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Abstract

We study the existence of positive solutions on R
N+1 to semilinear elliptic equation −�u + u = f (u) where N � 1 and f is

modeled on the power case f (u) = |u|p−1u. Denoting with c the mountain pass level of V (u) = 1
2‖u‖2

H 1(RN)
− ∫

RN F(u)dx,

u ∈ H 1(RN) (F(s) = ∫ s
0 f (t) dt), we show, via a new energy constrained variational argument, that for any b ∈ [0, c) there exists

a positive bounded solution vb ∈ C2(RN+1) such that Evb(y) = 1
2‖∂yvb(·, y)‖2

L2(RN)
− V (vb(·, y)) = −b and v(x, y) → 0 as

|x| → +∞ uniformly with respect to y ∈R. We also characterize the monotonicity, symmetry and periodicity properties of vb.
© 2013
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1. Introduction

In this paper we study the existence of positive solutions on R
N+1 to semilinear elliptic equations

−�u + u = f (u) (E)

where N � 1 and f is a nonlinearity which can be thought modeled on the power case f (u) = |u|p−1u with p

subcritical and greater than 1. Equations of this kind are used in various fields of Physics such as, for example, plasma
or laser self-focusing models (see [28] and the references therein). They arise in particular in the study of standing
waves (stationary states) solutions of the corresponding nonlinear Schrödinger type equations.

Starting with the work by W.A. Strauss, [29], the problem of finding and characterizing positive solutions v ∈
H 1(RN+1) of (E) has been widely studied. We refer to the paper by H. Berestycki and P.L. Lions [8] (in the case
N � 2, see [9] for N = 1) where nearly optimal existence results regarding least energy positive solutions (also
ground state solutions) for (E) are obtained. Their mountain pass characterization, and so information about their
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Morse index, is given by L. Jeanjean and K. Tanaka in [17]. In the pure power case, uniqueness and nondegeneracy
properties of positive solutions of (E) in H 1(RN+1) was derived by M.K. Kwong in [18]. Regarding the uniqueness
problem for more general nonlinearity f , we refer to the paper by J. Serrin and M. Tang, [27], and to the references
therein.

A new kind of entire solutions of (E) has been introduced by N. Dancer in [13]. Denoting (x, y) ∈ R
N ×R a point

in R
N+1, we note that a ground state solution u0(x) of (E) in R

N can be thought as a solution of (E) on R
N+1, which

is constant with respect to the y variable. In the pure power case (or anyhow assuming the nondegeneracy of the
ground state solution) Dancer proved, by using bifurcation and continuation arguments, the existence of a continuous
branch of entire positive solutions of (E) in R

N+1 bifurcating from the cylindric type solution u0. These solutions are
periodic in the variable y and decay to zero as |x| → +∞. Different periodic Dancer’s solutions (suitably rotated)
were then used in the pure power case as prescribed asymptotes in the constructions of multiple ends solutions of (E)
by A. Malchiodi in [21] and by M. del Pino, M. Kowalczyk, F. Pacard and J. Wei in [14].

Related to the above papers is the one by C. Gui, A. Malchiodi and H. Xu, [16], where qualitative properties (such
as radial symmetry with respect to the variable x and evenness with respect to y) of positive solutions v(x, y) of
(E) which decay to zero as |x| → +∞ (uniformly w.r.t. y) are established. Their study is based on moving plane
techniques together with the use of some Hamiltonian identities which are connected with the Lagrangian structure of
that kind of problem.

To describe the Hamiltonian identities which are used in [16] and to introduce precisely the problem studied in
the present paper, note that prescribing the decay properties of a solution v only with respect to the variable x ∈ R

N ,
naturally gives to the variable y the role of an evolution variable. In this respect, as usual in the evolution problems,
all the solutions v of (E) described above belong to the space X = L2

loc(R,H 1(RN)) ∩ H 1
loc(R,L2(RN)) and verify

(at least in a weak sense) the evolution equation

∂2
y v(·, y) = V ′(v(·, y)

)
, y ∈R, (1.1)

where V ′ is the gradient in H 1(RN) of the Euler functional relative to Eq. (E) on R
N ,

V (u) =
∫
RN

1

2
|∇u|2 + 1

2
|u|2 − F(u)dx, u ∈ H 1(

R
N

)
,

where F(s) = ∫ s

0 f (t) dt . We will refer to this kind of solutions as layered solutions of (E).
Noting that Eq. (1.1) has Lagrangian structure, one can think to the variable y as a time variable and to the functional

U = −V as the energy potential of the infinite dimensional dynamical system. Every layered solution v defines a
trajectory y ∈ R → v(·, y) ∈ H 1(RN), solution to (1.1). In this connection, any u ∈ H 1(RN) which solves (E) is
an equilibrium of (1.1) and the solutions found by Dancer are periodic orbits of the system. Since the system is
autonomous, if v is a layered solution to (E) then the Energy function

y → Ev(y) = 1

2

∥∥∂yv(·, y)
∥∥2

L2(RN)
− V

(
v(·, y)

)
is constant (a formal proof of this Hamiltonian identity for a general class of elliptic equations can be found in [10]
and [15], see also [3] for the case of Allen Cahn equations).

In the present paper, in analogy with the study already done for Allen Cahn type equation in [3–5] (see also [2] and
see [1] for Allen Cahn system of equations), we study the problem of finding layered solution of (E) with prescribed
energy. In particular we study the problem of looking for connecting orbit solutions with prescribed energy.

To be more detailed, we precise our assumption on the nonlinearity f . We assume that

(f 1) f ∈ C1(R),
(f 2) there exist C > 0 and p ∈ (1,1 + 4

N
) such that |f (t)| � C(1 + |t |p) for any t ∈ R,

(f 3) there exists μ > 2 such that 0 < μF(t)� f (t)t for any t 
= 0, where F(t) = ∫ t

0 f (s) ds,
(f 4) f (t)t < f ′(t)t2 for any t 
= 0.

As it is well known, (f 1)–(f 4) are more than sufficient to guarantees that V ∈ C1(H 1(RN)) and that it satisfies
the geometrical assumptions of the Mountain Pass Theorem (see [26]). Setting c = infγ∈Γ supt∈[0,1] V (γ (t)), where
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Γ = {γ ∈ C([0,1],H 1(RN)) |γ (0) = 0, V (γ (1)) < 0}, it is nowadays standard to show that c > 0 is the lowest
positive critical level of V . Then, the definition of the mountain pass level implies that given any b ∈ [0, c) the
sublevel {V � b} is the union of two disjoint path connected sets Vb− and Vb+, where we denote with Vb− the one which
contains 0. The main result of the present paper establishes that given any b ∈ [0, c) there exists a layered solution v

of (E) with Ev = −b and which connects (in some sense precised below) the sets Vb− and Vb+. Precisely we prove that

Theorem 1.1. If F satisfies (f 1)–(f 4) then for any b ∈ [0, c) Eq. (E) has a solution vb ∈ C2(RN+1) with energy
Evb

= −b and such that

(i) vb > 0 on R
n+1,

(ii) vb(x, y) = vb(|x|, y) → 0 as |x| → +∞, uniformly w.r.t. y ∈R,
(iii) ∂rvb(x, y) < 0 for r = |x| > 0 and y ∈R.

Moreover, if b > 0,

(iv) there exists Tb > 0 such that vb is periodic of period 2Tb in the variable y and symmetric with respect to y = 0
and y = Tb .

(v) ∂yvb(x, y) > 0 on R
N × (0, Tb), vb(·,0) ∈ Vb−, vb(·, Tb) ∈ Vb+.

Finally, if b = 0,

(vi) v0 ∈ H 1(RN+1) is radially symmetric and ∂rv0 < 0 for r = |(x, y)| > 0,
(vii) v0(·,0) ∈ V0+ and v0 is a mountain pass point of the Euler functional relative to (E) on H 1(RN+1).

Theorem 1.1 gives the existence for any b ∈ [0, c) of a positive layered solution vb to (E) with energy −b which
is radially symmetric and decaying to 0 as |x| → +∞ uniformly with respect to y ∈ R. When b > 0 the solution
vb is a periodic solution of period 2Tb which is symmetric with respect to y = 0 and y = Tb . It can be thought as
a trajectory which oscillates back and forth along a simple curve connecting the two turning points vb(·,0) ∈ Vb−
and vb(·, Tb) ∈ Vb+. These solutions, which we call brake orbit type solutions, have the same behaviour of the above
described Dancer solutions. When b = 0 the solution v0 defines a trajectory which emanates from 0 ∈ H 1(RN) as
y → −∞, reaches the point v(·,0) ∈ V0+ and goes back symmetrically to 0 for y > 0. It can been thought as a
homoclinic solution to 0 ∈ H 1(RN) and it is in fact the mountain pass point of the Euler functional relative to (E) on
H 1(RN+1). Finally we can think at the mountain pass point of V in H 1(RN) as an equilibrium of (1.1) at energy −c.
The Energy diagram here below wants to summarize these considerations.

To prove Theorem 1.1 we make use of variational methods and we apply an Energy constrained variational argu-
ment already introduced and used in [3–5]. Given b ∈ [0, c), we look for minima of the renormalized functional

ϕ(v) =
∫
R

1

2

∥∥∂yv(·, y)
∥∥2

L2(RN)
+ (

V
(
v(·, y)

) − b
)
dy

on the space of function v ∈ X which are radially symmetric with respect to x ∈ R
N , monotone decreasing with

respect to |x| and which verify

lim inf
y→±∞ distL2(RN)

(
v(·, y),Vb±

) = 0 and inf V
(
v(·, y)

)
� b. (1.2)
y∈R
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Thanks to the constraint infy∈R V (v(·, y)) � b, the functional ϕ is well defined on this class of functions. Moreover,
its minimizing sequences admits limit points v̄ ∈ X (a priori not verifying (1.2)) with respect to the weak topology of
H 1

loc(R
N+1).

Defining σ̄ = sup{y ∈ R/v̄(·, y) ∈ Vb−} and τ̄ = inf{y > σ̄/v̄(·, y) ∈ Vb+}, we can prove that −∞ � σ̄ < τ̄ < +∞
(indeed σ̄ > −∞ when b > 0) and limy→σ̄+ dist(v̄(·, y),Vb−) = 0, v̄(·, τ̄ ) ∈ Vb+ and V (v̄(·, y)) > b for any y ∈ (σ̄ , τ̄ ).
Then, the minimality properties of v̄ allow us to prove that v̄ solves in a classical sense Eq. (E) on R

N × (σ̄ , τ̄ )

and Ev̄(y) = −b for any y ∈ (σ̄ , τ̄ ). This will imply that v̄ satisfies the boundary conditions limy→σ̄+ ∂yv̄(·, y) =
limy→τ̄− ∂yv̄(·, y) = 0 in L2 and the entire solution vb is recovered from v̄ by translations, reflections and, eventually,
periodic continuations.

The variational approach that we used is similar to the one already applied in the study of the Allen Cahn type
equation in [3–5], but the present case is more complicated due to some natural lack of compactness and weak
semicontinuity of the problem. This mainly depends on the competition between the terms ‖u‖2

H 1(RN)
and

∫
RN F (u)

which enter in the definition of the potential functional V (u) with different sign.
This explains why we assume in (f 2) that p < 1 + 4/N . The exponent p = 1 + 4/N is in fact critical with

respect to the existence of a solution for the minimum problem inf{V (u) | u ∈ H 1(RN), ‖u‖L2(RN) = 1}. Indeed,
when p < 1 + 4/N , bounded L2 sequences are bounded in H 1 when V is bounded from above. Another (related)
criticality of p = 1 + 4/N is the fact that the sets Vb± have positive L2(RN) distance if and only if p < 1 + 4/N (one
can simply verify it by using dilations in the pure power case). We finally mention for completeness that the exponent
occurs in the study of the orbital stability being that the ground state solutions of (E) in H 1(RN) are stable when
1 < p < 1 + 4/N (see [12] and [11]) and unstable when 1 + 4/N � p (see [7,30]).

The paper is organized as follows. In Section 2 we recall some properties of the functional V studying in particular
the structure of the sublevel sets Vb±. The study of the functional ϕ and the use of the energy constraint variational
principle described above is contained in Section 3.

Remark 1.2. Since we look for positive solution of (E) it is not restrictive to assume, and we will do it along the paper,
that f is an odd function

(f 5) f (t) = −f (−t) for any t > 0.

Moreover, we list also some plain consequences of (f 1)–(f 4).

(i) By (f 1) and (f 3) it is straightforward to verify that f (0) = f ′(0) = 0 and so f (t) = o(t) as t → 0.
(ii) By (i) and (f 2) we have

∀ε > 0, ∃Aε > 0 such that
∣∣f (t)

∣∣ � ε|t | + Aε|t |p, ∀t ∈ R, (1.3)

from which we also derive

∀ε > 0, ∃Aε > 0 such that
∣∣F(t)

∣∣ � ε

2
|t |2 + Aε

p + 1
|t |p+1, ∀t ∈R. (1.4)

(iii) By (f 3), if t 
= 0 and s > 0, we have d
ds

F (st) = 1
s
f (st)st >

μ
s
F (st). Hence,

F(st) > F(t)sμ whenever t 
= 0 and s > 1. (1.5)

(iv) By (f 4), one plainly verify that, for any t 
= 0,

the function s → 1

s
f (st)t is strictly increasing for s > 0. (1.6)

For the sake of brevity in the notation, along the paper we denote ‖u‖ ≡ ‖u‖H 1(RN), ‖u‖p = ‖u‖Lp(RN) and
〈u,v〉 = 〈u,v〉H 1(Rn), 〈u,v〉2 = 〈u,v〉L2(Rn) for n = N or n = N + 1. Moreover dist(A,B) ≡ distL2(RN)(A,B) =
infv∈A, w∈B ‖v − w‖2 and dist(u,B) ≡ infv∈B ‖u − v‖2 for A,B ⊂ L2(RN), u ∈ L2(RN). Given y ∈ R

N we set
Br(y) ≡ {x ∈ R

N/|x| < r} and Br ≡ Br(0).
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2. The potential functional

In this chapter, we study some properties of the functional V : H 1(RN) → R defined by

V (u) = 1

2
‖u‖2 −

∫
RN

F
(
u(x)

)
dx. (2.1)

2.1. The mountain pass structure

Here we list some classical properties of V , in particular the ones regarding its mountain pass behaviour.
First of all we recall that V is regular on H 1(RN) (see e.g. [6] and [22]).

Lemma 2.1. V ∈ C2(H 1(RN)) with V ′(u)h = ∫
RN ∇u∇h + uh − f (u)hdx and V ′′(u)h · h = ∫

R
|∇h|2 + |h|2 −

f ′(u)h2 dx for all h ∈ H 1(RN).

Moreover the functional V satisfies the geometrical hypotheses of the Mountain Pass Theorem. Indeed, since
p + 1 < 2∗

N , by the Sobolev Immersion Theorem and Remark 1.2(ii) we obtain

Lemma 2.2. There exists ρ ∈ (0,1) such that if u ∈ H 1(RN) satisfies ‖u‖ � ρ then V (u) � 1
4‖u‖2 and V ′(u)v �

〈u,v〉 − 1
2‖u‖‖v‖ for all v ∈ H 1(RN).

By Lemma 2.2 and Remark 1.2(iii), V satisfies the geometric assumptions of the Mountain Pass Theorem. Hence,
defining

Γ = {
γ ∈ C

([0,1],H 1(
R

N
))

: γ (0) = 0, γ (1) 
= 0 and V
(
γ (1)

)
� 0

}
we denote the mountain pass level

c = inf
γ∈Γ

max
s∈[0,1]

V
(
γ (s)

)
.

Note that, by (f 3), the following inequality holds true

μV (u) − V ′(u)u =
(

μ

2
− 1

)
‖u‖2 +

∫
RN

f (u)u − μF(u) � μ − 2

2
‖u‖2, (2.2)

from which the Palais Smale sequences of V are bounded in H 1(RN). Moreover, by (2.2), if V ′(u) = 0 and u 
= 0
then V (u) � μ−2

2μ
‖u‖2, showing that V has not critical points (or Palais Smale sequences) at negative levels.

The existence of a mountain pass critical point of V can then be deduced by using e.g. concentration compactness
argument. We have

Proposition 2.3. There exists w0 ∈ H 1(RN) such that V (w0) = c and V ′(w0) = 0. Moreover w0 ∈ C2(RN) is a
solution of (E) on R

N , w0 > 0, w0(x) → 0 as |x| → +∞ and, up to translations, w0 is radially symmetric about the
origin with ∂rw0 < 0 for r = |x| > 0.

We refer for a proof to [8], for N � 3 and [9] for N = 2, where a more general existence results regarding least
energy solutions for scalar field equations is given. Their mountain pass characterization is proved in [17]. The case
N = 1 is easier and can be solved with similar arguments.

Fixed u ∈ H 1(RN), the assumption (f 4) allows us to describe the behaviour of V along the rays {tu | t � 0} in
H 1(RN). One plainly shows that

Lemma 2.4. For every u ∈ H 1(RN) \ {0} there exists tu > 0 such that

d
V (tu) > 0 for t ∈ (0, tu) and

d
V (tu) < 0 for t ∈ (tu,+∞). (2.3)
dt dt
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Moreover V (tuu) � c and for any b ∈ (0, c) there exist unique αu,b ∈ (0, tu) and ωu,b ∈ (tu,+∞) such that
V (αu,bu) = V (ωu,bu) = b. Finally the function t → V ′(tu)tu is decreasing in (tu,+∞).

Proof. We have

d

dt
V (tu) = V ′(tu)u = t

(
‖u‖2 − 1

t

∫
RN

f (tu)udx

)
. (2.4)

By (f 4) the function t → 1
t

∫
RN f (tu)udx is strictly increasing in (0,+∞) for any u 
= 0 and so, by (2.4), the function

d
dt

V (tu) can change sign at most in one point tu > 0. Then (2.3) follows since V (0) = 0, V (su) � 1
4 s2‖u‖2 for

s ∈ (0, ρ/‖u‖) and V (su) → −∞ as s → +∞. By (2.3) we deduce V (tuu) = maxs�0 V (su), and, by the definition of
the mountain pass level, we have V (tuu)� c. Given b ∈ [0, c), since V (0) = 0, V (tu) < 0 for t large and V (tuu) � c,
by continuity there exist (unique by (2.3)) 0 � αu,b < tu < ωu,b such that V (αu,bu) = V (ωu,bu) = b. We finally note

that by (f 4) we have d2

dt2 V (tu) = ‖u‖2 −∫
RN f ′(tu)u2 dx � ‖u‖2 − 1

t

∫
RN f (tu)udx < 0 for any t > tu. We conclude

that d
dt

V ′(tu)tu = d
dt

(t d
dt

V (tu)) = t d2

dt2 V (tu) + d
dt

V (tu) < 0 for any t > tu. �
Remark 2.5. Note that if V ′(u)u = 0 and u 
= 0 we have d

dt
V (tu)|t=1 = V ′(u)u = 0 and so tu = 1. Then, by

Lemma 2.4, V (u) = V (tuu) � c whenever u 
= 0 and V ′(u)u = 0.

Remark 2.6. We note that, since by (f 2) we have p < 2∗
N+1 − 1, all the results stated and proved in the present

sections hold unchanged for all m ∈ {1, . . . ,N + 1} considering the functionals

Vm(u) = 1

2
‖u‖2

H 1(Rm)
−

∫
Rm

F
(
u(x)

)
dx, u ∈ H 1(

R
m
)
.

In particular, denoting cm the mountain pass level of Vm in H 1(Rm), Proposition 2.3 establishes that Vm has a positive,
radially symmetric, critical point w ∈ H 1(Rm) at the level cm.

2.2. Further properties of V on the space of radial functions. The sublevels Vb− and Vb+

From now on we reduce ourself to work on the subspace of H 1 constituted by radial functions: H 1
r (RN) = {u ∈

H 1(RN)/u(x) = u(|x|)}. We recall that by the Strauss Lemma (see [29,20]) H 1
r (RN) is compactly embedded in

Lq(RN) for all q ∈ (2,2∗
N). Thanks to the Strauss Lemma the functional V is weakly lower semicontinuous on

H 1
r (RN). It is indeed standard to prove the following

Lemma 2.7. Let un → u and vn ⇀ v in H 1
r (RN). Then

lim
n→+∞

∫
RN

F (un) dx =
∫
RN

F (u)dx and lim
n→+∞

∫
RN

f (un)vn dx =
∫
RN

f (u)v dx.

Hence V (u) � lim infn→+∞V (un), V ′(u)u � lim infn→+∞V ′(un)un and, for every h ∈ H 1
r (RN), V ′(u)h =

limn→+∞V ′(un)h.

For our study it is important to understand the structure of the sublevel sets Vb = {u ∈ H 1
r (RN)/V (u) � b}. By

definition of the mountain pass level the set Vb is not path connected for any b ∈ [0, c). Given b ∈ [0, c), recalling
Lemma 2.4, we denote

Vb− = {
tu

∣∣ u ∈ H 1
r

(
R

N
) \ {0}, t ∈ [0, αu,b]

}
and Vb+ = {

tu
∣∣ u ∈ H 1

r

(
R

N
) \ {0}, t ∈ [ωu,b,+∞)

}
.

Clearly

Vb = Vb− ∪ Vb+.
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Remark 2.8. The set Vb− is clearly path connected (starshaped indeed, with respect to the origin). The same holds true
also for Vb+. Indeed, given u1, u2 ∈ Vb+ such that b � b1 = V (u1) � b2 = V (u2) we can connect them considering the
path γ (s) = ωb1,(1−s)u1+su2((1 − s)u1 + su2) for s ∈ [0,1] and γ (s) = sωb1,u2 for s ∈ [1,1/ωb1,u2 ]. The function γ

is continuous since the mapping u ∈ H 1
r (RN) → ωu,b ∈ R is continuous for any b < c.

Remark 2.9. By definition of mountain pass level and Remark 2.8, if γ ∈ C([0,1],H 1
r (RN)) is such that γ (0) ∈ Vb−

and γ (1) ∈ Vb+ then maxs∈[0,1] V (γ (s)) � c. Secondly note that by Lemma 2.4

Vb− = {
u ∈ H 1

r

(
R

N
)
/αu,b � 1

} ∪ {0} and Vb+ = {
u ∈ H 1

r

(
R

N
)
/ωu,b � 1

}
for all b ∈ [0, c).

Moreover if b ∈ (0, c) then

u ∈ Vb− \ {0} if and only if V (u) � b and V ′(u)u > 0. (2.5)

Indeed, if u ∈ Vb− \ {0} then 1 � αu,b < tu and so, by Lemma 2.4, V ′(u)u > 0. Vice versa if V (u) � b and V ′(u)u > 0
then u 
= 0 and 1 � αu,b , from which V (u) � b. Analogously if b ∈ [0, c) then

u ∈ Vb+ if and only if V (u) � b and V ′(u)u < 0. (2.6)

Lemma 2.10. If b ∈ [0, c) then Vb− and Vb+ are weakly closed in H 1
r (RN).

Proof. Let (un) ⊂ Vb+ be such that un ⇀ u0 in H 1
r (RN). By Remark 2.9 we have V (un) � b and V ′(un)un < 0.

Since V ′(un)un < 0, by Lemma 2.2 we deduce ‖un‖ � ρ for any n ∈ N. Moreover since V (un) � b, by Lemma 2.7
we obtain V (u0)� b. By Lemma 2.7 we know also that

∫
Rn f (un)un dx → ∫

Rn f (u0)u0 dx and, since V ′(un)un < 0,
V ′(u0)u0 � 0. By (2.6), to prove that u0 ∈ Vb+ we have to show that V ′(u0)u0 < 0. For that, assume by contradiction
that V ′(u0)u0 = 0 and note that, being V (u0) � b < c, by Remark 2.5 we have u0 = 0. Then

∫
Rn f (un)un dx → 0

and so 0 > V ′(un)un > ρ2 + o(1) as n → +∞, a contradiction which shows that Vb+ is weakly closed.
Let now (un) ⊂ Vb− be such that un ⇀ u0 in H 1

r (RN). Again using Remark 2.9 we have V (un) � b and
V ′(un)un � 0. Hence, by Lemma 2.7, we deduce that V (u0) � b. To show that u0 ∈ Vb− it suffices to show that
V ′(u0)u0 � 0. Assume by contradiction that V ′(u0)u0 < 0. Then, by (2.6), we have u0 ∈ Vb+. Consider the path
γn(s) = u0 + s(un − u0), s ∈ [0,1]. Since γn(0) = u0 ∈ Vb+ and γn(1) = un ∈ Vb−, by Remark 2.9, for any n ∈ N

we find sn ∈ (0,1) such that V (γn(sn)) � c. We note also that ‖γn(s)‖2 � ‖u0‖2 + ‖un − u0‖2 � C1 < +∞ and
‖γn(s)‖p+1 � ‖u0‖p+1 + ‖un − u0‖p+1 � C2 < +∞ for any n ∈ N and s ∈ [0,1]. Then, choosing ε = c−b

2C2
1

, by (1.3)

we get∣∣∣∣
∫
RN

f
(
γn(s)

)
(un − u0) dx

∣∣∣∣ � ε
∥∥γn(s)

∥∥
2‖un − u0‖2 + Aε

∥∥γn(s)
∥∥p

p+1‖un − u0‖p+1

= c − b

2
+ AεC

p

2 ‖un − u0‖p+1 for any s ∈ [0,1].
Hence we derive that for any s ∈ [0,1] and n ∈ N there results

d

ds
V

(
γn(s)

) = V ′(γn(s)
)
(un − u0)

� s‖un − u0‖2 + 〈u0, un − u0〉 − c − b

2
− AεC

p

2 ‖un − u0‖p+1.

Integrating on [sn,1] we get

b − c � V (un) − V
(
γn(sn)

)
� b − c

2
+ (1 − sn)

(〈u0, un − u0〉 − AεC
p

2 ‖un − u0‖p+1
)
.

Since 〈u0, un − u0〉 − AεC
p

2 ‖un − u0‖p+1 → 0 we obtain the contradiction 0 > b − c � b−c
2 . �
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Remark 2.11. Note that, by (2.2), if b ∈ [0, c) and u ∈ Vb−, since V ′(u)u � 0, then

‖u‖2 � 2μ

μ − 2
V (u) � 2μ

μ − 2
b.

In particular we obtain that Vb− is bounded in H 1
r (RN). Then, by Lemma 2.10, Vb− is weakly compact in H 1

r (RN) and
if (un) ⊂ Vb− is such that un → u0 with respect to the L2(RN) metric then u0 ∈ Vb−.

Lemma 2.12. If b ∈ [0, c) we have ν+(b) := infu∈Vb+
−V ′(u)u

max{1,‖u‖2
2}

> 0.

Proof. First note that, by (2.2), if u ∈ Vb+ is such that ‖u‖2
2 � 4bμ

μ−2 or V (u) � 0 then −V ′(u)u

‖u‖2
2

� μ−2
2

‖u‖2

‖u‖2
2

−
μ

V (u)

‖u‖2
2
� μ−2

4 . Assume now by contradiction that there exists (un) ⊂ Vb+ such that 0 < V (un) � b, ‖un‖2
2 � 4bμ

μ−2

and −V ′(un)un

max{1,‖un‖2
2}

→ 0. Then V ′(un)un → 0. Since un ∈ Vb+, by Remark 2.9 we have tun < 1. By (2.2) we have

‖un‖2 � 2μ
μ−2b + o(1) and since, by Remark 2.5, ‖tunun‖ � ρ, we deduce that tun � μ−2

4μb
ρ > 0 whenever n is large.

By Lemma 2.4 we have |V ′(sun)sun| � |V ′(un)un| for any s ∈ (tun,1), and we conclude c − b �
∫ tun

1
d
ds

V (sun) ds =∫ tun

1
1
s
V ′(sun)sun ds � − log(tun)|V ′(un)un| → 0 as n → +∞, a contradiction which proves the lemma. �

Lemma 2.13. If b ∈ (0, c) then ν−(b) := inf
u∈V (b+c)/2

− \Vb−
V ′(u)u > 0.

Proof. By contradiction, let (un) ⊂ V(b+c)/2
− \ Vb− be such that V ′(un)un → 0. Then, by Remark 2.11, there exists

u0 ∈ V(b+c)/2
− such that, up to a subsequence, un ⇀ u0 in H 1

r (RN). By Lemma 2.7, V ′(u0)u0 � lim infV ′(un)un = 0.

Since u0 ∈ V(b+c)/2
− that implies u0 = 0 and then, again by Lemma 2.7,

∫
Rn f (un)un dx → 0. Hence V ′(un)un =

‖un‖2 + o(1) → 0 and so un → 0 in H 1(Rn) that gives the contradiction 0 < b � V (un) → 0. �
Finally, we display some properties depending on the assumption p < 1 + 4

N
.

First, as a particular case of the Gagliardo Nirenberg interpolation inequality (see [25]), we have that there exists a
constant κ = κ(N,p) > 0 such that for any u ∈ H 1

r (RN), there results

‖u‖p+1 � κ‖u‖θ
2‖∇u‖1−θ

2 , where 1 − θ = N

2

p − 1

p + 1
. (2.7)

Moreover, note that, by (1.4), we have F(t) � 1
4 |t |2 + A1/2

p+1 |t |p+1 for every t ∈ R. Therefore, if u ∈ H 1
r (RN) \ {0}, by

(2.7) there results

V (u) � 1

2
‖∇u‖2

2

(
1 − 2κGNA1/2

p + 1

‖u‖(p+1)θ

2

‖∇u‖2−(p+1)(1−θ)

2

)
+ 1

4
‖u‖2

2, (2.8)

where, since p < 1 + 4
N

, by (f 2), we have

(p + 1)(1 − θ) = N

2
(p − 1) < 2. (2.9)

By (2.8) and (2.9) it follows directly

Lemma 2.14. If (un) ⊂ H 1
r (RN), supn∈N ‖un‖2 < +∞ and ‖∇un‖2 → +∞ then V (un) → +∞.

In particular Vb+ enjoys the following property.

Lemma 2.15. If b ∈ [0, c), for any M1 > 0 there exists M2 > 0 such that if u ⊂ Vb+ and ‖u‖2 �M1 then ‖∇u‖2 � M2.
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Remark 2.16. Note that by Lemma 2.15 and Lemma 2.10 we derive that if (un) ⊂ Vb+ is such that un → u0 with
respect to the L2(RN) metric then u0 ∈ Vb+.

Another consequence is the following one

Lemma 2.17. For any b1, b2 ∈ [0, c) there result δ(b1, b2) := dist(Vb1− ,Vb2+ ) > 0.

Proof. Clearly δ(b1, b2) < +∞. Let (un,1) ⊂ Vb1− and (un,2) ⊂ Vb2+ be such that ‖un,1 − un,2‖2 → δ(b1, b2). By

Remark 2.11 we know that ‖un,1‖� 2μ
μ−2b1 and hence we obtain ‖un,2‖2 � 2μ

μ−2b1 + δ(b1, b2) + o(1). Then (un,2) is

bounded in L2(R). By Lemma 2.14, since V (un,2) � b2, we obtain that supn∈N ‖∇un,2‖2 < +∞ and so that (un,2)

is bounded also in H 1
r (RN). Then there exist two subsequences (unj ,1) ⊂ (un,1), (unj ,2) ⊂ (un,2) which weakly

converge respectively to u1 ∈ H 1
r (RN) and u2 ∈ H 1

r (RN). By Lemma 2.10 we have u1 ∈ Vb1− and u2 ∈ Vb2+ and by
the weak semicontinuity of the L2 norm we deduce δ(b1, b2) � ‖u1 −u2‖2 � limj→+∞ ‖unj ,1 −unj ,2‖2 = δ(b1, b2).
Since u1 
= u2 we have δ(b1, b2) = ‖u1 − u2‖2 > 0 and the lemma follows. �

As a further consequence of the assumption p < 1 + 4/N , we give a result concerning the behaviour of V along
sequences in H 1

r (RN) which converge to a point u0 ∈ H 1
r (RN) with respect to the L2(RN) metric.

Lemma 2.18. Let un,u0 ∈ H 1
r (RN) be such that ‖un − u0‖2 → 0 as n → +∞ and lim infn→∞ ‖∇(un − u0)‖2 > 0.

Then there exists n̄ ∈N such that

V (un) − V
(
u0 + s(un − u0)

)
� 1

4
(1 − s)

∥∥∇(un − u0)
∥∥2

2, ∀s ∈ [0,1], n� n̄.

Proof. Setting wn = un − u0, by (1.3), since wn → 0 in L2(RN) we recover that there exists C > 0 such that, for any
s ∈ [0,1],∣∣∣∣

∫
RN

F (u0 + wn) − F(u0 + swn)) dx

∣∣∣∣

=
∣∣∣∣∣
∫
RN

1∫
s

f (u0 + σwn)wndσ dx

∣∣∣∣∣
�

1∫
s

‖u0‖2‖wn‖2 + σ‖wn‖2
2 + A12p−1(‖u0‖p

p+1‖wn‖p+1 + σp‖wn‖p+1
p+1

)
dσ

� C(1 − s)
(
o(1) + ‖wn‖p+1 + ‖wn‖p+1

p+1

)
as n → +∞. (2.10)

We now note that, since lim infn→+∞ ‖∇wn‖2
2 > 0, we have

lim
n→+∞

〈∇u0,∇wn〉2

‖∇wn‖2
2

= 0. (2.11)

Indeed, (2.11) is true along subsequences (wnj
) such that ‖∇wnj

‖2 → +∞. If (wnj
) ⊂ {wn} is bounded in H 1

r (RN)

then, necessarily, wnj
⇀ 0 in H 1

r (RN) and again (2.11) follows.
Secondly we note that

lim
n→+∞

‖wn‖p+1 + ‖wn‖p+1
p+1

‖∇wn‖2
2

= 0. (2.12)

Indeed, we have either ‖∇wn‖2 is bounded or lim supn→+∞ ‖∇wn‖2 = +∞. If ‖∇wn‖2 is bounded then (wn) weakly
converges to 0 in H 1

r (RN) and so strongly in Lp+1(RN) giving (2.12). If ‖∇wn‖2 → +∞ along a subsequence, then,
since ‖wn‖2 → 0, (2.12) follows by (2.7) and (2.9).
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Finally, by (2.10), we derive that for any s ∈ [0,1]

V (u0 + wn) − V (u0 + swn) = ‖∇wn‖2

2

(
1 − s2) + (1 − s)〈∇u0,∇wn〉2 + (1 − s)o(1)

−
∫
RN

F (u0 + wn) − F(u0 + swn)dx

� ‖∇wn‖2
2(1 − s)

(
1 + s

2
+ 〈∇u0,∇wn〉2

‖∇wn‖2
2

− C
‖wn‖p+1 + ‖wn‖p+1

p+1 + o(1)

‖∇wn‖2
2

)

� ‖∇wn‖2
2(1 − s)

(
1

2
+ o(1)

)
and the lemma follows by (2.11) and (2.12). �
Remark 2.19. By Lemma 2.18 we have in particular that if un,u0 ∈ H 1

r (RN), sn ∈ [0,1] are such that un → u0 in
L2(RN) as n → +∞ and V (un)−V (u0 + sn(un −u0)) → 0 as n → +∞, then (1− sn)‖un −u0‖2 → 0 as n → +∞.
In particular, if V (un) → V (u0) as n → +∞, then un → u0 in H 1(RN) as n → +∞.

3. Solutions on RRR
N+1

In the sequel we denote (x, y) ∈ R
N+1 where x = (x1, . . . , xn) ∈ R

N and y ∈ R, the gradient with respect to the
x ∈R

N will be denoted by ∇x . For (y1, y2) ⊂R we set S(y1,y2) := R
N × (y1, y2) and, more simply, SL := S[−L,L] for

L > 0. We denote by X the set of monotone decreasing radially symmetric functions in H 1(RN):

X = {
u ∈ H 1

r

(
R

N
) ∣∣ u(x1) � u(x2) for any x1, x2 ∈R

N such that |x1|� |x2|
}
.

Note that X is a positive cone in H 1
r (RN) (and so convex) and it is sequentially closed in H 1(RN) with respect to the

weak topology. In the following, with abuse of notation, given b ∈ [0, c) we will indicate Vb± ≡ Vb± ∩X .
We consider the set

H = {
v ∈ ∩L>0H

1(SL)/v(·, y) ∈ X for a.e. y ∈ R
}
.

Note that, by the Fubini Theorem, we have that if v ∈ H then v(x, ·) ∈ H 1
loc(R) for a.e. x ∈ R

N . Therefore, if
(y1, y2) ⊂R then v(x, y2) − v(x, y1) = ∫ y2

y1
∂yv(x, y) dy holds for a.e. x ∈ R

N and so

∫
RN

∣∣v(x, y2) − v(x, y1)
∣∣2

dx =
∫
RN

∣∣∣∣∣
y2∫

y1

∂yu(x, y) dy

∣∣∣∣∣
2

dx � |y2 − y1|
∫
RN

y2∫
y1

∣∣∂yv(x, y)
∣∣2

dy dx.

According to that, if v ∈ H, the function y ∈ R → u(·, y) ∈ L2(RN), defines a continuous trajectory verifying∥∥v(·, y2) − v(·, y1)
∥∥2

2 � ‖∂yv‖2
L2(S(y1,y2))

|y2 − y1|, ∀(y1, y2) ⊂R. (3.1)

In the sequel we will consider the functional V as extended on L2(RN) in the following way

V (u) =
{

V (u) if u ∈ H 1(Rn),

+∞ if u ∈ L2(RN) \ H 1(Rn).

Lemma 3.1. If v ∈ H then the function y ∈R → V (v(·, y)) ∈R∪ {+∞} is lower semicontinuous.

Proof. Let v ∈ H and yn → y0 and let (ynj
) ⊂ (yn) be such that lim infn→+∞ V (v(·, yn)) = limj→+∞ V (v(·, ynj

)).
By (3.1) we have v(·, ynj

) → v(·, y0) in L2(RN) as j → +∞. We consider the two following alternative cases:

(a) sup
∥∥v(·, ynj

)
∥∥ < +∞ or (b) lim sup

j→+∞
∥∥v(·, ynj

)
∥∥ = +∞.
j∈N
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In the case (a), since (v(·, ynj
)) is bounded in X and v(·, ynj

) → v(·, y0) in L2(RN), we deduce that v(·, ynj
) ⇀

v(·, y0) in X . Then by Lemma 2.7 we derive limj→+∞ V (v(·, ynj
)) � V (v(·, y0)). In the case (b) we have

lim supj→+∞ ‖∇v(·, ynj
)‖2 = +∞ since ‖v(·, ynj

)‖2 is bounded. Then, by Lemma 2.14, we get limj→+∞ V (v(·,
ynj

)) = lim supj→+∞ V (v(·, ynj
)) = +∞, showing that also in the case (b) there results limj→+∞ V (v(·, ynj

)) �
V (v(·, y0)). �
Lemma 3.2. If v ∈ H is a solution of (E) on S(y1,y2) then the energy function Ev(y) = 1

2‖∂yv(·, y)‖2
2 − V (v(·, y)) is

constant on (y1, y2).

Proof. Since v ∈H we have that v ∈ H 1(SL) for any L > 0. Then, since v solves (E) on S(y1,y2) by regularity we have
v ∈ H 2(S(ζ1,ζ2)) ∩ C2(S(y1,y2)) for any [ζ1, ζ2] ⊂ (y1, y2). Hence v(·, y) ∈ H 2(RN) ∩ C2(RN) for all y ∈ (y1, y2) and
so

∫
|x|=R

|v(x, y)| + |∇xv(x, y)|dσ → 0 as R → +∞ for all y ∈ (y1, y2). Denoting divxw = ∑n
i=1 ∂xi

w, we derive∫
RN

divx[∂yv∇xv]dx = lim
R→+∞

∫
|x|�R

divx[∂yv∇xv]dx = lim
R→+∞

∫
|x|=R

∂yv∇xv · x

|x| dσ = 0.

Therefore, multiplying (E) by ∂yv and integrating over RN with respect to x, we obtain

0 =
∫
RN

−∂2
y v∂yv − �xv∂yv + v∂yv − f (v)∂yv dx

=
∫
RN

−1

2
∂y |∂yv|2 − divx[∂yv∇xv] + 1

2
∂y |∇xv|2 + ∂y

(
1

2
|v|2 − F(v)

)
dx

= ∂y

[ ∫
RN

−1

2
|∂yv|2 + 1

2
|∇xv|2 + 1

2
|v|2 − F(v)dx

]

= ∂y

[
−1

2

∥∥∂yv(·, y)
∥∥2

2 + V
(
v(·, y)

)] = −∂yEv(y)

and the lemma follows. �
3.1. The variational setting

Fixed b ∈ [0, c) we consider the space

Xb =
{
v ∈H/ lim inf

y→±∞ dist
(
v(·, y),Vb±

) = 0 and inf
y∈RV

(
v(·, y)

)
� b

}
on which we look for minima of the functional

ϕ(v) =
∫
R

1

2

∥∥∂yv(·, y)
∥∥2

2 + (
V

(
v(·, y)

) − b
)
dy.

Remark 3.3. The problem of finding a minimum of ϕ on Xb is well posed. In fact, if v ∈ Xb then V (v(·, y)) � b for
every y ∈R and so the functional ϕ is well defined and non-negative on Xb . Moreover Xb 
= ∅ and

mb = inf
v∈Xb

ϕ(v) < +∞.

Indeed, for any u ∈ X , recalling Lemma 2.4 and considered the function

v(x, y) =
⎧⎨
⎩

ωb,uu(x) x ∈R
N, y � ωb,u,

yu(x) x ∈R
N, αu,b < y < ωb,u,

αu,bu(x) x ∈R
N, y < αu,b,

we have that v ∈ Xb and ϕ(v) = ∫ ωu,b 1‖u‖2 + V (yu) − b dy � ( 1‖u‖2 + V (tuu) − b)(ωu,b − αu,b) < +∞.

αu,b 2 2 2 2
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Remark 3.4. More generally, given an interval I ⊂R we consider the functional

ϕI (v) =
∫
I

1

2

∥∥∂yv(·, y)
∥∥2

2 + V
(
v(·, y)

) − b dy

which is well defined for any v ∈H such that V (v(·, y)) � b for a.e. y ∈ I or for every v ∈H if I is bounded.

We will make use of the following semicontinuity property

Lemma 3.5. Let v ∈ H be such that V (v(·, y)) � b for a.e. y ∈ I ⊂ R. If (vn) ⊂ Xb is such that vn ⇀ v in H 1(SL)

for any L > 0, then ϕI (v) � lim infn→∞ ϕI (vn).

Proof. Let L1 < L2 ∈ R be such that (L1,L2) ⊂ I . The sequence (vn) is weakly convergent to v in H 1(S(L1,L2)) and
constituted by radially symmetric functions in the x variable. By Lemma III.2 in [20] we derive that vn → v strongly
in Lp+1(S(L1,L2)). Then, by (1.3), we deduce

∫
S(L1,L2)

F (vn) dx dy → ∫
S(L1,L2)

F (v) dx dy and the lemma follows by

the weak semicontinuity of the norm and the arbitrariness of L1 and L2. �
Remark 3.6. In the sequel we will study coerciveness properties of ϕ. One of the key tools is the following simple
estimate. Given v ∈ H, and (y1, y2) ⊂R we have

ϕ(y1,y2)(v) = 1

2

y2∫
y1

∥∥∂yv(·, y)
∥∥2

2 dy +
y2∫

y1

V
(
v(·, y)

) − b dy

� 1

2(y2 − y1)

∫
RN

( y2∫
y1

∣∣∂yv(x, y)
∣∣dy

)2

dx +
y2∫

y1

V
(
v(·, y)

) − b dy

� 1

2(y2 − y1)

∥∥v(·, y1) − v(·, y2)
∥∥2

2 +
y2∫

y1

V
(
v(·, y)

) − b dy.

In particular if V (v(·, y)) � b + ν for any y ∈ (y1, y2), then

ϕ(y1,y2)(v) � 1

2(y2 − y1)

∥∥v(·, y1) − v(·, y2)
∥∥2

2 + ν(y2 − y1) �
√

2ν
∥∥v(·, y1) − v(·, y2)

∥∥
2. (3.2)

Remark 3.7. In the sequel we will denote

δ0 = δ
(
(b + c)/2, (b + c)/2

) := dist
(
V(b+c)/2

− ,V(b+c)/2
+

)
and r0 = δ0

5
.

By (3.2) we can plainly prove that mb > 0. Indeed, note that if v ∈Xb , since by Lemma 2.17 we have δ0 > 0, by (3.1),
there exist y1 < y2 ∈ R such that ‖v(·, y1) − v(·, y2)‖ � δ0 and V (v(·, y)) > (b + c)/2 for any y ∈ (y1, y2). Then, by
(3.2) we obtain ϕ(y1,y2)(u) �

√
c − bδ0 > 0. In particular

mb �
√

c − bδ0.

One of the basic properties defining Xb is the fact that if v ∈ Xb then V (v(·, y)) � b for a.e. y ∈ R. This condition
is not necessarily preserved by the weak H 1

loc convergence and we overcome this point by using the following lemma,
whose proof can be obtained by rephrasing in the present context the one of Lemma 3.4 in [5].

Lemma 3.8. Let v ∈ H and −∞� σ < τ � +∞ be such that

(i) V (v(·, y)) > b for any y ∈ (σ, τ );
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(ii) either σ = −∞ and lim infy→−∞ dist(v(·, y),Vb−) = 0 or σ ∈ R and v(·, σ ) ∈ Vb−;
(iii) either τ = +∞ and lim infy→+∞ dist(v(·, y),Vb+) = 0 or τ ∈R and v(·, τ ) ∈ Vb+

then ϕ(σ,τ)(v) � mb . Moreover if lim infy→σ+ V (v(·, y)) > b or lim infy→τ− V (v(·, y)) > b then ϕ(σ,τ)(v) > mb .

3.2. Estimates near the boundary of Vb− and Vb+

To study coercivity property of ϕ we first establish some technical local results. We define the constants (depending
on b)

β = b + c − b

4
, and Λ0 =

√
c − b

2

r0

4
(3.3)

where δ0 and r0 are defined in Remark 3.7, noting that

dist
(
Vb−,Vb+

)
� dist

(
Vβ

−,Vβ
+
)
� 5r0. (3.4)

Given u0 ∈X we denote

X−
b,u0

=
{
v ∈ H/v(·,0) = u0, inf

(−∞,0)
V

(
v(·, y)

)
� b, lim inf

y→−∞ dist
(
v(·, y),Vb−

) = 0
}
,

X+
b,u0

=
{
v ∈ H /v(·,0) = u0, inf

(0,+∞)
V

(
v(·, y)

)
� b, lim inf

y→+∞ dist
(
v(·, y),Vb+

) = 0
}
.

Next lemma establishes that if v ∈ X+
b,u0

(resp. X−
b,u0

) is such that ϕ(0,+∞)(v) (resp. ϕ(−∞,0)(v)) is sufficiently

small, then the trajectory y → v(·, y) remains close to the set Vβ
+ (resp. Vβ

−) with respect to the L2(RN) metric.

Lemma 3.9. If u0 ∈ X , V (u0) � b, v ∈ X+
b,u0

(resp. v ∈ X−
b,u0

) and ϕ(0,+∞)(v) � Λ0 (resp. ϕ(−∞,0)(v) � Λ0) then

dist(v(·, y),Vβ
+) � r0 for every y ∈ [0,+∞) (resp. dist(v(·, y),Vβ

+) � r0 for every y ∈ (−∞,0]).

Proof. By (3.1) the function y ∈ [0,+∞) → v(·, y) ∈ L2(Rn) is continuous. Hence, using Remark 2.16, the map y ∈
[0,+∞) → dist(v(·, y),Vβ

+) is continuous too. If, by contradiction, y0 � 0 is such that dist(v(·, y0),Vβ
+) > r0, since

lim infy→+∞ dist(v(·, y),Vb+) = 0, by continuity there exists an interval (y1, y2) ⊂R such that 0 < dist(v(·, y),Vβ
+) <

r0 for any y ∈ (y1, y2) and ‖v(·, y1)−v(·, y2)‖2 � r0/2. By (3.4) we derive v(·, y) /∈ Vβ
+ ∪Vβ

− and so V (v(·, y))−b �
β − b = (c − b)/4 for all y ∈ (y1, y2). By (3.2) we conclude

Λ0 � ϕ(0,+∞)(v) � ϕ(y1,y2)(v) �
√

c − b

2

∥∥v(·, y1) − v(·, y2)
∥∥

2 �
√

c − b

2

r0

2
= 2Λ0,

a contradiction which proves the lemma. Analogous is the proof in the case v ∈ X−
b,u0

. �
Clearly the infimum value of ϕ(0,+∞) on X+

b,u0
is close to 0 as dist(u0,Vb) is small. Next result displays a test

function w+
u0

∈ X+
b,u0

which gives us more precise information.

Lemma 3.10. Let b ∈ [0, c), then there exists C+(b) > 0 such that for every u0 ∈ Vβ
+ \ Vb+ there exists w+

u0
∈ X+

b,u0
such that

sup
y>0

∥∥w+
u0

(·, y) − u0
∥∥

2 �
1

ν+(β)

(
V (u0) − b

)
and ϕ(0,+∞)

(
w+

u0

)
� C+(b)

(
V (u0) − b

)3/2
.

Proof. Note that, since u0 ∈ Vβ
+, by Lemma 2.4, we have V ′(u0)u0 < 0 and there exists a unique s0 ∈ (1,+∞)

such that V (su0) > b for any s ∈ [1, s0) and V (s0u0) = b. Moreover d
ds

V (su0) = s(V ′(u0)u0 + ∫
RN f (u0)u0 −

1f (su0)u0 dx) and since, by (1.6),
∫

N f (u0)u0 − 1f (su0)u0 dx � 0 for any s � 1, we deduce that d V (su0) �
s R s ds
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sV ′(u0)u0 for any s � 1. Integrating this last inequality on the interval [1, s0], we obtain V (s0u0) � V (u0) + 1
2 (s2

0 −
1)V ′(u0)u0 and so the estimate s0 − 1 � V (u0)−b

|V ′(u0)u0| . We define

w+
u0

(x, y) =

⎧⎪⎨
⎪⎩

u0(x) y � 0,

(1 + y2

2 )u0 y ∈ (0,
√

2(s0 − 1) ),

s0u0 y �
√

2(s0 − 1)

noting that w+
u0

∈ X+
b,u0

and supy�0 ‖w+
u0

(·, y) − u0‖2 = (s0 − 1)‖u0‖2 � V (u0)−b
|V ′(u0)u0| ‖u0‖2. Moreover, since s0 − 1 �

V (u0)−b
|V ′(u0)u0| , we get

ϕ(−∞,0)

(
w+

u0

) =
√

2(s0−1)∫
0

1

2

∥∥∥∥∂y

(
1 + y2

2

)
u0(·)

∥∥∥∥
2

2
dy +

√
2(s0−1)∫
0

V

((
1 + y2

2

)
u0(·)

)
− b dy

�

√
2(s0−1)∫
0

1

2
y2‖u0‖2

2 dy +
√

2(s0−1)∫
0

V (u0) − b dy

= √
2(s0 − 1)

(
(s0 − 1)

3
‖u0‖2

2 + (
V (u0) − b

))

�
√

2

|V ′(u0)u0|
(

1

3|V ′(u0)u0| ‖u0‖2
2 + 1

)(
V (u0) − b

)3/2
.

By Lemma 2.12 we know that |V ′(u0)u0| � ν+(β)max{1,‖u0‖2
2} and the lemma follows considering C+(b) =√

2
ν+(β)

( 1
3ν+(β)

+ 1). �
For any b ∈ [0, c) we fix β+ ∈ (b,β] such that the following inequalities hold true:

β+ − b

ν+(β)
<

1

2
, max

{
1,C+(b)

}
(β+ − b)1/4 <

1

4
, C+(b)(β+ − b)3/2 � Λ0. (3.5)

Next Gronwall type result will play an important role together with Lemma 3.10.

Lemma 3.11. Assume that u0 ∈ Vβ++ \ Vb+ and v ∈ X+
b,u0

are such that

if y ∈ [0,1) is such that V
(
v̄(·, y)

)
� β+ then ϕ(y,+∞)(v̄) � C+(b)

(
V

(
v̄(·, y)

) − b
)3/2

. (3.6)

Then there exists ȳ ∈ (0,1) such that V (v(·, ȳ)) = b, v(·, ȳ) ∈ Vb+ and v(·, y) = v(·, ȳ) for every y ∈ [ȳ,+∞).

Proof. We first note that, since u0 ∈ Vβ++ \ Vb+ and v ∈ X+
b,u0

we have V (v(·,0)) = V (u0) � β+ and hence, by (3.6)

and (3.5), we have ϕ(0,+∞)(v) � C+(b)(V (u0) − b)3/2 � Λ0. By Lemma 3.9 we then deduce that dist(v(·, y),Vβ
+) �

r0 for any y > 0 and, by the definition of r0, we obtain that v(·, y) /∈ Vβ+− for any y > 0. In particular, if y > 0 and

V (v(·, y)) � β+ then v(·, y) ∈ Vβ++ .
We claim that there exists a sequence (ζn) ⊂ [0, 1

2 ) such that

ζn−1 < ζn � ζn−1 +
(

β+ − b

42(n−1)

)1/4

<
1

2
and V

(
v(·, ζn)

) − b � β+ − b

4n
, ∀n ∈N. (3.7)

Indeed, defining ζ0 = 0 by (3.5) and (3.6) we have that for any ζ > ζ0
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ζ∫
ζ0

V
(
v(·, s)) − b ds � ϕ(ζ0,+∞)(v) � C+(b)

(
V

(
v(·, ζ0)

) − b
)3/2

� C+(b)(β+ − b)1/4(β+ − b)(β+ − b)1/4 � 1

4
(β+ − b)(β+ − b)1/4,

and so

∃ζ1 ∈ (
ζ0, ζ0 + (β+ − b)1/4) such that V

(
v̄(·, ζ1)

) − b � β+ − b

4
. (3.8)

Note that, by (3.5), ζ0 + (β+ − b)1/4 < ζ0 + 1
4 < 1

2 and so ζ1 ∈ (0, 1
2 ).

Now, if ζn verifies (3.7) by (3.6) we obtain that for any ζ > ζn

ζ∫
ζn

V
(
v(·, s)) − b ds � ϕ(ζn,+∞)(v) � C+(b)

(
V

(
v(·, ζn)

) − b
)3/2

� C+(b)(β+ − b)1/4
(

β+ − b

4n

)(
β+ − b

42n

)1/4

<
β+ − b

4n+1

(
β+ − b

42n

)1/4

,

implying that

∃ζn+1 ∈
(

ζn, ζn +
(

β+ − b

42n

)1/4)
such that V

(
v(·, ζn+1)

) − b � β+ − b

4n+1
,

with, by (3.5),

ζn+1 <

n∑
j=0

(
β+ − b

42j

)1/4

= (β+ − b)1/4
+∞∑
j=0

1

2j
<

1

2
.

Then, by induction, (3.7) holds true for any n ∈N.
Now, note that by (3.7) we have ζn → ȳ ∈ (0, 1

2 ] as n → +∞. Moreover, since v ∈ Xb,u0 there result
V (v(·, ζn)) � b for all n ∈ N and hence, by (3.7), V (v(·, ζn)) → b. Then, by Lemma 3.1, we deduce V (v(·, ȳ)) = b.
Moreover, by (3.1), v(·, ζn) → v(·, ȳ) in L2(RN). Then we can conclude that v(·, ȳ) ∈ Vb+ and hence, using (3.6), that
ϕ(ȳ,+∞)(v)� C+(b)(V (v(·, ȳ)) − b)3/2 = 0, which implies v(·, y) = v(·, ȳ) for every y � ȳ. �

Lemma 3.11 and Lemma 3.10 have in particular the following consequence which will be a key tool in constructing
minimizing sequences for ϕ with suitable compactness properties.

Lemma 3.12. Let b ∈ [0, c) then, for every u0 ∈ Vβ++ \ Vb+ and v ∈X+
b,u0

there exists ṽ ∈X+
b,u0

such that

sup
y∈(0,+∞)

∥∥ṽ(·, y) − u0
∥∥

2 � 1 and ϕ(0,+∞)(ṽ) � min
{
Λ0, ϕ(0,+∞)(v)

}
.

Proof. Note that, by Lemma 3.10 and (3.5), we have in that if u0 ∈ Vβ++ \ Vb+ then ϕ(0,+∞)(w
+
u0

) � Λ0 and

‖w+
u0

(·, y) − u0‖ � 1
2 for any y > 0. In particular if u0 ∈ Vβ++ \ Vb+ and v ∈ X+

b,u0
are such that ϕ(0,+∞)(v) > Λ0

then the statement of the lemma holds true with ṽ = w+
u0

.

To prove the lemma we argue by contradiction assuming that there exist u0 ∈ Vβ++ \ Vb+ and v ∈ X+
b,u0

with
ϕ(0,+∞)(v) � Λ0 such that

ϕ(0,+∞)(ṽ) > ϕ(0,+∞)(v) for every ṽ ∈ X+
b,u0

such that sup
y∈(0,+∞)

∥∥ṽ(·, y) − u0
∥∥

2 � 1. (3.9)

By (3.9) we have supy∈(0,+∞) ‖v(·, y) − u0‖2 > 1 and since v(·,0) = u0, by (3.1) we recover that

∃y0 > 0 such that
∥∥v(·, y0) − u0

∥∥
2 = 1

and
∥∥v(·, y) − u0

∥∥
2 <

1
for any y ∈ [0, y0). (3.10)
2 2
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As already noted in the proof of the previous lemma, by Lemma 3.9, since ϕ(0,+∞)(v) � Λ0, we have that if y > 0

and V (v(·, y)) � β+ then v(·, y) ∈ Vβ++ . We deduce that

if ỹ ∈ [0, y0) and V
(
v(·, ỹ)

)
� β+ then ϕ(ỹ,+∞)(v)� C+(b)

(
V

(
v(·, ỹ)

) − b
)3/2

. (3.11)

Indeed, considering the function

ṽ(·, y) =
{

v(·, y) 0 � y < ỹ,

w+
v(·,ỹ)

(·, y − ỹ) y � ỹ,

we have ṽ ∈ X+
b,u0

. Now note that for every y ∈ [0, ỹ) ⊂ [0, y0), by definition of y0 we have ‖ṽ(·, y) − u0‖2 =
‖v(·, y) − u0‖2 < 1

2 while if y � ỹ, then by Lemma 3.10 and (3.5)

∥∥ṽ(·, y) − u0
∥∥

2 = ∥∥w+
v(·,ỹ)

(·, y − ỹ) − u0
∥∥

2 �
β+ − b

ν+(β+)
<

1

2
.

Hence we recover that supy>0 ‖ṽ(·, y)−u0‖2 � 1. Then, by (3.9) we obtain ϕ(0,+∞)(v) < ϕ(0,+∞)(ṽ) � ϕ(ỹ,+∞)(ṽ) =
ϕ(0,+∞)(w

+
v(·,ỹ)

) and (3.11) follows by Lemma 3.10.

We now note that, by Remark 3.6 we have ϕ(0,y0)(v) � 1
2y0

‖v(·, y0) − u0‖2
2 = 1

8y0
and so, by (3.5) and (3.11), we

deduce y0 � 1
8C+(b)(β+−b)3/2 > 1. Then, by (3.11) and Lemma 3.11, we derive that there exists ȳ ∈ (0,1) such that

v(·, ȳ) ∈ Vb+ and v(·, y) = v(·, ȳ) for any y � ȳ. Hence, using (3.10), we obtain 1 < supy∈(0,+∞) ‖v(·, y) − u0‖2 =
supy∈(0,ȳ] ‖v(·, y) − u0‖2 � supy∈(0,y0] ‖v(·, y) − u0‖2 = 1

2 , a contradiction which proves the lemma. �
The following lemma is an analogous of Lemma 3.10 for X−

b,u0
when b > 0. We omit the proof since it is bases on

an argument symmetric to the one used proving Lemma 3.10, using Lemma 2.13 instead of Lemma 2.12.

Lemma 3.13. Let b ∈ (0, c), then there exists C−(b) > 0 such that for any u0 ∈ Vβ
− \Vb− there exists w−

u0
∈ X−

b,u0
such

that

ϕ(−∞,0)

(
w−

u0

)
� C−(b)

(
V (u0) − b

)3/2
.

For any b ∈ (0, c) we fix β− ∈ (b,β] such that the following inequalities hold true:

max
{
1,C−(b)

}
(β− − b)1/4 <

1

4
and C−(b)(β− − b)3/2 � Λ0. (3.12)

Analogously to Lemma 3.11 we can prove

Lemma 3.14. Let b ∈ (0, c) and assume that u0 ∈ Vβ−− \ Vb− and v ∈ X−
b,u0

are such that

if y ∈ (−1,0] is such that V
(
v(·, y)

)
� β− then ϕ(−∞,y)(v) � C−(b)

(
V

(
v(·, y)

) − b
)3/2

. (3.13)

Then, there exists ȳ ∈ (−1,0) such that V (v(·, ȳ)) = b, v(·, ȳ) ∈ Vb− and v(·, y) = v(·, ȳ) for any y ∈ (−∞, ȳ].

The situation is slightly different when b = 0.

Lemma 3.15. If b = 0 there exists β0 ∈ (0, c
4 ) such that for any u0 ∈ Vβ0− \ {0} there exists w−

u0
∈ X−

b,u0
such that

ϕ(−∞,0)(w
−
u0

) � 3V (u0).

Proof. If u0 ∈ Vβ0− for some β0 ∈ (0, c
4 ) we set

w−
u0

(x, y) =
⎧⎨
⎩

u0(x) y � 0,

(1 + y)u0(x) y ∈ (−1,0),
0 y � −1
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noting that w−
u0

∈ X−
0,u0

and ϕ(−∞,0)(w
−
u0

) �
∫ 0
−1

1
2‖u0‖2

2 + V (u0) dy � 1
2‖u0‖2

2 + V (u0). By Remark 2.11 and

Lemma 2.2, if β0 is sufficiently small, we obtain ‖u0‖2
2 � 4V (u0) and so ϕ(−∞,0)(w

−
u0

) � 3V (u0). �
Remark 3.16. Eventually taking β0 smaller, we can assume that ϕ(−∞,0)(w

−
u0

) � Λ0 for u0 ∈ Vβ0− .

3.3. Minimizing sequences and their limit points

The local results that we have described in the previous section, allow us to produce a minimizing sequence of ϕ

on Xb with suitable compactness properties.

Lemma 3.17. For every b ∈ [0, c) there exist L0 > 0, C̄ > 0 and (vn) ⊂Xb such that ϕ(vn) → mb and

(i) dist(vn(·, y),Vβ
−)� r0 for any y � 0 and n ∈N,

(ii) dist(vn(·, y),Vβ
+)� r0 for any y � L0 and n ∈N,

(iii) ‖vn(·, y)‖2 � C̄ for any y ∈ R and n ∈N,
(iv) for every bounded interval (y1, y2) ⊂R there exists Ĉ > 0, depending only on y2 −y1, such that ‖vn‖H 1(S(y1,y2))

�
Ĉ.

Proof. Let b ∈ [0, c) and (wn) ⊂ Xb be such that ϕ(wn) � mb + 1 for any n ∈ N and ϕ(wn) → mb . We denote β∗ =
min{β−, β+}. Let sn = sup{y ∈ R | ϕ(−∞,y)(wn) � Λ0} and note that by Remark 3.7, since Λ0 < mb � ϕ(wn), we
have sn ∈R and ϕ(−∞,sn)(wn) = Λ0. Since wn(·, ·+ sn) ∈ X−

b,wn(·,sn) and ϕ(−∞,0)(wn(·, ·+ sn)) = Λ0, by Lemma 3.9

we derive that dist(wn(·, y + sn),Vβ
−) � r0 for any y � 0 and so, by (3.4), dist(wn(·, y),Vb∗

+ ) � 4r0 for any y � sn.
We conclude that if y � sn and V (wn(·, y)) � b∗ then wn(·, y) ∈ Vb∗

− . A symmetric argument shows that there exists
tn > sn such that if y � tn and V (wn(·, y)) � b∗ then wn(·, y) ∈ Vb∗

+ . Define now

y−
n = sup

{
y � tn

∣∣ wn(·, y) ∈ Vb∗
−

}
and y+

n = inf
{
y � y−

n

∣∣ wn(·, y) ∈ Vb∗
+

}
.

Since lim infy→±∞ V (wn(·, y)) = b > β∗ we deduce that y−
n , y+

n ∈ R.
Using Remarks 2.11 and 2.16 we also recognize that wn(·, y−

n ) ∈ Vb∗
− and wn(·, y+

n ) ∈ Vb∗
+ . Since the function y →

wn(·, y) is continuous with respect to the L2(RN) metric and dist(Vβ∗
− ,Vβ∗

+ ) � 5r0 we deduce y−
n < y+

n . Moreover
V (wn(·, y)) > β∗ for any y ∈ (y−

n , y+
n ) and ‖wn(·, y+

n ) − wn(·, y−
n )‖2 � 5r0. By (3.2) we derive

y+
n − y−

n �
ϕ(y−

n ,y+
n )(wn)

β∗ − b
� mb + 1

β∗ − b
:= L0 and sup

y∈(y−
n ,y+

n ]

∥∥wn(·, y) − wn

(·, y−
n

)∥∥
2 �

mb + 1√
2(β∗ − b)

. (3.14)

We now claim that, eventually modifying the function wn on the set RN × [(−∞, y−
n ) ∪ (y+

n ,+∞)], wn satisfies

(I) ϕ(−∞,y−
n )(wn) � Λ0,

(II) ϕ(y+
n ,+∞)(wn) � Λ0 and ‖wn(x, y) − wn(x, y+

n )‖2 � 1 for any y � y+
n .

Indeed, if (I) is not satisfied, since wn(·, y−
n ) ∈ Vβ−− , we can consider the new function

w∗
n(·, y) =

{
w−

wn(·,y−
n )

(·, y − y−
n ) if y � y−

n ,

wn(·, y) if y > y−
n

noting that w∗
n ∈ Xb , ϕ(w∗

n) � ϕ(wn) and w∗
n satisfies (I) by Lemma 3.13, Lemma 3.15, (3.12) and Remark 3.16.

Now, assuming that (I) is verified, if (II) is not satisfied, since wn(·, y+
n ) ∈ Vβ++ and wn(·, · + y+

n ) ∈ X+
b,wn(·,y+

n )
,

by Lemma 3.12 there exists a function w̃n ∈ X+
b,wn(·,y+

n )
such that ϕ(y+

n ,+∞)(w̃n(·, · − y+
n )) � min{Λ0, ϕ(y+

n ,+∞)(wn)}
and ‖w̃n(·, y − y+

n ) − wn(x, y+
n )‖2 � 1 for any y � y+

n . Then considering
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w∗∗
n (·, y) =

{
w̃n(·, y − y+

n ) if y � y+
n ,

wn(·, y) if y < y+
n

we recognize that w∗∗
n ∈ Xb , ϕ(w∗∗

n ) � ϕ(wn) and w∗∗
n satisfies (I) and (II). Hence, eventually modifying wn as

indicated above our claim follows.
We finally set vn = wn(·, · + y−

n ) obtaining that vn ∈ Xb and ϕ(vn) = ϕ(wn) → mb . Moreover, by (I) we have
ϕ(−∞,0)(vn) = ϕ(−∞,y−

n )(wn)� Λ0 and (i) follows by Lemma 3.9.
Since by (3.14) we have y+

n − y−
n � L0, by (II) we have ϕ(L0,+∞)(vn) = ϕ(L0+y−

n ,+∞)(wn) � ϕ(y+
n ,+∞)(wn) � Λ0

and (ii) follows by Lemma 3.9.
To prove (iii) we first note that by Remark 2.11 we have ‖u‖2 � 2μ

μ−2β for any u ∈ Vβ
−. Then, by (i) we recover that

‖vn(·, y)‖2
2 �

2μ
μ−2β + r0 for any y � 0. Since vn(·,0) = wn(·, y−

n ) ∈ Vβ
−, by (3.14) we obtain moreover ‖vn(·, y)‖2

2 �
‖vn(·,0)‖2 +‖vn(·, y)−vn(·,0)‖2 � 2μ

μ−2β + mb+1√
2(b∗−b)

for any y ∈ (0, y+
n −y−

n ]. Finally, by (II), we have ‖vn(·, y)−
vn(·, y+

n − y−
n )‖2 � 1 for any y > y+

n − y−
n and (iii) follows with C̄ = 2μ

μ−2β + r0 + mb+1√
2(b∗−b)

+ 1.
To prove (iv) we use (iii) and (2.8). By (2.8) we know that there exists C > 0 such that

V
(
vn(·, y)

)
� 1

2

∥∥∇vn(·, y)
∥∥2

2

(
1 − C

‖vn(·, y)‖(p+1)θ

2

‖∇vn(·, y)‖2−(p+1)(1−θ)

2

)
+ 1

4

∥∥vn(·, y)
∥∥2

2 ∀y ∈ R.

We set

An = {
y ∈R

∣∣ ∥∥∇vn(·, y)
∥∥2−(p+1)(1−θ)

2 � 2C
∥∥vn(·, y)

∥∥(p+1)θ

2

}
.

By (2.8), V (vn(·, y)) � 1
4‖vn(·, y)‖2 for every y ∈ An while ‖∇vn(·, y)‖2−(p+1)(1−θ)

2 < 2C‖vn(·, y)‖(p+1)θ

2 for any
y ∈ R \ An. By (iii) we know that ‖vn(·, y)‖2 � C̄ for all y ∈ R and so ‖∇vn(·, y)‖2

2 < C̃ := 2CC̄(p+1)θ for any
y ∈R \An. Given (y1, y2) ⊂R we have

‖vn‖2
H 1(S(y1,y2))

=
y2∫

y1

∥∥∂yvn(·, y)
∥∥2

2 + ∥∥∇vn(·, y)
∥∥2

2 + ∥∥vn(·, y)
∥∥2

2 dy

� 2ϕ(vn) +
y2∫

y1

∥∥∇vn(·, y)
∥∥2

2 dy + C̄(y2 − y1)

� 2ϕ(vn) +
∫

(y1,y2)∩An

∥∥∇vn(·, y)
∥∥2

2 dy + (C̄ + C̃)(y2 − y1)

� 2ϕ(vn) + 4
∫

(y1,y2)∩An

V
(
vn(·, y)

) − b dy + (C̄ + C̃ + 4b)(y2 − y1)

� 6ϕ(vn) + (C̄ + C̃ + 4b)(y2 − y1)

� Ĉ2 = 6(m0 + 1) + (C̄ + C̃ + 4c)(y2 − y1)

and (iv) follows. �
By (iv) of Lemma 3.17 we have that the minimizing sequence (vn) weakly converges in H 1(SL) for any L > 0 to a

function v̄ ∈ H. Even if we do not know a priori that v̄ ∈ Xb , thanks to Lemma 3.5, Lemma 2.10 and the semicontinuity
of the distance function, the function v̄ enjoys the following properties

Corollary 3.18. For any b ∈ [0, c) there exists v̄ ∈ H such that

(i) given any interval I ⊂R such that V (v̄(·, y)) � b for a.e. y ∈ I we have ϕI (v̄)� mb ,
(ii) dist(v̄(·, y),Vβ

−)� r0 for any y � 0,
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(iii) dist(v̄(·, y),Vβ
+) � r0 for any y � L0,

(iv) ‖v̄(·, y)‖2 � C̄ for any y ∈R,
(v) for every (y1, y2) ⊂R, ‖v̄‖H 1(S(y1,y2))

� Ĉ,

where L0, C̄ and Ĉ are given by Lemma 3.17.

We define σ̄ and τ̄ as follows:

σ̄ = sup
{
y ∈ R/dist

(
v̄(·, y),Vb−

)
� r0 and V

(
v̄(·, y)

)
� b

}
,

τ̄ = inf
{
y > σ̄/V

(
v̄(·, y)

)
� b

}
,

with the agreement that σ̄ = −∞ whenever V (v̄(·, y)) > b for every y ∈ R such that dist(v̄(·, y),Vb−) � r0 and that
τ̄ = +∞ whenever V (v̄(·, y)) > b for every y > σ̄ .

Remark 3.19. Properties of σ̄ , τ̄ :

(i) σ̄ ∈ [−∞,L0] and τ̄ ∈ [0,+∞].
By Corollary 3.18(iii), if y � L0 then dist(v̄(·, y),Vβ

+) � r0. Hence dist(v̄(·, y),Vb−) > 4r0 for y � L0 and

σ̄ � L0 follows. Moreover, by Corollary 3.18(ii), there results dist(v̄(·, y),Vβ
−) � r0 if y � 0. Then, by the

definition of σ̄ , we have that if σ̄ < 0 then V (v̄(·, y)) > b for any y ∈ (σ̄ ,0] and so τ̄ � 0 follows.
(ii) If σ̄ ∈R then v̄(·, σ̄ ) ∈ Vb−.

Indeed, by definition, there exists a sequence yn ∈ (−∞, σ̄ ] such that yn → σ̄ as n → +∞, V (v̄(·, yn)) � b and
dist(v̄(·, yn),Vb−) � r0 for any n ∈ N. Then v̄(·, yn) ∈ Vb− for any n ∈ N and since, v̄(·, yn) → v̄(·, σ̄ ) in L2(RN),
by Remark 2.11 we conclude that v̄(·, σ̄ ) ∈ Vb−.

(iii) σ̄ < τ̄ .
It is sufficient to prove that if σ̄ ∈ R then, there exists δ > 0 such that V (v̄(·, y)) > b for any y ∈ (σ̄ , σ̄ + δ).
Assume by contradiction that there exists a sequence (yn) ⊂ (σ̄ ,+∞) such that V (v̄(·, yn)) � b for any n ∈ N

and yn → σ̄ . Then, by definition of σ̄ we have dist(v̄(·, yn),Vb−) > r0 for any n ∈N and so v̄(·, yn) ∈ Vb+. Hence,
since v(·, yn) → v(·, σ̄ ) in L2, by Remark 2.16, we obtain v̄(·, σ̄ ) ∈ Vb+ while, by (ii) we know that v̄(·, σ̄ ) ∈ Vb−.

(iv) If τ̄ ∈ R then v̄(·, τ̄ ) ∈ Vb+.
Indeed, by definition, there exists a sequence yn ∈ [τ̄ ,+∞) such that yn → τ̄ as n → +∞, V (v̄(·, yn)) � b. By
definition of σ̄ , since yn > σ̄ , we have dist(v̄(·, yn),Vb−) > r0 for any n ∈ N. Then v̄(·, yn) ∈ Vb+ for any n ∈ N

and since, v̄(·, yn) → v̄(·, τ̄ ) in L2(R), we conclude by Remark 2.16 that v̄(·, τ̄ ) ∈ Vb+.
(v) If [y1, y2] ⊂ (σ̄ , τ̄ ) then infy∈[y1,y2] V (v̄(·, y)) > b. Moreover ϕ(σ̄ ,τ̄ )(v̄) � mb .

It follows by the definition of σ̄ and τ̄ that V (v̄(·, y)) > b for any y ∈ (σ̄ , τ̄ ). Then, by Lemma 3.1 we have
infy∈[y1,y2] V (v̄(·, y)) = miny∈[y1,y2] V (v̄(·, y)) > b whenever [y1, y2] ⊂ (σ̄ , τ̄ ). By Corollary 3.18(i) we fur-
thermore derive that ϕ(σ̄ ,τ̄ )(v̄) � mb .

(vi) If σ̄ = −∞ then lim infy→−∞ V (v̄(·, y)) − b = lim infy→−∞ dist(v̄(·, y),Vb−) = 0.

By Corollary 3.18(ii) we have dist(v̄(·, y),Vβ
−) � r0 for every y � 0. Since σ̄ = −∞ and ϕ(−∞,τ̄ )(v̄) � mb we

derive that there exists a sequence yn → −∞ such that V (v̄(·, yn)) → b, v̄(·, yn) ∈ Vβ
− and dist(v̄(·, yn),Vb+) �

4r0.
If b = 0, by Remark 2.11, we obtain v̄(·, yn) → 0 and (vi) follows. If b > 0, arguing as in the proof of
Lemma 3.10, for any n ∈ N, since V (v̄(·, yn)) > b, there exists a unique sn ∈ (0,1] such that V (snv̄(·, yn)) = b,
snv̄(·, yn) ∈ Vb− with 1 − sn � (V (v̄(·, yn)) − b)/ν−(b) → 0. Since by Remark 2.11 ‖v̄(·, yn)||2 is bounded,
dist(v̄(·, yn),Vb−) � (1 − sn)‖v̄(·, yn)‖2 → 0 and (vi) follows.

(vii) If τ̄ = +∞ then lim infy→+∞ V (v̄(·, y)) − b = lim infy→+∞ dist(v̄(·, y),Vb+) = 0.
The proof is analogous of the one of (vi).

Thanks to the properties (ii)–(iv), (vi)–(vii) we recognize that the function v̄ satisfies the assumption of Lemma 3.8
on the interval (σ̄ , τ̄ ) which allows us to derive the following properties of v̄.
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Lemma 3.20. There result

(i) ϕ(σ̄ ,τ̄ )(v̄) = mb and lim infy→τ̄− V (v̄(·, y)) = lim infy→σ̄+ V (v̄(·, y)) = b,
(ii) τ̄ ∈ R for any b ∈ [0, c) and σ̄ ∈R for any b ∈ (0, c),
(iii) for every h ∈ C∞

0 (RN × (σ̄ , τ̄ )), with supph ⊂R
N × [y1, y2] ⊂R

N × (σ̄ , τ̄ ), there exists t̄ > 0 such that

ϕ(σ̄ ,τ̄ )(v̄ + th)� ϕ(σ̄ ,τ̄ )(v̄), ∀t ∈ (0, t̄). (3.15)

Then v̄ ∈ C2(RN × (σ̄ , τ̄ )) verifies −�u + u − f (u) = 0 on R
N × (σ̄ , τ̄ ) and for any [y1, y2] ⊂ (σ̄ , τ̄ ) there

results v̄ ∈ H 2(RN × (y1, y2)),
(iv) Ey(v̄(·, y)) = 1

2‖∂yv̄(·, y)‖2
2 − V (v̄(·, y)) = −b for every y ∈ (σ̄ , τ̄ ),

(v) lim infy→τ̄− ‖∂yv̄(·, y)‖2 = lim infy→σ̄+ ‖∂yv̄(·, y)‖2 = 0.

Proof. (i) By Lemma 3.8 we already know that ϕ(σ̄ ,τ̄ )(v̄) � mb and by (v) of Remark 3.19 we conclude that
ϕ(σ̄ ,τ̄ )(v̄) = mb . Hence, using Lemma 3.8 again, we conclude that lim infy→τ̄− V (v̄(·, y)) = lim infy→σ̄+ V (v̄(·,
y)) = b.

(ii) Assume by contradiction that τ̄ = +∞. By (vii) of Remark 3.19 there exists y0 > L0 such that u0 := v̄(·, y0) ∈
Vβ++ \ Vb+ and v̄(·, · + y0) ∈X+

b,u0
. To obtain a contradiction we show that

∀y � y0 such that V
(
v̄(·, y)

)
� β+ we have ϕ(y,+∞)(v̄) � C+(b)

(
V

(
v̄(·, y)

) − b
)3/2

. (3.16)

By (3.16), using Lemma 3.11, we derive that there exists ȳ ∈ (y0, y0 + 1) such that V (v̄(·, ȳ)) = b which contradicts
that τ̄ = +∞.

If (3.16) does not hold, by Lemma 3.10, there exists ỹ � y0 with v̄(·, ỹ) ∈ Vβ++ and ϕ(ỹ,+∞)(v̄) > ϕ(ỹ,+∞)(w
+
v̄(·,ỹ)

).
Then, defining

ṽ(·, y) =
{

v̄(·, y) y � ỹ

w+
v̄(·,ỹ)

(·, · − ỹ) y > ỹ

we obtain ϕ(σ̄ ,+∞)(ṽ) < ϕ(σ̄ ,+∞)(v̄) = mb . On the other hand, defining τ̃ = sup{y > σ̄ |V (ṽ(·, y)) > b}, we recognize
that τ̃ satisfies the assumption of Lemma 3.8 on the interval (σ̄ , τ̃ ) and we get the contradiction mb � ϕ(σ̄ ,τ̃ )(ṽ) �
ϕ(σ̄ ,+∞)(ṽ) < mb .

To prove that σ̄ ∈R when b > 0 we can argue analogously using Lemmas 3.13 and 3.14.
(iii) Let us consider h ∈ C∞

0 (RN × (σ̄ , τ̄ )) with supph ⊂R
N ×[y1, y2] ⊂R

N × (σ̄ , τ̄ ). By (v) of Remark 3.19 we
know that there exists μ > 0 such that V (v̄(·, y)) � b+μ for any y ∈ [y1, y2]. Let us consider (v̄+ th)∗ the symmetric
decreasing rearrangement of the function v + th with respect to the variable x, i.e. the unique function with radial
symmetry with respect to the variable x ∈R

N such that∣∣{x ∈ R
N

∣∣ (v̄ + th)∗(·, y) > r
}∣∣ = ∣∣{x ∈R

N
∣∣ ∣∣(v̄ + th)(·, y)

∣∣ > r
}∣∣ for every r > 0 and a.e. y ∈ R

and (v̄ + th)∗(x1, y) � (v̄ + th)∗(x2, y) whenever |x1| � |x2|, for a.e. y ∈R. One recognizes (use e.g. [20, (12)–(14)],
and [23, (3), p. 73]) that ‖∇(v̄ + th)∗‖L2(RN×(y1,y2))

� ‖∇(v̄ + th)‖L2(RN×(y1,y2))
and

∫
RN×(y1,y2)

1
2 |(v̄ + th)∗|2 +

F((v̄ + th)∗) dx dy = ∫
RN×(y1,y2)

1
2 |v + th|2 +F(|v + th|) dx dy = ∫

RN×(y1,y2)
1
2 |v + th|2 +F(v̄ + th) dx dy. There-

fore we have∫
RN×[y1,y2]

1

2

∣∣∇(v̄ + th)∗
∣∣2 + 1

2

∣∣(v̄ + th)∗
∣∣2 − F

(
(v̄ + th)∗

)
dx dy

�
∫

RN×[y1,y2]

1

2

∣∣∇(v̄ + th)
∣∣2 + 1

2
|v̄ + th|2 − F(v̄ + th) dx dy. (3.17)

We now claim that

∃t̄ > 0 such that V
(
(v̄ + th)∗(·, y)

)
> b + μ/2 for any t ∈ [0, t̄] and y ∈ [y1, y2]. (3.18)
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Arguing by contradiction, if (3.18) does not hold, there exist a sequence tn ∈ (0,1) and a sequence yn ∈ [y1, y2] such
that tn → 0, yn → y0 ∈ [y1, y2] and V ((v̄ + tnh)∗(·, yn)) � b + μ/2.

By Corollary 3.18(iv), since h has compact support, we have that there exists C > 0 such that ‖(v̄+ tnh)∗(·, yn)‖2 =
‖(v̄ + tnh)(·, yn)‖2 � ‖v̄(·, yn)‖2 + ‖h(·, yn)‖2 � C for any n ∈ N. Since V ((v̄ + tnh)∗(·, yn)) � b + μ/2, by
Lemma 2.14 there exists a constant R > 0 such that ‖∇(v̄ + tnh)∗(·, yn)‖2 � R for any n ∈ N. Then the se-
quence {(v̄ + tnh)∗(·, yn)} is bounded in H 1(RN). Since the rearrangement is contractive in L2(RN) we have
‖(v̄ + tnh)∗(·, yn) − v̄(·, y0)‖2 � ‖(v̄ + tnh)(·, yn) − v̄(·, y0)‖2 → 0 and so (v̄ + tnh)∗(·, yn) ⇀ v̄(·, y0) in H 1(RN).
By Lemma 2.7 we then obtain the contradiction b + μ/2 � lim infn→+∞ V ((v̄ + tnh)∗(·, yn)) � V (v̄(·, y0)) � b + μ

which proves (3.18).
Since v̄(·, y) ∈ X for a.e. y ∈ R we have v̄ = v̄∗ and (v̄ + th)∗ = v for x ∈ R

N and y ∈ R \ [y1, y2]. By (3.18) we
then recognize that (v̄ + th)∗ satisfies the assumptions of Lemma 3.8 on the interval (σ̄ , τ̄ ) for any t ∈ [0, t̄]. Then
ϕ(σ̄ ,τ̄ )((v̄ + th)∗) � mb = ϕ(σ̄ ,τ̄ )(v̄) for any t ∈ [0, t̄] and (3.15) follows by (3.17). Finally, by (3.15) we have∫

RN×(σ̄ ,τ̄ )

1

2

∣∣∇(v̄ + th)
∣∣2 + 1

2
|v̄ + th|2 − F(v̄ + th) − 1

2
|∇v̄|2 − 1

2
|v̄|2 + F(v̄) dx dy � 0 ∀t ∈ (0, t̄).

Since h is arbitrary we derive that
∫
RN×(σ̄ ,τ̄ )

∇v̄∇h + v̄ · h − f (v̄)hdx dy = 0 for every h ∈ C∞
0 (RN × (σ̄ , τ̄ )), and

so that v̄ is a weak solution of (E) on R
N × (σ̄ , τ̄ ). Then (iii) follows by (v) of Corollary 3.18 and standard regularity

arguments.
(iv) Fixed ξ ∈ (σ̄ , τ̄ ) and s > 0 we define

v̄s(·, y) =
{

v̄(·, y + ξ) y � 0,

v̄(·, y
s

+ ξ) 0 < y

and we note that v̄s verifies the assumption of Lemma 3.8 on the interval (σ̄ − ξ, s(τ̄ − ξ)). Then

ϕ(σ̄−ξ,s(τ̄−ξ))(v̄s)� mp = ϕ(σ̄−ξ,τ̄−ξ)

(
v̄(·, · + ξ)

)
and so we have that for any s > 0 there results

0 � ϕ(σ̄−ξ,s(τ̄−ξ))(v̄s) − ϕ(σ̄−ξ,τ̄−ξ )
(
v̄(·, · + ξ)

)

=
s(τ̄−ξ)∫

0

1

2

∥∥∂yv̄s(·, y)
∥∥2 + (

V
(
v̄s(·, y)

) − b
)
dy −

τ̄∫
ξ

1

2

∥∥∂yv̄(·, y)
∥∥2 + (

V
(
v̄(·, y)

) − b
)
dy

=
s(τ̄−ξ)∫

0

1

2s2

∥∥∥∥∂yv̄

(
·, y

s
+ ξ

)∥∥∥∥
2

+
(

V

(
v̄

(
·, y

s
+ ξ

))
− b

)
dy − ϕ(ξ,τ̄ )(u)

= 1

s

τ̄∫
ξ

1

2

∥∥∂yv̄(·, y)
∥∥2

dy + s

τ̄∫
ξ

V
(
v̄(·, y)

) − b dy − ϕ(ξ,τ̄ )(v̄)

=
(

1

s
− 1

) τ̄∫
ξ

1

2

∥∥∂yv̄(·, y)
∥∥2

dy + (s − 1)

τ̄∫
ξ

V
(
v̄(·, y)

) − b dy.

This means that, setting A = ∫ τ̄

ξ
1
2‖∂yv̄(·, y)‖2 dy and B = ∫ τ̄

ξ
V (v̄(·, y))− b dy, the real function s → ψ(s) = A( 1

s
−

1) + B(s − 1) is non-negative on (0,+∞) and then that 0 � minψ(s) = ψ(

√
A
B

) = −(
√

A − √
B )2, that implies

A = B , i.e.,

τ̄∫
V

(
v̄(·, y)

) − b dy =
τ̄∫

1

2

∥∥∂yv̄(·, y)
∥∥2

2 dy for any ξ ∈ (σ̄ , τ̄ ). (3.19)
ξ ξ
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Since, by (iii), v̄ ∈ H 2(RN × (y1, y2)) whenever [y1, y2] ⊂ (σ̄ , τ̄ ), we derive that the function y → 1
2‖∂yv̄(·, y)‖2

2 −
V (v̄(·, y)) is continuous and (iv) follows by (3.19).

(v) It follows by (i) and (iv). �
3.4. The case b > 0. The periodic solutions

Consider the case b ∈ (0, c). By (ii) of Lemma 3.20 we have σ̄ , τ̄ ∈ R. In this case, by reflection and periodic
continuation, starting from v̄, we can construct a solution to (E) on all RN+1 periodic in the variable y. Precisely let

v(x, y) =
{

v̄(x, y + σ̄ ) if x ∈R
N and y ∈ [0, τ̄ − σ̄ ),

v̄(x, τ̄ + (τ̄ − σ̄ − y)) if x ∈R
N and y ∈ [τ̄ − σ̄ ,2(τ̄ − σ̄ )]

and v(x, y) = v(x, y + 2k(τ̄ − σ̄ )) for all (x, y) ∈ R
N+1, k ∈ Z.

Remark 3.21. Let T = τ̄ − σ̄ .

(i) The function y ∈ R → v(·, y) ∈ L2(RN) is continuous and periodic with period 2T . Moreover by (ii) and (iv) of
Remark 3.19, v(·,0) ∈ Vb− and v(·, T ) ∈ Vb+. Finally, by definition, v(·,−y) = v(·, y) and v(·, y + T ) = v(·, T −
y) for any y ∈R.

(ii) v ∈ H and, by (v) of Remark 3.19, V (v(·, y)) > b for any y ∈R \ {kT /k ∈ Z}.
(iii) By (v) of Lemma 3.20, for any k ∈ Z we have lim infy→kT ± ‖∂yv(·, y)‖2 = 0.
(iv) By (iii) of Lemma 3.20, v ∈ C2(RN × (0, T )) satisfies −�v(x, y) + v(x, y) − f (v(x, y)) = 0 for (x, y) ∈ R

N ×
(0, T ).

We have

Lemma 3.22. v ∈ C2(RN+1) is a solution of (E) on R
N+1. Moreover, Ev(y) = 1

2‖∂yv(·, y)‖2
2 − V (v(·, y)) = −b for

all y ∈ R and ∂yv(·,0) = ∂yv(·, T ) = 0. Finally v > 0 on R
N+1.

Proof. First, let us prove that v is a classical solution to (E). To this aim, we first note that by Remark 3.21(iii), there
exist four sequences (ε±

n ), (η±
n ), such that ε−

n < 0 < ε+
n , η−

n < 0 < η+
n for any n ∈N, ε±

n , η±
n → 0 and

lim
n→+∞

∥∥∂yv
(·, ε±

n

)∥∥
2 = lim

n→+∞
∥∥∂yv

(·, T + η±
n

)∥∥
2 = 0. (3.20)

Fixed any ψ ∈ C∞
0 (RN+1), by Remark 3.21(i)–(iv) we obtain that for any k ∈ Z and n sufficiently large we have

0 =
∫
RN

(2k+1)T +η−
n∫

2kT +ε+
n

−�v ψ + vψ − f (v)ψ dy dx

=
∫
RN

(2k+1)T +η−
n∫

2kT +ε+
n

∇v∇ψ + vψ − f (v)ψ dy dx +
∫
RN

∂yv
(
x,2kT + ε+

n

)
ψ

(
x,2kT + ε+

n

)
dx

−
∫
RN

∂yv
(
x, (2k + 1)T + η−

n

)
ψ

(
x, (2k + 1)T + η−

n

)
dx

and

0 =
∫
RN

2kT +ε−
n∫
+

−�vψ + vψ − f (v)ψ dy dx
(2k−1)T +ηn
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=
∫
RN

2kT +ε−
n∫

(2k−1)T +η+
n

∇v∇ψ + vψ − f (v)ψ dy dx −
∫
RN

∂yv
(
x,2kT + ε−

n

)
ψ

(
x,2kT + ε−

n

)
dx

+
∫
RN

∂yv(x, (2k − 1)T + η+
n )ψ

(
x, (2k − 1)T + η+

n

)
dx.

By (3.20), in the limit for n → +∞, we obtain that for any k ∈ Z we have

0 =
∫
RN

2kT∫
(2k−1)T

∇v∇ψ + vψ − f (v)ψ dy dx =
∫
RN

(2k+1)T∫
2kT

∇v∇ψ + vψ − f (v)ψ dy dx.

Then, v satisfies∫
RN+1

∇v∇ψ + vψ − f (v)ψ dx dy = 0, ∀ψ ∈ C∞
0

(
R

N+1)

and so v is a classical solution to (E) on R
N+1 which is periodic of period 2T in the variable y. Since by (v)

of Corollary 3.18 we have ‖v̄(·, y)‖H 1(S(0,T ))
� Ĉ depending only on T , by definition of v and using (E) we re-

cover that v ∈ H 2(RN × (y1, y2)) for any bounded interval (y1, y2) ⊂ R and ‖v‖H 2(S(y1,y2))
� C with C depending

only on y2 − y1. This implies in particular that the functions y ∈ R → ∂yv(·, y) ∈ L2(RN) and y ∈ R → v(·, y) ∈
H 1(RN) are uniformly continuous. Then limy→0+ V (v(·, y)) − b = lim infy→0+ ‖∂yv(·, y)‖2 = 0 and analogously
limy→T − V (v(·, y)) − b = limy→T − ‖∂yv(·, y)‖2 = 0. By continuity we derive that ∂yv(·,0) = ∂yv(·, T ) = 0. By (v)
of Lemma 3.20 and the definition of v it then follows that 1

2‖∂yv(·, y)‖2 − V (v(·, y)) = −b for any y ∈ R.
To complete the proof we have to show that v > 0 on R

N+1. We know that v 
= 0 and since v ∈ H we have v � 0
on R

N+1. Since v solves (E) we have −�v + v = f (v) � 0 on R
N+1 and v > 0 on R

N+1 follows from the strong
maximum principle. �
Lemma 3.23. We have ∂yv > 0 on R

N × (0, T ) and ∂xi
v < 0 on {(x, y) ∈R

N+1 | xi > 0} for every i = 1, . . . ,N .

Proof. To prove that ∂yv > 0 on R
N × (0, T ) we first note that since ∂yv(·,0) = ∂yv(·, T ) = 0 then ∂yv ∈

H 1
0 (RN × (0, T )) and solves the linear elliptic equation −�∂yv + ∂yv − f ′(v)∂yv = 0 on R

N × (0, T ). Then
∂yv ∈ H 1

0 (RN × (0, T )) ∩ H 2(RN × (0, T )) is an eigenfunction of the linear selfadjoint operator Lv : H 1
0 (RN ×

(0, T )) ∩ H 2(RN × (0, T )) ⊂ L2(RN × (0, T )) → L2(RN × (0, T )) defined by Lvh = −�h + h − f ′(v)h corre-
sponding to the eigenvalue 0.

The minimality property of v proved in Lemma 3.20(iii) implies 〈Lvh,h〉2 � 0 for any h ∈ C∞
0 (RN × (0, T ))

and we deduce that 0 is the minimal eigenvalue of Lv . Then ∂yv has constant sign on R
N × (0, T ). Assume by

contradiction that ∂yv < 0 on R
N × (0, T ). Since, by construction, v is even with respect to T , that implies that

v(x,T ) � v(x, y) for all x ∈ R
N and 0 < y < 2T . We deduce that ∂2

y,yv(x,T ) � 0 for all x ∈R
N and so, multiplying

(E) by v and recalling that v > 0 on R
N+1 we deduce −�xv(x,T )v(x,T ) + v(x,T )2 − f (v)v � 0. Integrating

with respect to x on R
N we obtain V ′(v(·, T ))v(·, T ) � 0 contrary to the fact that v(·, T ) ∈ Vb+. This shows that

∂yv > 0 on R
N × (σ̄ , τ̄ ). To prove that ∂xi

v < 0 on {(x, y) ∈ R
N+1 | xi > 0} we note that since v ∈ H ∩ C2(RN+1)

we have ∂|x|v(x, y) � 0 for all y ∈ R and |x| 
= 0. Then ∂xi
v � 0 on {(x, y) ∈ R

N+1 | xi > 0}. Since ∂xi
v � 0 solves

the linear elliptic equation −�∂xi
v + ∂xi

v = f ′(v)∂xi
v on {(x, y) ∈ R

N+1 | xi > 0} we deduce −�∂xi
v + ∂xi

v �
(f ′(v))+∂xi

v � 0 on {(x, y) ∈ R
N+1 | xi > 0} and since ∂xi

v 
= 0, the strong maximum principle assures ∂xi
v < 0 on

{(x, y) ∈R
N+1 | xi > 0}. �

3.5. The case b = 0. The homoclinic type mountain pass solution

In the case b = 0 Lemma 3.20 establishes that τ̄ ∈ R but does not give information about σ̄ . We prove here below
that in fact σ̄ = −∞.
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Lemma 3.24. If b = 0 then σ̄ = −∞.

Proof. Assume that σ̄ ∈ R. Then, arguing as in the case b > 0, by reflection and periodic continuation, we construct
a solution v ∈ C2(RN+1) of (E) which is 2(τ̄ − σ̄ )-periodic in the variable y with v(·,0) ∈ V0− and ∂yv(·,0) = 0.
Since V0− = {0} we have v(x,0) = 0 and ∂yv(x,0) = 0 for any x ∈ R

N . Defining a(x, y) = 1 − f (v(x, y))/v(x, y)

when v(x, y) 
= 0 and a(x, y) = 1 − f ′(0) = 1 when v(x, y) = 0 we have that a is continuous on R
N+1 and v solves

−�v + a(x, y)v = 0 on R
N+1. Defining the function ṽ(·, y) = v(·, y) for y ∈ (0,2(τ̄ − σ̄ )), and ṽ(·, y) = 0 for

y � 0 or y � 2(τ̄ − σ̄ ), since v(x,0) = ∂yv(x,0) = v(x,2(τ̄ − σ̄ )) = ∂yv(x,2(τ̄ − σ̄ )) = 0, we obtain that also ṽ

satisfies −�v + a(x, y)v = 0 on R
N+1. But a local unique continuation theorem (see e.g. Theorem 5 in [24]) and a

continuation argument imply that ṽ = 0 on R
N+1 while, by definition of σ̄ and τ̄ , ṽ(·, y) = v(·, y) = v̄(·, y + σ̄ ) 
= 0

for y ∈ (0, τ̄ − σ̄ ). �
By Lemma 3.24 we can define the function

v(x, y) =
{

v̄(x, y + τ̄ ) if x ∈R
N and y ∈ (−∞,0],

v̄(x, τ̄ − y) if x ∈R
N and y ∈ [0,+∞)

and the argument of the proof of Lemma 3.22 shows that v is a classical solution to (E) in R
N+1.

Remark 3.25. Again by (v) of Corollary 3.18 and using (E) we recover that v ∈ H 2(RN × (y1, y2)) for any
bounded interval (y1, y2) ⊂ R and ‖v‖H 2(S(y1,y2))

� C with C depending only on y2 − y1. This implies in particu-

lar that the functions y ∈ R → ∂yv(·, y) ∈ L2(RN) and y ∈ R → v(·, y) ∈ H 1(RN) are uniformly continuous and
so limy→−∞ V (v(·, y)) = lim infy→+∞ V (v(·, y)) = 0, limy→0− ‖∂yv(·, y)‖2 = lim infy→0+ ‖∂yv(·, y)‖2 = 0, and
Ev(y) = 1

2‖∂yv(·, y)‖2
2 −V (v(·, y)) = 0 for any y ∈ R. Note finally that v is radially symmetric with respect to x, not

increasing with respect to |x|, and, by construction, even in the variable y.

In the case b = 0 the functional ϕ(u) = ∫
R

1
2‖∂yu(·, y)‖2

2 +V (u(·, y)) dy can be written, by Remark 2.6, as ϕ(u) =
1
2‖u‖2

H 1(RN+1)
− ∫

RN+1 F(u)dx dy = VN+1(u) for all u ∈ H 1(RN+1) and in particular, denoting cN+1 the mountain

pass level of ϕ in H 1(RN+1), Proposition 2.3 establishes that ϕ has a positive radially symmetric critical point w at
the level cN+1. We have

Lemma 3.26. v ∈ H 1(RN+1) is a critical point of ϕ on H 1(RN+1) with ϕ(v) = cN+1. Moreover v ∈ C2(RN) is a
positive solution of (E) on R

N+1 such that v(x, y) → 0 as |(x, y)| → +∞, and, up to translations, v is radially
symmetric about the origin and ∂rv < 0 for r = |(x, y)| > 0.

Proof. By Remark 3.25 we have limy→−∞ V (v(·, y)) = 0 and so there exists y0 � −L0 < 0 (L0 as in Corollary 3.18)

such that V (v(·, y)) � β for any y � y0. Since by Corollary 3.18(ii) we know that dist(v(·, y),Vβ
+) � 4r0 for y � −L0,

we recognize that v(·, y) ∈ Vβ
− for any y � y0. Then V ′(v(·, y))v(·, y) � 0 and by (2.2) we obtain that V (v(·, y)) �

μ−2
2μ

‖v(·, y)‖2 for any y � y0. Since m0 = ϕ(−∞,0)(v̄) �
∫
(−∞,y0)

V (v(·, y)) dy, using Corollary 3.18(iv), we then ob-

tain ‖v‖2
H 1(RN+1)

= 2
∫ 0
−∞ ‖v(·, y)‖2 dy � 2

∫ y0
−∞

2μ
μ−2V (v(·, y)) dy +2C̄|y0| � 4μ

μ−2m0 +2C̄|y0|, and v ∈ H 1(RN+1)

follows. Since v ∈ H 1(RN+1) solves (E) on R
N+1, we deduce v(x, y) → 0 as |(x, y)| → +∞, it is a critical point of

ϕ on H 1(RN+1) and, by Remark 2.5, ϕ(v) = 2m0 � cN+1.
We now show that 2m0 � cN+1 proving that v is a mountain pass critical point. The other properties stated in the

lemma will then follows by standard arguments.
As recalled above, ϕ admits on H 1(RN+1) a positive, radially symmetric (in R

N+1) critical point w such that
ϕ(w) = cN+1 and ∂rw < 0 on R

N+1 \ {0} where r = |(x, y)|. In particular w(x,y) is radially symmetric with re-
spect to x and monotone decreasing with respect to |x| for any y ∈ R and so w ∈ H. By Lemma 3.2 we know
that the energy function Ew(y) = 1

2‖∂yw(·, y)‖2
2 − V (w(·, y)) is constant on R. Since w solves (E) we have

w ∈ H 2(RN+1)∩C2(RN+1). Then ‖w(·, y)‖ → 0 and ‖∂yw(·, y)‖2 → 0 as y → ±∞ and we deduce that Ew(y) = 0,
i.e., 1

2‖∂yw(·, y)‖2
2 = V (w(·, y)) for any y ∈ R. Since w is even with respect to y we have ∂yw(·,0) = 0 and then

V (w(·,0)) = 0. Since w is radially symmetric we have w(·,0) 
= 0 and so w(·,0) ∈ V0+. Finally, since ∂rw < 0 on
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R
N+1 \ {0} we derive that ∂yw(0, y) > 0 for any y ∈ (−∞,0) and we conclude V (w(·, y)) = 1

2‖∂yw(·, y)‖2
2 > 0 for

any y ∈ (−∞,0).
The above results tell us that w satisfies the assumption of Lemma 3.8 on the interval (−∞,0) and ϕ(−∞,0)(w) �

m0 follows. Hence cN+1 = ϕ(w)� 2m0 and we conclude that cN+1 = 2m0.
To conclude the proof we note that since v � 0 and −�v + v = f (v) � 0 on R

N+1, the strong maximum principle
establishes that v > 0 on R

N+1 and so, by Theorem 1 in [19] we conclude that, up to translations, v is radially
symmetric about the origin and ∂rv < 0 for r = |(x, y)| > 0 �
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