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Abstract

We present an abstract method in the setting of compact metric spaces which is applied to solve a number of problems in
geometric optics. In particular, we solve the one source near field refraction problem. That is, we construct surfaces separating two
homogeneous media with different refractive indices that refract radiation emanating from the origin into a target domain contained
in an n − 1 dimensional hypersurface. The input and output energy are prescribed. This implies the existence of lenses focusing
radiation in a prescribed manner.
© 2013

1. Introduction

We present in this paper an abstract method, having general interest, that can be applied to prove existence of
solutions to a number of problems in geometric optics relative to refraction. The method is formulated in the abstract
setting of compact metric spaces and it is based on the ideas of concave and convex mappings and the existence
of families of functions that play the role of building blocks satisfying certain properties. The application to show
existence of solutions to various problems then consists in selecting the appropriate maps and the appropriate class of
building blocks related to the specific problem.

A main application of this method considered in the paper is to solve the one source near field refractor problem,
that is, to show existence of surfaces that refract radiation when the output and input intensities are prescribed. More
precisely, we have a domain Ω in the unit sphere Sn−1 and a domain D contained in an n − 1 dimensional surface
in R

n; D is referred as the target domain or screen to be illuminated. We also have two homogeneous and isotropic
media I and II with refractive indices n1 and n2, respectively, and suppose that from a point O surrounded by medium I,
light emanates with intensity f (x) for x ∈ Ω , and D is surrounded by media II. We are also given in D a Radon
measure μ and the energy conservation equation

∫
Ω

f (x)dx = μ(D). We prove the existence of an optical surface
R parameterized by R = {ρ(x)x: x ∈ Ω}, interface between media I and II, such that all rays refracted by R into
medium II illuminate the object D, and the prescribed illumination intensity distribution at D is μ. Of course, some
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conditions on the relative position of D and the set of directions in Ω are needed to illuminate D. This implies that one
can design a lens refracting light beams so that the screen D is illuminated in a prescribed way. The lens is bounded
by two optical surfaces, the “outer” surface is R and the “inner” one is a sphere with center at the point from where
the radiation emanates.

To implement the application of our abstract result to this case, we determine that the building blocks to construct
the surface solution are Descartes ovals. Descartes ovals refract all light rays emanating from a point O into a fixed
point P ; see Figs. 1 and 2. The solution of the near field refraction problem depends in a essential way of a novel and
very delicate study of the eccentricity of the ovals and its approximation properties, Section 4. This geometry is much
more complicated that the one needed for the solution to the far field problem solved in [5] using mass transport. In
particular, existence of solutions for the far field refractor problem can be obtained directly with this abstract method,
Section 7.

Geometric optics problems – far and near field – received recently attention because of both its applications and
their mathematical interest and difficulty. To put our results in perspective, we enumerate some related results. The
problem of the far field reflector has been considered by several authors, both mathematicians and engineers. For
example, existence and uniqueness up to dilations of solutions for the far field reflector problem were proved by
Caffarelli and Oliker in [3] and Wang in [9], and for nonisotropic media by Caffarelli and Huang [2]. C1 regularity
of solutions for the far field reflector was established in [1]. The near field reflector problem was considered by
Kochengin and Oliker in [7], and in recent work by Karakhanyan and Wang [8]. The far field refractor problem
was for the first time considered by the authors, and existence and uniqueness up to dilations of solutions were
established in [5]. Refraction problems are in general more involved than reflection problems because of physical
constraints. A difference between near and far field problems is that the latter can be cast in the frame of optimal
transportation. Instead, near field problems are in general not optimal transportation problems which makes their
mathematical treatment more difficult. In particular, the presence of ρ in the matrix A and on the right hand side of
the pde (A.12), indicates the problem is not an optimal transport problem. We mention that some results for the near
field refractor problem have been announced in [4].

The plan of the paper is the following. Section 2 contains the main results in the paper where we develop the
abstract method. Section 3 describes the Snell law and the physical constraints of refraction. Section 4 contains our
study of Cartesian ovals and estimates that are essential in the application to the near field problem. In Section 5 we
describe the assumptions on the domains Ω and D and solve the near field problem when κ < 1. Similar existence
results when κ > 1 are proved in Section 6. In Section 7 we show further applications of our method: the far field
refractor problem and the second boundary value problem for the Monge–Ampère equation.

Finally, the pde governing the near field refractor problem is a fully nonlinear equation of Monge–Ampère type
whose derivation is quite complicated and it is included in Appendix A.

2. Continuous mappings and measure equations

Let X,Y be compact metric spaces, and ω a Radon measure on X. Let YX denote the class of all set-valued maps
Φ from X to Y such that Φ(x) is single-valued for a.e. x with respect to the measure ω. We say that the map Φ ∈ YX

is continuous at x0 ∈ X if given xk → x0 and yk ∈ Φ(xk), there exists a subsequence ykj
and y0 ∈ Φ(x0) such that

ykj
→ y0, as j → ∞. Let C(X,Y ) denote the class of all Φ ∈ YX such that Φ is continuous in X; and let Cs(X,Y )

denote the class of Φ ∈ C(X,Y ) such that Φ(X) = Y .

Lemma 2.1. Given Φ ∈ Cs(X,Y ), the set function defined by

MΦ(E) = ω
(
Φ−1(E)

)
is a Radon measure on Y .

Proof. The set C = {E ⊂ Y : Φ−1(E) is ω-measurable} is a σ -algebra containing all Borel sets in Y (Φ−1(E) =
{x ∈ X: Φ(x) ∩ E �= ∅}). Indeed, Φ−1(∅) = ∅, Φ−1(Y ) = X, Φ−1(

⋃∞
i=1 Ei) = ⋃∞

i=1 Φ−1(Ei), Φ−1(Ec) =
(Φ−1(E))c ∪ (Φ−1(E) ∩ Φ−1(Ec)), and ω((Φ−1(E) ∩ Φ−1(Ec))) = 0. If K is compact in Y , then Φ−1(K) is
compact in X. In fact, let {xk} ⊂ Φ−1(K), and yk ∈ Φ(xk) ∩ K . Since X is compact and Φ is continuous, there exist
subsequences {xkj

} and {ykj
} such that xkj

→ x0 and ykj
→ y0 with y0 ∈ Φ(x0), that is, x0 ∈ Φ−1(K). To show the
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σ -additivity, let {Ej } be a disjoint sequence of sets in C. Then MΦ(
⋃∞

j=1 Ej) = ω(Φ−1(E1)) + ∑∞
k=2 ω(Φ−1(Ek) \⋃k−1

i=1 Φ−1(Ei)) = ∑∞
k=1 MΦ(Ek). �

Let C(X) denote the set of continuous functions in X with the topology of uniform convergence.

Definition 2.2. If F ⊂ C(X) and T : F → Cs(X,Y ), we say that T is continuous at φ ∈ F , if whenever φj ∈ F ,
φj → φ uniformly in X, x0 ∈ X, and yj ∈ T (φj )(x0), then there exists a subsequence yj	

such that yj	
→ y0 with

y0 ∈ T (φ)(x0).

Lemma 2.3. If F ⊂ C(X), T : F → Cs(X,Y ) is continuous at φ ∈ F , and φj → φ in C(X) with φj ∈ F , then
MT (φj ) → MT (φ) weakly.

Proof. It is enough to show that

lim sup
j→∞

MT (φj )(K) � MT (φ)(K), for all K ⊂ Y compact, (2.1)

and

lim inf
j→∞ MT (φj )(G) � MT (φ)(G), for all G ⊂ Y open. (2.2)

To prove (2.1), we show that lim supj→∞ T (φj )
−1(K) ⊂ T (φ)−1(K). Let x0 ∈ T (φj )

−1(K). So there is yj ∈
T (φj )(x0)∩K , and since T is continuous at φ, there exists a subsequence yj	

such that yj	
→ y0 with y0 ∈ T (φ)(x0).

Since y0 ∈ K , we have x0 ∈ T (φ)−1(K). Hence

lim sup
j→∞

MT (φj )(K) = lim sup
j→∞

ω
(
T (φj )

−1(K)
)
� ω

(
lim sup
j→∞

T (φj )
−1(K)

)
� ω

(
T (φ)−1(K)

) = MT (φ)(K).

To prove (2.2), we show that T (φ)−1(G) \ E0 ⊂ lim infj→∞ T (φj )
−1(G), with ω(E0) = 0. Indeed,

lim sup
j→∞

(
T (φj )

−1(G)
)c ⊂ lim sup

j→∞
[(
T (φj )

−1(G)
)c ∪ (

T (φj )
−1(G) ∩ T (φj )

−1(Gc
))]

= lim sup
j→∞

T (φj )
−1(Gc

)
⊂ T (φ)−1(Gc

)
since Gc is compact because Y is compact

= (
T (φ)−1(G)

)c ∪ [
T (φ)−1(G) ∩ T (φ)−1(Gc

)] := (
T (φ)−1(G)

)c ∪ E0,

with ω(E0) = 0, since T (φ) is single-valued except on a set of ω-measure zero. Therefore

lim inf
j→∞ MT (φj )(G) = lim inf

j→∞ ω
(
T (φj )

−1(G)
)

� ω
(

lim inf
j→∞ T (φj )

−1(G)
)
� ω

(
T (φ)−1(G)

) = MT (φ)(G). �
2.1. Concave case

Let

C+(X) = {f : f is continuous and positive in X}.
In this subsection, we consider classes F ⊂ C+(X) satisfying the following condition:

(A1) if f1, f2 ∈ F , then f1 ∧ f2 = min{f1, f2} ∈ F .
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We say that the class F ⊂ C+(X) is T -concave if F satisfies (A1) and there exists a map T : F → Cs(X,Y ) that
is continuous at each φ ∈F and the following condition holds:

(A2) if φ1(x0) � φ2(x0), then T (φ1)(x0) ⊂ T (φ1 ∧ φ2)(x0).

We also introduce the following condition on the class F :

(A3) For each y0 ∈ Y there exists an interval (αy0 , βy0) and a family of functions {ht,y0(x)}αy0 <t<βy0
⊂F satisfying

(a) y0 ∈ T (ht,y0)(x) for all x ∈ X,
(b) ht,y0 � hs,y0 for t � s,
(c) ht,y0 → 0 uniformly as t → αy0 ,
(d) ht,y0 is continuous in C(X) with respect to t , i.e., maxx∈X |ht ′,y0(x) − ht,y0(x)| → 0 as t ′ → t , for αy0 <

t < βy0 .

Remark 2.4. Notice that (A3)(a) implies that MT (ht,y0 ) = ω(X)δy0 for αy0 < t < βy0 . Because if E ⊂ Y is a Borel set

with y0 ∈ E, then from (A3)(a), X ⊂ T (ht,y0)
−1(y0) ⊂ T (ht,y0)

−1(E) ⊂ X and so MT (ht,y0 )(E) = ω(X). If y0 /∈ E,
then y0 ∈ Y \ E and so MT (ht,y0 )(Y \ E) = ω(X) and then MT (ht,y0 )(E) = 0.

The following is the main theorem in this section. We solve a measure equation when the given measure in Y is
discrete.

Theorem 2.5. Let X,Y be compact metric spaces and ω is a Radon measure in X. Let p1, . . . , pN be distinct points
in Y , and g1, . . . , gN be positive numbers with N � 2.

Let F ⊂ C+(X) and T :F → Cs(X,Y ) be such that F is T -concave and (A3) holds.
Assume that

ω(X) =
N∑

i=1

gi, (2.3)

and there exists ρ0 = min1�i�N hb0
i ,pi

such that MT (ρ0)(pi) � gi for 2 � i � N . Then there exist bi ∈ (αpi
, βpi

),

2 � i � N , such that the function, with b1 = b0
1 ,

ρ(x) = min
1�i�N

hbi,pi
(x)

satisfies

MT (ρ) =
N∑

i=1

giδpi
.

Proof. Let b1 = b0
1 and define the set

W = {
(b2, . . . , bN): αpi

< bi � b0
i ; MT (ρ)(pi) � gi, i = 2, . . . ,N

}
.

By the assumptions, (b0
2, . . . , b

0
N) ∈ W .

Step 1: There exist constants L, ε0 > 0 such that for all (b2, . . . , bN) ∈ W we have bi � αpi
+ ε0 if αpi

> −∞,
and bi � −L if αpi

= −∞, for 2 � i � N .
To prove this, we first show that the measure MT (ρ) is supported on {p1, . . . , pN }. This follows if we show that

the set E = T (ρ)−1(Y \ {p1, . . . , pN }) ⊂ N0, where N0 := {x ∈ X: T (ρ)(x) is not a singleton} has ω-measure zero.
If z0 ∈ E, then T (ρ)(z0) ∩ (Y \ {p1, . . . , pN }) �= ∅. Therefore there is p ∈ T (ρ)(z0) with p �= pi for 1 � i � N .
On the other hand, ρ(z0) = hbk,pk

(z0) for some 1 � k � N . From (A2) we then have T (hbk,pk
)(z0) ⊂ T (ρ)(z0), but

pk ∈ T (hbk,pk
)(z0) by (A3)(a), and so T (ρ) is not single-valued at z0.

Consequently, from (2.3) we get MT (ρ)(p1) � g1 > 0, and so ω(T (ρ)−1(p1)) > 0. Pick x0 ∈ T (ρ)−1(p1) \ N0.
We claim that hb1,p1(x0) � hbi ,pi

(x0) for i � 2. Otherwise, there is some i � 2 such that hbi,pi
(x0) < hb1,p1(x0).
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Pick j � 2 such that hbj ,pj
(x0) = min2�i�N hbi ,pi

(x0). Then ρ(x0) = hbj ,pj
(x0). Hence from (A2), T (hbj ,pj

)(x0) ⊂
T (ρ ∧ hbj ,pj

)(x0) = T (ρ)(x0) = p1. But from (A3)(a), pj ∈ T (hbj ,pj
)(x0), a contradiction and the claim is proved.

Since hb1,p1(x0) � C > 0, we then get hbi ,pi
(x0) � C > 0 for all i � 2. From (A3)(c), hbi,pi

(x0) → 0 as bi → αpi
,

and therefore Step 1 is proved.
Step 2: W is compact.
It is enough to show that MT (ρ)(pi) is continuous in b′ = (b2, . . . , bN) for each 1 � i � N . Let b′

m =
(bm

2 , . . . , bm
N) ∈ W converging to b′∗ = (b∗

2, . . . , b∗
N). Then by (A3)(d), ρm = (mini �=1 hbm

i ,pi
) ∧ hb1,p1 → ρ∗ =

(mini �=1 hb∗
i ,pi

) ∧ hb1,p1 uniformly as m → ∞. Therefore, as in the proof of Lemma 2.3, we obtain
lim supm→∞ MT (ρm)(pi) � MT (ρ∗)(pi) for i = 1, . . . ,N , and lim infm→∞ MT (ρm)(G) � MT (ρ∗)(G) for each G

open. Now choose G open such that pi ∈ G and pj /∈ G for j �= i. Then MT (ρm)(G) = ω(T (ρm)−1(pi)) +
ω(T (ρm)−1(G \ {pi})), but ω(T (ρm)−1(G \ {pi})) � ω(T (ρm)−1(Y \ {p1, . . . , pN })) = 0. We then obtain
lim infm→∞ MT (ρm)(pi)� MT (ρ∗)(pi) and the continuity follows.

Step 3: Existence of solutions.
The function z = b2 + · · · + bN attains its minimum on W at some point (a2, . . . , aN). We claim that ρ(x) =

(min2�i�N hai ,pi
) ∧ hb1,p1 is the desired solution. Otherwise, assume for example that MT (ρ)(p2) < g2. Let ā =

(a2 − ε, a3, . . . , aN) and ρ̄(x) = (min2�i�N hāi ,pi
) ∧ hb1,p1 . By continuity MT (ρ̄)(p2) < g2 for all ε sufficiently

small.
For i � 3, we claim that T (ρ̄)−1(pi) ⊂ T (ρ)−1(pi) except on a set of ω-measure zero. Indeed, if x0 ∈ T (ρ̄)−1(pi)

and T (ρ̄)(x0) is a single point, then pi = T (ρ̄)(x0). Notice that ρ̄(x0) = hai,pi
(x0). Otherwise, there exists j �= i,

1 � j � N , such that ρ̄(x0) = hāj ,pj
(x0) < hai ,pi

(x0) (we set ā1 = b1). Then from (A2), T (hāj ,pj
)(x0) ⊂ T (ρ̄)(x0),

and by (A3)(a) pj ∈ T (hāj ,pj
)(x0) and so pj = pi , a contradiction. From (A3) (b), hā2,p2 � ha2,p2 so ρ̄(x) � ρ(x),

and therefore ρ̄(x0) = hai ,pi
(x0) = ρ(x0). Hence, and once again from (A2), T (hai ,pi

)(x0) ⊂ T (ρ ∧ hai ,pi
)(x0) =

T (ρ)(x0). Thus, pi ∈ T (ρ)(x0) from (A3)(a), so x0 ∈ T (ρ)−1(pi), and the claim is proved. We then obtain
MT (ρ̄)(pi) �MT (ρ)(pi)� gi for i � 3, that is, ā ∈ W , a contradiction. �
Remark 2.6. The existence of the function ρ0 in Theorem 2.5 follows if one assumes that b0

1 > αp1 is given and
it is sufficiently close to αp1 . In fact, in this case we pick αpi

< τi < βpi
for 2 � i � N . Since F ⊂ C+(X), we

have hτi ,pi
(x) � Ci > 0 for i � 2 and x ∈ X. Then from (A3)(c), we can choose b0

1 sufficiently close to αp1 such
that hτi ,pi

(x) � min2�i�N Ci � hb0
1,p1

(x). If b0
i := τi for 2 � i � N , we then select ρ0(x) = min1�i�N hb0

i ,pi
(x) =

hb0
1,p1

(x) and so from Remark 2.4 MT (ρ0) = ω(X)δp1 . Consequently, MT (ρ0)(pi) = 0 for 2 � i � N .

Theorem 2.7. Let ρ,ρ∗ be two solutions as in Theorem 2.5, with b = (b1, . . . , bN), and b∗ = (b∗
1, . . . , b∗

N). Assume
that X is connected and ω(E) > 0 for each open set E ⊂ X. Assume in addition that condition (A3)(b) is replaced by
ht,y0 < hs,y0 for t < s.

(a) If b∗
1 � b1, then b∗

i � bi for all 1 � i � N . In particular, if b∗
1 = b1, then b∗

i = bi for all 1 � i �N .
(b) If ρ(x0) = ρ∗(x0) at some x0 ∈ X, then ρ = ρ∗.

Proof. (a) Let J = {j : bj < b∗
j } and I = {i: b∗

i � bi}. Suppose by contradiction that J �= ∅. We have I �= ∅ since
1 ∈ I . For each j ∈ J we have hbj ,pj

(x) < hb∗
j ,pj

(x) for all x ∈ X, since bj < b∗
j . And also hb∗

i ,pi
(x) � hbi ,pi

(x) for
all i ∈ I and all x ∈ X.

Let Q = {x ∈ X: T (ρ∗)(x) is not a singleton}. From (A2) and (A3)(a), we notice that if x ∈ T (ρ∗)−1(pi) \ Q, for
some 1 � i � N , then ρ∗(x) = hb∗

i ,pi
(x).

We next prove that bdyT (ρ∗)−1(PJ ) ⊂ Q, where PJ = {pj : j ∈ J }. Indeed, let z0 ∈ bdyT (ρ∗)−1(PJ ) and Nz0 be
an open neighborhood of z0. Then Nz0 ∩ (T (ρ∗)−1(PJ ))c is a nonempty open set, since (T (ρ∗)−1(PJ )) is compact.
Thus, Nz0 ∩ (T (ρ∗)−1(PJ ))c \ Q has a positive measure and therefore is nonempty. We then obtain {zk} such that
zk → z0 and zk ∈ (T (ρ∗)−1(PJ ))c \ Q. So there exists {pik } with pik = T (ρ∗)(zk) and ik ∈ I . We may assume that
pik = pi , for some i ∈ I . Therefore, ρ∗(zk) = hb∗

i ,pi
(zk). By taking limit, ρ∗(z0) = hb∗

i ,pi
(z0). From (A2) and (A3)(a),

this yields pi ∈ T (ρ∗)(z0). Since T (ρ∗)(z0) ∩PJ �= ∅, we obtain z0 ∈ Q.
As a consequence, ω((T (ρ∗)−1(PJ ))◦) = ∑

j∈J gj > 0.
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Given x0 ∈ (T (ρ∗)−1(PJ ))◦, for any open neighborhood Nx0 of x0, we have that Nx0 ∩ (T (ρ∗)−1(PJ ))◦ is a
nonempty open set. Therefore, as in the previous argument, there exists xk ∈ (T (ρ∗)−1(PJ ))◦ \ Q for k � 1 such that
xk → x0. Hence, one may assume that there exists some pj with j ∈ J such that pj = T (ρ∗)(xk). So hb∗

j ,pj
(xk) =

ρ∗(xk) and then hb∗
j ,pj

(x0) = ρ∗(x0) by taking limit. Therefore, hb∗
j ,pj

(x0) � hb∗
i ,pi

(x0) for all 1 � i � N . Thus, we
obtain for j ∈ J that

hbj ,pj
(x0) < hb∗

j ,pj
(x0) � hb∗

i ,pi
(x0) � hbi ,pi

(x0) for all i ∈ I.

Hence by continuity, there exists Nx0 a neighborhood of x0 such that

hbj ,pj
(y) < hbi,pi

(y) for all i ∈ I, j ∈ J, and y ∈ Nx0 .

By definition of ρ this implies that ρ(y) = minj∈J hbj ,pj
(y) for all y ∈ Nx0 . Therefore for each y ∈ Nx0 there exists

j0 ∈ J , depending on y, such that ρ(y) = hbj0 ,pj0
(y). Hence, once again by (A2) and (A3)(a), pj0 ∈ T (hbj0 ,pj0

)(y) ⊂
T (ρ)(y). That is, y ∈ T (ρ)−1(pj0), and therefore

Nx0 ⊂ T (ρ)−1(PJ ).

We then have that every point x ∈ (T (ρ∗)−1(PJ ))◦ has a neighborhood contained in T (ρ)−1(PJ ), that is,

(
T

(
ρ∗)−1

(PJ )
)◦ ⊂ (

T (ρ)−1(PJ )
)◦ �= X.

This is a contradiction with the fact that

ω
(
T (ρ)−1(PJ )

) =
∑
j∈J

gj = ω
((
T

(
ρ∗)−1

(PJ )
)◦)

.

(b) If b1 = b∗
1 , then bj = b∗

j for all j > 1 by part (a), and we are done. We claim that if b1 > b∗
1 , then bj > b∗

j

for all j > 1. Indeed, if bj = b∗
j for some j �= 1, then bk = b∗

k for all k �= j by part (a), a contradiction. Therefore
ρ∗(x0) = minhb∗

i ,pi
(x0) < minhbi,pi

(x0) = ρ(x0), a contradiction. �
Theorem 2.8. Let {μl} be a sequence of discrete Radon measures in Y such that μl → μ weakly and μl(Y ) = ω(X)

for l � 1. Let ρl be a solution obtained in Theorem 2.5 corresponding to μl . Assume that there exists R0 > 0 such that
R0 ∈ Range(ρl) for l � 1. Suppose that

(i) For each R1 > 0 with R1 ∈ Range(ht,y), there exists CR1 > 0 such that C−1
R1

� ht,y � CR1 .
(ii) For any C1 > C0 > 0, the family {f ∈F : C0 � f � C1 in X} is compact in C(X).

Then there exists ρ ∈F satisfying MT (ρ) = μ.

Proof. By (ii) and Lemma 2.3, it suffices to show {ρl} is bounded from below and above. Assume ρl(xl) = R0 for
some xl ∈ X. Then there exists hbl,yl

such that ρl � hbl,yl
and R0 = ρl(xl) = hbl,yl

(xl). By (i), C−1
R0

� hbl,yl
� CR0

for some CR0 . Therefore, ρl � CR0 . To get a lower bound, given x1 ∈ X, there exists hb′
l ,y

′
l

such that ρl � hb′
l ,y

′
l

and
ρl(x1) = hb′

l ,y
′
l
(x1). Hence, R0 � hb′

l ,y
′
l
(xl). Since ht,y′

l
is continuous and decreasing to zero ((A3)(b) and (c)), there

exists b′′
l � b′

l with R0 = hb′′
l ,y′

l
(xl). It follows from (A3)(b) that ρl(x1)� hb′′

l ,y′
l
(x1) � C−1

R0
. Hence ρl � C−1

R0
. �

2.2. Convex case

We assume here that F ⊂ C+(X) and condition (A1) above is replaced by

(A1′) if f1, f2 ∈ F , then f1 ∨ f2 = max{f1, f2} ∈F .
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We say that the class F ⊂ C+(X) is T -convex if F satisfies (A1′) and there exists a map T : F → Cs(X,Y ) that is
continuous at each φ ∈ F and the following condition holds:

(A2′) if φ1(x0) � φ2(x0), then T (φ1)(x0) ⊂ T (φ1 ∨ φ2)(x0).

Here we substitute condition (A3) by

(A3′) for each y0 ∈ Y there exists an interval (αy0 , βy0) and a family of functions {ht,y0(x)}αy0 <t<βy0
⊂F satisfying

(a) y0 ∈ T (ht,y0)(x) for all x ∈ X,
(b) ht,y0 � hs,y0 for t � s,
(c) ht,y0 → 0 uniformly as t → βy0 ,
(d) ht,y0 is continuous in C(X) with respect to t , i.e., maxx∈X |ht ′,y0(x) − ht,y0(x)| → 0 as t ′ → t , for αy0 <

t < βy0 .

Under these assumptions we prove the following theorem.

Theorem 2.9. Let X,Y be compact metric spaces and ω is a Radon measure in X. Let p1, . . . , pN be distinct points
in Y , and g1, . . . , gN be positive numbers with N � 2.

Let F ⊂ C+(X) and T :F → Cs(X,Y ) be such that F is T -convex and (A3′) holds.
Assume that

ω(X) =
N∑

i=1

gi. (2.4)

Suppose that there exists (b0
1, . . . , b

0
N) with hb0

1,p1
(x) � min2�i�N hb0

i ,pi
(x) on X. Then there exist bi ∈ (αpi

, βpi
),

2 � i �N , such that the function, with b1 = b0
1 ,

ρ(x) = max
1�i�N

hbi,pi
(x)

satisfies

MT (ρ) =
N∑

i=1

giδpi
.

Proof. Let b1 = b0
1 and η = minX hb1,p1 > 0. From (A3′)(c), there exists τ > 0 such that

max
X

hβpi
−τ,pi

� η

for all 2 � i � N . Therefore, if ρτ = hb1,p1 ∨ (max2�i�N hβpi
−τ,pi

) = hb1,p1 , then MT (ρτ ) = ω(X)δp1 , and so
MT (ρτ )(pi) = 0 for 2 � i � N .

Consider the set

W(b1) = {
(b2, . . . , bN): αpi

< bi � βpi
− τ ; MT (ρ)(pi) � gi, i = 2, . . . ,N

}
,

W(b1) �= ∅, because (βp2 − τ, . . . , βpN
− τ) ∈ W(b1).

We claim that bi � b0
i , for 2 � i � N , for all (b2, . . . , bN) ∈ W(b1).

To prove the claim, we first show MT (ρ)(Y \ {p1, . . . , pN }) = 0; ρ = max1�i�N hbi,pi
. Indeed, for z0 ∈ E =

T (ρ)−1(Y \ {p1, . . . , pN }), there is p ∈ T (ρ)(z0) with p �= pi for 1 � i � N . On the other hand, ρ(z0) = hbk,pk
(z0)

for some k. From (A2′) and (A3′)(a) we then have pk ∈ T (hbk,pk
)(z0) ⊂ T (ρ)(z0). So T (ρ) is not single-valued at

z0 and so ω(E) = 0. Consequently, from (2.4) we get MT (ρ)(p1) � g1 > 0.
Now suppose by contradiction that bi < b0

i for some 2 � i � N . Since b1 = b0
1, it follows from the assump-

tion and (A3′)(b) that hb1,p1 � h 0 � hbi,pi
in X. This implies that for each x0 ∈ X, there is j �= 1 such that
bi ,pi
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ρ(x0) = hbj ,pj
(x0). By (A2′), pj ∈ T (hbj ,pj

)(x0) ⊂ T (ρ)(x0). Thus, X = T (ρ)−1({p2, . . . , pN }) and MT (ρ)(p1) =
ω(T (ρ)−1(p1)) = 0, a contradiction and the claim is proved.

As in the proof of Theorem 2.5, one can show that MT (ρ)(pi) is continuous in b′ = (b2, . . . , bN) for each
1 � i � N . Therefore, W(b1) is compact.

Finally, to get the existence of solutions, the function z = b2 + · · · + bN attain its minimum on W(b1) at some
point (a2, . . . , aN). We claim that ρ(x) = (max2�i�N hai,pi

) ∨ hb1,p1 is the desired solution. Otherwise, we may
assume, for example, that MT (ρ)(p2) < g2. Let ā = (a2 − ε, a3, . . . , aN) and ρ̄(x) = (max2�i�N hāi ,pi

) ∨ hb1,p1 . By
continuity MT (ρ̄)(p2) < g2 for all ε sufficiently small.

On the other hand, for i � 3, we claim that T (ρ̄)−1(pi) ⊂ T (ρ)−1(pi) except on a set of ω-measure zero. Indeed,
if x0 ∈ T (ρ̄)−1(pi) and T (ρ̄)(x0) is a single point, then pi = T (ρ̄)(x0). Notice that ρ̄(x0) = hai,pi

(x0). Otherwise,
if ρ̄(x0) = hāj ,pj

(x0) > hai ,pi
(x0) for some j �= i (we set ā1 = b1), then by (A2′) and (A3′)(a) pj ∈ T (hāj ,pj

)(x0) ⊂
T (ρ̄)(x0) and so pj = pi , a contradiction. Set ā2 = a2 − ε. From (A3′) (b), hā2,p2 � ha2,p2 and hence hai ,pi

(x0) =
ρ(x0). Hence, and once again from (A2′), T (hai ,pi

)(x0) ⊂ T (ρ ∨ hai ,pi
)(x0) = T (ρ)(x0). Thus, pi ∈ T (ρ)(x0) from

(A3′)(a); so x0 ∈ T (ρ)−1(pi), and the claim is proved. We then obtain MT (ρ̄)(pi) � MT (ρ)(pi) � gi for i � 3, that
is, ā ∈ W , a contradiction. �

Similar to Theorem 2.7 we have the following.

Theorem 2.10. Let ρ,ρ∗ be two solutions as in Theorem 2.9, with b = (b1, . . . , bN), and b∗ = (b∗
1, . . . , b∗

N). Assume
that X is connected and ω(E) > 0 for each open set E ⊂ X. Assume in addition that condition (A3′)(b) is replaced
by hs,y0 < ht,y0 for t < s.

(a) If b∗
1 � b1, then b∗

i � bi for all 1 � i �N . In particular, if b∗
1 = b1, then b∗

i = bi for all 1 � i � N .
(b) If ρ(x0) = ρ∗(x0) at some x0 ∈ X, then ρ = ρ∗.

Theorem 2.11. Let {μl} be a sequence of discrete Radon measures in Y such that μl → μ weakly and μl(Y ) = ω(X)

for l � 1. Let ρl be a solution obtained in Theorem 2.9 corresponding to μl . Assume that there exists R0 > 0 such that
R0 ∈ Range(ρl) for l � 1 and R0 < limt→α+

y
ht,y(x) for x ∈ X, y ∈ Y . Suppose that

(i) For each R1 > 0 with R1 ∈ Range(ht,y), there exists CR1 > 0 such that C−1
R1

� ht,y � CR1 .
(ii) For any C1 > C0 > 0, the family {f ∈F : C0 � f � C1 in X} is compact in C(X).

Then there exists ρ ∈F satisfying MT (ρ) = μ.

Proof. By (ii) and Lemma 2.3, it suffices to show {ρl} is bounded from below and above. Assume ρl(xl) = R0 for
some xl ∈ X. Then there exists hbl,yl

such that ρl � hbl,yl
and R0 = ρl(xl) = hbl,yl

(xl). By (i), C−1
R0

� hbl,yl
� CR0

for some CR0 . Therefore, ρl � C−1
R0

. To get an upper bound, given x1 ∈ X, there exists hb′
l ,y

′
l

such that ρl � hb′
l ,y

′
l

and
ρl(x1) = hb′

l ,y
′
l
(x1). Hence, R0 � hb′

l ,y
′
l
(xl). Since R0 < limt→α+

y′
l

ht,y′
l
(xl), there exists b′′

l � b′
l with R0 = hb′′

l ,y′
l
(xl).

It follows from (A3′)(b) that ρl(x1) � hb′′
l ,y′

l
(x1)� CR0 . Hence ρl � CR0 . �

2.3. Convex case infinity

We assume here that the class F ⊂ C(X) is T -convex, i.e., F satisfies (A1′) and there exists a map T : F →
Cs(X,Y ) that is continuous at each φ ∈ F and (A2′) holds. We also consider the following condition.

(A3′′) For each y0 ∈ Y there exists an interval (αy0 , βy0) and a family of functions {ht,y0(x)}αy0 <t<βy0
⊂F satisfying

(a) y0 ∈ T (ht,y0)(x) for all x ∈ X,
(b) ht,y0 � hs,y0 for t � s,
(c) ht,y0 → +∞ uniformly as t → βy0 ,
(d) ht,y0 is continuous in C(X) with respect to t , i.e., maxx∈X |ht ′,y0(x) − ht,y0(x)| → 0 as t ′ → t , for αy0 <

t < βy0 .
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Under these assumptions we prove the following theorem.

Theorem 2.12. Let X,Y be compact metric spaces and ω be a Radon measure in X. Let p1, . . . , pN be distinct points
in Y , and g1, . . . , gN be positive numbers with N � 2.

Let F ⊂ C(X) and T :F → Cs(X,Y ) be such that F is T -convex and (A3′′) holds.
Assume that

ω(X) =
N∑

i=1

gi, (2.5)

and there exists ρ0 = max1�i�N hb0
i ,pi

such that MT (ρ0)(pi) � gi for 2 � i � N . Then there exist bi ∈ (αpi
, βpi

),

2 � i �N , such that the function, with b1 = b0
1 ,

ρ(x) = max
1�i�N

hbi,pi
(x)

satisfies

MT (ρ) =
N∑

i=1

giδpi
.

Proof. We convert this case to the concave case considered in Subsection 2.2, and use Theorem 2.5 to prove the
theorem. Consider the family F∗ = {e−f : f ∈ F} ⊂ C+(X) and the mapping T ∗ : F∗ → Cs(X,Y ) given by
T ∗(e−f ) = T (f ). It is easy to verify that (A1) and (A2) hold and hence F∗ is T ∗-concave. To verify (A3), for
y0 ∈ Y , consider the interval (−βy0 ,−αy0) and h∗

t,y0
(x) = e−h−t,y0 (x). Obviously, {h∗

t,y0
(x)}−βy0 <t<−αy0

⊂ F∗ and
satisfies (A3)(a)–(d). Set ρ∗

0 = e−ρ0 = min1�i�N h∗
−b0

i ,pi
. By definition of T ∗, T ∗(ρ∗

0 ) = T (ρ0), and consequently

MT ∗(ρ∗
0 )(pi) = MT (ρ0)(pi) � gi . By Theorem 2.5, there exists ρ∗(x) = min1�i�N h∗−bi ,pi

satisfying the equation

MT ∗(ρ) = ∑N
i=1 giδpi

. Since ρ∗ = e−ρ , MT (ρ) = ∑N
i=1 giδpi

. �
3. Snell’s law of refraction

Suppose Γ is a surface in R
n that separates two media I and II that are homogeneous and isotropic. Let v1 and

v2 be the velocities of propagation of light in the media I and II respectively. The index of refraction of medium I is
n1 = c/v1, where c is the velocity of propagation of light in the vacuum, and similarly n2 = c/v2. If a ray of light3

having direction x ∈ Sn−1 and traveling through medium I hits Γ at the point P , and ν is the unit normal to Γ at P

going towards medium II, then this ray is refracted in the direction m ∈ Sn−1 through medium II according with the
Snell law in vector form: the vectors x, ν and m are all coplanar, and the vector n2m − n1x is parallel to the normal
vector ν, that is, setting κ = n2/n1, we have

x − κm = λν, (3.1)

for some λ ∈ R. Making the vector product of this equation with the normal ν we obtain the well known form of the
Snell law: n1 sin θ1 = n2 sin θ2, where θ1 is the angle between x and ν (the angle of incidence), θ2 the angle between
m and ν (the angle of refraction).

When κ < 1, or equivalently v1 < v2, waves propagate in medium II faster than in medium I, or equivalently,
medium I is denser than medium II. In this case the refracted rays tend to bent away from the normal, that is the case
for example, when medium I is glass and medium II is air. In case κ > 1, waves propagate in medium I faster than in
medium II, and the refracted rays tend to bent towards the normal.

We summarize the physical constraints of refraction in the following lemma whose proof is in [5].

3 Since the refraction angle depends on the frequency of the radiation, we assume our light ray is monochromatic.
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Lemma 3.1. Let n1 and n2 be the indices of refraction of two media I and II, respectively, and κ = n2/n1. Then a
light ray in medium I with direction x ∈ Sn−1 is refracted by some surface into a light ray with direction m ∈ Sn−1 in
medium II if and only if m · x � κ , when κ < 1; and if and only if m · x � 1/κ , when κ > 1.

4. Cartesian ovals

To resolve our problem it is important to solve first the following simpler problem: given a point O inside medium
I and a point P inside medium II, find an interface surface S between media I and II that refracts all rays emanating
from the point O into the point P . Suppose O is the origin, and let X(t) be a curve on S . By the Snell law of refraction
the tangent vector X′(t) satisfies

X′(t) ·
(

X(t)

|X(t)| − κ
P − X(t)

|P − X(t)|
)

= 0.

That is,∣∣X(t)
∣∣′ + κ

∣∣P − X(t)
∣∣′ = 0.

Therefore S is the Cartesian oval

|X| + κ|X − P | = b. (4.1)

Since f (X) = |X| + κ|X − P | is a convex function, the oval is a convex set.
In our treatment of the problem, we need to analyze the polar equation and find the refracting piece for the oval.

Write X = ρ(x)x with x ∈ Sn−1. Then writing κ|ρ(x)x − P | = b − ρ(x), squaring this quantity and solving the
quadratic equation yields

ρ(x) = (b − κ2x · P) ± √
(b − κ2x · P)2 − (1 − κ2)(b2 − κ2|P |2)

1 − κ2
. (4.2)

Set

�(t) = (
b − κ2t

)2 − (
1 − κ2)(b2 − κ2|P |2). (4.3)

4.1. Case 0 < κ < 1

We have

�(x · P) > κ2(x · P − b)2, if |x · P | < |P |. (4.4)

If b � |P |, then O and P are inside or on the oval, and so the oval cannot refract rays to P . If the oval is nonempty,
then κ|P | � b. In case κ|P | = b, the oval reduces to the point O . The only interesting case is then κ|P | < b < |P |.
From the equation of the oval we get that ρ(x) � b. So we now should decide which values ± to take in the definition
of ρ(x). Let ρ+ and ρ− be the corresponding ρ’s. We claim that ρ+(x) > b and ρ−(x) � b. Indeed,

ρ+(x) = (b − κ2x · P) + √
�(x · P)

1 − κ2
� (b − κ2x · P) + κ|b − x · P |

1 − κ2

= b + κ2(b − x · P) + κ|b − x · P |
1 − κ2

� b.

The equality ρ+(x) = b holds only if |x · P | = |P | and b = x · P . So ρ+(x) > b if κ|P | < b < |P |. Similarly,

ρ−(x) = (b − κ2x · P) − √
�(x · P)

1 − κ2
� (b − κ2x · P) − κ|b − x · P |

1 − κ2

= b + κ2(b − x · P) − κ|b − x · P |
2

� b.

1 − κ
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(a) |X| + 2/3|X − P | = 1.4 − 1.9, P = (2,0) (b) |X| + 2/3|X − P | = 1.7, P = (2,0)

Fig. 1. Cartesian ovals κ < 1, e.g., glass to air.

So the claim is proved. Therefore the polar equation of the oval is then given by

h(x,P,b) = ρ−(x) = (b − κ2x · P) − √
�(x · P)

1 − κ2
. (4.5)

To find the refracting part of the oval, from the physical constraint for refraction (Lemma 3.1), we must have
x · ( P−h(x,P,b)x

|P−h(x,P,b)x| ) � κ , and by (4.1) it is reduced to

x · P � b. (4.6)

The estimates of h(x,P,b) are contained in the following lemma.

Lemma 4.1. Let 0 < κ < 1, h(x,P,b) given by (4.5), and assume that κ|P | < b < |P |. Then we have

min
x∈Sn−1

h(x,P,b) = b − κ|P |
1 + κ

, and max
x∈Sn−1

h(x,P,b) = b − κ|P |
1 − κ

. (4.7)

We also have

min
x∈Sn−1

∣∣P − h(x,P,b)x
∣∣ = |P | − b

1 − κ
= min

x·P�b

∣∣P − h(x,P,b)x
∣∣ =

∣∣∣∣P − h

(
P

|P | ,P , b

)
P

|P |
∣∣∣∣, (4.8)

and

max
x·P�b

∣∣P − h(x,P,b)x
∣∣ =

√|P |2 − b2
√

1 − κ2
. (4.9)

Proof. We write

h(x,P,b) = b2 − κ2|P |2
(b − κ2x · P) + √

�(x · P)
(4.10)

and let g(t) = (b − κ2t) + √
�(t). We have g is decreasing for −|P | � t � |P |, and so g(−|P |) � g(x · P) � g(|P |).

Hence b2−κ2|P |2
g(−|P |) � h(x,P,b) � b2−κ2|P |2

g(|P |) and calculating g(−|P |) and g(|P |) the estimates in (4.7) follow.
To prove (4.8), since κ|P −h(x,P,b)x| = b −h(x,P,b), the first equality follows from the right identity in (4.7).

To show the second identity in (4.8), notice that since the oval is convex and symmetric with respect to the line joining
0 and P we have that minx∈Sn−1 |P − h(x,P,b)x| is attained at x = P/|P |. In particular, this gives the explicit value
of the distance from P to the oval.

To prove (4.9) we have maxx·P�b |P − h(x,P,b)x| = 1
κ
(b − minx·P�b h(x,P,b)), and we claim that

minx·P�b h(x,P,b) = h(z,P, b), for all z · P = b. In fact, this follows from (4.10) since g(x · P) � g(b), obtaining

h(x,P,b) � b −
√

�(b)

1−κ2 = b − κ√
1−κ2

√|P |2 − b2. �
Remark 4.2. If |P | → ∞, then the oval converges to an ellipsoid which is the surface having the uniform refraction
property in the far field case, see [5]. In fact, if m = P/|P | and b = κ|P | + C with C positive constant we have
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h(x,P,b) = b2 − κ2|P |2
b − κ2x · P + √

�(x · P)

= C(2κ|P | + C)

(κ|P | − κ2x · m|P | + C) + √
(κ|P | − κ2x · m|P | + C)2 − (1 − κ2)C(2κ|P | + C)

→ 2κC

(κ − κ2x · m) + √
(κ − κ2x · m)2

= C

1 − κx · m
as |P | → ∞.

4.2. Case κ > 1

In this case we must have |P | � b, and in case b = |P | the oval reduces to the point P . Also b < κ|P |, since
otherwise the points 0,P are inside the oval or 0 is on the oval, and therefore there cannot be refraction if b � κ|P |.
So to have refraction we must have |P | < b < κ|P | and so the point P is inside the oval and 0 is outside the oval.

Rewriting ρ in (4.2) we get that

ρ±(x) = (κ2x · P − b) ± √
(κ2x · P − b)2 − (κ2 − 1)(κ2|P |2 − b2)

κ2 − 1
.

Now �(x · P) � 0 amounts x · P � b+√
(κ2−1)(κ2|P |2−b2)

κ2 , by Noticing that ρ±(x) < 0 if κ2x · P − b < 0. We have

that ρ−(x) � ρ+(x) � (κ2|P |−b)+√
�(|P |)

κ2−1
= κ|P |+b

κ+1 < b. To have refraction, by the physical constraint we need to have

x · P−xρ±(x)
|P−xρ±(x)| � 1/κ , which is equivalent to κ2x ·P −b � (κ2 −1)ρ±(x). Therefore, the physical constraint is satisfied

only by ρ−.
For |P | < b < κ|P |, the refracting piece of the oval is then given by

O(P, b) =
{
h(x,P,b)x: x · P � b + √

(κ2 − 1)(κ2|P |2 − b2)

κ2

}
(4.11)

with

h(x,P,b) = ρ−(x) = (κ2x · P − b) − √
(κ2x · P − b)2 − (κ2 − 1)(κ2|P |2 − b2)

κ2 − 1
. (4.12)

Let us define

I (P, b) := b + √
(κ2 − 1)(κ2|P |2 − b2)

κ2|P | , (4.13)

and let

Γ (P,b) = {
x ∈ Sn−1: x · P � I (P, b)|P |}, (4.14)

that is, Γ (P,b) denotes the set of directions in O(P, b).
We notice that I (P, b) is decreasing as a function of b and tends to one when b → |P |+, and tends to 1/κ when

b → (κ|P |)−.
If |P | → ∞, then the oval O(P, b) converges to the semi-hyperboloid appearing in the far field refraction problem

when κ > 1, see [5]. Indeed, let m = P
|P | ∈ Sn−1 and b = κ|P | − a with a > 0 a constant. Then we have

b + √
(κ2 − 1)(κ2|P |2 − b2)

κ2|P | = κ|P | − a + √
(κ2 − 1)(κ2|P |2 − (κ|P | − a)2)

κ2|P | → 1

κ

as |P | → ∞. On the other hand, if x · m > 1/κ , we get

h(x,P,b) = a(2κ|P | − a)

(κ2|P |x · m − κ|P | + a) + √
(κ2|P |x · m − κ|P | + a)2 − (κ2 − 1)a(2κ|P | − a)

→ a2κ

κ2x · m − κ + √
(κ2x · m − κ)2

= a

κx · m − 1
,

as |P | → ∞.
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(a) |X| + 3/2|X − P | = 2.9 − 2.4, P = (2,0) (b) |X| + 3/2|X − P | = 2.7, P = (2,0)

Fig. 2. Cartesian ovals κ > 1, e.g., air to glass.

The following lemma gives estimates for the size of h(x,P,b).

Lemma 4.3. Let κ > 1, h(x,P,b) is given by (4.12), assume |P | < b < κ|P |, and Γ (P,b) given by (4.14). We have

(a) min
x∈Γ (P,b)

h(x,P, b) = κ|P | − b

κ − 1
;

(b) max
x∈Γ (P,b)

h(x,P, b) =
√

κ2|P |2 − b2
√

κ2 − 1
�

√
2|P |

√
κ|P | − b

κ − 1
;

(c)
b − |P |

κ
�

∣∣P − h(x,P,b)x
∣∣ � b − |P |

κ − 1
, for x ∈ Γ (P,b);

(d) The following inequalities hold:
√

κ|P | − b√|P |
κ2 + κ − 2

2κ
√

2κ(κ2 − 1)
� I (P, b) − 1

κ
�

√
κ|P | − b√|P |

2
√

κ − 1

κ
,

where I (P, b) is given by (4.13).

Proof. (a) The minimum of h(x,P,b) is attained when x = P/|P |. So

min
x∈Γ (P,b)

h(x,P, b) = h
(
P/|P |,P , b

) = κ2|P |2 − b2

(κ2|P | − b) + √
�(|P |) = κ|P | − b

κ − 1
.

(b) The maximum of h(x,P,b) on Γ (P,b) is attained when

x · P = b + √
(κ2 − 1)(κ2|P |2 − b2)

κ2
,

that is, when �(x · P) = 0 and the formula follows.
(c) We have

min
x∈Γ (P,b)

∣∣P − h(x,P,b)x
∣∣ = min

x∈Γ (P,b)

(
b − h(x,P,b)

κ

)
= b − maxx∈Γ (P,b) h(x,P, b)

κ

= b
√

κ2 − 1 − √
κ2|P |2 − b2

κ
√

κ2 − 1
� b

√
κ2 − 1 − |P |√κ2 − 1

κ
√

κ2 − 1
.

Furthermore, set ρ(x) = h(x,P,b) and then |P | + (κ − 1)|P − ρ(x)x| � ρ(x) + κ|P − ρ(x)x| = b. It yields
|P − ρ(x)x| � b−|P |

κ−1 .
(d) It follows writing

I (P, b) − 1

κ
=

√
κ|P | − b

κ2|P | · (κ2 − 2)κ|P | + κ2b√
(κ2 − 1)(κ|P | + b) + √

κ|P | − b

and noticing that (κ2 + κ − 2)κ|P | < (κ2 − 2)κ|P | + κ2b < 2(κ2 − 1)κ|P |, since |P | < b < κ|P |. �
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Remark 4.4. If b → (κ|P |)−, then, by Lemma 4.3(a), O(P, b) approaches zero.

Remark 4.5. If b → |P |+, then O(P, b) shrinks to P . Because |P | + (κ − 1)|P − X| � |X| + κ|P − X| = b for
X ∈ O(P, b) and so |P − X|� b−|P |

κ−1 .

5. Near field refractor problem for κ < 1

5.1. Formulation of problem

Let Ω ⊂ Sn−1 be a domain with |∂Ω| = 0 (measure in the sphere). Let D ⊂R
n be a “target” domain that we want

to illuminate and suppose it is contained in an n − 1 dimensional hypersurface, and assume D is compact, and 0 /∈ D.
Points in the sphere will be denoted with lower case letters and points in R

n by capitals.
We make the following assumptions on Ω and D:

(H1) There exists τ with 0 < τ < 1 − κ such that x · P � (κ + τ)|P | for all x ∈ Ω and all P ∈ D.
(H2) Let 0 < r0 � τ

1+κ
dist(0,D) and consider the cone in R

n

Qr0 = {tx: x ∈ Ω, 0 < t � r0}.
For each m ∈ Sn−1 and for each X ∈ Qr0 we assume that D ∩ {X + tm: t � 0} contains at most one point. That
is, for each X ∈ Qr0 each ray emanating from X intersects D at most in one point.

Given P ∈R
n and κ|P | < b < |P |, keeping in mind (4.5) and (4.6), a refracting oval is the set

O(P, b) = {
h(x,P,b)x: x ∈ Sn−1, x · P � b

}
where

h(x,P,b) = (b − κ2x · P) − √
(b − κ2x · P)2 − (1 − κ2)(b2 − κ2|P |2)

1 − κ2
.

Definition 5.1. Let S = {xρ(x): x ∈ Ω} ⊂ Qr0 be a surface. We say that S is a near field refractor if for any point
yρ(y) ∈ S there exist P ∈ D and b > 0 such that the refracting oval O(P, b) supports S at yρ(y), i.e. ρ(x) �
h(x,P,b) for all x ∈ Ω with equality at x = y.

The near field refractor mapping associated with S is defined by

RS(x) = {
P ∈ D: there exists a supporting oval O(P, b) to S at ρ(x)x

}
. (5.1)

The definition implies that if O(P, b) is a supporting oval, then the opening of O(P, b) is wider than Ω , i.e.,
x · P � b for all x ∈ Ω .

Remark 5.2. If S is a near field refractor, then RS(Ω) = D. Indeed, let P ∈ D and b0 = (κ + τ)|P |. Then from the
left identity in (4.7) and the assumption on r0 in (H2) we get that r0 � b0−κ|P |

1+κ
� h(x,P,b0) for x ∈ Ω . Also from

(H1), we have x · P � b0. Hence S ⊂ Qr0 enclosed by O(P, b0). Let

b1 = inf
{
b: ρ(x) � h(x,P,b), x · P � b ∀x ∈ Ω

}
.

Thus, the oval O(P, b1) supports S at some y ∈ Ω .
We point out that if S =O(P, b), then D \ {P } ⊂RS(∂Ω).

Lemma 5.3. If S is a near field refractor with defining function ρ(x), then ρ is Lipschitz continuous in Ω with a
Lipschitz constant depending only on κ ad τ in the assumptions (H1) and (H2) and maxD |P |.
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Proof. Indeed, given x0 ∈ Ω , S has a supporting oval h(x,P,b) at ρ(x0)x0 with P ∈ D. Then

ρ(x) − ρ(x0) � h(x,P,b) − h(x0,P , b)

= 1

1 − κ2

((
b − κ2x · P ) − (

b − κ2x0 · P ) + √
�(x0 · P) − √

�(x · P)
)

= 1

1 − κ2
(I + II),

where � is given by (4.3). We have |I | � C(κ)|P | · |x − x0| and

II = �(x0 · P) − �(x · P)√
�(x0 · P) + √

�(x · P)
.

We estimate �(x0 · P) from below. Obviously, the function �(t) has a minimum at t = b/κ2, is increasing in
(b/κ2,+∞) and decreasing in (−∞, b/κ2). Since κ < 1, we have b/κ < b/κ2, and so � decreases in the inter-
val [b, b/κ]. Since |P | ∈ (b, b/κ) and b � x · P � |P |,

min[b,|P |]�(t) = �
(|P |) = κ2(|P | − b

)2
,

and therefore

�(x · P) � κ2(|P | − b
)2

, for x · P � b. (5.2)

From (4.9)

|P | − b � 1 − κ2

2|P |
∣∣P − h(x,P,b)x

∣∣2
, for all x · P � b,

which combined with (5.2) yields

√
�(x · P) � κ

1 − κ2

2|P |
∣∣P − h(x,P,b)x

∣∣2
, for all x · P � b. (5.3)

Since ρ(x0) = h(x0,P , b), and S ⊂ Qr0 , we get that h(x0,P , b) � r0. From (H2), |P | � r0
1+κ
τ

. Therefore we obtain
the estimate

√
�(x0 · P) � κ

1 − κ2

2|P |
∣∣P − h(x0,P , b)x0

∣∣2 � κ
1 − κ2

2|P |
(|P | − r0

)2

� κ(1 − κ)(1 + κ − τ)2

2(1 + κ)
|P |. (5.4)

Clearly, |�(x0 · P) − �(x · P)| � C(κ)|P |2|x − x0| which completes the proof of the lemma. �
5.2. Application of the setup from Section 2 to the solution of the near field refractor problem

We apply the setup in that section with the spaces X = Ω , and Y = D. The Radon measure ω in Ω there is now
given by ω = f dx with f ∈ L1(Ω) nonnegative. If S is a near field refractor in the sense of Definition 5.1, then it
is proved in Lemma 5.4 below that the map Φ = RS ∈ Cs(Ω,D). From Lemma 2.1 we therefore obtain that the set
function

MS,f (F ) :=
∫

R−1
S (F )

f dx, (5.5)

is a Radon measure defined on D. We call this measure the near field refractor measure associated with f and the
refractor S .
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Let Sρ denote the near field refractor with defining radial function ρ given by Definition 5.1. We let F be the
family of functions in C+(Ω) given by

F = {
ρ(x): Sρ is a near field refractor

}
.

On F we define the mapping T by

T (ρ) =RSρ
.

To continue with the application of the results from Section 2, we need to show also that T is continuous at each
ρ ∈F in the sense of Definition 2.2. This is proved in Lemma 5.5 below.

Lemma 5.4. For each near field refractor S , we have RS ∈ Cs(Ω,D).

Proof. By Remark 5.2, RS is surjective. Now show that RS(x) is single-valued for a.e. x with respect to ω. If RS(x)

contains more than one point, then S parameterized by ρ has two distinct supporting ovals O(P1, b1) and O(P2, b2)

at ρ(x)x with P1 �= P2. We claim that ρ(x)x is a singular point of S . Otherwise, if S has tangent hyperplane Π at
ρ(x)x, then Π must coincide both with the tangent hyperplane of O(P1, b1) and that of O(P2, b2) at ρ(x)x. From
the Snell law we get that P1−ρ(x)x

|P1−ρ(x)x| = P2−ρ(x)x
|P2−ρ(x)x| := m, and so the ray through X = ρ(x)x with direction m contains

P1,P2 and therefore P1 = P2 from assumption (H2), a contradiction. Since the graph of S is Lipschitz and |∂Ω| = 0,
the set of singular points of S has measure zero and therefore RS(x) is single-valued for a.e. x ∈ Ω .

To prove that RS is continuous, let xi → x0 and Pi ∈ RS(xi). Let O(Pi, bi) be a supporting oval to S at ρ(xi)xi .
Then

ρ(x) + κ
∣∣Pi − ρ(x)x

∣∣ � bi for x ∈ Ω, (5.6)

with equality at x = xi and x ·Pi � bi for all x ∈ Ω . Assume that a1 � ρ(x) � r0 on Ω for some constant a1 > 0. From
(4.7) and (H2) we get a1(1 − κ) + κ|Pi | � bi � κ|Pi | + r0(1 + κ) � (κ + τ)|Pi |. Therefore selecting a subsequence
we can assume that Pi → P0 ∈ D and bi → b0, as i → ∞. By taking limit in (5.6), one obtains that the oval O(P0, b0)

supports S at ρ(x0)x0, x · P0 � b0, and P0 ∈RS(x0). �
Lemma 5.5. The refractor mapping T (ρ) =RSρ

is continuous at each ρ ∈ F .

Proof. Suppose ρj → ρ uniformly as j → ∞. Let x0 ∈ Ω and Pj ∈RSρj
(x0). Then there exists bj such that ρj (x) �

h(x,Pj , bj ) for all x ∈ Ω with equality at x = x0 and with x · Pj � bj . As in the proof of Lemma 5.4, κ|Pj | +
a(1 − κ) � bj � (κ + τ)|Pj | for some a > 0, so there exists a subsequence Pjk

→ P0 and P0 ∈ RSρ
(x0). �

We therefore can apply Lemma 2.3 to obtain that the definition of refractor measure given in (5.5) is stable by
uniform limits, i.e., if ρj → ρ uniformly, then MSρj

,f →MSρ,f weakly.
To be able to apply Theorem 2.5, we next need to verify that the family F and the map T satisfy conditions

(A1)–(A3) from Subsection 2.1. Indeed, (A1) follows immediately from the definition of refractor. Condition (A2)
immediately follows from the definition of refractor.

It remains to verify (A3). For that we use the estimates for ovals proved in Section 4. Indeed, with the notation in
condition (A3) we will take

ht,y0(x) = h(x,P,b)

with the understanding that t = b, and y0 = P , and h(x,P,b) is the oval defined by (4.5). In other words, we will
show that the family{

h(·,P , b): κ|P | < b < κ|P | + (1 − κ)r0
} ⊂F,

and verifies (A3), with r0 from (H2). Indeed, to show the inclusion, if b < κ|P | + (1 − κ)r0, then from (H2) and
(H1) we have b < κ|P | + 1−κ

1+κ
τ |P | � (κ + τ)|P | � x · P for all x ∈ Ω . So the oval h(x,P,b)x refracts in Ω and in

particular P ∈ T (h(·,P , b))(x) for all x ∈ Ω̄ , that is, (A3)(a) holds. Condition (A3)(b) is trivial. Condition (A3)(c)
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follows from the second identity in (4.7). To verify (A3)(d), we notice that since �(x · P) has a lower bound given in
(5.4), we obtain that |h(x,P,b′)−h(x,P,b)| � C|b′ − b|, with C depending only on the constants in (H1) and (H2).

The notion of weak solution is introduced through conservation of energy.

Definition 5.6. A near field refractor S is a weak solution of the near field refractor problem for the case κ < 1 with
emitting illumination intensity f (x) on Ω and prescribed refracted illumination intensity μ on D if for any Borel set
F ⊂ D

MS,f (F ) =
∫

R−1
S (F )

f dx = μ(F). (5.7)

We are now ready to apply Theorem 2.5 to solve the near field refractor problem when the measure μ is a linear
combination of deltas.

5.2.1. Existence for sum of Dirac measures
Theorem 5.7. Suppose (H1) and (H2) hold. Let P1, . . . ,PN be distinct points in D, g1, . . . , gN are positive numbers,
and f ∈ L1(Ω) with f > 0 a.e. in Ω such that

∫
Ω

f (x)dx =
N∑

i=1

gi. (5.8)

Then, for each b1 with κ|P1| < b1 < κ|P1| + r0
(1−κ)2

1+κ
, there exists a unique (b2, . . . , bN) such that the poly-oval

S = {ρ(x)x: x ∈ Ω} with

ρ(x) = min
1�i�N

h(x,Pi, bi) (5.9)

is a weak solution to the near field refractor problem. Moreover, MS,f ({Pi}) = gi for 1 � i � N .

Proof. To prove the theorem, we apply Theorem 2.5. So we only need to verify that there exists ρ0(x) =
min1�i�N h(x,Pi, b

0
i ) satisfying MSρ0 ,f (Pi)� gi for 2 � i �N .

Rewrite b1 = κ|P1|+ (r0 −σ)
(1−κ)2

1+κ
for some σ > 0. Let b0

1 = b1, and b0
i = κ|Pi |+ (r0 −σ)(1−κ) for 2 � i � N .

Then ρ0(x) = h(x,P1, b
0
1), because h(x,P1, b

0
1) �

b0
1−κ|P1|

1−κ
� (r0−σ)(1−κ)

1+κ
= b0

i −κ|Pi |
1+κ

� h(x,Pi, b
0
i ) for 2 � i � N ,

from (H2) and (4.7). Hence MSρ0 ,f ({Pi}) = 0 for i �= 1. The uniqueness follows from Theorem 2.7. �
5.2.2. Existence in the general case
Theorem 5.8. Assume conditions (H1) and (H2). Let μ be a Radon measure on D, f ∈ L1(Ω) with f > 0 a.e., and
satisfying the energy conservation condition∫

Ω

f (x)dx = μ(D).

Then given X0 ∈ Qr0 with 0 < |X0| < ( 1−κ
1+κ

)3r0, there exists a weak solution of the near field refractor problem
passing through X0.

Proof. We assume first that μ = ∑N
i=1 giδPi

, with gi > 0 and Pi distinct points in D. From Theorem 5.7, given

b1 ∈ (κ|P1|, κ|P1|+r0
(1−κ)2

1+κ
) there exists a unique (b2, . . . , bN) such that S , defined by the radial function ρ(x, b1) =

mini h(x,Pi, bi), is a weak solution to the near field refractor problem. By the comparison Theorem 2.7, the function

ρ(x, b1) is increasing in b1 and continuous for (x, b1) ∈ Ω ×(κ|P1|, κ|P1|+r0
(1−κ)2

1+κ
). Let t1 = κ|P1|+(r0 −σ)

(1−κ)2

1+κ

for 0 < σ < r0. We shall first prove that
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ρ(x, t1)�
(

1 − κ

1 + κ

)3

(r0 − σ), ∀x ∈ Ω. (5.10)

We have ρ(x, t1) = min1�i�N h(x,Pi, bi) with b1 = t1 and some b2, . . . , bN . From (4.7)

bi − κ|Pi |
1 − κ

� h(x,Pi, bi)� ρ(x, t1), i = 1, . . . ,N; ∀x ∈ Ω. (5.11)

Also there exists x1 ∈ Ω such that ρ(x1, t1) = h(x1,P1, t1) and then again by (4.7), ρ(x1, t1) � ( 1−κ
1+κ

)2(r0 −σ). Hence
from (5.11) we get

bi − κ|Pi |
1 − κ

�
(

1 − κ

1 + κ

)2

(r0 − σ), i = 1, . . . ,N. (5.12)

Once again by (4.7), h(x,Pi, bi)� bi−κ|Pi |
1+κ

, which combined with (5.12) yields

h(x,Pi, bi)�
(

1 − κ

1 + κ

)3

(r0 − σ), i = 1, . . . ,N,

and hence (5.10) follows. On the other hand, ρ(x, b1) � h(x,P1, b1) � b1−κ|P1|
1−κ

by (4.7) for all (x, b1) ∈ Ω ×
(κ|P1|, κ|P1| + r0

(1−κ)2

1+κ
) and hence given δ > 0, we get ρ(x, b1) < δ for all x ∈ Ω as long as b1 is sufficiently

close to κ|P1|. Suppose now that X0 ∈ Qr0 with 0 < |X0| < ( 1−κ
1+κ

)3r0 and with x0 = X0|X0| ∈ Ω . Hence from (5.10) and

the continuity of ρ(x0, ·), we obtain that there exists b1 ∈ (κ|P1|, κ|P1| + r0
(1−κ)2

1+κ
) such that ρ(x0, b1) = |X0|.

For the general case of a Radon measure μ in D, we choose a sequence of measures μ	 such that each one is a
finite combination of Dirac measures and μ	 → μ weakly with μ	(D) = μ(D). From the above, let S	 be the near
field refractor corresponding to the measure μ	 and parameterized by ρ	(x)x and passing through the point X0. Thus,
x0 = X0|X0| ∈ Ω and ρ	(x0) = |X0|. i.e., |X0| ∈ Rangeρ	 for all 	. We also notice that if R0 ∈ Range(h(·,P , b)), then
by Lemma 4.1

1 − κ

1 + κ
R0 � h(x,P,b) � 1 + κ

1 − κ
R0.

From Lemma 5.3 and the proof of Lemma 5.5, the family {ρ ∈ F : C0 � ρ � C1} is compact. Then applying Theo-
rem 2.8 we obtain the existence of the desired solution. �
6. Near field refractor problem, existence of solutions for κ > 1

6.1. Formulation of problem

Let Ω ⊂ Sn−1 be a domain with |∂Ω| = 0 (measure in the sphere), and let D ⊂R
n be a compact hypersurface with

0 /∈ D.
We assume:

(H3) infx∈Ω,P∈D x · P
|P | �

1
κ

+ τ for some 0 < τ < 1 − 1
κ

.

(H4) Let 0 < r0 < κ2τ 2

4(κ−1)2 infP∈D |P | and consider the cone in R
n

Qr0 = {tx: x ∈ Ω, 0 < t � r0}.
For each m ∈ Sn−1 and for each X ∈ Qr0 we assume that D ∩ {X + tm: t � 0} contains at most one point. That
is, for each X ∈ Qr0 each ray emanating from X intersects D at most in one point.

Similarly with the case κ < 1, but now keeping in mind (4.11) and (4.12), we define the notion of refractor when
κ > 1.
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Definition 6.1. Let S = {xρ(x): x ∈ Ω} ⊂ Qr0 be a surface. We say that S is a near field refractor if for any point
yρ(y) ∈ S there exist P ∈ D and b > 0 such that the refracting oval O(P, b) supports S at yρ(y), i.e. ρ(x) �
h(x,P,b) for all x ∈ Ω with equality at x = y, and

Ω ⊂
{
x ∈ Sn−1: x · P

|P | � I (P, b)

}
(6.1)

where I (P, b) is defined in (4.13). The near field refractor map of S is defined by

RS(x) = {
P ∈ D: there exists a supporting oval O(P, b) to S at ρ(x)x

}
.

Remark 6.2. If S = {ρ(x)x: x ∈ Ω} is a refractor, then for any x, x0 ∈ Ω we have

ρ(x) �
√

2 sup
P∈D

|P |√ρ(x0).

Indeed, if h(z,Px, bx) is a supporting oval at ρ(x)x, then from Lemma 4.3 we have ρ(x0) � h(x0,Px, bx) �
κ|Px |−bx

κ−1 � h(x,Px,bx)2

2|Px | = ρ(x)2

2|Px | .

Remark 6.3. RS(Ω) = D for any refractor S = {ρ(x)x: x ∈ Ω}. To prove the remark, we first notice that if P ∈ D

and h(x0,P , b)� r0 for some x0 ∈ Ω , then I (P, b) � 1
κ

+ τ . Indeed, we have from Lemma 4.3(d) that I (P, b)− 1
κ
�

2
√

κ−1
κ

√
κ|P |−b√|P | � 2(κ−1)

κ

√
r0√|P | � τ from the choice of r0 in condition (H4). Given P ∈ D, let O(P, b1) be the oval with

b1 = inf
{
b ∈ (|P |, κ|P |): h(x,P,b) � ρ(x) in Ω

}
.

Obviously, h(x,P,b1) touches S at some x1 ∈ Ω .

Lemma 6.4. If S is a near field refractor with defining function ρ(x), then ρ is Lipschitz in Ω with a Lipschitz constant
depending only on the constants in the assumptions (H3) and (H4).

Proof. As in the proof of Lemma 5.3, the Lipschitz continuity and constant of h(x,P,b) is reduced to the Lipschitz
continuity and lower bound of �, where

�(t) = (
κ2t − b

)2 − (
κ2 − 1

)(
κ2|P |2 − b2),

h(x,P, b) = (κ2x · P − b) − √
�(x · P)

κ2 − 1
for x ∈ Ω.

By (H3) x · P
|P | �

1
κ

+ τ for x ∈ Ω . From Lemma 4.3(a) and (d) we have

I (P, b) − 1

κ
= b + √

(κ2 − 1)(κ2|P |2 − b2)

κ2|P | − 1

κ

� 2
√

κ − 1

κ

√
κ|P | − b√|P |

� 2(κ − 1)

κ

√
r0√|P | if h(x0,P , b) � r0

� τ − σ,

where σ = τ − 2(κ−1)
κ

√
r0√

infP∈D |P | > 0 by (H4). Thus, if h(x0,P , b)� r0, for x ∈ Ω we have x · P
|P | � I (P, b) + σ and

furthermore

�(x · P) �
[
κ2|P |(I (P, b) + σ

) − b
]2 − (

κ2 − 1
)(

κ2|P |2 − b2)
�

[
κ2|P |I (P, b) − b

]2 + (
κ2|P |σ )2 − (

κ2 − 1
)(

κ2|P |2 − b2)
�

(
κ2 inf

P∈D
|P |σ

)2
. (6.2)

Therefore, the uniform Lipschitz continuity for ovals and refractors contained in Qr0 on Ω follows. �
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6.2. Application of the setup from Subsection 2.2 to the solution of the near field refractor problem with κ > 1

We apply the setup in that subsection with the spaces X = Ω , and Y = D. The Radon measure ω in Ω there is
given by ω = f dx with f ∈ L1(Ω) nonnegative. If S is a near field refractor in the sense of Definition 6.1, then it is
proved in Lemma 6.5 below that the map RS ∈ Cs(Ω,D). From Lemma 2.1 we therefore obtain that the set function

MS,f (F ) :=
∫

R−1
S (F )

f dx (6.3)

is a Radon measure on D. We call this measure the near field refractor measure associated with f and the refractor S .
We next introduce the family F . Let Sρ denote the near field refractor with defining radial function ρ given by

Definition 6.1. We let F be the family of functions in C+(Ω) given by

F = {
ρ(x): Sρ is a near field refractor

}
.

On F we introduce the mapping T by

T (ρ) =RSρ
.

To continue with the application of the results from Subsection 2.2, we show in the next two lemmas that RS ∈
Cs(Ω,D) and T is continuous at each ρ ∈ F in the sense of Definition 2.2.

Lemma 6.5. For any near field refractor S , we have RS ∈ CS(Ω,D).

Proof. As in the proof of Lemma 5.4, using (H4), one can show that RS(x) is single-valued for a.e. x with respect
to ω.

To prove that RS is continuous, let xi → x0 and Pi ∈ RS(xi). Let O(Pi, bi) be a supporting oval to S at ρ(xi)xi .

We have a � ρ(xi) = h(xi,Pi, bi) � r0 and from Lemma 4.3(b) we get a �
√

2|Pi |
√

κ|Pi |−bi

κ−1 , and so bi � κ|Pi | −
a2(κ−1)

2 supD |P | . On the other hand, by Lemma 4.3(c) we have |Pi − ρ(xi)xi | � bi−|Pi |
κ−1 . Since |Pi − ρ(xi)xi | � |Pi | − r0,

we obtain bi � |Pi | + (κ − 1)(infD |P | − r0). Therefore selecting a subsequence we can assume that Pi → P0 and
bi → b0, as i → ∞. Taking limits one obtains that the oval O(P0, b0) supports S at ρ(x0)x0, x · P0|P0| � I (P0, b0), and
P0 ∈ RS(x0). This completes the proof. �

By Lemma 6.4 and modifying the proof of Lemma 6.5, we also obtain the following analogue of Lemma 5.5 when
κ > 1.

Lemma 6.6. The refractor mapping T (ρ) = RSρ
is continuous at each ρ ∈ F . Moreover, for 0 < C0 < C1,

{ρ ∈F : C0 � ρ(x)� C1} is compact in C(Ω).

To be able to apply Theorem 2.9, we next need to verify that the family F and the map T satisfy conditions
(A1′)–(A3′) from Subsection 2.2. Indeed, (A1′) and (A2′) follow immediately from the Definition 6.1 of refractor,
Lemma 6.5, and Lemma 6.6.

It remains to verify (A3′). For that we use the estimates for ovals proved in Subsection 4.2. Indeed, with the notation
in condition (A3′) we will take

ht,y0(x) = h(x,P,b)

with the understanding that t = b, and y0 = P , and h(x,P,b) is the oval defined by (4.11) and (4.12). By Lemma 4.3
and Remark 6.3, we have that the family{

h(·,P , b): κ|P | − (κ − 1)r2
0 < b < κ|P |

}
⊂F,
2 supD |P |
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with r0 from (H4). Obviously, P ∈ T (h(·,P , b))(x) for all x ∈ Ω̄ , that is, (A3′)(a) holds. Condition (A3′)(b) is trivial.
Condition (A3′)(c) follows Lemma 4.3 parts (a) and (b). To verify (A3′)(d), we notice that from the lower bound (6.2),
we obtain that |h(x,P,b′) − h(x,P,b)| � C|b′ − b|, with C depending only on the constants in (H3) and (H4).

The notion of weak solution is again introduced through conservation of energy.

Definition 6.7. A near field refractor S is a weak solution of the near field refractor problem for the case κ > 1 with
emitting illumination intensity f (x) on Ω and prescribed refracted illumination intensity μ on D if for any Borel set
F ⊂ D

MS,f (F ) =
∫

R−1
S (F )

f dx = μ(F). (6.4)

6.2.1. Existence of solutions for sum of Dirac measures
This follows from Theorem 2.9.

Theorem 6.8. Suppose (H3) and (H4) hold. Let P1, . . . ,PN be distinct points in D, g1, . . . , gN are positive numbers,
and f ∈ L1(Ω) with f > 0 a.e. in Ω such that

∫
Ω

f (x)dx =
N∑

i=1

gi. (6.5)

Then for each b1 such that κ|P1| − σ < b1 < κ|P1|, with σ = (κ−1)r4
0

8(supD |P |)3 , there exist a unique (b2, . . . , bN) such that

the poly-oval S = {ρ(x)x: x ∈ Ω} with

ρ(x) = max
1�i�N

h(x,Pi, bi) (6.6)

is a weak solution to the near field refractor problem. Moreover, MS,f ({Pi}) = gi for 1 � i � N .

Proof. By Theorem 2.9, it suffices to show that there exists (b0
1, . . . , b

0
N) such that

h
(
x,P1, b

0
1

)
� min

2�i�N
h
(
x,Pi, b

0
i

)
for all x ∈ Ω.

Rewrite b0
1 = b1 = κ|P1| − ε2σ with 0 < ε < 1. Choose b0

i = κ|Pi | − ε
(κ−1)r2

0
2 supD |P | , 2 � i � N . Then from

Lemma 4.3(b), h(x,P1, b
0
1) �

√
2|P1|

√
κ|P1|−b0

1
κ−1 �

√
2|P1|

√
ε2σ
κ−1 . On the other hand, from Lemma 4.3(a), we have

for 2 � i � N that

h
(
x,Pi, b

0
i

)
�

κ|Pi | − b0
i

κ − 1
= εr2

0

2 supD |P | .

By the choice of σ , h(x,P1, b
0
1) � h(x,Pi, b

0
i ) for 2 � i � N . �

6.2.2. Existence in the general case
Theorem 6.9. Assume conditions (H3) and (H4). Let μ be a Radon measure on D, f ∈ L1(Ω) with f > 0 a.e., and
satisfying the energy conservation condition∫

Ω

f (x)dx = μ(D).

Then given X0 ∈ Qr0 with 0 < |X0| < σ
κ−1 = r4

0
8(supD |P |)3 , there exists a weak solution of the near field refractor

problem passing through X0.
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Proof. We assume first that μ = ∑N
i=1 giδPi

, with gi > 0 and Pi pairwise distinct points in D. From Theorem 6.8,
given b1 ∈ (κ|P1|−σ, κ|P1|) there exists a unique (b2, . . . , bN) such that Sb1 , defined by the radial function ρ(x, b1) =
maxi h(x,Pi, bi), is a weak solution to the near field refractor problem. By the comparison Theorem 2.10, the function
ρ(x, b1) is decreasing in b1 and continuous for (x, b1) ∈ Ω × (κ|P1|−σ, κ|P1|). For small ε > 0, from Lemma 4.3(a)
we have

ρ
(
x, κ|P1| − (σ − ε)

)
� h

(
x,P1, κ|P1| − (σ − ε)

)
� σ − ε

κ − 1
, ∀x ∈ Ω. (6.7)

On the other hand, let bi(ε), 2 � i � N be the corresponding bj ’s to b1(ε) = κ|P1| − ε. We have κ|Pi |−bi (ε)
κ−1 �

h(x,Pi, bi(ε)) � ρ(x, b1(ε)). Since |R−1
Sb1(ε)

(P1)| > 0, there exists x1 such that ρ(x1, b1(ε)) = h(x1,P1, b1(ε)) �√
2 supD |P |

√
ε

κ−1 . Consequently, κ|Pi | − bi(ε) �
√

2ε(κ − 1) supD |P | and therefore

ρ
(
x, κ|P1| − ε

) = max
i

h
(
x,Pi, bi(ε)

)
� max

i

√
2 sup

D

|P |
√

κ|Pi | − bi

κ − 1
� C 4

√
ε → 0,

as ε → 0. Consequently, by continuity of ρ(x, b1), given X0 = |X0|x0 ∈ Qr0 with 0 < |X0| < σ
κ−1 , there exists b1(X0)

such that ρ(x0, b1) = |X0|.
For the general case of a Radon measure μ in D, we choose a sequence of measures μ	 such that each one is a

finite combination of Dirac measures and μ	 → μ weakly with μ	(D) = μ(D). From the above, let S	 be the near
field refractor corresponding to the measure μ	 and parameterized by ρ	(x)x and passing through the point X0. Thus,

|X0| ∈ Range(ρl) for all l. From (6.7), |X0| < limb→αP
h(x,P,b), where αP = κ|P | − (κ−1)r2

0
2 supD |P | . By Lemma 4.3 and

Lemma 6.6, one can apply Theorem 2.11 to obtain the existence of solutions. �
7. Further applications

To illustrate the general framework described in Section 2, we briefly show how to recover the results for the far
field refractor, proved using mass transport in [5], and also the solution to the second boundary value problem for the
Monge–Ampère equation. We only state the results when the measure μ is a finite combination of Dirac measures.
The general case for a general Radon measure follows by approximation as in Theorems 2.8 and 5.8, and noticing
that the far field refractor problem is dilation invariant and the second boundary value problem for Monge–Ampère
equation is translation invariant.

7.1. Far field refractor, κ < 1

We have two domains Ω,Ω∗ ⊂ Sn−1 satisfying the condition x · m � κ for all x ∈ Ω , m ∈ Ω∗, with |∂Ω| = 0. In
this case, refractors are defined with supporting semi-ellipsoids ρ(x,m,b) = b

1−κm·x in [5, Definition 3.1].

We shall apply the setup in Section 2 with the spaces X = Ω , and Y = Ω∗. The Radon measure ω in Ω is now
given by ω = f dx with f ∈ L1(Ω) nonnegative. If S is a far field refractor in the sense of [5, Definition 3.1], then it
is proved in Lemma 7.1 below that the map Φ = NS ∈ Cs(Ω,Ω∗), where NS is defined in [5, Definition 3.2]. From
Lemma 2.1 we therefore obtain that the set function

MS,f (F ) :=
∫

N−1
S (F )

f dx, (7.1)

is a Radon measure defined on Ω∗. We call this measure the far field refractor measure associated with f and the
refractor S .

We next introduce the family F . Let Sρ denote the far field refractor with defining radial function ρ given by [5,
Definition 3.1]. We let F be the family of functions in C+(Ω) given by

F = {
ρ(x): Sρ is a far field refractor

}
.
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On F we define the mapping T by

T (ρ) =NSρ
.

To continue with the application of the results from Section 2, we need to also show that T is continuous at each
ρ ∈F in the sense of Definition 2.2. This is proved in Lemma 7.2 below.

Lemma 7.1. For each far field refractor S , we have NS ∈ Cs(Ω,Ω∗).

Proof. Suppose S is parameterized by ρ(x). We first show that NS(Ω̄) = Ω̄∗. Because if m ∈ Ω̄∗, then letting

b1 = inf
{
b: ρ(x) � ρ(x,m,b) for all x ∈ Ω̄

}
,

we get that the semi-ellipsoid ρ(x,m,b1) supports ρ(x) at some y ∈ Ω̄ . Next show that NS(x) is single-valued for a.e.
x with respect to ω. Indeed, will prove that {x ∈ Ω̄: NS(x) is not a singleton} ⊂ {x ∈ Ω̄: ρ is not differentiable at x}.
In fact, if m1,m2 ∈NS(x), and ρ is differentiable at x, then ρ has a unique supporting hyperplane Π at x having outer
unit normal ν. Since the semi-ellipsoids ρ(x,m1, b1) and ρ(x,m2, b2) support ρ at x, the hyperplane Π supports
both semi-ellipsoids at x, and then from the Snell law we get that x − κm1 = λ1ν and x − κm2 = λ2ν. But since
λ1 = λ2 = Φ(x · ν), we get that m1 = m2. Since the graph of S is Lipschitz and |∂Ω| = 0, the set of singular points
of S has measure zero and therefore NS(x) is single-valued for a.e. x ∈ Ω .

To prove that NS is continuous, let xi → x0 and mi ∈ NS(xi). Let ρ(x,mi, bi) be a supporting semi-ellipsoid to
S at ρ(xi)xi . Then

ρ(x) � bi

1 − κmi · x for x ∈ Ω, (7.2)

with equality at x = xi and x · mi � κ for all x ∈ Ω . Assume that a1 � ρ(x) � a2 on Ω for some constants a2 �
a1 > 0. From (7.2) we then get a1(1 − κ) � bi � a2(1 − κ2). Therefore selecting a subsequence we can assume that
mi → m0 ∈ Ω∗ and bi → b0, as i → ∞. By taking limit in (7.2), one obtains that semi-ellipsoid ρ(x,m0, b0) supports
S at ρ(x0)x0. �
Lemma 7.2. The far field refractor mapping T (ρ) =NSρ

is continuous at each ρ ∈ F .

Proof. Suppose ρj → ρ uniformly as j → ∞. Let x0 ∈ Ω and mj ∈NSρj
(x0). Then there exists bj such that ρj (x) �

ρ(x,mj , bj ) for all x ∈ Ω with equality at x = x0 and with x · mj � κ . Selecting subsequences as in the proof of
Lemma 7.1, we obtain m0 ∈ NSρ

(x0). �
We therefore can apply Lemma 2.3 to obtain that the definition of refractor measure given in (7.1) is stable by

uniform limits, i.e., if ρj → ρ uniformly, then MSρj
,f →MSρ,f weakly.

To be able to apply Theorem 2.5, we next need to verify that the family F and the map T satisfy conditions
(A1)–(A3) from Section 2. Indeed, (A1) follows immediately from the definition of far field refractor. Condition (A2)
immediately follows from the definition of far field refractor.

It remains to verify (A3). Indeed, with the notation in condition (A3) we will take

ht,y0(x) = ρ(x,m,b)

with the understanding that t = b, and y0 = m, and ρ(x,m,b) is the semi-ellipsoid E(m,b). In other words, we will
show that the family{

ρ(·,m,b): m ∈ Ω̄∗, 0 < b < +∞} ⊂F,

and verifies (A3). Indeed, it is clear that ρ(·,m,b) is a far field refractor, and in particular, m ∈ T (ρ(·,m,b))(x) for all
x ∈ Ω̄ , that is, (A3)(a) holds. Condition (A3)(b) is trivial. Condition (A3)(c) follows from ρ(x,m,b) � b

1−κ2 . Finally,

(A3)(d) follows from |ρ(x,m,b′) − ρ(x,m,b)| � |b′−b|
1−κ2 .

The notion of weak solution is introduced through conservation of energy.
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Definition 7.3. A far field refractor S is a weak solution of the far field refractor problem for the case κ < 1 with
emitting illumination intensity f (x) on Ω and prescribed refracted illumination intensity μ on D if for any Borel set
F ⊂ D

MS,f (F ) =
∫

N−1
S (F )

f dx = μ(F). (7.3)

We are now ready to apply Theorem 2.5 to solve the far field refractor problem when the measure μ is a linear
combination of deltas.

Theorem 7.4. Let m1, . . . ,mN be distinct points in Ω∗, g1, . . . , gN are positive numbers, f ∈ L1(Ω) such that
x · mi � κ for x ∈ Ω , 1 � i � N , and

∫
Ω

f (x)dx =
N∑

i=1

gi. (7.4)

Then there exist positive numbers b1, b2, . . . , bN such that S = {ρ(x)x: x ∈ Ω} with

ρ(x) = min
1�i�N

ρ(x,mi, bi) (7.5)

is a weak solution to the far field refractor problem. Moreover, MS,f ({mi}) = gi for 1 � i � N .

Proof. To prove the theorem, we apply Theorem 2.5. So we only need to verify that there exists ρ0(x) =
min1�i�N ρ(x,mi, b

0
i ) satisfying MSρ0 ,f (mi) � gi , 2 � i � N . From Remark 2.6 this follows by choosing b1 close

to zero. �
7.2. Far field case, κ > 1

Using the results from Subsection 2.3 and adapting the above arguments we can easily deal with the case κ > 1.
In this case, we assume x · m � 1

κ
+ δ, |∂Ω| = 0, and the definition of far field refractor is made with supporting

semi-hyperboloids ρ(x,m,b) = b
κm·x−1 as in [5, Definition 4.1]. The far field refractor mapping of S is given by [5,

Definition 4.2]. The family F is then given by F = {ρ: Sρ is a far field refractor for κ > 1}. We have{
ρ(·,m,b): m ∈ Ω̄∗, 0 < b < +∞} ⊂F,

where the functions ρ(·,m,b) now satisfying conditions (A1′)–(A2′) and (A3′′) from Subsection 2.3. Weak solutions
of the far field refractor problem for κ > 1 are defined as in Definition 7.3.

Therefore, applying Theorem 2.12, we obtain the following theorem.

Theorem 7.5. Let m1, . . . ,mN be distinct points in Ω∗, g1, . . . , gN are positive numbers, f ∈ L1(Ω) such that
x · mi � 1

κ
+ δ for x ∈ Ω , 1 � i � N , and

∫
Ω

f (x)dx =
N∑

i=1

gi. (7.6)

Then there exist positive numbers b1, b2, . . . , bN such that S = {ρ(x)x: x ∈ Ω} with

ρ(x) = max
1�i�N

ρ(x,mi, bi) (7.7)

is a weak solution to the far field refractor problem for κ > 1. Moreover, MS,f ({mi}) = gi for 1 � i � N .
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7.3. The second boundary value problem for the Monge–Ampère equation

We assume here that X = Ω̄ and Y = Ω̄∗ with Ω,Ω∗ bounded convex domains in R
n. We have a Radon measure

ω in Ω̄ given by w = f dx with f ∈ L1(Ω), f nonnegative. The subdifferential of the function u : Ω → R is given
by

∂u(x0) = {
p ∈ Ω̄∗: u(x) � u(x0) + p · (x − x0) for all x ∈ Ω

}
.

We let the family F = {u ∈ C(Ω̄): u is convex and ∂u(y) ∩ Ω∗ �= ∅ ∀y ∈ Ω}. On F we define the mapping T by
T (u) = ∂u. One needs to prove that ∂u ∈ Cs(Ω̄, Ω̄∗) and the map T (u) = ∂u is continuous at each u ∈ F . To show
∂u(Ω̄) = Ω̄∗, we proceed exactly as at the beginning of the proof of Lemma 7.1. Everything else follows from well
known properties of the subdifferential, see [6].

The family F satisfies (A1′) and (A2′), and we verify that it also satisfies (A3′′), all from Subsection 2.3. We let
ht,y0(x) = x · p + b, where t = b and y0 = p. Here x ∈ Ω̄ and p ∈ Ω̄∗. We show that{

x · p + b: p ∈ Ω̄∗, −∞ < b < ∞} ⊂F

satisfies condition (A3′′). In fact, p ∈ ∂(x · p + b)(x) for all x ∈ Ω̄ , so (A3′′)(a) holds. (A3′′)(b) is trivial. Since
x · p + b � b − |x||p| � b − C, where C depends on the diameters of Ω and Ω∗, (A3′′)(c) follows. (A3′′)(d) trivially
holds.

We are now ready to apply Theorem 2.12 to solve the second boundary value problem for the Monge–Ampère
equation when the measure μ is a linear combination of deltas. That is, to find a convex function u ∈ F such that
∂u(Ω̄) = Ω̄∗ and solving

∫
(∂u)−1(E)

f (x) dx = μ(E) for each Borel set E ⊂ Ω̄∗.

Theorem 7.6. Let p1, . . . , pN be distinct points in Ω∗, g1, . . . , gN are positive numbers, f ∈ L1(Ω), and

∫
Ω

f (x)dx =
N∑

i=1

gi. (7.8)

Then there exist positive numbers b1, b2, . . . , bN such that the convex function

u(x) = max
1�i�N

{x · pi + bi} (7.9)

solves the second boundary value problem for the Monge–Ampère equation.

Appendix A. Derivation of the pde

Suppose the function defining the refractor is ρ(x1, . . . , xn−1, xn) and set x′ = (x1, . . . , xn−1). We have points
(x′, xn) ∈ Ω ⊂ Sn−1, so we think of the region Ω defined by {(x′,

√
1 − |x′|2) : x′ ∈ U} and therefore we identify Ω

with U . We also think of the defining function ρ as a function ρ = ρ(x′) with x′ ∈ U . For the derivation of the equation
we assume that ρ is C2. Following the paper [8], we use the notation Dρ = (∂1ρ, . . . , ∂n−1ρ) and D̂ρ = (Dρ,0). We
also use the notation x = (x1, . . . , xn) ∈ Sn−1 and let y ∈ Sn−1 be the refracted direction of the ray x by the surface
ρ(x)x, that is,

y = 1

κ

(
x − Φ(x · ν)ν

)
, (A.1)

where ν is the outer unit normal to the refractor at the point ρ(x)x, and Φ(t) = t − κ
√

1 − κ−2(1 − t2).

A.1. Case when the target domain D ⊂ {xn = 0}

Notice that this is compatible with hypotheses H1 and H2 if κ < 1 or H3 and H4 if κ > 1, when Ω is above or near
the hyperplane xn = 0. Suppose the surface refracts off the ray with direction x into the point Z ∈ D. Then

Z = ρ(x)x + ∣∣Z − ρ(x)x
∣∣y.
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We denote by T the map x �→ Z and we regard it defined in U , that is, T : U → D, where D is the target screen.
Since D ⊂ {xn = 0}, we have that T (x′) = (z1, . . . , zn−1,0), and the Jacobian of T is then the matrix DZ = (∂j zi)ij ,
1 � i, j � n − 1. If dSΩ and dSD denote the surface area elements in Ω and in D, respectively, then detDZ = dSD

dSΩ
.

Noticing that dSΩ = 1√
1−|x′|2 dSU , and since f and g are the energy distributions in Ω and D, respectively, we obtain

the equation

det DZ = f

g
√

1 − |x′|2 . (A.2)

We now find the explicit form of DZ which will yield the pde satisfied by ρ.
From [8, Formula (2.15)] we have the following expression for the outer normal (the change in the sign is due to

the direction of the normal):

ν = −D̂ρ + x(ρ(x′) + Dρ(x′) · x′)√
ρ2 + |Dρ|2 − (Dρ · x′)2

, (A.3)

and so

x · ν = ρ√
ρ2 + |Dρ|2 − (Dρ · x′)2

.

We now calculate d = |Z − ρ(x′)x|. Since D ⊂ {xn = 0}, we have 0 = ρ(x′)xn + dyn and so d = −ρ(x′) xn

yn
. Also

yn = 1

κ

(
xn − Φ(x · ν)νn

)
= 1

κ

(
xn − Φ(x · ν)

xn(ρ + Dρ · x′)√
ρ2 + |Dρ|2 − (Dρ · x′)2

)

= xn

1

κ

(
1 − Φ(x · ν)

ρ + Dρ · x′√
ρ2 + |Dρ|2 − (Dρ · x′)2

)

= xn

A

κ
,

so

d = −ρ
κ

A
.

From (A.1) we then have

y = 1

κ

(
Ax + Φ(x · ν)

D̂ρ√
ρ2 + |Dρ|2 − (Dρ · x′)2

)
.

Therefore

Z = ρ(x)x − ρ
κ

A
y = − ρ

A

Φ(x · ν)√
ρ2 + |Dρ|2 − (Dρ · x′)2

D̂ρ

= ρ
Φ(x · ν)

−G + Φ(x · ν)(ρ + Dρ · x′)
D̂ρ

= F
(
x′, ρ

(
x′),Dρ

(
x′))D̂(

ρ2),
where

F
(
x′, ρ

(
x′),Dρ

(
x′)) = 1

2

Φ(x · ν)

−G + Φ(x · ν)(ρ + Dρ · x′)

with G = √
ρ2 + |Dρ|2 − (Dρ · x′)2. It is convenient to use the notation
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F
(
x′, u,p

) = 1

2

Φ( u√
u2+|p|2−(p·x′)2

)

−√
u2 + |p|2 − (p · x′)2 + (u + p · x′)Φ( u√

u2+|p|2−(p·x′)2
)
.

So zi = F(x′, ρ(x′),Dρ(x′))(ρ2)xi
for 1 � i � n − 1 and zn = 0. Differentiating this with respect to xj we get

∂j zi = F
(
ρ2)

xixj
+ (

ρ2)
xi

(
Fxj

+ Fuρxj
+

n−1∑
k=1

Fpk
ρxkxj

)

= 2Fρρxixj
+ 2Fρxi

ρxj
+ (

ρ2)
xi

(
Fxj

+ Fuρxj
+

n−1∑
k=1

Fpk
ρxkxj

)
.

If η, ξ are row vectors in Rn, the tensor product is the n × n matrix defined by

ξ ⊗ η = ξ tη,

with the multiplication of matrices. Then the Jacobian matrix DZ = (∂j zi) can be written as

DZ = 2ρFD2ρ + 2FDρ ⊗ Dρ + D
(
ρ2) ⊗ Dx′F + FuD

(
ρ2) ⊗ Dρ + D

(
ρ2) ⊗ (

DpFD2ρ
)
.

If ξ, η are row vectors and A is an n × n matrix, then ξ ⊗ (ηA) = (ξ ⊗ η)A, and we then obtain the formula

DZ = 2ρ{FI + Dρ ⊗ DpF }D2ρ + 2FDρ ⊗ Dρ + D
(
ρ2) ⊗ Dx′F + FuD

(
ρ2) ⊗ Dρ.

We have from the Sherman–Morrison formula that if M = I + ξ ⊗ η, with ξ and η row vectors, then,

detM = 1 + ξ · η and M−1 = I − ξ ⊗ η

1 + ξ · η . (A.4)

Therefore, if

M = I + 1

F(x′, ρ,Dρ)
Dρ ⊗ DpF, (A.5)

then

M−1 = I − Dρ ⊗ DpF

F(x,ρ,Dρ) + Dρ · DpF
. (A.6)

Hence

DZ = 2ρFMD2ρ + 2FDρ ⊗ Dρ + D
(
ρ2) ⊗ Dx′F + FuD

(
ρ2) ⊗ Dρ = 2ρFMD2ρ + B, (A.7)

and so
1

2ρF
M−1DZ = D2ρ + 1

2ρF
M−1B.

We have detM−1 = F
F+Dρ·DpF

. Therefore

detDZ = det

(
D2ρ + 1

2ρF
M−1B

)
(2ρ)n−1Fn−2(F + Dρ · DpF).

Since (α ⊗ β)(ξ ⊗ η) = (β · ξ)(α ⊗ η), from the form of M−1 and B we have that

M−1B = 2F

F + Dρ · DpF

[
(F + ρFu)Dρ ⊗ Dρ + ρDρ ⊗ Dx′F

]
.

Combining this with (A.2), we obtain that ρ satisfy the following pde of Monge–Ampère type:

det
(
D2ρ +A

(
x′, ρ,Dρ

)) = f

g
√

1 − |x′|2(2ρ)n−1Fn−2(F + Dρ · DpF)
, (A.8)

where

A
(
x′, ρ,Dρ

) = 1

ρ(F + Dρ · DpF)

[
(F + ρFu)Dρ ⊗ Dρ + ρDρ ⊗ Dx′F

]
.
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A.2. Case when D is contained in a hypersurface

We assume the target domain D is contained in a hypersurface {P ∈R
n : ψ(P ) = 0}, where ψ is C1 and ψPn �= 0.

We recall that we assume the configuration given by either (H1) and (H2), if κ < 1, or (H3) and (H4), if κ > 1. In
order to find the pde in the general case we will use the calculations from Subsection A.1.

Given the direction x ∈ Ω , the point ρ(x)x is refracted with direction y into the point Z ∈ D. The normal at
Z = (z1, . . . , zn) ∈ D is given by Dψ and so the map T : x �→ Z has Jacobian matrix J satisfying

detJ = 1

|Dψ | det

⎡
⎢⎢⎣

∂1z1 · · · ∂n−1z1 ψP1

∂1z2 · · · ∂n−1z2 ψP2
...

...
. . .

...

∂1zn · · · ∂n−1zn ψPn

⎤
⎥⎥⎦ .

We have Z = Z(x′) = (z1(x1, . . . , xn−1), . . . , zn(x1, . . . , xn−1)) and ψ(Z(x1, . . . , xn−1)) = 0, so differentiating with
respect to xj we get

∑n
i=1 ψPi

∂xj
zi = 0 and so

∂xj
zn = − 1

ψPn

n−1∑
i=1

ψPi
∂xj

zi , for j = 1, . . . , n − 1.

Inserting these into detJ yields

detJ = |Dψ |
ψPn

det

⎡
⎢⎢⎣

∂1z1 · · · ∂n−1z1
∂1z2 · · · ∂n−1z2

...
. . .

...

∂1zn−1 · · · ∂n−1zn−1

⎤
⎥⎥⎦ . (A.9)

For Z ∈ D, x ∈ Ω , with T x = Z, let y = Z−ρ(x)x
|Z−ρ(x)x| , and let 	 be the line with direction y passing through the point

ρ(x)x. Let W be the intersection point between 	 and the hyperplane xn = 0. We write

W = ρ(x)x + d0y.

The existence of W follows from (H1) and (H2) if en ∈ Ω and τ < κ . Indeed, we notice that 	 does not intersect
xn = 0 if and only if 	 is perpendicular to en, or equivalently the vector y is perpendicular to en. From (H1), Z/|Z|
is contained in the solid cone with axis en with opening κ + τ for Z ∈ D, i.e. Z/|Z| · en � κ + τ . On the other hand,
since the refractor is contained in Qr0 , we have A = | Z

|Z| − y| � 2ρ(x)
|Z−ρ(x)x| �

2r0|Z−ρ(x)x| . Now from (H2)

∣∣Z − ρ(x)x
∣∣� |Z| − r0 � dist (D,0) − r0 � r0

(
1 + κ − τ

τ

)
,

so A � 2τ
1+κ−τ

. Therefore

y · en =
(

y − Z

|Z|
)

· en + Z

|Z| · en � − 2τ

1 + κ − τ
+ κ + τ = (κ − τ)

1 + κ + τ

1 + κ − τ
:= r.

Thus, if τ < κ , then r > 0, and so the vector y lies in a cone with axis en that does not intersect the plane xn = 0 which
proves the existence of W . Similarly, if κ > 1, then the existence of W also follows from (H3) and (H4) assuming
again en ∈ Ω and that τ is sufficiently small.

A calculation as in the case when D ⊂ {xn = 0} yields that

W = F
(
x′, ρ

(
x′),Dρ

(
x′))D̂(

ρ2).
If we write

Z = ρ
(
x′)x + t

(
x′)(W − ρ

(
x′)x)

,

then Z − ρ(x′)x = t (x′)(W − ρ(x′)x) and making the dot product of this equation with en we obtain that
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t
(
x′) = ρ(x′)xn − zn

ρ(x′)xn

,

where xn = √
1 − |x′|2. In view of (A.9), we only need to calculate ∂j zi for 1 � i, j � n − 1. Set z′ = (z1, . . . , zn−1)

and w′ = (w1, . . . ,wn−1), we get

∂j zi = ∂j t
(
wi − ρ

(
x′)xi

) + (1 − t)∂j

(
ρ
(
x′)xi

) + t∂jwi, i, j = 1, . . . , n − 1.

This equation written in matrix form is

Dz′ = (
w′ − ρx′) ⊗ Dt + (1 − t)D

(
ρx′) + tDw′. (A.10)

We calculate ∂j t . Differentiating the equation ψ(tW + (1 − t)ρ(x′)x) = 0 with respect to xj , 1 � j � n − 1, we get

∂j tDψ · (W − ρx) = −(1 − t)

n∑
i=1

ψPi
∂j (ρxi) − t

n∑
i=1

ψPi
∂jwi

= −
n−1∑
i=1

ψPi

(
(1 − t)∂j (ρxi) + t∂jwi

) − (1 − t)ψPn∂j (ρxn),

since wn = 0. So we have the formula for the vector Dt = (∂1t, . . . , ∂n−1t)

Dt = −βD̃ψ
(
(1 − t)D

(
ρx′) + tDw′) − β(1 − t)ψPnD(ρxn), (A.11)

where β = 1
Dψ ·(W−ρx)

, and we used the notation D̃ψ = (ψP1 , . . . ,ψPn−1). For simplicity in the calculation let A =
(1 − t)D(ρx′) + tDw′. So from (A.10)

Dz′ = (
w′ − ρx′) ⊗ Dt + A,

and from (A.11)

Dt = −βD̃ψA − β(1 − t)ψPnD(ρxn).

So inserting (A.11) into (A.10) and using the formula ξ ⊗ (ηA) = (ξ ⊗ η)A,4 we obtain

Dz′ = (
I − β

(
w′ − ρx′) ⊗ D̃ψ

)
A − β(1 − t)ψPn

(
w′ − ρx′) ⊗ D(ρxn).

Letting B = I − β(w′ − ρx′) ⊗ D̃ψ , from (A.4) we get

B−1 = I + β(w′ − ρx′) ⊗ D̃ψ

1 − β(w′ − ρx′) · D̃ψ
.

Since 1
β

= Dψ · (W − ρx) = D̃ψ · (w′ − ρx′) − ψPnρxn, it follows that

B−1 = I − (w′ − ρx′) ⊗ D̃ψ

ψPnρxn

.

Therefore

Dz′ = B
(
A − β(1 − t)ψPnB−1((w′ − ρx′) ⊗ D(ρxn)

))
.

We have

4 ξ ⊗ η = ξ t η as multiplication of matrices.
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B−1((w′ − ρx′) ⊗ D(ρxn)
) =

(
I − (w′ − ρx′) ⊗ D̃ψ

ψPnρxn

)((
w′ − ρx′) ⊗ D(ρxn)

)
= (

w′ − ρx′) ⊗ D(ρxn) − 1

ψPnρxn

((
w′ − ρx′) ⊗ D̃ψ

)((
w′ − ρx′) ⊗ D(ρxn)

)
= (

w′ − ρx′) ⊗ D(ρxn) − 1

ψPnρxn

(
D̃ψ · (w′ − ρx′))(w′ − ρx′) ⊗ D(ρxn)

= (
w′ − ρx′) ⊗ D(ρxn) − 1

ψPnρxn

(
1

β
+ ψPnρxn

)(
w′ − ρx′) ⊗ D(ρxn)

= − 1

βψPnρxn

(
w′ − ρx′) ⊗ D(ρxn).

Consequently

Dz′ = B
(

A + (1 − t)
1

ρxn

(
w′ − ρx′) ⊗ D(ρxn)

)

= B
(

tDw′ + (1 − t)D
(
ρx′) + (1 − t)

1

ρxn

(
w′ − ρx′) ⊗ D(ρxn)

)
.

We recall from (A.7) that

Dw′ = 2ρF
(
x′, ρ,Dρ

)
MD2ρ + B

with M from (A.5), so

Dz′ = B
(

t2ρFMD2ρ + tB + (1 − t)D
(
ρx′) + (1 − t)

1

ρxn

(
w′ − ρx′) ⊗ D(ρxn)

)

= B2tρFM
(

D2ρ + 1

2tρF
M−1

(
tB + (1 − t)

(
D

(
ρx′) + 1

ρxn

(
w′ − ρx′) ⊗ D(ρxn)

)))
.

We have detB = 1 − β(w′ − ρx′) · D̃ψ = −βψPnρxn and detM = 1 + 1
F

(Dρ · DpF). So

detDz′ = (2tρF )n−1(−βψPnρxn)

(
1 + 1

F
(Dρ · DpF)

)
det

(
D2ρ +A

)
,

with

A=A
(
x′, ρ,Dρ

) = 1

2tρF
M−1

(
tB + (1 − t)

(
D

(
ρx′) + 1

ρxn

(
w′ − ρx′) ⊗ D(ρxn)

))
.

From (A.2) and (A.9) we then obtain that ρ satisfy the pde of Monge–Ampère type

det
(
D2ρ +A

) = f

g(1 − |x′|2)|Dψ |(2t)n−1ρn(−β)Fn−2(F + Dρ · DpF)
. (A.12)
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