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Abstract

The goal of this article is to show a local exact controllability to smooth (C2) trajectories for the density dependent incom-
pressible Navier–Stokes equations. Our controllability result requires some geometric condition on the flow of the target trajectory, 
which is remanent from the transport equation satisfied by the density. The proof of this result uses a fixed point argument in 
suitable spaces adapted to a Carleman weight function that follows the flow of the target trajectory. Our result requires the proof of 
new Carleman estimates for heat and Stokes equations.
© 2014 
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1. Introduction

The goal of this article is to discuss the local exact controllability property for the non-homogeneous Navier–Stokes 
equations.

Setting and main results. Let Ω be a smooth bounded domain of Rd , d ∈ {2, 3}, T > 0 and denote (0, T ) × Ω by 
ΩT . Let us consider a trajectory (σ ,y) of the non-homogeneous Navier–Stokes equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tσ + div(σy) = f σ in ΩT ,

σ∂ty + σ(y · ∇)y − ν�y + ∇q = fy in ΩT ,

div y = 0 in ΩT ,

(σ (0),y(0)) = (σ 0,y0) in Ω.

(1.1)
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Here, ν > 0 is the viscosity parameter and the source terms (f σ , fy) are assumed to be known.
We will focus on the local exact controllability problem around the trajectory (σ,y) with a control exerted on the 

boundary (0, T ) × ∂Ω : Given (ρ0, u0) small, find control functions (hσ , hy) on (0, T ) × ∂Ω such that the solution 
(σ, y) of⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tσ + div(σy) = f σ in ΩT ,

σ∂ty + σ(y · ∇)y − ν�y + ∇q = fy in ΩT ,

div y = 0 in ΩT ,

(σ (0),y(0)) = (σ 0 + ρ0,y0 + u0), in Ω,

(1.2)

with the boundary conditions:

σ = σ + hσ for (t, x) ∈ (0, T ) × ∂Ω, with y(t, x) · n(x) < 0, (1.3)

y = y + hy on (0, T ) × ∂Ω, (1.4)

satisfies(
σ(T ),y(T )

) = (
σ(T ),y(T )

)
. (1.5)

Our goal is to present a positive answer to this control problem under suitable assumptions on the target trajectory 
(σ ,y), and in particular one of hyperbolic nature on the flow corresponding to y. Besides, in the 2-dimensional case, 
our strategy will yield a control acting on some suitable subsets of the boundary which correspond, roughly speaking, 
to the complement of the part of the boundary in which the scalar product of the target velocity y with the normal 
vector n is positive for all time t ∈ [0, T ].

Going further requires some notations. We denote by L2(Ω), L∞(Ω), Hr(Ω), Hr
0 (Ω) etc. for r ≥ 0, the usual 

Lebesgue and Sobolev spaces of scalar functions, and we write in bold the spaces of vector-valued functions: L2(Ω) =
(L2(Ω))d , Hr (Ω) = (Hr(Ω))d , etc. We also define

V1
0(Ω) :def= {

v ∈ H1
0(Ω)

∣∣ div v = 0 in Ω
}
.

In the following, we will always assume that the target velocity y belongs to C2(ΩT ). It can thus be extended into a 
C2([0, T ] × R

d) function, still denoted the same for simplicity but not necessarily divergence free outside ΩT . This 
allows to define the flow X = X(t, τ, x) associated to that velocity y:

∀(t, τ, x) ∈ [0, T ]2 ×R
d, ∂tX(t, τ, x) = y

(
t,X(t, τ, x)

)
, X(τ, τ, x) = x. (1.6)

Thus we define the outgoing subset of Ω for the flow X as follows:

ΩT
out :def= {

x ∈ Ω
∣∣ ∃t ∈ (0, T ) s.t. X(t,0, x) ∈R

d\Ω}
. (1.7)

One of our main assumptions is the following one:

Ω = ΩT
out. (1.8)

Note that this assumption does not depend on the extension y on [0, T ] × R
d and is intrinsic. This assumption is of 

hyperbolic nature as it requires the time T to be large enough to guarantee that all the particles that were in Ω at time 
t = 0 have been transported by the flow outside Ω in a time strictly smaller than T . Of course, this is remanent from 
the density equation (1.2)(1) in which the density is transported along the flow corresponding to the velocity of the 
fluid.

As we said, in dimension 2, we will not require the control to be supported on the whole boundary (0, T ) × ∂Ω , 
but only on some part of it (0, T ) × Γc where Γc = ∂Ω\Γ0 and Γ0 (the part without control) is an open subset of ∂Ω

satisfying the following conditions:

(i). Γ0 has a finite number of connected components,

(ii). inf y · n > 0. (1.9)

[0,T ]×Γ0
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Note that the above condition guarantees the existence of γ > 0 such that y(t, x) ·n(x) ≥ γ for all (t, x) ∈ (0, T ) ×Γ0. 
It also implies that Γc is non-empty due to the divergence free condition divy = 0.

Our main result states as follows:

Theorem 1.1. Let Ω be a smooth bounded domain of R2. Assume that the target trajectory (σ ,y) solution of (1.1)
satisfies

(σ ,y) ∈ C2([0, T ] × Ω
) × C2([0, T ] × Ω

)
and inf

[0,T ]×Ω

σ > 0. (1.10)

Assume that the condition (1.8) is satisfied for the time T .
Then there exists ε > 0 such that for all (ρ0, u0) ∈ L∞(Ω) × V1

0(Ω) satisfying

‖ρ0‖L∞(Ω) + ‖u0‖H1
0(Ω) ≤ ε, (1.11)

there exists a controlled trajectory

(σ,y) ∈ L∞(ΩT ) × H 1(0, T ;L2(Ω)
) ∩ L2(0, T ;H2(Ω)

)
(1.12)

solution of (1.2)–(1.4) satisfying the control requirement (1.5).
Besides, if Γ0 denotes an open subset of the boundary satisfying (1.9), we may further impose y = y on (0, T ) ×Γ0. 

In particular, in that case, no boundary condition is imposed on the density on Γ0.

Actually, we will only prove Theorem 1.1 when Γ0 �= ∅. When Γ0 = ∅, the proof is the same as for Theorem 1.2
below dealing with the 3-d case.

Indeed, when the control acts on the whole boundary, Theorem 1.1 can be extended to the 3-dimensional case:

Theorem 1.2. Let Ω be a smooth bounded domain of R3. Assume that the target trajectory (σ ,y) solution of (1.1)
satisfies (1.10). Assume that the condition (1.8) is satisfied for the time T .

Then there exists ε > 0 such that for all (ρ0, u0) ∈ L∞(Ω) × V1
0(Ω) satisfying (1.11), there exists a controlled 

trajectory (σ, y) solution of (1.2)–(1.4) and satisfying the control requirement (1.5) and the regularity (1.12).

We refer to Appendix C for the proof of Theorem 1.2 which can be done similarly as Theorem 1.1 up to some minor 
changes. Therefore, in the following, except in Appendix C, we will only discuss Theorem 1.1, i.e. the 2-dimensional 
case.

Strategy of the proof. The proof of Theorem 1.1 is based on a technical fixed-point procedure, and we briefly 
explain below its general strategy.

Setting

ρ :def= σ − σ, u :def= y − y, (1.13)

and

f(ρ,u) :def= −ρ
(
∂tu + (

(y + u) · ∇)
u + (u · ∇)y

) − σ(u · ∇)u − ρ
(
∂ty + (y · ∇)y

)
, (1.14)

Eqs. (1.2)–(1.5) rewrite⎧⎪⎪⎨⎪⎪⎩
∂tρ + (y + u) · ∇ρ = −u · ∇σ in ΩT ,

σ∂tu + σ(y · ∇)u + σ(u · ∇)y − ν�u + ∇p = f(ρ,u) in ΩT ,

div u = 0 in ΩT ,

(ρ(0),u(0)) = (ρ0,u0) in Ω,

(1.15)

with the boundary conditions

u = 0 on (0, T ) × Γ0, (1.16)

and with the requirement
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(
ρ(T ),u(T )

) = (0,0) in Ω. (1.17)

To construct a solution of (1.15)–(1.17), the strategy consists in finding a fixed-point to some mapping
F(ρ0,u0) : û �→ u defined in such a way that u = F(ρ0,u0)(̂u) is a suitable solution of:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + (y + û) · ∇ρ = −û · ∇σ in ΩT ,

σ∂tu + σ(y · ∇)u + σ(u · ∇)y − ν�u + ∇p = f(ρ, û) in ΩT ,

div u = 0 in ΩT ,

u = 0 on (0, T ) × Γ0,

(ρ(0),u(0)) = (ρ0,u0) in Ω,

(ρ(T ),u(T )) = (0,0) in Ω.

(1.18)

The mapping F(ρ0,u0) is defined in two steps. First, for a given ̂u, we define F1(̂u, ρ0) :def= ρ, where ρ will be con-
structed as a suitable solution of the following control problem for the equation of the density:⎧⎨⎩

∂tρ + (y + û) · ∇ρ = −û · ∇σ in ΩT ,

ρ(0) = ρ0 in Ω,

ρ(T ) = 0 in Ω.

(1.19)

Then, we define F2(f, u0) :def= u, where u is a suitable solution of the following control problem for the equation of 
the velocity:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ∂tu + σ(y · ∇)u + σ(u · ∇)y − ν�u + ∇p = f in ΩT ,

div u = 0 in ΩT ,

u = 0 on (0, T ) × Γ0,

u(0) = u0 in Ω,

u(T ) = 0 in Ω.

(1.20)

The mapping F(ρ0,u0) is then defined as follows:

F(ρ0,u0)(̂u) :def= u, where ρ = F1(̂u, ρ0), and u = F2
(
f(ρ, û),u0

)
. (1.21)

Hence our strategy decouples the control problem (1.2)–(1.5) into two control problems, (1.19) for the equation of the 
density, and (1.20) for the equation of the velocity, each of which having different behaviors.

Indeed, on one hand, the control problem (1.20) is of parabolic type, and it will be handled by using global Carle-
man estimates following the general approach of Fursikov and Imanuvilov [17] for the heat equations: in the case of 
Navier–Stokes equations, this approach has already been successfully implemented in the works [22,14].

On the other hand, the control problem (1.19) involves a transport equation. This can be easily controlled provided 
the time T > 0 is large enough to allow all the particles in Ω to go outside the domain, i.e. when condition (1.8) is 
satisfied.

But the problem is that we want the above mapping F(ρ0,u0) to map some convex set into itself. In order to do this, 
we should be able to get estimates on the above control problems in spaces that behave suitably with respect to both of 
them. In particular, this will lead us to introduce Carleman weights that follow the dynamics of the transport equation, 
that is weight functions which are transported by the flow. This strategy then follows the one recently developed in 
[11] for deriving local exact controllability results for the 1d compressible Navier–Stokes equations around constant 
non-vanishing velocities.

Actually, the Carleman estimates we develop in this article also present the feature of not vanishing at time t = 0. 
This allows us to construct a solution (ρ, u) of (1.15) without using any property of the Cauchy problem for the 
non-homogeneous Navier–Stokes equations.

Related references and comments. To our knowledge, control properties for non-homogeneous Navier–Stokes 
equations have only been studied in [12], which proves several optimal control results in that context for various cost 
functions.

For the homogeneous Navier–Stokes equations, the density is assumed to be constant and thus the equations reduce 
to the equations on the velocity. In that case, several local exact controllability results have been established in [22,14]
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based on parabolic Carleman estimates, see e.g. [17,13]. Later on, several different strategies have been proposed, 
see for instance [15,21,24]. We also point out that these results also use the Carleman estimate derived in [23] for 
non-homogeneous elliptic problems in order to handle the pressure term.

Let us also quote the work [8] showing the global exact controllability for the 2-d homogeneous Navier–Stokes 
equations on a manifold without boundary, the work [16] showing the global exact controllability for the 3-d homo-
geneous Navier–Stokes equations on a torus, and the work [6] focusing on the case of Fourier boundary conditions 
and showing global approximate controllability in that case. These works actually rely on a similar strategy as the one 
developed in the context of homogeneous Euler equations [7,20] based on the well-known return method. The case 
of Boussinesq equations, introducing a coupling between a heat equation and the Navier–Stokes equations, has also 
been widely studied [18,16,15].

But our problem also involves some transport phenomenon, and therefore also shares some features of the ther-
moelasticity equations [1], the viscoelasticity models [26,5], and the compressible Navier–Stokes equations [11]. Our 
approach is actually close to the one developed in [11]. Though, the divergence free condition in the model we consider 
here requires a specific treatment.

In this article, we will not use any result on the Cauchy problem for (1.2), as our strategy will automatically 
construct a trajectory (σ, y) solving Eqs. (1.2). However, several results are available in the literature. We refer to 
the work [12] for several results and comments on the Cauchy problem for the non-homogeneous incompressible 
Navier–Stokes equations and to the references therein.

Let us also note that we will need a precise understanding of the transport equation when transported by a flow 
entering the domain. More precisely, we will use in an essential way the compactness result in [3, Theorem 4], obtained 
as a consequence of [2].

We also underline that Theorem 1.1 does not state the uniqueness of the controlled trajectory (σ, y). This is due to 
the lack of regularity for the density σ which only belongs to L∞(ΩT ), see [9] for the uncontrolled case. In our results, 
the control set can be reduced to some part of the boundary only in the 2-d case. The reason comes from the fact that, 
to handle the boundary terms, we use the stream function of the velocity, see Section 2, and that the gradient of this 
stream function is bounded by the velocity pointwise, which is not true in dimension 3. Nevertheless, the results 
in [24] seem to indicate that such use of the stream function could be avoided. But this would require significant 
developments on the Carleman estimate we use, in particular to improve the powers of the Carleman parameters in 
front of the boundary terms in Theorem 2.4.

Our result also allows the use of non-trivial trajectories. For instance, if Γ0 = ∅ and (σ ,y) = (1, 0), one may con-
sider the trajectory (σ ∗(t),y∗(t)) = (1, η(t/T )U) for constant vector fields U and η = η(t) ∈ [0, 1] a bump function 
taking value 0 at t = 0 and t = 1 and with η = 1 on [1/3, 2/3]. Note that (σ ∗(t),y∗(t)) = (1, 0) at time t = 0 and at 
time t = T . But for T > 0 and large U, (σ ∗(t),y∗(t)) satisfies (1.8) and all the assumptions of Theorem 1.1, while 
whatever the time T > 0 is, the trajectory (σ (t),y(t)) = (1, 0) clearly does not satisfy (1.8). This suggests that the 
geometric condition (1.8) may be avoided in some cases using “return method” type ideas, see e.g. [6,8].

The regularity conditions (1.10) seem strong but are required in our approach. The condition y ∈ C2([0, T ] × Ω)

is used to construct the weight function for our Carleman estimate, thus requiring the C2 regularity. On the density, 
we need at least ∇⊥σ ∈ W 1,∞(0, T ; L∞(Ω)) to apply Theorem 2.4 to w solution of (2.18).

The geometric condition (1.8) is very likely optimal in general. However, there are some geometric cases of interest 
in which, though it cannot be satisfied, we expect some results to hold. For instance, when considering a target 
trajectory (σ ,y) corresponding to a constant density σ = cst, one can easily adapt our proof to show that if the 
initial perturbation (ρ0, u0) satisfies (1.11) and the density ρ0 satisfies Suppρ0 � ΩT

out, then there exists a controlled 
trajectory (σ, y) solution of (1.2)–(1.4) and the control requirement (1.5) (indeed in that case, as ∇σ = 0, the backward 
density ρb in (3.7) simply vanishes, so that we can simply take ρ = ρf in Section 3.2). Another case of interest arises 
for instance when considering the stabilization of a (non-trivial) Poiseuille flow in a channel. Even thought this flow 
cannot satisfy the geometric condition (1.8) due to Dirichlet boundary conditions, it is natural to expect that it can be 
stabilized. But such case requires more work.

One can also ask if our result can be generalized to compressible fluids. Though we expect similar geometric 
conditions as the one in (1.8) to be needed, the coupling between the density and the fluid velocity is stronger and the 
question thus requires more work. This issue is currently under investigation.

Outline. This article is organized as follows. Section 2 explains how to solve the control problem (1.20) by the 
use of Carleman estimates for the Stokes operator. Section 3 shows how to construct a controlled density satisfying 
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(1.19) and to derive weighted estimates on it. Section 4 then focuses on the proof of Theorem 1.1 by putting together 
the arguments developed in Sections 2 and 3. Appendices A and B present some technical proofs. Appendix C proves 
Theorem 1.2.

2. Controlling the velocity

This section is dedicated to the construction of a solution of (1.20).

2.1. Statement of the result

In order to solve the control problem (1.20), we will consider (1.20) in an extended domain O as follows: O is a 
smooth bounded domain of R2 satisfying

Ω ⊂O, ∂O is of class C2, ∂O ∩ ∂Ω ⊃ Γ0. (2.1)

We then extend (σ ,y) on [0, T ] ×O, still denoted the same for simplicity, such that

(σ ,y) ∈ C2([0, T ] ×O
) × C2([0, T ] ×O

)
and inf

[0,T ]×O
σ(t, x) > 0. (2.2)

Remark that this is possible due to the assumption (1.10). As u0 ∈ V1
0(Ω), extending it by zero outside Ω , we get an 

extension, still denoted the same, such that

u0 ∈ H1
0(O) and div u0 = 0 in O. (2.3)

By also extending f by zero outside Ω and setting OT = (0, T ) ×O, ΓT = (0, T ) ×∂O we then consider the following 
system⎧⎪⎪⎨⎪⎪⎩

σ(∂tu + (y · ∇)u + (u · ∇)y) − ν�u + ∇p = f + h1O\Ω in OT ,

div u = 0 in OT ,

u = 0 on ΓT ,

u(0) = u0 in O.

(2.4)

Here, 1O\Ω is the characteristic function of O \ Ω and h ∈ L2(OT ) is a control function. Note that the presence of 

1O\Ω in (2.4) implies that the action of the control is supported in O \ Ω .

We thus intend to solve the following control problem: Given u0 ∈ H1
0(O) satisfying (2.3) and a source term f in 

some suitable space, find a control function h ∈ L2(OT ) such that the solution u of (2.4) satisfies

u(T ) = 0 in O. (2.5)

Indeed, if we are able to solve this control problem, the restriction of the solution u to Ω would yield a solution of 
the control problem (1.20). In order to solve the control problem (2.4)–(2.5), as it is classical by now, we are going to 
establish a suitable observability estimate for the adjoint problem⎧⎨⎩

−∂t (σv) − D(σv)y − σv div y − ν�v + ∇p = g in OT ,

div v = 0 in OT ,

v = 0 on ΓT ,

(2.6)

where Dv := ∇v + t∇v is the symmetrized gradient. At this step, note that, though div y vanishes in the set (0, T ) ×Ω , 
there is no reason to further assume that it vanishes in OT , as we do not assume that the domain Ω is simply connected.

To state our result precisely, let us introduce the weight functions we will use in the Carleman estimate. We assume 
that we have a function ψ̃ = ψ̃(t, x) ∈ C2(OT ) such that

ψ̃ :def= ψ̃(t, x) such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀(t, x) ∈ OT , ψ̃(t, x) ∈ [0,1],
∀(t, x) ∈ ΓT , ∂nψ̃(t, x) ≤ 0,

∀t ∈ [0, T ], ψ̃(t)|∂O is constant,

∀t ∈ [0, T ], inf ψ̃(t, ·) = ψ̃(t) .

(2.7)
O |∂O
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We also assume the existence of two open subsets ω̃T � ωT of [0, T ] × (O \Ω) (here and in the following, the symbol 
� means that there exists a compact set KT of [0, T ] × (O \ Ω) such that ω̃T ⊂ KT ⊂ ωT ) and a constant α > 0 such 
that

inf
OT \ω̃T

{|∇ψ̃ |} ≥ α > 0. (2.8)

For m ≥ 1, we set

ψ(t, x) :def= ψ̃(t, x) + 6m. (2.9)

We then set T0 > 0 and T1 > 0 such that T1 ≤ 1/4 and T0 + 2T1 < T and choose a weight function in time θm,μ(t)

depending on the parameters m ≥ 1 and μ ≥ 2 defined by

θm,μ :def= θm,μ(t) such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀t ∈ [0, T0], θm,μ(t) = 1 + (1 − t
T0

)μ,

∀t ∈ [T0, T − 2T1], θm,μ(t) = 1,

∀t ∈ [T − T1, T ), θm,μ(t) = 1
(T −t)m

,

θm,μ is increasing on [T − 2T1, T − T1],
θm,μ ∈ C2([0, T )).

(2.10)

For simplicity of notations in the following we omit the dependence on m and μ and we simply write θ :def= θm,μ. We 
will then take the following weight functions ϕ = ϕ(t, x) and ξ = ξ(t, x):

ϕ(t, x) :def= θ(t)
(
λe6λ(m+1) − exp

(
λψ(t, x)

))
, ξ(t, x) :def= θ(t) exp

(
λψ(t, x)

)
, (2.11)

where s, λ are positive parameters with s ≥ 1, λ ≥ 1 and μ is chosen as

μ = sλ2eλ(6m−4), (2.12)

which is always bigger than 2, thus being compatible with the condition θ ∈ C2([0, T )). Note that the weight functions 
ϕ and ξ , depend on s, λ, m, and should rather be denoted by ϕs,λ,m, resp. ξs,λ,m, but we drop these indexes for 
simplicity of notations.

Remark that, due to the definition of ψ in (2.9) and the conditions (2.7), we have, for all λ ≥ 1 and (t, x) ∈ OT ,

3

4
θ(t)λe6λ(m+1) ≤ ϕ(t, x) ≤ θ(t)λe6λ(m+1). (2.13)

Finally, we introduce

ϕ̂(t) :def= min
x∈O

ϕ(t, x), ϕ∗(t) :def= max
x∈O

ϕ(t, x) = ϕ|∂O(t), (2.14)

ξ̂ (t) :def= max
x∈O

ξ(t, x), ξ∗(t) :def= min
x∈O

ξ(t, x) = ξ|∂O(t). (2.15)

Using these weight functions, we prove the following Carleman estimate for the Stokes system (2.6):

Theorem 2.1. Assume that O is a smooth bounded domain extending Ω as in (2.1), let ω, ω̃ be two subdomains of 
O\Ω such that ω̃ � ω and set ωT = [0, T ] × ω and ω̃T = [0, T ] × ω̃.

Let ψ̃ as in (2.7)–(2.8) and ψ , θ , ϕ, ξ as in (2.9)–(2.11).
Then, for m ≥ 5, there exist some constants s0 ≥ 1, λ0 ≥ 1 and C > 0 such that for all smooth solution v of (2.6)

with source term g ∈ L2(OT ), for all s ≥ s0 and λ ≥ λ0,

s1/2λ−1/2
ˆ

O

(
ξ∗)4−2/m∣∣v(0, ·)∣∣2

e−2sϕ∗(0) + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ

+ s−1
ˆ ˆ

ξ2|∇v|2e−2sϕ + s1/2λ−1/2

T̂ (
ξ∗)4−2/m

e−2sϕ∗‖v‖2
H1(O)
OT 0
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≤ C

(
s5/2λ2

ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂ + s1/2λ−1/2
ˆ ˆ

OT

(ξ)4−2/m|g|2e−2sϕ

)
. (2.16)

Remark 2.2. Estimate (2.16) can be completed with higher norms on v in the left-hand side of (2.16). Namely, looking 
carefully at the proof of Theorem 2.1, in particular in (2.52), we can add in the left-hand side of (2.16) the terms

s−1/2λ−3/2
∥∥(

ξ∗)3/2−3/(2m)ve−sϕ∗(t)∥∥2
L2(0,T ;H2(O))

+ s−1/2λ−3/2
∥∥(

ξ∗)3/2−3/(2m)∇pe−sϕ∗(t)∥∥2
L2(0,T ;L2(O))

,

and also, thanks to maximal regularity results for the equation satisfied by the pair s−3/2λ−2(ξ∗)−1/(3m)e−sϕ∗(t)(v, p),

s−3λ−4
∥∥(

ξ∗)−1/(3m)ve−sϕ∗(t)∥∥2
H 1(0,T ;L2(O))

.

The proof of Theorem 2.1 is done in Sections 2.2 and 2.3. We are first going to prove a slightly improved version 
of the Carleman estimates (2.16) for solutions v of the simplified version of the adjoint problem (2.6):⎧⎨⎩

−σ∂tv − ν�v + ∇p = g in OT ,

div v = 0 in OT ,

v = 0 on ΓT .

(2.17)

Our approach then consists first in taking the curl of Eq. (2.17) and consider the equation of w = curl v:

−σ∂tw − ν�w = curl g + ∂tv · ∇⊥σ in OT . (2.18)

Thus, in Section 2.2, we derive estimates on w solution of (2.18) in terms of the right hand side of the equation of 
(2.18) and the boundary terms. It turns out that the boundary conditions and source terms strongly depend on v itself. 
Hence in Section 2.3, we explain how to estimate v in terms of w by using the stream function ζ associated to u, 
which is given by

�ζ(t) = w(t) in OT and ζ(t) = ci(t) on [0, T ] × γi for i = 1, . . . ,K, (2.19)

where {γi, i = 1, . . . , K} is the family of connected components of ∂O and ci(t), i = 1, . . . , K are some constants 
characterizing ζ(t) which are chosen such that, for some Lipschitz subdomain ω̂ of O\Ω satisfying ω̃ � ω̂ � ω,ˆ

ω̂

ζ(t) = 0. (2.20)

Among the new features of the Carleman estimate of Theorem 2.1 with respect to those in the literature, let us 
point out the following facts:

• The weight function in time θm,μ in (2.10) does not blow up as the time t goes to 0. However, our proof requires 
a strong convexity property close to t = 0, tuned by the choice of the parameter μ in (2.10) as a suitable function 
of the parameters s and λ, see (2.12).

• The weight function ψ depends on both the time and space variables. As we shall explain, this is not a big issue 
as long as we guarantee that for all t ∈ [0, T ], ψ(t) is constant on the boundary ∂O, thus allowing to apply the 
Carleman inequality of [23] for elliptic equations.

Based on Theorem 2.1, following standard duality arguments, we prove the following control result:

Theorem 2.3. Within the setting and assumptions of Theorem 2.1, there exists a constant C > 0 such that for all s ≥ s0
and λ ≥ λ0, if u0 verifies (2.3) and f ∈ L2(OT ) satisfiesˆ ˆ

ξ−4|f|2e2sϕ < ∞, (2.21)
OT
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there exists a control function h ∈ L2(OT ) supported in ωT and a controlled trajectory u ∈ L2(OT ) such that u solves 
the control problem (2.4)–(2.5) and (u, h) satisfies the estimate∥∥e

3
4 sϕ∗

u
∥∥2

L2(H2)∩H 1(L2)
+ s1/2λ5/2

ˆ ˆ

OT

ξ2/m−4|u|2e2sϕ + s−3/2
ˆ ˆ

ωT

ξ̂−6|h|2e4sϕ̂−2sϕ∗

≤ C

(ˆ ˆ

OT

ξ−4|f|2e2sϕ + e
5
2 sϕ∗(0,·)‖u0‖2

H1
0(O)

)
. (2.22)

The proof of Theorem 2.3 is given in Section 2.4.

2.2. Carleman estimates for the heat equation

The goal of this section is to show the following estimate:

Theorem 2.4. Let ω̂T be an open subset of OT satisfying ω̃T � ω̂T and let ψ̃ as in (2.7)–(2.8) and ψ , θ , ϕ, ξ as in
(2.9)–(2.11).

For all M > 0, there exist constants C > 0, s0 and λ0 such that for all s ≥ s0 and λ ≥ λ0, for all smooth functions 
w in OT , such that

−σ∂tw − ν�w = a0w + A1 · ∇w + g0 +
d∑

i=1

bi∂igi + bd+1∂tgd+1 in OT ,

with a0 ∈ L∞(OT ), A1 ∈ L∞(0, T ; W1,∞(O)), g0, gi ∈ L2(OT ), and coefficients bi ∈ L∞(0, T ; W 1,∞(O)), bd+1 ∈
W 1,∞(0, T ; L∞(O)) satisfying

‖a0‖L∞(OT ) + ‖A1‖L∞(0,T ;W1,∞(O)) +
d∑

i=1

‖bi‖L∞(0,T ;W 1,∞(O)) + ‖bd+1‖W 1,∞(0,T ;L∞(O)) ≤ M, (2.23)

we have

s3λ4
ˆ ˆ

OT

ξ3|w|2e−2sϕ ≤ C

ˆ ˆ

OT

|g0|2e−2sϕ + Cs2λ2
ˆ ˆ

OT

ξ2

(
d∑

i=1

|gi |2
)

e−2sϕ + Cs4λ4
ˆ ˆ

OT

ξ4|gd+1|2e−2sϕ

+ Cs3λ3
ˆ

ΓT

ξ3|w|2e−2sϕ + Cs3λ4
ˆ ˆ

ω̂T

ξ3|w|2e−2sϕ. (2.24)

The proof of Theorem 2.4 is long and is divided in three steps:

1. a Carleman estimate for the heat equation with homogeneous boundary conditions and source terms in L2(OT ); 
see Theorem 2.5;

2. energy estimates on controlled trajectories of a heat equation with a source term in L2(OT ); see Theorem 2.6;
3. a duality argument.

This proof is inspired by the ones in [25], see also [13]. Below, we only state Theorems 2.5–2.6, whose proofs are 
postponed to the appendix. Let us also emphasize that Theorems 2.4–2.6 hold in any dimension d .

Proof of Theorem 2.4. As said above, the proof is done in three steps.
An L2-Carleman estimate. The first result is the following L2-Carleman estimate for the heat equation:

Theorem 2.5. Assume the setting of Theorem 2.4. For all m ≥ 1, there exist constants C0 > 0, s0 ≥ 1 and λ0 ≥ 1 such 
that for all smooth functions z on OT satisfying z = 0 on ΓT , for all s ≥ s0, λ ≥ λ0, we have



538 M. Badra et al. / Ann. I. H. Poincaré – AN 33 (2016) 529–574
ˆ

O

∣∣∇z(0)
∣∣2

e−2sϕ(0) + s2λ3e2λ(6m+1)

ˆ

O

∣∣z(0)
∣∣2

e−2sϕ(0) + sλ2
ˆ ˆ

OT

ξ |∇z|2e−2sϕ + s3λ4
ˆ ˆ

OT

ξ3|z|2e−2sϕ

≤ C0

ˆ ˆ

OT

∣∣(−σ∂t − ν�)z
∣∣2

e−2sϕ + C0s
3λ4

ˆ ˆ

ω̂T

ξ3|z|2e−2sϕ. (2.25)

The proof of Theorem 2.5 is given in Section A.1. It is rather classical except for the weight function ϕ, which does 
not blow up as t → 0 and for the weight function ψ which depends on both time and space variables. This introduces 
in the proof of Theorem 2.5 several new technical issues, though our proof follows the lines of [17].

Estimates on a control problem. We then analyze the following control problem: for f ∈ L2(OT ), find a control 
function h ∈ L2(ω̂T ) such that the solution y of⎧⎨⎩

∂t (σy) − ν�y = f + h1ω̂T
, in OT ,

y = 0, on ΓT ,

y(0, ·) = 0, in O,

(2.26)

solves the control problem:

y(T , ·) = 0, in O. (2.27)

We claim the following result:

Theorem 2.6. Assume the setting of Theorem 2.4. For all m ≥ 1, there exist positive constants C > 0, s0 ≥ 1 and 
λ0 ≥ 1 such that for all s ≥ s0 and λ ≥ λ0, for all f satisfyingˆ ˆ

OT

ξ−3|f |2e2sϕ < ∞, (2.28)

there exists a solution (Y, H) of the control problem (2.26)–(2.27) which furthermore satisfies the following estimate:

s3λ4
ˆ ˆ

OT

|Y |2e2sϕ +
ˆ ˆ

ω̂T

ξ−3|H |2e2sϕ + sλ2
ˆ ˆ

OT

ξ−2|∇Y |2e2sϕ

+ 1

s

ˆ ˆ

OT

ξ−4(|∂tY |2 + |�Y |2)e2sϕ + λ

ˆ

ΓT

ξ−3|∂nY |2e2sϕ ≤ C

ˆ ˆ

OT

ξ−3|f |2e2sϕ. (2.29)

The proof of Theorem 2.6 is given in Section A.2. Again, the proof is rather classical and is based on the du-
ality between the Carleman estimates, which are weighted observability estimates, and controllability, and then on 
energy estimates. Note however that these energy estimates have to be derived using the weight functions defined in 
(2.7)–(2.11), and this introduces some novelties in the computations.

A duality argument. The proof of Theorem 2.4 then relies upon the estimate (2.29) on the solution (Y, H) of the 
control problem (2.26)–(2.27) for f = ξ3we−2sϕ . Indeed, if (Y, H) solves (2.26)–(2.27) for some f satisfying (2.28), 
multiplying the equation satisfied by Y by w, we obtainˆ ˆ

OT

w(f + H1ω̂T
) +

ˆ

ΓT

w∂nY

=
ˆ ˆ

OT

(
a0wY − w div(A1Y) + g0Y −

n∑
i=1

gi∂i(biY ) − gn+1∂t (bn+1Y)

)
. (2.30)

In particular, as f = ξ3we−2sϕ satisfiesˆ ˆ
ξ−3|f |2e2sϕ =

ˆ ˆ
ξ3|w|2e−2sϕ,
OT OT
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according to (2.29) we can construct (Y, H) solution of⎧⎪⎪⎨⎪⎪⎩
∂t (σY ) − ν�Y = ξ3we−2sϕ + H1ω̂T

, in OT ,

Y = 0, on ΓT ,

Y (0, ·) = 0, in O,

Y (T , ·) = 0, in O,

(2.31)

for which we have the estimate:

s3λ4
ˆ ˆ

OT

|Y |2e2sϕ +
ˆ ˆ

ω̂T

ξ−3|H |2e2sϕ + sλ2
ˆ ˆ

OT

ξ−2|∇Y |2e2sϕ

+ 1

s

ˆ ˆ

OT

ξ−4(|∂tY |2 + |∇Y |2)e2sϕ + λ

ˆ

ΓT

ξ−3|∂nY |2e2sϕ ≤ C

ˆ ˆ

OT

ξ3|w|2e−2sϕ. (2.32)

Using then the identity (2.30), we infer
ˆ ˆ

OT

ξ3|w|2e−2sϕ

≤ C

(
1

sλ2

ˆ ˆ

OT

ξ2|w|2e−2sϕ

)1/2(
sλ2

ˆ ˆ

OT

ξ−2(|Y |2 + |∇Y |2)e2sϕ

)1/2

+ C

(
1

s3λ4

ˆ ˆ

OT

|g0|2e−2sϕ

)1/2(
s3λ4

ˆ ˆ

OT

|Y |2e2sϕ

)1/2

+ C

(
1

sλ2

ˆ ˆ

OT

ξ2

(
d∑

i=1

|gi |2
)

e−2sϕ

)1/2(
sλ2

ˆ ˆ

OT

ξ−2(|Y |2 + |∇Y |2)e2sϕ

)1/2

+ C

(
s

ˆ ˆ

OT

ξ4|gd+1|2e−2sϕ

)1/2(1

s

ˆ ˆ

OT

ξ−4(|Y |2 + |∂tY |2)e2sϕ

)1/2

+ C

(
1

λ

ˆ

ΓT

ξ3|w|2e−2sϕ

)1/2(
λ

ˆ

ΓT

ξ−3|∂nY |2e2sϕ

)1/2

+ C

(ˆ ˆ

ω̂T

ξ3|w|2e−2sϕ

)1/2(ˆ ˆ

ω̂T

ξ−3|H |2e2sϕ

)1/2

,

which immediately yields the claimed result by (2.32). �
2.3. Proof of Theorem 2.1

This section aims at proving Theorem 2.1. This will be done in two steps.
We first prove the following Carleman estimate for v solution of (2.17):

Theorem 2.7. Within the setting and assumptions of Theorem 2.1, for any m ≥ 5, there exist some constants s0 ≥ 1, 
λ0 ≥ 1 and C > 0 such that for all solution v of (2.17) with source term g ∈ L2(OT ), for all s ≥ s0 and λ ≥ λ0,

s1/2λ−1/2
ˆ (

ξ∗)4−2/m∣∣v(0, ·)∣∣2
e−2sϕ∗(0) + sλ2

ˆ ˆ
ξ4|v|2e−2sϕ
O OT
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+ s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖v‖2
H1(O)

+
ˆ ˆ

OT

ξ3| curl v|2e−2sϕ + s−1
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ

≤ C

(
s5/2λ2

ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂ + s−1λ−2
ˆ ˆ

OT

ξ2|g|2e−2sϕ

+ s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖g‖2
H−1(O)

+ s−1/2λ−3/2
ˆ ˆ

OT

(
ξ∗)3−3/m|g|2e−2sϕ∗

)
. (2.33)

The proof of Theorem 2.7 is done below in Section 2.3.1. In Section 2.3.2 we then explain how Theorem 2.7
implies Theorem 2.1.

2.3.1. Proof of Theorem 2.7
Let v be a solution of (2.17) with source term g. As w = curl v satisfies (2.18), the Carleman estimate (2.24) applies 

to w: for all s ≥ s0 and λ ≥ λ0,ˆ ˆ

OT

ξ3|w|2e−2sϕ ≤ C

(ˆ ˆ

ω̂T

ξ3|w|2e−2sϕ + s

ˆ ˆ

OT

ξ4|v|2e−2sϕ

+ λ−1
ˆ

ΓT

ξ3|w|2e−2sϕ + s−1λ−2
ˆ ˆ

OT

ξ2|g|2e−2sϕ

)
. (2.34)

Here and in the following ω̂T = [0, T ] × ω̂ where ω̂ is a Lipschitz subdomain O\Ω such that ω̃ � ω̂ � ω. Note in 
particular that ω̃T � ω̂T � ωT .

Next, because v is divergence free we also have, for all t ∈ (0, T ),

−�v(t) = curlw(t) in O, v(t) = 0 on ∂O. (2.35)

Thus, using elliptic Carleman estimates with source term in H−1(O) with weight e−sϕ(t,·) and integrating in time, see 
[23], we immediately get

s−1
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ ≤ C

(ˆ ˆ

OT

ξ3|w|2e−2sϕ + sλ2
ˆ ˆ

ω̂T

ξ4|v|2e−2sϕ

)
. (2.36)

Combined with (2.34), and using the fact that w = curl v is bounded by ∂nv on ΓT (recall that v = 0 on ΓT ) and that 
ξ∗ = ξ and ϕ∗ = ϕ on (0, T ) × ∂O, we immediately have that for some s0 > 1 and λ0 > 1, for all s ≥ s0 and λ ≥ λ0,

s−1
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ +
ˆ ˆ

OT

ξ3|w|2e−2sϕ + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ

≤ C

(ˆ ˆ

ω̂T

ξ3|w|2e−2sϕ + sλ2
ˆ ˆ

ω̂T

ξ4|v|2e−2sϕ + λ−1
ˆ

ΓT

(
ξ∗)3|∂nv|2e−2sϕ∗ + s−1λ−2

ˆ ˆ

OT

ξ2|g|2e−2sϕ

)
.

(2.37)

We then introduce the stream function ζ associated to v, i.e. v = ∇⊥ζ , which can be computed explicitly as the 
solution of (2.19) for some constants ci(t) due to the dimension d = 2, see e.g. [19, Corollary 3.1]. Note that, by 
adding a constant to ζ if necessary, without loss of generality we can assume that (2.20) is also satisfied. Applying the 
elliptic Carleman estimate to Eq. (2.19) (see e.g. [17]), we obtain that

s3λ4
ˆ ˆ

ξ6|ζ |2e−2sϕ + sλ2
ˆ ˆ

ξ4|∇ζ |2e−2sϕ ≤ C

(ˆ ˆ
ξ3|w|2e−2sϕ + s3λ4

ˆ ˆ

ω̂

ξ6|ζ |2e−2sϕ

)
. (2.38)
OT OT OT T
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Note that the Carleman estimate of [17] is obtained for homogeneous Dirichlet boundary conditions. But it is easily 
seen that it remains true for a boundary data whose tangential derivative at the boundary vanishes, which is the case 
for ζ .

Of course, estimate (2.34) requires an observation term in ζ in ω̂T . But Poincaré Wirtinger inequality (recall here 
that ω̂ is assumed to be a domain, i.e. a connected open set) and condition (2.20) implies, for all t ∈ [0, T ],ˆ

ω̂

∣∣ζ(t, ·)∣∣2 ≤ C

ˆ

ω̂

∣∣∇ζ(t, ·)∣∣2 =
ˆ

ω̂

∣∣curl ζ(t, ·)∣∣2 =
ˆ

ω̂

∣∣v(t, ·)∣∣2
,

and in particular:ˆ ˆ

ω̂T

ξ6|ζ |2e−2sϕ ≤ C

ˆ ˆ

ω̂T

ξ̂6|v|2e−2sϕ̂ . (2.39)

Let us stress the fact that the 2-d assumption is also used at this stage since (2.39) relies on the identity |∇ζ(t, ·)|2 =
| curl ζ(t, ·)|2.

Next, we use (2.38) to derive suitable weighted energy estimates for v, hence for ∂nv on the boundary ∂O. But 
since we do not have any estimate on the pressure in the Stokes equation (2.17), we are reduced to derive energy 
estimates for v with weight functions independent of x.

Estimates in L2(0, T ; H1(O)). We set (va, pa) :def= θ1(t)(v, p) with

θ1(t) :def= s1/4λ−1/4(ξ∗)2−1/m
e−sϕ∗(t).

Using

∂tϕ
∗ ≤ Cλ

(
ξ∗)1+1/m in OT (2.40)

and explicit computations, we get

θ ′
1 ≥ −Cs5/4λ3/4(ξ∗)3

e−sϕ∗(t). (2.41)

The pair (va, pa) satisfies⎧⎪⎪⎨⎪⎪⎩
−σ∂tva − ν�va + ∇pa = θ1g − σθ ′

1v in OT ,

div va = 0 in OT ,

va = 0 on ΓT ,

va(T ) = 0 in O.

(2.42)

We want to obtain an estimate of the L2(H1
0)-norm of va , so we multiply the partial differential equation in (2.42)

by va , we integrate in OT and we integrate by parts. This yields:

1

2

∥∥√
σ(0, ·)va(0, ·)∥∥2

L2(O)
+ ν‖va‖2

L2(0,T ;H1
0(O))

=
ˆ ˆ

OT

θ1g · va −
ˆ ˆ

OT

σθ ′
1v · va − 1

2

ˆ ˆ

OT

∂tσ |va|2. (2.43)

First, we remark that∣∣∣∣ˆ ˆ

OT

θ1g · va

∣∣∣∣ ≤ ν

4

ˆ ˆ

OT

|∇va|2 + C

T̂

0

|θ1|2‖g‖2
H−1(O)

. (2.44)

We then focus on the second term of (2.43) and use (2.41)

−
ˆ ˆ

OT

σθ ′
1v · va

≤ Cs3/2λ1/2
ˆ ˆ (

ξ∗)5−1/mv · ∇⊥ζe−2sϕ∗(t)
OT
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= −Cs3/2λ1/2
ˆ ˆ

OT

(
ξ∗)5−1/m curl v ζe−2sϕ∗(t)

≤ Cs5/2λ3/2
ˆ ˆ

OT

(
ξ∗)6|ζ |2e−2sϕ∗(t) + νs1/2λ−1/2

4

ˆ ˆ

OT

(
ξ∗)4−2/m|∇v|2e−2sϕ∗(t)

≤ Cs5/2λ3/2
ˆ ˆ

OT

(
ξ∗)6|ζ |2e−2sϕ∗(t) + ν

4

ˆ ˆ

OT

|∇va|2.

The last term can be handled similarly:∣∣∣∣1

2

ˆ ˆ

OT

∂tσ |va|2
∣∣∣∣ ≤ Cs1/2λ−1/2

ˆ ˆ

OT

(
ξ∗)4−2/m|v|2e−2sϕ∗

≤ Cs5/2λ3/2
ˆ ˆ

OT

(
ξ∗)6|ζ |2e−2sϕ∗(t) + ν

4

ˆ ˆ

OT

|∇va|2.

Plugging these three last estimates in (2.43), we obtain∥∥va(0, ·)∥∥2
L2(O)

+ ‖va‖2
L2(0,T ;H1

0(O))
≤ C

(
s5/2λ3/2

ˆ ˆ

OT

(
ξ∗)6|ζ |2e−2sϕ∗ + ‖θ1g‖2

L2(0,T ;H−1(O))

)
. (2.45)

Estimate in L2(0, T ; H2(O)). Let us now set (vb, pb) :def= θ2(t)(v, p) with

θ2(t) :def= s−1/4λ−3/4(ξ∗)3/2−3/(2m)
e−sϕ∗(t),

for which explicit computations yield:

θ ′
2 ≥ −Cs3/4λ1/4(ξ∗) 5

2 − 1
2m e−sϕ∗

(2.46)

This pair (vb, pb) satisfies⎧⎪⎪⎨⎪⎪⎩
−σ∂tvb − �vb + ∇pb = θ2g − σθ ′

2v in OT ,

div vb = 0 in OT ,

vb = 0 on ΓT ,

vb(T ) = 0 in O.

(2.47)

We then multiply the partial differential equation in (2.47) by (−�vb +∇pb)/σ , we integrate in OT and we integrate 
by parts:

1

2

ˆ

O

∣∣∇vb(0, ·)∣∣2 +
ˆ ˆ

OT

1

σ
|−�vb + ∇pb|2 =

ˆ ˆ

OT

θ2

σ
g (−�vb + ∇pb) −

ˆ ˆ

OT

θ2θ
′
2|∇v|2. (2.48)

Using (2.2) we can estimate the first term as follows:∣∣∣∣ˆ ˆ

OT

θ2

σ
g (−�vb + ∇pb)

∣∣∣∣ ≤ 1

4

ˆ ˆ

OT

1

σ
|−�vb + ∇pb|2 + C‖θ2g‖2

L2(OT )
. (2.49)

For the second term, remark that by (2.46), we have

θ2θ
′
2 ≥ −Cs1/2λ−1/2(ξ∗)4−2/m

e−2sϕ∗ = −Cθ2
1 ,

thus yielding

−
ˆ ˆ

θ2θ
′
2|∇v|2 ≤ C‖θ1v‖2

L2(0,T ;H1(O))
= C‖va‖2

L2(0,T ;H1(O))
.

OT
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Therefore, using the above estimate and (2.49) into (2.48), we obtain

‖vb‖2
L2(0,T ;H2(O))

≤ C

ˆ ˆ

OT

|−�vb + ∇pb|2 ≤ C
(‖θ2g‖2

L2(OT )
+ ‖va‖2

L2(0,T ;H1(O))

)
, (2.50)

where we have used the classical H 2-estimate for the stationary Stokes system, see e.g. [4, Theorem IV.5.8].
Global estimate on v and its normal derivative. Since v = 0 on ΓT , classical estimates yield∥∥∂nv(t, ·)∥∥2

L2(∂O)
≤ C

(∥∥v(t, ·)∥∥H1
0(O)

∥∥v(t, ·)∥∥H2(O)
+ ∥∥v(t, ·)∥∥2

H1
0(O)

)
,

and in particular, using the fact that θ2(t) ≤ θ1(t) for all t ∈ (0, T ),∥∥λ−1/2(ξ∗) 7
4 − 5

4m ∂nve−sϕ∗
(t, ·)∥∥2

L2(∂O)

≤ C
(∥∥θ1v(t, ·)∥∥H1

0(O)

∥∥θ2v(t, ·)∥∥H2(O)
+ ∥∥θ1v(t, ·)∥∥2

H1
0(O)

)
.

Putting together (2.45) and (2.50) with this last estimate, using (2.38) and (2.39) to estimate the term in ζ and taking 
into account that m ≥ 5, we deduce that∥∥va(0, ·)∥∥2

L2(O)
+ ‖θ1v‖2

L2(0,T ;H1
0(O))

+ ‖θ2v‖2
L2(0,T ;H2(O))

+ λ−1
∥∥(

ξ∗)3/2
∂nve−sϕ∗∥∥2

L2(ΓT )

≤ C

(
s−1/2λ−5/2

ˆ ˆ

OT

ξ3|w|2e−2sϕ + s5/2λ3/2
ˆ ˆ

ω̂T

ξ̂6|v|2e−2sϕ̂ + ‖θ1g‖2
L2(0,T ;H−1(O))

+ ‖θ2g‖2
L2(OT )

)
.

(2.51)

Elimination of the boundary term. We come back to the Carleman inequality (2.37) and we combine it with 
(2.51): for s large enough,∥∥va(0, ·)∥∥2

L2(O)
+ ‖θ1v‖2

L2(0,T ;H1
0(O))

+ ‖θ2v‖2
L2(0,T ;H2(O))

+ s−1
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ +
ˆ ˆ

OT

ξ3|w|2e−2sϕ + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ

≤ C

(ˆ ˆ

ω̂T

ξ3|w|2e−2sϕ + s5/2λ2
ˆ ˆ

ω̂T

ξ̂6|v|2e−2sϕ̂

+ ‖θ1g‖2
L2(0,T ;H−1(O))

+ ‖θ2g‖2
L2(OT )

+ s−1λ−2
ˆ ˆ

OT

ξ2|g|2e−2sϕ

)
. (2.52)

Removing the observation on w. We now estimate the local term in |w|2. For this purpose, we recall that ω̂T =
[0, T ] × ω̂ � ωT = [0, T ] × ω and we consider a positive function χ ∈ C2(O) such that

χ = 1 in ω̂, χ = 0 in O \ ω.

Usingˆ ˆ

ω̂T

ξ3|w|2e−2sϕ ≤
ˆ ˆ

ω̂T

ξ̂3|w|2e−2sϕ̂ , (2.53)

we are reduced to estimate the right hand side of (2.53):ˆ ˆ

ω̂T

ξ̂3|w|2e−2sϕ̂ ≤
ˆ ˆ

ωT

χξ̂3|w|2e−2sϕ̂ ≤
ˆ ˆ

ωT

χξ̂3|∇v|2e−2sϕ̂

= −
ˆ ˆ

χξ̂3�v ve−2sϕ̂ + 1

2

ˆ ˆ
�χξ̂3 |v|2e−2sϕ̂
ωT ωT
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≤ εs−1/2λ−3/2
ˆ ˆ

OT

(
ξ∗)3−3/m|�v|2e−2sϕ∗ + Cεs

1/2λ3/2
ˆ ˆ

ωT

(
ξ∗)−3+3/m

ξ̂6|v|2e2sϕ∗−4sϕ̂,

where the last estimate follows from Young’s identity and where ε > 0.
Using the last above inequality in (2.52) with ε small enough and recalling the definition of θ2, we get in particular

s1/2λ−1/2
ˆ

O

(
ξ∗)4−2/m∣∣v(0, ·)∣∣2

e−2sϕ∗ + s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖v‖2
H1(O)

+ s−1
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ +
ˆ ˆ

OT

ξ3| curl v|2e−2sϕ

≤ C

(
s5/2λ2

ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂ + s−1λ−2
ˆ ˆ

OT

ξ2|g|2e−2sϕ + s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖g‖2
H−1(O)

+ s−1/2λ−3/2
ˆ ˆ

OT

(
ξ∗)3−3/m|g|2e−2sϕ∗

)
. (2.54)

This concludes the proof of Theorem 2.7.

2.3.2. Proof of Theorem 2.1
Let v be a smooth solution of (2.6) with source term g. Then v is a solution of (2.17) with source term

g̃ = g + ∂tσ v + D(σv)y + σv div(y).

Applying Theorem 2.7 to v with source term g̃, for all s ≥ s0 and λ ≥ λ0 we get

s1/2λ−1/2
ˆ

O

(
ξ∗)4−2/m∣∣v(0, ·)∣∣2

e−2sϕ∗(0) + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ

+ s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖v‖2
H1(O)

+
ˆ ˆ

OT

ξ3| curl v|2e−2sϕ + s−1
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ

≤ C

(
s5/2λ2

ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂ + s−1λ−2
ˆ ˆ

OT

ξ2|g̃|2e−2sϕ

+ s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖g̃‖2
H−1(O)

+ s−1/2λ−3/2
ˆ ˆ

OT

(
ξ∗)3−3/m|g̃|2e−2sϕ∗

)
(2.55)

and we are thus reduced to estimate the last terms of the inequality.
But we have

s−1λ−2
ˆ ˆ

OT

ξ2|g̃|2e−2sϕ

≤ C

(
s−1λ−2

ˆ ˆ

OT

ξ2|g|2e−2sϕ + s−1λ−2
ˆ ˆ

OT

ξ2|v|2e−2sϕ + s−1λ−2
ˆ ˆ

OT

ξ2|∇v|2e−2sϕ

)
,

s−1/2λ−3/2
ˆ ˆ (

ξ∗)3−3/m|g̃|2e−2sϕ∗
OT
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≤ C

(
s−1/2λ−3/2

ˆ ˆ

OT

(
ξ∗)3−3/m|g|2e−2sϕ∗

+ s−1/2λ−3/2
ˆ ˆ

OT

(
ξ∗)3−3/m|v|2e−2sϕ∗ + s−1/2λ−3/2

ˆ ˆ

OT

(
ξ∗)3−3/m|∇v|2e−2sϕ∗

)
,

in which all the terms in v, ∇v can be absorbed by the left-hand side of (2.55) for s and λ large enough.
We also have, for all t ∈ (0, T ),∥∥g̃(t)

∥∥2
H−1(O)

≤ C
∥∥g(t, ·)∥∥2

L2(O)
+ C

∥∥v(t, ·)∥∥2
L2(O)

.

Hence

s1/2λ−1/2

T̂

0

(
ξ∗)4−2/m

e−2sϕ∗‖g̃‖2
H−1(O)

≤ Cs1/2λ−1/2
ˆ ˆ

OT

(
ξ∗)4−2/m

e−2sϕ∗ |g|2

+ Cs1/2λ−1/2
ˆ ˆ

OT

(
ξ∗)4−2/m

e−2sϕ∗ |v|2. (2.56)

Plugging these last estimates in (2.55), we obtain (2.16) for s and λ large enough.

2.4. Proof of Theorem 2.3

We use the following simplified form of (2.16): for all s ≥ s0 and λ ≥ λ0 and all smooth solutions v of (2.6) with 
source term g:ˆ

O

(
ξ∗)4−2/m∣∣v(0, ·)∣∣2

e−2sϕ∗(0) + s1/2λ5/2
ˆ ˆ

OT

ξ4|v|2e−2sϕ

≤ C

(
s2λ5/2

ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂ +
ˆ ˆ

OT

ξ4−2/m|g|2e−2sϕ

)
. (2.57)

Easy density arguments then show that this result extends to all solutions v of (2.6) with source term g ∈ L2(OT ) and 
final data v(T ) = vT ∈ V1

0(Ω).
We then follow the proof of Theorem 2.6 and introduce the functional JSt defined by

JSt (vT ,g) :def= 1

2

ˆ ˆ

OT

ξ4−2/m|g|2e−2sϕ + s2λ5/2

2

ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂

−
ˆ ˆ

OT

f · v −
ˆ

O

u0(·) · v(0, ·), (2.58)

defined for data (vT , g) ∈ V1
0(Ω) × L2(OT ), where v solves (2.6) with v(T ) = vT .

We then need to define the functional JSt on the set XSt,obs :def= X0
St,obs

‖·‖St,obs , where

X0
St,obs :def= {

(vT ,g) ∈ V1
0(Ω) × L2(OT )

}
(2.59)

and the norm ‖(vT , g)‖St,obs is defined by∥∥(vT ,g)
∥∥2

St,obs :def=
ˆ ˆ

OT

ξ4−2/m|g|2e−2sϕ + s2λ5/2
ˆ ˆ

ωT

ξ̂6|v|2e2sϕ∗−4sϕ̂ ,

where v is the corresponding solution to (2.6).



546 M. Badra et al. / Ann. I. H. Poincaré – AN 33 (2016) 529–574
According to (2.57), the functional JSt can be extended by continuity on XSt,obs if f satisfies (2.21). The functional 
JSt then has a unique minimizer on XSt,obs, that we denote (VT , G) and which corresponds to a solution V of (2.6). 
We get, for all smooth solution v of (2.6) corresponding to a source term g,

0 =
ˆ ˆ

OT

ξ4−2/mG · ge−2sϕ + s2λ5/2
ˆ ˆ

ωT

ξ̂6V · ve2sϕ∗−4sϕ̂ −
ˆ ˆ

OT

f · v −
ˆ

O

u0(·) · v(0, ·). (2.60)

In particular, setting

u = ξ4−2/mGe−2sϕ, h = −s2λ5/2ξ̂6Ve2sϕ∗−4sϕ̂1ωT
, (2.61)

we obtain a solution in the sense of transposition of the control problem (2.4)–(2.5) with a control term acting only 
on ωT .

Besides, using again the Carleman estimate (2.57) and the fact that JSt (VT , G) ≤ JSt (0, 0) = 0, one immediately 
derives that∥∥(VT ,G)

∥∥2
obs ≤ C

s1/2λ5/2

ˆ ˆ

OT

ξ−4|f|2e2sϕ + C

ˆ

O

(
ξ∗)2/m−4|u0|2e2sϕ∗(0). (2.62)

Hence, using (2.61), the controlled trajectory (u, h) satisfiesˆ ˆ

OT

ξ2/m−4|u|2e2sϕ + 1

s2λ5/2

ˆ ˆ

ωT

ξ̂−6|h|2e4sϕ̂−2sϕ∗ ≤ C

s1/2λ5/2

ˆ ˆ

OT

ξ−4|f|2e2sϕ +
ˆ

O

(
ξ∗)2/m−4|u0|2e2sϕ∗(0).

(2.63)

Finally, we can then derive H 1(L2) ∩ L2(H2) estimates on u by applying regularity results for Stokes equations to 
the system satisfied by e

3
4 sϕ∗

u. The computations are left to the reader.

3. Controlling the density

This section is devoted to explain how to solve the control problem (1.19). As we said in the introduction, the main 
difficulty is that we need to provide a controlled trajectory that can be estimated with the use of the weight functions 
introduced in Section 2.

3.1. Basic properties of the flow

Let y be an extension of y on [0, T ] ×R
2 and X the corresponding flow, defined in (1.6). As y ∈ C2([0, T ] ×R

2), 
the flow X is continuous with respect to the variables (t, τ, x) ∈ [0, T ]2 ×R

2.
We first discuss the stability of property (1.8):

Lemma 3.1. Assume that y ∈ C2([0, T ] ×R
2), and that the flow X defined by (1.6) satisfies (1.8).

There exist ε > 0, T ∗
0 > 0 and T ∗

1 > 0 such that for all T0 ∈ (0, T ∗
0 ), for all T1 ∈ (0, T ∗

1 ) and for all x ∈ Ω , there 
exists t ∈ [T0, T − 2T1] such that d(X(t, T0, x), Ω) ≥ 2ε.

Proof. The proof is done by contradiction. Assume it is false. Then for all ε > 0, there exist T ε
0 > 0 and T ε

1 such that 
T ε

0 , T ε
1 converge to 0 as ε → 0, and an xε in Ω such that

∀t ∈ [
T ε

0 , T − 2T ε
1

]
, d

(
X

(
t, T ε

0 , xε

)
,Ω

)
< 2ε. (3.1)

But xε is bounded in Ω . Hence, up to a subsequence, it converges to some x in Ω . As the flow X is continuous in 
[0, T ]2 ×R

2 and the distance function is continuous, for each t ∈ (0, T ), one could then pass to the limit in (3.1):

∀t ∈ (0, T ), d
(
X(t,0, x),Ω

) = 0.

This is of course in contradiction with (1.8). �
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For ̂u ∈ L2(0, T ; H2(R2)) we denote by X̂ the flow defined by

∂t X̂(t, τ, x) = (y + û)
(
t, X̂(t, τ, x)

)
, X̂(τ, τ, x) = x. (3.2)

Note that in dimension 2, the flow X̂ associated to a velocity field in L2(0, T ; H2(R2)) is well-defined in the classical 
sense thanks to Osgood’s condition, see [28].

We then show that, provided ̂u is small enough, the property (1.8) also holds for X̂:

Lemma 3.2. Under the setting of Lemma 3.1, there exists ς > 0 such that for all ̂u ∈ L2(0, T ; H2(R2)), satisfying

‖̂u‖L2(0,T ;L∞(R2)) ≤ 2ς, (3.3)

the flow X̂ defined by (3.2) satisfies the following property: for all T0 ∈ (0, T ∗
0 ), for all T1 ∈ (0, T ∗

1 ) and for all x ∈ Ω , 
there exists t ∈ [T0, T − 2T1] such that d(X̂(t, T0, x), Ω) ≥ ε.

Proof. Set L = ‖∇y‖L∞(0,T ;L∞(Ω)). For τ, t ∈ [0, T ]2 with t ≥ τ and x ∈ R
2, we have:∣∣X̂(t, τ, x) − X(t, τ, x)

∣∣ = ∣∣X̂(t, τ, x) − X̂(τ, τ, x) + X(τ, τ, x) − X(t, τ, x)
∣∣

=
∣∣∣∣∣

tˆ

τ

(
∂t X̂

(
t ′, τ, x

) − ∂tX
(
t ′, τ, x

))
dt ′

∣∣∣∣∣
=

∣∣∣∣∣
tˆ

τ

û
(
t ′, X̂

(
t ′, τ, x

)) + y
(
t ′, X̂

(
t ′, τ, x

)) − y
(
t ′,X

(
t ′, τ, x

))
dt ′

∣∣∣∣∣
≤ |t − τ |1/2‖̂u‖L2(τ,t;L∞(R2)) + L

tˆ

τ

∣∣X̂(
t ′, τ, x

) − X
(
t ′, τ, x

)∣∣dt ′.

Then Gronwall’s Lemma yields for all t ∈ [0, T ] and x ∈R
2:∣∣X̂(t, τ, x) − X(t, τ, x)

∣∣ ≤ T 1/2eLT ‖̂u‖L2(τ,t;L∞(R2)). (3.4)

According to Lemma 3.1, Lemma 3.2 thus holds by setting ς = T −1/2e−LT ε/2 in (3.3). �
3.2. Construction of the controlled density

In this section, we assume that

û ∈ L2(0, T ;H2(
R

2)) and ‖̂u‖L2(0,T ;L∞(R2)) ≤ 2ς, (3.5)

where ς is given by Lemma 3.2. We then choose T0 ∈ (0, T ∗
0 ) and T1 ∈ (0, T ∗

1 ), where T ∗
0 , T ∗

1 are given by Lemma 3.2.
The construction of the controlled density ρ solution of (1.19) is then done as in [11]: we construct a forward 

solution ρf and a backward solution ρb of the transport equation in (1.19) and we glue these two solutions according 
to the characteristics of the flow.

Indeed, we define ρf as the solution of⎧⎨⎩
∂tρf + (y + û) · ∇ρf = −û · ∇σ in ΩT ,

ρf (t, x) = 0 for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + û(t, x)) · n(x) < 0,

ρf (0) = ρ0 in Ω,

(3.6)

and ρb as the solution of⎧⎨⎩
∂tρb + (y + û) · ∇ρb = −û · ∇σ in ΩT ,

ρb = 0 for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + û(t, x)) · n(x) > 0, (3.7)
ρb(T ) = 0 in Ω.
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We also introduce χ the solution of⎧⎨⎩
∂tχ + (y + û) · ∇χ = 0 in ΩT ,

χ = 1t∈(0,T0)(t) for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + û(t, x)) · n(x) < 0,

χ(0) = 1 in Ω.

(3.8)

We finally define ρ(t, x) as follows,

ρ(t, x) :def= (
1 − χ(t, x)

)
ρb(t, x) + χ(t, x)ρf (t, x). (3.9)

It is easy to check that this function ρ satisfies the transport equation (1.19)(1) and the required initial condition 
(1.19)(2). The final condition ρ(T ) = 0 in (1.19)(3) is satisfied due to the properties of the flow proved in Lemma 3.2, 
which guarantees that χ(T ) = 0.

In the next subsections, we describe how to get estimates on the function ρ constructed in (3.9) in the weighted 
spaces adapted to the Carleman estimates derived in Section 2.

3.3. Explicit description of the density

To begin with, let us remark that the function χ is explicitly given by:

χ(t, x) =
⎧⎨⎩

1 if t < T0

1 if t ≥ T0 and X(τ, t, x) ∈ Ω for all τ ∈ [T0, t],
0 else,

(3.10)

so that from Lemma 3.2 we have in particular

χ(t, x) = 0 and ρ(t, x) = ρb(t, x) for (t, x) ∈ [T − 2T1, T ] × Ω. (3.11)

We also give explicit expressions for ρf and ρb. In order to do that, for t ∈ [0, T ], we introduce

Ω[0](t) :def= {
x ∈ Ω

∣∣ X̂(τ, t, x) ∈ Ω for all τ ∈ [0, t]}
Ω[T ](t) :def= {

x ∈ Ω
∣∣ X̂(τ, t, x) ∈ Ω for all τ ∈ [t, T ]} (3.12)

and for all (t, x) ∈ [0, T ] × Ω :

tin(t, x) :def= sup
{
τ ∈ [0, t)

∣∣ X̂(τ, t, x) ∈ ∂Ω
}
,

tout(t, x) :def= inf
{
τ ∈ (t, T ] ∣∣ X̂(τ, t, x) ∈ ∂Ω

}
. (3.13)

In the above definitions, we use the convention sup∅ = 0 and inf∅ = T . This way, tin(t, x) = 0 iff x ∈ Ω[0](t) and 
tout(t, x) = T iff x ∈ Ω[T ](t).

Using these notations, ρf and ρb are explicitly given by

ρf (t, x) =
{

ρ0(X̂(0, t, x)) − ´ t

0 (̂u · ∇σ)(τ, X̂(τ, t, x))dτ if x ∈ Ω[0](t),
−´ t

tin(t,x)
(̂u · ∇σ)(τ, X̂(τ, t, x))dτ else,

(3.14)

ρb(t, x) =
tˆ

tout(t,x)

(̂u · ∇σ)
(
τ, X̂(τ, t, x)

)
dτ for x ∈ Ω. (3.15)

We are now in position to derive weighted estimates on ρ.

3.4. Weighted estimates on the density

In order to derive weighted estimates on ρ based on the Carleman weights ψ , θ , ϕ, ξ described in (2.7)–(2.11), we 
will need some further assumptions.
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Assumptions on the weights. We assume that T0 and T1 in the definition of θ in (2.10) satisfy

T0 ∈ (
0, T ∗

0

)
, T1 ∈ (

0, T ∗
1

)
, (3.16)

where T ∗
0 and T ∗

1 are given by Lemma 3.1.
We also assume that the function ψ in (2.7) can be extended in [0, T ] ×R

2 such that

ψ ∈ C1([0, T ] ×R
2) and ∂tψ + y · ∇ψ = 0 in (0, T ) ×R

2. (3.17)

Assumptions on û. In order to derive estimates on ρ, we shall assume that û is in a weighted Sobolev space. 
According to Theorem 2.3, it is natural to assume

ξ−2ûesϕ ∈ L2(0, T ;L2(Ω)
)
, div û = 0 in ΩT , (3.18)

ûe3sϕ∗/4 ∈ L2(0, T ;H2(Ω)
)

with
∥∥̂ue3sϕ∗/4

∥∥
L2(0,T ;H2(Ω))

≤ ς. (3.19)

Extension of ̂u. To fit into the setting of Section 3.2, we extend ̂u on [0, T ] ×R
2 that we still denote the same: ̂u =

E(̂u), where E denotes an extension from H2(Ω) to H2(R2) such that ‖E(v)‖H2(R2) ≤ 2‖v‖H2(Ω) for all v ∈ H2(Ω). 
This allows us to define the flow X̂ by (3.2) for (t, τ, x) ∈ [0, T ]2 ×R

2.
Note that, for s large enough, this last assumption is stronger than (3.5) and is thus perfectly compatible with the 

construction of Section 3.2, as it implies in particular that

‖θ û‖L2(0,T ;L∞(R2)) ≤ cςe−c0sλ, (3.20)

where c0 > 0 is independent of s and λ. For the following we suppose that s ≥ s0 and λ ≥ 1 with s0 large enough such 
that (3.5) and (3.20) are satisfied.

On the flows X̂ and X. We first establish a lemma on the closeness of X̂ to X.

Lemma 3.3. There exists c > 0 independent of s and λ such that for all (τ, t) ∈ [0, T ]2 and x ∈R
2:∣∣X̂(τ, t, x) − X(τ, t, x)

∣∣ ≤ cςe−c0sλ. (3.21)

Moreover, if T0 ≤ t ≤ τ ≤ T , we also have

θ(t)
∣∣X̂(τ, t, x) − X(τ, t, x)

∣∣ ≤ cςe−c0sλ. (3.22)

Proof. Estimate (3.21) is an immediate consequence of (3.4) and (3.20). From (3.4), we also have

θ(t)
∣∣X̂(τ, t, x) − X(τ, t, x)

∣∣ ≤ T 1/2eLT θ(t)‖̂u‖L2(t,τ ;L∞(R2)),

where L = ‖∇y‖L∞(0,T ;L∞(R2)). Using the fact that θ is increasing on [T0, T ],
θ(t)

∣∣X̂(τ, t, x) − X(τ, t, x)
∣∣ ≤ T 1/2eLT ‖θ û‖L2(t,τ ;L∞(R2)),

for all T0 ≤ t ≤ τ ≤ T , which concludes the proof of Lemma 3.3 by (3.20). �
On the weight functions. Here, we shall deeply use the fact that ψ is assumed to solve the transport equation 

(3.17), thus implying in particular that

∀(t, τ, x) ∈ [0, T ]2 ×R
2, ψ

(
t,X(t, τ, x)

) = ψ(τ, x). (3.23)

We then show the following lemma:

Lemma 3.4. There exist c1 > 0, c2 > 0 and c3 > 0 independent of s and λ, and s0 > 1 such that for all s ≥ s0, λ ≥ 1, 
the following inequalities hold:

1. For all t ∈ [0, T − 2T1], τ ∈ [0, t] and x ∈R
2,

ϕ(t, x) − ϕ
(
τ, X̂(τ, t, x)

) ≤ c1ςe−c2sλ, (3.24)

ξ(τ, X̂(τ, t, x))

ξ(t, x)
≤ 2ec1ςe−c2sλ

. (3.25)
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2. For all t ∈ [T0, T ], τ ∈ [t, T ] and x ∈ R
2,

ϕ(t, x) − ϕ
(
τ, X̂(τ, t, x)

) ≤ c1ςe−c2sλ − c3
(
θ(τ ) − θ(t)

)
, (3.26)

ξ(τ, X̂(τ, t, x))

ξ(t, x)
≤ θ(τ )

θ(t)
ec1ςe−c2sλ

. (3.27)

Proof. We focus on the proof of item 2, the first one being similar and easier because θ takes value in [1, 2] close to 
t = 0. Estimate (3.26) follows from the following computations: for T0 ≤ t ≤ τ ≤ T ,

ϕ(t, x) − ϕ
(
τ, X̂(τ, t, x)

)
= θ(t)

(
λe6λ(m+1) − eλψ(t,x)

) − θ(τ )
(
λe6λ(m+1) − eλψ(τ,X̂(τ,t,x))

)
= θ(t)

(
eλψ(τ,X̂(τ,t,x)) − eλψ(t,x)

) + (
θ(t) − θ(τ )

)(
λe6λ(m+1) − eλψ(τ,X̂(τ,t,x))

)
≤ θ(t)

(
eλψ(τ,X̂(τ,t,x)) − eλψ(t,x)

) − c3
(
θ(τ ) − θ(t)

)
,

for some c3 > 0, where we used in the last estimate that θ is increasing on [T0, T ]. We then use (3.23) and (3.22):∣∣θ(t)
(
eλψ(τ,X̂(τ,t,x)) − eλψ(t,x)

)∣∣ = θ(t)
∣∣eλψ(τ,X̂(τ,t,x)) − eλψ(τ,X(τ,t,x))

∣∣
≤ cθ(t)λ‖∇ψ‖∞eλ(6m+1)

∣∣X̂(τ, t, x) − X(τ, t, x)
∣∣ ≤ c1ςe−c2sλ,

for s large enough, as announced in (3.26). Next, by construction we have

ξ(τ, X̂(τ, t, x))

ξ(t, x)
= θ(τ )

θ(t)
eλ(ψ(τ,X̂(τ,t,x))−ψ(τ,X(τ,t,x)))

≤ θ(τ )

θ(t)
eλ‖∇ψ‖∞|X̂(τ,t,x)−X(τ,t,x)|, (3.28)

which immediately yields (3.27) by (3.22). �
We immediately deduce from Lemma 3.4 the following:

Proposition 3.5. Introducing the weight function

ℵ(t, x) :def= (
ξ(t, x)

)−2
esϕ(t,x), (3.29)

there exist s0 ≥ 1 and c > 0 independent of s and λ such that for all λ ≥ 1, s ≥ s0, for all (τ, t, x) ∈ [0, T ] ×[0, T ] ×Ω

satisfying τ ≤ t ≤ T − 2T1 or T0 ≤ t ≤ τ ,

ℵ(t, x) ≤ cℵ(
τ, X̂(τ, t, x)

)
. (3.30)

Proof. If τ ≤ t ≤ T − 2T1 then (3.30) follows immediately from (3.24) and (3.25).
If T0 ≤ t ≤ τ then (3.30) follows from (3.26) and (3.27):

ℵ(t, x) ≤
(

θ2(τ )e−c3sθ(τ )

θ2(t)e−c3sθ(t)

)
ec1ς(s+2)e−sλc2 ℵ(

τ, X̂(τ, t, x)
)
.

But, for s ≥ 2/c3, the function x �→ x2e−c3sx is decreasing on [1, +∞) and then, since θ is increasing on [T0, T ], 
θ2(τ )e−c3sθ(τ ) ≤ θ2(t)e−c3sθ(t). �

On the controlled trajectory ρ. We now derive estimates on the controlled trajectory ρ given by Section 3.2:

Theorem 3.6. Let ψ , θ , ϕ, ξ are defined in (2.7)–(2.11) and assume (3.16), (3.17). Further assume that ̂u satisfies 
(3.18) and (3.19) with s ≥ s0, λ ≥ 1 and s0 large enough such that (3.5) and (3.20) are satisfied.
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There exists c > 0 independent of s, λ and ̂u such that the solution ρ given by Section 3.2 satisfies

‖ℵρ‖L2(ΩT ) ≤ C
(‖ℵû‖L2(0,T ;L2(Ω)) + esϕ∗(0)‖ρ0‖L2(Ω)

)
, (3.31)

where ℵ is given by (3.29), and∥∥esλe6λ(m+1)θ(t)/2ρ
∥∥

L∞(ΩT )
≤ C

(∥∥esλe6λ(m+1)θ(t)/2û
∥∥

L2(0,T ;L∞(Ω))
+ esλe6λ(m+1)‖ρ0‖L∞(Ω)

)
. (3.32)

Proof. The proof of Theorem 3.6 follows from the precise description of ρf and ρb given in (3.14)–(3.15).
Let us begin with the proof of estimate (3.32). On one hand, as t �→ sλe6λ(m+1)θ(t) is non-increasing on (0, T −

2T1), from (3.14) we get, for all (t, x) ∈ (0, T − 2T1) × Ω

esλe6λ(m+1)θ(t)
∣∣ρf (t, x)

∣∣2 ≤ 2esλe6λ(m+1)θ(t)‖ρ0‖2
L∞(Ω) + 2‖∇σ‖2

L∞(ΩT )

tˆ

0

esλe6λ(m+1)θ(τ )
∥∥̂u(τ, ·)∥∥2

L∞(Ω)
dτ .

On the other hand, using that t �→ sλe6λ(m+1)θ(t) is non-decreasing on (T0, T ), from (3.15), similarly, we have, for 
all (t, x) ∈ (T0, T ) × Ω ,

esλe6λ(m+1)θ(t)
∣∣ρb(t, x)

∣∣2 ≤ ‖∇σ‖2
L∞(ΩT )

T̂

t

esλe6λ(m+1)θ(τ )
∥∥̂u(τ, ·)∥∥2

L∞(Ω)
dτ .

Together with the fact that the solution χ of (3.8) takes value in [0, 1] on ΩT and the properties (3.10), these two 
estimates easily yield (3.32).

We then focus on the proof of (3.31), that mainly relies on the two following estimates: for all time t ∈ (0, T −2T1), 
we getˆ

Ω

∣∣ρf (t)
∣∣2ℵ2(t)dx ≤ C

(
e2sϕ∗(0)

ˆ

Ω

|ρ0|2dx +
ˆ ˆ

ΩT

|̂u|2ℵ2dxdτ

)
, (3.33)

and for all time t ∈ (T0, T ),ˆ

Ω

∣∣ρb(t)
∣∣2ℵ2(t)dx ≤ c

ˆ ˆ

ΩT

|̂u|2ℵ2dxdτ. (3.34)

Indeed, once estimates (3.33)–(3.34) are proved, we can bound the L2(ΩT )-norm of ℵρ by the sum of the L∞((0, T −
2T1); L2(Ω))-norm of ρf and of the L∞((T0, T ); L2(Ω))-norm of ρb , and estimate (3.31) immediately follows.

Let us first present the proof of (3.33). We fix t ∈ [0, T − 2T1]. From (3.14) and (3.30) we deduce that, for x ∈
Ω[0](t),

∣∣ρf (t, x)
∣∣2ℵ2(t, x) ≤ C

(∣∣ρ0
(
X̂(0, t, x)

)∣∣2ℵ2(0, X̂(0, t, x)
) +

tˆ

0

∣∣̂u(
τ, X̂(τ, t, x)

)∣∣2ℵ2(τ, X̂(τ, t, x)
)
dτ

)
,

whereas for x ∈ Ω\Ω[0](t),

∣∣ρf (t, x)
∣∣2ℵ2(t, x) ≤ C

tˆ

tin(t,x)

∣∣̂u(
τ, X̂(τ, t, x)

)∣∣2ℵ2(τ, X̂(τ, t, x)
)
dτ.

Combining these two estimates, for all t ∈ (0, T − 2T1) we get:ˆ

Ω

∣∣ρf (t, x)
∣∣2ℵ2(t, x)dx ≤ C

ˆ

Ω[0](t)

∣∣ρ0
(
X̂(0, t, x)

)∣∣2ℵ2(0, X̂(0, t, x)
)
dx

+ C

tˆ ˆ
1[tin(t,x),t](τ )

∣∣̂u(
τ, X̂(τ, t, x)

)∣∣2ℵ2(τ, X̂(τ, t, x)
)
dxdτ. (3.35)
0 Ω
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Since y + û is divergence free in ΩT , the Jacobian of x �→ X̂(t, τ, x) equals 1 identically. Therefore,ˆ

Ω[0](t)

∣∣ρ0
(
X̂(0, t, x)

)∣∣2ℵ2(0, X̂(0, t, x)
)
dx =

ˆ

X̂(0,t,Ω[0](t))

∣∣ρ0(x)
∣∣2ℵ2(0, x)dx ≤

ˆ

Ω

∣∣ρ0(x)
∣∣2ℵ2(0, x)dx.

Similarly, we get

tˆ

0

ˆ

Ω

1[tin(t,x),t](τ )
∣∣̂u(

τ, X̂(τ, t, x)
)∣∣2ℵ2(τ, X̂(τ, t, x)

)
dxdτ ≤

tˆ

0

ˆ

Ω

∣∣̂u(τ, x)
∣∣2ℵ2(τ, x)dτdx

Estimate (3.33) then follows from (3.35).
The proof of (3.34) is based on (3.15) and follows the same lines. It is therefore left to the reader. �

4. Proof of Theorem 1.1

We are now in position to prove Theorem 1.1. The idea is to construct suitable convex sets which are invariant by 
the mapping F = F(ρ0,u0) in (1.21) and relatively compact for a topology making F continuous. In all this section, 
we assume the assumptions of Theorem 1.1.

4.1. Main steps of the proof of Theorem 1.1

In the introduction, we introduced formally a mapping F . We are now in position to define it precisely.
In order to do this, the first step in the proof of Theorem 1.1 is to construct a weight function ψ̃ which is suitable 

for both Section 2 and Section 3, i.e. suitable in the same time for controlling the velocity equation and the density 
equation. We claim the following result, proved in Section 4.2:

Lemma 4.1. Let Ω be a smooth bounded domain. Further assume the regularity condition (1.10) on (σ ,y), the 
geometric condition (1.8) and condition (1.9).

Then one can find a smooth (C2) bounded domain O satisfying (2.1) such that there exists a C2([0, T ] ×
R

2)-function ψ̃ satisfying the transport equation (3.17) for some extension y of y in [0, T ] × R
2 and satisfying 

assumptions (2.7)–(2.8) for ωT = [0, T ] × ω and ω̃T = [0, T ] × ω̃ where ω, ω̃ are two subdomains of O\Ω such that 
ω̃ � ω.

We then consider the extension y given by Lemma 4.1. Next, we take T ∗
0 , T ∗

1 and ς > 0 given by Lemma 3.2 and 
fix T0 ∈ (0, T ∗

0 ) and T1 ∈ (0, T ∗
1 ). We then use the function ψ , θ , ϕ and ξ given by (2.9), (2.10), (2.11) for m ≥ 5, 

s ≥ s0, λ ≥ λ0, and the notations given in (2.14)–(2.15). Moreover, we suppose that s0, λ0 are large enough given by 
Theorem 2.3 and Theorem 3.6. Now, we define the spaces Xs,λ and Ys,λ depending on positive parameters s ≥ s0 and 
λ ≥ λ0 as follows:

Xs,λ :def= {
u ∈ L2(ΩT ), with div(u) = 0 in ΩT ,

s1/4ξ1/m−2esϕu ∈ L2(ΩT ),

e3sϕ∗/4u ∈ L2(0, T ;H2(Ω)
) ∩ H 1(0, T ;L2(Ω)

)}
, (4.1)

endowed with the norm

‖u‖2
Xs,λ

:def= ∥∥e3sϕ∗/4u
∥∥2

L2(H2)∩H 1(L2)
+ s1/2

∥∥ξ1/m−2esϕu
∥∥2

L2(ΩT )
,

and

Ys,λ :def= {
ρ ∈ L∞(ΩT ), with ξ−2esϕρ ∈ L2(ΩT ) and esλe6λ(m+1)θ/2ρ ∈ L∞(ΩT )

}
,

endowed with the norm

‖ρ‖Ys,λ :def= ∥∥ξ−2esϕρ
∥∥

2 + ∥∥esλe6λ(m+1)θ/2ρ
∥∥ ∞ .
L (ΩT ) L (ΩT )
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We also introduce the space Fs,λ defined by

Fs,λ :def= {
f ∈ L2(0, T ;L2(Ω)

)
, with ξ−2fesϕ ∈ L2(0, T ;L2(Ω)

)}
endowed with the norm‖f‖Fs,λ

:def= ∥∥ξ−2fesϕ
∥∥

L2(L2)
.

Note that, in the above definitions as well as in the following results, we keep the dependence in both parameters λ
and s to be consistent with notations of Section 2. However, only the dependence in s will be needed in this section.

We then derive the following results.

Theorem 4.2 (On the mapping F1). Fix ρ0 ∈ L∞(Ω). For all û ∈ Xs,λ with ‖̂u‖Xs,λ
≤ ς , the construction in Sec-

tion 3.2 yields ρ = F1(̂u, ρ0) solution of the control problem (1.19). Besides, ρ ∈ Ys,λ and for some constant C
independent of s ≥ s0 and λ ≥ λ0,

‖ρ‖Ys,λ ≤ C

(
1

s1/4
‖̂u‖Xs,λ

+ esϕ∗(0)‖ρ0‖L∞(Ω)

)
. (4.2)

Furthermore, the application F1 satisfies the following compactness property: If ûn is a sequence of functions
in Xs,λ with ‖̂un‖Xs,λ

≤ ς which weakly converges to some ̂u in Xs,λ, the corresponding sequence ρn = F1(̂un, ρ0)

strongly converges to F1(̂u, ρ0) in all Lq(ΩT ) for q ∈ [1, ∞).

The proof of Theorem 4.2 is done in Section 4.3. Let us point out that the compactness property stated in Theo-
rem 4.2 is of primary importance for our result and follows from [3, Theorem 4].

We then focus on the study of the mapping F2:

Theorem 4.3 (On the mapping F2). We can define a bounded linear mapping F2 : Fs,λ × V1
0(Ω) → Xs,λ such that 

for all u0 ∈ V1
0(Ω) and f ∈ Fs,λ, u = F2(f, u0) solves the control problem (1.20) and satisfies, for some constant 

C > 0 independent of s ≥ s0 and λ ≥ λ0,

‖u‖Xs,λ
≤ C

(‖f‖Fs,λ
+ e

5
4 sϕ∗(0)‖u0‖H1

0(Ω)

)
. (4.3)

Theorem 4.3 is a direct consequence of Theorem 2.3: the mapping F2 is obtained by restricting the controlled 
trajectory given by Theorem 2.3 to (0, T ) × Ω . Of course, this depends on the extension O of Ω , but this choice is 
done once for all. Estimate (4.3) is then a rewriting of Theorem 2.3 by taking into account that f and u0 are extended 
by zero outside Ω .

We are then able to derive the following properties on the mapping F in (1.21), whose proof is postponed to 
Section 4.4:

Theorem 4.4. Let ρ0 ∈ L∞(Ω) and u0 ∈ V1
0(Ω).

Then for all s ≥ s0 and λ ≥ λ0 the mapping F in (1.21) is well-defined for all ̂u ∈ Xs,λ with ‖̂u‖Xs,λ
≤ ς . Besides, 

for all ̂u ∈ Xs,λ with ‖̂u‖Xs,λ
≤ ς , u = F (̂u) belongs to Xs,λ, and satisfies, for some constant C0 independent of s

and λ,

‖u‖Xs,λ
≤ C0

(
1

s1/4
‖̂u‖Xs,λ

+ ‖̂u‖2
Xs,λ

+ esϕ∗(0)‖ρ0‖L∞(Ω) + e2sϕ∗(0)‖ρ0‖2
L∞(Ω) + e

5
4 sϕ∗(0)‖u0‖H1

0(Ω)

)
. (4.4)

Moreover, if ̂un is a sequence of functions in Xs,λ with ‖̂un‖Xs,λ
≤ ς which weakly converges to some ̂u in Xs,λ, the 

corresponding sequence un = F (̂un) strongly converges to u = F (̂u) in L2(0, T ; L2(Ω)).

We may then conclude the proof of Theorem 1.1. For R ∈ (0, ς), we introduce the closed convex set

XR
s,λ = {

u ∈ Xs,λ with ‖u‖Xs,λ
≤ R

}
.

We then choose R small enough such that C0R ≤ 1/4, where C0 is the constant in (4.4), λ = λ0 and s ≥ s0 large 
enough to guarantee C0 ≤ s1/4/4. We then get from (4.4) that for all ̂u ∈ XR

s,λ , u = F (̂u) satisfies

0
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‖u‖Xs,λ0
≤ R

2
+ C0

(
esϕ∗(0)‖ρ0‖L∞(Ω) + e2sϕ∗(0)‖ρ0‖2

L∞(Ω) + e
5
4 sϕ∗(0)‖u0‖H1

0(Ω)

)
.

Thus, choosing ε > 0 sufficiently small in (1.11), we can guarantee that the mapping F maps XR
s,λ0

to itself.

We then check that the set XR
s,λ0

is compact in L2(0, T ; L2(Ω)) as H 1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)) is com-

pactly embedded in L2(0, T ; L2(Ω)) due to Rellich’s compactness theorem and Aubin–Lions’ theorem.
Besides, the mapping F is continuous on XR

s,λ0
endowed with the L2(0, T ; L2(Ω))-topology from Theorem 4.4. 

Indeed, if ûn is a sequence of functions in XR
s,λ0

which strongly converges to û in L2(0, T ; L2(Ω)), it necessar-

ily weakly converges in XR
s,λ0

. Thus, from the last item of Theorem 4.4, un = F (̂un) strongly converges to u in 
L2(0, T ; L2(Ω)).

Schauder’s fixed point theorem then implies the existence of a fixed point to the mapping F , and concludes the 
proof of Theorem 1.1.

4.2. Proof of Lemma 4.1

We do it in several steps.
Construction of O. In a neighborhood of Γc, according to Assumption (1.9), there exists a C2 extension O of Ω

such that

• Ω ⊂O;
• Γ0 ⊂ ∂Ω ∩ ∂O and for all t ∈ (0, T ) and x ∈ ∂Ω ∩ ∂O, y(t, x) · n ≥ γ /2;
• ∂O ∩ ∂Ω and O \ Ω have a finite number of connected components.

Let ω, ω̃ be two subdomains of O\Ω such that ω̃ � ω and fix d0 = dist(ω̃, Ω).
Construction of an extension ye of y in [0, T ] × R

2. We then construct an extension ye ∈ C2([0, T ] × R
2) of y

outside ΩT (i.e. ye ≡ y in ΩT ) satisfying

‖ye‖C2([0,T ]×O)
< ∞, inf

[0,T ]×∂O
ye · n > 0, (4.5)

and

ye ≡ 0 in (0, T ) × ω̃. (4.6)

Before going into the detailed construction of ye , let us remark that ye cannot be divergence free as it would not be 
compatible with the condition inf[0,T ]×∂O ye · n > 0.

In order to construct such extension ye, we proceed as follows. First, we consider any extension of y in C2([0, T ] ×
R

2). By continuity, there exists d1 > 0 such that for all (t, x) ∈ (0, T ) × ∂O with d(x, Ω) < d1, y(t, x) · n ≥ γ /3. We 
also introduce a function m in C2([0, T ] ×R

2) such that m · n = 1 on the whole boundary ∂O and m ≡ 0 in ω̃, and a 
smooth non-negative cut-off function η = η(x) taking value 1 in Ω and 0 for all x ∈ O with d(x, Ω) > min{d0, d1}, 
and we then consider

ye(t, x) = η(x)y(t, x) + (
1 − η(x)

)
m(x).

This function indeed belongs to C2([0, T ] ×R
2). Besides,

inf
[0,T ]×∂O

ye · n ≥ min

{
γ

3
,1

}
,

and (4.6) is trivially satisfied as m ≡ 0 and η ≡ 0 in ω̃.
Construction of ψ̃ in [0, T ] ×O. We then construct a function ψ̂T = ψ̂T (x) such that

• ψ̂T is a non-negative C2(O) function;
• The critical points of ψ̂T all belong to ω̃;
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• ψ̂T satisfies the following conditions on the boundary ∂O:⎧⎨⎩
ψ̂T (x) = 0 on ∂O,

ye(T , x) · ∇ψ̂T (x) = −1 on ∂O,

∂tye(T , x) · ∇ψ̂T (x) − (ye(T , x) · ∇)2ψ̂T (x) = 0 on ∂O.

(4.7)

• infO ψ̂T = (ψ̂T )|∂O = 0.

Note that such function exists according to the construction of Fursikov and Imanuvilov in [17] suitably modified to 
handle the conditions on the first and second order derivatives on the boundary of O. This can be done easily following 
the lines of [27, Appendix III].

We then consider the solution ψ̂ of⎧⎨⎩
∂t ψ̂ + ye · ∇ψ̂ = 0 in OT ,

ψ̂(t, x) = t − T on ΓT ,

ψ̂(T ) = ψ̂T in O.

(4.8)

Note that this problem is well-posed as, by construction, ye(t, x) · n > 0 for all (t, x) ∈ (0, T ) × ∂O. We then want to 
check that

• ∂nψ̂(t, x) ≤ 0 for (t, x) ∈ (0, T ) × ∂O;
• ψ̂ belongs to C2([0, T ] ×O);
• For all t ∈ [0, T ], the critical points of ψ̂(t, ·) belong to ω̃;
• For all t ∈ [0, T ], infO ψ̂(t, ·) = ψ̂(t)|∂O ;

Using Eq. (4.8) and the fact that tangential derivatives of ψ̂ vanish due to the boundary conditions, we get, for all 
(t, x) ∈ (0, T ) × ∂O,

ye(t, x) · n∂nψ̂(t, x) = −∂t ψ̂(t, x) = −1.

Using (4.5), we thus deduce that

∀(t, x) ∈ (0, T ) × ∂O, ∂nψ̂(t, x) ≤ −1

inf[0,T ]×∂O ye(t, x) · n
< 0. (4.9)

To describe more precisely the function ψ̂ , we will introduce the flow Xe corresponding to ye, i.e. the solution of

∀(t, τ, x) ∈ [0, T ]2 ×R
2, ∂tXe(t, τ, x) = ye

(
t,Xe(t, τ, x)

)
, Xe(τ, τ, x) = x. (4.10)

The fact that ψ̂ ∈ C2([0, T ] ×O) follows from the following lemma, whose proof is postponed to Appendix B:

Lemma 4.5. Under the above assumptions, ψ̂ ∈ C2([0, T ] ×O).

We then have to check that the critical points of ψ̂(t, ·) all belong to ω̃.
We first remark that (4.9) implies that there is no critical point on the boundary ∂O. We then remark that ∇ψ̂ solves 

the equation

∂t∇ψ̂ + (ye · ∇)∇ψ̂ + Dye∇ψ̂ = 0 in OT . (4.11)

From Eq. (4.11), if the point xc is a critical point for ψ̂(tc, ·), then for all t in a neighborhood around tc, Xe(t, tc, xc)

is a critical point for ψ̂(t, ·). This neighborhood actually corresponds to the set Ic of time t ∈ [0, T ] such that the 
trajectory τ �→ Xe(τ, tc, xc) stays in O for τ between t and tc.

Since there is no critical point on the boundary ∂O and thanks to conditions (4.5), for all time tc ∈ [0, T ], the 
critical points xc of ψ̂(tc, ·) are linked by a trajectory τ �→ Xe(τ, tc, xc) to a critical point xc,T of ψ̂T , that is xc =
Xe(tc, T , xc,T ). By construction of ψ̂T , xc,T necessarily belongs to ω̃. But, according to condition (4.6), as long as 
Xe(t, T , xc,T ) ∈ ω̃,
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∂tXe(t, T , xc,T ) = 0,

so that Xe(t, T , xc,T ) = xc,T for all t ∈ [0, T ]. This implies that the set of critical points of ψ̂(t, ·) is invariant through 
the flow Xe and is then included in ω̃.

We finally check the condition infO ψ̂(t, ·) = ψ̂(t)|∂O for all t ∈ [0, T ] by contradiction. If this were wrong, there 
would exist t ∈ [0, T ] and xt ∈ O such that xt ∈ Argmin ψ̂(t, ·). Thus, xt would be a critical point, and as above, 
Xe(T , t, xt ) would belong to O and be a critical point of ψ̂T . Following, ψ̂(t, xt ) = ψ̂T (Xe(T , t, xt )) would be larger 
than 0 due to the assumption on ψ̂T . But from the boundary conditions, it follows that infO ψ̂(t) cannot be strictly 
smaller than ψ̂(t)|∂O , which is negative for all time t ∈ [0, T ).

Construction of ψ̃ in [0, T ] × R
2. As O may share some boundary with Ω , we need to explain that ψ̂ can be 

extended as a C2 function in [0, T ] ×R
2. In order to do that, we extend ψ̂(0, ·) as a C2 function of R2, denoted ψ̂0, 

and we solve

∂t ψ̂ + ye · ∇ψ̂ = 0 in (0, T ) ×R
2, ψ̂(0, ·) = ψ̂0 in R

2. (4.12)

Of course, this is consistent with the definition of ψ̂ in (4.8), and the solution ψ̂ if (4.12) obviously is C2([0, T ] ×R
2)

as ψ̂0 ∈ C2(R2).
One can then suitably choose a > 0 and b ∈ R such that ψ̃ = aψ̂ + b satisfies ψ̃(t, x) ∈ [0, 1] for all (t, x) ∈ OT . 

Then ψ̃ satisfies all the required properties with y = ye. This completes the proof of Lemma 4.1.

4.3. Proof of Theorem 4.2

According to Section 3, the construction in Section 3.2 yields ρ = F1(̂u, ρ0) solution of the control problem (1.19)
for ̂u satisfying (3.5). This condition is indeed satisfied for ̂u ∈ Xs,λ with ‖̂u‖Xs,λ

≤ ς , see (3.18)–(3.20).
Theorem 3.6 immediately provides estimate (4.2), as λe6λ(m+1)θ/2 ≤ 3ϕ∗/4, see (2.13).
We then focus on the proof of the compactness property. According to the construction in Section 3.2, we introduce 

ρf,n the solution of⎧⎨⎩
∂tρf,n + (y + ûn) · ∇ρf,n = −ûn · ∇σ in ΩT ,

ρf,n(t, x) = 0 for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + ûn(t, x)) · n(x) < 0,

ρf,n(0) = ρ0 in Ω,

(4.13)

ρb,n the solution of⎧⎨⎩
∂tρb,n + (y + ûn) · ∇ρb,n = −ûn · ∇σ in ΩT ,

ρb,n = 0 for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + ûn(t, x)) · n(x) > 0,

ρb,n(T ) = 0 in Ω,

(4.14)

and χn the solution of⎧⎨⎩
∂tχn + (y + ûn) · ∇χn = 0 in ΩT ,

χn = 1t∈(0,T0)(t) for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + ûn(t, x)) · n(x) < 0,

χn(0) = 1 in Ω.

(4.15)

Since ̂un is a bounded sequence of H 1(0, T ; L2(Ω)) ∩L2(0, T ; H2(Ω)), which is compact in L2(0, T ; L2(Ω)), up to 
a subsequence still denoted the same for simplicity, ̂un converge to ̂u weakly in H 1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω))

and strongly in L2(0, T ; L2(Ω)). Then [3, Theorem 4] applies and for all q ∈ [1, +∞) the sequence χn strongly 
converges towards χ in Lq(ΩT ) solution of (3.8).

Next, to pass to the limit in (4.13), we notice that σf,n :def= σ + ρf,n solves⎧⎨⎩
∂tσf,n + (y + ûn) · ∇σf,n = 0 in ΩT ,

σf,n(t, x) = 0 for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + ûn(t, x)) · n(x) < 0,

σf,n(0) = σ 0 + ρ0 in Ω.

(4.16)

Thus, by applying again [3, Theorem 4] we deduce that, for all q ∈ [1, +∞), the sequence σf,n is strongly convergent 
in Lq(ΩT ) to the solution σf of
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⎧⎨⎩
∂tσf + (y + û) · ∇σf = 0 in ΩT ,

σf (t, x) = 0 for t ∈ (0, T ), x ∈ ∂Ω, with (y(t, x) + û(t, x)) · n(x) < 0,

σf (0) = σ 0 + ρ0 in Ω.

(4.17)

It follows that ρf,n strongly converges in all Lq(ΩT ) for q ∈ [1, ∞) to ρf = σf − σ , which solves (3.6) by construc-
tion.

Of course, the same can be done to show that ρb,n strongly converges in all Lq(ΩT ) for q ∈ [1, ∞) to the solution 
ρb of (3.7). Consequently, the sequence ρn = F1(̂un, ρ0) converges to ρ = F1(̂u, ρ0) in Lq(ΩT ) for all q ∈ [1, ∞).

4.4. Proof of Theorem 4.4

Let ρ0 ∈ L∞(Ω), u0 ∈ V1
0(Ω) and ̂u ∈ Xs,λ with ‖̂u‖Xs,λ

≤ ς .
According to Theorem 4.2, ρ = F1(̂u, ρ0) belongs to Ys,λ and is bounded in that space by (4.2). Thus, according 

to Theorem 4.3, for F to be well-defined, we have to check that f(ρ, ̂u) given in (1.14) belongs to Fs,λ, and we will 
get estimates on u = F (̂u) from an estimate of f(ρ, ̂u) in Fs,λ according to (4.3). We thus estimate f(ρ, ̂u) in Fs,λ

term by term from estimates on ρ ∈ Ys,λ and ̂u ∈ Xs,λ.
We easily check∥∥ξ−2esϕρ

(
∂t û + (y + û) · ∇û + û · ∇y

)∥∥
L2(L2)

≤ ∥∥esλe6λ(m+1)θ/2ρ
∥∥

L∞
∥∥ξ−2esϕ−sλe6λ(m+1)θ/2(∂t û + (

(y + û) · ∇ )̂
u + û · ∇y

)∥∥
L2(L2)

≤ C‖ρ‖Ys,λ

∥∥e3sϕ∗/4û
∥∥

L2(H2)∩H 1(L2)

∥∥ξ−2esϕ−sλe6λ(m+1)θ/2−3sϕ∗/4
∥∥

L∞ ,

where we used that

‖y + û‖L2(L∞) ≤ C, and
∥∥e3sϕ∗/4∇û

∥∥
L∞(L2)

≤ C
∥∥e3sϕ∗/4û

∥∥
L2(H2)∩H 1(L2)

.

According to (2.13), sϕ − sλe6λ(m+1)θ/2 − 3sϕ∗/4 ≤ −sϕ/4, and thus there exists some constant C independent of 
s and λ such that∥∥ξ−2esϕ−sλe6λ(m+1)θ/2−3sϕ∗/4

∥∥
L∞ ≤ C.

Following,∥∥ξ−2esϕρ
(
∂t û + (y + û) · ∇û

)∥∥
L2(L2)

≤ C‖ρ‖Ys,λ ‖̂u‖Xs,λ
. (4.18)

Next, we estimate σ (̂u · ∇ )̂u. Similarly as above, we write∥∥ξ−2esϕσ û · ∇û
∥∥

L2(L2)
≤ C

∥∥e3sϕ∗/4û
∥∥

L∞(L4)

∥∥e3sϕ∗/4∇û
∥∥

L2(L4)

∥∥ξ−2esϕ−3sϕ∗/2
∥∥

L∞ ≤ C‖̂u‖2
Xs,λ

. (4.19)

Last, we estimate ρ(∂ty + (y · ∇)y):∥∥ξ−2esϕρ
(
∂ty + (y · ∇)y

)∥∥
L2(L2)

≤ C
∥∥ξ−2esϕρ

∥∥
L2 ≤ C‖ρ‖Ys,λ . (4.20)

Putting estimates (4.18)–(4.20) together, we obtain:∥∥f(ρ, û)
∥∥

Fs,λ
= ∥∥ξ−2esϕf(ρ, û)

∥∥
L2(L2)

≤ C
(‖ρ‖Ys,λ + ‖ρ‖2

Ys,λ
+ ‖̂u‖2

Xs,λ

)
. (4.21)

Combined with estimates (4.2) and (4.3), this yields the well-posedness of the mapping F for û ∈ Xs,λ with
‖̂u‖Xs,λ

≤ ς and the estimate (4.4).
We now focus on the last part of Theorem 4.4. Let ûn is a sequence of Xs,λ with ‖̂un‖Xs,λ

≤ ς which weakly 
converges to ̂u. Note that this weak convergence implies that ‖̂u‖Xs,λ

≤ ς , so that F (̂u) is well-defined.
Besides that, according to Theorem 4.2, the sequence ρn = F1(̂un, ρ0) strongly converges in all Lq(ΩT ) with 

q < ∞ to ρ = F1(̂u, ρ0) and the sequence ρn is uniformly bounded in Ys,λ.
We then have to check that f(ρn, ̂un) weakly converges in Fs,λ to f(ρ, ̂u). But (4.21) shows that the sequence 

f(ρn, ̂un) is bounded in Fs,λ, and thus we only need to prove that the sequence f(ρn, ̂un) weakly converges in D′(ΩT )

to f(ρ, ̂u). To obtain this convergence result in D′(ΩT ), as ρn strongly converges to ρ in all Lq(ΩT ) with q < ∞ and 
ûn weakly converges to ̂u in H 1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), we only have to focus on the convergence of the 
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term (σ + ρn)̂un · ∇ûn. But, using the compactness of H 1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)) in L4(0, T ; L4(Ω)), we 
have the convergences

σ + ρn −→
n→∞ σ + ρ strongly in Lq(ΩT ), q ∈ [1,∞),

ûn −→
n→∞ û strongly in L4(0, T ;L4(Ω)

)
,

∇ûn −→
n→∞ ∇û weakly in L2(0, T ;L2(Ω)

)
,

so that, choosing q = 4 for instance, we obtain the weak convergence of (σ + ρn)̂un · ∇ûn to (σ + ρ)̂u · ∇û.
Following, f(ρn, ̂un) weakly converges in Fs,λ to f(ρ, ̂u) and, since F2 : Fs,λ × V1

0(Ω) → Xs,λ is a linear bounded 
operator, we obtain that un = F (̂un) = F2(f(ρn, ̂un), u0) weakly converges to F2(f(ρ, ̂u), u0) = F (̂u) = u in Xs,λ. 
Finally, as Xs,λ is compact in L2(0, T ; L2(Ω)), un strongly converges to u in L2(0, T ; L2(Ω)).
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Appendix A. Proofs of Theorems 2.5 and 2.6

For simplicity, we make the proofs of Theorems 2.5 and 2.6 for ν of equal to 1. This can be done without loss of 
generality by replacing σ and f by σ/ν and f/ν if needed.

A.1. Proof of Theorem 2.5

Let z be a smooth function on [0, T ] ×O satisfying z = 0 on (0, T ) × ∂O and set

f :def= −σ∂tz − �z, (t, x) ∈ (0, T ) ×O. (A.1)

Set then

w = e−sϕz. (A.2)

According to the definition of θ in (2.10), w satisfies

w(T ,x) = 0, ∇w(T ,x) = 0, x ∈O, (A.3)

in addition to the conditions w(t, x) = 0 on (0, T ) × ∂O.
Besides, with f as in (A.1), w satisfies

e−sϕf = e−sϕ(−σ∂tz − �z) = e−sϕ
(−σ∂t

(
esϕw

) − �
(
esϕw

)) = Pϕw,

where the operator Pϕ is given by

Pϕw = −σ∂tw − sσ∂tϕw − �w − 2s∇ϕ · ∇w − s2|∇ϕ|2w − s�ϕw. (A.4)

We now set P1, P2 and R the operators:

P1w = −σ∂tw − 2s∇ϕ · ∇w + 2sλ2|∇ψ |2ξw, (A.5)

P2w = −�w − sσ∂tϕw − s2|∇ϕ|2w, (A.6)

Rw = sλ�ψξw − sλ2|∇ψ |2ξw, (A.7)

so that
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Pϕ = P1 + P2 + R.

We then use that P1w + P2w = f e−sϕ − Rw and then
ˆ ˆ

OT

|P1w|2 +
ˆ ˆ

OT

|P2w|2 + 2
ˆ ˆ

OT

P1wP2w =
ˆ ˆ

OT

∣∣f e−sϕ − Rw
∣∣2 ≤ 2

ˆ ˆ

OT

|f |2e−2sϕ + 2
ˆ ˆ

OT

|Rw|2.

(A.8)

The main part of the proof then consists in computing the scalar product of P1w with P2w and estimate it from below.
Computations. We write

ˆ ˆ

OT

P1wP2w =
3∑

i,j=1

Iij ,

where Ii,j is the scalar product of the i-th term of P1w with the j -th term of P2w.
Computation of I11.

I11 =
ˆ ˆ

OT

σ∂tw�w = −
ˆ ˆ

OT

σ∂t

( |∇w|2
2

)
−
ˆ ˆ

OT

∂tw∇σ · ∇w

= 1

2

ˆ

O

σ(0)
∣∣∇w(0)

∣∣2 + 1

2

ˆ ˆ

OT

∂tσ |∇w|2 −
ˆ ˆ

OT

∂tw∇σ · ∇w. (A.9)

Computation of I12.

I12 = s

ˆ ˆ

OT

σ 2∂tw∂tϕw = − s

2

ˆ

O

σ 2(0)∂tϕ(0)
∣∣w(0)

∣∣2 − s

2

ˆ ˆ

OT

σ 2∂ttϕ|w|2 − s

ˆ ˆ

OT

σ∂tσ∂tϕ|w|2. (A.10)

Computation of I13.

I13 = s2
ˆ ˆ

OT

σ∂tw|∇ϕ|2w

= − s2

2

ˆ

O

σ(0)
∣∣∇ϕ(0)

∣∣2∣∣w(0)
∣∣2 − s2

2

ˆ ˆ

OT

σ∂t

(|∇ϕ|2)|w|2 − s2

2

ˆ ˆ

OT

∂tσ |∇ϕ|2|w|2. (A.11)

Computation of I21.

I21 = 2s

ˆ ˆ

OT

∇ϕ · ∇w�w

= 2s

ˆ

ΓT

∂nϕ|∂nw|2 − 2s

ˆ ˆ

OT

∇(∇ϕ · ∇w) · ∇w

= 2s

ˆ

ΓT

∂nϕ|∂nw|2 − 2s

ˆ ˆ

OT

D2ϕ(∇w,∇w) − s

ˆ ˆ

OT

∇ϕ · ∇(|∇w|2)
= s

ˆ

ΓT

∂nϕ|∂nw|2 − 2s

ˆ ˆ

OT

D2ϕ(∇w,∇w) + s

ˆ ˆ

OT

�ϕ|∇w|2. (A.12)

Computation of I22.
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I22 = 2s2
ˆ ˆ

OT

σ∇ϕ · ∇w∂tϕw = −s2
ˆ ˆ

OT

div(σ∂tϕ∇ϕ)|w|2

= −s2
ˆ ˆ

OT

σ div(∂tϕ∇ϕ)|w|2 − s2
ˆ ˆ

OT

∇σ · ∇ϕ∂tϕ|w|2. (A.13)

Computation of I23.

I23 = 2s3
ˆ ˆ

OT

∇ϕ · ∇w|∇ϕ|2w = −s3
ˆ ˆ

OT

div
(|∇ϕ|2∇ϕ

)|w|2. (A.14)

Computation of I31.

I31 = −2sλ2
ˆ ˆ

OT

|∇ψ |2ξw�w

= 2sλ2
ˆ ˆ

OT

|∇ψ |2ξ |∇w|2 + 2sλ2
ˆ ˆ

OT

∇(|∇ψ |2ξ)
w · ∇w. (A.15)

Computation of I32.

I32 = −2s2λ2
ˆ ˆ

OT

σ |∇ψ |2ξ∂tϕ|w|2. (A.16)

Computation of I33.

I33 = −2s3λ2
ˆ ˆ

OT

|∇ψ |2ξ |∇ϕ|2|w|2. (A.17)

Combining the above computations (A.9)–(A.17), we obtain the following:
ˆ ˆ

OT

P1wP2w

= 1

2

ˆ

O

σ(0)
∣∣∇w(0)

∣∣2 + 1

2

ˆ

O

∣∣w(0)
∣∣2

σ(0)
(−s2

∣∣∇ϕ(0)
∣∣2 − sσ (0)∂tϕ(0)

)
(A.18)

− 2s

ˆ ˆ

OT

D2ϕ(∇w,∇w) + s

ˆ ˆ

OT

(
�ϕ + 2λ2|∇ψ |2ξ)|∇w|2 (A.19)

+
ˆ ˆ

OT

|w|2
(

s3(−div
(|∇ϕ|2∇ϕ

) − 2λ2|∇ψ |2ξ |∇ϕ|2) (A.20)

+ s2σ
(−∂t

(|∇ϕ|2) − (
�ϕ + 2λ2|∇ψ |2ξ)

∂tϕ
)

(A.21)

+ sσ 2
(

−1

2
∂ttϕ

))
(A.22)

+ s

ˆ

ΓT

∂nϕ|∂nw|2 + IR, (A.23)

where
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IR = 1

2

ˆ ˆ

OT

∂tσ |∇w|2 + 2sλ2
ˆ ˆ

OT

∇(|∇ψ |2ξ)
w · ∇w − s

ˆ ˆ

OT

σ∂tσ∂tϕ|w|2

− s2

2

ˆ ˆ

OT

∂tσ |∇ϕ|2|w|2 − s2
ˆ ˆ

OT

∇σ∇ϕ∂tϕ|w|2 −
ˆ ˆ

OT

∂tw∇σ · ∇w. (A.24)

Positivity. Our main goal now is to check that the coefficients in the above integrals are positive, except perhaps 
on the observation set ωT . At this step, we will strongly rely upon the choice of the weight function ϕ in (2.11), and 
on the formula

∂tϕ = ∂t θ

θ
ϕ − λ∂tψξ, ∂t ξ = ∂t θ

θ
ξ + λ∂tψξ. (A.25)

In the following, to simplify notations, we will denote by C generic positive large constants that do not depend on 
s or λ and by c generic positive small constants independent of s and λ. The constants may change from line to line.

Positivity of the terms (A.18) at t = 0. Explicit computations yield

−∂tϕ(0) = μ

T0

(
λe6λ(m+1) − eλψ(0)

) + 2λ∂tψ(0)eλψ(0) ≥ csλ3eλ(12m+2)

whereas∣∣∇ϕ(0)
∣∣2 ≤ Cλ2

∣∣ξ(0)
∣∣2 ≤ Cλ2e2λ(6m+1).

Thus, with (2.2), for some λ1 > 0, taking λ ≥ λ1 ≥ 1,

inf
O

{−s2
∣∣∇ϕ(0)

∣∣2 − sσ (0)∂tϕ(0)
} ≥ cs2λ3e2λ(6m+1), (A.26)

and, following,

1

2

ˆ

O

σ(0)
∣∣w(0)

∣∣2(−s2
∣∣∇ϕ(0)

∣∣2 − sσ (0)∂tϕ(0)
) ≥ cs2λ3e2λ(6m+1)

ˆ

O

∣∣w(0)
∣∣2

. (A.27)

Positivity of the terms (A.19) involving the gradient. For η ∈R
N , we have

−2sD2ϕ(η,η) + s
(
�ϕ + 2λ2|∇ψ |2ξ)|η|2

= 2sλ2ξ |∇ψ · η|2 + sλ2ξ |∇ψ |2|η|2 + 2sλξD2ψ(η,η) − sλξ�ψ |η|2. (A.28)

Using (2.8), we get the existence of λ2 = λ2(α, ‖D2ψ‖∞) ≥ λ1 such that for all λ ≥ λ2 and η ∈R
N ,

∀(t, x) ∈ OT \ ω̃T , −2sD2ϕ(η,η) + s
(
�ϕ + 2λ2|∇ψ |2ξ)|η|2 ≥ csλ2|η|2ξ, (A.29)

whereas there exists a positive constant C = C(α, ‖D2ψ‖∞) such that

∀η ∈R
N, ∀(t, x) ∈ ω̃T , −2sD2ϕ(η,η) + s

(
�ϕ + 2λ2|∇ψ |2ξ)|η|2 ≥ csλ2ξ |η|2 − Csλ2ξ |η|2.

Hence we obtain, for all λ ≥ λ1,

−2s

ˆ ˆ

OT

D2ϕ(∇w,∇w) + s

ˆ ˆ

OT

(
�ϕ + 2λ2|∇ψ |2ξ)|∇w|2 ≥ csλ2

ˆ ˆ

OT

ξ |∇w|2 − Csλ2
ˆ ˆ

ω̃T

ξ |∇w|2.

(A.30)

Positivity of the terms (A.20) involving w with scale s3. Using ∇ϕ = −λ∇ψξ , we have

−div
(|∇ϕ|2∇ϕ

) = 3λ4|∇ψ |4ξ3 + λ3ξ3 div
(|∇ψ |2∇ψ

)
,

λ2|∇ψ |2ξ |∇ϕ|2 = λ4|∇ψ |4ξ3.

Hence
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−div
(|∇ϕ|2∇ϕ

) − 2λ2|∇ψ |2ξ |∇ϕ|2 = λ4|∇ψ |4ξ3 + λ3ξ3 div
(|∇ψ |2∇ψ

)
. (A.31)

Using (2.8), we thus get the existence of λ3 = λ3(α, ‖D2ψ‖∞) ≥ λ2 such that for λ ≥ λ3,

∀(t, x) ∈OT \ ωT , −div
(|∇ϕ|2∇ϕ

) − 2λ2|∇ψ |2ξ |∇ϕ|2 ≥ cλ4ξ3, (A.32)

whereas there exists a positive constant C = C(α, ‖D2ψ‖∞) such that

∀(t, x) ∈ ω̃T , −div
(|∇ϕ|2∇ϕ

) − 2λ2|∇ψ |2ξ |∇ϕ|2 ≥ cλ4ξ3 − Cλ4ξ3. (A.33)

We thus obtain, for all λ ≥ λ3,

s3
ˆ ˆ

OT

|w|2(−div
(|∇ϕ|2∇ϕ

) − 2λ2|∇ψ |2ξ |∇ϕ|2) ≥ cs3λ4
ˆ ˆ

OT

ξ3|w|2 − Cs3λ4
ˆ ˆ

ω̃T

ξ3|w|2. (A.34)

Terms (A.21) involving w in the scale s2. We have to estimate

−∂t

(|∇ϕ|2) − (
�ϕ + 2λ2|∇ψ |2ξ)

∂tϕ.

Explicit computations yield:

−∂t

(|∇ϕ|2) − (
�ϕ + 2λ2|∇ψ |2ξ)

∂tϕ

= −λ3ξ2∂tψ |∇ψ |2 − 2λ2ξ2∇ψ · ∇∂tψ − λ2ξ2∂tψ�ψ (A.35)

+ ∂t θ

θ

(−λ2ξϕ|∇ψ |2 + λξ�ψϕ − 2λ2ξ2|∇ψ |2). (A.36)

Before going further, let us remark that, using ξ ≥ 1, there exists a positive constant C, only depending on the C2-norm 
of ψ such that for all λ ≥ 1, for all (t, x) ∈ (0, T ) ×O,∣∣−λ3ξ2∂tψ |∇ψ |2 − 2λ2ξ2∇ψ · ∇∂tψ − λ2ξ2∂tψ�ψ − 2λ2ξ2|∇ψ |2∣∣ ≤ Cλ3ξ3.

This estimate is sufficient to handle the terms in (A.35).
We will then focus on the terms in (A.36). First remark that on (T0, T −2T1), ∂t θ ≡ 0, so the term in (A.36) simply 

vanishes.
On (T − 2T1, T ), we use the fact that there exists a constant C > 0 such that

∀t ∈ (T − 2T1, T ), |∂t θ | ≤ Cθ2.

Hence there exists C = C(‖∇ψ‖∞, ‖�ψ‖∞) such that for all (t, x) ∈ (T − 2T1, T ) ×O,∣∣∣∣∂t θ

θ

(−λ2ξϕ|∇ψ |2 + λξ�ψϕ − 2λ2ξ2|∇ψ |2)∣∣∣∣ ≤ Cλ2θξϕ ≤ Cλ3ξ3, (A.37)

where for the last inequality we have used |θϕ| ≤ λξ2, which is a consequence of (2.13).
On (0, T0), we are going to use that ∂tθ ≤ 0 and θ ∈ [1, 2] and thus the term in (A.36) has the good sign outside ω̃T . 

Indeed, using (2.8), we can find λ4 = λ4(α, ‖�ψ‖∞) ≥ λ3 such that for all λ ≥ λ4, for all (t, x) ∈ (0, T0) × O such 
that (t, x) /∈ ω̃T ,

−(−λ2ξϕ|∇ψ |2 + λξ�ψϕ − 2λ2ξ2|∇ψ |2) ≥ cλ2ξϕ,

whereas it is bounded by Cλ2ξϕ everywhere in OT . We thus derive, for all λ ≥ λ4,

s2
ˆ ˆ

OT

|w|2σ (−∂t

(|∇ϕ|2) − (
�ϕ + 2λ2|∇ψ |2ξ)

∂tϕ
)

≥ cs2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|w|2 − Cs2λ3
ˆ ˆ

O

ξ3|w|2 − Cs2λ2
ˆ ˆ

ω̃ ∩{t∈(0,T )}
|∂t θ |ξϕ|w|2. (A.38)
T T 0
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Term (A.22) involving w in the scale s. We have to estimate −∂ttϕ.

∂ttϕ = ∂tt θ

θ
ϕ − 2λ

∂tθ

θ
∂tψξ − λ∂ttψξ − λ2(∂tψ)2ξ (A.39)

Let us first remark that we immediately have∣∣−λ∂ttψξ − λ2(∂tψ)2ξ
∣∣ ≤ Cλ2ξ3.

For t ∈ (0, T0), we further have

∀t ∈ (0, T0), |∂tt θ | ≤ Cs2λ4eλ(12m−8), |∂t θ | ≤ Csλ2eλ(6m−4),

so that, on (0, T0)

|∂ttϕ| ≤ Cs2λ5eλ(12m−8)e6λ(m+1) + Csλ3eλ(6m−4)ξ + Cλ2ξ3 ≤ Cs2λ2ξ3.

For t ∈ (T − 2T1, T ), we have

∀t ∈ (T − 2T1, T ), |∂tt θ | ≤ Cθ3 and |∂t θ | ≤ Cθ2.

Hence, using (2.13) and θϕ ≤ λξ2, for some positive constant C = C(‖∂tψ‖∞),

∀(t, x) ∈ (T − 2T1, T ) ×O, |∂ttϕ| ≤ Cθ2ϕ + Cλθξ + Cλ2ξ3 ≤ Cλ2ξ3.

Combining all these estimates, we get

s

ˆ ˆ

OT

σ 2|w|2
(

−1

2
∂ttϕ

)
≥ −Cs3λ2

ˆ ˆ

OT

ξ3|w|2. (A.40)

Positivity of the terms (A.20)–(A.22) involving w. Here we combine the estimates in (A.34), (A.38), (A.40) in order 
to derive suitable estimates for the sum of the terms in (A.20)–(A.22). To simplify notations, let us set Iw the sum of 
the terms in (A.20)–(A.22):

Iw :def=
ˆ ˆ

OT

|w|2
(

s3(−div
(|∇ϕ|2∇ϕ

) − 2λ2|∇ψ |2ξ |∇ϕ|2)
+ s2σ

(−∂t

(|∇ϕ|2) − (
�ϕ + 2λ2|∇ψ |2ξ)

∂tϕ
) + sσ 2

(
−1

2
∂ttϕ

))
. (A.41)

Putting together (A.34), (A.38), (A.40), we deduce that there exist s1 ≥ 1 and λ5 ≥ λ4 such that for s ≥ s1 and λ ≥ λ5,

Iw ≥ cs3λ4
ˆ ˆ

OT

ξ3|w|2 + cs2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|w|2 − Cs3λ4
ˆ ˆ

ω̃T

ξ3|w|2 − Cs2λ2
ˆ ˆ

ω̃T ∩{t∈(0,T0)}
|∂t θ |ξϕ|w|2.

(A.42)

Positivity of the boundary terms (A.23). Here, we only have to remark that ∂nϕ ≥ 0 since ∂nψ ≤ 0 by construction, 
see (2.7).

A bound on IR in (A.24). We also provide an upper bound on IR.
First, we shall of course use the immediate estimate

1

2

ˆ ˆ

OT

∂tσ |∇w|2 ≤ C

ˆ ˆ

OT

|∇w|2.

Using ∇(|∇ψ |2ξ) ≤ Cλξ , one easily checks that∣∣∣∣2sλ2
ˆ ˆ

∇(|∇ψ |2ξ)
w · ∇w

∣∣∣∣ ≤ Cs2λ4
ˆ ˆ

ξ3|w|2 + Cλ2
ˆ ˆ

ξ |∇w|2. (A.43)
OT OT OT



564 M. Badra et al. / Ann. I. H. Poincaré – AN 33 (2016) 529–574
Using (A.25), we have

|∂tϕ| ≤
⎧⎨⎩

sλ2eλ(6m−4)λe6λ(m+1) + Cλξ on (0, T0),

Cλξ on (T0, T − 2T1),

θλe6λ(m+1) + Cλξ on (T − 2T1, T ),

so that |∂tϕ| ≤ Csλξ3 everywhere. Hence∣∣∣∣s ˆ ˆ

OT

σ∂tσ∂tϕ|w|2
∣∣∣∣ ≤ Cs2λ

ˆ ˆ

OT

ξ3|w|2. (A.44)

Moreover, using |∇ϕ| ≤ Cλξ , (A.25) and θϕ ≤ λξ2 we also obtain∣∣∣∣ s2

2

ˆ ˆ

OT

∂tσ |∇ϕ|2|w|2
∣∣∣∣ ≤ Cs2λ2

ˆ ˆ

OT

ξ2|w|2,

∣∣∣∣s2
ˆ ˆ

OT

∇σ∇ϕ∂tϕ|w|2
∣∣∣∣ ≤ Cs2λ

T0ˆ

0

ˆ

O

ξϕ|∂t θ ||w|2 + Cs2λ2
ˆ ˆ

OT

ξ3|w|2.

Finally, we also have∣∣∣∣ˆ ˆ

OT

∂tw∇σ · ∇w

∣∣∣∣ ≤ C
1

sλ

ˆ ˆ

OT

1

ξ
|∂tw|2 + Csλ

ˆ ˆ

OT

ξ |∇w|2, (A.45)

and combining all the above estimates,

|IR| ≤ C

sλ

ˆ ˆ

OT

1

ξ
|∂tw|2 + Csλ

ˆ ˆ

OT

ξ |∇w|2 + Cs2λ

T0ˆ

0

ˆ

O

ξ |∂t θ |ϕ|w|2 + Cs2λ4
ˆ ˆ

OT

ξ3|w|2. (A.46)

A lower bound for the cross-product 
´ ´

P1wP2w. This step simply consists in putting together all the above 
estimates: for all s ≥ s1 and λ ≥ λ5,

2
ˆ ˆ

OT

P1wP2w ≥
ˆ

O

∣∣∇w(0)
∣∣2 + cs2λ3e12λm+2

ˆ

O

∣∣w(0)
∣∣2

+ csλ2
ˆ ˆ

OT

ξ |∇w|2 − Csλ2
ˆ ˆ

ω̃T

ξ |∇w|2

+ cs3λ4
ˆ ˆ

OT

ξ3|w|2 + cs2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|w|2

− Cs3λ4
ˆ ˆ

ω̃T

ξ3|w|2 − Cs2λ2
ˆ ˆ

ω̃T ∩{t∈(0,T0)}
|∂t θ |ξϕ|w|2 − |IR|.

Thus, using (A.46), for some s2 ≥ s1 and λ6 ≥ λ5, for all s ≥ s2 and λ ≥ λ6

2
ˆ ˆ

OT

P1wP2w ≥
ˆ

O

∣∣∇w(0)
∣∣2 + cs2λ3e12λm+2

ˆ

O

∣∣w(0)
∣∣2 + csλ2

ˆ ˆ

OT

ξ |∇w|2 − Csλ2
ˆ ˆ

ω̃T

ξ |∇w|2

+ cs3λ4
ˆ ˆ

OT

ξ3|w|2 + cs2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|w|2 − Cs3λ4
ˆ ˆ

ω̃T

ξ3|w|2
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− Cs2λ2
ˆ ˆ

ω̃T ∩{t∈(0,T0)}
|∂t θ |ξϕ|w|2 − C

sλ

T̂

0

ˆ

O

1

ξ
|∂tw|2. (A.47)

Conclusion. We first derive a Carleman estimate on w with observations on the gradient, and then explains how to 
remove this term using a suitable multiplier.

A Carleman estimate on w with observations on the gradient. According to estimates (A.8) and (A.47), for all 
s ≥ s2 and λ ≥ λ6,ˆ ˆ

OT

(|P1w|2 + |P2w|2) + c

ˆ

O

∣∣∇w(0)
∣∣2 + cs2λ3e12λm+2

ˆ

O

∣∣w(0)
∣∣2

+ csλ2
ˆ ˆ

OT

ξ |∇w|2 + cs3λ4
ˆ ˆ

OT

ξ3|w|2 + cs2λ2

T0ˆ

0

ˆ

O

|∂t θ |ϕξ |w|2

≤ C

ˆ ˆ

OT

|f |2e−2sϕ + C

ˆ ˆ

OT

|Rw|2 + Csλ2
ˆ ˆ

ω̃T

ξ |∇w|2

+ Cs3λ4
ˆ ˆ

ω̃T

ξ3|w|2 + Cs2λ2
ˆ ˆ

ω̃T ∩{t∈(0,T0)}
|∂t θ |ξϕ|w|2 + C

sλ

ˆ ˆ

OT

1

ξ
|∂tw|2.

To handle the term ‖Rw‖2
L2 , we recall that Rw is given by (A.7), hence

ˆ ˆ

OT

|Rw|2 ≤ Cs2λ4
ˆ ˆ

OT

ξ3|w|2,

where C = C(‖∇ψ‖∞, ‖�ψ‖∞) is a positive constant.
Also note that

1

sλ

ˆ ˆ

OT

1

ξ
|∂tw|2 ≤ C

sλ

ˆ ˆ

OT

|P1w|2 + Csλ

ˆ ˆ

OT

ξ |∇w|2 + Csλ3
ˆ ˆ

OT

ξ3|w|2.

In particular, for some s3 ≥ s2, for all s ≥ s3 and λ ≥ λ6,
ˆ ˆ

OT

(|P1w|2 + |P2w|2) + c

ˆ

O

∣∣∇w(0)
∣∣2 + cs2λ3e12λm+2

ˆ

O

∣∣w(0)
∣∣2

+ csλ2
ˆ ˆ

OT

ξ |∇w|2 + cs3λ4
ˆ ˆ

OT

ξ3|w|2 + cs2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|w|2

≤ C

ˆ ˆ

OT

|f |2e−2sϕ + Csλ2
ˆ ˆ

ω̃T

ξ |∇w|2 + Cs3λ4
ˆ ˆ

ω̃T

ξ3|w|2 + Cs2λ2
ˆ ˆ

ω̃T ∩{t∈(0,T0)}
|∂t θ |ξϕ|w|2. (A.48)

In (A.48), the observation is done on ω̃T and concerns both w and ∇w. Below, we shall explain that this observation 
can be done only on w provided we take an observation set slightly larger.

A Carleman estimate on w without observations on the gradient. Recall that ω̃T � ω̂T , then there exists a non-
negative smooth function η = η(t, x) taking value in [0, 1] such that η = 1 on ω̃T , and η = 0 in (0, T ) ×O \ ω̂T . We 
then compute the scalar product of P2w and ηsλ2ξw:

ˆ ˆ
P2w

(
ηsλ2ξw

) = sλ2
ˆ ˆ

ηξ |∇w|2 − sλ2

2

ˆ ˆ
�(ηξ)|w|2
OT OT OT
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− s2λ2
ˆ ˆ

OT

ησ∂tϕξ |w|2 − s3λ2
ˆ ˆ

OT

η|∇ϕ|2ξ |w|2.

In particular, using (A.25) and (2.13),

sλ2
ˆ ˆ

OT

ηξ |∇w|2 + cs2λ2

T0ˆ

0

ˆ

O

ση|∂t θ |ξϕ|w|2

≤
ˆ ˆ

OT

P2w
(
ηsλ2ξw

) + sλ2
ˆ

OT

∣∣�(ηξ)
∣∣|w|2 + s2λ3e6λ(m+1)

T̂

T −2T1

ˆ

O

ησ |∂t θ |ξ |w|2

+ s2λ3
ˆ ˆ

OT

ησ |∂tψ |ξ2|w|2 + s3λ4
ˆ ˆ

OT

η|∇ψ |2ξ3|w|2.

Of course, this implies that

sλ2
ˆ ˆ

ω̃T

ξ |∇w|2 + s2λ2
ˆ ˆ

ω̃T ∩{t∈(0,T0)}
ση|∂t θ |ξϕ|w|2

≤ 1√
s

ˆ ˆ

OT

|P2w|2 + Cs5/2λ4
ˆ ˆ

OT

η2ξ2|w|2 + 2Csλ2
ˆ ˆ

OT

∣∣�(ηξ)
∣∣|w|2

+ 2Cs2λ3e6λ(m+1)

T̂

T −2T1

ˆ

O

η|∂t θ |ξ |w|2 + 2Cs2λ3
ˆ ˆ

OT

η|∂tψ |ξ2|w|2 + 2Cs3λ4
ˆ ˆ

ω̂T

|∇ψ |2ξ3|w|2.

But there exists a constant C = C(‖η‖L∞(C2), ‖∇ψ‖∞, ‖�ψ‖∞, ‖∂tψ‖∞) such that∣∣�(ηξ)
∣∣ ≤ Cλ2ξ2, sup

[T −2T1,T )

{ |∂t θ |
θ2

}
≤ C,

hence, using the fact that η is supported on ω̂T ,

s5/2λ4
ˆ ˆ

OT

η2ξ2|w|2 + sλ2
ˆ ˆ

OT

∣∣�(ηξ)
∣∣|w|2 + s2λ3

ˆ ˆ

OT

η|∂tψ |ξ2|w|2 ≤ Cs3λ4
ˆ ˆ

ω̂T

ξ3|w|2,

whereas

s2λ3e6λ(m+1)

T̂

T −2T1

ˆ

O

η|∂t θ |ξ |w|2 ≤ Cs2λ3e6λ(m+1)

T̂

T −2T1

ˆ

O

ηθ2ξ |w|2 ≤ Cs3λ4
ˆ ˆ

ω̂T

ξ3|w|2.

Hence, by combining the above estimates with (A.48), for some s4 ≥ s3 and λ7 ≥ λ6, there exists a constant C such 
that for all s ≥ s4 and λ ≥ λ7,

ˆ

O

∣∣∇w(0)
∣∣2 + s2λ3eλ(12m+2)

ˆ

O

∣∣w(0)
∣∣2 + sλ2

ˆ ˆ

OT

ξ |∇w|2 + s3λ4
ˆ ˆ

OT

ξ3|w|2 + s2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|w|2

≤ C

ˆ ˆ

OT

|f |2e−2sϕ + Cs3λ4
ˆ ˆ

ω̂T

ξ3|w|2. (A.49)

Back to the function z. We now go back to the function z = wesϕ . For that, let us first remark that there exists a 
constant C = C(‖∇ψ‖∞) such that for all (t, x) ∈ (0, T ) ×O,
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|z|2e−2sϕ = |w|2,
|∇z|2e−2sϕ ≤ 2|∇w|2 + 2s2|∇ϕ|2|w|2 ≤ 2|∇w|2 + 2Cs2λ2ξ2|w|2.

We immediately deduce from (A.49) that for all s ≥ s4 and λ ≥ λ7, for some positive constant C,
ˆ

O

∣∣∇z(0)
∣∣2

e−2sϕ(0) + s2λ3eλ(12m+2)

ˆ

O

∣∣z(0)
∣∣2

e−2sϕ(0) + sλ2
ˆ ˆ

OT

ξ |∇z|2e−2sϕ

+ s3λ4
ˆ ˆ

OT

ξ3|z|2e−2sϕ + s2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξϕ|z|2e−2sϕ

≤ C

ˆ ˆ

OT

|f |2e−2sϕ + Cs3λ4
ˆ ˆ

ω̂T

ξ3|z|2e−2sϕ. (A.50)

We conclude the proof of Theorem 2.5 by setting s0 = s4 and λ0 = λ7.

A.2. Proof of Theorem 2.6

We divide the proof in several steps.
A duality approach. To solve the control problem (2.26)–(2.27), we first rewrite the control problem under a weak 

form. Multiplying y solution of (2.26) by smooth functions z on [0, T ] ×O such that z = 0 on [0, T ] × ∂O, we get:
ˆ

O

σ(T )y(T )z(T ) +
ˆ ˆ

OT

y(−σ∂tz − �z) =
ˆ ˆ

OT

f z +
ˆ ˆ

ω̂T

hz. (A.51)

In particular, since σ(T ) > 0, the null-controllability requirement (2.27) is satisfied if and only if for all smooth 
functions z on [0, T ] ×O such that z = 0 on [0, T ] × ∂O,

ˆ ˆ

OT

y(−σ∂tz − �z) =
ˆ ˆ

OT

f z +
ˆ ˆ

ω̂T

hz. (A.52)

The trick now is to introduce a functional J whose Euler Lagrange equation coincide with (A.52): For smooth 
functions z on [0, T ] ×O such that z = 0 on [0, T ] × ∂O, we define

J (z) = 1

2

ˆ ˆ

OT

∣∣(−σ∂t − �)z
∣∣2

e−2sϕ + s3λ4

2

ˆ ˆ

ω̂T

ξ3|z|2e−2sϕ −
ˆ ˆ

OT

f z. (A.53)

But the set of smooth functions z on [0, T ] × O such that z = 0 on [0, T ] × ∂O is not a Banach space. We thus 
introduce

Xobs = {
z ∈ C∞([0, T ] ×O

)
such that z = 0 on [0, T ] × ∂O

}‖·‖obs (A.54)

where ‖ · ‖obs is the Hilbert norm defined by

‖z‖2
obs =

ˆ ˆ

OT

∣∣(−σ∂t − �)z
∣∣2

e−2sϕ + s3λ4
ˆ ˆ

ω̂T

ξ3|z|2e−2sϕ. (A.55)

The set Xobs is then endowed with the Hilbert structure given by ‖ · ‖obs. Note that here we use the fact that ‖ · ‖obs is 
a norm, which is a consequence of the Carleman estimate (2.25). Also note that Xobs and ‖ · ‖obs strongly depends on 
s and λ and we shall follow these dependences carefully in the sequel.

The functional J can be extended as a continuous functional on Xobs provided (2.28) holds. Indeed, due to (2.25), 
we easily have, for some constant C > 0 independent of s and λ,
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∣∣∣∣ˆ ˆ

OT

f z

∣∣∣∣ ≤ C‖z‖obs

(
1

s3λ4

ˆ ˆ

OT

ξ−3|f |2e2sϕ

)1/2

. (A.56)

It follows that, if condition (2.28) is satisfied, the functional J can be uniquely extended as a continuous functional 
(still denoted the same) on Xobs. Besides, (A.56) also implies the coercivity of J on Xobs. Since it is also strictly 
convex on Xobs since ‖ · ‖obs is a Hilbert norm, J admits a unique minimizer Z on Xobs.

Setting

Y = (−σ∂t − �)Ze−2sϕ and H = −s3λ4ξ3Ze−2sϕ1ω̂T
, (A.57)

writing the Euler Lagrange equation of J at Z, for all smooth functions z on [0, T ] ×O such that z = 0 on [0, T ] ×∂O,

0 =
ˆ ˆ

OT

Y (−σ∂tz − �z) −
ˆ ˆ

ω̂T

Hz −
ˆ ˆ

OT

f z, (A.58)

which coincides with (A.52).
In particular, (A.58) holds for all smooth functions z on [0, T ] ×O such that z = 0 on [0, T ] × ∂O with z(T ) ≡ 0, 

which implies that Y solves Eq. (2.26) with h = H in the sense of transposition. By uniqueness of solutions in the 
sense of transposition, this is the solution of (2.26) in the classical sense. In particular, since H ∈ L2(OT ), Y is 
C([0, T ]; L2(O)). Then, using again (A.58), we remark that it coincides with (A.52), hence Y solves the control 
requirement (2.27).

Besides, using (A.56) and the fact that J (Z) ≤ J (0) = 0,

s3λ4
ˆ ˆ

OT

|Y |2e2sϕ +
ˆ ˆ

ω̂T

ξ−3|H |2e2sϕ ≤ C

ˆ ˆ

OT

ξ−3|f |2e2sϕ. (A.59)

Estimates on ∇Y . In the previous step, we found (Y, H) satisfying the equations⎧⎪⎪⎨⎪⎪⎩
∂t (σY ) − �Y = f + H1ω̂T

, in OT ,

Y = 0, in ΓT ,

Y (0, ·) = 0, in O,

Y (T , ·) = 0, in O

(A.60)

and the estimates (A.59).
Our goal now is to obtain an estimate on ∇Y . In order to do this, for ε > 0, we introduce

ϕε(t, x) :def= θε(t)
(
λe6λ(m+1) − eψ(t,x)

)
, ξε(t) :def= θε(t)e

ψ(t,x)

and θε is given by:

θε :def= θε(t) such that

⎧⎪⎪⎨⎪⎪⎩
∀t ∈ [0, T0], θε(t) = 1 + (1 − t

T0
)μ,

∀t ∈ [T0, T − 2T1 + ε], θε(t) = 1,

∀t ∈ [T − 2T1 + ε,T ), θε(t) = θ(t − ε),

μ as in (2.12).

We then multiply Eq. (A.60) by ξ−2
ε Y e2sϕε :

−1

2

ˆ ˆ

OT

|Y |2∂t

(
σξ−2

ε e2sϕε
) +

ˆ ˆ

OT

|Y |2∂tσ ξ−2
ε e2sϕε +

ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε − 1

2

ˆ ˆ

OT

|Y |2�(
ξ−2
ε e2sϕε

)
=
ˆ ˆ

OT

f ξ−2
ε Y e2sϕε +

ˆ ˆ

ω̂T

Hξ−2
ε Y e2sϕε .

Following, multiplying by sλ2,
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sλ2
ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε − sλ2

2

T0ˆ

0

ˆ

O

σ |Y |2∂t

(
ξ−2
ε e2sϕε

)

= sλ2

2

T̂

T0

ˆ

O

σ |Y |2∂t

(
ξ−2
ε e2sϕε

) + sλ2

2

ˆ ˆ

OT

|Y |2�(
ξ−2
ε e2sϕε

)
+ sλ2

ˆ ˆ

OT

f ξ−2
ε e2sϕεY + sλ2

ˆ ˆ

ω̂T

Hξ−2
ε Y e2sϕε − sλ2

2

ˆ ˆ

OT

|Y |2∂tσ ξ−2
ε e2sϕε . (A.61)

We then compute explicitly:

−e−2sϕε ∂t

(
ξ−2
ε e2sϕε

) = 2sλξ−1
ε ∂tψ − 2sξ−2

ε

∂t θε

θε

ϕε + 2
∂t θε

θε

ξ−2
ε + 2λ∂tψξ−2

ε . (A.62)

On (0, T0), we remove the dependence in ε > 0 as θε = θ on (0, T0). Using (2.13), ∂t θ ≤ 0 and θ ∈ [1, 2] in [0, T0]
we have, for all s ≥ s0 and t ∈ (0, T0),

−2sξ−2 ∂t θ

θ
ϕ + 2

∂t θ

θ
ξ−2 ≥ cs|∂t θ |ξ−2ϕ,

whereas∣∣2sλξ−1∂tψ + 2λ∂tψξ−2
∣∣ ≤ Csλξ−1.

Hence

− sλ2

2

T0ˆ

0

ˆ

O

σ |Y |2∂t

(
ξ−2
ε e2sϕε

) ≥ cs2λ2

T0ˆ

0

ˆ

O

σ |∂t θ |ξ−2ϕ|Y |2e2sϕ − Cs2λ3

T0ˆ

0

ˆ

O

|Y |2e2sϕ. (A.63)

On (T0, T ), from the identity (A.62), using |∂tθε| ≤ Cθ2
ε , we derive∣∣∣∣2sλξ−2

ε ∂tψ − 2sξ−2
ε

∂t θε

θε

ϕ + 2
∂t θε

θε

ξ−2
ε + 2λ∂tψξ−2

ε

∣∣∣∣ ≤ Csλ

We thus obtain∣∣∣∣∣ sλ2

2

T̂

T0

ˆ

O

σ |Y |2∂t

(
ξ−2
ε e2sϕε

)∣∣∣∣∣ ≤ Cs2λ3

T̂

T0

ˆ

O

|Y |2e2sϕε . (A.64)

Straightforward computations yield |�(ξ−2
ε e2sϕε )| ≤ Cs2λ2e2sϕε , from which we get∣∣∣∣ sλ2

2

ˆ ˆ

OT

|Y |2�(
ξ−2
ε e2sϕε

)∣∣∣∣ ≤ Cs3λ4
ˆ ˆ

OT

|Y |2e2sϕε . (A.65)

Using Cauchy–Schwarz estimates,∣∣∣∣sλ2
ˆ ˆ

OT

(
(f + H1ω̂T

)ξ−2
ε e2sϕε

)
Y

∣∣∣∣ ≤ s3λ4
ˆ ˆ

OT

|Y |2e2sϕε + C

s

ˆ ˆ

OT

ξ−4
ε |f |2e2sϕε + C

s

ˆ ˆ

ω̂T

ξ−4
ε |H |2e2sϕε .

(A.66)

Since we obviously have∣∣∣∣sλ2
ˆ ˆ

|Y |2∂tσ ξ−2
ε e2sϕε

∣∣∣∣ ≤ Cs3λ4
ˆ ˆ

|Y |2e2sϕε , (A.67)
OT OT
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combining estimates (A.63)–(A.67) and plugging (A.61), we obtain

sλ2
ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε + s2λ2

T0ˆ

0

ˆ

O

σ |∂t θ |ξ−2|Y |2e2sϕ

≤ Cs3λ4
ˆ ˆ

OT

|Y |2e2sϕε + C

ˆ ˆ

ω̂T

ξ−3
ε |H |2e2sϕε + C

ˆ ˆ

OT

ξ−3
ε |f |2e2sϕε .

Since the constant C is independent of ε > 0, we can pass to the limit ε → 0, and using (A.59) and the fact that σ is 
bounded from below away from 0, we get:

sλ2
ˆ ˆ

OT

ξ−2|∇Y |2e2sϕ + s2λ2

T0ˆ

0

ˆ

O

|∂t θ |ξ−2ϕ|Y |2e2sϕ ≤ C

ˆ ˆ

OT

ξ−3|f |2e2sϕ. (A.68)

Estimates on �Y , ∂tY . Multiplying Eq. (A.60) by −ξ−4
ε �Ye2sϕε /s, we obtain

− 1

2s

ˆ ˆ

OT

∂t

(
σξ−4

ε e2sϕε
)|∇Y |2 + 1

s

ˆ ˆ

OT

∂tY∇Y · ∇(
σξ−4

ε e2sϕε
)

+ 1

s

ˆ ˆ

OT

ξ−4
ε |�Y |2e2sϕε = −1

s

ˆ ˆ

OT

(f + V 1ω̂T
− ∂tσY )ξ−4

ε �Ye2sϕε . (A.69)

As in (A.62), we compute explicitly −∂t(ξ
−4
ε e2sϕε ). Arguing as in (A.63), we get

− 1

2s

T0ˆ

0

ˆ

O

σ∂t

(
ξ−4
ε e2sϕε

)|∇Y |2 ≥ c

T0ˆ

0

ˆ

O

σ |∂t θ |ξ−4ϕ|∇Y |2e2sϕ − Cλ

T0ˆ

0

ˆ

O

ξ−2|∇Y |2e2sϕ. (A.70)

Besides, arguing as in (A.64), we get∣∣∣∣∣− 1

2s

T̂

T0

ˆ

O

σ∂t

(
ξ−4
ε e2sϕε

)|∇Y |2
∣∣∣∣∣ ≤ Csλ2

ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε . (A.71)

One can also easily check that∣∣∣∣− 1

2s

ˆ ˆ

OT

∂tσ
(
ξ−4
ε e2sϕε

)|∇Y |2
∣∣∣∣ ≤ Csλ2

ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε . (A.72)

We then estimate the cross-term of (A.69):∣∣∣∣1

s

ˆ ˆ

OT

∂tY∇Y · ∇(
σξ−4

ε e2sϕε
)∣∣∣∣ ≤ σ 2

min

8s

ˆ ˆ

OT

ξ−4
ε |∂tY |2e2sϕε + Csλ2

ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε , (A.73)

where σmin :def= minOT
σ . From Eq. (A.60),

∂tY = 1

σ
(�Y + f + H1ωT

− ∂tσY ), (A.74)

and thus we deduce

σ 2
min

8s

ˆ ˆ

OT

ξ−4
ε |∂tY |2e2sϕε ≤ 1

4s

ˆ ˆ

OT

ξ−4
ε |�Y |2e2sϕε + C

s

ˆ ˆ

OT

|Y |2e2sϕε

+ C

s

ˆ ˆ
ξ−3
ε |f |2e2sϕε + C

s

ˆ ˆ

ω̂

ξ−3
ε |H |2e2sϕε . (A.75)
OT T
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And of course,∣∣∣∣−1

s

ˆ ˆ

OT

(f + H1ωT
− ∂tσY )ξ−4

ε �Ye2sϕε

∣∣∣∣ ≤ 1

4s

ˆ ˆ

OT

ξ−4
ε |�Y |2e2sϕε + C

s

ˆ ˆ

OT

ξ−3
ε |f |2e2sϕε

+ C

s

ˆ ˆ

ω̂T

ξ−3
ε |H |2e2sϕε + C

s

ˆ ˆ

OT

|Y |2e2sϕε . (A.76)

Combining all the above estimates, we get

1

2s

ˆ ˆ

OT

ξ−4
ε |�Y |2e2sϕε ≤ Csλ2

ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε + Cs3λ4

ˆ ˆ

OT

|Y |2e2sϕε

+ C

ˆ ˆ

OT

ξ−3
ε |f |2e2sϕε + C

ˆ ˆ

ω̂T

ξ−3
ε |H |2e2sϕε .

Since the constant C does not depend on ε > 0, we can pass to the limit ε → 0:

1

2s

ˆ ˆ

OT

ξ−4|�Y |2e2sϕ ≤ Csλ2
ˆ ˆ

OT

ξ−2|∇Y |2e2sϕ + Cs3λ4
ˆ ˆ

OT

|Y |2e2sϕ

+ C

ˆ ˆ

OT

ξ−3|f |2e2sϕ + C

ˆ ˆ

ω̂T

ξ−3|H |2e2sϕ.

Using now estimates (A.59), (A.68) and (A.75), we get

1

s

ˆ ˆ

OT

ξ−4(|∂tY |2 + |�Y |2)e2sϕ ≤ C

ˆ ˆ

OT

ξ−3|f |2e2sϕ. (A.77)

Estimates on ∂nY in L2(ΓT ). Let η : O �→ R
d such that η ∈ C2(O; Rd) and η = �n on ∂O. Since Y vanishes on 

ΓT , we have the following identity: for all ε > 0,

1

2

ˆ

ΓT

ξ−3
ε |∂nY |2e2sϕε =

ˆ ˆ

OT

ξ−3
ε �Yη · ∇Ye2sϕε

+
ˆ ˆ

OT

D
(
ξ−3
ε ηe2sϕε

)
(∇Y,∇Y) − 1

2

ˆ ˆ

OT

div
(
ηξ−3

ε e2sϕε
)|∇Y |2.

Hence

λ

ˆ

ΓT

ξ−3
ε |∂nY |2e2sϕε ≤ 1

s

ˆ ˆ

OT

ξ−4
ε |�Y |2e2sϕε + Csλ2

ˆ ˆ

OT

ξ−2
ε |∇Y |2e2sϕε .

Passing to the limit in ε → 0 and using (A.68) and (A.77) we thus obtain

λ

ˆ

ΓT

ξ−3|∂nY |2e2sϕ ≤ C

ˆ ˆ

OT

ξ−3|f |2e2sϕ. (A.78)

Conclusion. Estimates (A.59), (A.68), (A.77) and (A.78) yield (2.29).

Appendix B. Regularity of the weight function

Proof of Lemma 4.5. The first remark is that the flow Xe is C2([0, T ] × [0, T ] ×R
2) since ye ∈ C2([0, T ] ×R

2).
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In order to study the regularity of ψ̂ , we will introduce the function tout = tout(t, x) defined for (t, x) ∈ (0, T ) ×O
as the supremum of the time τ ∈ (t, T ] for which ∀t ′ ∈ (t, τ), Xe(t

′, t, x) ∈ O. It is not difficult to check that this time 
tout can also be characterized as the solution of⎧⎨⎩

∂t tout + ye · ∇tout = 0 in OT ,

tout(t) = t on ΓT ,

tout(T ) = T in O.

(B.1)

For convenience, we also set

xout(t, x) = Xe

(
tout(t, x), t, x

)
. (B.2)

We first prove that tout is continuous in OT . In order to do that, let us remark that Xe is C2([0, T ] × [0, T ] ×R
2) and 

for all (t, τ) ∈ [0, T ]2, Xe(t, τ, ·) is a C2 diffeomorphism of R2. In particular, OT can be decomposed into

OT =OT ,1 ∪OT ,2 ∪ ΣT ,

with

⎧⎨⎩
OT ,1 = {(t, x) ∈ (0, T ) ×O, x ∈ Xe(t, T ,O)},
OT ,2 = {(t, x) ∈ (0, T ) ×O, x ∈ Xe(t, T ,R2 \O)},
ΣT = {(t, x) ∈ (0, T ) ×O, x ∈ Xe(t, T , ∂O)}.

(B.3)

In (B.3), OT ,1 and OT ,2 are open sets whereas ΣT = OT ,1 ∩OT ,2 is closed and of dimension 2. For (t, x) ∈OT ,1 ∪ΣT , 
tout(t, x) = T and tout is thus continuous on OT ,1. The continuity on OT ,2 is more involved. If (t, x) ∈ OT ,2, 
then xout(t, x) belongs to ∂O. Due to the condition (4.5), for any ε > 0, there exists a neighborhood Vε of 
(tout(t, x), xout(t, x)) in [0, T ] × O such that |tout(t

′, x′) − tout(t, x)| < ε for all (t ′, x′) ∈ Vε . In particular, for some 
tε ∈ (0, T ) close to tout(t, x), Vε is a neighborhood of (tε,Xe(tε, tout(t, x), xout(t, x))) = (tε,Xe(tε, t, x)). Following, 
{Xe(t − tε + t ′, t ′, x′), (t ′, x′) ∈ Vε} is a neighborhood of (t,Xe(t, tε,Xe(tε, t, x))) = (t, x) on which tout is at distance 
at most ε of tout(t, x).

Thus, tout is continuous in OT . As ψ̂ solution of (4.8) can be written as

ψ̂(t, x) =
{

ψ̂T (xout(t, x)) if tout(t, x) = T ,

tout(t, x) − T if tout(t, x) < T ,
(B.4)

the continuity of ψ̂ in OT follows from the first compatibility condition in (4.7). Also note that ψ̂ is obviously C2 in 
OT ,1.

We then focus on the C1 regularity of ψ̂ . In order to do this, we remark that ∇tout solves⎧⎨⎩
∂t∇tout + (ye · ∇)∇tout + Dye∇tout = 0 in OT ,

∇tout(t, x) = − n(x)
ye(t,x)·n(x)

on ΓT ,

∇tout(T ) = 0 in O.

(B.5)

In particular, ∇tout can be computed for any (t, x) ∈OT ,2 by solving for τ between t and tout(t, x) the ODE

d

dτ

(∇tout
(
τ,Xe(τ, t, x)

)) = −Dye

(
τ,Xe(τ, t, x)

)∇tout
(
τ,Xe(τ, t, x)

)
, τ ∈ (

t, tout(t, x)
)
,

with ∇tout
(
tout(t, x), xout(t, x)

) = − n(xout(t, x))

ye(tout(t, x), xout(t, x)) · n(xout(t, x))
.

One then easily obtains that ∇tout is C0 on OT ,2 and from Eq. (B.1) we deduce that tout is C1 in OT ,2. From there, we 
derived immediately from (B.4) that ψ̂ is C1 on OT ,2 and that it can be extended as a C1 function on OT ,2 as follows: 
∇ψ̂ can be computed for any (t, x) ∈ ΣT by solving for τ between t and T the ODE:

d

dτ

(∇ψ̂
(
τ,Xe(τ, t, x)

)) = −Dye

(
τ,Xe(τ, t, x)

)∇ψ̂
(
τ,Xe(τ, t, x)

)
, τ ∈ (t, T ), (B.6)

with ∇ψ̂
(
T ,Xe(T , t, x)

) = − n(Xe(T , t, x))
. (B.7)
ye(T ,Xe(T , t, x)) · n(Xe(T , t, x))
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On the other hand, ψ̂ solves Eq. (4.11), and can be extended as a C1 function on OT ,1. For (t, x) ∈ ΣT , this yields 
∇ψ̂(t, x) as the solution of the ODE (B.6) with ∇ψ̂(T ,Xe(T , t, x)) given. But, as ψ̂(T ) is constant on the bound-
ary and satisfies the second compatibility condition in (4.5), we get again (B.7) for (t, x) ∈ ΣT . Following, ∇ψ̂ is 
continuous across ΣT , hence on OT . Using Eq. (4.8), ψ̂ belongs to C1(OT ).

The proof of the C2 regularity follows the same path and is left to the reader. �
Appendix C. Proof of Theorem 1.2

The proof of Theorem 1.2 follows the one of Theorem 1.1. The main difference is that we assume that we control 
on the whole boundary (0, T ) × ∂Ω . In that case, the set Ω can be embedded into a large torus O = TL, where L is a 
large number corresponding to the size of the torus.

The control problem (2.4)–(2.5) for the velocity field u can then be set on a domain without boundary. Therefore, 
if we choose ψ̃ satisfying{

∀(t, x) ∈ [0, T ] ×TL, ψ̃(t, x) ∈ [0,1],
inf

{∣∣∇ψ̃(t, x)
∣∣, (t, x) ∈ [0, T ] ×TL, s.t. d(x,Ω) ≤ 3

} ≥ α > 0,
(C.1)

the same strategy as the one developed for Theorem 2.1 applies, except that no boundary terms appear. In particular, 
estimate (2.37) holds without the presence of the boundary term. This means that, for all smooth v solution of (2.17), 
setting w = curl v, for all s ≥ s0 and λ ≥ λ0,

s−1

T̂

0

ˆ

TL

ξ2|∇v|2e−2sϕ +
T̂

0

ˆ

TL

ξ3|w|2e−2sϕ + sλ2
ˆ ˆ

OT

ξ4|v|2e−2sϕ

≤ C

(ˆ ˆ

ω̂T

ξ3|w|2e−2sϕ + sλ2
ˆ ˆ

ω̂T

ξ4|v|2e−2sϕ + s−1λ−2

T̂

0

ˆ

TL

ξ2|g|2e−2sϕ

)
, (C.2)

where ω̂T = (0, T ) × {x ∈ TL, s.t. d(x, Ω) ≥ 2}. As in the proof of Theorem 2.1, one can then remove the obser-
vation in w and express it in terms of an observation in v. This easily yields Theorem 2.1 with ωT = (0, T ) × {x ∈
TL, s.t. d(x, Ω) ≥ 1} and the control result corresponding to Theorem 2.3.

Concerning the controllability of the density done in Section 3, one can basically do the same thing as in the 
2-d case thanks to the Sobolev embedding L2(0, T ; H2(R3)) ⊂ L2(0, T ; L∞(R3)). However, one needs to be careful 
as the flow X̂ defined in (3.2) is not defined in the classical sense for a velocity field only in L2(0, T ; H2(R3)). 
One needs to consider the flow defined in the sense of [10], which solves Eq. (3.2) only almost everywhere. To 
avoid this technical difficulty, given ̂u ∈ L2(0, T ; H2(Ω)) satisfying (3.18)–(3.19), we approximate it by a sequence 
ûn of L2(0, T ; H3(Ω)) of divergence free vector fields satisfying (3.18)–(3.19) and such that ξ−2ûne

sϕ is strongly 
convergent to ξ−2ûesϕ in L2(0, T ; L2(Ω)) and ûne

3sϕ∗/4 strongly converges to ûe3sϕ∗/4 in L2(0, T ; H2(Ω)). The 
construction of Section 3 then applies without any change for any ̂un, yielding a sequence of controlled densities ρn

solving the controlled problem (1.19) with the velocity field ̂un satisfying the estimates of Theorem 3.6. Thanks to 
the convergence results in [2,3] and following the proof in Section 4.3, this construction shows the existence of a 
controlled density ρ solving the controlled problem (1.19) with the estimates of Theorem 3.6. Besides, thanks to the 
convergence results in [2,3], this controlled density ρ coincides with the one in (3.9).

One can therefore conclude as in Section 4. The construction of ψ̃ satisfying (C.1) can be done as in the proof of 
Lemma 4.1: one can then simply take an extension ye of the velocity field vanishing for x ∈ TL with d(x, Ω) ≥ 3, 
and choose an initial data ψ̃T in (4.8) having its critical points localized in the set {x ∈ TL, s.t. d(x, Ω) ≥ 3}. The rest 
of the proof of the fixed point argument is left unchanged.
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