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Abstract

We study existence and stability properties of entire solutions of a polyharmonic equation with an exponential nonlinearity. We 
study existence of radial entire solutions and we provide some asymptotic estimates on their behavior at infinity. As a first result on 
stability we prove that stable solutions (not necessarily radial) in dimensions lower than the conformal one never exist. On the other 
hand, we prove that radial entire solutions which are stable outside a compact set always exist both in high and low dimensions. In 
order to prove stability of solutions outside a compact set we prove some new Hardy–Rellich type inequalities in low dimensions.
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1. Introduction

We are interested in existence, nonexistence and stability properties of global solutions for the polyharmonic equa-
tion

(−�)mu = eu in R
n. (1)

This problem is the natural extension to the polyharmonic case of the Gelfand equation [24]

−�u = eu in R
n, n ≥ 1. (2)

Eq. (2) describes problems of thermal self-ignition [24], diffusion phenomena induced by nonlinear sources [26] or 
a ball of isothermal gas in gravitational equilibrium as proposed by lord Kelvin [9]. For results concerning properties 
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of solutions of the Gelfand equation in the whole Rn or in bounded domains see [5,11,17,25,34] and the references 
therein.

Recently, problem (1) in the biharmonic case m = 2 was widely studied, see [3,4,6,7,10,13,14,16,30,42,43]. In 
the listed papers the biharmonic version of the Gelfand equation was considered both in bounded domains with 
suitable boundary conditions and in the whole Rn; several questions were tackled, from the existence of solutions to 
their qualitative and stability properties. For other results concerning radial entire solutions of nonlinear biharmonic 
equations see also [18–20,22,23,27] and the references therein.

The study of higher order elliptic equations like in (1) is motivated by the problem formulated by P.L. Lions [31, 
Section 4.2 (c)], namely: Is it possible to obtain a description of the solution set for higher order semilinear equations 
associated to exponential nonlinearities?

We recall that Eq. (1) comes out in conformal geometry in looking for conformal metrics of the type gu := e2ug

which have an assigned 2m-order Q-curvature on a 2m-dimensional Riemannian manifold (M, g). In this setting, 
a generalized version of the Gauss identity is obtained for the function u: it reads

P 2m
g u + Q2m

g = Q2m
gu

e2mu in M (3)

where Q2m
g , Q2m

gu
are the 2m-order Q-curvatures with respect to g, gu respectively and P 2m

g is the 2m-order version 
of the Paneitz operator. When (M, g) is the 2m-dimensional Euclidean space then P 2m

g = (−�)m and Q2m
g ≡ 0. If we 

look for a conformal metric gu such that Q2m
gu

is constant then (3) becomes a rescaled version of (1). For more details 
on this topic see [33].

Our paper is essentially focused on the existence and stability properties of entire solutions of (1). This paper has 
the purpose of being a first step in a deeper comprehension of properties of entire solutions of (1). Throughout this 
paper, by entire solution to problem (1) we mean a classical solution u of the equation in (1) which exists for all 
x ∈R

n.
Concerning existence of entire solutions we describe in which way existence of global radial solutions of (1) is 

influenced by the fact that m is even or not. For results about radial solutions of nonlinear polyharmonic equations see 
the papers [15,29] and the references therein.

In the present paper, in looking for radial solutions of (1), we consider the following initial value problem⎧⎪⎨⎪⎩
(−�)mu(r) = eu(r) for r ∈ [

0,R(α0, . . . , αm−1)
)

u(0) = α0, u′(0) = 0

�ku(0) = αk,
(
�ku

)′
(0) = 0 for any k ∈ {1, . . . ,m − 1}

(4)

where α0, . . . , αm−1 are arbitrary real numbers and R(α0, . . . , αm−1) is the supremum of the maximal interval of 
continuation of the corresponding solution. The conditions u′(0) = 0 and (�ku)′(0) = 0 are necessary for having 
smoothness of the solution at the origin.

As a first result, we prove that in the case m odd, for any α0, . . . , αm−1 the corresponding solution of (4) is an 
entire solution of (1), see Theorem 2.1. In dimension n = 1 we also prove that all solutions of (1), not necessarily 
symmetric, are global, see Theorem 2.4.

On the other hand, if m is even and n = 1 or n = 2 then any solution of (4) is not global whereas in dimension n ≥ 3
both existence and nonexistence of global solutions may occur. In this last situation we give a sufficient and necessary 
condition for the existence of radial entire solutions of (1), see Theorem 2.2. More precisely, this theorem shows that 
for any α0 ∈ R, (4) admits a global solution if and only if the (m − 1)-tuple (α1, . . . , αm−1) belongs to a suitable 
nonempty closed set depending on α0, denoted by Aα0 . The nonexistence result in Theorem 2.2 (i) is extended for 
n = 1 to all solutions of (1), see Theorem 2.3.

The second purpose of this paper is to shed some light on the asymptotic behavior of global solutions of (4) as 
r → +∞ and on their stability properties.

In this direction we first show in Proposition 2.1 that all entire solutions of (1) are unbounded from below. In 
Theorem 2.5 we restrict out attention to radial solutions of (1). When m is odd we prove that for some special values 
of the initial conditions, problem (4) admits solutions which blow down to −∞ at least as r4 as r → +∞. Moreover 
if 1 ≤ n ≤ 2m − 1 all radial solutions of (1) blow down to −∞ at least as a positive and integer power of r .

On the other hand when m is even we prove that for any α0 ∈ R, solutions corresponding to initial con-
ditions satisfying (α1, . . . , αm−1) ∈ ◦

Aα0 behave like −Cr2m−2 as r → +∞ for a suitable constant C > 0. If 
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(α1, . . . , αm−1) ∈ ∂Aα0 then the corresponding solution u satisfies u(r) = o(r2m−2) as r → +∞; however we are 
able to prove that u blows down to −∞ at least as a logarithm as r → +∞, see Theorem 2.5 (iv). Such a logarithmic 
behavior actually occurs when m = 2 and n ≥ 5, see [3]. When m ≥ 3 is any integer (possibly also odd) and n = 2m

a logarithmic behavior can be observed for a special class of solutions of (1), see [33] and the references therein. 
More precisely, combining Theorems 1–2 in [33], it can be shown that among solutions of (1) satisfying the condition ∫
R2m eu < +∞, the only ones which show a logarithmic behavior at infinity are the explicit solutions given by

u(x) = 2m log

(
2[(2m)!] 1

2m λ

1 + λ2|x − x0|2
)

(5)

where λ > 0 and x0 ∈R
2m. For more details see also Proposition 2.2 and Corollary 2.1 in the present paper.

Our work is mainly devoted to the study of the polyharmonic version of the Gelfand equation (1) and its stability 
properties. We observe that (1) may be rewritten as

−�mu = eu in R
n (6)

if m is odd and

�mu = eu in R
n (7)

if m is even. Since we believe that (6) and (7) could be significant by themselves, independently of the fact that 
m is even or not, we devoted Section 3 to their study. For some results about existence and nonexistence of entire 
solutions of (7) see [38–41] and for results concerning a version of (7) with a power-type nonlinearity see [15] where 
the equation

�mu = |u|p in R
n (8)

is studied. We also quote the recent paper [28] where, among the others, a new proof of nonexistence of entire solutions 
of (7) is provided for m ≥ 1 and n = 2 (see [38] for the other proof of this result).

In Section 4 we come back to Eq. (1) and we focus our attention on stability and stability outside a compact set of 
its solutions. For a rigorous definition of these two notions see Section 4. In Theorem 4.1 we prove that (1) admits no 
stable solutions (also nonradial) if n is less or equal than the conformal dimension 2m. However, in Theorems 4.2–4.3
we are able to prove that if 3 ≤ n ≤ 2m then (1) admits radial solutions which are stable outside a compact set. 
Moreover if m ≥ 3 is odd and 1 ≤ n ≤ 2m − 1 then all radial solutions of (1) are stable outside a compact set, see 
Theorem 4.2 (ii).

In the supercritical dimensions n > 2m we prove that if m is odd then (1) admits radial solutions that are stable 
outside a compact set and if m is even then, for any α0 ∈ R, all solutions of (4), such that (α1, . . . , αm−1) ∈ ◦

Aα0 , are 
stable outside a compact set; the question about the stability outside a compact set in the case (α1, . . . , αm−1) ∈ ∂Aα0

is still open, see Problem 4.1 (ii).
The question about the existence of (globally) stable solutions is completely open both in the cases m odd and 

m even, see Problem 4.1 (iii). Let us try to explain the main difficulties that one has to face in order to determine 
stability of radial solutions. In the case m = 1 a complete description of stability and stability outside compact sets of 
solutions (also nonradial) of (1) is available, see [11,17]. In the case m = 2 a complete picture on stability and stability 
outside compact sets was given in [6,16] at least for radial solutions.

If we look at radial solutions in the case m = 2, we see that in [6] the authors are able to obtain asymptotic and 
global estimates on solutions by exploiting a suitable change of variables which reduces the ordinary differential 
equation in (4) into a nonlinear fourth order autonomous equation, see [6, proof of Lemma 12]. In turn, this fourth 
order autonomous equation may be reduced to a dynamical system of four first order equations. In this situation the 
dimension n plays a crucial role in determining stability properties of radial solutions: indeed in dimension n ≥ 13
the above mentioned fourth order autonomous equation shows a nonoscillatory behavior of its solutions and this, 
combined with the classical Hardy–Rellich inequality [37], gives stability of solutions; on the other hand in dimensions 
5 ≤ n < 13 (n = 4 is the critical dimension) the autonomous fourth order equation shows an oscillatory behavior and 
this justifies the existence of radial unstable solutions.

When we consider higher powers m of −� the situation seems to be quite different for the following reason. 
In a completely similar way the ordinary differential equation in (4) may be reduced to an autonomous equation of 
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order 2m. But this time a nonoscillatory behavior, similar to the one observed in the case m = 2 when n ≥ 13, seems 
not to take place also in large dimensions as one can see from Section 12.

A relevant part of this paper is devoted to a class of Hardy–Rellich type inequalities when n is less or equal than 
the corresponding critical dimension. The first result in this direction is Proposition 5.2 which can be obtained with an 
iterative procedure by using a result of [8]. The results in Theorems 5.1–5.2 are new and their proofs are based on a 
suitable Emden type transformation. This kind of procedure was already used in [8] in order to obtain Hardy–Rellich 
type inequalities in conical domains.

This paper is organized as follows. In Section 2 we state existence and nonexistence results for solutions to (1) and 
we provide some estimates on the asymptotic behavior of its radial solutions as |x| → +∞. Section 3 is devoted to 
the study of (6)–(7). In Section 4 we give some results about stability and stability outside compact sets of solutions 
to (1). To this end, we need some Hardy–Rellich inequalities which are stated in Section 5. Sections 6–11 are devoted 
to the proofs of the main results. In Section 12 we explain in which way further results on radial solutions of (1) could 
be obtained by mean of a suitable change of variable and we present some open questions. In Appendix A we first 
state a couple of well-known results dealing with continuous dependence on the initial data and with a comparison 
principle and finally we state some properties which are exploited several times in the proofs of the main results.

2. Existence and asymptotic behavior of radial entire solutions of (1)

We start with the following existence result for radial entire solutions of (1) in the case m odd:

Theorem 2.1. Let n ≥ 1 and m ≥ 1 be odd. Then for any α0, . . . , αm−1 ∈ R problem (4) admits a unique global 
solution.

In order to describe what happens in the case m even we introduce the following notation accordingly with [3,6]: 
we write α in place of α0 ∈ R and we rename the numbers α1, . . . , αm−1 respectively β1, . . . , βm−1. Then we put 
β := (β1, . . . , βm−1) ∈ R

m−1 and we denote by uα,β the corresponding solution of (4). Finally for any α ∈ R fixed, 
we introduce the set

Aα := {
β ∈R

m−1 : uα,β is a global solution of (4)
}
. (9)

We prove

Theorem 2.2. Let m ≥ 2 be even and let Aα be the set introduced in (9). Then the following statements hold true:

(i) if n = 1 or n = 2 then for any α ∈R the set Aα is empty;
(ii) if n ≥ 3 then for any α ∈ R the set Aα is nonempty and moreover there exists a function Φα : Rm−2 → (−∞, 0)

such that

Aα = {
β = (β1, . . . , βm−1) ∈R

m−1 : βm−1 ≤ Φ(β1, . . . , βm−2)
};

(iii) if n ≥ 3 then for any α ∈R, Φα is a continuous function, Aα is closed, ∂Aα coincides with the graph of Φα and
◦
Aα = {

β = (β1, . . . , βm−1) ∈R
m−1 : βm−1 < Φ(β1, . . . , βm−2)

};
(iv) if n ≥ 3 and m ≥ 4 then for any α ∈ R, Φα is decreasing with respect to each variable, i.e. the map t �→

Φα(β1, . . . , βk−1, t, βk+1, . . . , βm−2) is decreasing in R for any k ∈ {1, . . . , m − 2}.

When m = 2 the function Φα introduced in the statement of Theorem 2.2 is defined on the zero dimensional 
space {0} and the set Aα becomes {β ∈ R : β ≤ Φα(0)}. The result in this particular case was already obtained in [3].

We observe that the nonexistence result proved in Theorem 2.2 for n = 1 remains valid also for any kind of solutions 
of (1), also nonsymmetric:

Theorem 2.3. If n = 1 and m ≥ 2 is even then (1) admits no entire solutions.

On the other hand, when n = 1 and m ≥ 1 is odd we have
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Theorem 2.4. Let n = 1 and m ≥ 1 be odd. Then any local solution of the ordinary differential equation corresponding 
to (1) is global. Moreover if m = 1 then any solution of (1) is symmetric with respect to some point x0 ∈ R. On the 
other hand if m ≥ 3, (1) admits solutions which are not symmetric with respect to any point x0 ∈R.

Next we provide some information on the qualitative behavior of entire solutions of (1). First we show that any 
entire solution (possibly nonradial) of (1) is not bounded from below. Indeed if u is a solution to (1) such that u ≥ M

for some M ∈ R then for any q > 1 there exists K(M, q) > 0 such that the inequality

(−�)mu ≥ K(M,q)|u|q in R
n

holds true. Then, from [36, Theorem 4.1], we infer

Proposition 2.1. For any n ≥ 1 and m ≥ 1, problem (1) admits no entire solutions bounded from below.

Then we deal with the asymptotic behavior of radial entire solutions of (1) as |x| → +∞. We prove

Theorem 2.5. Let n ≥ 1. Then the following statements hold true:

(i) if m ≥ 3 is odd then for any solution u of (4) satisfying signαk �= (−1)k for at least one value of k ∈ {1, . . . ,
m − 1}, we have

u(r) < −Cr4 for any r > r (10)

for some C, r > 0;
(ii) if m ≥ 3 is odd and 1 ≤ n ≤ 2m − 1 then any solution u of (4) satisfies

u(r) < −CrK for any r > r

for some C, r > 0 and K positive integer;
(iii) if n = 1 and m ≥ 1 is odd then any solution u of (1) (also nonsymmetric) satisfies

u(x) < −C|x|K for any |x| > r

for some C, r > 0 and K positive integer;
(iv) if m ≥ 2 is even, α ∈R and β ∈ ◦

Aα , with Aα as in Theorem 2.2, then there exists C > 0 such that

uα,β(r) ∼ −Cr2m−2 as r → +∞
where we denoted by uα,β the unique solution of (4) corresponding to the couple (α, β) ∈R

m;
(v) if m ≥ 2 is even, α ∈R and β ∈ ∂Aα , with Aα as in Theorem 2.2, then

uα,β(r) = o
(
r2m−2) as r → +∞

and there exist C,r > 0 such that

uα,β(r) < −2m log r + C for any r > r

where we denoted by uα,β the unique solution of (4) corresponding to the couple (α, β) ∈R
m.

Problem 2.1. As possible improvements of Theorem 2.5 we suggest the following open questions:

(i) Let m ≥ 3 be odd. Provide an upper estimate for all radial solutions of (1) and try to understand if for some 
solution satisfying signαk = (−1)k for any k ∈ {1, . . . , m − 1}, (10) still holds true;

(ii) Let m ≥ 4 be even. Determine the exact behavior of radial solutions uα,β of (1) when β ∈ ∂Aα .

Something more precise about the behavior at infinity of entire solutions (also nonradial) of (1) can be shown in 
the conformal dimension n = 2m for any m ≥ 1.

For example if m is odd and n = 2m, by taking u in the form (5), we see that there exist radial solutions of (1)
which do not satisfy the estimate in Theorem 2.5 (i).

More generally we state the following results which are a quite immediate consequence of Theorems 1–2 in [33].



500 A. Farina, A. Ferrero / Ann. I. H. Poincaré – AN 33 (2016) 495–528
Proposition 2.2. Let m ≥ 2 and n = 2m. Let u be a solution to (1) such that eu ∈ L1(R2m) and let γ :=
1

|S2m|(2m)!
∫
R2m eu dx where |S2m| denotes the surface measure of the 2m-dimensional unit sphere in R2m+1. The fol-

lowing statements hold true:

(i) the function u can be represented as

u(x) = v(x) + p(x)

where p is a polynomial bounded from above of degree at most 2m − 2 and v is a function satisfying

v(x) = −2mγ log|x| + o
(
log|x|) as |x| → +∞;

(ii) the function u is of the form (5) if and only if u(x) = o(|x|2) as |x| → +∞.

Corollary 2.1. Let m ≥ 2 be even and let n = 2m. Let u be of the form (5) with x0 = 0; let α := u(0) and β ∈ R
m−1

be the corresponding initial values according to the notation of Theorem 2.2. Then β ∈ ∂Aα .

3. Further results for the polyharmonic equations (6) and (7)

Many of the results, proved in Section 2 for (1) in the cases m odd and m even, can be extended respectively to 
Eqs. (6) and (7) for any m ∈N.

Similarly to what we did in (4) for (1), to (6) we associate problem⎧⎪⎨⎪⎩
−�mu(r) = eu(r) for r ∈ [

0,R(α0, . . . , αm−1)
)

u(0) = α0, u′(0) = 0

�ku(0) = αk,
(
�ku

)′
(0) = 0 for any k ∈ {1, . . . ,m − 1},

(11)

and to (7) problem⎧⎪⎨⎪⎩
�mu(r) = eu(r) for r ∈ [

0,R(α0, . . . , αm−1)
)

u(0) = α0, u′(0) = 0

�ku(0) = αk,
(
�ku

)′
(0) = 0 for any k ∈ {1, . . . ,m − 1}.

(12)

Theorem 3.1. Let n ≥ 1 and m ≥ 1. Then for any α0, . . . , αm−1 ∈ R problem (11) admits a unique global solution.

Using the same notations of Section 2, to problem (12) we associate the solution uα,β and the set

Aα := {
β ∈R

m−1 : uα,β is a global solution of (12)
}
. (13)

We prove

Theorem 3.2. For any α ∈ R let Aα be the set introduced in (13). If m = 1 then Aα is empty for any n ≥ 1. If m ≥ 2, 
statements of Theorem 2.2 (i)–(iii) still hold true and the statement of Theorem 2.2 (iv) holds true for any m ≥ 3.

In the case m = 1, Theorem 3.2 states that (7) admits no radial entire solutions for any n ≥ 1; actually a more 
general result holds true thanks to [39,41] who proved nonexistence of any entire solution to (7) respectively when 
n ≥ 2 and n = 2. Similarly, in the case n = 2, Theorem 3.2 states that (7) admits no radial entire solutions for any 
m ≥ 1; also this result has a more general validity thanks to [38] who proved nonexistence of any entire solution to (7)
for any m ≥ 1.

Also Theorems 2.3–2.4 admit their respective extensions to the case m ∈N:

Theorem 3.3. If n = 1 and m ≥ 1 then (7) admits no entire solutions.

Theorem 3.4. Let n = 1 and m ≥ 1. Then any local solution of the ordinary differential equation corresponding to (6), 
is global. Moreover if m = 1 then any solution of (6) is symmetric with respect to some point x0 ∈ R. On the other 
hand if m ≥ 2, (6) admits solutions which are not symmetric with respect to any point x0 ∈R.
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Finally we state the validity of some upper estimates for (6)–(7) in the spirit of Theorem 2.5.

Theorem 3.5. Let n ≥ 1. Let u satisfy at least one of the following alternatives:

(i) m ≥ 2 and u is a solution of (11) satisfying signαk �= (−1)m−k+1 for some k ∈ {1, . . . , m − 1};
(ii) m ≥ 2, 1 ≤ n ≤ 2m − 1 and u is a solution of (11);

(iii) n = 1, m ≥ 1 and u is a solution of (6) (also nonsymmetric).

Then there exist C,r > 0 and K ∈N \ {0} such that u(x) < −C|x|K for any x ∈ R
n with |x| > r .

Finally, if m ≥ 2, α ∈ R, β ∈ ◦
Aα , with Aα as in Theorem 3.2, then there exists C > 0 such that

uα,β(r) ∼ −Cr2m−2 as r → +∞ (14)

where we denoted by uα,β the unique solution of (12) corresponding to the couple (α, β) ∈R
m.

4. Stability properties of solutions to (1)

We start with the definition of stability and stability outside a compact set for entire solutions of (1). In the sequel, 
for any open set Ω ⊂R

n, we denote by C∞
c (Ω) the set of C∞ functions whose support is compactly included in Ω .

Definition 4.1. A solution u ∈ C2m(Rn) to (1) is stable if∫
Rn

∣∣�m/2ϕ
∣∣2

dx −
∫
Rn

euϕ2dx ≥ 0 for any ϕ ∈ C∞
c

(
R

n
)
, if m is even,

∫
Rn

∣∣∇(
�

m−1
2 ϕ

)∣∣2
dx −

∫
Rn

euϕ2dx ≥ 0 for any ϕ ∈ C∞
c

(
R

n
)
, if m is odd. (15)

A solution u ∈ C2m(Rn) to (1) is stable outside a compact set K if∫
Rn

∣∣�m/2ϕ
∣∣2

dx −
∫
Rn

euϕ2dx ≥ 0 for any ϕ ∈ C∞
c

(
R

n \ K
)
, if m is even,

∫
Rn

∣∣∇(
�

m−1
2 ϕ

)∣∣2
dx −

∫
Rn

euϕ2dx ≥ 0 for any ϕ ∈ C∞
c

(
R

n \ K
)
, if m is odd. (16)

We state the following nonexistence result for stable (also nonradial) solutions of (1) in dimension n ≤ 2m.

Theorem 4.1. If n ≤ 2m then (1) admits no stable solutions.

In the next result we give sufficient conditions for the validity of the stability outside a compact set.

Theorem 4.2. Let n ≥ 1. Then the following statements hold true:

(i) if m ≥ 3 is odd then any solution u of (4) satisfying signαk �= (−1)k , for at least one 1 ≤ k ≤ m − 1, is stable 
outside a compact set;

(ii) if m ≥ 3 is odd and 1 ≤ n ≤ 2m − 1 then any solution u of (4) is stable outside a compact set;
(iii) if n = 1 and m ≥ 1 is odd then any solution u of (1) (also nonsymmetric) is stable outside a compact set;
(iv) if m ≥ 2 is even, α ∈ R and β ∈ ◦

Aα , with Aα as in Theorem 2.2, then the corresponding solution uα,β of (4) is 
stable outside a compact set.

Then we prove stability outside a compact set for a special class of solutions in the case n = 2m.

Theorem 4.3. Let m ≥ 1 and n = 2m. Let u be the solution defined in (5). Then u is stable outside a compact set.
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Remark 4.1. We observe that the case m = 1, n ≥ 3 is not contained neither in Theorem 4.2 nor in Theorem 4.3. But 
we recall that this case was exhaustively solved in [11] and [17] where it is shown that if 3 ≤ n ≤ 9, (1) does not admit 
any solution stable outside a compact set while if n ≥ 10 all radial solutions of (1) are stable. We also recall that the 
question of stability outside a compact set when m = 1 and n = 2 was completely solved in [17] where it is shown 
that the only solutions of (1) which are stable outside a compact set are the ones defined in (5); we finally observe that 
the solutions in (5) are unstable as one can easily deduce from Theorem 4.1.

Since we believe that the one dimensional case deserves particular attention, taking also in consideration the suc-
cessive discussion on stability in high dimensions, we resume in a unique statement all the previous results obtained 
for n = 1.

Corollary 4.1. Let n = 1.

(i) If m is even then (1) admits no entire solutions.
(ii) If m is odd then any local solution of (1) is global.

(iii) If m = 1 then all solutions of (1) are symmetric with respect to some point while if m ≥ 3 is odd then (1) admits 
entire solutions which are not symmetric with respect to any point.

(iv) If m ≥ 1 is odd then all entire solutions of (1) are unstable but are stable outside a compact set.

As one can easily deduce, if we take a global solution u of (1) in Rn, then u may be seen as a global solution 
of (1) in Rn+k for any k ≥ 1. This is a possible strategy for constructing solutions in high dimensions starting from 
the ones in low dimensions. But we want to point out that this procedure does not preserve stability properties of 
global solutions. We clarify this last point by choosing for simplicity n = 1. As one can see from Corollary 4.1, 
where in dimension n = 1 we gave a complete description of properties of solutions of (1), no stable solution exists 
for any m ≥ 1; we have in the case m odd at most stability outside a compact set but this property is not preserved 
after adding further dimensions. Indeed, if we consider a solution u = u(x) (x ∈ R) of (1) stable outside a compact 
set (but unstable in view of Corollary 4.1 (iv)) and we see it as an entire solution of (1) in Rk+1, then it becomes 
unstable outside any compact set and in particular its Morse index is infinite. To see this, take ϕ ∈ C∞

c (R) such that ∫
R
[(ϕ(m))2 − euϕ2]dx < 0, ψ1 ∈ C∞

c (Rk), ψ1 �≡ 0 and ψR(y) := ψ1(y/R) for any R > 0. Then one may check that∫
Rk+1

∣∣∇(
�

m−1
2

(
ϕ(x)ψR(y)

))∣∣2
dxdy = Rk

∫
Rk

(
ψ1(y)

)2
dy ·

∫
R

(
ϕ(m)(x)

)2
dx + o

(
Rk

)
as R → +∞.

Therefore∫
Rk+1

[∣∣∇(
�

m−1
2

(
ϕ(x)ψR(y)

))∣∣2 − eu(x)
(
ϕ(x)

)2(
ψR(y)

)2]
dxdy

= Rk

∫
Rk

(
ψ1(y)

)2
dy ·

∫
R

[(
ϕ(m)(x)

)2 − eu(x)
(
ϕ(x)

)2]
dx + o

(
Rk

)
as R → +∞.

For R > 0 sufficiently large we have that the last line becomes negative. Fixing such an R > 0 and letting τ > 0, 
{e1, . . . , ek+1} be the standard basis in Rk+1, vτ (x, y) := ϕ(x)ψR(y − τej ) ∈ C∞

c (Rk+1), j ∈ {2, . . . , k + 1}, we 
obtain ∫

Rk+1

[∣∣∇(
�

m−1
2 vτ

)∣∣2 − euv2
τ

]
dxdy < 0 for any τ > 0.

This procedure may be extended to any unstable solution u of a general problem in the form (−�)mu = f (u) in Rn

with n ≥ 1 and f ∈ C1(R).

Problem 4.1. Concerning stability properties of solutions of (1) we suggest the following questions:

(i) Let m ≥ 3 be odd. Study stability outside a compact set of radial solutions of (1) satisfying signαk = (−1)k for 
all k ∈ {1, . . . , m − 1}.
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(ii) Let m ≥ 4 be even. Study stability outside a compact set of radial solutions uα,β of (1) satisfying β ∈ ∂Aα . 
Only in the case n = 2m we can conclude that such solutions are stable outside a compact set. This follows 
immediately combining Corollary 2.1 and Theorem 4.3.

(iii) Let m be any integer satisfying m ≥ 3. Study existence of radial entire solutions of (1) which are (globally) 
stable. See also the end of Section 12 for more details.

5. Some higher order Hardy–Rellich type inequalities

In this section we state some Hardy–Rellich type inequalities of fundamental importance for determining stability 
outside compact sets of solutions of (1) especially in low dimensions.

Before these statements we recall from [35] some higher order classical Hardy–Rellich inequalities with optimal 
constants, see also [2,12]. In the rest of this paper we put 

∏k
i=j ai = 1 whenever k < j .

Proposition 5.1. (See [35, Theorem 3.3].) The following statements hold true:

(i) if k ≥ 1 and n > 4k then

An,k

∫
Rn

ϕ2

|x|4k
dx ≤

∫
Rn

∣∣�kϕ
∣∣2

dx for any ϕ ∈ C∞
c

(
R

n
)

where

An,k := 1

16k

k−1∏
i=0

(n − 4k + 4i)2(n + 4k − 4i − 4)2;

(ii) if k ≥ 0 and n > 4k + 2 then

Bn,k

∫
Rn

ϕ2

|x|4k+2
dx ≤

∫
Rn

∣∣∇(
�kϕ

)∣∣2
dx for any ϕ ∈ C∞

c

(
R

n
)

where

Bn,k := 1

16k

(
n − 2

2

)2 k∏
i=1

(n − 4i − 2)2(n + 4i − 2)2

and moreover the constant Bn,k is optimal in the case k = 0.

The two inequalities stated in Proposition 5.1 are valid only for sufficiently large dimensions.
In order to obtain Hardy–Rellich type inequalities also in low dimension we iterate inequality (0.6) in [8] to prove 

the following

Proposition 5.2. Let n ≥ 2 and let k be a positive integer. Suppose that n �= 2
 for any 
 ∈ {1, . . . , 2k}. For any n ≥ 2
and any α ∈R define

μn,α := min
j∈N∪{0}

∣∣γn,α + j (n − 2 + j)
∣∣2 (17)

and

γn,α :=
(

n − 2

2

)2

−
(

α − 2

2

)2

.

Then we have(
k∏

i=1

μn,αi

)∫
n

ϕ2

|x|4k
dx ≤

∫
n

∣∣�kϕ
∣∣2

dx for any ϕ ∈ C∞
c

(
R

n \ {0}) (18)
R R
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and (
n − 2

2

)2
(

k∏
i=1

μn,αi

)∫
Rn

ϕ2

|x|4k+2
dx ≤

∫
Rn

∣∣∇(
�kϕ

)∣∣2
dx for any ϕ ∈ C∞

c

(
R

n \ {0}) (19)

where we put αi = −4k + 4i for any i ∈ {1, . . . , k}.

In Proposition 5.2 we excluded the case n = 1 since we recall that in such a case the following inequalities hold:

Proposition 5.3. Let α ∈ R. Then for any ϕ ∈ C∞
c (R \ {0}) we have

(α − 1)2

4

∫
R

|x|α−2ϕ2 dx ≤
∫
R

|x|α∣∣ϕ′∣∣2
dx. (20)

Applying (20) twice we also obtain

(α − 1)2(α − 3)2

16

∫
R

|x|α−4ϕ2 dx ≤
∫
R

|x|α∣∣ϕ′′∣∣2
dx for any ϕ ∈ C∞

c

(
R \ {0}). (21)

Moreover iterating (21) and using the classical Hardy inequality in dimension n = 1, for any integer k ≥ 0, we 
obtain

2−4k−2

(
k−1∏
i=0

(4i − 3)2(4i − 5)2

)∫
R

ϕ2

|x|4k+2
dx ≤

∫
R

∣∣ϕ(2k+1)
∣∣2

dx for any ϕ ∈ C∞
c

(
R \ {0}) (22)

with 
∏k−1

i=0 (4i − 3)2(4i − 5)2 = 0 when k = 0.

We observe that the constant 
∏k

i=1 μn,αi
appearing in (18)–(19) is strictly positive under the assumptions of Propo-

sition 5.2. On the other hand, if n = 2
 for some 
 ∈ {1, . . . , 2k} then 
∏k

i=1 μn,αi
= 0 making estimates (18) and (19)

trivial. In order to show this, it is sufficient to observe that μn,αi
= 0 if and only if 1 ≤ i ≤ min{k, k +1 − 


2 }; moreover 
the minimum in (17) is achieved for j = 2k − 
 − 2(i − 1).

For the above mentioned reasons, we need a new Hardy–Rellich type inequality which is meaningful also in 
dimensions satisfying n = 2
 for some 
 ∈ {1, . . . , 2k}.

In the rest of the paper we denote by BR the ball in Rn of radius R > 0 centered at the origin. We start with the 
following second order inequality with logarithmic weights:

Theorem 5.1. Let n ≥ 2, α ≤ 0 and β ≥ 0. Let μn,α and γn,α be as in Proposition 5.2 and suppose that μn,α = 0. 
Then there exists R > 1 large enough such that

2γ̄n,α

(
β + 1

2

)2 ∫
Rn\BR

|x|α−4ϕ2

(log|x|)β+2
dx ≤

∫
Rn\BR

|x|α|�ϕ|2
(log|x|)β dx for any ϕ ∈ C∞

c

(
R

n \ BR

)
with γ̄n,α := ( n−2

2 )2 + (α−2
2 )2.

Iterating Theorem 5.1 we obtain the following

Theorem 5.2. Let k be a positive integer and let n = 2
 for some 
 ∈ {1, . . . , 2k}. Let γ̄n,α be as in Theorem 5.1. Then 
there exists R > 1 large enough such that

2k

(
k−1∏
i=0

γ̄n,−4i

)
·
(

k−1∏
i=0

(
2i + 1

2

)2
) ∫

n

ϕ2

|x|4k(log|x|)2k
dx ≤

∫
n

∣∣�kϕ
∣∣2

dx (23)
R \BR R \BR
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and

2k−2

(
k−1∏
i=0

γ̄n,−4i−2

)
·
(

k−1∏
i=0

(
2i + 3

2

)2
) ∫
Rn\BR

ϕ2

|x|4k+2(log|x|)2k+2
dx ≤

∫
Rn\BR

∣∣∇(
�kϕ

)∣∣2
dx (24)

for any ϕ ∈ C∞
c (Rn \ BR).

We observe that (23)–(24) may be improved by using (0.6) in [8] whenever the numbers μn,αi
with αi = −4k + 4i

are strictly positive and using Theorem 5.1 whenever they vanish.

6. On global radial solutions of (6)

The following lemmas contain many results dealing with existence of global radial solutions of (6) and their 
behavior as r → +∞.

Lemma 6.1. Let n ≥ 1, m ≥ 1 and let u be a solution of (11) defined on the maximal interval of continuation 
[0, R(α0, . . . , αm−1)). Then for any α0, . . . , αm−1 ∈R we have that R(α0, . . . , αm−1) = +∞.

Proof. By (6) we have �mu = −eu < 0 so that by Proposition A.3 (i) the map r �→ �m−1u(r) is decreasing and 
hence

�m−1u(r) ≤ αm−1 for any r ∈ [
0,R(α0, . . . , αm−1)

)
. (25)

Consider now the unique (global) solution w of the initial value problem⎧⎪⎨⎪⎩
�m−1w(r) = αm−1, r ∈ (0,+∞)

w(0) = u(0), w′(0) = u′(0) = 0

�kw(0) = �ku(0),
(
�kw

)′
(0) = (

�ku
)′
(0) = 0 for any k ∈ {1, . . . ,m − 2}.

(26)

By (25), (26) and Proposition A.2 we deduce that for any r ∈ [0, R(α0, . . . , αm−1))

u(r) ≤ w(r), u′(r) ≤ w′(r)
�ku(r) ≤ �kw(r),

(
�ku(r)

)′ ≤ (
�kw(r)

)′
, for all k ∈ {1, . . . ,m − 2}.

If we assume by contradiction that R(α0, . . . , αm−1) < +∞ then u would be bounded from above in the interval 
(0, R(α0, . . . , αm−1)) and hence eu would be bounded in (0, R(α0, . . . , αm−1)). By Proposition A.3 (ii) u and all its 
derivatives up to order 2m − 1 are bounded thus proving that R(α0, . . . , αm−1) = +∞. �
Lemma 6.2. Let n ≥ 1, m ≥ 1 and let u be a solution of (11) defined on the maximal interval of continuation [0, +∞). 
Then

lim
r→+∞�ku(r) ∈ [−∞,0] (27)

for any k ∈ {1, . . . , m − 1}.

Proof. Since �mu = −eu < 0, the existence of the limit in (27) follows from Proposition A.3 (i). Suppose by contra-
diction that there exists k ∈ {1, . . . , m − 1} such that


1 := lim
r→+∞�ku(r) > 0. (28)

Then by Proposition A.3 (iii) with 
 = 0 we infer limr→+∞ u(r) = +∞.
Combining this with (6) and exploiting Proposition A.3 (iii) with 
 = 0, we obtain limr→+∞ �ku(r) = −∞, 

a contradiction. �
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Lemma 6.3. Let n ≥ 1, m ≥ 2 and let u be a solution of (11) defined on the maximal interval of continuation [0, +∞). 
Suppose that

lim
r→+∞�ku(r) = 0 (29)

for any k ∈ {2, . . . , m − 1} even if m is odd and k ∈ {1, . . . , m − 1} odd if m is even. Then

signαk = (−1)m−k+1 for any k ∈ {1, . . . ,m − 1}.

Proof. By (11) and Proposition A.3 (i) we deduce that the map r �→ �m−1u(r) is decreasing in (0, +∞) and hence 
by (29) we have that �m−1u(r) > 0 for any r ≥ 0. Using again Proposition A.3 (i) and (27) we obtain �m−2u(r) < 0
for any r ≥ 0.

Iterating this procedure we infer that for any k ∈ {1, . . . , m −1}, (−1)m−k+1�ku(r) > 0 for any r ≥ 0. In particular 
by (11) we deduce that signαk = (−1)m−k+1 for any k ∈ {1, . . . , m − 1}. �
Lemma 6.4. Let n ≥ 1, m ≥ 2 and let u be a solution of (11) defined on the maximal interval of continuation [0, +∞)

and suppose that there exists k ∈ {1, . . . , m − 1} such that signαk �= (−1)m−k+1. Then there exist C,r > 0 such that

u(r) < −Cr4 for any r > r if m is odd and u(r) < −Cr2 for any r > r if m is even.

Proof. Let k be as in the statement. First suppose that m is odd. Then by Lemmas 6.2–6.3, we deduce that at least 
for one k ∈ {1, . . . , m − 1} even, we have that limr→+∞ �ku(r) < 0. Therefore by Proposition A.3 (iii) with 
 = 0 we 
conclude that limr→+∞ �2u(r) is strictly negative and in particular there exist r, C > 0 such that �2u(r) < −C for 
any r > r . The conclusion of the proof follows by using again Proposition A.3 (iii).

If m is even one may proceed as in the previous case showing that there exist r, C > 0 such that �u(r) < −C for 
any r > r and using Proposition A.3 (iii). �
Lemma 6.5. Let m ≥ 1, let 1 ≤ n ≤ 2m − 1 and let u be a solution of (11) defined on the maximal interval of 
continuation [0, +∞). Then there exist a positive integer K and constants C, r > 0 such that

u(r) < −CrK for any r > r.

Proof. By Lemma 6.2 we know that only the two following alternatives may occur: either there exists 1 ≤ k ≤ m − 1
such that

lim
r→+∞�ku(r) < 0 (30)

or

lim
r→+∞�ju(r) = 0 for any j ∈ {1, . . . ,m − 1}. (31)

We divide the proof in three parts.
The case n = 1,2. Put v = �m−1u so that v is a radial superharmonic function in Rn. In particular the map 

r �→ rn−1v′(r) is decreasing and it is also negative for any r > 0 being equal to zero at r = 0. Hence

rn−1v′(r) < v′(1) < 0 for any r > 1.

Integrating we then obtain

v(r) <

{
v(1) − |v′(1)| log r for any r > 1 if n = 2

v(1) − |v′(1)|(r − 1) for any r > 1 if n = 1.

In both cases limr→+∞ v(r) = −∞. This implies that there exist C,r > 0 such that �m−1u(r) < −C for any r > r . 
The proof of the lemma follows by Proposition A.3 (iii).

The case 3 ≤ n ≤ 2m − 2. We prove that (30) holds true. Suppose by contradiction that (31) holds true. Then 
by (11) and (31) we have
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(
(−�)ju

)′
(r) < 0, (−�)ju(r) > 0 for any r > 0 and j ∈ {1, . . . ,m − 1} when m is odd, (32)(

(−�)ju
)′
(r) > 0, (−�)ju(r) < 0 for any r > 0 and j ∈ {1, . . . ,m − 1} when m is even. (33)

Since n ≥ 3 we may fix k ∈ {1, . . . , m − 2} such that 2k = n − 2 if n is even and 2k = n − 1 if n is odd. For any 
r ≥ 0 put v(r) = (−�)m−ku(r). Then by (11) we have (−�)kv = (−�)mu > 0 (resp. (−�)kv = (−�)mu < 0) if 
m is odd (resp. even) so that v is a radial k-superpolyharmonic function in Rn (resp. k-subpolyharmonic). For any 
ε > 0 we introduce the function wε(r) := v(r) − ε(−1)m+1Φ(r) defined for any r > 0 where Φ(r) := r2k−n is up to 
a constant multiplier the fundamental solution of (−�)k . In particular we have that (−�)kwε = (−�)kv > 0 (resp. 
(−�)kwε = (−�)kv < 0) if m is odd (resp. even) in (0, +∞).

Exploiting (32) when m is odd (resp. (33) if m is even), we deduce that it is not restrictive to fix ε > 0 small enough 
in such a way that(

rn−1((−�)jwε

)′
(r)

)
|r=1 = (−1)j

[(
�jv

)′
(1) − ε

(
�jΦ

)′
(1)

]
= (

(−�)m−k+j u
)′
(1) + ε(−1)j+1(�jΦ

)′
(1)

< 0 for any j ∈ {0, . . . , k − 1} if m is odd, (34)(
rn−1((−�)jwε

)′
(r)

)
|r=1 > 0 for any j ∈ {0, . . . , k − 1} if m is even, (35)

where by (−�)0 we simply mean the identity operator.
Since (−�)kwε > 0 (resp. (−�)kwε < 0) if m is odd (resp. even) then the map r �→ rn−1((−�)k−1wε)

′(r) is 
decreasing (resp. increasing) in (0, +∞) and its value at r = 1 is negative (resp. positive) in view of (34) (resp. (35)). 
This implies that ((−�)k−1wε)

′(r) < 0 (resp. ((−�)k−1wε)
′(r) > 0) if m is odd (resp. even) for any r > 1 and, in 

turn, that the map r �→ (−�)k−1wε is decreasing in (1, +∞) (resp. increasing).
But by (31) and the definition of wε we have that limr→+∞(−�)k−1wε(r) = 0 and hence (−�)k−1wε(r) > 0

(resp. (−�)k−1wε(r) < 0) if m is odd (resp. even) for any r > 1. Iterating this procedure we deduce that for any 
j ∈ {1, . . . , k}, (−�)jwε > 0 (resp. (−�)jwε < 0) if m is odd (resp. even) in (1, +∞) and wε > 0 (resp. wε < 0) in 
the same interval. By definition of v and wε we infer

(−�)m−ku(r) > εr2k−n for any r > 1 if m is odd, (36)

(−�)m−ku(r) < −εr2k−n for any r > 1 if m is even. (37)

After an iterative procedure of integration it follows that there exist C,r > 0 such that∣∣�u(r)
∣∣ > Cr−n+2m−2 for any r > r, for any m ≥ 1.

Actually in the case n even we also have that |�u(r)| > Cr−n+2m−2 log r for any large r . However, in any case we 
have that limr→+∞ �u(r) �= 0 in contradiction with (31). We proved the validity of (30) and then the conclusion of 
the lemma follows by Proposition A.3 (iii).

The case n = 2m − 1. If (30) holds true then the proof of the lemma follows by Proposition A.3 (iii). If (31)
holds true then we proceed exactly as in the case 3 ≤ n ≤ 2m − 2 until (36) (resp. (37)) if m is odd (resp. even) that 
becomes �u(r) < −εr−1 (�u(r) > εr−1) for any r > 1. Then a couple of integrations shows that u(r) < −Cr (resp. 
u(r) > Cr) for any large r if m is odd (resp. even). When m is odd this produces the desired estimate and when m is 
even it yields limr→+∞ �mu(r) = −∞; in this last situation, a contradiction follows thanks to Proposition A.3 (iii), 
thus implying that only (30) may occur. This completes the proof also in this case. �
Lemma 6.6. Let m ≥ 1 and let n = 1. Let u be a solution of (6). Then there exist a positive integer K and constants 
C, r > 0 such that

u(x) < −C|x|K for any |x| > r. (38)

Proof. Consider first the case m = 1. We claim that there exists x0 ∈R such that u′(x0) = 0. Suppose by contradiction 
that u′(x) �= 0 for any x ∈ R. Up to replacing u with the function u(−x) we may assume that u′(x) > 0 for any x ∈ R

so that u is increasing. Hence there exist C, M > 0 such that eu(x) > C for any x > M . This shows that u′′ < −C in 
(M, +∞) so that limx→+∞ u′(x) = −∞, a contradiction. This completes the proof of the claim. The conclusion of 
the proof follows since u is strictly concave.
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We divide the proof of the case m ≥ 2 into two steps.
Step 1. Let k ∈ {1, . . . , 2m − 3} be odd and assume that there exists x0 ∈ R such that u(k)(x0) = 0. We prove that at 

least one of the two alternatives holds true: either (38) holds true for some C, r , K or u(k+2) vanishes at some point.
Suppose that (38) does not hold true for any possible choice of C, r , K and let us prove the validity of the second 

alternative. Suppose by contradiction that u(k+2)(x) �= 0 for any x ∈R. Up to replacing u with the function u(−x) we 
may assume that u(k+2)(x) > 0 for any x ∈R. Then u(k) is strictly convex and since u(k)(x0) = 0, only two situations 
may occur:

Case 1. limx→+∞ u(k)(x) = +∞;
Case 2. limx→+∞ u(k)(x) < 0.
We may exclude Case 1. Indeed, after a finite number of integrations we would have limx→+∞ u(x) = +∞ and 

hence

lim
x→+∞u(2m)(x) = − lim

x→+∞ eu(x) = −∞;
this, in turn, implies limx→+∞ u(k)(x) = −∞, a contradiction.

This means that only Case 2 may occur. But from strict convexity we necessarily have limx→−∞ u(k)(x) = +∞. 
Combining this information, integrating a finite number of times and taking into account that k is odd, we conclude 
that (38) holds true, a contradiction.

Step 2. In this step we complete the proof of the lemma. We may proceed by contradiction assuming that (38) does 
not hold true for any possible choice of C, r, K . We claim that there exists x0 ∈ R such that u′(x0) = 0. Proceeding 
by contradiction, up to replacing u with the function u(−x), we may assume that u′(x) > 0 for any x ∈ R. Therefore 
u is increasing and hence eu is bounded away from zero at +∞. Then by (6) we infer that limx→+∞ u(2m)(x) < 0
and after a finite number of integrations we obtain limx→+∞ u′(x) = −∞, a contradiction. This proves the claim. 
Therefore, we may apply inductively Step 1 and prove that for any k ∈ {1, . . . , 2m − 3} odd only the second alter-
native may occur. In particular this shows that u(2m−1) vanishes somewhere. But by (6) we deduce that u(2m−1) is 
decreasing and hence it is bounded away from zero both at +∞ and −∞; more precisely negative at +∞ and posi-
tive at −∞. Taking into account that 2m − 1 is odd, after a finite number of integrations the validity of (38) follows, 
a contradiction. �
7. On global radial solutions of (7)

Since (7) is invariant under the following transformation

uλ(x) = u(λx) + 2m logλ, λ > 0,

up to fixing the value α0, the behavior of solutions of (12) only depends on the values of the parameters α1, . . . , αm−1. 
For this reason it is convenient to treat the real parameter α0 and the vector valued parameter (α1, . . . , αm−1) in two 
different ways. Let α, β , uα,β , Aα be as in (9) and let Rα,β ∈ (0, +∞] be the supremum of the corresponding maximal 
interval of continuation.

The next lemmas are devoted to the characterization of Aα in the different cases.

Lemma 7.1. Suppose that at least one of the following two alternatives holds true:

(i) n = 1 or n = 2 and m ≥ 1;
(ii) n ≥ 3 and m = 1.

Then for any α ∈R the set Aα is empty.

Proof. Let u be a solution of (12) and let [0, R) be its maximal interval of continuation. Assume by contradiction that 
u is such that R = +∞. By (12), we have that the function r �→ rn−1(�m−1u)′(r) is increasing in [0, R) and hence 
there exists C > 0 such that for any r ≥ 1

�m−1u(r) ≥
⎧⎨⎩

�m−1u(1) + C(r − 1) if n = 1 and m ≥ 1,

�m−1u(1) + C log r if n = 2 and m ≥ 1,
u(r) ≥ −C if n ≥ 3 and m = 1.
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Then, by Proposition A.3 (iii) we deduce that there exist Cm > 0 and rm > 0 such that for any r ≥ rm

u(r) ≥
{

Cmr2m−1 if n = 1

Cmr2m−2 log r if n = 2.

We proved that in all the cases stated in the lemma, u is bounded from below. Let C1 > 0 be such that u(r) > −C1 for 
any r > 0 and let M > 0 be such that es ≥ M|s|p for any s ≥ −C1. Let w be a local radial solution of �mw = M|w|p
with p > 1 if n ≤ 2m and 1 < p < 2n/(n − 2m) if n > 2m. Suppose that w(0) ≤ u(0) and �kw(0) ≤ �ku(0) for any 
k ∈ {1, . . . , m − 1}. Then by [15, Corollary 3.6] and scaling invariance we deduce that w cannot be global. Denoting 
by [0, Rw), Rw < +∞, its maximal interval of continuation we also have limr→R−

w
w(r) = +∞ and this together with 

Proposition A.2 yields a contradiction with the fact that u is globally defined. �
Lemma 7.2. Let n ≥ 3 and m ≥ 2. Then for any α ∈ R and any β = (β1, . . . , βm−1) ∈ R

m−1 with βm−1 ≥ 0, the cor-
responding solution uα,β of (12) is not global.

Proof. Let us denote the function uα,β simply by u and by [0, R) the corresponding maximal interval of continuation. 
Suppose by contradiction that R = +∞. Since �mu = eu > 0, by Proposition A.3 (i) the map r �→ �m−1u(r) is 
increasing in [0, +∞) and being �m−1u(0) = βm−1 ≥ 0 there exists C > 0 such that �m−1u(r) ≥ C for any r ≥ 1. 
By Proposition A.3 (iii) we infer

u(r) ≥ Cmr2m−2 for any r ≥ rm,

for some Cm, rm > 0. This shows that u is bounded from below in [0, +∞). Proceeding as in the proof of Lemma 7.1
we arrive to a contradiction. �
Lemma 7.3. Let n ≥ 3 and m ≥ 2. For any α ∈ R and β ∈ R

m−1 let uα,β be the corresponding solution of (12)
with maximal interval of continuation [0, Rα,β), Rα,β ∈ (0, +∞]. Then Rα,β < +∞ if and only if there exists R0 ∈
(0, Rα,β) such that �m−1uα,β(R0) ≥ 0. Moreover in such a case we also have

lim
r→R−

α,β

uα,β(r) = +∞, lim
r→R−

α,β

u′
α,β(r) = +∞,

lim
r→R−

α,β

�kuα,β(r) = +∞, lim
r→R−

α,β

(
�kuα,β

)′
(r) = +∞, (39)

for any k ∈ {1, . . . , m − 1}.

Proof. For simplicity we write u = uα,β and R = Rα,β . First suppose that R < +∞. By (12) and Proposition A.3 (i) 
we know that �m−1u is increasing and hence admits a limit as r → R−. We claim that this limit is +∞. Suppose by 
contradiction that this limit is finite so that �m−1u is bounded in [0, R). By Proposition A.3 (ii) we deduce that for 
any k ∈ {1, . . . , m − 1}, u, u′, �ku, (�ku)′ are bounded in [0, R) and hence also u and all its derivatives are bounded 
in the same interval. This contradicts the maximality of R and completes the proof of the claim.

Since limr→R− �m−1u(r) = +∞, in particular �m−1u(r) > 0 for any r in a sufficiently small left neighborhood 
of R. After two integrations we deduce that (�m−2u)′ and �m−2u are bounded from below and they admit a limit as 
r → R−. As above one shows that these limits are necessarily +∞.

Proceeding iteratively it is possible to prove that

lim
r→R− u(r) = +∞, lim

r→R− u′(r) = +∞, lim
r→R− �ku(r) = +∞, lim

r→R−
(
�ku

)′
(r) = +∞

for any k ∈ {1, . . . , m − 1}. This implies (39) and in particular the existence of R0 ∈ (0, R) such that �m−1u(R0) ≥ 0. 
This completes the first part of the proof.

Suppose now that there exists R0 ∈ (0, R) such that �m−1u(R0) ≥ 0. Proceeding by contradiction as in the proof 
of Lemma 7.2 we arrive at the conclusion. �
Lemma 7.4. Let n ≥ 3 and m ≥ 2. Let u be a global solution of (12). Then the following limits exist

lim u(r), lim rn−1u′(r), lim �ku(r), lim rn−1(�ku
)′
(r), (40)
r→+∞ r→+∞ r→+∞ r→+∞



510 A. Farina, A. Ferrero / Ann. I. H. Poincaré – AN 33 (2016) 495–528
for any k ∈ {1, . . . , m − 1}. Moreover

lim
r→+∞u(r) = −∞, lim

r→+∞�ku(r) ≤ 0 (41)

for any k ∈ {1, . . . , m − 1}.
Proof. Since �mu = eu > 0 we may apply Proposition A.3 (i) and prove that u and �ku, k ∈ {1, . . . , m − 1}, are 
eventually monotone and admit a limit at infinity. In particular they are eventually of one sign at infinity and hence the 
maps r �→ rn−1(�ku(r))′ are monotone being (rn−1(�ku(r))′)′ = rn−1�k+1u(r). This completes the proof of (40).

It remains to prove (41). If the first limit in (41) were not −∞ then u would be bounded from below and hence 
a contradiction follows by proceeding as in the proof of Lemma 7.1.

Let us consider the second limit in (41). Suppose by contradiction that there exists k ∈ {1, . . . , m − 1} such that 
limr→+∞ �ku(r) > 0. Hence there exist C,r > 0 such that �ku(r) > C for any r > r . By Proposition A.3 (iii) we 
deduce that limr→+∞ u(r) = +∞, a contradiction. �
Lemma 7.5. Let n ≥ 3 and m ≥ 2. Then for any α ∈ R the set Aα is closed.

Proof. By Lemma 7.2 we know that Rm−1 \ Aα �= ∅. We shall prove that it is also open. Let β0 ∈ R
m−1 \ Aα . By 

Lemma 7.3 we may find R0 > 0 such that

uα,β0(R0) > 0, u′
α,β0

(R0) > 0, �kuα,β0(R0) > 0,
(
�kuα,β0

)′
(R0) > 0,

for any k ∈ {1, . . . , m − 1}. By Proposition A.1 we deduce that there exists δ > 0 such that for any β ∈ B(β0, δ) the 
function uα,β is well-defined at R0 and moreover

uα,β(R0) > 0, u′
α,β(R0) > 0, �kuα,β(R0) > 0,

(
�kuα,β

)′
(R0) > 0.

Here we denoted by B(β0, δ) the open ball in Rm−1 of radius δ centered at β0. Applying Lemma 7.3 to these func-
tions uα,β we infer that they are not global thus showing that B(β0, δ) ⊆ R

m−1 \Aα . This completes the proof of the 
lemma. �
Lemma 7.6. Let n ≥ 3 and m ≥ 2. Then the following statements hold:

(i) for any α ∈ R the set Aα is nonempty;
(ii) for any α ∈ R there exists a function Φα :Rm−2 → (−∞, 0) such that

Aα = {
β = (β1, . . . , βm−1) ∈R

m−1 : βm−1 ≤ Φ(β1, . . . , βm−2)
};

(iii) for any α ∈ R, Φα is a continuous function, ∂Aα coincides with the graph of Φα and
◦
Aα = {

β = (β1, . . . , βm−1) ∈R
m−1 : βm−1 < Φ(β1, . . . , βm−2)

}
.

Proof. (i)–(ii) Let β1, . . . , βm−2 ∈ R be fixed arbitrarily. Put βm−1 = b where b is a parameter varying in (−∞, 0) and 
define ub as the unique solution of (12) corresponding to the initial values α0 = α, αk = βk for any k ∈ {1, . . . , m − 2}
and αm−1 = b. Denote by (0, Rb) with Rb ∈ (0, +∞] the maximal interval of continuation of the solution ub. We 
shall prove that for any b < 0 small enough Rb = +∞. For any b < 0 let

Mb := sup

{
r ∈ (0,Rb) : �m−1ub(s) <

b

2
for any s ∈ [0, r)

}
.

We claim that there exists b < 0 such that Mb = Rb . We first show that from this claim we easily arrive at the 
conclusion of the proof. Indeed if b < 0 is such that Mb = Rb then �m−1ub(r) < b

2 for any r ∈ [0, Rb). If Rb were 
finite then by Proposition A.3 (ii) ub would be bounded from above in [0, Rb) and, in turn, eub would be bounded 
in [0, Rb). This implies that �mub is bounded and applying again Proposition A.3 (ii) it follows that ub and all 
its derivatives up to order 2m − 1 are bounded in [0, Rb). This contradicts the maximality of Rb. Therefore, by 
Proposition A.2, Lemma 7.2 and Lemma 7.5 we infer that there exists b0 < 0 such that{

b ∈ R : ub is a global solution of (4)
} = (−∞, b0].

Finally it is sufficient to put Φα(β1, . . . , βm−2) := b0.
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Let us prove that claim. We proceed by contradiction assuming that Mb < Rb for any b < 0. By definition of Mb

we have that

�m−1ub(r) ≤ b

2
for any r ∈ [0,Mb] and �m−1ub(Mb) = b

2
. (42)

In the rest of the proof we use the notation 
∑k2

j=k1
aj = 0 and 

∏k2
j=k1

aj = 1 whenever k1 > k2.

Exploiting the fact that (rn−1(�ku(r))′)′ = rn−1�k+1u(r) and proceeding with successive integrations, by (42)
we infer

ub(r) ≤ α + b

2m(m − 1)!∏m−1
l=1 (n + 2l − 2)

r2m−2 +
m−2∑
j=1

βj r
2j

2j j !∏j

l=1(n + 2l − 2)
=: Pb(r),

for any r ∈ [0, Mb]. The function Pb is a polynomial of degree 2m − 2 which admits the representation

Pb(r) = Cn,mbr2m−2 + Q(r)

where Cn,m = [2m(m − 1)! ∏m−1
l=1 (n + 2l − 2)]−1 and Q is a polynomial of degree 2m − 4. For any b < −1, by (12), 

we then obtain

�m−1ub(r) = b +
r∫

0

s1−n

( s∫
0

tn−1eub(t) dt

)
ds ≤ b +

r∫
0

s1−n

( s∫
0

tn−1ePb(t) dt

)
ds

≤ b +
r∫

0

s1−n

( s∫
0

tn−1eP−1(t) dt

)
ds for any r ∈ [0,Mb].

We remark that since n ≥ 3 and b is negative then the function s �→ s1−n(
∫ s

0 tn−1eP−1(t) dt) is integrable in (0, +∞)

so that we may write

�m−1ub(r) ≤ b +
∞∫

0

s1−n

( s∫
0

tn−1eP−1(t) dt

)
ds for any r ∈ [0,Mb].

In particular for r = Mb we obtain

b

2
≤ b +

∞∫
0

s1−n

( s∫
0

tn−1eP−1(t) dt

)
ds for any b < −1,

and a contradiction follows by letting b → −∞.
(iii) Let β ′

0 = (β0,1, . . . , β0,m−2) be a point in Rm−2 and let β0 = (β ′
0, Φα(β ′

0)). We shall prove that Φα is con-
tinuous in β ′

0. We observe that by Lemma 7.5 the subgraph of Φα is closed and hence Φα is upper semicontinuous. 
It remains to prove that Φα is also lower semicontinuous. In the rest of the proof we denote by β ∈ R

m−1 the point 
β := (β ′, Φα(β ′

0) − ε) and by | · |∞ the norm

|γ |∞ := max
1≤k≤m−2

|γk| for any γ ∈R
m−2.

For 0 < η < ε and β ′ ∈R
m−2 let us define

Mη,β ′ := sup
{
r > 0 : �m−1uα,β(s) ≤ �m−1uα,β0(s) − η for any s ∈ [0, r]} ∈ (0,Rα,β ].

We divide the proof of (iii) into three steps.
Step 1. We claim that for any 0 < η < ε there exist δ > 0 and K ∈ (0, Rα,β) such that if δ ∈ (0, δ)∣∣β ′ − β ′

0

∣∣∞ < δ and Mη,β ′ < Rα,β �⇒ Mη,β ′ ≤ K. (43)

Proceeding by contradiction we would find 0 < η < ε such that for any δ > 0 and K ∈ (0, Rα,β), there exist 0 < δ < δ

and β ′ ∈ R
m−2 such that |β ′ − β ′ |∞ < δ and K < Mη,β ′ < Rα,β .
0
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Let us put U(r) = uα,β(r) − uα,β0(r) for any r ∈ [0, Rα,β). Proceeding as in the proof of (i)–(ii) we obtain for any 
r ∈ [0, Mη,β ′ ] and k ∈ {1, . . . , m − 1}

�m−kU(r) ≤ − ηr2k−2

2k−1(k − 1)!∏k−1
l=1 (n + 2l − 2)

+
k−2∑
j=0

δr2j

2j j !∏j

l=1(n + 2l − 2)
=: Pη,δ,k(r), (44)

(
�m−kU

)′
(r) ≤ − ηr2k−3

2k−2(k − 2)!∏k−1
l=1 (n + 2l − 2)

+
k−2∑
j=1

δr2j−1

2j−1(j − 1)!∏j

l=1(n + 2l − 2)
=: Qη,δ,k(r), (45)

U ′(r) ≤ − ηr2m−3

2m−2(m − 2)!∏m−1
l=1 (n + 2l − 2)

+
m−2∑
j=1

δr2j−1

2j−1(j − 1)!∏j

l=1(n + 2l − 2)
=: Qη,δ,m(r) (46)

and

U(r) ≤ − ηr2m−2

2m−1(m − 1)!∏m−1
l=1 (n + 2l − 2)

+
m−2∑
j=1

δr2j

2j j !∏j

l=1(n + 2l − 2)
=: Pη,δ,m(r). (47)

We may choose K and δ such that

Pη,δ,k(r) < 0, Qη,δ,k(r) < 0 for any r ≥ K and k ∈ {1, . . . ,m}.
In particular by (44)–(47) with r = Mη,β ′ we infer

U(Mη,β ′) < 0, U ′(Mη,β ′) < 0, �jU(Mη,β ′) < 0,
(
�jU

)′
(Mη,β ′) < 0,

for any j ∈ {1, . . . , m − 1}. Therefore by Proposition A.2 we obtain

uα,β(r) ≤ uα,β0(r), u′
α,β(r) ≤ u′

α,β0
(r),

�juα,β(r) ≤ �juα,β0(r),
(
�juα,β

)′
(r) ≤ (

�juα,β0

)′
(r),

for any r ∈ [Mη,β ′ , Rα,β) and j ∈ {1, . . . , m − 1}. In particular for any r ∈ (Mη,β ′ , Rα,β), we obtain

�m−1uα,β(r) = �m−1uα,β(Mη,β ′) +
r∫

Mη,β′

(
�m−1uα,β

)′
(s) ds

≤ �m−1uα,β0(Mη,β ′) − η +
r∫

Mη,β′

(
�m−1uα,β0

)′
(s) ds = �m−1uα,β0(r) − η,

contradicting the maximality of Mη,β ′ . This proves (43).
Step 2. We claim that there exist 0 < η < ε and δ > 0 such that for any β ′ ∈ Rm−2 with |β ′ − β ′

0|∞ < δ, we have 
Mη,β ′ = Rα,β . Suppose by contradiction that for any 0 < η < ε and for any δ > 0 there exists β ′ ∈ R

m−2 such that 
|β ′ − β ′

0|∞ < δ and Mη,β ′ < Rα,β .
Let δ and K be as in Step 1. By Proposition A.1, up to shrinking δ if necessary, we have that uα,β is well defined 

in [0, K] for any β ′ satisfying |β ′ − β ′
0|∞ < δ < δ. Moreover uα,β converges uniformly in [0, K] to the function 

uα,(β ′
0,Φα(β ′

0)−ε) as β ′ → β ′
0. Hence by Proposition A.2 we have that for any σ > 0 we may shrink δ in such a way 

that

uα,β(r) < uα,(β ′
0,Φα(β ′

0)−ε)(r) + σ ≤ uα,β0(r) + σ for any r ∈ [0,K] (48)

with β such that |β ′ − β ′
0|∞ < δ < δ and Mη,β ′ < Rα,β .

By (12), (43) and (48), we obtain

�m−1uα,β(r) − �m−1uα,β(0) ≤ eσ �m−1uα,β0(r) − eσ �m−1uα,β0(0) for any r ∈ [0,Mη,β ′ ]. (49)



A. Farina, A. Ferrero / Ann. I. H. Poincaré – AN 33 (2016) 495–528 513
Substituting r = Mη,β ′ in (49) and taking into account that

�m−1uα,β(0) = �m−1uα,β0(0) − ε, �m−1uα,β(Mη,β ′) = �m−1uα,β0(Mη,β ′) − η and Mη,β ′ ≤ K,

we obtain

�m−1uα,β0(Mη,β ′) − η ≤ eσ �m−1uα,β0(Mη,β ′) + (
1 − eσ

)
�m−1uα,β0(0) − ε

for any η ∈ (0, ε) and σ > 0. Letting σ → 0+ and then η → 0+ we reach a contradiction. This completes the proof of 
Step 2.

Step 3. In this step we complete the proof of (iii). By Step 2 we have that for any |β ′ − β ′
0|∞ < δ

�m−1uα,β(r) ≤ �m−1uα,β0(r) − η < 0 for any r ∈ [0,Rα,β),

where the last inequality follows from Lemma 7.3. By Lemma 7.3 we also deduce that uα,β is a global solution 
of (12). By (i)–(ii), this implies that Φα(β ′) ≥ Φα(β ′

0) − ε for any β ′ satisfying |β ′ − β ′
0|∞ < δ. Hence Φα(β ′

0) ≤
lim infβ ′→β ′

0
Φα(β ′) which together with the upper semicontinuity gives the continuity of Φα at β ′

0. Since Φα is 
continuous then the set{

β = (
β ′, βm−1

) ∈R
m−1 : βm−1 < Φα

(
β ′)}

is open and hence the proof of (iii) follows. �
In order to better understand the asymptotic behavior of global solutions of (12) and the behavior of the function Φα

introduced in Lemma 7.6, we prove some auxiliary results.

Lemma 7.7. Let n ≥ 3 and m ≥ 2. Consider the equation

�mU(r) = 1

r3
for any r > 0. (50)

Then (50) admits a solution in the form

U(r) =
{

Cn,mr2m−3 + logλn,m if n ≥ 4

Cn,mr2m−3(log r + Dn,m) + logλn,m if n = 3
(51)

where Cn,m is the negative constant defined by

Cn,m :=
{ [∏m

j=1(2j − 3) · ∏m−1
j=0 (n + 2j − 3)]−1 if n ≥ 4

[∏m
j=1(2j − 3) · ∏m−1

j=1 2j ]−1 if n = 3,

λn,m =
⎧⎨⎩minr∈(0,+∞)

exp[|Cn,m|r2m−3]
r3 if n ≥ 4

minr∈(0,+∞)
exp[|Cn,m|r2m−3(log r+Dn,m)]

r3 if n = 3

and Dn,m ∈R is a suitable constant.
Moreover U satisfies

�mU(r) ≥ eU(r) for any r > 0. (52)

Proof. We proceed in this way: let U = U(r) be a function satisfying (50). If n ≥ 4, after an iterative procedure of 
integration we may assume that U satisfies

�m−kU(r) =
[

k∏
j=1

(2j − 3) ·
k−1∏
j=0

(n + 2j − 3)

]−1

r2k−3 for any r > 0

and

(
�m−kU

)′
(r) =

[
k−1∏

(2j − 3) ·
k−1∏

(n + 2j − 3)

]−1

r2k−4 for any r > 0

j=1 j=0
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for any k ∈ {1, . . . , m −1} where we put 
∏0

j=1(2j −3) = 1. Taking k = m −1 in the previous identities and integrating 
we also have

U ′(r) =
[

m−1∏
j=1

(2j − 3) ·
m−1∏
j=0

(n + 2j − 3)

]−1

r2m−4 for any r > 0.

Therefore we may choose U as in (51). We proceed in a similar way in the case n = 3.
Finally the fact that U solves (52) is a consequence of the definition of λn,m. �

Lemma 7.8. Let n ≥ 3 and m ≥ 2. For any α ∈ R the following facts hold true:

(i) if β ∈ ∂Aα then

lim
r→+∞�m−1uα,β(r) = 0;

(ii) if β ∈ ◦
Aα then

lim
r→+∞�m−1uα,β(r) = 
 ∈ (−∞,0),

�m−kuα,β(r) ∼ 


2k−1(k − 1)!∏k−1
l=1 (n + 2l − 2)

r2k−2 as r → +∞

for any k ∈ {2, . . . , m − 1} and

uα,β(r) ∼ 


2m−1(m − 1)!∏m−1
l=1 (n + 2l − 2)

r2m−2 as r → +∞. (53)

Proof. (i) Suppose by contradiction that 
 := limr→+∞ �m−1uα,β(r) < 0. We recall that the case 
 > 0 can be 
excluded immediately thanks to (41). We claim that 
 is finite. Suppose by contradiction that 
 = −∞. Then by 
Proposition A.3 (iii) we deduce that for any M > 0 there exists r > 0 such that

uα,β(r) < −Mr2m−2 for any r > r

so that the map r �→ rn−1euα,β(r) ∈ L1(0, +∞).
Hence by (12) we have (�m−1uα,β)′(r) = r1−n

∫ r

0 sn−1euα,β(s)ds ∈ L1(0, +∞) since n ≥ 3, in contradiction with 

 = −∞. From now on we may assume that 
 ∈ (−∞, 0).

Then, since n ≥ 3, after integration one obtains

(
�m−kuα,β

)′
(r) ∼ 


[
k−2∏
j=1

2j ·
k−1∏
j=1

(n + 2j − 2)

]−1

r2k−3 as r → +∞ (54)

and

�m−kuα,β(r) ∼ 


[
k−1∏
j=1

2j ·
k−1∏
j=1

(n + 2j − 2)

]−1

r2k−2 as r → +∞ (55)

for any k ∈ {2, . . . , m − 1} where we put 
∏0

j=1 2j = 1. Moreover we also have

u′
α,β(r) ∼ 


[
m−2∏
j=1

2j ·
m−1∏
j=1

(n + 2j − 2)

]−1

r2m−3 as r → +∞ (56)

and

uα,β(r) ∼ 


[
m−1∏

2j ·
m−1∏

(n + 2j − 2)

]−1

r2m−2 as r → +∞. (57)

j=1 j=1
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Combining (54)–(57) with (51) we infer that there exists r such that

uα,β(r) < U(r), u′
α,β(r) < U ′(r), �kuα,β(r) < �kU(r),

(
�kuα,β

)′
(r) <

(
�kU

)′
(r) (58)

for any k ∈ {1, . . . , m − 1}. By (52) and Proposition A.2 we deduce that the above inequalities hold not only at r
but at any r > r . Then if we write β in the form (β ′, βm−1) with β ′ ∈ R

m−2 and βm−1 = Φα(β ′), and if we define 
β̃ := (β ′, γ ) with γ > βm−1 sufficiently close to βm−1, we deduce that (58) also holds with uα,γ in place of uα,β . 
Exploiting again (52) and Proposition A.2 it follows that uα,γ is a global solution of (12) in contradiction with the 
maximality of βm−1.

(ii) Let us write β in the form (β ′, βm−1) with β ′ ∈ R
m−2 and define β0 := (β ′, Φα(β ′)) so that βm−1 < Φα(β ′). 

Put v := uα,β − uα,β0 so that by Proposition A.2, �mv(r) ≤ 0 for any r > 0, �m−1v(0) = βm−1 − Φα(β ′) < 0 and 
�kv(0) = 0 for any k ∈ {1, . . . , m − 2}. After integration it follows that �m−1v(r) ≤ βm−1 − Φα(β ′) for any r ≥ 0. 
Further integrations then imply limr→+∞ �kv(r) < 0 for any k ∈ {1, . . . , m − 1}. Hence, by (41) we deduce that

lim
r→+∞�kuα,β(r) ≤ lim

r→+∞�kv(r) < 0 (59)

for any k ∈ {1, . . . , m − 1}. In particular if we choose k = 1 then we infer that �uα,β(r) < −C for some constant 
C > 0 for r large enough. A couple of integrations then yields uα,β(r) < −C′r2 for any r > r for some C′, r > 0. 
Then, proceeding as in the proof of (i), one can show that 
 := limr→+∞ �m−1uα,β(r) is finite and moreover by (59)
we have 
 ∈ (−∞, 0). After an iterative procedure of integration the proof of the remaining part of (ii) follows. �

When β ∈ ∂Aα estimate (53) is no more true. However a suitable estimate from above can be proved at least when 
m is even:

Lemma 7.9. Let n ≥ 3 and m ≥ 2 be even. Let α ∈ R and let β = (β1, . . . , βm−1) = (β ′, βm−1) be such that βm−1 =
Φα(β ′). Then

uα,β(r) = o
(
r2m−2) as r → +∞

and moreover

uα,β(r) ≤ −2m log r + O(1) as r → +∞.

Proof. The first assertion of the lemma is a consequence of Lemma 7.8 (i).
Let us prove the second assertion. If there exists k ∈ {1, . . . , m − 1} such that limr→+∞ �kuα,β(r) < 0, after a 

finite number of integrations we observe that uα,β diverges to −∞ as r → +∞ with the rate of a positive power of r
and hence the conclusion of the lemma trivially follows. For this reason thanks to Lemma 7.4, in the rest of the proof 
it is not restrictive assuming that

lim
r→+∞�kuα,β(r) = 0 for any k ∈ {1, . . . ,m − 1}. (60)

We proceed similarly to the proof of Lemma 1 in [18]. Suppose by contradiction that uα,β(r) + 2m log r is not 
bounded from above and let rj ↑ +∞ be such that Mj := uα,β(rj ) + 2m log rj → +∞ as j → +∞. Next we define 
uj (r) = uα,β(rj r) + 2m log rj − Mj in such a way that uj vanishes on ∂B1 and it solves the equation �muj = λje

uj

in B1 where we put λj := eMj .
By (4), (60) and successive integrations, one may check that (−1)k�kuα,β(r) > 0 for any r > 0 and k ∈ {1, . . . ,

m − 1}.
Resuming the above information we deduce that uj satisfies⎧⎨⎩

�muj = λje
uj in B1

uj = 0 on ∂B1

(−�)kuj > 0 on ∂B1 for any k ∈ {1, . . . ,m − 1}.
This means that uj is a supersolution for the following Navier boundary value problem⎧⎨⎩

�mu = λje
u in B1

u = 0 on ∂B1
m−1
�u = · · · = � u = 0 on ∂B1.
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One may check that such a problem admits a solution also in a weak sense only if λj ≤ λ∗ where λ∗ ∈ (0, +∞) is a 
suitable extremal value for the existence of a solution, see [7] for more details in the case m = 2. But λj → +∞ as 
j → +∞ thus producing a contradiction. �

As a consequence of Lemma 7.8 (i) we prove

Lemma 7.10. Let n ≥ 3 and m ≥ 3. Then for any α ∈ R, Φα is decreasing with respect to each variable. In other 
words the map t �→ Φα(β1, . . . , βk−1, t, βk+1, . . . , βm−2) is decreasing in R for any k ∈ {1, . . . , m − 2}.

Proof. Let t < s and let ut and us be the solutions of (12) corresponding respectively to the initial values

(α,β1, . . . , βk−1, t, βk+1, . . . , βm−2, γt ), (α,β1, . . . , βk−1, s, βk+1, . . . , βm−2, γs)

where we put γt := Φα(β1, . . . , βk−1, t, βk+1, . . . , βm−2) and γs := Φα(β1, . . . , βk−1, s, βk+1, . . . , βm−2).
Suppose by contradiction that γt ≤ γs . Then by Proposition A.2 we deduce that

�kut (r) < �kus(r),
(
�kut

)′
(r) <

(
�kus

)′
(r) for any r > 0 and k ∈ {1, . . . ,m − 1},

ut (r) < us(r), u′
t (r) < u′

s(r) for any r > 0. (61)

By (12) and Lemma 7.8 (i), we deduce that (�m−1ut )
′(r) > 0 and (�m−1us)

′(r) > 0 for any r > 0 and their an-
tiderivatives admit a finite limit as r → +∞. This yields (�m−1ut )

′, (�m−1us)
′ ∈ L1(0, +∞). Moreover by (61) we 

obtain
∞∫

0

(
�m−1ut

)′
(σ ) dσ <

∞∫
0

(
�m−1us

)′
(σ ) dσ

and hence by Lemma 7.8 (i)

0 = lim
r→+∞�m−1ut (r) = γt +

∞∫
0

(
�m−1ut

)′
(σ ) dσ

< γs +
∞∫

0

(
�m−1us

)′
(σ ) dσ = lim

r→+∞�m−1us(r) = 0.

We reached a contradiction. �
8. Proof of Theorems 2.1–2.5 and Theorems 3.1–3.5

Proof of Theorem 2.1 and Theorem 3.1. The proofs of the theorems follow from Lemma 6.1. �
Proof of Theorem 2.2 and Theorem 3.2. The first assertion in Theorem 3.2 follows from Lemma 7.1. The proof of 
Theorem 2.2 (i) and of its counterpart in Theorem 3.2 follows from Lemma 7.1. The proofs of Theorem 2.2 (ii)–(iii) 
and of their counterparts in Theorem 3.2 follow from Lemma 7.6. The proof of Theorem 2.2 (iv) and of its counterpart 
in Theorem 3.2 follows from Lemma 7.10. �
Proof of Theorem 2.3 and Theorem 3.3. The proof follows closely the argument performed in the proof of Theo-
rem 1 in [6]. Suppose by contradiction that (7) admits an entire solution u. From (7) we have that u(2m−2) is strictly 
convex and hence at least one of the two limits limx→+∞ u(2m−2)(x) and limx→−∞ u(2m−2)(x) is equal to +∞ and up 
to replacing u with the u(−x) we may assume that the first one is +∞. After a finite number of iterations we deduce 
that limx→+∞ u(x) = +∞ and in particular by (7) we also have that u(2m) and, in turn, also u(2m−1) diverge to +∞
as x → +∞. Hence there exists M > 0 such that

u(2m)(x) = eu(x) ≥ (
u(x)

)2 and u(2m−1)(x) ≥ 0 for any x > M. (62)

Since (7) is an autonomous equation we may assume that M = 0.
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As in [6] we apply the test function method developed in [36]. More precisely, fix ρ > 0 and a nonnegative function 
φ ∈ C2m

c ([0, ∞)) such that

φ(x) =
{

1 for x ∈ [0, ρ]
0 for x ≥ 2ρ.

In particular we have

φ(0) = 1, φ(k)(0) = 0 for any k ∈ {1, . . . ,2m − 1},
φ(2ρ) = 0, φ(k)(2ρ) = 0 for any k ∈ {1, . . . ,2m − 1}.

By (7), (62) and integration by parts we obtain

2ρ∫
ρ

φ(2m)(x)u(x)dx =
2ρ∫

0

φ(2m)(x)u(x)dx ≥
2ρ∫

0

(
u(x)

)2
φ(x)dx + u(2m−1)(0) ≥

2ρ∫
0

(
u(x)

)2
φ(x)dx. (63)

Exploiting the Young inequality uφ(2m) = uφ1/2 φ(2m)

φ1/2 ≤ 1
2 (u2φ + |φ(2m)|2

φ
) by (63) we infer

2ρ∫
ρ

(φ(2m)(x))2

φ(x)
dx ≥

ρ∫
0

(
u(x)

)2
dx. (64)

We now choose φ(x) = φρ(x) = φ0(
x
ρ
), where φ0 ∈ C

(2m)
c ([0, ∞)), φ0 ≥ 0 and

φ0(τ ) =
{

1 for τ ∈ [0,1]
0 for τ ≥ 2.

As noticed in [36], there exists a function φ0 in such class satisfying moreover

2∫
1

(φ
(2m)
0 (τ ))2

φ0(τ )
dτ =: A < ∞.

Then, thanks to a change of variables in the integrals, (64) yields

Aρ−4m+1 = ρ−4m+1

2∫
1

(φ
(2m)
0 (τ ))2

φ0(τ )
dτ = ρ−4m

2ρ∫
ρ

(φ
(2m)
0 ( x

ρ
))2

φ0(
x
ρ
)

dx =
2ρ∫

ρ

(φ(2m)(x))2

φ(x)
dx ≥

ρ∫
0

(
u(x)

)2
dx

for any ρ > 0. Letting ρ → ∞, the previous inequality contradicts the fact that u diverges to +∞ as x → +∞. �
Proof of Theorem 2.4 and Theorem 3.4. We follow the idea performed in the proof of Theorem 2.1 for symmetric 
solutions. Since (6) is an autonomous equation, we may assume that u is a solution of (6) defined in a neighborhood I

of x = 0; we may assume that I is the maximal interval of continuation. We put a0 := u(0) and ak := u(k)(0) for 
any k ∈ {1, . . . , 2m − 1}. Since u(2m) = −eu then u(2m−1) is decreasing and hence u(2m−1)(x) ≤ a2m−1 for any x ∈ I , 
x > 0. We then define the unique solution of the Cauchy problem{

w(2m−1) = a2m−1

w(k)(0) = ak for any k ∈ {0, . . . ,2m − 2}. (65)

We observe that w is a polynomial and it is a global solution of (65). Then u(x) ≤ w(x) for any x ∈ I , x > 0 and if 
we assume by contradiction that I is bounded from above then u would be bounded from above and eu bounded in 
I ∩ {x ∈ R : x > 0}. In a standard way this brings to a contradiction with the maximality of I . In a similar way one 
may prove left continuation. This completes the proof of the first part.

Let m = 1 so that (6) becomes −u′′ = eu. Clearly this equation can be solved explicitly but here we want only to 
show symmetry. From the first part of the proof of Lemma 6.6 we know that there exists x0 ∈ R such that u′(x0) = 0. 
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The proof of the symmetry now follows immediately since the function v(x) = u(2x0 − x) satisfies −v′′ = ev , 
v(x0) = u(x0) and v′(x0) = u′(x0) and hence it coincides with u by uniqueness of the solution of a Cauchy prob-
lem.

Finally we show that for m ≥ 2, Eq. (6) admits a nonsymmetric solution. It is enough to consider the solution of 
the following Cauchy problem⎧⎨⎩

−u(2m) = eu

u(0) = 0, u′(0) = 1

u(k)(0) = 0 for any k ∈ {2, . . . ,2m − 1}.
(66)

We recall that u is a global solution of (66) from what we showed above. Suppose by contradiction that u is symmetric 
with respect to some x0 ∈ R. Then u(k)(x0) = 0 for any k ∈ {1, . . . , 2m − 1} odd. But u(2m−1) is decreasing and it 
equals zero at x = 0 so that x = 0 is the unique point where it vanishes. This implies x0 = 0 and hence u′(0) = 0, 
a contradiction. �
Proof of Theorem 2.5 and Theorem 3.5. The proof of Theorem 2.5 (i) and Theorem 3.5 (i) follows from Lemma 6.4. 
The proof of Theorem 2.5 (ii) and Theorem 3.5 (ii) follows from Lemma 6.5. The proof of Theorem 2.5 (iii) and 
Theorem 3.5 (iii) follows from Lemma 6.6. The proof of Theorem 2.5 (iv) and (14) follows from Lemma 7.8. Finally 
the proof of Theorem 2.5 (v) follows from Lemma 7.9. �
9. Proof of Theorem 4.1

Let u be a stable solution of (1). We start by considering the case n < 2m. In this situation, we proceed similarly 
to the proof of Theorem 6 in [42]. We consider a function η ∈ C∞(Rn) such that

η = 1 in B1, η = 0 in R
n \ B2 and ‖η‖L∞ ≤ 1 (67)

and for any R > 0 we define ηR(x) := η(x/R). Then we have∫
Rn

∣∣�m/2ηR

∣∣2
dx = Rn−2m

∫
Rn

∣∣�m/2η
∣∣2

dx → 0 as R → +∞ (68)

if m is even and∫
Rn

∣∣∇(
�

m−1
2 ηR

)∣∣2
dx = Rn−2m

∫
Rn

∣∣∇(
�

m−1
2 η

)∣∣2
dx → 0 as R → +∞ (69)

if m is odd. Using ηR as a test function in (15) and exploiting (68)–(69) respectively in the cases m even and m odd 
we infer

lim
R→+∞

∫
Rn

euη2
R dx ≤ lim

R→+∞

∫
Rn

∣∣�m/2ηR

∣∣2
dx = 0

if m is even and

lim
R→+∞

∫
Rn

euη2
R dx ≤ lim

R→+∞

∫
Rn

∣∣∇(
�

m−1
2 ηR

)∣∣2
dx = 0

if m is odd. Therefore by the Fatou Lemma and the fact that ηR → 1 pointwise as R → +∞, we obtain∫
Rn

eudx ≤ lim
R→+∞

∫
Rn

euη2
R dx = 0

for any m ≥ 1 and this is absurd.
It remains to consider the case n = 2m. Let η be as in (67). We define the sequence of functions {ηk} by putting

ηk(x) := 1

k

2k−1∑
η

(
x

2j

)
for any k ≥ 1.
j=k
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Clearly ηk ∈ C∞
c (Rn) and hence it is an admissible test function for (15). We observe that if m is even, the functions 

�m/2η(2−j x) have supports with zero measure intersections, i.e.∣∣supp
(
�m/2η

(
2−ix

)) ∩ supp
(
�m/2η

(
2−j x

))∣∣ = 0 if i �= j. (70)

Similarly if m is odd we have∣∣supp
(∣∣∇(

�
m−1

2 η
(
2−ix

))∣∣) ∩ supp
(∣∣∇(

�
m−1

2 η
(
2−j x

))∣∣)∣∣ = 0 if i �= j. (71)

By (70)–(71) and the fact that n = 2m we have∫
Rn

∣∣�m/2ηk

∣∣2
dx = 1

k2

∫
Rn

[
2k−1∑
j=k

2−jm�m/2η
(
2−j x

)]2

dx

= 1

k2

2k−1∑
j=k

∫
Rn

2−2jm
∣∣�m/2η

(
2−j x

)∣∣2
dx

= 1

k2

2k−1∑
j=k

∫
Rn

∣∣�m/2η
∣∣2

dx =
∫
Rn

∣∣�m/2η
∣∣2

dx · 1

k
→ 0 as k → +∞ (72)

if m is even and∫
Rn

∣∣∇(
�

m−1
2 ηk

)∣∣2
dx = 1

k2

∫
Rn

∣∣∣∣∣
2k−1∑
j=k

2−jm∇(
�

m−1
2 η

(
2−j x

))∣∣∣∣∣
2

dx

= 1

k2

2k−1∑
j=k

∫
Rn

2−2jm
∣∣∇(

�
m−1

2 η
(
2−j x

))∣∣2
dx

=
∫
Rn

∣∣∇(
�

m−1
2 η

)∣∣2
dx · 1

k
→ 0 as k → +∞ (73)

if m is odd. Moreover ηk → 1 pointwise as k → +∞. Therefore by (72), (73) respectively in the cases m even and 
m odd, the Fatou Lemma and the stability of u, we obtain∫

Rn

eudx ≤ lim
k→+∞

∫
Rn

euη2
k dx = 0

and this is absurd.

10. Proof of Theorems 5.1–5.2 and Proposition 5.3

Let

Φ :Rn \ {0} → C := R× S
n−1 ⊂R

n+1

be the diffeomorphism defined by

Φ(x) :=
(

−log|x|, x

|x|
)

for any x ∈R
n \ {0}

and let CΩ := Φ(Ω) ⊆ C for any open set Ω ⊆R
n \ {0}. For any α ∈R let us introduce the linear operator

Tα : C∞
c (Ω) → C∞

c (CΩ)

by

Tαϕ(t, θ) := e
4−n−α

2 t ϕ
(
e−t θ

)
for any (t, θ) ∈ CΩ and ϕ ∈ C∞

c (Ω). (74)

Clearly Tα is an isomorphism between vector spaces. Let us denote by μ the volume measure on C.
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Lemma 10.1. Let n ≥ 2. For any R > 1 put ΩR := R
n \ BR . Let ϕ ∈ C∞

c (ΩR), α ∈R and β ≥ 0. Then∫
ΩR

|x|α|�ϕ|2
(log|x|)β dx =

∫
CΩR

|t |−β
∣∣Lw(t, θ)

∣∣2
dμ

+
∫

CΩR

|t |−β
[(

∂2
t w(t, θ)

)2 + 2γ̄n,α

(
∂tw(t, θ)

)2]
dμ

+
∫

CΩR

|t |−β
[
2
∣∣∇Sn−1

(
∂tw(t, θ)

)∣∣2 − β(β + 1)|t |−2
∣∣∇Sn−1w(t, θ)

∣∣2]
dμ

+
∫

CΩR

|t |−β
[
(α − 2)β|t |−1

∣∣∇Sn−1w(t, θ)
∣∣2 − β(β + 1)γn,α|t |−2w2(t, θ)

]
dμ

+
∫

CΩR

|t |−β
[
(α − 2)βγn,α|t |−1w2(t, θ) − (α − 2)β|t |−1(∂tw(t, θ)

)2]
dμ (75)

where w = Tαϕ ∈ C∞
c (CΩR

), L = −�Sn−1 + γn,α , γn,α is as in Proposition 5.2 and γ̄n,α = ( n−2
2 )2 + (α−2

2 )2.

Proof. Proceeding as in the proof of Lemma 2.4 in [8] we obtain

�ϕ(x) = |x|− n+α
2

[−Lw
(−log|x|, x/|x|) + ∂2

t w
(−log|x|, x/|x|) + (α − 2)∂tw

(−log|x|, x/|x|)]
and hence∫

ΩR

|x|α|�ϕ|2
(log|x|)β dx =

∫
CΩR

|t |−β
[−Lw + ∂2

t w + (α − 2)∂tw
]2

dμ

=
∫

CΩR

|t |−β
[|Lw|2 + (

∂2
t w

)2 + (α − 2)2(∂tw)2 + 2
(
∂2
t w

)
(�Sn−1w)

]
dμ

+
∫

CΩR

|t |−β
[
2(α − 2)(∂tw)(�Sn−1w) − 2γn,αw∂2

t w

− 2γn,α(α − 2)w∂tw + 2(α − 2)∂tw∂2
t w

]
dμ.

The conclusion of the lemma then follows from the following identities obtained after some integrations by parts

2
∫

CΩR

|t |−β
(
∂2
t w

)
(�Sn−1w)dμ = 2

∫
CΩR

|t |−β
∣∣∇Sn−1(∂tw)

∣∣2
dμ − β(β + 1)

∫
CΩR

|t |−β−2|∇Sn−1w|2dμ,

2(α − 2)

∫
CΩR

|t |−β(∂tw)(�Sn−1w)dμ = (α − 2)β

∫
CΩR

|t |−β−1|∇Sn−1w|2dμ,

−2γn,α

∫
CΩR

|t |−βw∂2
t w dμ = 2γn,α

∫
CΩR

|t |−β(∂tw)2dμ − β(β + 1)γn,α

∫
CΩR

|t |−β−2w2dμ,

−2γn,α(α − 2)

∫
CΩR

|t |−βw∂tw dμ = (α − 2)βγn,α

∫
CΩR

|t |−β−1w2dμ,

2(α − 2)

∫
CΩ

|t |−β∂tw∂2
t w dμ = −(α − 2)β

∫
CΩ

|t |−β−1(∂tw)2dμ. �

R R
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The next three lemmas are devoted to suitable integral inequalities involving functions in H 2(Sn−1).
We start with the following inequality obtained with an integration by parts:∫

Sn−1

|∇Sn−1ψ |2dS ≤ 1

2

(‖�Sn−1ψ‖2
L2(Sn−1)

+ ‖ψ‖2
L2(Sn−1)

)
for any ψ ∈ H 2(

S
n−1). (76)

We recall from [8, Proposition 1.1] the following estimate:

Lemma 10.2. (See [8].) Let n ≥ 2. Let α ∈R and let γn,α and L be as in Lemma 10.1. Then∫
Sn−1

|Lψ |2dS ≥ μn,α

∫
Sn−1

|ψ |2dS for any ψ ∈ H 2(
S

n−1), (77)

where μn,α is defined by (17).

When μn,α = 0 estimate (77) becomes trivial but using the argument performed in [8, Proposition 1.1] one deduces 
the following estimate:

Lemma 10.3. Let n ≥ 2 and α ∈ R be such that μn,α = 0 with μn,α and γn,α as in Proposition 5.2. Let L be as in 
Lemma 10.2. Let j̄ ∈N ∪{0} be such that 0 = μn,α = |γn,α + j̄ (n −2 + j̄ )|2 and define μ̄n,α := minj∈N∪{0}, j �=j̄ |γn,α +
j (n − 2 + j)|2 > 0. Finally let V be the eigenspace of −�Sn−1 corresponding to the eigenvalue j̄ (n − 2 + j̄ ). Then∫

Sn−1

|Lψ |2dS ≥ μ̄n,α

∫
Sn−1

|ψ |2dS for any ψ ∈ V ⊥. (78)

The next lemma is devoted to an estimate for the L2(Sn−1)-norm of the gradient.

Lemma 10.4. Let n ≥ 2, α ∈R and let L, γn,α and μn,α be as in Lemma 10.2.

(i) If μn,α > 0 then∫
Sn−1

|∇Sn−1ψ |2dS ≤ [
1 + μ−1

n,α

(
γ 2
n,α + 1/2

)] ∫
Sn−1

|Lψ |2dS for any ψ ∈ H 2(
S

n−1).
(ii) If μn,α = 0 let j̄ be the unique value of j ∈ N ∪ {0} for which the minimum in (17) is achieved and put μ̄n,α :=

minj∈N∪{0}, j �=j̄ |γn,α + j (n − 2 + j)|2 > 0. Then∫
Sn−1

|∇Sn−1ψ |2dS ≤ [
1 + μ̄−1

n,α

(
γ 2
n,α + 1/2

)] ∫
Sn−1

|Lψ |2dS + |γn,α|
∫

Sn−1

ψ2dS

for any ψ ∈ H 2(Sn−1).

Proof. Let us start with the proof of (i). By (76), (77) we have∫
Sn−1

|∇Sn−1ψ |2dS ≤ 1

2

( ∫
Sn−1

|Lψ − γn,αψ |2dS +
∫

Sn−1

ψ2dS

)

≤ 1

2

(
2

∫
Sn−1

|Lψ |2dS + (
2γ 2

n,α + 1
) ∫
Sn−1

ψ2dS

)
≤ 1

2

[
2 + μ−1

n,α

(
2γ 2

n,α + 1
)] ∫
Sn−1

|Lψ |2dS

for any ψ ∈ H 2(Sn−1) thus completing the proof of (i).
Let us proceed with the proof of (ii). Let V be as in the statement of Lemma 10.3 and for any ψ ∈ H 2(Sn−1) let 

ψ1 ∈ V and ψ2 ∈ V ⊥ be such that ψ = ψ1 + ψ2. Finally put λj̄ = j̄ (n − 2 + j̄ ) = −γn,α .
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Then by (76) and (78) we have∫
Sn−1

|∇Sn−1ψ |2dS =
∫

Sn−1

|∇Sn−1ψ1|2dS +
∫

Sn−1

|∇Sn−1ψ2|2dS

≤ λj̄

∫
Sn−1

ψ2
1 dS + 1

2

( ∫
Sn−1

|Lψ2 − γn,αψ2|2dS +
∫

Sn−1

ψ2
2 dS

)

≤ λj̄

∫
Sn−1

ψ2dS + 1

2

(
2

∫
Sn−1

|Lψ2|2dS + (
2γ 2

n,α + 1
) ∫
Sn−1

ψ2
2 dS

)

≤ −γn,α

∫
Sn−1

ψ2dS + [
1 + μ̄−1

n,α

(
γ 2
n,α + 1/2

)] ∫
Sn−1

|Lψ2|2dS

and the conclusion follows since 
∫
Sn−1 |Lψ |2dS = ∫

Sn−1 |Lψ1|2dS + ∫
Sn−1 |Lψ2|2dS. �

End of the proof of Theorem 5.1. Let w := Tαϕ. By (75), Lemmas 10.2–10.4 and the fact that α ≤ 0, γn,α < 0 being 
μn,α = 0, we obtain∫

Rn\BR

|x|α|�ϕ|2
(log|x|)β dx ≥

∫
CΩR

|t |−β
∣∣Lw(t, θ)

∣∣2
dμ

+
∫

CΩR

|t |−β
[(

∂2
t w(t, θ)

)2 + 2γ̄n,α

(
∂tw(t, θ)

)2 + 2
∣∣∇Sn−1

(
∂tw(t, θ)

)∣∣2]
dμ

− C(n,α,β)

[ ∫
CΩR

|t |−2−β
∣∣Lw(t, θ)

∣∣2
dμ +

∫
CΩR

|t |−1−β
∣∣Lw(t, θ)

∣∣2
dμ

]

+ (2 − α)β

∫
CΩR

|t |−1−β
(
∂tw(t, θ)

)2
dμ

≥ [
1 − C(n,α,β)

(
(logR)−2 + (logR)−1)] ∫

CΩR

|t |−β
∣∣Lw(t, θ)

∣∣2
dμ

+ 2γ̄n,α

∫
CΩR

|t |−β
(
∂tw(t, θ)

)2
dμ,

where C(n, α, β) is a positive constant depending only on n, α and β . If choose R sufficiently large the constant 
[1 −C(n, α, β)((logR)−2 + (logR)−1)] becomes positive so that using the one dimensional weighted Hardy inequal-
ity (

β + 1

2

)2 ∞∫
0

t−β−2(η(t)
)2

dt ≤
∞∫

0

t−β
(
η′(t)

)2
dt for any η ∈ C∞

c (0,+∞)

we obtain∫
Rn\BR

|x|α|�ϕ|2
(log|x|)β dx ≥ 2γ̄n,α

(
β + 1

2

)2 ∫
CΩR

|t |−β−2(w(t, θ)
)2

dμ

= 2γ̄n,α

(
β + 1

2

)2 ∫
Rn\BR

|x|α−4ϕ2

(log|x|)β+2
dx.

This completes the proof of the theorem. �
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Proof of Proposition 5.3. It is enough to prove (20). Let ϕ ∈ C∞
c (R \ {0}) and α ∈ R. By integration by parts we 

have that∫
R

|x|α−2xϕ(x)ϕ′(x) dx = −α − 1

2

∫
R

|x|α−2(ϕ(x)
)2

dx

and hence by the Hölder inequality it follows

|α − 1|
2

∫
R

|x|α−2(ϕ(x)
)2

dx ≤
(∫

R

|x|α−2(ϕ(x)
)2

dx

)1/2(∫
R

|x|α(
ϕ′(x)

)2
dx

)1/2

.

This completes the proof of (20). �
End of the proof of Theorem 5.2. The proof of (23) follows by using Proposition 5.2 and Theorem 5.1 and taking 
R > 1 large enough. The proof of (24) follows by combining Proposition 5.2, Theorem 5.1 with the second order 
Hardy-type inequality

1

4

∫
R2\BR

ϕ2

|x|2 log2 |x| dx ≤
∫

R2\BR

|∇ϕ|2dx for any ϕ ∈ C∞
c

(
R

2 \ BR

)
, R > 1

(see [1] and [17, proof of Theorem 3]) and the classical Hardy inequality in dimension n ≥ 3 and taking R > 1 large 
enough. �
11. Proof of Theorems 4.2–4.3

Let u be a solution of (1) satisfying the assumptions of one of the situations stated in Theorem 4.2. Then by 
Theorem 2.5 (i)–(iv), there exist C, r > 0 such that

u(x) < −C|x| for any |x| > r.

In particular we have that

eu(x) < e−C|x| for any |x| > r.

According with (18)–(19) and (22)–(24), we define the radial function V in the following different cases

V (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∏m/2−1

i=0 γ̄n,−4i ) · (∏m/2−1
i=0 ( 2i+1

2 )2) 2m/2

|x|2m(log|x|)m m even, 3 ≤ n ≤ 2m even,

(
∏m−1

2 −1
i=0 γ̄n,−4i−2) · (∏m−1

2 −1
i=0 ( 2i+3

2 )2) 2
m−1

2 −2

|x|2m(log|x|)m+1 m ≥ 3 odd, 2 ≤ n ≤ 2m even,

(
∏m−1

2 −1
i=0 (4i − 3)2(4i − 5)2) 2−2m

|x|2m m ≥ 1 odd, n = 1,

(
∏m/2

i=1 μn,αi
) 1
|x|2m m even, 3 ≤ n ≤ 2m odd or n > 2m,

(n−2
2 )2(

∏m−1
2

i=1 μn,αi
) 1
|x|2m m ≥ 3 odd, 3 ≤ n ≤ 2m odd or n > 2m

where γ̄n,−4i and γ̄n,−4i−2 are defined in Theorem 5.1.

We observe that the function x �→ e−C|x|
V (x)

vanishes as |x| → +∞. Therefore there exists R > r such that

e−C|x|

V (x)
< 1 for any |x| > R

and hence by (18)–(19) and (22)–(24), up to enlarging R, we obtain∫
n

∣∣�m/2ϕ
∣∣2

dx −
∫

n

euϕ2dx ≥
∫

n

∣∣�m/2ϕ
∣∣2

dx −
∫

n

e−C|x|

V (x)
V (x)ϕ2(x) dx
R \BR R \BR R \BR R \BR



524 A. Farina, A. Ferrero / Ann. I. H. Poincaré – AN 33 (2016) 495–528
≥
∫

Rn\BR

∣∣�m/2ϕ
∣∣2

dx −
∫

Rn\BR

V (x)ϕ2(x) dx

≥ 0 for any ϕ ∈ C∞
c

(
R

n \ BR

)
if m is even and∫

Rn\BR

∣∣∇(
�

m−1
2 ϕ

)∣∣2
dx −

∫
Rn\BR

euϕ2dx ≥
∫

Rn\BR

∣∣∇(
�

m−1
2 ϕ

)∣∣2
dx −

∫
Rn\BR

e−C|x|

V (x)
V (x)ϕ2(x) dx

≥
∫

Rn\BR

∣∣∇(
�

m−1
2 ϕ

)∣∣2
dx −

∫
Rn\BR

V (x)ϕ2(x) dx

≥ 0 for any ϕ ∈ C∞
c

(
R

n \ BR

)
.

This completes the proof of Theorem 4.2.
The proof of Theorem 4.3 follows in the same way as above since the explicit solution u defined in (5) satisfies 

u(x) = −4m log|x| + O(1) as |x| → +∞.

12. An autonomous equation associated with (4)

In order to provide detailed information on the asymptotic behavior at infinity of radial solutions of polyharmonic 
equations like (1), it can be useful to reduce the equation in (4) to an autonomous equation by mean of a suitable 
change of variable, see for example [3,6,18–20,22] where biharmonic equations with both power and exponential 
type nonlinearities are studied.

Throughout this section we will assume that n > 2m. Consider the function uS(x) = −2m log|x| for any x �= 0. By 
direct computation one sees that uS solves the equation

(−�)muS = λSeuS in R
n \ {0} (79)

where λS = 2mm! ∏m
k=1(n − 2k) > 0. In order to find a solution of (1) it is sufficient to define the function US(x) =

uS(x) + logλS for any x �= 0 which clearly satisfies

(−�)mUS = eUS in R
n \ {0}. (80)

Then we put s = log r in such a way that if u = u(r) is a radial solution of (1) then the function

w(s) := u
(
es

) − US

(
es

) = u
(
es

) + 2ms − logλS (81)

solves the equation

Qm(∂s)w(s) = λS

(
ew(s) − 1

)
, s ∈R (82)

where US and λS are as in (79)–(80), Qm is the polynomial of degree 2m defined by

Qm(t) := (−1)m
m−1∏
j=0

(t − 2j)(t + n − 2j − 2)

and Qm(∂s) is the linear differential operator of order 2m whose characteristic polynomial is given by Qm.
We observe that Eq. (82) admits the trivial solution w ≡ 0 and according to the change of variable (81), w cor-

responds to the function u(r) = −2m log r + logλS . For this reason it may be interesting to study the behavior of 
solutions of (82) approaching zero as s → +∞. To this purpose it may be useful to consider the linearized equation 
at w = 0 corresponding to (82):

Qm(∂s)w(s) = λSw(s), s ∈R.

The last equation may be rewritten as Pm(∂s)w = 0 once we define

Pm(t) := Qm(t) − λS

and we denote by Pm(∂s) the linear differential operator whose characteristic polynomial is given by Pm.
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In order to have a clear picture on the behavior of solutions of (82), a fundamental aspect that has to be taken in 
consideration, is the presence or not of nonreal roots of the polynomial Pm.

We also recall that in the cases m = 1 and m = 2 the condition which determines the presence or not of nonreal 
roots of Pm determines also the existence and nonexistence of stable solutions of (1), see for example [5,17,25] for 
the case m = 1 and [6,16] for the case m = 2.

By direct computation one may check that if m = 1 and n > 2 then Pm admits nonreal roots if and only if n ≤ 9 and 
from [17,25] we know that if 3 ≤ n ≤ 9 then (1) does not admit any stable solution (also among nonradial solutions) 
while if n ≥ 10 all radial entire solutions of (1) are stable. Similarly if m = 2 and n > 4 then Pm admits nonreal roots 
if and only if n ≤ 12 and from [6,13] we know that if 5 ≤ n ≤ 12 then (1) admits radial entire solutions which are 
unstable while if n ≥ 13 all radial entire solutions of (1) are stable.

We also observe that in both cases m = 1 and m = 2 the existence of nonreal roots is strictly related to the values 
taken by the parameter λS and the best constant for the corresponding Hardy–Rellich inequality as the dimension n
varies. Indeed stability of all radial entire solutions occurs if and only if

2(n − 2) = λS ≤ (n − 2)2

4
if m = 1,

8(n − 2)(n − 4) = λS ≤ n2(n − 4)2

16
if m = 2. (83)

See Proposition 5.1 for the values of the optimal constant in the Hardy–Rellich inequalities. The two inequalities 
in (83) are equivalent respectively to n ≥ 10 if m = 1 and n ≥ 13 if m = 2.

One may ask whether at least for m ≥ 4 even and n > 2m, existence of radial unstable solutions of (1) and/or 
existence of nonreal roots of Pm is again equivalent to the validity of the inequality λS > An,m/2 with An,m/2 as in 
Proposition 5.1.

A question then arises: for any m ≥ 4 even, does it exist a critical dimension n∗ ∈N such that λS > An,m/2 for any 
2m < n ≤ n∗ − 1 and λS ≤ An,m/2 for any n ≥ n∗? The next proposition answers positively to this question.

Proposition 12.1. Let m ≥ 2 be even and let λS and An,m/2 be respectively as in (79) and in Proposition 5.1. Then 
there exists n∗ ∈ N such that λS > An,m/2 for any 2m < n ≤ n∗ − 1 and λS ≤ An,m/2 for any n ≥ n∗.

Proof. First we observe that for any n > 2m we may write

An,m/2

λS

= 1

8m · m! ·
m/2−1∏

i=0

(n + 2m − 4i − 4)2 ·
m/2∏
i=1

n − 4i

n − 4i + 2
.

Hence for any fixed m the previous quotient is increasing with respect to n provided that n > 2m.
For n = 2m + 1 the quotient becomes

An,m/2

λS

= 1

8m · m! ·
m/2−1∏

i=0

(4m − 4i − 3)2 ·
m/2∏
i=1

2m − 4i + 1

2m − 4i + 3
<

1

8m · m! ·
m/2−1∏

i=0

(4m − 4i)2

<
1

8m · m!2m
m−1∏
i=0

(2m + 1 − i) = 1

8m · m!2m 2m + 1

m + 1

(2m)!
m! < 2 · 4−m · (2m)!

(m!)2
=: am.

Since the sequence {am} is decreasing then we obtain

An,m/2

λS

< a2 = 3

4
< 1.

On the other hand it is clear that for any m fixed we have that limn→+∞
An,m/2

λS
= +∞.

After collecting all the above information the proof of the proposition follows. �
In contrast with the case m = 2, numerical evidence shows that for m ≥ 4 even, the condition n ≥ n∗ is not sufficient 

to guarantee that all the roots of Pm are real, see Fig. 1 and Fig. 2 respectively in the cases m = 4, n = n∗ − 1 = 17
and m = 4, n = n∗ = 18.
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Fig. 1. Graph of Pm for m = 4 and n = n∗ − 1 = 17.

Fig. 2. Graph of Pm for m = 4 and n = n∗ = 18.

We recall that in the case m = 2, the possibility of factorizing Pm as a product of four real polynomials of degree 1 
was fundamental for proving stability of radial entire solutions of (1) corresponding to the case β ∈ ∂Aα , see the 
proofs of Theorem 6 and Lemma 12 in [6]. The impossibility for m ≥ 4 even of having a factorization of Pm as a 
product of real polynomials of degree 1 also in dimensions n ≥ n∗ makes difficult to understand if the existence of 
stable solutions of (1) occurs for such dimensions.
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Appendix A

In this appendix we start by recalling from [21] and [32] a couple of results concerning solutions of (4), respectively 
Proposition A.1 and Proposition A.2: the first proposition is a result dealing with continuous dependence on initial 
conditions and the second a comparison principle which extends to the polyharmonic case Lemma 3.2 in [32] where 
biharmonic differential inequalities were considered.
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The third result in this appendix collects some tools which are used several times in the proofs of the main re-
sults.

Proposition A.1. (See [21].) For any n ≥ 1 we have:

(i) for any α0, . . . , αm−1 ∈ R problems (4), (11), (12) admit a unique local solution defined on the maximal interval 
of continuation [0, R) with 0 < R ≤ +∞;

(ii) let α0, . . . , αm−1 ∈R and let {α0,k}, . . . , {αm−1,k} be sequences in R such that

α0,k → α0, αi,k → αi for any i ∈ {1, . . . ,m − 1}, as k → +∞.

Denote by u and uk the solutions of (4), respectively of (11) and (12), corresponding respectively to the initial 
values α0, . . . , αm−1 and α0,k, . . . , αm−1,k . Denote by [0, R), 0 < R ≤ +∞ the maximal interval of continuation 
of u. Then for any S ∈ (0, R) there exists k > 0 such that for any k > k, uk is well defined in [0, S] and moreover 
uk → u uniformly in [0, S] as k → +∞.

Proposition A.2. Assume that f :R → R is locally Lipschitz continuous and monotonically increasing and let m ∈N, 
m ≥ 1. Let u, v ∈ C2m([0, R)) be such that⎧⎪⎨⎪⎩

∀r ∈ [0,R) : �mu(r) − f
(
u(r)

) ≥ �mv(r) − f
(
v(r)

)
,

u(0) ≥ v(0), u′(0) = v′(0) = 0,

�ku(0) ≥ �kv(0),
(
�ku

)′
(0) = (

�kv
)′
(0) = 0 for any k = 1, . . . ,m − 1.

(84)

Then, for all r ∈ [0, R) and for all k ∈ {1, . . . , m − 1} we have

u(r) ≥ v(r), u′(r) ≥ v′(r), �ku(r) ≥ �kv(r),
(
�ku

)′
(r) ≥ (

�kv
)′
(r). (85)

Moreover, the initial point 0 can be replaced by any initial point ρ > 0 if all the 2m initial data are weakly ordered 
and a strict inequality in one of the initial data at ρ ≥ 0 or in the differential inequality in (ρ, R) implies a strict 
ordering of u, u′, �ku, (�ku)′ and v, v′, �kv, (�kv)′ on (ρ, R) for any k ∈ {1, . . . , m − 1}.

Proposition A.3. Let k ≥ 1, R ∈ (0, +∞] and let u ∈ C2k(BR) be a radial function where

BR := {
x ∈R

n : |x| < R
}
.

In this statement by �0u we simply mean the function u.

(i) If �ku(r) > 0 for any r ∈ [0, R) then the map r �→ �k−1u(r) is increasing and for any j ∈ {0, . . . , k − 1} the 
map r �→ �ju(r) is monotone in a sufficiently small left neighborhood of R.

(ii) If �ku is bounded in [0, R) and R < +∞, then for any j ∈ {0, . . . , k − 1} the maps u, u′, �ju and (�ju)′ are 
bounded in [0, R). More precisely, upper boundedness of �ku implies upper boundedness of u, u′, �ju and 
(�ju)′ and lower boundedness of �ku implies lower boundedness of u, u′, �ju and (�ju)′.

(iii) If �ku(r) > Cr
 for any r > r , respectively �ku(r) > Cr
 log r for any r > r , with 
 ∈ N ∪ {0}, C > 0, r > 0, 
then we have respectively

�k−j u(r) ≥ Cjr

+2j for any r > rj and �k−j u(r) ≥ Cjr


+2j log r for any r > rj ,

for any j ∈ {0, . . . , k}, for some rj , Cj > 0.

Proof. Since u is a radial function of class C2k then for any j ∈ {0, . . . , k − 1} we have that (�ju)′(0) = 0. Moreover 
for any j ∈ {1, . . . , k} we may write rn−1�ju(r) = (rn−1(�j−1u(r))′)′. Combining the previous information with 
the assumptions of (i)–(iii) one can perform an iterative procedure, thus obtaining the desired conclusions in a quite 
simple way. �
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