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Abstract

The paper is devoted to the study of the regularity on the boundary 9£2 of a bounded open set 2 C R™ for minimizers u for
p(x)-energy functionals of the following type

Ew; 2) = /(g“/f‘(x)G,»j(u)Dau"(x)Dﬂuf(x))p(x)/zdx
2

where (g“ﬂ (x)) and (G (u)) are symmetric positive definite matrices whose entries are continuous functions and p(x) > 2 is a
continuous function. The authors prove that such minimizers u have no singular points on the boundary.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans cet article, les auteurs étudient la régularité sur la frontiere 352 d’un ouvert borné £2 C R™ des minimiseurs u des fonc-
tionnelles d’énergie p(x) du type suivant :

Eu; 2):= /(gaﬂ(x)G,-j(u)Daui(x)Dlguj(x))p(x)/zdx,
2

ou (g"‘ﬁ (x)) et (G (u)) sont des matrices symétriques définies positives dont les éléments sont des fonctions continues et p(x) > 2
est une fonction continue. Les auteurs prouvent que ces minimiseurs # n’ont pas de point singulier sur la frontiere 952.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let 2 C R™ (m > 2) be a bounded open set. For maps u : £2 — R” we consider the p(x)-energy functional defined
as

Eu; Q)= f(g“ﬂ(x)c,-j(u)Dau"(x)Dﬂuf(x))”(x)/zdx, (1.1)
2

where (g*#(x)) and (G; j(u)) are symmetric positive definite matrices whose entries are continuous functions defined
on £2 and R” respectively, and p(x) in a continuous function on £2 with p(x) > 2. Greek indices «, $, ... are to
be summed from 1 to m, and Latin indices i, j, ... from 1 to n. The Einstein summation convention is used. In the
following we write, for the integrand of (1.1),

e(u)(x) 1= g% (x)G;; () Dyu' (x) Dgu? (x). (1.2)

The aim of this paper is to study the boundary regularity of the minimizers of the p(x)-energy functionals.
The functional £ is a particular case of the functionals of the type

f(u;.Q):/f(x,u, Du)dx, (1.3)
2

where f: 2 x R" x R™ — R is a Carathéodory function satisfying the following so-called (p, ¢)-growth condition:
there exist constants A > A > 0, ¢ > p > 1 such that

MEIP < flx,u, ) < A(1+1€19) (1.4)

for all (x,u,&) € 2 x R" x R™. We call F a functional with standard growth if p = q, and with non-standard
growth if ¢ > p.If the integrand f = f)(y) satisfies

MEIPY) < foo(r,u, &) < A(L+ [E[PWY), (1.5)
for all (x,u, &) € 2 x R" x R™, then

Fpyu; 2) := f Spo(x, u, Du)dx (1.6)
2

is called a functional with p(x)-growth. The p(x)-energy functional £ is a p(x)-growth functional with a special
structure.

Non-standard growth problems are attracting great interest, since Marcellini treated them in [13]. Especially, in
the last two decades, about the regularity of minimizers for p(x)-growth functionals, considerable progress has been
made. In 1995, Zhikov [17] studied Lavrentiev phenomenon for the functional

Dy (u) := / |Du|P®dx. (1.7)
2

He also obtained higher integrability results for the minimizers of D)) in [18]. On the regularity of minimizers
of Dp(x), a fundamental result was established by Coscia and Mingione [4] in 1999. They proved that a minimizer u
of D) is in the class C L@ (£2) under the condition that p(x) is Holder continuous.

For general p(x)-growth functionals, interior partial regularity results are obtained in [1-3,7-9].

For p(x)-energy £, Ragusa, Tachikawa and Takabayashi [15] obtained interior partial regularity of minimizers;
they showed that the singular set S, of a minimizer u can have Hausdorff dimension dimH(Su) at most m-inf p(x).
In [14] the interior everywhere regularity was shown under the so-called one-sided condition. In [16], assuming
the boundedness of a minimizer u, the second author improved the estimate on the Hausdorff dimension of S, as
dimy (S,,) < m-[inf p(x)] — 1, where [] stands for the Gauss symbol.

In this paper, we treat boundary regularity of minimizers for p(x)-energy £. For standard growth case, Jost and
Meier [12] proved that a minimizers for certain quadratic functionals cannot have singular points on the boundary.
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Duzaar, Grotowski and Kronz [6] generalized this result to general p-energy functionals

f(gaﬁ(x)Gij(x,u)Daui(x)Dﬂuj(x))p/de’
2

for p > 1. The aim of this paper is to obtain such kind of boundary regularity results for p(x)-energy.
Now, let us introduce some conditions and definitions in order to state the main result. We consider the following
conditions on g% (x), Gij(u) and p(x).

(C1) There exist positive constants Ag, Ag, A, Ag such that

Al < g (0)lalp < Agle?, AgInl? < Gijwn'n’ < Aginl? (1.8)

forall x € £2, ¢ e R" and u, n e R".
(C2) The exponent p(x) and the coefficients g (x), G; j(u) are Holder continuous; there exist positive constants
1,7',0 <1, L, Lg, and Lj, such that

|px) = pW| < Lplx —y17 /2=t wp(lx — y|/2) forallx,ye R, (1.9)
877 (x) — P ()| < Lglx — yI" =t wg(lx — y|) forallx,y e £2, (1.10)
|Gij(w) — Gij(v)| < Lplu — - w(ju —vl*) forallu,veR". (1.11)
(C3) The exponent p(x) satisfies
2 <yp:=inf p(x) < sup p(x) =: y» < 4o00. (1.12)
xXeR xe

Let £2 C R” be a bounded domain with smooth boundary 3£2. In the following, for a function w : 2 — R¥ and a
measurable set D C §2, we write

][w(x)dx = ﬁ / wx)dx,
D D

where | D| denotes the Lebesgue measure of D. For a ball B(y,r) :={x € R™; |x — y| < 0}, we write

Wy, = ][ w(x)dx.
B(y,r)ns2

When there is no doubt of confusion, we omit the center y and set w, := wy, ;.
Let us define some function spaces. For a bounded open set £2 C R™ and a function p : £2 — [1, 400), we define
LP™(2) and W-PM () as follows:

LPW = {u e L'(2); / lu)?®dx < ~|—oo}.
2

whre) =ty e LPY N w1 (2); Due LP™(2)}.

We also define L2 (2) and W, (2) similarly.
As mentioned in [5], if p(x) is uniformly continuous and 92 satisfies uniform cone property, then
whrO(@) ={ue wh(2); DueLP™(2)}.
In any case, if p(x) is continuous in §2, we have
1, ,1
WP (@) = {u e Wl @); 1DulP® e Ll (2)).

We also define

W, P9 (2) = {u e Wy (82); / |DulPMdx < oo},
2
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and for a given map ¢
0+ Wy @2) = {u e WD), u—g e WPV (@)
Amapu e WIL’CP(X) (£2) is called to be a local minimizer of Fp(y) if it satisfies

Fpeo) (u; supp @) < Fp(x) (u + @3 supp ),
for any ¢ € Wé P () with compact support in £2.
Theorem 1.1. Let 2 C R™ be a bounded domain with Lipschitz boundary 3$2. Assume that g*f (x), Gij(u) and p(x)

satisfy the conditions (C1)—(C3) on 2. Let u € WHP¥) (§2) be a bounded minimizer of the functional £ (v; $2) defined
by

E(; 2) = / go‘ﬂ(x)Gij(u)Daui(x)D,guj(x)dx,
Q

in the class
h+ Wy P (2) = {ve WP (@), v—he Wy "™ (@), (1.13)

for a given boundary data h € W15 (2) for some s > m. Then u is Holder continuous near the boundary 952.

2. Notation and preliminary results

Throughout this paper we use the following notation: for xg = (xé, e x(’)"_l, 0) and r > 0, we put

BT (xo,7) := {x eR™; |x —xo|l <r, x" > 0},
I'(xg,r):={x eR™; |x —xo| <r, x" =0},
0t BT (xo,7r) := 3B  (x0,7) \ I'(x0,7).
When xp = 0, we omit the center xo = 0 and write simply
BT (r):=BT(0,r), rr):=1,r), dTBT(r):=9"BT(0,r).
For x € BT (xo, R) and r < dist(x, dB(xp, R)) = R — |x — xg|, we put
2(x,r):=B(x,r) N B (xo, R),

p1(x,r):= inf p(y), p2(x,r):= sup p(y). 2.1)
2(x,r) Q0x,r)

For p; and p,, when the center x = xy is clearly understood, we abbreviate as

p1(r) = p1(x,r), p2(r) := pa(x, 7).

When we consider the behavior of the solution near the boundary point xo € 952, we flatten the 952 so that xg =
0, ...,0), B(xg, R1) N2 =BT (0, Ry) for some R; > 0 and 952 N B(xg, R1) = I'(0, Ry).

We use ¢ without subscript as generic constants, which may change from line to line, but does not depend on the
crucial quantities.

Let w; : [0, +00) — [0, 400) be a nondecreasing continuous function with w1(0) = 0 which represents the modu-
lus of continuity, namely w; satisfies

[p(¥) = py)| < @1(lx = y1). (2.2)

Let us consider the following condition on wj.

1
lim w (r) log(—> = o < +00. (2.3)
r—0 r
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The above condition implies
1/ = exp(—logtwi (1)) — €*°  ast— 0. (2.4)

When o satisfies (2.3), we say that p(x) is logarithmic continuous. We mention also that if p(x) is Holder continuous,
then the condition (2.3) is fulfilled.

For a continuous function p(x) > 1 on £2 satisfying (2.2) with (2.3), let f,x)(x, u, &) be a Carathéodory function
on 2 x R" x R™" which satisfies the growth condition (1.5). We define F ) (w, §2) by (1.6).

Let us begin with remembering the following higher integrability results on local minimizers that is originally
shown by Zhikov [18] and is generalized by Acerbi and Mingione [1].

Proposition 2.1. (See [7, Theorem 3.1].) Let F(y) be a functional as above. Assume that the exponent p(x) > 1 has
modulus of continuity w1 which satisfies (2.3). Let u € Wllo’cp(x)(.Q, R"™) be a local minimizer of Fp(x). Then, there
exists a constant § > 0 such that | Du|1T9P&) ¢ LllOC (£2). Moreover, the estimate

(1+8)
| Du| PO gy < ¢ ][ (1+ |Du|2)p(x)/2dx) 25)
B(y,R) B(y.2R)
holds for any B(y,2R) € 2.

When we consider the functional F) on BT(T), as in [12] for the case p(x) =2, let us call a map v €
Nyprer wbLP@ (BT(T"), R") a local minimizer of the functional

Fpeoy(w, BF(T)) = / fpe)(x, w, Dw)dx
BH(T)
in B¥(T) U I'(T), if for every T’ < T and any ¢ € W, (BT (I"), R") the following inequality holds:

Fpo (v, BH(T')) < Fpeoy (v + ¢, BH(T')).

Then we have the following lemma on the higher integrability of such local minimizers.

Proposition 2.2. (See [15, Lemma 3.2].) Assume that the exponent p(x) > 1 has modulus of continuity w| which
satisfies (2.3). Let py :=infp+ 7y p(x) and pz :=supg+ gy p(x), and suppose that

mp3
m—+ po

(p2)s = < p1 <or equivalently p} = mm—p;)l > pz). (2.6)

For some ¢ > 0, let h be a given map in the class wLU+e)p@) (BH(T)). Let v be a local minimizer of Fp(x) in the
class

{we WhP® (BY(T),R"); w=hon I'(T)}.

Then, there exists a positive constant § < & such that for any § € (0, 8) the local minimizer v satisfies v €
wLA+OPC (BH(T")) for any T' < T. Moreover, if xo € BY(T)YU T'(T') andr < T — T', we have

(148) p()/2 1/(1+5)
(1+Dv)"* ””dx)

£2(x0.r/2)

1/(1+8)
<e ][ (1+|Du|2)”<")/2dx+c2< ][ (1+|Dh|2)“+5)”(")/2dx> , 2.7)
£2(x0,r) £2(x0,r)

where we put 2(y, p) := B(y, p) N BT (T).

By virtue of Propositions 2.1 and 2.2, we have the following estimate of the minimizer.
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Corollary 2.3. (See [ 15, Corollary 3.3].) Let D C R™ be a bounded domain with smooth boundary dD. Let S > 0 be
a positive number which satisfies the following conditions.

S p1=p1(x,4S) and pr = pa(x,4S) satisfy (2.6).
(S2) There is a diffeomorphism  : B(y,4S) — B(T) which satisfies

Y (B(y,45)ND) C BY(T) and +(B(y,48)NdD)=1I(T).

Assume that p(x), h(x) satisfy assumptions in Proposition 2.2, v be a minimizer of Fp(x)(-, D) in the class
{w IS Wl’p(x)(D,R”); w—he Wol’l(D; R")}.
Then there exists a constant § € (0, &) such that for any § € (0, 3], we have that v € WP®U1+9) (D, R") and that

f(l + Do) PO gy < o314 |D|55—m5)/(1 + D) TP g (2.8)

D D
where c3 depends only onm, A, A, p(x), Fpx)(h, D).

We also mention that we have Caccioppoli-type inequality with boundary value by [15, (3.14)].

Lemma 2.4. Let v be a minimizer of Fp(x) (-, §2) in the class
{wewhP® (2, R"); w=honds2}.
Then we have

lv — h| p(x)
/ | Dv|PWdx §C4<f( ) dx+/|Dh|1’(x)dx), (2.9)
r
2

-Qr/2 2y

where c4 depends only on A, A and p(x).

Using the above lemma and Corollary 2.3 with D = §2, it comes out the following estimates for the derivatives of
bounded minimizers.

Corollary 2.5. Let v be as in the previous lemma. Assume that the boundary condition h satisfies

][ \DR|FOPD gy < ¢r = (2.10)
2(y.r)

for some constants € € (0, 1) and cp, > 0, and that for some positive constant M

esssup‘v(x) , esssup‘h(x)| <M
xX€eNR xX€eN

hold for some positive constant M. Then, we have the following estimates for some constants cs and ce depending
only on A, A, p(x), and cy,.

|Dv|p(")dx < Csr—pz(y,Zr), 2.11)
20y.r)

][ Dy 1P gy < oo pmp20An(140) 2.12)
2(y.r)

where § is arbitrary constant with 6 € (0, 8) forS in Corollary 2.3.

Proof. Without loss in generality we can assume that ¢, M > 1 and that r € (0, 1). Since p>(2r) = p2(y,2r) >
p(x) > yp in £2(y, 2r), from (2.9) and the assumptions on v and /., we have
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][ |Dv|”(")dx§c( ][

2(y,r) £2(y,2r)
< C(Mpz(Zr)r—Pz(zr) 4 ch(zr)—[?z(2r))

<522

v(x) — h(x)|P™

2r

dx +cyp, (2r)_y'>

for some positive constant c5 depending only on M and cj,. This is nothing but (2.11).
From (2.7), (2.10) and (2.11), we have

(1495)
|Dv|(1+8)p(x)dx <c ][ (1 + |Dv|2)p(x)/2dx>
£2(y,2r) 2(y,2r)
Lts ) 1/(14-8)
(.1

< cgrP2UN 1+,

Thus we get (2.12) also. O

In what follows, we are fixing a constant é € (0, 1) so that the above lemmas and propositions hold and that
mé <o (2.13)

We prepare the boundary version of the regularity result by Coscia and Mingione [4] for minimizers of the func-
tional

Dpxy(w, D) == / |Dw [P dx. (2.14)
D

Theorem 2.6. Assume that p(x) satisfies (1.9). Let R > 0 be sufficiently small so that
8
(1 + E)pz(ZR) <(14+8)p1(2R). (2.15)
Let v e WLPO (BT (R), R") a local minimizer of Dp(x) in the class
{we WhP®: = hon r'(R)},

where h is a given boundary data in the class WLsS(BT(R),R") s > (1 + 8) p2. Assume that Dp(y)(v) < K for some
positive constant K. Then, for any € € (0, mp2(2R)/s), we have

m—e
f |Dv|p2(2R)dx§C7|:<%> / |Dv|p2(2R)dx

BF(p) BH(R)
o2 P2Q2R)/s
+pm—MP2(2R)/S / (1 + |Dh|2) dx) i| (216)
BT (2R)
Proof. In this proof, we abbreviate p>(2R) to p». Let us define a frozen functional as
Do(w) := / |Dw|P2dx, 2.17)

BH(R)

and let w € WP2(B*(R)) be a minimizer of Dy with w = v on dBT(R).
Since we are supposing (2.15), by virtue of Proposition 2.2, we see that v € WhUT)PW (B+(R))
wl.(+8/2p2(B+(R)). So, using Corollary 2.3 with D = BT(R) and S = R/ k for a suitable k > 0, we have

/ \Dw|1+5/2P2 gy < ¢ / (14 [Dup) 212 2.18)

B*(R) BT(R)
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On the other hand, by boundary regularity results for minimizers of functionals of standard growth (see for example
[6, p. 446, 1.-5]), we have for any k € (0, 1)

m p2/s
/|Dw|p2dx§c|:<<%) +k> / |Dw|ﬂ2dx+k1—P2Rm<1—P2/S>( f |Dh|de> ] (2.19)
By

BT(R) BT(2R)
As in [4, (9)], the minimality of v implies that
Do(v) — Do(w) > ¢ / (IDvl+ |Dw|)m_2|Dv — Dw|*dx.
BT(R)

(Although in [4] the integrand is (|Du| — |Dv|)P>~2 ..., the minus sign in the parentheses is clearly a typo.) So, we
have

|Dv — Dw|P2dx < Dy(v) — Do(w). (2.20)
Bt (R)
Since v minimize D)y,
Do(v) — Do(w) = Do(v) — Dp(x)(v) + Dp(x)(w) — Do(w). (2.21)

In order to estimate the right-hand side of the above inequality, we mention that as (7) in [4] for every ¢ > O there
exists a constant C(g) > 0 such that

[ =1 <Ce)s —r)(1+11T9%), foralls >0ands >r > 1. (2.22)

By virtue of the above inequality, Holder continuity of p(x), and the assumption (2.15), using Proposition 2.2, we can
estimate as follows:

|Do(v) = Dy (V)|

<¢R° / (1+ 1Du) 2P 2

BT(R)
< RO / (1+ |Dv|2)“+‘””m/2dx

BT(R)

2 140 1+8 2
< cR“—m5< f (1+ | Dv[?)P™ dx) +cR° / (14 |Dh?) 1 FOPO2 g
Bt(2R) Bt(2R)
w2 2 (1+8)pa/s
<cROMS f (1+ D) dx + cROTmI=(Fp2/s) / (1+|Dh|?) dx) . (2.23)
BT(2R) Bt (2R)
Here, we used the assumption [ |Dv|? @ dx < K for the last inequality.
Using Corollary 2.3 with p(x) = p2, v =w and h = v and the latter half of the above estimates, we can estimate
|Dp(xy(w) — Do(w)| similarly.
| Dp) (w) — Do(w)]

< ¢R° / (1+ |Dw|z)(1+a/2)pz/2dx

BT (R)
< ¢R° / (1+ |Dv|2)(1+8/2)p2/2dx

BT (R)

/2 52 (1+8)pa/s

S CRO'—m5 f (1 + |DU|2)p dx + CRO'+m(1—(1+5)I72/S)( / (l + |Dh|2) dx) (224)

B+(2R) BT (2R)
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Combining (2.20), (2.21), (2.23) and (2.24), we get

/ |Dv — Dw|P2dx

B*(R)

) (1+8)pa/s
B+(2R) B+(2R)

(2.25)

Combining (2.19) with the above estimate, we obtain

/ |Dv|P2dx

B*(p)
o\" pa/s
§c|:<E> +k] / |Dw|!’2dx+ck1—P2Rm<1—P2/S></ |Dh|de>
BT (2R) BT (R)
02 vy (1+8)pa/s
+cR7T™ / (1+|Dv?)” dx+cR<’+m<1—<1+5>P2/S>< / (1+|Dh|?) ) :
BT (2R) BT (2R)

So, taking R < 1 sufficiently small so that [5 ) (1 + |Dh|*)$/?dx < 1, and remarking that o — m(1 4 8)p2/s >
—mpy /s, and using the minimality of w, we see that
|Dv|P2dx

B*(p)

m p2/s
5{(%) +k+R°_’”‘S} / IDvlpzdx+c(k1_p2+1)R’"‘p2’”/s( / (1+ |Dh?)*?a )

B+(2R) BT (2R)

holds. Now, by virtue of a well-known lemma (see, for example [10, Lemma 5.13] taking k£ and R sufficiently small,
we get the decay estimate (2.16). O

3. Partial regularity up to the boundary

In this section we consider the boundary analogue of the result of [15].
For a map u : 2 — R”" under consideration, we introduce the following quantities:

/2 1/p
@(x,r, p) ::r(rm / (1 +|Du(y)| )"'d > , (3.1)
2(x,r)
U(x,r):= <D(x,r, pz(x,r)). (3.2)

For these quantities we prepare the following simple estimates.

Lemma 3.1. For y; < p < q < y», we have

d(x,r, p) <MD gy p g, (3.3)

where wy, stands for the volume of the m-dimensional unit ball.
For some x,x' € 2, r > 0and k > 1, suppose that B(x,r) C B(x', kr), then we see that

W, r) < NPTy (41 ), 3.4)
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Proof. Using Holder’s inequality, we see that

P I/p
U(x,r,p)= r(r_’" / (1+ |Du|2)p dy)
2(x,r)

Sr[rm( / ldy>1—p/q< / (1+|Du|2)q/2dx>p/q}l/p

B(x,r) (x.7)

1—p) a2 p/aql/p
Sr[rm(wmrm) b q( / (1+|Du| )q dy) ]
2(x,r)
(/p)—(1/g) nar2, )

=y, r(rm / (14 Dul?) dy)

2(x,r)
_ wr(;/m)—(l/yz)q)(L rq),

where we also used the fact that w,, > 1. Thus we get (3.3).

Since the inclusion B(x,r) C B(x', kr) implies that py(x, r) < pa(x’, kr), using (3.3), we see that

1/pa(x,r)
D(x,r) < <k’”—1’2(x,r)(kr)p2(x’r)_m / (1+ |Du|2)p2(x’r)dx>
2’ kr)
:k(m/pz(x,r))—l¢(x/, kr, pa(x, r))
< k(m/Pz(x,r))—lwr(’;/Vl)—(1/}’2)[1,(x/’ kr)

< k(m/m)flwlgll/yl)—(l/yz)w(x/’ kr).

Thus we get (3.4). O

In the following we abbreviate

Corm /=AM yﬁ — 1. (3.5)
1

Theorem 3.2. Let R| > R; be positive constants. Assume that g"‘ﬂ , Gij(u) and p(x) satisfy the conditions (C1)-(C3)
in BY(R1) = BT (0, Ry), and that

8
wp(R1) =34, <1 + 5)1?2(1?1) ={d+8pi(R). (3.6)

(For the constant § see the comments before (2.13).) Let u € WPY) (Bt (R})) be a local minimizer of the functional
E(; BT(RY)) in the class
{ve WHP™: v =hon I'(R))},

for a given boundary data h € WL (BT (Ry)) with s > (1 4+ 8) max{m, »}.
Then, there exist positive constants r1 and g with the following property: if for some x € BY(R2) and ro € (0, 71)
we have ¥ (x, rg) < &, then u satisfies for some o € (0, 1)

¥ (x,p) =cp®, forany p € (0,ro). (3.7

Proof. Take a point x| € I"(R;) arbitrarily. For r < R; — R let us put
B =BT (x1,r), (3.8)

p1(r) = pi(x1,r) =i;1+fP(X), p2(r) = pa(xy,r) = sup p(x). (3.9
r Br
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Let R be a positive constant with R < (R} — R3)/2. As in [15], we define two types of frozen functionals.

Fiv) = /(g;)gﬂG,»,-(uR)Dav"D,gvf)”("’/zdx, (3.10)
By

Fro) = /(g‘leG,'j(uR)DaviDlgvj)pZ(ZR)/zdx, (3.11)
By

where we are writing

g%ﬁ —g;‘f}R ':fg“ﬁ(x)dx and ug =uy g:= ][ u(x)dx.
By By
Let v be a minimizer of F in the class
u+ Wy P (BE) = {we WhPO(BE): w—ue Wy " (BF)).

Then, using Corollary 2.3 with D = B; and & = u, we have for any ¢ € (0, §]

/(1 + Do) P2 5c/(1+ |Du?) TP g (3.12)
By By

On the other hand, for any B € (0, mp2(2R)/s), from Theorem 2.6, we can see that the following estimate holds for
any 0 < p < R/2.

22 p2(2R)/s
/|DU|p2(2R)d.X<C|:( ) /lDU|P2(2R)dx+pm mPZ(ZR)/S(/( +|Dl’l| ) ) i| (313)

R BZR
Using (3. 12) with ¢ = 0, (2R)(< wp(2R1) < §) and Proposition 2.2, we can estimate the integral of the first term of
the right hand side of (3.13) as

/ |Dv|p2(2R)dx
By

c/(l +|Dvlz)<1+w1(2R)>p(x>/2dx

By
c/(lJr|Du|2)<1+w1(2R>)p(x>/2dx
By
2 Hw12R) l+w; 2R 2
ScR—man(ZR)( /(1+|Du|2)1’(’”/ dx) +c/(1+|Dh|2)( +w1(2R))p(x)/ dx
By B3y
SCR_mwl(ZR) /(1+|Du|2)p(x)/2dx+c/(1+|Dh|2)(1+5)p2(2R)/2dx
B;R BZJrR
R ‘ 2, (14+8)p2(2R) /s
< cRTM12R) /(1+|Du|2)”2 dx+cRm<1(1+5>P2<2R>/*>< [(1+|Dh| ) ) )
By By

Here, we used (3.12) for the second inequality, Proposition 2.2 for the third and boundedness of f o(1+|Du |2)p ®)/2gx

for the fourth. In what follows, we abbreviate as p» = p2(2R) and py = (1 4+ 38) p2(2R). Since we see that R~"*®! QR)
is bounded by virtue of (2.4), from (3.13) and the above estimate, we obtain for 8 € (0, mp2/s)
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p\" P 2
/|Du|f’2dx5c<E> /(1 +|Dul?) " dx
B} i

BZR

p2/s p2/s
+Cpm_m1’2/5( /(1+|Dh|2)”2dx) +cp'"—m1’2/f< /(1+|Dh|2)”2) .

+ +
Byr Byr

Let us write

K(h) = ( / (1+ |Dh|2)s/2dx)]/s, R(h) :=max{K ()", K (h)™}.
Bt (Ry)
Then, from (3.14), we have for some positive constants K| and K, that
m—p
/ |Dv|P2dx < K, (%) / (1+ |Dul?) " dx + Kop" " PSR (h).
B+

+
P B2R

(3.14)

(3.15)

(3.16)

On the other hand, proceeding as in [15, pp. 3343-3344], we can estimate fB+ |Du — Dv|P22B) dx as follows:
R

/ |Du — Dv|p2(2R)dx
By,
< C6(.7:2(u) — fz(v)) +cR° /(1 + |DU|2)(l+s)p2/2dx
By,
= CS(fZ(M) - .7'—1(14) + _Fl(u) — .F(Lt) +.F(M) _ f(U)
+F@) —F1(v) +Fi(v) — }-2(1))) +cR° /(1 + |Dv|2)(1+8)p2/2dx
By
+ (F1(v) = Fa ()} + cR° /(1+ D) P2
By
= 1+H+H0+1V+V.
In order to estimate |/| and |IV|, we use (2.22) with s = p>(2R)/2 and r = p(x)/2 and get
1| <cR? /(1 + | Du )RR
By
[IV| <cR° /(1 + |DU|2)(1+8)p2(2R)/2dx'
B+
R

Let us take ¢ < §/2, then by the assumption (3.6), we have
)
(1+e)p2(2R) < <1 + 5)1)2(213) <1 +8p12R) = (1 +)p(x).

So, we can estimate [ as

|| < cR°® /(1 + [ Du?) TP

+
By

(3.17)

(3.18)

(3.19)
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Using Corollary 2.3, we have

IV, |V| <cR° /(1 + |Dv|2)(l+8)p(x)/2dx
Bg
<cR°? /(1 + |Du|2)(1+5)p(x)/2dx. .
B{

Using Proposition 2.2 we can see that

R”/(1+|Du|2)('+‘””(">/2dx
By
) 146§ 5
§CRO'—m5< f(1+|Du|2)P(x)/ dx) +CRU /(1+|Dh|2)P(X)/ dx
By By
< ¢cROMS / (14 1Dul?)?" 2 dx 4 cRO" =12/ K (P2, (3.21)
By

where we used the boundedness of f | Du|P™®dx. Combining (3.19) and (3.20) with (3.21), we obtain

1], IV, V]| < CR"_”“S|:/ (1+1Dul?)"?dx + cR’"_"”’Z/SK(h)pz}, (3.22)

+
BZR

where we used the fact that R < R 3,
Let us estimate |IT + I1I|. Writing g =1+ 68 and ¢ = g/(g — 1) = (1 + §)/8, using Holder’s inequality, and
remembering the condition (C2), we have

’ l/q' , l/q’ \/a
e ([ tn-st) fon-a) | o)
B ot o
’ 1/‘]/ , l/q' 1
+C[</wg(|v_”|2)dx> +</|g(x)—gqudX) ](/|Dv|‘”’(x)dx)
B Bt e
=tc(ll' +1Ir). (3.23)

Here and in the sequel, we write

1/2
g =(g"*(x)), and |g(x>—gR|={Z(g“ﬂ(x>—g‘}é’3)2} ~
af

Since wg and g are bounded, using Proposition 2.2, Jensen’s inequality, Holder’s inequality and the Sobolev—
Poincaré inequality, we can estimate /I’ as follows:

, /4’
I < c|:a)lG/q <cR2m / |Du|2dx> + < ][|g(x) - gR|dx) i|
By, By,

/g
x [ /(1+|Du|2)”“)/2dx+<R5m /(l+|Dh|2)qP(x)/2dx> ]

+ +
Byr Byr
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, 2/p2 ,
< c[le/q <C{RP2(2R)_m f |Du|p2dx} ) +Ca)g(2R)1/q]
By

_ 1/q
x [ /(1+|Du|2)”(”/2dx+<1e“m /(1+|Dh|2)p2/2dx> ]

+ +
Byg Bk

Ua! 2/p2 .
< c|:a)G/q <C{R‘D2(2R)_m / |Du|p2dx} ) +ng/q i|
By
x [ /(1 + [Dul?)? 2 dx +R”’(1_”2/S)K(h)l’2}. (3.24)
By

Using (3.12) and proceeding as above, we estimate /I’ as

1/q' 1/q’ /2 1/q
III’SC[(/a)G(lu—uR|2+|u—v|2)dx) +</|g(x)—gR|dx) ](/(1+|Du|2)qpx dx)
By

+ +
BR BR
/q

fc[wé /< ][ |u —uR|2dx—|— ][ |lu — v|2dx>
By By
g /2 wr, \
+<][|g(x)—gR|dx) }[/(1+|Du|2)“ dx+<R“m /(1+|Dh|2)‘”” dx) ]
Bt + +

R BZR B2R
Sc[le/q, (ch_m/|Du|2dx+cR2_m/ |Dv|2dx>
By By
e /2
+ ( ][yg(x) —gR\dx) }[/ (1+ |Du?)” dx+Rm(1_”2/‘Y)K(h)1’2:|. (3.25)
Bf B

Again with (3.12) and Proposition 2.2, we can estimate the second term in wg as follows:

2/p2
R2_mf|Dv|2dx§c(Rp2(2R)_m/|Dv|”2(2R)dx)

+
By

2/p2
re= [ (14 1Dv| )(1+wp(2R)>p<x)/2dx)

2/p2
<c

|:Rp2 m{ —wp(2R)m( /(1+|Du|2)[’(x)/2dx

B
2/p2
+/(1+|Dh|2)(1+w,;(2R))P(X)dX}:| ’

+
B2R

g7 [ (14 Dyl )(1+wp(2R))p<x)/2dx)

) 1+(Dp (2R)

where we used Proposition 2.2 with § = w,(2R) for the fourth inequality. Since R~©12R) and f |Du|P®dx are
bounded, from the above estimate, we obtain
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R>™ / |Dv|*dx

By
ws . \P _ 2/pa
§c(R”2_m /(1+|Du|2)p dx) +c(RP2—'" /(1+|Dh|2)p2dx>
By By
P 2/p2 s P2/s92/p2
SC(szm /(1+|DM|2)P2 dx) +c|:RP2mRmmP2/S( /(l+|Dh|2) dX) }
By Bjy
P 2/p2
§c(R”2_’” /(1+|Du|2)”2 dx) + cR2U=am/9) g ()4, (3.26)
B+
2R

Here, mention that by the assumption that s > (1 4+ §)m we have 1 —mgq/s =1—m(1+38)/s > 0.
From (3.25) and (3.26) we obtain

' < clol? (cs® 2R)? + coR*I I K (1)) + wy/ (2R)]
x [ / (1 + [Dul?)Pdx +Rm<1p2/S>K(h)P2}. (3.27)
By

Now, combining (3.17), (3.22), (3.23), (3.24) and (3.27), we obtain

/ |Du — Dv|P*dx

By

< cRG—m8|: /(1 + |Du|2)p2/2 + Rm(1+8—pz/s)K(h)p2:|
B;R
+c[oil? (cs® @R + coR2I4MD K (1)) + b1 (2R)]

X [ /(1+|Du|2)p(x)/2dx+Rm(1—[)2/S)K(h)p2}

x [ /(1 +1Du?)P O dx +Rm(1_”2/‘Y)K(h)1’2:|. (3.28)
By
Here, for the last inequality, we used the fact that R® < 1.

Now, putting r = 2R, wg(t) = a)lG/q/(max{Cg, co} 1) and &g = a);,/q/, from (3.16) and (3.28) we obtain

/(1 +1Du?) P dx

+
By

m—p B .
<K <£> /(1 + |Du|2)p2/2dx + Ko p" =P K (1)

p
B

+c[r7T™ @G + @ x |: /(1 + |Du|2)p2/2dx —I—rm(l_m/‘Y)K(h)pz]

B
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14 mp o—ms§ | ~ A~ 2\p2/2

<Kj3 - +r + a6 +dg | | (14 |Dul?)  dx
BF

+ Ka[1+ 777 4 oG + dog [P K (), (3.29)

for some constants K3 and K. Here, for the second inequality we used the fact that r < 1 and py > p».
For 7 € (0, 1) which will be specified later, put p = tr in the above estimate and multiply both sides by (zr)P2~",
then we have

(Tr)P> " /(1 +1Duf?) " dx
B
< K3[eP2 B gpmmpommd g ppammiy g g P2y Jppam [(1 +|Dul?)”dx
B
+ K4[r”2_’” 4 PO o e pamme, Ly rm—%g]rm—mﬁz/w%(h). (3.30)
Remembering the definitions of @ and ¥, and mentioning (3.3) and (3.5), from the above estimate we get
(¥ (1, 7)™ = @ (1, 7, pa(er)
< PO (x1, r, pa(r)) "
< K:fZ(r)CfZ(r)[‘L'pz_ﬁ + tpz—m{ra—mﬁ
+ &6 (W (x1,1)* + 2TV K (0)2) 4+ &g (1) }] x @ (x1, )P
+ .L-Pz—mrpz—Mf’z/SC(g’ G,p,h)
— K3PZ(r)sz(r)‘Ep2_ﬂ[1 + rﬁ—m{ra—mﬁ
+ &6 (¥ (x1,1)* + UK (1)) + &g (r)}] x @ (x1, )P
+ TP SC (g G, p, h), (3.31)
where C(g, G, p, h) is a positive constant depending only on g"‘ﬂ (x), Gij(u), p(x) and h(x). So, we obtain
W (xy,Tr) = stl—ﬂ/m[l + T(ﬁ—lﬂ)/m{r(a—mﬁ)/m
+ a7 (W @y, ) 4+ 20D K ()2 4 @/ (1)} x @ (x1,7)
+ gl lmmals gy (g, G, p. ), (3.32)

where K5 = K3C, and Co(g, G, p,h) = C(g, G, p, h)"/ 2.
Since0< B <1,m>2,y1 <pr=prr) <yr,and T < 1, we have

B=m)/p2(r) < L (B=m)/v1 (3.33)
Without loss of generality we can assume that 0 <r < 1, so we see that
p(o—mé)/pa(r) < r(U*WS)/Vz’ (.L-r)lf(ﬁ/pz(r)) < (Tr)lf(ﬁ/)/l). (3.34)

In the following, since we consider the case that ws and wg are sufficiently small, we can assume that wg, wg < 1.
So, we have

&);;/Pz(r) 5@16/)/2’ C?);7/172(0 fcﬁgl/n. (3.35)
For the sake of simplicity, let us put

B mq - A1 - Al
M12=1—;, w2 :=1—T, DG ::a)G/n, g :=a)g/y2.

Then, from (3.32), assuming ¥ (r) < 1, we get
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W (tr) < KstH! [1 + ¢ (B=m)/n {r(U—ma)/Vz + a6 (lI/(r) + rZﬂzK(h)ZfI) + cf)g}]llf(r)
+ TP Co(g, G, p, h) (3.36)

Now, let us take 8 < my1/s,then wehave u; =1—8/y;1 > 1 —gm/s = u>. Fix v € (12, n1) and choose t € (0, 1)
so that Kst#! < tV/5. Take &1 > 0 such that

oG (2e) < T MBI, (3.37)
Finally, let rp > 0O be a sufficiently small constant for which the following inequalities hold:

(B—mn réd—mé)/yz’ B=m)/n d)g (ro) <1

timminpliCo(g, G, poh) < e1/5, oK () <ey. (3.38)

Now, assume that ¥ (x, r) < &1 for some r € (0, r9), we obtain from (3.36)

2
W(xy,Tr) < %[1 Sl 1+ WG, r) +85—‘
4 Vl]/( )+81
= -7 X1,T —
5 ! 5
< &. (3.39)

The above estimate enables us to use an iteration argument to get

k
W (xr, o) = TS (g ) O Y )]
j=0

<t ® DV (xy, 1) + Co(hr)"2, (3.40)

where C; =t/ Cq and C, = C1 /(1 — TV7H2).
For any ¢ € (0, r), there exists a nonnegative integer k such that T*!r < < t%r, and we have

1/p2(t)

Y(xy,t) < t(tm(rkr)m (<Fr)™" / (1+ |Du|2)p2(t)dx>

T
By

™r

£k (m/p2() =1 L
S(T) ¢(-x177: r,PZ(t))

ke m/p2()~1
SC*(T) lI/(x,‘l:kr)

< C*,L,lfm/yl (,Efl).’:(kﬁ*l)vlp(xl7 r) + T*/LZCZ(Tk+1r)M2)
t v
< C*rl_(’”/yl)_”((—> W (xy,r) + cer) (3.41)
r
For an interior point x; € BT (R) and for 0 <t < r <min{R| — R», x|"}, proceeding as above without the bound-
ary condition £ or as in [15], we can get an estimate similar to (3.41). Consequently, we see that there are positive
constants ro € (0, (R; — R2)/2), €1 > 0,2 € (0, 1), C4 and Cp such that if
(a) x1 € '(Ry) and ¥ (x1, r) < &1 for some r € (0, rp),

or

(b) x1 € BY(0, Ry), B(x1,r) € BT(0, Ry) and ¥ (x1,r) < &1 for some r € (0, ro),
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then ¥ (x1, p) satisfies the following decay estimate:

W(x,. 1) <Cy (;) W (x.r) + Cpt®, (3.42)

Now, by a standard argument (see, for example, [11, pp. 317-319]), we can see that (3.42) holds for any x| €
BT (0, R;) UT'(Ry) and r € (0, rg). Thus, by the Morrey’s theorem on the Dirichlet growth, we can deduce the
assertion. 0O

4. Convergence lemma and boundary regularity

Lemma 4.1 (Convergence lemma with boundary value). Let BT := BT (1) and I" := I'(1). Let A™ (x,u) =
Al@aﬂ (x, u) be a sequence of continuous functions defined on B+ x R converging uniformly to A(x, u) = A?J’B (x,u)
and satisfying the following inequalities for positive constants K , . 4 and a bounded continuous concave function w5
with w4 (0) = 0.

(A-D) [AV (x| <K,
(A-2) AVEgE = Agj?)“ﬁgggé > Aal€|? forall (x,u,&) € BY x R" x R™",
(A-3) |AV (x,u) — AV (y,v)| < wa(lx — y[* + Ju — v[?).

Let p,(x) be a sequence of continuous functions on B™ converging uniformly to a constant pog > 2 which satisfies the
following conditions.

(P-1) pu(x) =2,
(P-2) |py(x) = ppyWI < w1(lx — y1/2) = cplx — y|° for constants c,, > 0 and o € (0, 1).

For some fixed s > m, let {h")} be a sequence in W' (B) converging to h in W'*(B1) weakly. For each v € N, let
u® e Whrv@® pe q local minimizer of

FY(v; BY) := /(A(")(x, v)Dva)p”(x)/zdx
Bt
in the class
{we W@ (BT); w=h" onrI}.

Suppose that u™) — v in L*(B1) and that |u™ ||ec < M for some positive constant M. Then, u", or a subsequence
that we also denote by the same symbol, is such that u® — v in WH+0Po(BT(R)) for some ¢ > 0 and any R €
(0, 1), and v minimizes the functional

}-o(w; B+(R)) = / (A(x, w)DU)Dw)pO/zdx
BH(R)

in the class
{we WP (BT(R)); w=honI'(R)}.

Moreover, if x, is a singular point of u"™ and x,, — X, then X is a singular point of v.
Proof. We divide the proof into 3 parts.

Part 1 (Preliminary estimates and the convergence of u(v)). Since all assumptions are independent on the number v,
all results in Section 2 are valid with common constants for all #*). So, by Proposition 2.2 there exists a constant
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80 > 0 such that | Du™)|(1T8)Pv() ¢ L1 (B*+), and by Corollary 2.5 we also have

f |Du® 1O gy < Cy(R) 4.1)
BY(R)

for some constant C3(R) which depends on R, but does not on v. Fixing such a constant dg > 0, let us choose
82 € (0, 8g) for which Corollary 2.3 holds. In what follows, let § be a positive constant with § < §,.
Since we are assuming that p,(x) converge uniformly to pp on BT, we can assume without loss of generality that

(P-3) p,(x) satisfies that 2 < g; < p,(x) < g» on BT for some constants ¢ and g, with

6 6
q1(1+9) ZQ2<1+5), p0<1+§) >q. 4.2)

By virtue of (4.1), (4.2) and the choice of §, we have

|Du® 1% gy < Cy(R). (4.3)
B+ (R)

Since we are assuming that lu™ s < M, the estimate (4.3) implies that u®) —~ ¢ in wl-(+8/2a2(B+(R)) for
some ¥ € W1 (1+3/292(B+(R)) taking subsequence if necessary. On the other hand we are assuming that ") — v in
L2, so we see that v = ¢ and that

u™ — v in LIH/D2 (BT (R)), (4.4)
Du®™ — Dv in LU/D2(BT(R)). (4.5)

Thus, we get the assertion on the convergence of u (.
Moreover, by virtue of the lower semicontinuity of the norm with respect to weak convergence, we have

/ |Dv| U202y < C4(R). (4.6)
B*(R)

Part 2 (Minimality of v). Now, let us prove that v minimizes F relative to the boundary value /4 on I"(R). For this
purpose, as the first step we are going to show that

Fo(vs BY(R)) < lin_l)i(gff(”) ™; BT(R)). 4.7)
Observing that
FOu: BT (R)) = Fo(u": B¥(R) + F (u; BX(R)) = Fo(u; B¥(R)), (4.8)

and mentioning the lower semicontinuity of Fy with respect to the weak convergence in whro(Bt(R)), we see that
it is enough to show that

| FO ™ BY(R)) — Fo(u™; BY(R))| - 0 asv— oo. (4.9)
Let us put

ey 1= AV (x,u™) Du D (4.10)

er:=A(x,u™)Du Du™. (4.11)

Then we have
|FO (u®; B*(R)) — Fo(u®; B (R))]
< / | @2 _ op0/2| g 4 / |e#0/2 — &P

B*(R) BT(R)
= 1+1l. 4.12)
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Put

pv(x) :=max{p,(x), po} (< q2). (4.13)
Then, by virtue of (2.22) and (4.3), taking ¢ < §/2, we can see that

I <ce(e) / | pv(x) — pol(1 +e,) P12

BT (R)
<co(®) sup |pu(x) = po / (14 0020212,
B+ (R)
Bt (R)
<c(e,R) sup |py(x) — po| >0 asv— oo. 4.14)
B+(R)

In order to estimate /I, we mention that for ¢ > 1
’Sq_tq|§q|s_t|(sq—l+,q—l) (4.15)

holds for any s, ¢ > 0. Then, using (4.3) also, and mentioning that g > pg, we can estimate II as

e [ 1A ) = Aea)] -1+ Du s

BY(R)
2asys  \Y/ T s/ 2/(2+5)
§c( / 1AW (x, u™) = A(x, u®)| dx) ( / (14 [ Du®)) +/)q2dx)
BT BT(R)
248V/5 8/(248)
< C(R)( [ |A(”)(x,u(”)) —A(x,u(”))|( +8)/ dx) .
BY(R)

Since (4.4) implies u)(x) — v(x) almost every x, taking subsequence if necessary, from the assumption that
AW (x, u) converges uniformly to A(x, u), by virtue of Lebesgue’s dominated convergent theorem, we have that

/ |A(”) (x, u(”)) - A(x, u(”))|(2+6)/5dx — 0.
BT(R)
Thus we see that
II—0 asv— oo. 4.16)

From (4.12), (4.14) and (4.16) we get (4.9), so we see that (4.7) holds.

Now, let us prove that v is a local minimizer of Fy. Let w € W!-P0(B*(R)) be a minimizer of Fo on BT (R) with
w = v on dB1(R). We mention that the w satisfies the same boundary condition that v satisfies on I"(R), namely
w=hon I'(R).

In the following part of the proof, taking v sufficiently large, we suppose always that

) )
1+ =)po=> {1+~ )suppy(x). 4.17)
2 4 B+
On the other hand, by (4.4) and (4.5), we have that

ve whiHDa (gt(Ry) c whU+/2r (BT (R)). (4.18)

Then, using Corollary 2.3 with p(x) = pg, we see that

w e W+ (BT (Ry) ¢ whUH/Dr) (BF(R)) 0 w92 (BT(R)). (4.19)
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Here, we used (4.2) and (4.17) for the last inclusion. Moreover, using (4.17), Corollary 2.3 and (4.6), we see that w
satisfies

f | Dw|1H/HP @ gy < ¢ / (1+ [Dw|) " TPPgx < ¢ / (14 |Dv) " FPPax <c(R).  (4.20)
B*(R) BH(R) BT(R)
Fixing R € (0, 1), for p € (R/2, R) put

T,:={x € BT (p); x" > R—p}, 4.21)

andlet n € Cg (B (R)) be a cut-off function satisfying that

on BT(R).

2
0<n<l1 on BT(R), n=1 onT,, |Dn|§R

If necessary, we extend 1 outside B*(R) by 0. Let us put

vi=0=—mu™ —v), v i=w+y. (4.22)
From the assumption that w = v on d BT (R), we have

v = w4+ (u(”) —v)= u™  ondBT(R).
So, the minimality of u™ for FO we see that

FOu; BT(R)) < FO (™5 BY(R)). (4.23)

Now, as in [6, pp. 458-460], by estimating |F" (v™"); BY(R)) — Fo(w™; BY(R))| and |Fo(v™; BT(R)) —
Fo(w; BT (R))|, we show that F™ (v™: BT (R)) — Fo(w; BT (R)).
First, let us estimate | F®™ (v™: BY(R)) — Fo(v™); BT(R))|.

| F® (™ BY(R)) — Fo(v™; BF(R))|
< / |(A(”)(x, v(”))Dv(”)Dv(”))p“(x)/2 - (A(x, v(”))Dv(”)Dv(”))p”(x)/z|dx
BT (R)
+ / |(A(x, v(”))Dv(")Dv(”))p”(x)/2 — (A(x, v(”))Dv(”)Dv(”))p0/2|dx

BT(R)

< / |A(”)(x, v(”)) — A(x, v(v))| . |Dv(”)
BT (R)

Pu(x)dx

+C(e) sup |py(x) — pol / (14 [Dp® ) IH2P02 g (4.24)
B+(R) BB

where we used (4.15) and (2.22). By the definition of v(*), we see that

|DvY | = [Dw+ D(1 — ) (u™ —v)| < [Dw|+ (1 — )| D™ —v)| + - ™ — . (4.25)
So,we have that
|Dv(v)|(l+5/2)170/2dx
BT(R)
SC(po)[ / |Dw|(1+8/2)po/2+ / |Du(”)|(1+8/2)p°/2dx+ / |Dv|(1+5/2)p0/2dx
B+(R) B+(R) B+(R)
2 (1448/2) po/2
+ <R—> / |u(v) _ U|(1+5/2)p0/2dx:|. (426)
-p

BH(R)
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By virtue of (4.3), (4.4), (4.6) and (4.20), all terms of the right hand side can be estimated by some constant C(R)
depending on R. Thus we get

/ (14 [Du® )22, < C(R). 4.27)
BY(R)

By Holder’s inequality, (4.17) and (4.27) we can estimate the first term of the right-hand side of (4.24) as

[ 149 ) = A o) ey
BYR)
8/(4+6) 4/(4+48)
=(/ ]A(”)(x,v("))—A(x,v(”))](4+8)/8) < / ]Dv(”)}(l+8/4)p”dx)
Bt(R) BT (R)
446)/8 5/(4+8) 2\ (146/2 2 /@48
< /|A<v>(x,v<v>)_A(x,v<v>)|<+>/) ([ popyrmm dx)
B+(R) B+(R)
418)/5 8/(445)
§C(R)< / |AD) (x, v™) = A(x, o) |4/ dx) : (4.28)
BYR)

By (4.4) and the assumption that A"") converges uniformly to A, we see that the right-hand side of (4.28) tends to 0
as v — oo. From (4.27), we also see that the second term of (4.24) tends to 0 as v — oo easily. Thus we have

V1Lr20|f<“>(v<“>; BT(R)) — Fo(v™; BT (R))| =0. (4.29)

Next, let us estimate | Fo(v™); BT (R) — Fo(w; BT (R))|. Remarking that w differs from v only on BT (R)\ T,
and using (4.25), we see that

| Fo(v™; BT(R)) — Fo(w; BY(R))|
f (A(x, v(”))Dv(”)Dv(”))pO/zdx — / (A(x, w)Dwa)pO/zdx
B*(R) BT(R)

<K / |Dv|™dx + K / | Dw|Pdx

BY(R\T) BH(R\T)

521«:(170)[ / |Dw|P°dx + / |Du™ | dx

BT (R)\T, BT (R)\T,
2 Po
+ / |Dv|Podx + (—) / u® —v|p°dxi|
R—p
BT (R)\T, BT (R)\T,
—HI+IV+V +VI (4.30)

where K is a constant which appeared in condition (A-1) and c(pg) a constant depending only on pg. Since the weak
convergence (4.5) implies uniform boundedness of LU+8/Da2 norm, we see that there exists a constant My such that

< Mp. (4.31)

2/(2+8)
|Du® ‘(1+5/2)p0dx>

BH(R)

Here, mention that pg < ¢». So, using Holder’s inequality, we can estimate /V as
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8/2+) 2/(2+9)
( / 1dx> ( / \Du<”>]“+3/2)”°dx>

BH(R\T, BT (R\T,

<c(R" = p™)"/ My, (4.32)

v

IA

Similarly, by virtue of (4.18) and (4.19), using Holder’s inequality, we can estimate /II and V as follows

8/(2+8)

1 <C(R" - p") | Dw]/*° (4.33)

LU+8/Dpo (B+(R))’

/@) Dy P (4.34)

V= C(Rm - pm) LU+8/Dpo (B+(R))"

For fixed R and p, the strong convergence (4.4) implies that

VI—- 0 asv— oo. 4.35)

Combing (4.30) with (4.32)—(4.35), we see that

5/(2+9)

limsup|Fo(v™; BT(R)) — Fo(w)| < M1 (Mo, v, w)(R™ — p™) (4.36)
V—>00

Now, by virtue of (4.7), (4.23), (4.29) and (4.36), we obtain
Fo(v; BY(R)) < liminf 7 (u™, B¥(R))

V—>00

< liminf 7 (v, BT (R))
V—>00

=liminf Fo(v™, BT(R))
V—>00

< Fo(w; BY(R)) + CMy (R™ — p™)*/ T (4.37)

Letting p — R, we see that Fy(v; BY(R)) < Fo(w; BT(R)). On the other hand we are assuming that w minimizes
Fo relative to the boundary value w = v on d BT (R). So, we can conclude that v minimizes Fy.

Part 3 (Proof for the statement on singular points). Let x, € BY U I" be a singular point of ") and assume that
x” — X. We want to show that X is a singular point of the limit map v. For the case that x € B this assertion is shown
in [16]. So let us consider the case x € I'g for some R € (0, 1).

Considering sufficiently large v if necessary, we can assume that x” € BT (R’) for some R’ € (R, 1).

For y e BT(R”) and r € (0, 1 — R"), let us write

(v, r) = sup py(x). (4.38)
20y.r)

By virtue of Theorem 3.2, we can choose R € (0, 1 — R”) so that

(v) (v)
W, (xy, 1) = P2 Gor)=m / (14 [Du?) "y > g (4.39)
2(xy.r)
holds for the positive number &y that appears in Theorem 3.2, any r € (0, R) and any number v € N. In the following,

let us abbreviate

P () = p () = sup py(x),
20r0.)

and let 8" < § be a positive constant satisfying

, o
8'qy < > (4.40)
Since p,(x) — po uniformly, taking v sufficiently large, we can assume that

8/
(1 + 5) PO () < (148)pu(x) forall x € 2(x,.r) C B. .41)
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Using (2.22) and Corollary 2.5, we see that

)
/ (1 + |Du(v)|2)172 (l‘)/2dx . / (1 + |DM(U)|2)pv(x)/2dx
$2(xv.r) 2(xy.7)

2(xy,r)

(v)
rp2 (r)—m

(v) !
<P O (r)ce(8)2) ][ (14 | Du® Y IHOP 2 g
£2(xy,r)

< croppd O =(1+8)py ) o o —(148)01(4r)~8'g:

< cr?/2 Dm0 a5 — 0,
since w1 (4r) — 0 as r — 0. Here, we used (4.41) for the second inequality, (2.12) and assumption (P-2) for the third
one and (4.40) for the last one. Thus, (4.39) implies

Py (xy.r)—m ()2 Pv(x)/2 ~
pP2 (1+ |Du™]%) dx >gy/2, foranyr e (0,R), (4.42)

2(xy.r)

for sufficiently small R e (0, R).
Remarking that

(@+b)?<20"a +b%), Jat+tbs<Ja+~b foranya,b>0andg>1,

and taking r > so small that

21,0, O
we get
) 3 3
Py (xy,r)—m (v) pu(x) _
rP2 | Du dx z =80 = 30560 (4.43)
2(xy,r)
Here, w,, stands for the volume of m-dimensional unit ball.
Thus, for singular points x,, of u), combining (4.43) with (2.9), we see that
(v) (v) | Pv(x)
) u'’’> —h 3
cqrP2 O=m | dr+ / | DR ””"‘)) > Soraeo. (4.44)
2(xy,2r) 2(x,,2r)
Since we are assuming that (") € WS for some s > m, we have
|Dh(v) pu(x)
2(xy,2r)
0
i ——
2(xy,2r)
(v)
) R0) ) ) Py (2r)/s
< 2P 2r) |:(2r)mwm + [(Zr)ma)m]l Py (2r)/s ( / |Dh(v)|*dx> :|

£2(xy,2r)

On the other hand we are also assuming that /") converges weakly to # in W (B™), so f.O(xu ) DR |Sdx are

bounded by a constant which does not depend on v and r. Thus, remarking also that péu) > g1 and that r < 1 we have
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for a constant Cy, that

£2(xy,2r)

Now, choosing r > 0 sufficiently small so that

caCpra1(=m/s) <

we obtain from (4.44) that
(v) v) |Pv(x)
) u'’ —h 1
pPy ()—m dx > ——¢q. 4.45
2r = 2a+2¢, 0 (445)
2 (xy,2r)

On the other hand, since x, — %, A1) — hin L2, pv(x) = po and u™) — v in L2, we can see that, asin [16, (3.41)],

rm |u(”) — gD gy v —h|Pdx.
20x0,r) 2(@G,R)

So, from (4.45) we can deduce that

r " lv—h|Podx >

2(x,r)

for any r € (0, R) for some R > 0. This implies that X is a singular point of v, since v = & on the boundary. O
Now, thanks to the above lemma, we can prove full boundary regularity, Theorem 1.1, proceeding as in [6].

Proof of Theorem 1.1. For an arbitrarily fixed point xg € 92, choose a positive number R; > 0 sufficiently small
so that (3.6) in Theorem 3.2 holds. By considering suitable bi-Lipschitz transformation from B(x(, R;) onto BT =
B7T(0, 1), we can assume, without loss in generality, that xo =0, B = B(xo, R;) N £2 and that (3.6) holds on B*. It
is enough to show that xo = 0 is not a singular point of u.

For v e N, let us put

u(x) = u(v_lx), W (x) := h(v_lx), po(x) = p(v_lx)
AV (x,v) = Ag;)aﬂ (x, v) 1= 2722 O/ Pv(x) gap (vflx)h,-j(v).
Then, ™) minimizes the functional
. N Py (1)/2
gwm (v; B+) = /(Agj)aﬁ(x, V) Dyt D,gvf)p( )(x)/ dx.

BT

in the class
{ve Wl’p”(x)(B+); v=honT}.

Since we are assuming that p(x) is Holder continuous, v?®®~P©) tends to 1 uniformly as v — 0o. So, we have that
AR (xv) = g Ohij ).

On the other hand, since we are assuming the boundedness of u, ||u(”) lloo are uniformly bounded, and therefore,
taking subsequence if necessary, u") — un, for some uq, in L2(BT).
About the boundary conditions #"), we can see that 1) — h(0) strongly in W5 (BT) exactly as in [6, p. 465].
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Thus, all the assumptions in Lemma 4.1 are satisfied. So, using Lemma 4.1, we see that u, minimizes the func-
tional

Eoo(v, BY) := / (8% (0)hij (v) Duv! Do )"V dix,
B+

in the class
{vew" PO (B*); v=h() on I},

and O is a singular point of u,. However, [0, Theorem 5.4] says that a minimizer of a standard p-growth functional
(p > 1) cannot have singularity on the boundary. This is a contradiction, and we conclude that xo = 0 cannot be a
singular pointof u. O
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