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Abstract

We consider a Chern–Simons theory of planar matter fields interacting with the Chern–Simons gauge field in a SU(N)global ⊗
U(1)local invariant fashion. We classify the radially symmetric soliton solutions of the system in terms of the prescribed value of 
magnetic flux associated with this model. We also prove the uniqueness of the topological solution in a certain condition.
© 2014 

Résumé

Nous étudions une théorie Chern–Simons de champs de matière plans interagissant avec le champ de jauge de Chern–Simons 
d’une manière invariante par le groupe SU(N)global ⊗ U(1)local. Nous classons les solutions solitons radialement symétriques du 
système en fonction de la valeur prescrite d’un flux magnétique associé à ce modèle. Nous prouvons également l’unicité de la 
solution topologique sous une certaine condition.
© 2014 
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1. Introduction

The theory of semilocal vortices has a global SU(N) symmetry in addition to the local U(1) symmetry, 
SU(N)global ⊗ U(1)local, which is described by the Lagrangian:

L = κ

4
εμναFμνAα + (Dμφ)†(Dμφ

)− 1

κ2
|φ|2(|φ|2 − 1

)2
,
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where Aμ, μ = 0, 1, 2, is the gauge field on the (2 + 1)-dimensional space R2,1 of metric tensor (gμν) =
diag(1, −1, −1), Fμν = (∂/∂xμ)Aν − (∂/∂xν)Aμ is the corresponding gauge curvature tensor, Dμ = (∂/∂xμ) − iAμ

is the gauge covariant derivative, φ = (φ1, φ2, . . . , φK) is K-component scalar field with φ† = (φ∗
1 , φ∗

2 , . . . , φ∗
K)

(here ∗ denotes complex conjugation), εμνα is the totally skew-symmetric tensor with ε012 = 1, and κ > 0 is the 
Chern–Simons coupling constant. We mention that there are more interesting background and further studies of the 
corresponding Abelian Higgs model with SU(N)global ⊗ U(1)local symmetry, e.g., in Refs. [2,7,8] and [13].

In the static case, when the Bogomol’nyi bound is saturated, we deduce the following self-dual equations:{
(D1 ± iD2)φj = 0, j = 1, . . . ,K,

F12 ± 2

κ2
|φ|2(|φ|2 − 1

)= 0.
(1)

Without loss of generality, we will only take the upper (plus) sign into account. The flux corresponding to the magnetic 
field F12 is given by

Φ =
∫
R2

F12 dx.

The system (1) is associated with one of the following boundary conditions that either

(i) |φ(x)| → 1 as |x| → +∞, or
(ii) |φ(x)| → 0 as |x| → +∞.

The first is called topological boundary condition and the second is nontopological. The point vortices of the system 
are identified with zeros of φj , j = 1, . . . , K . We remark that the existence of the topological as well as nontopological 
(multi-vortex) solutions has been proved by Chae in [2]. In the present article we set forth a classification of the radially 
symmetric solutions to the system.

We locate the zeros of φj at the origin with the multiplicities Nj (positive integers) for j = 1, . . . , K . For simplicity, 
we set κ = 2. With the substitution uj = log |φj |2, j = 1, . . . , K , or equivalently

φj (z) = exp

[
uj

2
+ iNj Arg(z)

]
, z = x1 + ix2, (x1, x2) = x ∈R

2,

the system (1) is reduced to the following semilinear elliptic system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
	uj =

(
K∑

k=1

euk

)(
K∑

k=1

euk − 1

)
+ 4πNjδ0 in R

2, j = 1, . . . ,K,

β = β(u) = 1

2π

∫
R2

(
K∑

k=1

euk

)(
1 −

K∑
k=1

euk

)
dx ∈ (0,+∞),

(2)

where u = (u1, . . . , uK), 	 ≡ ∂2

∂x2
1

+ ∂2

∂x2
2

and δ0 denotes the Dirac delta function with point mass at the origin. Note 

that Φ = πβ by definition. The topological and nontopological boundary conditions (i) and (ii) above are equivalent 
respectively to the following statements:

euj → σj as |x| → +∞ for j = 1, . . . ,K with σj ≥ 0 and
K∑

j=1

σj = 1; (3)

euj → 0 as |x| → +∞ for j = 1, . . . ,K. (4)

For simplicity, through a rearrangement we may assume that N1 ≥ N2 ≥ · · · ≥ NK ≥ 0, and for purely mathematical 
sake, that each Nj is not necessarily an integer. Our first consequence is stated as follows.
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Theorem 1.1. Let u(r) = (u1, . . . , uK)(r) be a radially symmetric solution of Eq. (2) with r = |x|, and let

α1 = max
{
2(N1 + 1),4(NK + 1)

}
, α2 = max

{
4(N1 − NK),4(NK + 1)

}
.

Then β ∈ E := {2N1} ∪ (α1, +∞). Conversely, for a prescribed β ∈ E, the following statements are true:

(a) If β = 2N1, then u is topological and can be characterized by

uj (r) = v(r) + 2Nj log r + log cj , cj > 0, j = 1, . . . ,K,

where v(|x|) ∈ C2
loc(R

2) is a solution of⎧⎪⎨⎪⎩v′′ + 1

r
v′ = f ev

(
f ev − 1

)
, f (r) =

K∑
j=1

cj r
2Nj , r > 0,

v(r) = −2N1 log r + O(1) as r → +∞.

(5)

(b) If β ∈ (α2, +∞) then u is nontopological and can be characterized by

uj (r) = v(r) + 2Nj log r + log cj , cj > 0, j = 1, . . . ,K,

where v(|x|) ∈ C2
loc(R

2) is a solution of⎧⎪⎨⎪⎩v′′ + 1

r
v′ = f ev(f ev − 1), f (r) =

K∑
j=1

cj r
2Nj , r > 0,

v(r) = −β log r + O(1) as r → +∞.

(6)

Moreover, α1 = α2 = 4NK + 4 when N1 ≤ 2NK + 1.
(c) If N1 > 2NK + 1, then there exists a constant α3 = α3(N1, . . . , NK) ∈ (α1, α2) such that (2) possesses a nontopo-

logical solution (u1, . . . , uK) which is characterized in (b) for each β ∈ [α3, ∞). Moreover, β(u) ∈ [α3, ∞) for 
any nontopological solution u = (u1, . . . , uK) of (2).

Remark 1.1. As shown in Appendix A, each solution of (2) satisfying the (topological) boundary condition (3) is 
automatically radially symmetric. So that the radial symmetry premise can be removed from Theorem 1.1 for the 
topological solutions.

Remark 1.2. In the case N1 > 2NK + 1, it turns out that α1 = 2(N1 + 1) and α2 = 4(N1 − NK) with α1 < α2.

Remark 1.3. When K = 1, the semilocal system (2) is reduced to the well-known Abelian Chern–Simons Higgs 
model⎧⎪⎪⎨⎪⎪⎩

	u = eu
(
eu − 1

)+ 4πNδ0 in R
2,

β = β(u) = 1

2π

∫
R2

eu
(
1 − eu

)
dx ∈ (0,+∞), (7)

in which the sufficient and necessary condition for Eq. (7) possessing a radially symmetric solution is that β ∈ {2N} ∪
(4N + 4, +∞). This specializes the consequence of Theorem 1.1.

In the case K = 1 we remark that radial solutions of (7) depend uniquely on the values of β; please see e.g. [5] and 
[4] for the such uniqueness results. In the case K ≥ 2, there can be two solutions u1 �= u2 such that β(u1) = β(u2). In 
fact, as shown at the beginning of Section 2, any solution u = (u1, . . . , uK) of Eq. (2) can be written as

uj (r) = v(r) + 2Nj log r + log cj , cj > 0, j = 1, . . . ,K,

where v = v(β, c1, . . . , cK) satisfies the equation
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⎧⎪⎨⎪⎩v′′ + 1

r
v′ = f ev

(
f ev − 1

)
, f (r) =

K∑
j=1

cj r
2Nj , r > 0,

v(r) = −β log r + O(1) as r → +∞.

(8)

In other words, u depends on β and the K-tuple parameter τ = (c1, . . . , cK). Let β be fixed. Assume that v =
v(c1, . . . , cK) and ṽ = v(c̃1, . . . , c̃K) are solutions of (8) corresponding parameters (cj )

K
j=1 and (c̃j )

K
j=1 respectively. 

So we have two solutions u, ũ of (2) given by uj (r) = v(r) +2Nj log r + log cj and ũj (r) = ṽ(r) +2Nj log r + log c̃j , 
j = 1, . . . , K . If u = ũ, then there must be a constant λ > 0 such that

log
cj

c̃j

= v − ṽ = λ, j = 1,2, . . . ,K.

Consequently, we may select two different parameters (cj )
K
j=1, (c̃j )

K
j=1 on the spherical region

Σ = {
(c1, . . . , cK): c2

1 + · · · + c2
K = 1 with c1, . . . , cK > 0

}
, (9)

so that u �= ũ. Although a solution of (2) cannot be uniquely determined by any prescribed β in the case K ≥ 2, the 
following theorem shows that a solution of (5) is unique under a certain condition. Such a result represents some kind 
of uniqueness for the model. We state the theorem as follows:

Theorem 1.2. If N1 − NK ≤ 1, then for any given cj > 0, j = 1, . . . , K , the solution of (5) is unique. Moreover, the 
topological solution of (2), which is denoted by uτ,2N1 = uτ , is uniquely determined by the parameter τ belonging to 
the region Σ given in (9).

By the way, we remark that Theorem 1.2 can be equivalently characterized from an alternative viewpoint by means 
of the initial value at the origin. Since all topological solutions of (2) are radially symmetric with respect to the 
origin as we have shown in Appendix A of the present paper, we may rewrite the system (2) as the following system 
associated the initial value at the origin:

u′′
j (r) + 1

r
u′

j (r) +
(

K∑
j=1

euj

)(
1 −

K∑
j=1

euj

)
= 0, r > 0, (10)

with behavior at the origin that

uj (r) = 2Nj log r + ρj + o(1) as r → 0+. (11)

According the uniqueness result in Theorem 1.2, we obtain the following assertion about the structure of topological 
solutions of (10) in terms of (ρ1, · · · , ρK).

Corollary 1.3. Suppose that N1 − NK ≤ 1. Then for any � = (�1, . . . , �K−1) ∈ R
K−1, there exists a unique 

(ρ∗
1 (�), . . . , ρ∗

K(�)) ∈ R
K such that (u1(ρ

∗
1 , . . . , ρ∗

K), . . . , uK(ρ∗
1 , . . . , ρ∗

K)) is a topological solution of (10) with 
ρ∗

j (�) − ρ∗
1 (�) = �j−1 for j = 2, . . . , K .

The paper is organized as follows. In Section 2 we show that the solutions of (2) can be reduced to a single profile 
equation, and furthermore make an analysis on its solution structure. In addition, we carry out a uniqueness result 
under a certain condition. In Sections 3 and 4 we exhibit the existence of the nontopological solutions with respect 
to prescribed values of magnetic flux, in order to detect an optimal lower bound of the possible values. Finally, in 
Appendix A of the present paper, we include a proof about the radial symmetry for the topological solution of the 
system (2).

2. Analysis of the solution structure

In view of the K-component system (2), we see that 	(ui −uj ) = 4π(Ni −Nj)δ0 for any i, j ∈ {1, . . . , K}, which 
indicates that
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ui(r) = uj (r) + 2(Ni − Nj) log r + hij (r),

where hij is a harmonic function. Since β < +∞, we have limr→∞ ru′
i (r) = 2Ni − β for i = 1, . . . , K and it is 

possible to extract a positive constant C such that∣∣u1(r)
∣∣+ · · · + ∣∣uK(r)

∣∣≤ C log(1 + r), r > 0.

It follows that hij is in fact a constant. For the sake, through a simple substitution that

uj (r) = v(r) + log cj + 2Nj log r, (12)

where cj > 0 for j = 1, . . . , K , we obtain a further reduction of the system (2), namely⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v′′ + 1

r
v′ = f ev

(
f ev − 1

)
, r > 0,

β =
∞∫

0

rf ev
(
1 − f ev

)
dr ∈ (0,+∞),

(13)

where f (r) =∑K
j=1 cj r

2Nj with N1 ≥ N2 ≥ · · · ≥ NK ≥ 0. We set off a structure analysis for the solutions of (13). 
First of all, for any given K-tuple (c1, c2, . . . , cK) with cj > 0, we consider the solution v(r) = v(r; s) solving the 
initial value problem{

v′′ + 1

r
v′ = f ev

(
f ev − 1

)
,

v(0) = s, v′(0) = 0, s ∈ R.

(14)

The solution of (14) can be classified into three types; in fact, we have:

Theorem 2.1. Let v be a solution of (14). Then v belongs to one of the following classes given in the sense that

0-Type: f (r)ev(r) → 0 as r → +∞;
1-Type: f (r)ev(r) → 1 as r → +∞;
∞-Type: v(r) blows up at a finite r. (15)

Before proving Theorem 2.1, we introduce properties that 2NK ≤ rf ′/f ≤ 2N1 and that(
rf ′

f

)′
(r) = 1

f 2(r)

∑
i<j

4Ni(Ni − Nj)cicj r
2(Ni+Nj )−1 ≥ 0. (16)

They can be obtained by simple calculations. Note that the properties are independent of the choice of (c1, c2, . . . , cK). 
So in the following content we assume c1 = c2 = · · · = cK = 1 for simplicity.

Lemma 2.1. Let v solve the problem (14). Then the function f ev − 1 cannot attain a nonnegative local maximum at 
any finite r > 0.

Proof. Assume g = f ev − 1 has a nonnegative local maximum at r = r1. Then g′(r1) = 0 and there is a small ε > 0
such that (rv′)′ ≥ 0 on [r1, r1 + ε). Note that

g′(r) = f ev

r
h(r), where h(r) = rf ′

f
+ rv′.

Hence h(r1) = r1g
′(r1)/f (r1)e

v(r1) = 0, and furthermore,

h′(r) =
(

rf ′

f

)′
+ (

rv′)′ ≥ 0

on [r1, r1 + ε). It follows that h(r) ≥ 0 on [r1, r1 + ε). Therefore, g′(r) ≥ 0 on [r1, r1 + ε). This contradicts the 
assumption that g(r1) is a local maximum. �
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Lemma 2.2. Let u1(r) = 2N1 log r + v(r) where v solves (14) in an interval I = [0, ω), ω ∈ R ∪ {∞}. If u′
1(r1) < 0

for some r1 ∈ I , then v must be of the 0-Type.

Proof. It suffices to show that f ev < 1 for any r as far as v(r) is defined. In fact, since u′
1 is positive near r = 0 and 

negative at r = r1, the function u1 attains its maximum sup0<r<r1
u1(r) at some locus r0 ∈ (0, r1). From (14),

2N1 −
r1∫

0

rf ev
(
1 − f ev

)
dr = r1u

′
1(r1) < 0. (17)

Applying the fact u′
1(r0) = 0 and using r0 in substitution for r1 in the equality (17), we see that the derived integral 

over (0, r0) has value 2N1; this indicates
r1∫

r0

rf ev
(
1 − f ev

)
dr > 0. (18)

We conclude f ev < 1 in (0, r1), because, by Lemma 2.1, once f (r0)e
v(r0) ≥ 1, the function f (r)ev(r) − 1 is positive 

for r > r0 and thus (18) cannot happen. Assume f (r̄)ev(r̄) = 1 for some r̄ ≥ r1 with the property f (r)ev(r) < 1 for 
r ∈ (0, ̄r) and f (r)ev(r) > 1 for r > r̄ . Then u′

1(r) < 0 whenever r0 < r < r̄ and therefore f ev is strictly decreasing 
on the interval (r0, ̄r). Since f ev = 1 at r = r̄ in our assumption, we come to the conclusion that f (r0)e

v(r0) > 1, 
a contradiction. �
Proof of Theorem 2.1. From Lemma 2.1, if f (r0)e

v(r0) ≥ 1 for some r0, then f ev is increasing in the interval 
(r0, +∞) and then 	v ≥ λf ev for r ≥ r0 where λ is a positive constant. Hence v blows up at a finite r (cf. e.g. [12]). 
Otherwise, v is an entire solution of (14) satisfying f ev < 1 all the time; in the meanwhile v is a decreasing function 
which approaches to −∞ as r → +∞. Note that in the last case we have

β =
∞∫

0

rf ev
(
1 − f ev

)
dr < +∞. (19)

For, if the integral β = +∞, it is possible to select r1 > 0 such that r1v
′(r1) ≤ −4N1 − 4. By Eq. (14),

rv′(r) = r1v
′(r1) −

r∫
r1

rf ev
(
1 − f ev

)
dr ≤ −4N1 − 4, r ≥ r1,

implying v(r) ≤ −(4N1 + 4) log r + C for large r ; this yields that β < +∞, a contradiction. Now by the fact that 
f ev < 1 for the entire solutions, there are only two possibilities that either (i) r2N1ev(r) increases for all r > 0, or 
(ii) r2N1ev(r) decreases in an interval (r0, +∞) for some r0 > 0. In the case (i), we have β = 2N1 and f (r)ev(r) → 1
as r → +∞ where we note that if f (r)ev(r) → c < 1, it will contradict (19). In the case (ii), from Lemma 2.2 we 
have f (r)ev(r) → 0 as r → +∞, which indicates that β > 2N1 + 2 by (19). By the way, in either case of the entire 
solution, we have

v(r) = −β log r + O(1), r → +∞. (20)

The classification (15) is concluded. �
Taking account of the initial value s for the solution v(r) = v(r; s) of (14) depending on s, we set

E(r, s) = [
rv′(r; s)]2 − r2f 2(r)e2v(r;s) + 2r2f (r)ev(r;s).

Multiplying (14) by the factor rv′ and taking integration both sides, we obtain the following variational identity:

1

2
E(r, s) =

r∫
tg(t)f (t)ev(t;s)[1 − f (t)ev(t;s)]dt +

r∫
tf 2(t)e2v(t;s) dt, (21)
0 0
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where g(t) = [tf ′(t)/f (t)] + 2. We define

Ji = {
s ∈R: v(r; s) is of the i-Type according to (15)

}
, i = 0,1,∞.

Clearly, R = J0 ∪ J1 ∪ J∞. E(r, s) > 0 near r = 0 for any s ∈ R. We remark that s ∈ J∞ if and only if E(r0, s) = 0
for some r0 > 0. In fact, if s∗ ∈ J0 ∪ J1, then

∂E

∂r

(
r, s∗)= rg(r)f (r)ev(r;s∗)[1 − f (r)ev(r;s∗)]+ rf 2(r)e2v(r;s∗) (22)

is positive for all r > 0, where we apply the fact that f ev < 1. Thus E(r, s∗) is positive whenever r > 0. On the 
other hand, letting s∗ ∈ J∞, it is not hard to see that E(r, s∗) → −∞ as r → ω in the maximal existence interval 
Imax = [0, ω) of the solution v(r; s∗). Hence E(r, s∗) must vanish at some site r = r0 > 0. In addition, we conclude 
the following lemma.

Lemma 2.3. Both J0 and J∞ are open sets. Moreover, J0 ∪ J1 is bounded from above.

Proof. The assertion of the lemma about J0 can be concluded readily from Lemma 2.2 by means of the continuous 
dependence of v(r; s) on the parameter s. We omit the details and straightforwardly account for the set J∞. To show 
that J∞ is open, we take advantage of the variational identity (21). Let s0 ∈ J∞. Then there exists r0 > 0 such that 
E(r0, s0) = 0. By definition, we have[

r0v
′(r0)

]2 + r2
0f (r0)e

v(r0)
[
2 − f (r0)e

v(r0)
]= E(r0, s0) = 0, v(r) = v(r; s0),

implying that f (r0)e
v(r0) > 2. Hence by a rearrangement in the formula (22),

∂E

∂r
(r, s0) = 2r2

0f ′(r0)e
v(r0)

[
1 − f (r0)e

v(r0)
]+ 2r0f (r0)e

v(r0)
[
2 − f (r0)e

v(r0)
]
< 0.

Using the Implicit Function Theorem, r can be represented as a C1-function of s in a neighborhood Iε(s0) =
(s0 − ε, s0 + ε) of s0, with a small ε > 0, such that r(s0) = r0 and

E
(
r(s), s

)= 0, s ∈ Iε(s0).

Therefore Iε(s0) ⊂ J∞. As for the remaining part of the lemma, we first show that the set J0 has an upper bound. 
Assume contrarily that there exists a sequence of real numbers sj ∈ J0 such that sj → +∞ as j → +∞. Through an 
adaptation of the device in [4], we let

wj(r) = v
(
e−sj /(2NK+1)r; sj

)− sj .

Assume N1 > N2 > · · · > NK (without loss of generality). Then, by a direct computation from (14), wj solves the 
equation⎧⎨⎩w′′

j (r) + 1

r
w′

j (r) = G2
j (r) e2wj (r) − e−sj /(2Nk+1)Gj (r) ewj (r), r > 0,

wj (0) = 0, w′
j (0) = 0,

(23)

where

Gj(r) =
K∑

m=1

e−2sj (Nm−NK) r2Nm.

Note that v(r; sj ) is decreasing in r ; wj is thus decreasing and the right hand side of Eq. (23) converges uniformly on 
any compact interval. By passing to a subsequence, it follows that wj approaches to a function w̃, which solves{

w̃′′(r) + 1

r
w̃′(r) = r4NK e2w̃(r), r > 0,

w̃(0) = 0, w̃′(0) = 0.

(24)

This is impossible because any solution of (24) is increasing and blows up at finite r . So that J0 is bounded from 
above. The argument for sj ∈ J1 is the same. We omit it here. �
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To make out how the solution v depends on s, we consider the function ϕ(r) = ϕ(r; s) = (∂v/∂s)(r; s). Directly 
taking derivative on Eq. (14), ϕ solves the following equation{

ϕ′′(r) + 1

r
ϕ′(r) = f (r)ev(r)

[
2f (r)ev(r) − 1

]
ϕ(r), v(r) = v(r; s),

ϕ(0) = 1, ϕ′(0) = 0.

(25)

Lemma 2.4. The functions ϕ(r; s) and (∂ϕ/∂r)(r; s) are continuously dependent on s for any fixed r .

Proof. Let s′ ∈ R. Consider the function w(r) = w(r; s) = ϕ(r; s) − ϕ(r; s′) for |s − s′| ≤ δ with a small δ > 0. To 
conclude the lemma, it suffices to show that w(r; s) → 0 as s → s′ for any fixed r . In fact, by a direct computation 
from (25),

w′′(r) + 1

r
w′(r) = P(r; s)w(r) + Q(r; s),

where P, Q are functions of r , depending on s and given by

P(r; s) = f (r)ev(r;s)[2f (r)ev(r;s) − 1
]
,

Q(r; s) = f (r)
{
2f (r)

[
ev(r;s) + ev(r;s′)]− 1

}[
ev(r;s) − ev(r;s′)]ϕ(r; s′).

So that w satisfies the integral equation

w(r) =
r∫

0

t

(
log

r

t

)
P(t; s)w(t) dt +

r∫
0

t

(
log

r

t

)
Q(t; s) dt.

Therefore, by the continuity of v(r; s), we have

∣∣w(r; s)∣∣≤( r∫
0

t
∣∣Q(t; s)∣∣ log

r

t
dt

)
exp

( r∫
0

t
∣∣P(t; s)∣∣ log

r

t
dt

)

≤ C

r∫
0

∣∣Q(t; s)∣∣dt

≤ C̃ sup
t∈[0,r]

∣∣v(t; s) − v
(
t; s′)∣∣→ 0

as s → s′. This concludes the proof. �
Lemma 2.5. If s0 ∈ J0, then there exist numbers C, R, ε > 0 such that∣∣ϕ(r; s)∣∣≤ C log r (26)

for all r ≥ R and s ∈ J0 ∩ {s ∈ R: |s − s0| < ε}.

Proof. Let s0 ∈ J0. We show that ϕ0(r) = ϕ(r; s0) does not change sign for r sufficiently large. In fact, by comparison 
ϕ with the function wc(r) = rv′(r) + c, here v(r) = v(r; s0) and c being a constant, we have

[
r
(
ϕ0w

′
c − wcϕ

′
0

)]r2
r1

=
r2∫

r1

ϕ0
(
rw′

c

)′ − wc

(
rϕ′

0

)′
dr

=
r2∫

r
[
2f ev

(
f ev − 1

)+ gcf ev
(
2f ev − 1

)]
ϕ0 dr, (27)
r1
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where gc(r) = [(rf ′(r))/f (r)] − c. Since rv′(r) vanishes at r = 0 and decreases to −β with β = β(s0) > 2N1 + 2
for the 0-Type solution, there can be λ ∈ (2N1 + 2, β) such that wλ(rλ) = 0 for some rλ > 0, whereas wλ > 0 in 
the interval (0, rλ) and wλ < 0 in (rλ, +∞). If ϕ0 changes sign no matter how large r is, it is possible to select two 
successive zeros r1, r2 > rλ of ϕ0 such that r1 < r2, ϕ′

0(r1) > 0, ϕ′
0(r2) < 0 and ϕ0 > 0 in between. Note that gλ < −2

and from (20) we have f ev ≈ r−2−σ near infinity, σ > 0. Hence the left hand side of (27) is positive, but the right 
hand side is negative. This is a contradiction. Now we consider the case ϕ0 > 0 in (r0, +∞) for some large r0; the 
argument for its negative counterpart is similar. From the expression

rϕ′
0(r) = r0ϕ

′
0(r0) +

r∫
r0

tf (t)ev(t)
[
2f (t)ev(t) − 1

]
ϕ0(t) dt,

we have r0ϕ
′
0(r0) − Cr−σ ≤ rϕ′

0(r) ≤ r0ϕ
′
0(r0) for r > r0 and some positive constant C, where we use the fact that 

f ev � 1 in (r0, +∞) for r0 sufficiently large. Thus, there is C1 > 0 such that∣∣ϕ0(r)
∣∣≤ C1 log r, r ≥ r0.

To conclude the lemma, we need to show that there exist σ, c0 > 0 such that

f (r)ev(r;s) ≤ c0r
−2−σ

for any s in a neighborhood of s0 and r sufficiently large. In fact, taking σ > 0 so small that

β = β(s0) :=
∞∫

0

rf (r)ev(r;s0)
[
1 − f (r)ev(r;s0)

]
dr > 2(N1 + 1) + 3σ,

we have

rv′(r; s0) = −β +
∞∫
r

tf (t)ev(t;s0)
[
1 − f (t)ev(t;s0)

]
dt

< −2(N1 + 1) − 3σ + c1r
2N1+2−β

< −2(N1 + 1) − 2σ, r ≥ r1

for some r1 ≥ r0. Assume J0 ⊃ (s0 − ε0, s0 + ε0) for some ε0 > 0. By the continuity of v′(r; ·) as a function of s, it is 
possible to extract a small ε1 ∈ (0, ε0) such that

rv′(r; s) ≤ rv′(r1; s) < rv′(r1; s0) + σ < −2(N1 + 1) − σ,

and hence v(r; s) ≤ c2 − (2N1 + 2 + σ) log r for all |s − s0| < ε1 and r ≥ r1. This concludes the proof. �
Theorem 2.2. The function

β(s) =
∞∫

0

rf (r)ev(r;s)[1 − f (r)ev(r;s)]dr

is differentiable on J0 and sups∈J0
β(s) = +∞.

Proof. The differentiability of β(s) follows readily from Lemma 2.4 by a direct computation. To see the unbounded-
ness of β , we pick s0 ∈ J0 and define s∗ = sup{s′: [s0, s′) ⊂ J0}. By Lemma 2.3, s∗ ∈ J1. We show that β(s) goes to 
infinity as s → s∗. As a matter of fact, if we consider the sequence vj (r) = v(r; sj ) with sj ∈ (s0, s∗) and sj → s∗ as 
j → +∞, from the variational identity (21), we have
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1

2
β2(sj ) =

∞∫
0

tg(t)f (t)evj (t)
[
1 − f (t)evj (t)

]
dt +

∞∫
0

tf 2(t)e2vj (t) dt

≥
∞∫

0

tf 2(t)e2vj (t) dt.

Assume β(sj ) is bounded. Then rf 2(r)e2v(r;s∗) ∈ L1(R). This contradicts the fact that f (r)ev(r;s∗) → 1 as r → +∞. 
So that β(s) is not bounded. �
Lemma 2.6. Assume N1 − NK ≤ 1. If s∗ ∈ J1, then there exists μ > 0 such that

ϕ
(
r; s∗)≥ μ

for all r > 0. Moreover, limr→+∞ ϕ(r; s∗) → +∞.

Proof. Note first that, from Theorem 2.1, the function rv′(r; s∗) is strictly greater than −2N1 for all r > 0 and 
approaches to −2N1 as r → +∞. So that the function

w(r) = rv′(r) + 2N1, v(r) = v
(
r; s∗),

is positive all the time and w(r) → 0 as r → +∞. Applying the identity (27) between the functions w(r) and ϕ(r) =
ϕ(r; s∗) with the substitution r1 = 0, r2 = R and c = 2N1, gives

R
[
ϕ(R)w′(R) − w(R)ϕ′(R)

]=
R∫

0

ϕ
(
rw′)′ − w

(
rϕ′)′ dr

=
R∫

0

r
[
(gc + 2)f ev

(
f ev − 1

)+ gcf
2e2v

]
ϕ dr < 0 (28)

for all R > 0, where we make use of the fact that −2 ≤ gc ≤ 0 for c = 2N1. Applying (28), we show that ϕ > 0
as follows. In fact, assuming contrarily that ϕ has the first zero at r = σ > 0 and letting R = σ , it follows that the 
left hand side (LHS) of the identity (28) is positive while the right hand side (RHS) is negative. This contradiction 
indicates that ϕ(r) must be positive for all r > 0. To conclude the proof, it suffices to show that ϕ is not a bounded 
function. Assume contrarily that ϕ is bounded. Then from (25) it is not hard to see that

lim
r→+∞ rϕ′(r) = 0.

Now applying (28) again and letting R → +∞, the LHS of (28) approaches to 0, while the RHS approaches to a 
negative number; that is a contradiction. Hence the function ϕ is unbounded and thus from (25) we note, in addition, 
that ϕ cannot oscillate near infinity. So that ϕ(r) → +∞ as r → +∞. Therefore, ϕ has a positive lower bound. �
Remark 2.1. For s∗ ∈ J1, from Lemma 2.5 and (25) it follows that

ϕ(r) = ϕ(r0) +
r∫

r0

t

(
log

r

t

)
f (t)ev(t)

[
2f (t)ev(t) − 1

]
ϕ(t) dt

≥ ϕ(r0) + 1

2

r∫
r0

t

(
log

r

t

)
ϕ(t) dt, r ≥ r0,

for r0 > 0 sufficiently large, where v(r) = v(r; s∗) and ϕ(r) = ϕ(r; s∗). Thus, we may conclude further that ϕ(r; s∗)
grows exponentially near infinity; in fact, the inequality

ϕ
(
r; s∗)≥ c1 exp

(
c2r

2)
holds true in a neighborhood of +∞ for which c1, c2 > 0 are suitable constants.
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Proof of Theorem 1.2. From Lemma 2.3, it is clear that the set J1 is nonempty. To conclude the theorem, we are 
going to show that J1 consists of a single point. Let s∗ ∈ J1. In view of Lemmas 2.4 and 2.6, as well as the continuity 
of v(r; s), it is possible to select r0 > 0 and δ > 0 such that

(a) 2f (r)ev(r,s∗) > 1 for r ≤ r0;
(b) 2f (r0)e

v(r0,s) > 1 and ϕ′(r0; s) > 0 for s ∈ Iδ = (s∗ − δ, s∗ + δ);
(c) ϕ(r; s) ≥ λ > 0 for (r, s) ∈ [0, r0] × Iδ .

We set I+
δ = (s∗, s∗ +δ) and I−

δ = (s∗ −δ, s∗). Letting [0, ωs) with ωs ∈ R ∪{+∞} be the maximal existence interval 
for the solution v(·) = v(·; s) that solves (14), we have the following conclusion:

Claim 1. ϕ(r, s) ≥ λ and 2f (r)ev(r,s) > 1 for all s ∈ I+
δ and r ∈ [r0, ωs).

Assume our assertion fails. Then by the statements (b) and (c), we may extract s′ ∈ I+
δ and r1 ∈ (r0, ωs′) such that 

ϕ′(r; s′) > 0 for r ∈ [r0, r1) and ϕ′(r1; s′) = 0. Thus, from the statement (a), we have 2f (r)ev(r,s′) > 1 for r ∈ [r0, r1). 
So that

0 = r1ϕ
′(r1; s′)= r0ϕ

′(r0; s′)+
r1∫

r0

f (t)ev(t;s′)[2f (t)ev(t;s′) − 1
]
ϕ
(
t; s′)dt > 0, (29)

which is a contradiction. So we conclude Claim 1. Since f (r)ev(r;s0) → 0 as r → +∞ for any s ∈ J0, it follows from 
Claim 1 that I+

δ ∩ J0 is empty. Now we continue to the following claims.

Claim 2. If there exist two points s1, s2 ∈ J1 ∩ Iδ , then there must be a point s′ ∈ J∞ which lies between s1 and s2.

To see this, we assume, in contrast to the assertion, that v(r; s) is an entire solution of (14) for all s ∈ (s1, s2)

where we suppose s2 > s1. This implies that (s1, s2) ∩ J0 is empty. Indeed, if there is s0 ∈ (s1, s2) ∩ J0, then, since 
f (r)ev(r;s0) → 0 as r → +∞, we can find (r ′, s′) ∈ [r0, +∞) × Iδ such that ϕ′(r ′, s′) = 0. Consequently, as have 
done with (29), we may arrive at a contradiction. Now we conclude that (s1, s2) ⊂ J1. Therefore, we have

v(r; s2) − v(r; s1) = ϕ(r; s̄)(s2 − s1) ≥ λ(s2 − s1) ≡ c > 0, s̄ ∈ (s1, s2),

for all r ≥ r0, where we apply the statement (c) and the formula (29) again. However, this contradicts the fact that 
both f (r)ev(r;s1) and f (r)ev(r;s2) approach to 1 as r → +∞.

Claim 3. If s∞ ∈ Iδ ∩ J∞, then [s∞, s∗ + δ) ⊂ J∞.

The proof of Claim 3 is essentially the same as that of Claim 1. We omit it here. From Claims 1, 2 and 3, we 
conclude that I+

δ ⊂ J∞ and I−
δ ⊂ J0. If J1 consists of more than one elements, then, in terms of Lemma 2.3, it is 

possible to select s1, s2 ∈ J1 with s1 < s2 such that either the interval (s1, s2) ⊂ J0 or (s1, s2) ⊂ J∞. In either case, it 
contradicts the conclusion we have just mentioned. Therefore, the proof is complete. �
3. Sharp lower bound of flux for N1 ≤ 2NK + 1

In the preceding section we have proved that it is possible to find a radially symmetric nontopological solutions 
of the system (2) whose flux assumes an arbitrarily large value. We are going to make an effort to grasp the optimal 
lower bound for the value β associated with the (radial) nontopological solutions. Notice that, letting r → +∞ in the 
identity (21), we have β > 4NK + 4. Combining this with the constraint (19) thus gives

β > max{2N1 + 2,4NK + 4}. (30)

To sharpen the lower bound, we take advantage of the radially symmetric solutions of the Liouville system in corre-
spondence with (2), namely
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	vj = −
K∑

k=1

evk + 4πNjδ0 in R
2, j = 1, . . . ,K, (31)

and take account of the value

ω = 1

2π

∫
R2

(
K∑

k=1

evk

)
dx.

Letting vj (r) = v̂(r) + log cj + 2Nj log r for cj > 0, j = 1, . . . , K , we reduce (31) to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v̂′′ + 1

r
v̂′ = −f ev̂, r > 0,

v̂(0; s) = s ∈R, ω(s) =
∞∫

0

rf (r)ev̂(r;s) dr,
(32)

where f (r) =∑K
j=1 cj r

2Nj . It is clearly to see that ω(s) is continuous on (−∞, ∞) and v̂(r; s) = −ω(s) log r +O(1)

as r → +∞.

Remark 3.1. An important problem is concerned with the structure of total curvature ω(s) for generalized Gaussian 
curvature equation that has been extensively studied by many authors. From Cheng and Lin [6] and (32), we see that

i) if N1 ≤ 2NK + 1, then lims→−∞ ω(s) = 4(N1 + 1) and lims→+∞ ω(s) = 4(NK + 1);
ii) if N1 > 2NK + 1, then lims→−∞ ω(s) = 4(N1 + 1) and lims→+∞ ω(s) = 4(N1 − NK).

This implies that ω(s) is a bounded function. To attain a greatest lower bound of ω(s), we take account of the 
variational identity

1

2

[
rv̂′(r)

]2 − r2f ′(r)ev̂(r) − 2rf (r)ev̂(r) =
r∫

0

t

[
tf ′(t)
f (t)

+ 2

]
f (t)ev̂(t) dt,

which is obtained by multiplying Eq. (32) by the factor rv′ and using integration by part on both sides. Adding 
(4NK + 4)rv̂′(r) to the identity and letting r → +∞, it follows that

ω(ω − 4NK − 4) = 2

∞∫
0

t

[
tf ′(t)
f (t)

− 2NK

]
f (t)ev̂(t) dt > 0.

Hence it is necessary that ω > 4NK + 4 in order for (32) to be solvable. This, together with the statement i) above, 
indicates that the lower bound 4NK + 4 for ω is optimal provided N1 ≤ 2NK + 1. When N1 > 2NK + 1, it is not 
clear whether Eq. (32) has any solution with total curvature between 2(N1 + 1) and 4(N1 − NK). It could be natural 
to conjecture that ω(s) is not a monotone function in case the solution behaves too dramatically. However, as shown 
in [9], the function ∂v̂(r; s)/∂s changes sign at least twice; it seems to be a choke point for the monotonicity of ω to 
be established.

In fact, ω(s) is not a monotone function on (−∞, ∞) when N1 > 2NK +1 and we will prove it in the next section. 
Here is an existence result that depends on the system (31).

Theorem 3.1. Let v1, . . . , vK solve (31) with ω being given. Then there exists a family of the nontopological solutions 
(uε

1, . . . , u
ε
K) of the system (2) such that βε therein is dependent continuously on ε in a small neighborhood of the 

origin and

βε → ω, as ε → 0. (33)
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In advance of going into the details of the proof of Theorem 3.1, we now carry out the conclusion of Theorem 1.1
for the case: N1 ≤ 2NK + 1 beforehand.

Proof of Theorem 1.1. That β ∈ {2N1} ∪ (ω1, +∞) with ω1 = max{2N1 + 2, 4NK + 4} as well as the first assertion 
of Theorem 1.1 follows readily from Theorems 2.1, 2.2 and (30). To complete the proof, we consider Eq. (32). From 
Remark 3.1, Eq. (32) is solvable for any prescribed value ω ∈ (ω∗, ω∗) where ω∗ = 4N1 + 4 and ω∗ = 4NK + 4 by 
N1 ≤ 2NK + 1. So that Theorem 3.1 together with Theorem 2.2 indicates the solvability of (13) for any prescribed 
β ∈ (ω∗, +∞); this concludes the proof of (b). Finally, the result (c) can be obtained by Theorem 4.1 and hence we 
complete this proof of Theorem 1.1. �

On purpose to prove Theorem 3.1, we make some preliminary settings as follows. Define the inner products 〈, 〉Xα

and 〈, 〉Yα , 0 < α < 1, for functions in the spaces L2
loc(R

2) and W 2,2
loc (R2) respectively by

〈u,v〉Xα =
∫
R2

(
1 + |x|2+α

)
uv dx, u, v ∈ L2

loc

(
R

2),
〈u,v〉Yα = 〈	u,	v〉Xα +

∫
R2

uv

1 + |x|2+α
dx, u, v ∈ W

2,2
loc

(
R

2);
we define two specific function spaces Xα and Yα in the following:

Xα = {
u ∈ L2

loc

(
R

2): 〈u,u〉Xα < +∞}
,

Yα = {
u ∈ W

2,2
loc

(
R

2): 〈u,u〉Yα < +∞}
. (34)

Clearly, Xα and Yα are Hilbert spaces with the inner products 〈, 〉Xα and 〈, 〉Yα while the Xα-norm and Yα-norm are 
given respectively by

‖u‖Xα =√〈u,u〉Xα , ‖u‖Yα =√〈u,u〉Yα .

We recall the imbeddings Xα ↪→ L1(R2) and Yα ↪→ C0
loc(R

2) which are introduced in [3]. Moreover, the following 
properties of Yα [3, Lemma 1.1] are useful in the construction of solutions.

Proposition 3.1. There exists a constant C > 0 such that for all u ∈ Yα ,∣∣u(x)
∣∣≤ C‖u‖Yα

(
log+ |x| + 1

)
, x ∈ R

2, (35)

where log+ |x| = max{0, log |x|}.

Let Xr
α and Y r

α be the spaces consisting of the radial functions in Xα and Yα defined in (34) respectively. We equip 
the spaces∏

K

Xr
α = Xr

α × · · · × Xr
α︸ ︷︷ ︸

K

and
∏
K

Y r
α = Y r

α × · · · × Y r
α︸ ︷︷ ︸

K

with the inner products

〈
u(1), u(2)

〉
XK

α
=

K∑
j=1

〈
u

(1)
j , u

(2)
j

〉
Xα

,
〈
v(1), v(2)

〉
YK

α
=

K∑
j=1

〈
v

(1)
j , v

(2)
j

〉
Yα

,

where u(i) = (u
(i)
1 , . . . , u(i)

K ), v(i) = (v
(i)
1 , . . . , v(i)

K ) for u(i)
j ∈ Xr

α , v(i)
j ∈ Y r

α , i = 1, 2 and j = 1, . . . , K .
In order to use a solution of (31) as source material to manufacture a nontopological solution for the system (2), 

we define auxiliary functions as follows:

ηj (r) = 1
2
uj

(
r
)

− 1
2
vj (r) − w(r) − 2

2
log ε, j = 1, . . . ,K, (36)
ε ε ε ε
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where wj is independent of ε solving

	w +
(

K∑
k=1

evk

)
w =

(
K∑

k=1

evk

)2

. (37)

It is not hard to see that∣∣w(r)
∣∣≤ c log(1 + r), r > 0, (38)

for some c > 0. Now set

Pj (ε, η1, . . . , ηK) = 	ηj −
(

K∑
k=1

evk+ε2(ηk+w)

)2

+ ε−2
K∑

k=1

evk+ε2(ηk+w)

− ε−2
K∑

k=1

evk −
(

K∑
k=1

evk

)
w +

(
K∑

k=1

evk

)2

, j = 1, . . . ,K.

Clearly, by definition Pj (ε, η1, . . . , ηK) = 0 for each j . Having such observation gives rise to a constructive scheme 
that exhibits the existence of a nontopological solution of the system (2) through finding a number ε > 0 and functions 
η1, . . . , ηK such that Pj = 0 for j = 1, . . . , K under the prescribed solutions of (31) and (37). Specifically, we take 
account of the mappings Pj which are defined on I × D1, j = 1, . . . , K , where I = (−ε0, ε0) and

D1 =
{
η = (η1, . . . , ηK) ∈

∏
K

Y r
α : ‖η1‖Yα + · · · + ‖ηK‖Yα < 1

}
.

We remark that Pj : I × D1 → Xr
α is well-defined in the sense that it indeed maps into the space Xr

α with a given 
α ∈ (0, 1) provided that ε0 > 0 is chosen sufficiently small in terms of (35) and (38). Moreover, the singularity at 
ε = 0 is removable; in fact, we define

Pj (0, η) = 	ηj +
K∑

k=1

evkηk,

and by definition,

Pj (ε, η) − Pj (0, η) = ε−2
K∑

k=1

evk
[
eε2(ηk+w) − 1 − ε2(ηk + w)

]
−

K∑
k=1

K∑
m=1

evk+vm
[
eε2(ηk+ηm+2w) − 1

]
.

Therefore, ‖Pj (ε, η) − Pj (0, η)‖Xα → 0 as ε → 0; in particular,

Pj (0,0) = 0, j = 1, . . . ,K. (39)

By a direct computation, the partial derivative L of P = (P1, . . . , PK): I ×D1 →∏
K Xr

α with respect to η at (ε, η) =
(0, 0) is given by

L: (ξ1, . . . , ξK) �→
(

	ξ1 +
K∑

m=1

evmξm, . . . ,	ξK +
K∑

m=1

evmξm

)
.

Lemma 3.1. The mapping L: 
∏

K Y r
α →∏

K Xr
α is surjective.

Proof. Decompose L = 	 + A, where 	(ξ1, . . . , ξK) = (	ξ1, . . . , 	ξK) and A(ξ1, . . . , ξK) = (A1, . . . , AK) with 
A1 = · · · = AK = ∑K

m=1 evmξm. We claim that 	 is bounded and A is compact. In fact, from [3, Proposition 2.1]
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we see that the Laplace operator 	 is bounded. To prove the compactness of A, we let ξ (j) = (ξ
(j)

1 , . . . , ξ (j)
K ) be a 

bounded sequence in 
∏

K Y r
α such that∥∥ξ (j)

m

∥∥
Yα

≤ M, m = 1, . . . ,K, j ∈ N,

for some M > 0. It suffices to show that {A1(ξ
(j))}∞j=1 has a convergent subsequence. Let BR = {x ∈ R

2: |x| < R}
for R1 > 0. Then∥∥ξ (j)

m

∥∥
W 2,2(B2R1 )

≤ C
∥∥ξ (j)

m

∥∥
Yα

≤ CM, ∀j,m.

By the Rellich–Kondrachov Theorem [1], the imbedding W 2,2(B2R) ↪→ C1(BR) is compact. We extract a subse-
quence ξ (j) and a continuous function f = (f1, . . . , fK) on BR such that∥∥ξ (j)

m − fm

∥∥
L∞(BR1 )

→ 0, m = 1, . . . ,K,

as j → +∞. So that A1(ξ
(j)) → A1(f ) pointwise on BR . Repeat the processes on BRk

where Rk → +∞ as k →
+∞. We extend f to be an entire function such that A1(ξ

(j)) → A1(f ) pointwise on R2 by passing a subsequence. 
Furthermore, since ω > 2N1 + 2, we may pick σ > 0 such that

evm(r) = O
(
r−2−σ

)
as r → +∞ (40)

for all m = 1, . . .K . Choose 0 < α < min{1, σ }. Applying Proposition 3.1 gives

(
1 + |x|2+α

)
A2

1

(
ξ

(j)
m

)≤ c1
(
1 + |x|2+α

)( K∑
m=1

evmξ
(j)
m

)2

≤ c2
(
1 + |x|)−2−2σ+α

K∑
m=1

∣∣ξ (j)
m

∣∣2
≤ c3

(
1 + |x|)−2−2σ+α log2(1 + |x|)

≤ c4
(
1 + |x|)−2−σ

for all j . By the dominated convergence theorem, ‖A1(ξ
(j)
m ) − A1(f )‖Xα → 0 as j → +∞. Therefore, the operator 

A is compact. So we conclude that the image of L, denoted by ImL, is closed in the space 
∏

K Xr
α ; please see [3, 

Proposition 2.1] or [10, Lemma 5.1]. Accordingly, 
∏

K Xr
α = ImL ⊕ (ImL)⊥. Suppose L is not surjective. There can 

be a nonzero element ζ ∈∏K Xr
α such that 〈ζ, Ly〉XK

α
= 0, i.e.

K∑
k=1

∫
R2

(
ψk	yk + ψk

K∑
m=1

evmym

)
dx = 0 for all y ∈

∏
K

Y r
α, (41)

where ψk = ζk(1 + |x|2+α). Note that the space Yα contains C∞
0 (R2), the set of all smooth functions with compact 

support. By elliptic regularity ψk is a C2-function for k = 1, . . . , K . Hence applying integration by parts on (41) gives

	ψk + evk

K∑
m=1

ψm = 0, k = 1, . . . ,K. (42)

Moreover, by definition,∫
R2

ψ2
k

(
1 + |x|2+α

)−1
dx = ‖ζk‖2

Xα
< +∞,

which indicates that each ψk ∈ Y r
α . Let Ψ =∑K

m=1 ψm. By (42),

	Ψ +
(

K∑
evk

)
Ψ = 0.
k=1
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We have two cases in the following:

i) If Ψ ≡ 0, then from (42) we conclude that ψk ≡ ck where ck is a constant for each k. Note that |c1| +· · ·+|cK | �= 0. 
We assume c1 �= 0. Taking y = (ξ, 0, . . . , 0) in (41) implies that∫

R2

c1	ξ = 0 for all ξ ∈ Y r
α,

which is evidently impossible.
ii) If Ψ is nontrivial, Ψ (0) �= 0. We assume Ψ (0) > 0. Then Ψ is positive in an interval (0, 2ρ) for some ρ > 0. 

Let λ(r) be a smooth cut-off function satisfying λ(r) = 1, 0 ≤ r ≤ ρ, and λ(r) = 0 for r ≥ 2ρ. Let χ solve the 
equation

	χ +
(

K∑
k=1

evk

)
χ = λΨ.

Note that χ ∈ Y r
α and considering y = (χ, . . . , χ) in (41) it follows that

0 =
∫
R2

Ψ 	χ + Ψ

(
K∑

k=1

evk

)
χ dx =

∫
|x|<2ρ

λ|Ψ |2 dx > 0;

this is a contradiction.

Therefore, ImL =∏
K Xr

α . �
Proof of Theorem 3.1. Applying the Implicit Function Theorem [11, Theorem 2.7.5] on the mapping P(ε, η), it is 
possible to represent η in terms of ε in an interval (−ε1, ε1) for a small ε1 > 0 and

P
(
ε, ηε

1, η
ε
2, . . . , η

ε
K

)= 0 for all ε ∈ (−ε1, ε1).

Giving this back with the substitution (36), we obtain a family of nontopological solutions (uε
1, u

ε
2, . . . , u

ε
K) of the 

system (2), being dependent on ε and having the expression

uε
j (r) = vj (εr) + ε2w(εr) + ε2ηε

j (εr) + 2 log ε (43)

for j = 1, 2, . . . , K . Note that the solution vj of (31) is invariant under the scaling that

vε
j (r) = vj (εr) + 2 logε, j = 1,2, . . . ,K,

and thus α is independent of ε. By virtue of (43) with the substitution uj = uε
j into the system (2), we have

∞∫
0

r

(
K∑

j=1

euj

)(
1 −

K∑
j=1

euj

)
dr = 2N1 − lim

r→+∞ ru′
1(r)

= ω − ε2 lim
s→+∞ sw′(s) − ε2 lim

s→+∞ s
(
ηε

1

)′
(s)

= ω + o(ε),

as ε → 0, where we use the facts that the limit

lim
s→+∞ sw′(s) =

∞∫
0

r

[(
K∑

j=1

evj

)2

−
(

K∑
j=1

evj

)
w

]
dr

converges; on the other hand, since Xα ↪→ L1(R2),
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lim
s→+∞ s

(
ηε

1

)′
(s) =

∞∫
0

r	ηε
1 dr = 1

2π

∥∥	ηε
1

∥∥
L1(R2)

≤ C
∥∥	ηε

1

∥∥
Xα

≤ C
∥∥ηε

1

∥∥
Yα

.

Therefore, βε → ω as ε → 0. �
4. Sharp lower bound of flux for N1 > 2NK + 1

In this section, we are interested in studying the following initial value problem{
v′′(r) + 1

r
v′(r) + f (r)ev(r)

[
1 − f (r)ev(r)

]= 0, r > 0,

v(1) = θ, v′(1) = η,

(44)

where θ, η ∈ R are given initial data, it will be shown that solutions of (44) can be categorized into various types 
introduced in Definition 4.1.

Definition 4.1. Any solution v(r) of (44) is classified as follows according to its behavior as r → 0.

Type R-∗: v(r) is regular at 0, i.e., v(r) converges to a constant as r → 0.
Type P-∗: v(r) is positively singular at 0, i.e., v(r) → +∞ as r → 0.
Type N-∗: v(r) is negatively singular at 0, i.e., v(r) → −∞ as r → 0.

To achieve our goal, we introduce the following initial value problems:{{
rV ′

0(r)
}′ + rf (r)eV0(r)

[
1 − f (r)eV0(r)

]= 0, r > 0,

V0(0) = a,
(45)

{{
rV ′∞(r)

}′ + rf (r)eV∞(r)
[
1 − f (r)eV∞(r)

]= 0, r > 0,

lim
r→∞

[
V∞(r) + 4(N1 − Nk) log r

]= b,
(46)

where a, b ∈ R. By NK ≥ 0 and N1 > 2NK + 1, we denote the unique solutions of (45) and (46) by V0(r; a) and 
V∞(r; b), respectively. We note that from (44) and (45), rV ′

0(r) → 0 as r → 0 and

rV ′
0(r) = −

r∫
0

sf (s)eV0(s)
[
1 − f (s)eV0(s)

]
ds, r > 0

since N1 ≥ 0. Define

γ1(a) = (
V0(1;a),V ′

0(1;a)
)

and γ2(b) = (
V∞(1;b),V ′∞(1;b)

)
for a, b ∈ R, and let Γ1 and Γ2 be the ranges of γ1 and γ2 over R, respectively. We note that both γ1 and γ2 are 
smooth by the assumptions NK ≥ 0 and N1 > 2NK + 1 again. In fact, Γ1 and Γ2 are the collections of initial data 
corresponding to solutions of Type R-∗ and ∗-R for (44), respectively, where definition of Type ∗-R be described as 
follows:

Type ∗-R: v(r)
4(N1−NK) log r

converges to −1 as r → ∞.

We now present some facts, stated in Lemma 4.1 below, which are involving the characterization of solutions of 
various types in terms of ẼL(r; v), where ẼL(r; v) = E(r; v) + Lrv′(r) if 4NK > L > 2NK > 0 and ẼL(r; v) =
E(r; v) if NK = 0.

Lemma 4.1. Suppose v(r) is a solution of (44), then the following assertions are true.

(a) If v(r) is of Type R-∗, then ẼL(r; v) → 0 as r → 0+.
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(b) If v(r) is of Type P-∗, then ẼL(r; v) → C for some C < 0 as r → 0+.
(c) If v(r) is of Type N-∗, then ẼL(r; v) → C for some C > 0 as r → 0+.

Proof. By the proof of Lemma 2.1, we see that f ev(r) < 1 and [1 − f ev(r)]′ < 0 on [0, r0) for some r0 > 0. Then it 
is not difficult to obtain these results (a)–(c), and hence we omit the proof. �
Proposition 4.2. The following assertions on the solution v(r; θ, η) of (44) are true.

(i) If v(r; θ0, η0) is of Type P-∗, then there exists δ > 0 such that v(r; θ, η) is of Type P-∗ for (θ, η) ∈ Bδ((θ0, η0)).
(ii) If v(r; θ0, η0) is of Type N-∗, then there exists δ > 0 such that v(r; θ, η) is of Type N-∗ for (θ, η) ∈ Bδ((θ0, η0)).

Proof. (i) On the contrary. We may assume that there exists a sequence {(θn, ηn)}n∈N such that (θn, ηn) → (θ0, η0)

as n → ∞ and v(r; θn, ηn) is a solution of Type R-∗ or Type N-∗ for all n ∈ N . Since v(r; θ0, η0) is a solution of 
Type P-∗ and Lemma 4.1, there exist two constants R0, δ > 0 such that v′(R0; θ, η) < 0, ẼL(R0; v(R0; θ, η)) < 0 and

∂ẼL

∂r

(
r;v(r; θ, η)

)=
[

2
rf ′(r)
f (r)

− L

]
rf ev(r;θ,η)

[
1 − f ev(r;θ,η)

]+ 2rf ev(r;θ,η)
[
2 − f ev(r;θ,η)

]≥ 0

on [0, R0] for all |(θ, η) − (θ0, η0)| < δ. Consequently, there exists a sequence {rn}n∈N such that rn be the 
first local maximum point of v(r; θn, ηn) on [0, R0], v′(rn; θn, ηn) = 0 and rn → 0 as n → ∞. Then we have 
ẼL(r; v(r; θn, ηn)) > 0 on [rn, R0] for large n by ẼL(rn; v(rn; θn, ηn)) = 0 and ∂ẼL

∂r
(r; v(r; θn, ηn)) ≥ 0 on [0, R0]

for large n. It is a contradiction to ẼL(R0; v(R0; θ0, η0)) < 0 and hence we finish the result (i).
(ii) Since v(r; θ0, η0) is of Type N-∗, there exist two constants δ > 0 and R0 > 0 such that

v′(R0; θ, η) > 0 and
[
1 − f ev(R0;θ,η)

]
< 0 for all

∣∣(θ, η) − (θ0, η0)
∣∣< δ.

Then, by the proof of Lemma 2.1, we have (rv′)′(r; θ, η) = rf ev(r;θ,η)[f ev(r;θ,η) −1] ≤ 0 on (0, R0) for any |(θ, η) −
(θ0, η0)| < δ and hence we finish the result (ii). �
Theorem 4.1. If N1 > 2NK + 1, then there exists a constant s0 = s0(N1, . . . , NK) ∈ R such that β(s0) = min{β(s) :
s ∈ R} and β(s0) ∈ (2N1 + 2, 4(N1 − NK)). Moreover, Eq. (14) is solvable for any prescribed value β ∈ [β(s0),

4N1 + 4).

Proof. Since N1 > 2NK + 1, there exists constant δ < 0 such that N1 + 2δ > 2NK + 1. Let w̃(s) satisfy{{
sw̃′(s)

}′ + sK̃(s)ew̃(s) = 0, s ≥ 0,

w̃(0) = c ∈ R, w̃′(0) = 0,
(47)

where K̃(s) = sσ−4f ( 1
s
) and σ = 4(N1 − NK + δ). It is easy to see that

K̃(s) = f∞s2p̃ near s = 0 and K̃(s) = f0s
2q̃ near s = ∞,

where{
(p̃, q̃) = (N1 − 2NK − 2 + 2δ,2N1 − 3NK − 2 + 2δ),

(f0, f∞) =
(

lim
r→∞ r−2N1f (r), lim

r→0
r−2NK f (r)

)
.

To prove this theorem, we need the following fact.

Claim. (47) possesses a solution w̃(s) with lims→∞ w̃(s)
log s

= −4(1 + q̃ − δ).

Proof of the claim. According to [6] and ̃q > 2p̃ + 1, we obtain that

lim
c→∞γ (s) = 4(p̃ − q̃) and lim

c→−∞γ (s) = −4(1 + q̃),

where w̃(s; c) = γ (c) log s + O(1) as s → ∞. Thus we complete this claim. �
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Combining with the similarly argument of the proof in Theorem 3.1 and claim, we obtain that there exists a function 
z0(s) in C2[0, ∞) which satisfies lims→∞ z0(s)

log s
= −4(1 + q̃ − δ) and{{

sz′
0(s)

}′ + sK̃(s)ez0(s)
[
1 − s4K̃(s)ez0(s)

]= 0, s ≥ 0,

z0(0) ∈ R, z′
0(0) = 0.

According to [6] and N1 > 2Nk + 1, we have

lim
a→−∞γ1(a) = (−∞,0), lim

b→+∞γ2(b) = (−∞,4(−1 − NK)
)
. (48)

Moreover, by Lemma 2.3 and Proposition 4.2, we get that there exists a constant a0 ∈ J∞ such that for all a ≥ a0, 
γ1(a) lie on the first quadrant which satisfies

lim
a→a1

∣∣γ1(a)
∣∣= ∞ for some a1 ∈ (a0,∞] (49)

and v(r; − logf (1), η) be of Type N-∗ for large η > 0. From (48), (49) and Proposition 4.2, we conclude that v(r; θ, η)

is of Type N-∗ (resp., Type P-∗) if (θ, η) lies on the same side (resp., the opposite side) of η+-axis with respect to Γ1. 
Now we let (r, v0(r)) = (s−1, z0(s) + σ log s), and hence v0(r) be a solution of Type N–R for (44). Then Γ1 and Γ2
have an intersection point (θ0, η0) in θη-plan due to 1 + NK > 0 and (48). Hence (14) possesses a solution v0(r) such 
that

∞∫
0

rf (r)ev0(r)
[
1 − f (r)ev0(r)

]
dr < 4(N1 − NK).

Combining with lims→−∞ β(s) = 4(N1 − NK) and Theorem 2.2, there exists an s0 ∈R such that

β(s0) = min
{
β(s) : s ∈R

}
and β(s0) ∈ (2N1 + 2,4(N1 − NK)

)
.

Therefore, we complete the proof of Theorem 4.1. �
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Appendix A

In the appendix, we will prove the radial symmetry of the topological solutions for (2). Without loss of generality, 
we also assume that N = N1 ≥ Ni for i = 2, . . . , K and let (u(x), P(r)) = (u1(x), 1 + ∑K

i=2 Lir
2(Ni−N1)) where 

Li = eα1−αi and r = |x|. However, it is easy to see that if we want to discuss the couple equations (2), then we only 
consider the following equation:

	u(x) + P
(|x|)(1 − P

(|x|)eu(x)
)
eu(x) = 4πNδ0 in R

2. (A.1)

We give a result about the radially symmetric property of topological solution as follows.

Theorem A.1. All topological solutions (u1(x), . . . , uK(x)) of (2) are radially symmetric, that is, all solutions u(x)

of (A.1) which satisfy lim|x|→∞ u(x) = Cu are radially symmetric where Cu = − log lim|x|→∞ P(|x|).
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Proof. We may assume P(∞) = lim|x|→∞ P(|x|) = 1 from scaling method with(
û(x), P̂

(|x|))= (
u(x) − Cu, e

CuP
(|x|)).

Combining maximum principle and P(|x|) > 1 for |x| > 0, we see that u(x) does not have nonnegative local max-
imum value on R2\{O}. Hence we obtain that u(x) < 0 for |x| > 0. Now we want to apply the method of moving 
plane with some modifications to prove that u(x) is radially symmetric on R2. For 0 < σ < R, we define the sets 
Σσ = {x ∈R

2 : x1 > σ }, Tσ = {x ∈R
2 : x1 = σ }, and uσ (x) = u(xσ ) for x ∈ Σσ , where xσ is the reflection of x with 

respect to the line x1 = σ , i.e., xσ = (2σ − x1, x2). Set wσ (x) = u(x) − uσ (x) for x ∈ Σσ . Define{
Su = {

ρ ∈ (0,∞) : wσ > 0 in Σσ for σ ∈ (ρ,∞)
}
,

ρu = inf
ρ∈Su

{ρ}. (A.2)

First, we show that Su �= ∅. On a contrary and maximum principle, we may assume that there exists a sequence {xk}∞k=1
such that

lim
k→∞|xk| = ∞, wk(xk) < 0 and 	wk(xk) ≥ 0 for all positive integer k. (A.3)

However, by lim|x|→∞ u(x) = 0, P ′(r) < 0 and P(r) > 1 on (0, ∞), we obtain that

	wk(xk) = P
(∣∣xk

k

∣∣)euk
(
1 − P

(∣∣xk
k

∣∣)euk
)− P

(|xk|
)
eu
(
1 − P

(|xk|
)
eu
)

≤ P
(|xk|

)
euk

(
1 − P

(|xk|
)
euk

)− P
(|xk|

)
eu
(
1 − P

(|xk|
)
eu
)

= −P
(|xk|

)
eũ(xk)

(
1 − 2P

(|xk|
)
eũ(xk)

)
wk(xk) < 0

for large k where ̃u(xk) ∈ [u(xk), uk(xk)]. It yields a contradiction to (A.3) and hence the set Su is nonempty. Next, we 
prove ρu = 0. Suppose this is not true. Then, w.l.o.g., we can assume ρu > 0. Then by continuity, we have wρu(x) ≥ 0
in Σρu . It is easy to see that wρu satisfies the following equation⎧⎪⎨⎪⎩

	wρu + Cρu(x)wρu = −4πN1δ(2ρu,0) in Σρu,

wρu ≥ 0 in Σρu ∪ Tρu,

lim|x|→∞wρu(x) = 0
(A.4)

where δ(2ρu, 0) is the Dirac measure at the point (2ρu, 0) and

Cρu(x) = P(|x|)eu(1 − P(|x|)eu) − P(|xρu |)euρu (1 − P(|xρu |)euρu )

u − uρu

for x ∈ Σρu.

Thus, if wρu(x1) = 0 for some x1 ∈ Σρu , then by (A.4) and maximum principle, we have wρu ≡ 0 in Σρu . However, 
this contradicts to the fact that wρu(2ρu, ε) = u(2ρu, ε) − u(0, ε) > 0 for small ε > 0. Therefore we obtain that⎧⎪⎨⎪⎩

wρu(x) > 0 for any x ∈ Σρu,

wρu(x) = 0 on Tρu,

lim|x|→∞wρu(x) = 0.
(A.5)

By (A.4)–(A.5) and Hopf Boundary Lemma, we obtain

∂wρu

∂x1
> 0 on Tρu. (A.6)

On the other hand, since ρu > 0, there exists a positive sequence εk such that ρu − εk > 0 and (ρu − εk) → ρu as 
k → ∞. By the definition of ρu, for each εk , we obtain that wρu−εk

is non-positive somewhere in Σρu−εk
. By the way, 

we have lim|x|→∞ wρu(x) = 0 and wρu−εk
= 0 on Tρu−εk

. Hence, for each εk there exists xk ∈ Σρu−εk
such that

wρu−εk
(xk) ≤ 0, ∇wρu−εk

(xk) = (0,0) and 	wρu−εk
(xk) ≥ 0. (A.7)
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From the similarly argument of proof of Su �= φ, we may assume that {xk} is a bounded sequence and there exists a 
convergent subsequence, we still denote it by xk, such that xk → x0. By (A.7) we obtain that

0 ≥ lim
k→∞wρu−εk

(xk) = wρu(x0).

Hence, by the above inequality and (A.5), we conclude that x0 ∈ Tρu and, by (A.7),

0 = lim
k→∞

∂wρu−εk

∂x1
(xk) = ∂wρu

∂x1
(x0).

This contradicts to (A.6), and hence ρu = 0. Therefore, u(x) is radially symmetric on R2. �
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