposition of u in 
the basis (uj ).

The strategy is straightforward: we have to consider the equation satisfied by u′ on the boundary ∂Ω and take its 
shape derivative again. A first look at the second derivative shows that we will encounter three operators:

• the first contains only u′′ and its expression is the following

E(0) = −β�u′′ + ∂nu
′′ − λu′′

• concerning the term in u′ and λ′ = 0 we have

E(1) = −2β�τ

(
Vn∂nu

′)− 2divτ

(
Vn(I + βA)∇τ u

′)− 2
[
λ′u′ + λVn

(
∂nu

′ + Hu′)]
where A = HI − 2D2b is the deviatoric part of the curvature tensor.

• The remaining term E(2) contains only u; we give a more explicit expression below.

Green–Riemann identity tells us that 〈E(0), ui〉 = 〈u′′, −β�τui + ∂nui − λui〉 = 0, i = 1, . . . , d . This means that the 
term E(0) will have no influence on the determination of the second derivative of the eigenvalue. We will focus only 
on E(1) and E(2).

Construction of E(2): The computations are very technical. We need first to use a test function φ which is the 
restriction of a test function Φ defined on a tubular neighborhood of the boundary such that its normal derivative 
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on ∂Ω is zero. This kind of extension is well discussed in the book [13] of Delfour and Zolésio. Taking the shape 
derivative of the boundary condition (36) (in the multiple case) we need to compute(

d

dt

∫
∂Ωt

Vn∇τ u.∇τ φ dσt

)∣∣∣∣
t=0

= 〈A(1)u′, φ
〉+ 〈A(2)u,φ

〉
,

β

(
d

dt

∫
∂Ωt

A(t)Vn∇τ u.∇τ φ dσt

)∣∣∣∣
t=0

= 〈B(1)u′, φ
〉+ 〈B(2)u,φ

〉
,

− d

dt

( ∫
∂Ωt

[
λ′u + λ

(
u′ + Vn∂nu + VnHu

)]
φ dσt

)∣∣∣∣
t=0

= 〈C(0)u′′, φ
〉+ 〈C(1)u′, φ

〉+ 〈C(2)u,φ
〉
,

β

(
d

dt

∫
∂Ωt

∇τ (Vn∇τ ∂nu).∇τ φdσt

)∣∣∣∣
t=0

= 〈D(1)u′, φ
〉+ 〈D(2)u,φ

〉
.

The remaining E(2) containing only u is then given by

E(2) = A(2)u + B(2)u + C(2)u + D(2)u.

For an operator L involved in E(i), i = 1, 2, 3, we denote by (Lij )i,j=1,...,d the matrix of L in the basis of the 
eigenvalues. After calculations (see also Remark D.1 in Appendix D), we get the following linear equation(

λ′′I − E
)
c + 2

(−M(Vn) + λ′I
)
c̃ = 0

(corresponding to the second derivation) together with(−M(Vn) + λ′I
)
c = 0

(corresponding to the first derivation) where the matrix E = (Eij ) is split into E = E(1) + E(2) where the terms 
involving u′ are gathered in E(1) and the terms involving u are gathered in E(2).

4.2. Computation of the trace

Since the direct computations of the eigenvalues are difficult, we restrict ourselves to the cases d = 2 or d = 3, and 
we will focus on the trace of E and prove that Tr(E) is nonpositive. We start with the trace of E(2):

Lemma 4.1. Assume d ∈ {2, 3}. With K(R) = d

R2+dωd−1
, we have

Tr
(
E(2)

)= −(dβ + R)RK(R)

∫
∂BR

|∇τ Vn|2dσ − K(R)

∫
∂BR

V 2
n dσ (44)

for all deformations preserving volume and such that Vn is orthogonal to spherical harmonics of order two.

Proof. The computation of E(2) is done in the Appendix C, and to obtain the result, we sum all the traces given by 
Lemmas C.1, C.2, C.3 and C.4. �

Concerning Tr(E(1)), we start with the following lemma which is straightforward (see also Remark D.1):

Lemma 4.2. We have that

Tr
(
E(1)

)= 2
∫

∂Ω

Vn

d∑
j=1

(−∂nũj ∂nuj − Hλũjuj + (I + β
(
HId − 2D2b

))∇τ ũj .∇τ uj

)
dσ (45)

holds for all deformations preserving volumes such that Vn is orthogonal to spherical harmonics of order two.

From this result we deduce the following, which is proved in Appendix D:
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Proposition 4.3. Assume d = 3 and set α = β
R

. We denote by Ym
l , m = −l, . . . , m, any spherical harmonic of order 

l ∈ I . If

Vn =
∑
l∈I

Rl

(
l∑

m=−l

vl,mYm
l

)
,

then

Tr
(
E(1)

)= −K(R)

(∑
l∈I

[Al,α + Bl,α]R2l+1
l∑

m=−l

|vl,m|2
)

where

Al,α = l

2l + 1

l + 2

l − 2
(4α + 2l)

1 + α(3 − l)

1 + α(l + 1)
and Bl,α = l + 1

l

l − 1

l
(4α + 2)

1 + α(4 + l)

1 + α(3 + l)
.

Since TrE = Tr(E(1)) + Tr(E(2)), we will then deduce the following result:

Proposition 4.4. Assume d ∈ {2, 3}. Then there exists a nonnegative constant μ such that

Tr(E) ≤ −K(R)μ

∫
∂BR

|∇τ Vn|2 + |Vn|2 dσ

holds for all preserving volume deformations such that Vn is orthogonal to H.

Proof. We distinguish the cases d = 2 and d = 3.

The case d = 2. Let us compute the trace of the matrix E. Gathering all the results of Lemma 4.1 with the computa-
tions of Appendix D concerning the trace of the different matrices involved in the matrix E, we obtain the following 
formula: when

Vn =
∑
l∈I

Rl

√
π

(
v

(l)
1 cos lθ + v

(l)
2 sin lθ

)
, l ∈ I,

we have

Tr(E) = −K(R)
∑
l∈I

G(α, l)
(
l2 + 1

)
R2l+1((v(l)

1

)2 + (v(l)
1

)2)
, (46)

where

G(α, l) = (l2 − 1)

2(1 + l2)

2 + l2 + 2α2(l − 2)l2 + α(l − 2)(l2 + 2)

(l − 2)l(1 + αl)
.

Let us remark that G(α, 1) = 0. This could have been guessed since the Wentzell eigenvalues are translation invari-
ance: we recall that, denoting by Bar the center of mass of the boundary, we have

Bar′(0) =
∫

∂BR

xVn

so that deformations orthogonal to spherical harmonics of order 1 preserve at first order the center of mass. A close 
look at the fraction G shows that it has no pole for α > 0 and l ≥ 3, that it is nonnegative for l > 2 and that G(l, α) → 1
when l → +∞; then there is a nonnegative constant μ such that for all l ≥ 3, μ ≤ G(l, α). This gives

Tr(E) ≤ −K(R)μ

∫
∂BR

|∇τ Vn|2 + |Vn|2 dσ.

The case d = 3. The strategy is the same, and we use again Lemma 4.1 and the detailed computations from Sec-
tion D.2: we get for l ∈ I :
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Vn =
∑
l∈I

Rl

l∑
p=−l

v(l)
p Y

p
l ,

Tr(E) = −K(R)
∑
l∈I

F (α, l)
(
l(l + 1) + 1

)
R2l+1

l∑
p=−l

(
v(l)
p

)2
,

where F(α, l) is the fraction

F(α, l) = (l − 1)
∑3

m=0 Pm(l)αm

(l(l + 1) + 1)l(1 + α(l + 1))(2l + 1)(l − 2)(1 + α(l + 3))
,

and where the polynomials Pm are defined as

P0(X) = 2X4 + 5X3 + 16X2 − 8,

P1(X) = 4X5 + 18X4 + 40X3 + 68X2 − 28X − 56,

P2(X) = 2X6 + 21X5 + 42X4 + 35X3 + 16X − 112,

P3(X) = 8X6 + 18X5 + 24X4 − 68X3 − 144X2 − 112X − 64.

Let us remark that F(α, 1) = 0 for the same reason as in dimension two. By Descartes’s rule of signs, the polynomi-
als Pm have at most one positive root. Since Pm(0) < 0 and Pm(2) > 0 for m = 0, . . .3, Pm has exactly one positive 
root which is in [0, 2]. Since l > 2, there exists a nonnegative constant μ such that for all k ≥ 3, μ ≤ F(k, α) and

Tr(E) ≤ −K(R)μ

∫
∂BR

|∇τ Vn|2 + |Vn|2 dσ. �
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Appendix A. Some classical results on tangential differential calculus

We recall some facts about tangential operators acting on functions defined on ∂Ω . The formulas involve the ex-
tensions of functions and the differential calculus becomes easier since we will use the classical euclidean differential 
calculus in a neighborhood of ∂Ω . The canonical extension will be provided thanks to the oriented distance and 
the orthogonal projection on the tangent plane. For more details, the interested reader will consult the book [13] of 
M. Delfour and J.P. Zolésio from which we borrowed the necessary material.

A.1. Notations and definitions. Preliminary results

We recall some essential notations and definitions that are needed for the computations of shape derivatives. Given 
a smooth function f : ∂Ω 	→ R, we define its tangential gradient ∇τ as

∇τ f = ∇f̃ − ∇f̃ .n n (47)

where f̃ is any extension of f in a tubular neighborhood of ∂Ω . An extension is easily obtained when ∂Ω is smooth. 
The tangential gradient does not depend on the extension.
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It is also useful to define the tangential gradient as the normal projection of ∇f̃ to the tangent hyperplane of ∂Ω ; 
in other words

∇τ f = ∇f̃ − n ⊗ n∇f̃ , on ∂Ω.

We also need the definition of the tangential divergence: for a tensor v, we define the surface divergence as

divτ u = Tr(∇τ u)

For regular functions we define the surface Laplacian or Laplace–Beltrami operator as

�τf := divτ (∇τ f ).

We recall the definition of the oriented distance b∂Ω :

b∂Ω(x) =
{

dΩ(x) for x ∈ R
d\Ω

−dΩ(x) for x ∈ Ω,
(48)

where the notation dΩ stands for the distance function for a subset Ω ⊂R
d :

dΩ(x) = inf
y∈Ω

|x − y|
We shall sometimes write b instead of b∂Ω ; its gradient is an extension of the normal vector field n in a neighborhood 
of ∂Ω .

Let D2b be the Weingarten operator with entries (∇τ )inj where nj is the j -th component of n. The normal vector 
is known to be in the kernel of D2b, while the other eigenfunctions are tangential with the corresponding eigenvalues 
given by the principal curvatures of ∂Ω .

Let κi , i = 1, . . . , d − 1, be the nonzero eigenvalues of D2b. We define the mean curvature H as

H =
d−1∑
i=1

κi = Tr
(
D2b

)= �b, on ∂Ω. (49)

An important result about the normal derivative of these quantities is:

Proposition A.1. Suppose that the boundary ∂Ω is of class C3. Then the normal derivative of the mean curvature H
is

∂nH = −
d−1∑
i=1

κ2
i . (50)

Other known identities: we denote by x the identity function. We have

−�τ x = Hn

divτ n = Hn

Tangential integral formula: Given two functions f (scalar) and v smooth enough, we have∫
∂Ω

f divτ v +
∫

∂Ω

∇τ f.v =
∫

∂Ω

Hf v.n

Shape derivative of the main curvature H and of the normal n in the direction of a velocity V :

Proposition A.2. Let a surface ∂Ω be of class C2. The shape derivatives of the normal n and of the mean curvature H

in the direction of the velocity vector V are

n′ = −∇τVn

H ′ = −�τVn (51)

where Vn = 〈V , n〉 denotes the normal component of the vector deformation V.
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A.2. A commutation lemma

Here f and g are two smooth functions defined on U a neighborhood of ∂Ω ; the notation b stands for the oriented 
distance. Recall that its gradient is an extension of the normal field n on ∂Ω .

Proposition A.3. We have

∂n(∇τ f.∇τ g) + 2
(
D2b∇τ f

)
.∇g = ∇τ (∂nf ).∇τ g + ∇τ (∂ng).∇τ f (52)

Proof. A straightforward computation gives

∂n(∇f.∇g) = (D2f ∇g
)
.n + (D2g∇f

)
.n

and

∇(∂nf ).∇g = ∇(∇f.n).∇g

= (D2f n
)
.∇g + (D2b∇f

)
.∇g

hence

∇(∂nf ).∇g + ∇(∂ng).∇f = 2
(
D2b∇f

)
.∇g + (D2f n

)
.∇g + (D2gn

)
.∇f

= 2
(
D2b∇f

)
.∇g + ∂n(∇f.∇g)

We use now the decomposition of ∇ into its normal and tangential components and the well known identity 
D2bn.n = 0. We get

∇τ (∂nf ).∇τ g + ∇τ (∂ng).∇τ f + ∂2f

∂n2

∂g

∂n
+ ∂2g

∂n2

∂f

∂n

= 2
(
D2b∇τ f

)
.∇τ g + ∂n(∇τ f.∇τ g) + ∂2f

∂n2

∂g

∂n
+ ∂2g

∂n2

∂f

∂n
(53)

hence

∇τ (∂nf ).∇τ g + ∇τ (∂ng).∇τ f = 2
(
D2b∇τ f

)
.∇τ g + ∂n(∇τ f.∇τ g) �

Appendix B. Spherical harmonics

In order to explicit the shape hessian under consideration, a useful tool is the surface spherical harmonics defined as 
the restriction to the surface of the unit sphere of harmonic polynomials in the special case d = 3. We recall here facts 
from [25, pages 139–141]. Spherical harmonics are defined as restrictions of homogeneous harmonic polynomials to 
the unit sphere. The spherical harmonics are said to be of order k when the harmonic homogeneous polynomial is of 
degree k. We denote by Hk the space of spherical harmonics of degree k. We show that is also the eigenspace of the 
Laplace–Beltrami operator on the unit sphere associated with the eigenvalue k(k + 1). Its dimension is

dk = 2k + 1.

Let (Y l
k)−k≤l≤k be an orthonormal basis of Hk with respect to the L2(∂B1) scalar product. The (Hk)k∈N spans a 

vector space dense in L2(∂B1) and the family (Y l
k)k∈N,−k≤l≤k is a Hilbert basis of L2(∂B1). To be more precise, if 

f ∈ L2(∂B1), then there exists a unique representation

f =
∞∑

k=0

Yk

where the series converge to f in the L2 norm and

Yk =
k∑

bl
kY

l
k ∈Hk
l=−k
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If x = (x1, x2, x3) ∈ R
3, it is natural to use on a sphere the spherical coordinates (r, θ, φ) where r is the radius and θ

and φ are the Euler angles. The spherical harmonic Y l
k is defined with the Euler angles (θ, φ) as

Y l
k = (−1)l

√[
k + 1

2

2π

(k − l)!
(k + l)!

]
eilφ

P
l
k(cos θ), −k ≤ l ≤ k,

where the polynomial Pl
k is the associated Legendre polynomial. The formula giving the explicit form of these poly-

nomials can be found in the book of Nédélec [23, page 24].
When k �= k′, we have also the orthogonality property∫

∂B1

YkYk′dσ = 0

when Yk ∈ Hk and Yk′ ∈ Hk′ . A homogeneity argument shows that any function ϕ in L2(∂BR) can be decomposed 
as the Fourier series:

ϕ(x) =
∞∑

k=0

Rk

(
k∑

l=−k

αk,l(ϕ)Y l
k

(
x

|x|
))

, for |x| = R.

Then, by construction, the function u defined by

u(x) =
∞∑

k=0

|x|k
(

dk∑
l=1

αk,l(ϕ)Y l
k

(
x

|x|
))

, for |x| ≤ R,

being harmonic in BR and satisfying u = ϕ on ∂BR .
We recall now some results about the integration of three spherical harmonics, they will enable us to estimate 

Tr(E) in dimension three. When we integrate three spherical harmonics, we use coefficients called Clebsch–Gordon 
coefficients or Wigner-3j coefficients. The Wigner-3j coefficients are mostly used; they are related to Clebsch–
Gordon coefficients via some known formula that the interested reader will find in the book of Cohen Tannoudji et al.
[9, Tome 2, Annex B].

The first general result concerns the product of two spherical harmonics; it is given by the following proposition.

Proposition B.1. Given l1, l2 > 0 two natural integers and −l1 ≤ m1 ≤ l1, −l2 ≤ m2 ≤ l2, we have

Y
m1
l1

Y
m2
l2

= (−1)m1+m2

l1+l2∑
L=|l1−l2|

√
(2l1 + 1)(2l2 + 1)(2L + 1)

4π

(
l1 l2 L

0 0 0

)(
l1 l2 L

m1 m2 −m1 − m2

)
Y

m1+m2
L ,

where 
(

l1 l2 L

0 0 0

)
and 

( l1 l2 L
m1 m2 −m1−m2

)
are the Wigner-3j symbols.

The second result concerns the integration of three spherical harmonics.

Proposition B.2. We have:∫
∂B1

Y
m1
l1

Y
m2
l2

Y
m3
l3

=
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
.

In particular it holds

Proposition B.3. Let l be a natural integer and m an integer. We have:

1. If −l ≤ m ≤ l then∫
Ym

l Y 0
0 Ym

l =
√

1

4π
,

∂B1
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and ∫
∂B1

Ym
l Y 1

1 Ym+1
l−1 = −

√
3

8π

√
(l − m)(l − m − 1)

(2l + 1)(2l − 1)
.

2. If −l − 1 ≤ m ≤ l + 1 then∫
∂B1

Ym
l Y 0

1 Ym
l+1 =

√
3

4π

√
(l + m + 1)(l − m + 1)

(2l + 1)(2l + 3)
.

3. If −l − 2 ≤ m ≤ l then∫
∂B1

Ym
l Y 1

1 Ym+1
l+1 =

√
3

8π

√
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
.

Appendix C. Intermediate results for the second shape derivative matrix

We need to construct the matrix associated to the second shape derivative. To that end, we have to compute the 
explicit formula for all the shape derivatives of order one involved in the formula giving λ′ (see Theorem 3.6). In this 
appendix, we focus on the term E(2) introduced in Section 4.1. Since these computations are very technical, we only 
give the main line and the used arguments, omitting a couple of details. In the following lines, we denote by H(t) the 
mean curvature associated to the boundary of Ωt and A(t) the deviatoric part defined on ∂Ωt as

A(t) = H(t)I − 2D2b(t)

(see [13] for the terminology).
In order to deal with the weak formulation on the boundary ∂Ωt , we will make use of a test function φ which is 

the restriction of a test function Φ defined on a tubular neighborhood of the boundary such that its normal derivative 
is zero. This kind of extension is well discussed in the book [13] of Delfour and Zolésio.

In this differentiation, nineteen terms arise and we introduce some notations to study them separately. For all 
function test φ ∈ H 1(∂Ω), we will need in the sequel the following quantities:

A
(
u,u′, φ

)= ( d

dt

∫
∂Ωt

Vn∇τ u.∇τ φdσt

)∣∣∣∣
t=0

,

B
(
u,u′, φ

)= β

(
d

dt

∫
∂Ωt

A(t)Vn∇τ u.∇τ φ dσt

)∣∣∣∣
t=0

,

C
(
u,u′, u′′, φ

)= − d

dt

( ∫
∂Ωt

[
λ′u + λ

(
u′ + Vn∂nu + VnHu

)]
φ dσt

)∣∣∣∣
t=0

,

D
(
u,u′, φ

)= β

(
d

dt

∫
∂Ωt

∇τ (Vn∂nu).∇τ φ dσt

)∣∣∣∣
t=0

.

We will now study independently each term A, B, C and D, when Ω = BR ⊂ R
2 or R3, and t 	→ Ωt is volume 

preserving.

Study of D(u, u′, φ). First, we denote

W = d

dt
(V · nΩt )

∣∣∣∣
t=0

.

From the derivative formula of boundary integrals, we know that we have to compute three main terms: the first 
corresponds to the shape derivative, the second concerns the normal derivative of the integrand and the third is related 
to the term related to the mean curvature H . The first term is
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β

( ∫
∂Ωt

d

dt

[∇τ (Vn∂nu).∇τ φ
]
dσt

)∣∣∣∣
t=0

= β

( ∫
∂BR

∇τ

(
Vn.∂nu

′ − Vn∇τ u.∇τ Vn

)
.∇τ φ dσ +

∫
∂BR

∇τ

(
V ′

n.∂nu
)
.∇τ φ dσ

)

+ β

∫
∂BR

∂n(Vn∂nu)∇τ Vn.∇τ φ dσ

= −β

∫
∂BR

�τ

(
Vn.∂nu

′)φ dσ + β

∫
∂BR

∇τ

(
V ′

n.∂nu
)
.∇τ φ dσ

+ β

∫
∂BR

∂n(Vn∂nu)∇τ Vn.∇τ φ dσ + β

∫
∂BR

�τ (Vn∇τ u.∇τVn)φ dσ.

The third term is

β

∫
∂BR

HVn∇τ (Vn∂nu).∇τ φ dσ = −β

∫
∂BR

divτ

(
HVn∇τ (Vn∂nu)

)
φ dσ.

We focus now on the second term. We have

β

∫
∂BR

Vn∂n

[∇τ (Vn∂nu).∇τ φ
]
dσ

= β

∫
∂BR

Vn∇τ

[
∂n(Vn∂nu)

]
.∇τ φ dσ − 2β

∫
∂BR

Vn

(
D2b∇τ [Vn∂nu]).∇τ φ dσ

= β

( ∫
∂BR

Vn∇τ

[
∂n(Vn∂nu)

]
.∇τ φ dσ − 2

∫
∂BR

Vn

(
D2b∇τ [Vn∂nu]).∇τ φ dσ

)

= −β

∫
∂BR

divτ

[
Vn∇τ [∂nu∂nVn] − 2VnD

2b∇τ [Vn∂nu]]φ dσ.

We expand D(u, φ) into a sum 〈D(1)u′, φ〉 + 〈D(2)u, φ〉. For D(2), we will set D(2) =∑3
k=1 D(2,k) where

〈
D(1)u′, φ

〉= β

∫
∂BR

∇τ

[
Vn.∂nu

′].∇τ φ dσ = −β

∫
∂BR

�τ

[
Vn∂nu

′]φ dσ

〈
D(2,1)u,φ

〉= β

[ ∫
∂BR

−�τ [W∂nu]φ dσ −
∫

∂BR

divτ

[
Vn∂nVn∇τ [∂nu]]φ dσ

−
∫

∂BR

divτ

[
HVn∇τ (Vn∂nu)

]
φ dσ

]
,

〈
D(2,2)u,φ

〉= −β

∫
∂BR

divτ [∂nu∂nVn∇τ Vn]φ dσ + β

∫
∂BR

�τ [Vn∂nu∇τ Vn]φ dσ,

〈
D(2,3)u,φ

〉= 2β

∫
∂BR

divτ

[
VnD

2b · ∇τ [Vn∂nu]]φ dσ.

We denote by D(1) and D(2,k), k = 1, 2, 3, the matrices whose elements are defined by

D
(1) = 〈D(1)ũi , uj

〉
, and D

(2,k) = 〈D(2,k)ui, uj

〉
, i, j = 1,2, . . . , d.
ij ij
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We give a result concerning the traces of the matrices.

Lemma C.1. We have

Tr
(
D(2,1)

)= Tr
(
D(2,2)

)= 0 and Tr
(
D(2,3)

)= −2β(d − 1)K(R)

R

∫
∂BR

V 2
n dσ,

with the normalization constant K(R) = d

R2+dωd
.

Proof. We have

Tr
(
D(2,1)

)= β

[ ∫
∂BR

−�τ

(
W

d∑
i=1

∂nui

)
ui dσ −

∫
∂BR

divτ

(
Vn∂nVn

d∑
i=1

∇τ (∂nui)

)
ui dσ

−
∫

∂BR

d∑
i=1

divτ

(
HVn∇τ (Vn∂nui)

)
ui dσ

]

= β

∫
∂BR

V ′
n(d − 1)

d∑
i=1

|∂nui |2 dσ

R
+ β

∫
∂BR

Vn∂nVn

d∑
i=1

∇τ (∂nui) · ∇τ ui ∂σ

+ β

∫
∂BR

HV 2
n

d∑
i=1

∇τ (∂nui) · ∇τ ui dσ + β

∫
∂BR

H

d∑
i=1

∂nuiVn∇τVn · ∇τ ui . dσ (54)

Combining the two facts (coming from algebraic properties of spherical harmonics, see Appendix B),

(d − 1)

d∑
i=1

|∂nui |2
R

=
d∑

i=1

∇τ (∂nui) · ∇τ ui = d(d − 1)

R2+dωd

= (d − 1)K(R) (55)

and ∫
∂BR

Vn

d∑
i=1

∂nui∇τVn · ∇τ ui = 0, (56)

we get

Tr
(
D(2,1)

)= (d − 1)

d∑
i=1

|∂nui |2
∫

∂BR

(
W + Vn∂nVn + HV 2

n

)dσ

R
.

Since we assumed the deformation to be volume preserving up to the second order (41), we have Tr(D(2,1)) = 0. The 
same strategy applies for Tr(D(2,2)).

We focus now on Tr(D(2,3)). We first expand the second term in the definition of D(4):

Tr
(
D(2,3)

)= β

d∑
i=1

∫
∂BR

Vn∂nui∇τ [∂nVn].∇τ ui − 2Vn∂nuiD
2b∇τVn · ∇τ ui dσ

− β

d∑
i=1

∫
∂BR

2V 2
n D2b∇τ (∂nui) · ∇τ ui dσ.

We follow the same argument thanks to the relations (55)–(56) and the fact
d∑

i=1

D2b∇τ (∂nui).∇τ ui = (d − 1)K(R)

R

on the sphere. Recall that on the sphere D2b = Id/R when restricted to the tangent space. �
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Study of B(u, u′, φ). In the same manner, we begin to compute the derivative of the integrand:

d

dt

(
A(t)Vn∇τ u.∇τ φ

)∣∣∣∣
t=0

=A′Vn∇τ u.∇τ φ +AV ′
n∇τ u.∇τ φ +AVn∇τ u

′.∇τ φ −AVn∂nu∇τVn.∇τ φ.

Denote A = (aij )1≤i,j≤d and Ã= (∂naij )1≤i,j≤d . Thanks to Lemma A.3, we get

Vn∂n(VnA · ∇τ u.∇τ φ) = V 2
n Ã · ∇τ u.∇τ φ + Vn∂nVnA · ∇τ u.∇τ φ + V 2

n A∂n[∇τ u.∇τ φ].
From the relation

β
d

dt

∫
∂Ωt

A(t)Vn∇∂Ωt u.∇∂Ωt φ dσt

∣∣∣∣
t=0

=
∫

∂BR

d

dt

(
A(t)Vn∇∂Ωt u.∇∂Ωt φ

)∣∣∣∣
t=0

dσ

+
∫

∂BR

Vn∂n(AVn∇τ u.∇τ φ) dσ +
∫

∂BR

HV 2
n A∇t u.∇τ φ dσt ,

we gather all the terms and obtain B(u, φ) = 〈B(1)u′, φ〉 + 〈B(2)u′, φ〉; we then set

〈
B(2)u,φ

〉= 4∑
i=1

〈
B(2,i)u,φ

〉
,

where〈
B(2,1)u′, φ

〉= −β

∫
∂BR

divτ

[
VnA · ∇τ u

′]φ dσ,

〈
B(2,1)u,φ

〉= −β

∫
∂BR

divτ

[(
W + HV 2

n + Vn∂nVn

)
A · ∇τ u

]
φ dσ,

〈
B(2,2)u,φ

〉= −β

∫
∂BR

divτ [∂nuVnA · ∇τVn]φ dσ,

〈
B(2,3)u,φ

〉= −β

∫
∂BR

divτ

[
VnA′ · ∇τ u

]
φ dσ,

〈
B(2,4)u,φ

〉= β

∫
∂BR

V 2
n ∂n[A · ∇τ u.∇τ φ]dσ.

We get

〈
B(2,4)u,φ

〉= β

∫
∂BR

V 2
n

(
∂n[A] · ∇τ u.∇τ φ

)
dσ + β

∫
∂BR

V 2
n A · ∇τ ∂nu.∇τ φ dσ − β

∫
∂Ω

2
(
D2bA

) · ∇τ u.∇τ φ dσ

= −β

∫
∂BR

divτ

[
V 2

n

(
Ã · ∇τ u +A · ∇τ [∂nu])− 2D2bA · ∇τ u)

]
φ dσ

Let B(2,k), k = 1, 2, 3, 4, denote the respective matrices associated to the operator with respect to the basis of eigen-
vectors. We have the following result:

Lemma C.2. We have

Tr

(
4∑

i=1

B(2,i)

)
= −β(d − 1)RK(R)

∫
∂BR

|∇τVn|2 dσ + 2
βK(R)

R

∫
∂BR

V 2
n dσ.
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Proof. Using the same arguments as before, we prove easily that Tr(B(2,1)) = Tr(B(2,2)) = 0.
For the other terms, above all we have to focus on the term

Tr
(
B(2,3)

)= β

∫
∂BR

Vn

d∑
i=1

(
A′ · ∇τ ui

)
.∇τ ui dσ.

We have, thanks to the expression of shape derivation of the normal vector and of the mean curvature given in Propo-
sition A.2:

A(t) = H(t) − 2D2b(t) ⇒ A′ = −�τVn + 2D(∇τVn);
then

Tr(B(2,3)) = β

∫
∂BR

Vn

d∑
i=1

(
A′ · ∇τ ui

)
.∇τ ui dσ

= −β

∫
∂BR

Vn�τVn

d∑
i=1

|∇τ ui |2 dσ + 2β

∫
∂BR

Vn

d∑
i=1

[
D(∇τVn) · ∇τ ui

]
.∇τ ui dσ

= −β

∫
∂BR

Vn�τVn

d∑
i=1

|∇τ ui |2 dσ + 2β

∫
∂BR

Vn

d∑
i=1

[
Dτ (∇τVn) · ∇τ ui

]
.∇τ ui dσ

= −β

∫
∂BR

Vn�τVn

d∑
i=1

|∇τ ui |2 dσ + 2β

∫
∂BR

Vn

d∑
i=1

[
D2

τVn · ∇τ ui

]
.∇τ ui dσ

= −β

∫
∂BR

Vn�τVn

d∑
i=1

|∇τ ui |2 dσ + 2β

∫
∂BR

VnTr
(
D2

τVn

) d∑
i=1

|∇τ ui |2 dσ

Since Tr(D2
τ Vn) = �τVn, and since 

∑d
i=1 |∇τ ui |2 = RK(R), on ∂BR we get

Tr
(
B(2,3)

)= β

∫
∂BR

Vn�τVn

d∑
i=1

|∇τ ui |2 dσ = β(d − 1)RK(R)

∫
∂BR

Vn�τVn dσ.

Concerning Tr(B(2,4)), we have to distinguish the case d = 2 from the case d = 3. If d = 3 then A = 0; this implies 
that Tr(B(2,4)) is reduced to

Tr
(
B(2,4)

)= (d − 1)K(R)
β

R

∫
∂BR

V 2
n dσ.

If d = 2, then A + Ã is a null matrix and this leads to

Tr
(
B(2,4)

)= 2β

∫
∂BR

V 2
n

d∑
i=1

D2b · ∇τ ui .∇τ ui dσ

= 2K(R)
β

R

∫
∂BR

V 2
n dσ.

Then for d = 2, 3 we get

Tr
(
B(2,4)

)= 2β
K(R)

. �

R
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Study of A(u, u′, φ). We have

d

dt

( ∫
∂Ωt

Vn∇τ u.∇τ φdσt

)∣∣∣∣
t=0

=
∫

∂BR

W∇τ u.∇τ φ dσ +
∫

∂BR

Vn∇τ u
′.∇τ φ dσ

+
∫

∂BR

Vn∇τVn.[∂nu∇τ φ + ∂nφ∇τ u]

+ (Vn∂n[Vn∇τ u.∇τ φ] + HV 2
n ∇τ u.∇τ φ

)
dσ.

Since ∂nφ = 0, it comes that∫
∂BR

Vn∇τVn.[∂nu∇τ φ + ∂nφ∇τ u]dσ = −1

2

∫
∂BR

V 2
n

[
∂nu�τφ + ∇τ [∂nu].∇τ φ

]

= −1

2

∫
∂BR

V 2
n

(
∂n[∇τ u.∇τ φ] + 2D2b∇τ u.∇τ φ

)
dσ

− 1

2

∫
∂BR

V 2
n ∂nu�τφ dσ

Hence, gathering the equivalent terms we get

d

dt

∫
∂Ωt

Vn∇τ u.∇τ φdσt

∣∣∣∣
t=0

=
∫

∂BR

W∇τ u
′.∇τ φ dσ +

∫
∂BR

Vn∇τ u
′.∇τ φ dσ

− 1

2

∫
∂BR

�τ

[
V 2

n ∂nu
]
φ − ∂n

(
V 2

n ∇τ u.∇τ φ
)
dσ

+
∫

∂BR

(
HId − D2b

)
V 2

n ∇τ u.∇τ φ dσ.

We split these terms into A(u, φ) = 〈A(1)u′, φ〉 + 〈A(2)u, φ〉. As before, we set 〈A(2)u, φ〉 =∑3
i=1〈A(i)u, φ〉 where

〈
A(1)u′, φ

〉= ∫
∂BR

−divτ

[
Vn∇τ u

′]φ dσ,

〈
A(2,1)u,φ

〉= ∫
∂BR

−divτ

[(
W + HV 2

n + Vn∂nVn

)∇τ u
]
φ dσ,

〈
A(2,2)u,φ

〉= ∫
∂BR

divτ [∂nuVn∇τ Vn]φ dσ,

〈
A(2,3)u,φ

〉= ∫
∂BR

divτ

[
V 2

n

(
2D2b∇τ u − ∇τ (∂nu)

)]
φ dσ.

We have

Lemma C.3. We have

Tr
(
A(2,1)

)= 0, Tr
(
A(2,2)

)= 0 and Tr
(
A(2,3)

)= −K(R)

∫
∂BR

V 2
n dσ.
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The proof of Lemma C.3 follows the lines of the proof of Lemma C.2.

Study of C(u, u′, u′′, φ). We decompose C(u, u′, u′′, φ) as follows:

C(u,φ) = 〈C(0)u′′, φ
〉+ 〈C(1)u′, φ

〉+ 〈C(2)u,φ
〉

with 〈C(2)u, φ〉 =∑6
i=3〈C(2,i)u, φ〉 where

〈
C(0)u′′, φ

〉= −λ

∫
∂BR

u′′φ dσ

〈
C(1)u′, φ

〉= −2
∫

∂BR

(
λ′u′ + λVn

(
∂nu

′ + Hu′))φ dσ

〈
C(2,1)u,φ

〉= −λ′′
∫

∂BR

uφ − λ′
∫

∂BR

Vn∂nuφ dσ

〈
C(2,2)u,φ

〉= −λ

∫
∂BR

(
W + Vn∂nVn + HV 2

n

)
(∂nu + Hu)φ dσ

〈
C(2,3)u,φ

〉= −λ

∫
∂BR

Vn

(−∇τVn.∇τ u + H ′u
)
φ dσ

= λ

∫
∂BR

Vn(∇τVn.∇τ u + �τVnu)φ dσ

〈
C(2,4)u,φ

〉= −λ

∫
∂BR

V 2
n

(
∂2
nu − u

d−1∑
i=1

κ2
i + H∂nu

)
φ dσ

= 0.

Denoting by (C(2,j)), j = 1, 2, 3, 4, the matrices associated to the linear operators C(2,p), p = 1, 2, 3, 4, in the basis 
of eigenvectors, we get:

Lemma C.4. We have

4∑
j=1

Tr
(
C(2,j)

)= λR3K(R)

∫
∂BR

Vn�τVn dσ = −((d − 1)β + R
)
RK(R)

∫
∂BR

|∇τ Vn|2 dσ.

Proof. The proof is straightforward and obeys to the same arguments used before. The only nonnull trace concerns 
the factor in −H ′ = �τVn. �
Appendix D. Computing u′

In this section, we focus on the computation of the trace of E(1) introduced in Section 4.1. We recall that t 	→
(λ(t), u(t, ·)) is solution of

�u = 0 in Tt (BR),

−β�τu + ∂nu − λ(t)u = 0 on ∂Tt (BR).
(57)

To compute the second derivative, one must know u′ = u′(0). For the reader convenience, we recall the problem (36)
solved by u′.
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�u′ = 0 in BR,

−β�τu
′ + ∂nu

′ − λv′ = β�τ (Vn∂nu) − βdivτ

(
Vn

(
2D2b − HId

)∇τ u
)

+ divτ (Vn∇τ u) − λ′u + λVn(∂nu + Hu) on ∂BR.

First, Fredholm’s alternative insures the existence of a unique harmonic function ũj orthogonal to the eigenfunctions 
u1, u2, . . . , ud and satisfying on ∂BR the boundary condition

−β�τ ũj + ∂nũj − λũj = β
[
�τ [Vn∂nuj ] + divτ

[
Vn

(
HId − 2D2b

) · ∇τ uj

]]
+ divτ [Vn∇τ uj ] + λ′uj + λVn(∂nuj + Huj ). (58)

It follows that

u′ =
d∑

j=1

c̃j uj +
m∑

j=1

cj ũj (59)

for some cj , c̃j when j = 1, . . . , d . We point out that the (cj ) are the same coefficients as the decomposition of u in 
the basis (uj ) of the eigenspace associated to λ: u = c1u1 + · · · + cdud .

Remark D.1. We recall that we only need the terms ũj : we inject this decomposition of u′ in E(1):

E(1)φ = −2
d∑

j=1

c̃j

[ ∫
∂BR

Vn∂nuj ∂nφ dσ + 2
R + β(d − 3)

R

∫
∂BR

Vn∇τ uj .∇τ φ dσ

]

− 2
m∑

j=1

cj

[ ∫
∂BR

Vn∂nũj ∂nφ dσ + 2
R + β(d − 3)

R

∫
∂BR

Vn∇τ ũj .∇τ φ dσ

− 2λ

∫
∂BR

VnHujφ dσ − 2λ

∫
∂BR

VnHũjφ dσ

]
.

By construction the first sum cancels and we simply get

E
(1)
jk = 2

∫
∂Ω

Vn

(−∂nũj ∂nuk − Hλũjuk + (I + β
(
HId − 2D2b

))∇τ ũj .∇τ uk

)
dσ

D.1. Explicit resolution of (58) to compute ũj

Let us now compute ũj solution of (58). This step consists in technical computations. For the completeness of the 
presentation, we present the case of dimension three, we will then simply state the results in dimension two. From 
now on, we do not consider the case d ≥ 4 for technical reasons.

D.1.1. Explicit representation of ũj in the case d = 2
We illustrate the computation of the elements ũi , i = 1, 2 in the case d = 2. The eigenfunctions are the normalized 

coordinate functions that is (u1, u2) given by

u1(r, θ) = r
cos θ√
πR3

and u2(r, θ) = r
sin θ√
πR3

.

We have

Lemma D.2. Let V be a deformation of normal component Vn = Rk(v
(k)
1 coskθ + v

(k)
2 sin kθ), then

ũ1(r, θ) = rk+1

2
√

πR
7
2

1 − k

k

[
v

(k)
1 cos (k + 1)θ + vk

2 sin (k + 1)θ
]

+ rk−1

√ 3
2

1 + k

k − 2

[
β(2 − k) + R

kβ + R

][
v

(k)
1 cos (k − 1)θ + vk

2 sin (k − 1)θ
]

(60)

2 πR
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and

ũ2(r, θ) = rk+1

2
√

πR
7
2

1 − k

k

[−v
(k)
2 cos (k + 1)θ + vk

1 sin (k + 1)θ
]

+ rk−1

2
√

πR
3
2

1 + k

k − 2

[
β(2 − k) + R

kβ + R

][
v

(k)
2 cos (k − 1)θ − vk

1 sin (k − 1)θ
]

(61)

In order to justify these formulae, one has to compute a, b, c, d the coefficients

ũj = a(k) cos (k + 1)θ + b(k) sin (k + 1)θ + c(k) cos (k − 1)θ + d(k) cos (k − 1)θ

such that ũj satisfies (58) with ui = xi‖xi‖L2(∂BR)
. We left the tedious computations to the reader.

D.1.2. Explicit representation of ũj in the case d = 3
We begin with the case where Vn = rlYm

l and ϕp = rY
p

1 where −l ≤ m ≤ l and −1 ≤ p ≤ 1. We introduce the 
coefficients:

C
(l,1,m,p)

l−1,p = (−1)m+p

√
3(2l − 1)(2l + 1)

4π

(
l 1 l − 1
m p −m − p

)(
l 1 l − 1
0 0 0

)
,

and

C
(l,1,m,p)

l+1,p = (−1)m+p

√
3(2l + 1)(2l + 3)

4π

(
l 1 l + 1
m p −m − p

)(
l 1 l + 1
0 0 0

)
,

where we use the Wigner 3j symbol and Clebsch–Gordon coefficients. We set α = β/R in order to obtain an adimen-
sional constant.

Lemma D.3. Let l �= 0 be a natural integer and let −l ≤ m ≤ l. Let Vn = rlYm
l and up = rY

p

1 where −1 ≤ p ≤ 1. The 
unique solution of (58) that is orthogonal to Span(Y−1

1 , Y 0
1 , Y 1

1 ) is given by

ũp = a
(l,1,m,p)

l−1,p,α rl−1Y
m+p

l−1 + a
(l,1,m,p)

l+1,p,α

rl+1

R2
Y

m+p

l+1

where

a
(l,1,m,p)

l−1,p,α = l + 2

l − 2

1 + α(3 − l)

1 + α(1 + l)
C

(l,1,m,p)

l−1,p and a
(l,1,m,p)

l+1,p,α = l − 1

l

1 + α(4 + l)

1 + α(3 + l)
C

(l,1,m,p)

l+1,p .

Proof. We first decompose the right hand side of (58) into the basis of spherical harmonics. Taking into account that(
l1 l2 L

0 0 0

)
= 0

whenever (l1, l2, L) satisfies the triangular inequality and l1 + l2 + L is odd, we get

βVn∂nup = βRlYm
l Y

p

1 = βRl
[
C

(l,1,m,p)

l−1,p Y
m+p

l−1 + C
(l,1,m,p)

l+1,p Y
m+p

l+1

]
and then

β�τ (Vn∂nup) = αRl−1[l(1 − l)C
(l,1,m,p)

l−1,p Y
m+p

l−1 − (l + 1)(l + 2)C
(l,1,m,p)

l+1,p Y
m+p

l+1

]
.

We also have

∇τVn.∇τ up = 1

2

[
�τ (Vnup) − Vn�τup − up�τVn

]
= Rl−1

2

[
l(1 − l)C

(l,1,m,p)

l−1,p Y
m+p

l−1 − (l + 1)(l + 2)C
(l,1,m,p)

l+1,p Y
m+p

l+1

+ 2C
(l,1,m,p)

l−1,p Y
m+p

l−1 + 2C
(l,1,m,p)

l+1,p Y
m+p

l+1

+ l(l + 1)C
(l,1,m,p)

l−1,p Y
m+p

l−1 + l(l + 1)C
(l,1,m,p)

l+1,p Y
m+p

l+1

]
= Rl−1[(l + 1)C

(l,1,m,p)
Y

m+p − lC
(l,1,m,p)

Y
m+p]

.
l−1,p l−1 l+1,p l+1
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Since divτ Vn∇τ up = ∇τ Vn.∇τ up + Vn�τup , it comes

divτ Vn∇τ up = Rl−1[(l − 1)C
(l,1,m,p)

l−1,p Y
m+p

l−1 − (l + 2)C
(l,1,m,p)

l+1,p Y
m+p

l+1

]
.

Hence, gathering the various terms on the right hand side of (58), we see that ũp is solution of

−β�τ ũp + ∂nũp − λ2ũp

= Rl−1[(l + 2)
(
1 + α(3 − l)

)
C

(l,m,1,p)

l−1,p Y
m+p

l−1 + (1 − l)
(
1 + α(4 + l)

)
C

(l,m,1,p)

l+1,p Y
m+p

l+1

]
.

After identification, we obtain:

ũp = a
(l,1,m,p)

l−1,p,α rl−1Y
m+p

l−1 + a
(l,1,m,p)

l+1,p,α

rl+1

R2
Y

m+p

l+1 ,

where the coefficients a(l,1,m,p)

l±1,p,α are defined in Lemma D.3. �
As a corollary, we deduce the general case for Vn.

Corollary D.4. If

Vn =
∞∑
l=2

rl
l∑

m=−l

vl,mYm
l and up =

1∑
p=−1

αpY
p

1 ,

then

ũp =
∞∑
l=2

l∑
m=−l

1∑
p=−1

αpvl,m

[
a

(l,1,m,p)

l−1,p,α rl−1Y
m+p

l−1 + a
(l,1,m,p)

l+1,p,α

rl+1

R2
Y

m+p

l+1

]
.

D.2. The explicit expression of the trace of E(1)

We leave the tedious but easy computations of the case d = 2 to the reader; the obtained result is written in (46). 
We focus here on the much more technical case d = 3.

We set uj = K(R)(αi
−1Y

−1
1 + αi

0Y
0
1 + αi

1Y
1
1 ) for 1 ≤ j ≤ 3 where

α1−1 = 1/
√

2, α1
0 = 0, α1

1 = 1/
√

2,

α2−1 = 0, α2
0 = 1, α2

1 = 0,

α3
−1 = −i/

√
2, α3

0 = 0, α3
1 = i/

√
2.

On the sphere in dimension 3, the deviatoric part of the curvature cancels and the entries of E(1) are

Tr
(
E(1)

)= 3∑
j=1

E
(1)
jj where E

(1)
jj =

∫
∂Ω

Vn(−∂nũj ∂nuj − Hλũjuj + ∇τ ũj .∇τ uj ) dσ,

where each ũj corresponding to uj is computed thanks to Corollary D.4.
We first state a technical result to perform this summation. We postpone its proof to the end of the section.

Lemma D.5. Let Vn = RlYm
l , −l ≤ m ≤ l and

ψ = rY
p

1

for −1 ≤ p ≤ 1. Let m′ and p′ be integers such that −l ≤ m′ ≤ l and −1 ≤ p′ ≤ 1 and suppose

ψ̃ = arl−1Y
m′+p′
l−1 + b

rl+1

R2
Y

m′+p′
l+1 .

Then
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∫
∂BR

Vn(−∂nψ̃∂nψ − Hλψ̃ψ + ∇τ ψ̃.∇τψ)dσ

= −a(4α + 2l)R2l−1
∫

∂B1

Y
m′+p′
l−1 Ym

l Y
p

1 − b(4α + 2)R2l−1
∫

∂B1

Y
m′+p′
l+1 Ym

l Y
p

1 .

As a consequence, we get for j = 1, 2, 3

E
(1)
jj = −K(R)R2l+1

[
(4α + 2l)

l + 2

l − 2

1 + α(3 + l)

1 + α(1 + l)

l∑
m=−l

1∑
p=−1

∣∣αj
p

∣∣2|vl,m|2
( ∫

∂B1

Y
m+p

l−1 Ym
l Y

p

1

)2

+ (4α + 2)
l − 1

l

1 + α(4 + l)

1 + α(3 + l)

l∑
m=−l

1∑
p=−1

∣∣αj
p

∣∣2|vl,m|2
( ∫

∂B1

Y
m+p

l+1 Ym
l Y

p

1

)2
]
.

We are now in a position to prove Proposition 4.3 concerning the trace of E(1) in dimension d = 3.

Proof of Proposition 4.3. We have to sum the E(1)
jj obtained before the statement of Proposition 4.3. By the nor-

malization condition 
∑

j |αj
p|2 = 1, our main task is to compute the sum over p = −1, 0, 1 of the integrals involving 

three spherical harmonics. The values of this type of integral is recalled in Propositions B.2 and B.3. Elementary 
computations then give

l∑
m=−l

1∑
p=−1

( ∫
∂B1

Y
m+p

l−1 Ym
l Y

p

1

)2

= 3

4π

l

2l + 1
and

l∑
m=−l

1∑
p=−1

( ∫
∂B1

Y
m+p

l+1 Ym
l Y

p

1

)2

= 3

4π

l + 1

2l + 1
. �

Proof of Lemma D.5. We compute:

−Vn∂nψ̃∂nψ = −R2l−1[a(l − 1)Y
m′+p′
l−1 + b(l + 1)Y

m′+p′
l+1

]
Ym

l Y
p

1 ,

−λHVnψ̃ψ = −R2l−1(4α + 2)
[
aY

m′+p′
l−1 + bY

m′+p′
l+1

]
Ym

l Y
p

1 .

We have also∫
∂BR

Vn∇τ ψ̃.∇τψ = 1

2

∫
∂BR

Vn

[
�τ(ψ̃ψ) − ψ�τ ψ̃ − ψ̃�τψ

]

= −1

2
l(l + 1)R2l−1

∫
∂B1

(
aY

m′+p′
l−1 + bY

m′+p′
l+1

)
Ym

l Y
p

1 + R2l+1
∫

∂B1

(
aY

m′+p′
l−1 + bY

m′+p′
l+1

)
Ym

l Y
p

1

+ 1

2
R2l−1

∫
∂B1

[
al(l − 1)Y

m′+p′
l−1 + b(l + 1)(l + 2)Y

m′+p′
l+1

]
Ym

l Y
p

1

= R2l−1
∫

∂B1

[
a(l − 1)Y

m′+p′
l−1 + b(l + 2)Y

m′+p′
l+1

]
Ym

l Y
p

1 .

We obtain the result by summing the three terms. �
Appendix E. Shape Derivatives of Steklov and Laplace–Beltrami eigenvalues problem

The following result is obtained by taking β = 0 in Theorem 1.4.

Theorem E.1 (Steklov eigenvalues). We distinguish the case of simple and multiple eigenvalue.
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• If λ= λk(Ω) is a simple eigenvalue of the Steklov problem and u an associated eigenfunction, then the application 
t → λ(t) = λk((I + tV )(Ω)) is differentiable and the derivative at t = 0 is

λ′(0) =
∫

∂Ω

Vn

(|∇τ u|2 − |∂nu|2 − λH |u|2)dσ.

The shape derivative u′ of the eigenfunction satisfies

�u′ = 0 in Ω,

∂nu
′ − λu′ = divτ (Vn∇τ u) − λ′(0)u + λVn(∂nu + Hu) on ∂Ω.

• Let λ be a multiple eigenvalue of order m ≥ 2. Let (uj ) for 1 ≤ j ≤ m denote the eigenfunctions associated to λ. 
Then there exist m functions t 	→ λk(t), k = 1, . . . , m, defined in a neighborhood of 0 such that
– λk(0) = λ,
– for every t in a neighborhood of 0, λk(t) is a Steklov eigenvalue of Ωt = (I + tV )(Ω),
– the functions t 	→ λk(t), k = 1, . . . , m, admit derivatives which are the eigenvalues of the m × m matrix 

M= MΩ(Vn) of entries (Mij ) defined by

Mjk =
∫

∂Ω

Vn(−∂nuj ∂nuk − Hλujuk + ∇τ uj .∇τ uk) dσ.

The following result is obtain by taking β → +∞ in Theorem 1.4.

Theorem E.2 (Laplace–Beltrami eigenvalues). We distinguish the case of simple and multiple eigenvalue.

• If λ= λk(Ω) is a simple eigenvalue of the Laplace–Beltrami problem and u an associated eigenfunction, then the 
application t → λ(t) = λk((I + tV )(Ω)) is differentiable and the derivative at t = 0 is

λ′(0) =
∫

∂Ω

Vn

((
HId − 2D2b

)∇τ u.∇τ u
)
dσ.

The shape derivative v′ of the eigenfunction satisfies

�u′ = 0 in Ω,

−�τu
′ = �τ(Vn∂nu) − divτ

(
Vn

(
2D2b − HId

)∇τ u
)− λ′(0)u on ∂Ω.

• Let λ be a multiple eigenvalue of order m ≥ 2. Let (uj ) for 1 ≤ j ≤ m denote the eigenfunctions associated to λ. 
Then there exists m functions t 	→ λk(t), k = 1, . . . , m, defined in a neighborhood of 0 such that
– λk(0) = λ,
– for every t in a neighborhood of 0, λk(t) is a Laplace–Beltrami eigenvalue of Ωt = (I + tV )(Ω),
– the functions t 	→ λk(t), k = 1, . . . , m, admit derivatives which are the eigenvalues of the m × m matrix 

M= MΩ(Vn) of entries (Mij ) defined by

Mjk =
∫

∂Ω

Vn

((
HId − 2D2b

)∇τ ui .∇τ uj

)
dσ.
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