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Abstract

The motion of a fully ionized plasma of electrons and ions is generally governed by the Vlasov–Maxwell–Landau system.
We prove the global existence of solutions near Maxwellians to the Cauchy problem of the system for the long-range collision kernel
of soft potentials, particularly including the classical Coulomb collision, provided that both the Sobolev norm and L2

ξ (L1
x)-norm

of initial perturbation with enough smoothness and enough velocity weight is sufficiently small. As a byproduct, the convergence
rates of solutions are also obtained. The proof is based on the energy method through designing a new temporal energy norm to
capture different features of this complex system such as dispersion of the macro component in R3, singularity of the long-range
collisions and regularity-loss of the electromagnetic field.
© 2013

1. Introduction

1.1. Kinetic equations for a fully ionized plasma

The motion of a fully ionized plasma consisting of only two species particles (electrons and ions) under the influ-
ence of the self-consistent Lorentz force and binary collisions is governed by the kinetic transport equations

∂tF+ + ξ · ∇xF+ + (E + ξ × B) · ∇ξF+ = Q(F+,F+) + Q(F+,F−),

∂tF− + ξ · ∇xF− − (E + ξ × B) · ∇ξF− = Q(F−,F+) + Q(F−,F−), (1.1)

coupled with the Maxwell equations

∂tE − ∇x × B = −
∫
R3

ξ(F+ − F−) dξ,

∂tB + ∇x × E = 0,

∇x · E =
∫
R3

(F+ − F−) dξ, ∇x · B = 0. (1.2)
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Here F± = F±(t, x, ξ) � 0 stands for the number densities of ions (+) and electrons (−) which have position x =
(x1, x2, x3) ∈ R3 and velocity ξ = (ξ1, ξ2, ξ3) ∈R3 at time t � 0, and E(t, x), B(t, x) denote the electro and magnetic
fields, respectively. The initial data of the system of equations (1.1)–(1.2) is given by

F±(0, x, ξ) = F0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x),

satisfying the compatibility conditions

∇x · E0 =
∫
R3

(F0,+ − F0,−) dξ, ∇x · B0 = 0.

Notice that for simplicity of presentation and without loss of generality, all the physical parameters appearing in
the system, such as the particle masses and the light speed, and other involving constants, have been chosen to be
unit. Moreover, the relativistic effects are neglected in our discussion of the model. This is normally justified if the
plasma temperature is much lower than the electron rest mass, cf. [13, Section 3.6]. We refer interested readers to
[13, Chapters 2 and 3] or [16, Chapter 6] for the non-dimensional representation of the system (1.1)–(1.2) and also its
physical importance in the study of plasma transport phenomena.

The quadratically nonlinear operator Q in (1.1) is described by the Landau collision mechanism between particles
in the form of

Q(F,G) = ∇ξ ·
{∫
R3

φ(ξ − ξ∗)
[∇ξF (ξ)G(ξ∗) − F(ξ)∇ξ∗G(ξ∗)

]
dξ∗

}
.

The non-negative matrix φ denotes the Landau collision kernel

φij (ξ) = Cφ |ξ |γ+2
{
δij − ξiξj

|ξ |2
}
, −3 � γ < −2,

for a constant Cφ > 0. Note that γ = −3 corresponds to the Coulomb potential for the classical Landau operator
which is originally found by Landau (1936). For the mathematical discussions of the general collision kernel with
γ > −3, see the review paper [26] by Villani.

From now on, for simplicity of presentation, it is convenient to call (1.1)–(1.2) the Vlasov–Maxwell–Landau sys-
tem. In this paper we aim at proving the global existence of solutions to the Cauchy problem of the system near a
global Maxwellian under some conditions on initial data.

1.2. Reformulation

Write the normalized global Maxwellian as

μ = μ(ξ) = (2π)−3/2e−|ξ |2/2,

and set the perturbation in the standard way

F±(t, x, ξ) = μ + μ1/2f±(t, x, ξ).

Use [·,·] to denote the column vector. Set F = [F+,F−] and f = [f+, f−]. Then the Cauchy problem (1.1)–(1.2) can
be reformulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + ξ · ∇xf + q0(E + ξ × B) · ∇ξ f − E · ξμ1/2q1 + Lf = q0

2
E · ξf + Γ (f,f ),

∂tE − ∇x × B = −
∫
R3

ξμ1/2(f+ − f−) dξ,

∂tB + ∇x × E = 0,

∇x · E =
∫

3

μ1/2(f+ − f−) dξ, ∇x · B = 0,

(1.3)
R
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with initial data

f±(0, x, ξ) = f0,±(x, ξ), E(0, x) = E0(x), B(0, x) = B0(x), (1.4)

satisfying the compatibility condition

∇x · E0 =
∫
R3

μ1/2(f0,+ − f0,−) dξ, ∇x · B0 = 0. (1.5)

Here, q0 = diag(1,−1), q1 = [1,−1], and the linearized collision term Lf and the nonlinear collision term Γ (f,f )

are respectively defined by

Lf = [L+f,L−f ], Γ (f,g) = [
Γ+(f, g),Γ−(f, g)

]
,

with

L±f = −2μ−1/2Q
(
μ1/2f±,μ

) − μ−1/2Q
(
μ,μ1/2{f± + f∓}),

Γ±(f, g) = μ−1/2Q
(
μ1/2f±,μ1/2g±

) + μ−1/2Q
(
μ1/2f±,μ1/2g∓

)
.

1.3. Macro projection, weights and norms

As in [11,12], the null space of the linearized operator L is given by

N = span
{[1,0]μ1/2, [0,1]μ1/2, [ξi, ξi]μ1/2 (1 � i � 3),

[|ξ |2, |ξ |2]μ1/2}.
Let P be the orthogonal projection from L2

ξ × L2
ξ to N . Given f (t, x, ξ), one can write P as

Pf = a+(t, x)[1,0]μ1/2 + a−(t, x)[0,1]μ1/2

+
3∑

i=1

bi(t, x)[1,1]ξiμ
1/2 + c(t, x)[1,1](|ξ |2 − 3

)
μ1/2,

where the coefficient functions are determined by f in the way that

a± = 〈
μ1/2, f±

〉 = 〈
μ1/2,P±f

〉
,

bi = 1

2

〈
ξiμ

1/2, f+ + f−
〉 = 〈

ξiμ
1/2,P±f

〉
,

c = 1

12

〈(|ξ |2 − 3
)
μ1/2, f+ + f−

〉 = 1

6

〈(|ξ |2 − 3
)
μ1/2,P±f

〉
.

In what follows, we introduce the weight functions and norms used for the presentation of the main result later on.
Fix a constant ϑ with 0 < ϑ � 1/4. Define

wτ,λ = wτ,λ(t, ξ) = 〈ξ 〉(γ+2)τ exp

{
λ

(1 + t)ϑ
〈ξ〉2

}
,

where constants τ ∈R and λ� 0 are two parameters which may vary in different places. For f = f (t, x, ξ), define∣∣f (x)
∣∣2
τ,λ

=
∫
R3

w2
τ,λ(t, ξ)|f |2 dξ, ‖f ‖2

τ,λ =
∫
R3

∣∣f (x)
∣∣2
τ,λ

dx,

and ∣∣f (x)
∣∣2
D,τ,λ

=
3∑

i,j=1

∫
R3

w2
τ,λ(t, ξ)

{
σ ij ∂if ∂jf + σ ij ξi

2

ξj

2
|f |2

}
dξ,

‖f ‖2
D,τ,λ =

∫
3

∣∣f (x)
∣∣2
D,τ,λ

dx,
R
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where ∂i = ∂ξi
denotes the velocity derivative with respect to ξi , and σ ij = σ ij (ξ) is the Landau collision frequency

given by

σ ij (ξ) = φij ∗ μ(ξ) =
∫
R3

φij (ξ − ξ∗)μ(ξ∗) dξ∗.

To study the global existence through the energy method, the temporal energy functional and the corresponding
dissipation rate are defined by

EN,,λ(t) ∼
∑

|α|+|β|�N

∥∥∂α
β f (t)

∥∥2
|β|−,λ

+ ∥∥(E,B)
∥∥2

HN , (1.6)

and

DN,,λ(t) =
∑

|α|+|β|�N

∥∥∂α
β {I − P }f (t)

∥∥2
D,|β|−,λ

+
∑

|α|�N−1

∥∥∇x∂
α(a±, b, c)

∥∥2

+ ‖a+ − a−‖2 + ‖E‖2
HN−1 + ‖∇xB‖2

HN−2

+ λ

(1 + t)1+ϑ

∑
|α|+|β|�N

∥∥〈ξ〉∂α
β {I − P }f (t)

∥∥2
|β|−,λ

, (1.7)

where the integer N � 0 and  � 0 are parameters which may differ in different places. For simplicity, we write
wτ = wτ,0 for λ = 0, and EN(t) = EN,0,0(t) for  = λ = 0, and likewise for others. Moreover, regarding EN,,λ(t) and
DN,,λ(t), whenever the case λ > 0 occurs, we always require  − N � 0; it means that the algebraic weight factor is
always of positive power when the exponential weight factor is present. Notice that the last term of DN,,λ(t) in (1.7)
disappears when λ = 0.

Let constants N0 and 0 be fixed properly large, and let constants λ0 > 0 and ε0 > 0 be fixed properly small; the
choice of N0, 0, λ0 and ε0 can be seen in the late proof. Set N1 = 3

2N0 and 1 = 1
20. The temporal energy norm

X(t) is defined by

X(t) = sup
0�s�t

{
EN1(s) + (1 + s)

3
2 EN1−2(s)

}
+ sup

0�s�t

{
(1 + s)−

1+ε0
2 EN1,1,λ0(s) + EN1−1,1,λ0(s) + (1 + s)

3
2 EN1−3,1−1,λ0(s)

}
+ sup

0�s�t

{
EN0,0,λ0(s) + (1 + s)

3
2 EN0,0−1,λ0(s)

}
+ sup

0�s�t

{
(1 + s)

5
2
∥∥∇x(E,B)(s)

∥∥2
HN0−1

}
. (1.8)

Notice that in order for the algebraic weight factor to gain the large enough positive power when there is the exponen-
tial weight factor exp{λ0〈ξ〉2/(1 + t)ϑ }, we also let 0 − 3N0 be properly large.

1.4. Main result

The main result of the paper is stated as follows.

Theorem 1.1. Assume −3 � γ < −2. Take 0 < ϑ � 1/4, and also take constants N0, 0 properly large with 0 − 3N0
properly large, and constants λ0 > 0, ε0 > 0 properly small. Fix a constant 2 > 5

4 + N0
2 . Let f0 = [f0,+, f0,−] satisfy

F±(0, x, ξ) = μ(ξ) + μ1/2(ξ)f0,±(x, ξ)� 0. If

Y0 =
∑ ∥∥∂α

β f0
∥∥|β|−0,λ0

+
∑ ∥∥∂α

β f0
∥∥|β|−1,λ0

+ ∥∥(E0,B0)
∥∥

HN1 ∩L1 + ‖w−2f0‖Z1 (1.9)

|α|+|β|�N0 |α|+|β|�N1
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is sufficiently small, then there are appropriately defined energy functionals EN,,λ(t) appearing in X(t) such that
the Cauchy problem (1.3), (1.4), (1.5) of the Vlasov–Maxwell–Landau system admits a unique global solution
(f (t, x, ξ),E(t, x),B(t, x)) satisfying F±(t, x, ξ) = μ(ξ) + μ1/2(ξ)f±(t, x, ξ) � 0 and

X(t) � Y 2
0 , (1.10)

for all time t � 0.

Remark 1.1. The following are several points to remark on this theorem:

(a) Although only the soft potential case −3 � γ < −2 is considered here, the hard case for γ � −2 could be much
simpler.

(b) Along the same proof line as for (4.34), through applying (3.4) in the linearized result Theorem 3.1 with  = 0
and 1 � |α| �N0 to the mild form (4.32) of the nonlinear system, it can be shown that∑

1�|α|�N0

∥∥∂αf
∥∥

decays in time with the rate (1 + t)−5/4.
(c) By the definition of X(t), the uniform-in-time inequality (1.10) implies that the weighted high-order energy

functional EN1,1,λ0(t), particularly∑
|α|+|β|=N1

∥∥∂α
β {I − P }f ∥∥2

|β|−1,λ0
,

may increase in time with the rate (1 + t)(1+ε0)/2.
(d) Setting N1 = 3

2N0 and 1 = 1
20 is just for simplicity of presentation. The general choice of N1, 1 in terms of

N0, 0 is possible. In addition, for brevity, N0, 0 and 0 − 3N0 are assumed to be properly large. We would not
track in this paper the critical values of N0, 0 and all other parameters. However, it should remain an interesting
problem to design a new energy norm with the optimal choice of regularity and velocity integrability on initial
data in order to ensure the global existence of the Cauchy problem.

(e) The similar approach developed in this paper could be immediately applied to the case of the periodic box. In that
case, we need to assume all the conservation laws of the system so that the Poincaré inequality can be applied to
deal with the zero-order dissipation of the macro component Pf and the magnetic field B .

In what follows we mention some work only related to this paper; interested readers may refer to them for more
references therein. Notice that there are different approaches in establishing the mathematical theories on the Landau
equation, see [1–3,17,27,29]. In the perturbation framework, Guo [10] firstly established the global existence for the
purely Landau equation with Coulomb potentials in the absence of any force; see also [15]. Very recently the same au-
thor [11] made a further progress for the Vlasov–Poisson–Landau system on the periodic box when the self-consistent
potential force is present; see [7] and [24] for generalizations of the result to the case of the whole space. We pointed
out that Duan, Yang, and Zhao [7] used a different approach arising from the study of the Vlasov–Poisson–Boltzmann
system [5,6].

When the plasma transport is effected by the Lorentz force coupled with the Maxwell equations, there are two
cases in which the global existence of solutions near the global Maxwellian have been well studied. One case is
to take the Landau operator with γ � −1. In this case the problem was solved by Guo [12] although the Vlasov–
Maxwell–Boltzmann system for only the hard-sphere model is considered there. Notice from Lemma 2.1 that if
γ � −1, i.e. γ + 2 � 1, then compared to the soft potential case, the linearized Landau operator has the stronger dissi-
pative property which can control those nonlinear terms with the velocity-growth rate |ξ |, typically occurring to E ·ξf .
The other case is the relativistic version of the Vlasov–Maxwell–Landau system studied by Strain and Guo [23]. In
this case, due to the boundedness of the relativistic velocity and the special form of the relativistic Maxwellian, the
velocity-growth phenomenon in the nonlinear term disappears, and instead the more complex property of the rela-
tivistic collision operator was analyzed there.
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Though there are a few results mentioned above, it still remains unknown to obtain the global existence for the
Vlasov–Maxwell–Landau system for the Coulomb potential in the classical sense because of the quite complex prop-
erty of the system that we will point out in more detail next subsection. To the knowledge of our best, Theorem 1.1 is
the first result in this direction. The proof of Theorem 1.1 is based on the energy method, cf. [10,12] or [18], together
with a new quite delicate bootstrap argument. In particular, the introduction of the temporal energy norm X(t), which
is the main strategy of the proof, captures most of important features of the coupling system.

1.5. Difficulty and idea in the proof

The Vlasov–Maxwell–Landau system under consideration has the following three typical features which result to
different mathematical difficulties:

• the degeneration of dissipation at large velocity for the linearized Landau operator with soft potentials;
• the velocity-growth of the nonlinear term, as mentioned before;
• the regularity-loss of the electromagnetic field.

The first feature makes it impossible to control the velocity derivative of the linear transport term ξ · ∇xf without
any velocity weight. To deal with it, the algebraic weight factor 〈ξ〉(γ+2)|β| depending on the order of velocity dif-
ferentiation was introduced in [10]. This, however, induces another difficulty when estimating the nonlinear term
(E + ξ × B) · ∇ξ f , since the term contains one velocity differentiation so that the extra velocity-growth with rate
|ξ |−(γ+2) is produced. Notice that this new trouble as well as the obvious velocity-growth in E · ξf happen to the
nonlinear term only. [5] then introduced a time-velocity dependent exponential weight factor exp{λ0〈ξ〉2/(1 + t)ϑ }
which from the weighted estimate on ∂tf indeed leads to the following additional good term in the dissipation rate

λ0ϑ

(1 + t)1+ϑ

∫ ∫
〈ξ〉2w2|β|−,λ0

(t, ξ)
∣∣∂α

β {I − P }f ∣∣2
dx dξ.

See also [6,7]. Thus, as long as those nonlinear velocity-growth terms contains a portion decaying in time faster than
(1 + t)1+ϑ , they can be controlled by the above dissipation term.

The third feature mentioned before can be seen from the definition of the dissipation rate functional DN,,λ(t) in
which the L2-norm of N th-order spatial derivatives of (E,B) is missing. Here, the regularity-loss results essentially
from the coupling of the hyperbolic Maxwell equations but not from the technique of the approach; see [4] for the
analysis of Green’s function of the damping Euler–Maxwell system. Due to the regularity-loss, two more difficulties
appear. One difficulty is that one cannot expect derivatives of the electromagnetic field (E,B) of all orders up to the
largest number N1 to decay time fast enough, so that the estimate on those nonlinear velocity-growth terms is still a
problem. To solve it, when estimating the weighted inner product term∑

|α|+|β|�N1

〈
∂α
β

{
1

2
E · ξf − (E + ξ × B) · ∇ξ f

}
,w2|β|−1,λ0

∂α
β f

〉
,

we use the time-decay property for the only low-order derivatives of both (E,B) and f . Notice that compared to the
high-order energy functional EN1,1,λ0(t) of f , the low-order one must be assigned with the higher velocity weight to
absorb the extra velocity-growth factor. That is the reason why we introduce into the X(t)-norm two energy functionals
EN1,1,λ0(t) and EN0,0,λ0(t) with the approximate choice of N and .

The second difficulty due to regularity-loss is the control of inner product terms∑
|α|=N1

〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
,

which arises from the weighted estimate on ∂αf . To deal with it, we use the time-weighted energy estimate with the
time rate of negative power; the similar technique has been used in [14]. In fact, starting from the Lyapunov inequality

d

dt
EN1(t) + κDN1(t) � h.o.t.,

where h.o.t. denotes the high-order terms only, it follows that
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d

dt

[
(1 + t)−ε0EN1(t)

] + κ(1 + t)−ε0DN1(t)

+ ε0

(1 + t)1+ε0
EN1(t) � (1 + t)−ε0 × {h.o.t.}.

Therefore, provided that the term on the right is time integrable, one can recover the following new dissipation term

ε0

(1 + t)1+ε0

∑
|α|=N1

∥∥∂α(E,B)
∥∥2

.

Although this dissipation term is degenerate in large time, it is enough to control other trouble terms related to the
N1th-order derivatives of (E,B).

We finally mention Theorem 3.1 concerning the time-decay property of the linearized system. Theorem 3.1 not
only plays a key role of dealing with the dispersion of the macro component Pf in R3 due to the degeneration of L,
but also its proof, particularly the Lyapunov inequality (3.10), fully reveals the optimal dissipative structure of the
linearized system, which further motivates the design of the energy norm X(t). We remark that inspired by (3.10), it
would be an interesting problem to consider the spectrum [25,2] or Green’s function [19] of such complex system.

The rest of the paper is arranged as follows. In Section 2, we list some known facts for the macro structure of the
system and also the basic estimates on L and Γ . In Section 3, we obtain the time-decay property of the linearized
homogeneous system. In Section 4, we present series of lemmas for the a priori estimates on the solution and finish
the proof of Theorem 1.1 at the end.

1.6. Notations

Throughout this paper, C denotes some generic positive (generally large) constant and κ denotes some generic
positive (generally small) constant, where both C and κ may take different values in different places. A � B means
that there is a generic constant C > 0 such that A � CB . A ∼ B means A � B and B � A. We use L2 to denote
the usual Hilbert spaces L2 = L2

x,ξ or L2
x with the norm ‖ · ‖, and use 〈·,·〉 to denote the inner product over L2

x,ξ or

L2
ξ . For q � 1, the mixed velocity-space Lebesgue space Zq = L2

ξ (L
q
x) = L2(R3

ξ ;Lq(R3
x)) is used. For multi-indices

α = (α1, α2, α3) and β = (β1, β2, β3), ∂α
β = ∂α

x ∂
β
ξ = ∂

α1
x1 ∂

α2
x2 ∂

α3
x3 ∂

β1
ξ1

∂
β2
ξ2

∂
β3
ξ3

. The length of α is |α| = α1 + α2 + α3 and
similar for |β|.

2. Preliminary

2.1. Macro structure

Consider the following linearized Vlasov–Maxwell–Landau system with a non-homogeneous source S =
[S+(t, x, ξ), S−(t, x, ξ)]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf± + ξ · ∇xf± ∓ E · ξμ1/2 + L±f = S±,

∂tE − ∇x × B = −
∫
R3

ξμ1/2(f+ − f−) dξ,

∂tB + ∇x × E = 0,

∇x · E =
∫
R3

μ1/2(f+ − f−) dξ, ∇x · B = 0.

(2.1)

Taking velocity integrations of the first equation of (2.1) with respect to the velocity moments

μ1/2, ξiμ
1/2, i = 1,2,3,

1

6

(|ξ |2 − 3
)
μ1/2,

one has
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∂ta± + ∇x · b + ∇x · 〈ξμ1/2, {I± − P±}f 〉 = 〈
μ1/2, S±

〉
,

∂t

[
bi + 〈

ξiμ
1/2, {I± − P±}f 〉] + ∂i(a± + 2c) ∓ Ei + ∇x · 〈ξξiμ

1/2, {I± − P±}f 〉 = 〈
ξiμ

1/2, S±−L±f
〉
,

∂t

[
c + 1

6

〈(|ξ |2 − 3
)
μ1/2, {I± − P±}f 〉] + 1

3
∇x · b + 1

6
∇x · 〈(|ξ |2 − 3

)
ξμ1/2, {I± − P±}f 〉

= 1

6

〈(|ξ |2 − 3
)
μ1/2, S±−L±f

〉
,

where ∂i = ∂xi
denotes the spatial derivative with respect to xi , and we have set I = [I+, I−] with I±f = f±. As in

[8,9], we define the high-order moment functions Θ(f±) = (Θij (f±))3×3 and Λ(f±) = (Λ1(f±),Λ2(f±),Λ3(f±))

by

Θij (f±) = 〈
(ξiξj − 1)μ1/2, f±

〉
, Λi(f±) = 1

10

〈(|ξ |2 − 5
)
ξiμ

1/2, f±
〉
.

Further taking velocity integrations of the first equation of (2.1) with respect to the above high-order moments one has

∂t

[
Θii

({I± − P±}f ) + 2c
] + 2∂ibi = Θii(r± + S±),

∂tΘij

({I± − P±}f ) + ∂j bi + ∂ibj + ∇x · 〈ξμ1/2, {I± − P±}f 〉 = Θij (r± + S±) + 〈
μ1/2, S±

〉
, i �= j,

∂tΛi

({I± − P±}f ) + ∂ic = Λi(r± + S±),

where r± = −ξ · ∇x{I± − P±}f − L±f .
In particular, for the nonlinear system (1.3), the non-homogeneous source S = [S+(t, x, ξ), S−(t, x, ξ)] takes the

form of

S± = ±1

2
E · ξf± ∓ (E + ξ × B) · ∇ξ f± + Γ±(f,f ).

Then, it is straightforward to compute from integration by parts that〈
μ1/2, S±

〉 = 0,〈
ξμ1/2, S±

〉 = ±Ea± ± b × B±〈
ξμ1/2, {I± − P±}f 〉 × B + 〈

ξμ1/2,Γ±(f,f )
〉
,

1

6

〈(|ξ |2 − 3
)
μ1/2, S±

〉 = ±1

3
b · E ± 1

3

〈
ξμ1/2, {I± − P±}f 〉 · E +

〈
1

6

(|ξ |2 − 3
)
μ1/2,Γ±(f,f )

〉
.

2.2. Basic estimates on L and Γ

In this section, we state two lemmas about some basic properties of the Landau operator. Given a vector-valued
function u = (u1, u2, u3), define

Pξu = ξ ⊗ ξ

|ξ |2 u =
{

ξ

|ξ | · u
}

ξ

|ξ | , i.e., (Pξu)i =
{

3∑
j=1

ξj

|ξ |uj

}
ξi

|ξ | , 1 � i � 3.

Concerning the equivalent characterization of the dissipation rate and the dissipative property of the linearized Landau
operator, one has the following lemma; see [2,20,10] for the detailed proof.

Lemma 2.1. (See [10].) It holds that

|f |2D,τ,λ ∼ ∣∣(1 + |ξ |) γ
2 Pξ∇ξ f

∣∣2
τ,λ

+ ∣∣(1 + |ξ |) γ+2
2 {I − Pξ }∇ξ f

∣∣2
τ,λ

+ ∣∣(1 + |ξ |) γ+2
2 f

∣∣2
τ,λ

.

Moreover, L is a non-negative definite self-adjoint operator, and there exists κ > 0 such that

〈Lf,f 〉 � κ
∣∣{I − P }f ∣∣2

D.

The following lemma states the weighted estimate on Lf and Γ (f,f ).
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Lemma 2.2. (See [22].) There are κ > 0 and C > 0 such that〈
Lf,w2

τ,λ(t, ξ)f
〉
� κ|f |2D,τ,λ − C|χ{|ξ |�2C}f |2τ .

Moreover, let |β| > 0, τ = |β| −  with  � 0. Then, for η > 0 small enough, there is Cη > 0 such that〈
∂βLf,w2

τ,λ(t, ξ)∂βf
〉
� κ|∂βf |2D,τ,λ − η

∑
|β ′|=|β|

|∂β ′f |2D,τ,λ − Cη

∑
|β ′|<|β|

|∂β ′f |D,|β ′|−,λ.

And also, for N � 8, |α| + |β| � N and τ = |β| −  with  � 0, it holds that〈
∂α
β Γ (f1, f2),w

2
τ,λ(t, ξ)∂α

β f3
〉

�
∑

|α′|+|β ′|�N

β ′′�β ′�β

{∣∣∂α′
β ′′f1

∣∣
τ

∣∣∂α−α′
β−β ′ f2

∣∣
D,τ,λ

+ ∣∣∂α′
β ′′f1

∣∣
D,τ

∣∣∂α−α′
β−β ′ f2

∣∣
τ,λ

}∣∣∂α
β f3

∣∣
D,τ,λ

. (2.2)

Notice that since the coefficient λ/(1 + t)ϑ in front of 〈ξ〉2 in the exponential part of the weight function wτ,λ(t, ξ)

is bounded uniformly in t � 0, the proof of the above lemma follows directly from the same argument used in [22].

3. Linearized analysis

Consider the Cauchy problem on the linearized Vlasov–Maxwell–Landau system with a source S = S(t, x, ξ) =
[S+(t, x, ξ), S−(t, x, ξ)]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tf + ξ · ∇xf − E · ξμ1/2q1 + Lf = S,

∂tE − ∇x × B = −〈ξμ1/2, f+ − f−〉,
∂tB + ∇x × E = 0,

∇x · E = 〈μ1/2, f+ − f−〉, ∇x · B = 0,

(f,E,B)|t=0 = (f0,E0,B0),

(3.1)

where initial data [f0,E0,B0] satisfies the compatibility condition

∇x · E0 =
∫
R3

μ1/2(f0,+ − f0,−) dξ, ∇x · B0 = 0, (3.2)

and the source term S is assumed to satisfy∫
R3

μ1/2(S+ − S−) dξ = 0.

To consider the solution to the Cauchy problem (3.1), for simplicity, we denote U = [f,E,B], U0 = [f0,E0,B0] so
that one can formally write

U(t) =A(t)U0 +
t∫

0

A(t − s)
[
S(s),0,0

]
ds,

where A(t) is the linear solution operator for the Cauchy problem on the linearized homogeneous system correspond-
ing to (3.1) in the case when S = 0.

For the linearized homogeneous system, we have the following result.

Theorem 3.1. Let S = 0, and let [f,E,B] be the solution to the Cauchy problem (3.1), (3.2) of the linearized homo-
geneous system. Define the velocity weight function w = w(ξ) by

w(ξ) = 〈ξ 〉− γ+2
2 . (3.3)
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Then, for � 0 and α � 0 with m = |α|,∥∥w∂αf
∥∥ + ∥∥∂α(E,B)

∥∥
� (1 + t)−σm

(∥∥w+low∗ f0
∥∥

Z1
+ ∥∥(E0,B0)

∥∥
L1

x

)
+ (1 + t)−j

(∥∥w+
high∗ ∇j+1

x ∂αf0
∥∥ + ∥∥∇j+1

x ∂α(E0,B0)
∥∥)

, (3.4)

where

σm = 3

4
+ m

2
, low∗ > 2σm, 

high∗ > 0, 0 � j < 
high∗ .

Proof. It is divided by the following three steps. For brevity of presentation we would only sketch the proof by
clarifying how the known techniques in [6,9,21] can be adopted in the situation considered here.

Step 1. We claim that there is a time-frequency interactive functional E int(t, k) such that∣∣E int(t, k)
∣∣ � |f̂ |2

L2 + ∣∣[Ê, B̂]∣∣2
, (3.5)

and

∂t

{|f̂ |2
L2 + ∣∣[Ê, B̂]∣∣2 + κ0 �E int(t, k)

} + κ
∣∣{I − P }f̂ ∣∣2

D

+ κ|k|2
1 + |k|2

(| ̂a+ + a−|2 + |b̂|2 + |ĉ|2) + κ| ̂a+ − a−|2

+ κ

1 + |k|2 |Ê|2 + κ|k|2
(1 + |k|2)2

|B̂|2 � 0, (3.6)

where κ0 > 0 is a small constant such that

|f̂ |2
L2 + ∣∣[Ê, B̂]∣∣2 + κ0 �E int(t, k) ∼ |f̂ |2

L2 + ∣∣[Ê, B̂]∣∣2
. (3.7)

Compared to the corresponding estimate obtained in [9], the main improvement in (3.6) occurs to the coefficient in
front of the term |Ê|2 in the dissipation rate.

Step 2. In this step, we follow the approach in [21] to carry out the velocity weighted energy estimates for the pointwise
frequency variable. Starting from the micro equation

∂t {I − P }f̂ + iξ · k{I − P }f̂ + L{I − P }f̂
= −{I − P }(Ê · ξ)

√
μq1 − {I − P }[iξ · kP f̂ ] + P

[
iξ · k{I − P }f̂ ]

,

one can verity that for � 0,

∂t

∣∣w{I − P }f̂ ∣∣2
L2χ|k|�1 + κ

∣∣w{I − P }f̂ ∣∣2
Dχ|k|�1

� 1

1 + |k|2 |Ê|2 + |k|2
1 + |k|2

∣∣( ̂a+ + a−, b̂, ĉ)
∣∣2 + | ̂a+ − a−|2 + ∣∣w−1{I − P }f̂ ∣∣2

L2 . (3.8)

In a similar way, starting with the first equation of (3.1), the direct velocity weighted energy estimates for the pointwise
frequency variable also gives that for � 0,

1

1 + |k|2 ∂t

∣∣wf̂
∣∣2
L2χ|k|�1 + κ

1 + |k|2
∣∣w{I − P }f̂ ∣∣2

Dχ|k|�1

� 1

1 + |k|2 |Ê|2 + |k|2
1 + |k|2

∣∣( ̂a+ + a−, b̂, ĉ)
∣∣2 + | ̂a+ − a−|2 + ∣∣w−1{I − P }f̂ ∣∣2

L2 . (3.9)
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Now, by choosing κ1, κ2 > 0 properly small, the linear combination (3.6) + κ2 × (3.8) + κ1 × (3.9) yields that for
� 0,

∂tM(t, k) + κD(t, k) � 0, (3.10)

where M(t, k) and D(t, k) are given by

M(t, k) = ‖f̂ ‖2
L2 + ∣∣[Ê, B̂]∣∣2 + κ0 �E int(t, k)

+ κ2
∣∣w{I − P }f̂ ∣∣

L2 χ|k|�1 + κ1

1 + |k|2
∣∣wf̂

∣∣2
L2χ|k|�1,

D(t, k) = ∣∣{I − P }f̂ ∣∣2
D + 1

1 + |k|2
∣∣w{I − P }f̂ ∣∣2

D + |k|2
1 + |k|2

(| ̂a+ + a−|2 + |b̂|2 + |c|2)
+ | ̂a+ − a−|2 + 1

1 + |k|2 |Ê|2 + |k|2
(1 + |k|2)2

|B̂|2.

Here, notice that for any ,∣∣w{I − P }f̂ ∣∣
D �

∣∣w−1{I − P }f̂ ∣∣
L2 .

Moreover, set the frequency function ρ(k) = |k|2/(1 + |k|2)2. Then, by considering the [1 + ερ(k)t]J -weighted esti-
mate on (3.10) and also applying the iterative technique developed in [6], one has that whenever � 0,

M(t, k) �
[
1 + ερ(k)t

]−J
M+J+p−1(0, k), (3.11)

holds true for any t � 0, k ∈R3, where the parameters p, ε and J with

p > 1, 0 < ε � 1, J > 0, C1εJ � κ

4

are still to be chosen.

Step 3. For  � 0, define

M̃(t, k) = ∣∣wf̂
∣∣2
L2 + ∣∣[Ê, B̂]∣∣2

. (3.12)

Take α � 0 with m = |α|. We use the splitting∫
R3

∣∣kα
∣∣2

M̃(t, k) dk =
( ∫

|k|�1

+
∫

|k|�1

)∣∣kα
∣∣2

M̃(t, k) dk.

By the estimate (3.11), one has∫
|k|�1

∣∣kα
∣∣2

M̃(t, k) dk �
∫

|k|�1

∣∣kα
∣∣2

M(t, k) dk

�
∫

|k|�1

|k|2m
[
1 + ερ(k)t

]−J
M+J+p−1(0, k) dk

�
∫

|k|�1

|k|2m

[
1 + ε

4
|k|2t

]−J

dk sup
k∈R3

M+J+p−1(0, k).

By letting 2J − 2m > 3, i.e. J > m + 3
2 = 2σm, we arrive at∫ ∣∣kα

∣∣2
M̃(t, k) dk � (1 + t)−( 3

2 +m)
(∥∥w+J+p−1f0

∥∥2
Z1

+ ∥∥(E0,B0)
∥∥2

L1
x

)
.

|k|�1
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Here, notice that for any given low∗ > 2σm, one can take proper constants J > 2σm and p > 1 such that low∗ =
J + p − 1. Hence, for the low frequency part,∫

|k|�1

∣∣kα
∣∣2

M̃(t, k) dk � (1 + t)−2σm
(∥∥w+low∗ f0

∥∥2
Z1

+ ∥∥(E0,B0)
∥∥2

L1
x

)
, (3.13)

for low∗ > 2σm. To estimate the high-frequency part, let j � 0 to be chosen, and one has∫
|k|�1

∣∣kα
∣∣2

M̃(t, k) dk �
∫

|k|�1

∣∣kα
∣∣2(1 + |k|2)M(t, k) dk �

∫
|k|�1

∣∣kα
∣∣2|k|2M(t, k) dk

�
∫

|k|�1

∣∣kα
∣∣2|k|2[1 + ερ(k)t

]−J
M+J+p−1(0, k) dk,

which further implies∫
|k|�1

∣∣kα
∣∣2

M̃(t, k) dk �
∫

|k|�1

[
1 + εt

4|k|2
]−J ∣∣kα

∣∣2|k|2M+J+p−1(0, k) dk

�
∫
R3

∣∣kα
∣∣2|k|2(j+1)M+J+p−1(0, k) dk · sup

|k|�1

{[
1 + εt

4|k|2
]−J 1

|k|2j

}
.

Notice that

sup
|k|�1

{[
1 + εt

4|k|2
]−J 1

|k|2j

}
� (1 + t)−j ,

as long as j � J . Thus, we have∫
|k|�1

∣∣kα
∣∣2

M̃(t, k) dk � (1 + t)−j
(∥∥w+J+p−1∇j+1

x ∂αf0
∥∥2 + ∥∥∇j+1

x ∂α(E0,B0)
∥∥2)

.

Here, notice that for any given 
high∗ > 0 and 0 � j < 

high∗ , one can choose again proper constants J > j and p > 1
such that 

high∗ = J + p − 1. Hence, it follows that∫
|k|�1

∣∣kα
∣∣2

M̃(t, k) dk � (1 + t)−j
(∥∥w+

high∗ ∇j+1
x ∂αf0

∥∥2 + ∥∥∇j+1
x ∂α(E0,B0)

∥∥2)
, (3.14)

for 
high∗ > 0 and 0 � j < 

high∗ . Therefore, in terms of (3.12), the desired time-decay estimate (3.4) follows from the
combination of (3.13) and (3.14). This completes the proof of Theorem 3.1. �
4. Global a priori estimates

In this section we will prove Theorem 1.1. The key point is to deduce the uniform-in-time a priori estimates of
solutions to the Vlasov–Maxwell–Landau system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tf + ξ · ∇xf − E · ξμ1/2q1 + Lf = S,

∂tE − ∇x × B = −〈
ξμ1/2, f+ − f−

〉
,

∂tB + ∇x × E = 0,

∇x · E = 〈
μ1/2, f+ − f−

〉
, ∇x · B = 0,

(4.1)

where the nonlinear term is given by

S = Γ (f,f ) + 1
q0E · ξf − q0(E + ξ × B) · ∇ξ f. (4.2)
2
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For that, let (f,E,B) be a smooth solution to (4.1) over the time interval 0 � t � T with initial data (f0,E0,B0) for
0 < T � ∞, and further suppose that (f,E,B) satisfies

X(t) � δ2, (4.3)

where X(t) is given in (1.8) and the constant δ > 0 is sufficiently small. We point out that throughout this section, in
the case when an undetermined energy functional EN,,λ(t) appears on the right-hand side of inequalities, it is always
understood to take exactly the right-hand expression of (1.6).

4.1. Macro dissipation

Basing on the previous work [8] and [9], it is a standard process to obtain in terms of the following lemma the
macro dissipation DN,mac(t) defined by

DN,mac(t) =
∑

|α|�N−1

∥∥∇x∂
α(a±, b, c)

∥∥2 + ‖a+ − a−‖2 + ‖E‖2
HN−1 + ‖∇xB‖2

HN−2 .

The details for the proof of this lemma are omitted for brevity.

Lemma 4.1. For any integer N with 8 � N � N1, there is an interactive energy functional E int
N (t) such that∣∣E int

N (t)
∣∣ � ∑

|α|�N

(∥∥∂αf
∥∥2 + ∥∥∂α(E,B)

∥∥2)
and

d

dt
E int

N (t) + κDN,mac(t) �
∑

|α|�N

∥∥∂α{I − P }f ∥∥2
D + EN(t)DN(t),

for 0 � t � T .

4.2. Lyapunov inequality for EN1(t)

In this section we derive the basic energy estimates on EN,,λ(t) in the case of N = N1 and  = λ = 0. Notice that
N1 is the highest order, and regarding ∂α

β f , the weight function takes the form of w−|β|(ξ) independent of time.

Lemma 4.2. There is an energy functional EN1(t) such that

d

dt
EN1(t) + κDN1(t)�

δ

(1 + t)1+ϑ
DN1,1,λ0(t) + EN1(t)EN0,0−1,λ0(t), (4.4)

for 0 � t � T .

Proof. First of all, it is straightforward to establish the energy identities

1

2

d

dt

(‖f ‖2 + ∥∥(E,B)
∥∥2) + 〈Lf,f 〉 = 〈S,f 〉, (4.5)

and

1

2

d

dt

∑
1�|α|�N1

(∥∥∂αf
∥∥2 + ∥∥∂α(E,B)

∥∥2) +
∑

1�|α|�N1

〈
L∂αf, ∂αf

〉 = ∑
1�|α|�N1

〈
∂αS, ∂αf

〉
. (4.6)

By applying the micro projection I − P to the first equation of (4.1), it can be rewritten as

∂t {I − P }f + ξ · ∇x{I − P }f − E · ξμ1/2 + Lf = {I − P }S + Pξ · ∇xf − ξ · ∇xPf. (4.7)
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After acting ∂α
β with |α| + |β| � N1 and |β| � 1 to the above equation and further multiplying it by

〈ξ〉2(γ+2)|β|∂α
β {I − P }f , the direct energy estimate gives the identity

1

2

d

dt

∥∥∂α
β {I − P }f ∥∥2

|β| +
〈
∂α
β Lf, 〈ξ〉2(γ+2)|β|∂α

β {I − P }f 〉
= 〈

∂α
β

{−ξ · ∇x{I − P }f + E · ξμ1/2}, 〈ξ〉2(γ+2)|β|∂α
β {I − P }f 〉

+ 〈
∂α
β

{{I − P }S + Pξ · ∇xf − ξ · ∇xPf
}
, 〈ξ〉2(γ+2)|β|∂α

β {I − P }f 〉
,

which from Lemma 2.2 implies

1

2

d

dt

N1∑
m=1

Cm

∑
|β|=m

|α|+|β|�N1

∥∥∂α
β {I − P }f ∥∥2

|β| + κ
∑

|β|�1
|α|+|β|�N1

∥∥∂α
β {I − P }f ∥∥2

D,|β|

�
∑
|β|=0

|α|+|β|�N1

∥∥∂α
β {I − P }f ∥∥2

D,|β| +
∑

|α|�N1−1

(∥∥∇x∂
α(a±, b, c)

∥∥2 + ∥∥∂αE
∥∥2)

+
N1∑

m=1

Cm

∑
|β|=m

|α|+|β|�N1

〈
∂α
β {I − P }S, 〈ξ〉2(γ+2)|β|∂α

β {I − P }f 〉
. (4.8)

Moreover, from Lemma 4.1 as well as (4.3),

d

dt
E int

N1
(t) + κDN1,mac(t) �

∑
|α|�N1

∥∥∂α{I − P }f ∥∥2
D + δ2DN1(t). (4.9)

Then, since δ > 0 can be small enough, the proper linear combination of (4.5), (4.6), (4.8) and (4.9) implies that there
is an energy functional EN1(t) satisfying (1.6) such that

d

dt
EN1(t) + κDN1(t) � I(1)

N1
(t), (4.10)

where

I(1)
N1

(t) = 〈S,f 〉 +
∑

1�|α|�N1

〈
∂αS, ∂αf

〉
+

N1∑
m=1

Cm

∑
|β|=m

|α|+|β|�N1

〈
∂α
β {I − P }S, 〈ξ〉2(γ+2)|β|∂α

β {I − P }f 〉
.

Finally, we claim that

I(1)
N1

(t) � E1/2
N1

(t)DN1(t) + δ

(1 + t)1+ϑ
DN1,1,λ0(t) + E1/2

N1
(t)E1/2

N0,0−1,λ0
(t)D1/2

N1
(t). (4.11)

Therefore, (4.4) follows from plugging (4.11) into (4.10) and applying (4.3) and the Cauchy–Schwarz inequality. This
then completes the proof of Lemma 4.2. �
Proof of (4.11). We first consider the estimate of I(1)

N1
(t) corresponding to Γ (f,f ) in the nonlinear term S. As in

[10], by decomposing f as Pf +{I −P }f and using Lemma 2.2, it directly follows that it is bounded up to a generic
constant by E1/2

N1
(t)DN1(t). Recall from the definition of X(t),

∥∥∇x(E,B)
∥∥

HN0−1 �
X1/2(t)

(1 + t)1+ϑ
� δ

(1 + t)1+ϑ
.

For the zero-order term related to the electromagnetic field, it holds that
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〈
1

2
q0E · ξf − q0(E + ξ × B) · ∇ξ f, f

〉
=

〈
1

2
q0E · ξf,f

〉
�

∫ ∫
R3×R3

|E| · |ξ |(|Pf |2 + ∣∣{I − P }f ∣∣2)
dx dξ

� ‖E‖ · ∥∥(a, b, c)
∥∥

L∞
∥∥(a, b, c)

∥∥ + ‖E‖L∞
∫ ∫

R3×R3

|ξ | · ∣∣{I − P }f ∣∣2
dx dξ

� E1/2
N1

(t)DN1(t) + δ

(1 + t)1+ϑ
DN1,1,λ0(t).

For the ∂α derivative term related to (E,B) with 1 � |α| � N1, one has〈
∂α(E · ξf ), ∂αf

〉 = ∑
α1�α

Cα
α1

〈
∂α1E · ξ∂α−α1f, ∂αf

〉
�

∑
|α1|�N1/2,α1 �=α

∥∥∂α1E
∥∥

L∞
∥∥|ξ |〈ξ 〉 γ+2

2 ∂α−α1f
∥∥ · ∥∥〈ξ〉 γ+2

2 ∂αf
∥∥

+
∑

|α1|>N1/2 or α1=α

∥∥∂α1E
∥∥ · sup

x

∣∣|ξ |〈ξ 〉 γ+2
2 ∂α−α1f

∣∣
L2

ξ

∥∥〈ξ〉 γ+2
2 ∂αf

∥∥
� δ

(1 + t)1+ϑ
DN1,1,λ0(t) + E1/2

N1
(t)E1/2

N0,0−1,λ0
(t)D1/2

N1
(t),

where the Sobolev inequality ‖g‖L∞ � C‖∇xg‖H 1 for any function g = g(x) ∈ H 2 has been used, and we also have
used the choice of N1 = 3

2N0 and 1 = 1
20 with N0 and 0 properly large. And in a similar way, it holds that〈

∂α
{
(ξ × B) · ∇ξ f

}
, ∂αf

〉 = ∑
0<α1�α

Cα
α1

〈(
ξ × ∂α1B

) · ∇ξ ∂
α−α1f, ∂αf

〉
� δ

(1 + t)1+ϑ
DN1,1,λ0(t) + E1/2

N1
(t)E1/2

N0,0−1,λ0
(t)D1/2

N1
(t).

The completely same estimate holds true for the ∂α
β derivative term related to (E,B) with |α|+ |β| � N1 and |β1|� 1,

through observing

{I − P }
{

1

2
q0E · ξf − q0(E + ξ × B) · ∇ξ f

}
= 1

2
q0E · ξ{I − P }f − q0(E + ξ × B) · ∇ξ {I − P }f

+ 1

2
q0E · ξPf − q0(E + ξ × B) · ∇ξPf − P

{
1

2
q0E · ξf − q0(E + ξ × B) · ∇ξ f

}
.

Therefore, (4.11) follows by collecting these estimates. �
4.3. Lyapunov inequality for EN1,1,λ0(t)

In this section we turn to the weighted energy estimates on EN1,1,λ0(t). Notice that due to the regularity-loss
property of the whole system, the weighted high-order energy functional EN1,1,λ0(t) cannot be bounded uniformly
in time; it has been actually seen from the proof of Lemma 3.1 for the linearized analysis, cf. (3.10). Instead we
may expect that EN1,1,λ0(t) increases in time. Another trouble arises from the weighted estimate on derivatives of
the highest order N1 for the linear term E · ξμ1/2. However, these difficulties will be resolved by considering the
time-weighted estimate with the time rate of negative power. In addition, although the velocity-growth in the nonlinear
term containing the electromagnetic field could be dealt with through the time-dependent exponential factor in the
weight function, it is impossible when the electromagnetic field gains the differentiation of higher orders since they
again could not decay in time. Thus, to overcome it, one has to refine the nonlinear estimates in order to use the
time-decay property of the lower-order energy functional EN0,0−1,λ0 with the higher-order algebraic velocity weight.
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Lemma 4.3. There is an energy functional EN1,1,λ0(t) such that

d

dt
EN1,1,λ0(t) + κDN1,1,λ0(t) � EN1,1,λ0(t)EN0,0−1,λ0(t) +

∑
|α|=N1

〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
, (4.12)

for 0 � t � T .

Proof. Starting from the first equation of (4.1), the energy estimate on ∂αf with 1 � |α| � N1 weighted by the
time-velocity dependent function w−1,λ0 = w−1,λ0(t, ξ) gives

1

2

d

dt

∑
1�|α|�N1

∥∥∂αf
∥∥2

−1,λ0
+

∑
1�|α|�N1

〈
L∂αf,w2−1,λ0

∂αf
〉 + ϑλ0

(1 + t)1+ϑ

∥∥〈ξ〉∂αf
∥∥2

−1,λ0

=
∑

1�|α|�N1

〈
∂αS,w2−1,λ0

∂αf
〉 + ∑

1�|α|�N1

〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
. (4.13)

Similarly, from (4.7), one has the weighted energy estimate on {I − P }f
1

2

d

dt

∥∥{I − P }f ∥∥2
−1,λ0

+ 〈
Lf,w2−1,λ0

{I − P }f 〉 + ϑλ0

(1 + t)1+ϑ

∥∥〈ξ〉{I − P }f ∥∥2
−1,λ0

= 〈{I − P }S,w2−1,λ0
{I − P }f 〉 + 〈

E · ξμ1/2,w2−1,λ0
{I − P }f 〉

+ 〈
Pξ · ∇xf − ξ · ∇xPf,w2−1,λ0

{I − P }f 〉
, (4.14)

and the weighted energy estimate on {I − P }∂α
β f with |α| + |β| �N1 and |β| � 1

1

2

d

dt

N1∑
m=1

Cm

∑
|β|=m

|α|+|β|�N1

∥∥∂α
β {I − P }f ∥∥2

|β|−1,λ0

+ κ
∑

|β|�1
|α|+|β|�N1

(∥∥∂α
β {I − P }f ∥∥2

D,|β|−1,λ0
+ λ0

(1 + t)1+ϑ

∥∥〈ξ〉∂α
β {I − P }f ∥∥)

�
∑
|β|=0

|α|+|β|�N1

∥∥∂α
β {I − P }f ∥∥2

D,|β|−1,λ0
+

∑
|α|�N1−1

(∥∥∇x∂
α(a±, b, c)

∥∥2 + ∥∥∂αE
∥∥2)

+
N1∑

m=1

Cm

∑
|β|=m

|α|+|β|�N1

〈
∂α
β {I − P }S,w2|β|−1,λ0

∂α
β {I − P }f 〉

. (4.15)

Then, the proper linear combination of (4.5), (4.6), (4.13), (4.14) and (4.15) implies that there is an energy functional
EN1,1,λ0(t) satisfying (1.6) such that

d

dt
EN1,1,λ0(t) + κDN1,1,λ0(t) � I(2)

N1,1,λ0
(t) +

∑
|α|=N1

〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
, (4.16)

where

I(2)
N1,1,λ0

(t) = 〈S,f 〉 +
∑

1�|α|�N1

〈
∂αS, ∂αf

〉
+ 〈{I − P }S,w2−1,λ0

{I − P }f 〉 + ∑
1�|α|�N1

〈
∂αS,w2−1,λ0

∂αf
〉

+
N1∑

m=1

Cm

∑
|β|=m

〈
∂α
β {I − P }S,w2|β|−1,λ0

∂α
β {I − P }f 〉

. (4.17)
|α|+|β|�N1
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We now claim that

I(2)
N1,1,λ0

(t)� E1/2
N0,0,λ0

(t)DN1,1,λ0(t) + E1/2
N1,1,λ0

(t)E1/2
N0,0−1,λ0

(t)D1/2
N1,1,λ0

(t)

+ 1

λ0
(1 + t)1+ϑ

∥∥∇x(E,B)
∥∥

HN0−1DN1,1,λ0(t). (4.18)

Notice that the first and third terms on the right are bounded up to a generic constant by δDN1,1,λ0(t) due to the
definition of X(t) and the assumption X(t) � δ2. This hence simplifies (4.18) as

I(2)
N1,1,λ0

(t)� E1/2
N1,1,λ0

(t)E1/2
N0,0−1,λ0

(t)D1/2
N1,1,λ0

(t) + δDN1,1,λ0(t). (4.19)

Therefore, since δ > 0 is small enough, by applying the Cauchy–Schwarz inequality to the first term on the right-hand
side of (4.19) and then putting it into (4.16), (4.12) follows. This completes the proof of Lemma 4.3. �
Proof of (4.18). For brevity, we only present the estimate of the fourth term on the right-hand side of (4.17) since
the estimate on other terms is simpler or follows in the completely same way. Take α with 1 � |α| � N1. For the
inner product term related to ∂αΓ (f,f ), by using (2.2) in Lemma 2.2, considering the cases of |α′| � N1/2 and
|α′| > N1/2, applying the Sobolev inequality ‖g‖L∞ � C‖∇xg‖H 1 for g ∈ H 2

x to the lower-order derivatives, and
noticing the choice of N1 = 3

2N0 and 1 = 1
20 with N0 and 0 properly large, it follows that〈

∂αΓ (f,f ),w2−1,λ0
∂αf

〉
�

{
E1/2

N0,0,λ0
(t)D1/2

N1,1,λ0
(t) + E1/2

N0,0−1,λ0
(t)E1/2

N1,1,λ0
(t)

}
D1/2

N1,1,λ0
(t)

+ {
E1/2

N1,1,λ0
(t)E1/2

N0,0−1,λ0
(t) +D1/2

N1,1,λ0
(t)E1/2

N0,0,λ0
(t)

}
D1/2

N1,1,λ0
(t).

Next, for the term E · ξf in S, one has〈
∂α(E · ξf ),w2−1,λ0

∂αf
〉

=
∑

α1�α

Cα
α1

〈
∂α1E · ξ∂α−α1f,w2−1,λ0

∂αf
〉

�
∑

|α1|�N1/2
α1 �=α

∥∥∂α1E
∥∥

L∞

∫ ∫
R3×R3

|ξ |w2−1,λ0

(∣∣∂α−α1f
∣∣2 + ∣∣∂αf

∣∣2)
dx dξ

+
∑

|α1|>N1/2
or α1=α

∥∥∂α1E
∥∥ · sup

x

∣∣|ξ |〈ξ 〉 γ+2
2 w−1,λ0∂

α−α1f
∣∣
L2

ξ

∥∥〈ξ〉 γ+2
2 w−1,λ0∂

αf
∥∥

� 1

λ0
(1 + t)1+ϑ

∥∥∇x(E,B)
∥∥

HN0−1DN1,1,λ0(t) + E1/2
N1,1,λ0

(t)E1/2
N0,0−1,λ0

(t)D1/2
N1,1,λ0

(t).

For the term (E + ξ × B) · ∇ξ f in S, the difference point is that it contains the velocity derivative of order one. One
can deduce that〈

∂α
[
(E + ξ × B) · ∇ξ f

]
,w2−1,λ0

∂αf
〉

=
〈
(E + ξ × B) · ∇ξw

2−1,λ0
,−1

2

∣∣∂αf
∣∣2

〉
+

∑
0<α1�α

Cα
α1

〈(
∂α1E + ξ × ∂α1B

) · ∇ξ ∂
α−α1f,w2−1,λ0

∂αf
〉
. (4.20)

Here, it is straightforward to see that the first term on the right is bounded in a rough way by

C‖E‖L∞
∫ ∫
3 3

(
〈ξ〉−1 + 〈ξ〉

(1 + t)ϑ

)
w2−1,λ0

∣∣∂αf
∣∣2

dx dξ
R ×R
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� 1

λ0
(1 + t)1+ϑ‖∇xE‖H 1

∫ ∫
R3×R3

λ0〈ξ〉2

(1 + t)1+ϑ
w2−1,λ0

∣∣∂αf
∣∣2

dx dξ

� 1

λ0
(1 + t)1+ϑ‖∇xE‖H 1DN1,1,λ0(t).

The second term on the right-hand side of (4.20) can be estimated as follows. When |α1| � N1/2 and α1 �= α, it is
bounded by

C
∥∥∂α1(E,B)

∥∥
L∞

∫ ∫
R3×R3

〈ξ〉1−(γ+2)
(
w2

1−1,λ0

∣∣∇ξ ∂
α−α1f

∣∣2 + w2−1,λ0

∣∣∂αf
∣∣2)

dx dξ

�
∥∥∇x∂

α1(E,B)
∥∥

H 1

∫ ∫
R3×R3

〈ξ〉2(∣∣w1−1,λ0∇ξ ∂
α−α1f

∣∣2 + ∣∣w−1,λ0∂
αf

∣∣2)
dx dξ

� 1

λ0
(1 + t)1+ϑ

∥∥∇x(E,B)
∥∥

HN0−1DN1,1,λ0(t),

where we have used −3 � γ < −2, and when |α1| > N1/2 or α1 = α, it is bounded by

C
∥∥∂α1(E,B)

∥∥ · sup
x

∣∣〈ξ〉1+ γ+2
2 w−1,λ0∇ξ ∂

α−α1f
∣∣
L2

ξ

∥∥〈ξ〉 γ+2
2 w−1,λ0∂

αf
∥∥

� E1/2
N1,1,λ0

(t)E1/2
N0,0−1,λ0

(t)D1/2
N1,1,λ0

(t).

Collecting all the above estimates, (4.18) holds true for the fourth inner product term on the right-hand side of (4.17).
This proves (4.18). �

Now, we are ready to obtain the closed estimate on the first portion of the time-weighted energy norm X(t) in the
following

Lemma 4.4. It holds that

sup
0�s�t

{
EN1(s) + (1 + s)−

1+ε0
2 EN1,1,λ0(s)

} +
t∫

0

DN1(s) ds � Y 2
0 + X2(t), (4.21)

for 0 � t � T .

Proof. In fact, the time integration of (4.4) gives

EN1(t) +
t∫

0

DN1(s) ds � Y 2
0 + δ

t∫
0

(1 + s)−1−ϑDN1,1,λ0(s) ds +
t∫

0

EN1(s)EN0,0−1,λ0(s) ds. (4.22)

Furthermore, from multiplying (4.4) by (1 + t)−ε0 and then taking the time integration, it follows that

(1 + t)−ε0EN1(t) +
t∫

0

(1 + s)−ε0DN1(s) ds +
t∫

0

(1 + s)−1−ε0EN1(s) ds

� Y 2
0 + δ

t∫
0

(1 + s)−1−ϑ−ε0DN1,1,λ0(s) ds +
t∫

0

(1 + s)−ε0EN1(s)EN0,0−1,λ0(s) ds. (4.23)

Combining (4.22) and (4.23) gives
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EN1(t) +
t∫

0

DN1(s) ds +
t∫

0

(1 + s)−1−ε0EN1(s) ds

� Y 2
0 + δ

t∫
0

(1 + s)−1−ϑDN1,1,λ0(s) ds +
t∫

0

EN1(s)EN0,0−1,λ0(s) ds

� Y 2
0 + X2(t) + δ

t∫
0

(1 + s)−1−ϑDN1,1,λ0(s) ds, (4.24)

where to obtain the second inequality, we have used

sup
0�s�t

{
EN1(s) + (1 + s)

3
2 EN0,0−1,λ0(s)

}
�X(t).

From (4.12), multiplying it by (1 + t)−(1+ε0)/2 and taking the time integration yields

(1 + t)−
1+ε0

2 EN1,1,λ0(t) +
t∫

0

(1 + s)−
1+ε0

2 DN1,1,λ0(s) ds +
t∫

0

(1 + s)−
3+ε0

2 EN1,1,λ0(s) ds

� Y 2
0 +

t∫
0

(1 + s)−
1+ε0

2 EN1,1,λ0(s)EN0,0−1,λ0(s) ds

+
∑

|α|=N1

t∫
0

(1 + s)−
1+ε0

2
〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
. (4.25)

The second term on the right is bounded by X2(t) by noticing again from the definition of X(t)

sup
0�s�t

{
(1 + s)−

1+ε0
2 EN1,1,λ0(s) + (1 + s)

3
2 EN0,0−1,λ0(s)

}
� X(t).

By the Cauchy–Schwarz inequality, the right-hand third term of (4.25) is bounded up to a generic constant by

∑
|α|=N1

t∫
0

(1 + s)−1−ε0
∥∥∂αE

∥∥2 + ∥∥〈ξ〉 γ+2
2 ∂αf

∥∥2
ds �

t∫
0

(1 + s)−1−ε0EN1(s) ds +
t∫

0

DN1(s) ds.

Then, in terms of the above estimates, taking the sum of (4.24) and (4.25) and using the fact that δ > 0 is small enough,
we arrive at

EN1(t) + (1 + t)−
1+ε0

2 EN1,1,λ0(t) +
t∫

0

DN1(s) ds

+
t∫

0

(1 + s)−
1+ε0

2 DN1,1,λ0(s) ds +
t∫

0

(1 + s)−1−ε0EN1(s) ds

+
t∫

0

(1 + s)−
3+ε0

2 EN1,1,λ0(s) ds � Y 2
0 + X2(t). (4.26)

Therefore, (4.21) follows, and then this completes the proof of Lemma 4.4. �
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4.4. Lyapunov inequality for EN0,0,λ0(t)

In this section we devote ourselves to obtaining the Lyapunov inequality for EN0,0,λ0(t). It is simpler compared to
deal with the high-order energy functional EN1,1,λ0(t), because the derivatives of the electromagnetic field of order
up to N0 decays in time by the definition of X(t).

Lemma 4.5. For any  with 0 − 1 � � 0, there is an energy functional EN0,,λ0(t) such that

d

dt
EN0,,λ0(t) +DN0,,λ0(t) �

∑
|α|=N0

∥∥∂αE
∥∥2

, (4.27)

for 0 � t � T .

Proof. From the completely same procedure to obtain the energy inequality (4.16) for EN1,1,λ0(t), one can also verify
that for  with 0 − 1 � � 0, there is an energy functional EN0,,λ0(t) satisfying (1.6) such that

d

dt
EN0,,λ0(t) + κDN0,,λ0(t) � I(2)

N0,,λ0
(t) +

∑
|α|=N0

〈
∂αE · ξμ1/2,w2−,λ0

∂αf
〉
, (4.28)

where

I(2)
N0,,λ0

(t) = 〈S,f 〉 +
∑

1�|α|�N0

〈
∂αS, ∂αf

〉
+ 〈{I − P }S,w2−,λ0

{I − P }f 〉 + ∑
1�|α|�N0

〈
∂αS,w2−,λ0

∂αf
〉

+
N0∑

m=1

Cm

∑
|β|=m

|α|+|β|�N0

〈
∂α
β {I − P }S,w2|β|−,λ0

∂α
β {I − P }f 〉

. (4.29)

Compared to the estimate on the similar functional I(2)
N1,1,λ0

(t) given by (4.17) in Lemma 4.3, the estimate on

I(2)
N0,,λ0

(t) above becomes easier due to the boundedness of EN0,,λ0(t) uniformly in time and also the time-decay
of derivatives of the electromagnetic field up to order N0. In fact, one can claim that

I(2)
N0,,λ0

(t) � E1/2
N0,,λ0

(t)DN0,,λ0(t) + 1

λ0
(1 + t)1+ϑ

∥∥∇x(E,B)
∥∥

HN0−1DN0,,λ0(t). (4.30)

Noticing from the definition of X(t)

sup
0�s�t

{
EN0,0,λ0(s) + (1 + s)2(1+ϑ)

∥∥∇x(E,B)
∥∥2

HN0−1

}
�X(t) � δ2,

it further follows that I(2)
N0,,λ0

(t) is bounded up to a generic constant by δDN0,,λ0(t). By putting this estimate
into (4.28) and applying the Cauchy–Schwarz inequality to the right-hand second term of (4.28) as∑

|α|=N0

〈
∂αE · ξμ1/2,w2−,λ0

∂αf
〉
� η

∑
|α|=N0

∥∥〈ξ〉 γ+2
2 ∂αf

∥∥2 + C

η

∑
|α|=N0

∥∥∂αE
∥∥2

,

for η > 0 small enough, it follows that

d

dt
EN0,,λ0(t) + κDN0,,λ0(t) � (δ + η)DN0,,λ0(t) + C

η

∑
|α|=N0

∥∥∂αE
∥∥2

,

which thus implies (4.27) since δ > 0 and η > 0 can be small enough. This completes the proof of Lemma 4.5. �
Proof of (4.30). It is similar to the proof of (4.18) for I(2)

N1,1,λ0
(t). For those inner product terms from Γ (f,f )

in (4.29), one can directly apply Lemma 2.2 to verify that they are bounded by CE1/2
(t)DN0,,λ0(t). For
N0,,λ0
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those terms related to (E,B) in (4.29), from the completely same process as for dealing in the proof of
(4.18) with the case when (E,B) gains the differentiation of lower-order, it follows that they are bounded by
C 1

λ0
(1 + t)1+ϑ‖∇x(E,B)‖HN0−1DN0,,λ0(t). Therefore, (4.30) is proved. �

4.5. Decay of electromagnetic fields and macro components

In this step, we will use directly Duhamel’s principle to obtain the time-decay of the electromagnetic field (E,B)

and the macro components (a, b, c) up to the low-order N0 in terms of the time-decay of the weighted high-order
energy function EN1−3,1−1,λ0(t) which follows from the boundedness of X(t).

Lemma 4.6. It holds that

sup
0�s�t

{
(1 + s)

5
2
∥∥∇x(E,B)

∥∥2
HN0−1 + (1 + s)

3
2
∥∥(a, b, c,E,B)

∥∥2} � Y 2
0 + X2(t), (4.31)

for 0 � t � T .

Proof. Recall the mild form

U(t) =A(t)U0 +
t∫

0

A(t − s)
[
S(s),0,0

]
ds, (4.32)

which denotes the solutions to the Cauchy problem on the Vlasov–Maxwell–Landau system (4.1) with initial data
U0 = (f0,E0,B0), where the nonlinear term S is given by (4.2). The linearized analysis for the homogeneous system
in Theorem 3.1 implies∥∥∇xPE,B

{
A(t)U0

}∥∥
HN0−1 � (1 + t)−

5
4
(∥∥wlow

3 f0
∥∥

Z1
+ ∥∥(E0,B0)

∥∥
L1

x

)
+ (1 + t)−

5
4

∑
1�|α|�N0

(∥∥w
high
3 ∇

9
4
x ∂αf0

∥∥ + ∥∥∇
9
4
x ∂α(E0,B0)

∥∥)
,

where PE,B means the projection along the electro and magnetic components in the solution (f,E,B), w = w(ξ) is

defined by (3.3), and constants low
3 , 

high
3 are chosen to satisfy

low
3 >

5

2
+ N0, 

high
3 >

5

4
,

and also low
3 , 

high
3 are sufficiently close to 3/2 + N0 and 5/4, respectively. By interpolation of derivatives,∥∥∇xPE,B

{
A(t)U0

}∥∥
HN0−1 � (1 + t)−

5
4
(∥∥wlow

3 f0
∥∥

Z1
+ ∥∥(E0,B0)

∥∥
L1

x

)
+ (1 + t)−

5
4

∑
3�|α|�N0+3

(∥∥w
high
3 ∂αf0

∥∥ + ∥∥∂α(E0,B0)
∥∥)

.

Applying this time-decay property to the mild form (4.32) gives

∥∥∇x(E,B)
∥∥

HN0−1 � (1 + t)−
5
4 Y0 +

t∫
0

(1 + t − s)−
5
4
∥∥wlow

3 S(s)
∥∥

Z1
ds

+
t∫

0

(1 + t − s)−
5
4

∑
3�|α|�N0+3

∥∥w
high
3 ∂αS(s)

∥∥ds, (4.33)

where we have used w(ξ) = w− 1
2
(ξ) and the definition (1.9) for Y0. As in [7], it is straightforward to obtain∥∥wlow

3 S(t)
∥∥

Z1
+

∑ ∥∥w
high
3 ∂αS(t)

∥∥ � EN1−3,1−1,λ0(t).
3�|α|�N0+3
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Here, we have used the choice of N1, 1 by N1 = 3
2N0, 1 = 1

20 with N0 and 0 properly large. Recall X(t)-norm,
and hence

EN1−3,1−1,λ0(s) � (1 + s)−
3
2 X(t), 0 � s � t.

Plugging these estimates into (4.33), the further computations yield

sup
0�s�t

{
(1 + s)

5
2
∥∥∇x(E,B)

∥∥2
HN0−1

}
� Y 2

0 + X2(t). (4.34)

Moreover, to obtain the time-decay of ‖(a, b, c,E,B)‖, we use the linearized time-decay property∥∥Pf

{
A(t)U0

}∥∥ + ∥∥PE,B

{
A(t)U0

}∥∥ � (1 + t)−
3
4
(∥∥wlow

4 f0
∥∥

Z1
+ ∥∥(E0,B0)

∥∥
L1

x

)
+ (1 + t)−

3
4
(∥∥w

high
4 ∇

7
4
x f0

∥∥ + ∥∥∇
7
4
x (E0,B0)

∥∥)
,

where Pf means the projection along the f -component in the solution (f,E,B), and constants low
4 , 

high
4 are chosen

to satisfy low
4 > 3/2, 

high
4 > 3/4 and also low

4 , 
high
4 are sufficiently close to 3/2 and 3/4, respectively. Therefore, in

the completely same way for estimating ‖∇x(E,B)‖HN0−1 in (4.34), one has

sup
0�s�t

{
(1 + s)

3
2
∥∥(a, b, c,E,B)

∥∥2}� Y 2
0 + X2(t). (4.35)

Thus, combining (4.34) and (4.35) gives the desired estimate (4.31). This then completes the proof of Lemma 4.6. �
4.6. Bound of EN0,0,λ0(t) and decay of EN0,0−1,λ0(t)

Basing on those estimates in the previous two sections, we can use the time-weighted estimate together with an iter-
ative trick to obtain in the following lemma the boundedness of EN0,0,λ0(t) and also the time-decay of EN0,0−1,λ0(t).
Notice that loss of one in the velocity weight index of EN0,0−1,λ0(t) results essentially from the long-range degenerate
property of soft potentials for the Landau operator.

Lemma 4.7. It holds that

sup
0�s�t

{
EN0,0,λ0(s) + (1 + s)

3
2 EN0,0−1,λ0(s)

}
� Y 2

0 + X2(t), (4.36)

for 0 � t � T .

Proof. Recall the Lyapunov inequality (4.27) for EN0,,λ0(t) with 0 − 1 �  � 0. First of all, from the time integra-
tion of (4.27) with  = 0,

EN0,0,λ0(t) +
t∫

0

DN0,0,λ0(s) ds � Y 2
0 +

∑
|α|=N0

t∫
0

∥∥∂αE
∥∥2

ds. (4.37)

Due to Lemma 4.6, the second term on the right is bounded up to a generic constant by Y 2
0 + X2(t), and so is

EN0,0,λ0(s) for 0 � s � t . The rest is to estimate the time-weighted part on the left-hand side of (4.36). For that, let

ε > 0 be fixed small enough. From multiplying (4.27) with  = 0 − 1/2 by (1 + t)
1
2 +ε and then taking the time

integration,

(1 + t)
1
2 +εE

N0,0− 1
2 ,λ0

(t) +
t∫

0

(1 + s)
1
2 +εD

N0,0− 1
2 ,λ0

(s) ds

� Y 2
0 +

t∫
(1 + s)−

1
2 +εE

N0,0− 1
2 ,λ0

(s) ds +
∑

|α|=N0

t∫
(1 + s)

1
2 +ε

∥∥∂αE
∥∥2

ds, (4.38)
0 0
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and in a similar way, starting from (4.27) with  = 0 − 1,

(1 + t)
3
2 +εEN0,0−1,λ0(t) +

t∫
0

(1 + s)
3
2 +εDN0,0−1,λ0(s) ds

� Y 2
0 +

t∫
0

(1 + s)
1
2 +εEN0,0−1,λ0(s) ds +

∑
|α|=N0

t∫
0

(1 + s)
3
2 +ε

∥∥∂αE
∥∥2

ds. (4.39)

Using the relation between the energy functional EN,,λ(t) and its dissipation rate DN,,λ(t), the proper linear combi-
nation of (4.37), (4.38) and (4.39) yields

(1 + t)
3
2 +εEN0,0−1,λ0(t) +

t∫
0

DN0,0,λ0(s) + (1 + s)
3
2 +εDN0,0−1,λ0(s) ds

� Y 2
0 +

t∫
0

(1 + s)
1
2 +ε

∥∥(a, b, c,B)
∥∥2

ds +
∑

|α|=N0

t∫
0

(1 + s)
3
2 +ε

∥∥∂α(E,B)
∥∥2

ds. (4.40)

Again from Lemma 4.6, one has

t∫
0

(1 + s)
1
2 +ε

∥∥(a, b, c,B)
∥∥2

ds +
∑

|α|=N0

t∫
0

(1 + s)
3
2 +ε

∥∥∂α(E,B)
∥∥2

ds

�
t∫

0

(1 + s)−1+ε ds
[
Y 2

0 + X2(t)
]
� (1 + t)ε

[
Y 2

0 + X2(t)
]
.

Using this, it follows from (4.40) that

sup
0�s�t

{
(1 + s)

3
2 EN0,0−1,λ0(s)

}
� Y 2

0 + X2(t).

Therefore (4.36) holds true. This completes the proof of Lemma 4.7. �
4.7. Bound of EN1−1,1,λ0(t)

In this section we obtain the uniform-in-time boundedness of the energy functional EN1−1,1,λ0(t). Notice that
this is consistent with (3.10) in the linearized analysis. The main observation in the nonlinear analysis is that those
remaining terms in the energy inequalities are time–space integrable.

Lemma 4.8. It holds that

sup
0�s�t

EN1−1,1,λ0(s) +
t∫

0

DN1−1,1,λ0(s) ds � Y 2
0 + X2(t), (4.41)

for 0 � t � T .

Proof. Similarly for obtaining (4.16), one has

d

dt
EN1−1,1,λ0(t) + κDN1−1,1,λ0(t) � I(2)

N1−1,1,λ0
(t) +

∑
|α|=N1−1

〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
, (4.42)

where I(2)
(t) is defined by (4.17) with N1 replaced by N1 − 1. The first term on the right can be bounded by
N1−1,1,λ0
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I(2)
N1−1,1,λ0

(t) � E1/2
N1−1,1,λ0

(t)DN1−1,1,λ0(t) + 1

λ0
(1 + t)1+ϑ

∥∥∇x(E,B)
∥∥

HN0−1DN1−1,1,λ0(t)

+ E1/2
N1−1(t)E

1/2
N0,0−1,λ0

(t)D1/2
N1−1,1,λ0

(t). (4.43)

Further using

sup
0�s�t

{
EN1−1(s) + EN1−1,1,λ0(s) + (1 + s)2(1+ϑ)

∥∥∇x(E,B)
∥∥2

HN0−1

+ (1 + s)
3
2 EN0,0−1,λ0(s)

}
� X(t)� δ2,

it follows that

I(2)
N1−1,1,λ0

(t) � δDN1−1,1,λ0(t) + (1 + t)−
3
4 X(t)D1/2

N1−1,1,λ0
(t). (4.44)

From the Cauchy–Schwarz inequality, the right-hand second term of (4.42) is estimated by∑
|α|=N1−1

〈
∂αE · ξμ1/2,w2−1,λ0

∂αf
〉
�

∑
|α|=N1−1

(
η
∥∥〈ξ〉 γ+2

2 ∂αf
∥∥2 + 1

η

∥∥∂αE
∥∥2

)

� ηDN1−1,1,λ0(t) + 1

η
DN1(t), (4.45)

for any η > 0. Then, by applying again the Cauchy–Schwarz inequality with η to the right-hand second term of (4.44),
plugging the resultant estimate together with (4.45) into (4.42), and choosing η > 0 small enough, one has

d

dt
EN1−1,1,λ0(t) + κDN1−1,1,λ0(t) �DN1(t) + (1 + t)−

3
2 X2(t). (4.46)

Recall that from (4.26),

t∫
0

DN1(s) ds � Y 2
0 + X2(t).

Therefore, (4.41) follows by the time integration of (4.46). This completes the proof of Lemma 4.8. �
4.8. Decay of EN1−3,1−1,λ0(t) and EN1−2(t)

To obtain the closed estimate on the energy norm X(t), it remains to obtain the time-decay of the high-order
energy functional EN1−3,1−1,λ0(t) and EN1−2(t) through the time-weighted estimate as well as the iterative trick as
for dealing with EN0,0−1,λ0(t) in Lemma 4.7. Notice that loss of three and loss of one in the smoothness and velocity
weight indices in EN1−3,1−1,λ0(t) respectively result from the regularity-loss of the electromagnetic field and the
degeneration of collisional kernels for soft potentials.

Lemma 4.9. It holds that

sup
0�s�t

{
(1 + s)

3
2
[
EN1−3,1−1,λ0(s) + EN1−2(s)

]}
� Y 2

0 + X2(t), (4.47)

for 0 � t � T .

Proof. First recall from Lemma 4.4 and Lemma 4.8

EN1(t) + EN1−1,1,λ0(t) +
t∫

0

DN1(s) +DN1−1,1,λ0(s) ds � Y 2
0 + X2(t). (4.48)

To obtain the time-decay of EN1−3,1−1,λ0(t) and EN1−2(t), we will make the time-weighted estimate. For brevity of
presentation we write
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J (2)
N,,λ0

(t) =
∑

|α|=N

〈
∂αE · ξμ1/2,w2−,λ0

∂αf
〉
.

From the proof of Lemma 4.2 and Lemma 4.3, cf. (4.10) and (4.16), one has the Lyapunov inequalities⎧⎪⎪⎨⎪⎪⎩
d

dt
EN1−1(t) + κDN1−1(t) � I(1)

N1−1(t),

d

dt
E

N1−2,1− 1
2 ,λ0

(t) + κD
N1−2,1− 1

2 ,λ0
(t) � I(2)

N1−2,1− 1
2 ,λ0

(t) +J (2)

N1−2,1− 1
2 ,λ0

(t).

(4.49)

Those terms on the right can be estimated as follows. Similar to (4.11), it holds that

I(1)
N1−1(t) � E1/2

N1−1(t)DN1−1(t) + δ

(1 + t)1+ϑ
DN1−1,1,λ0(t) + E1/2

N1−1(t)E
1/2
N0,0−1,λ0

(t)D1/2
N1−1(t).

Here, noticing that E1/2
N1−1(t) � X1/2(t) � δ is small enough for the first term on the right and applying the Cauchy–

Schwarz inequality to the third term on the right, it then follows from the first equation of (4.49) that

d

dt
EN1−1(t) + κDN1−1(t) �

δ

(1 + t)1+ϑ
DN1−1,1,λ0(t) + EN1−1(t)EN0,0−1,λ0(t). (4.50)

Moreover, similar to (4.43), it holds that

I(2)

N1−2,1− 1
2 ,λ0

(t) � E1/2
N1−2,1− 1

2 ,λ0
(t)D

N1−2,1− 1
2 ,λ0

(t)

+ 1

λ0
(1 + t)1+ϑ

∥∥∇x(E,B)
∥∥

HN0−1DN1−2,1− 1
2 ,λ0

(t)

+ E1/2
N1−2(t)E

1/2
N0,0−1,λ0

(t)D1/2
N1−2,1− 1

2 ,λ0
(t),

which by using X(t) � δ2 for the first two terms on the right and the Cauchy–Schwarz inequality for the last term,
further implies

I(2)

N1−2,1− 1
2 ,λ0

(t) � (δ + η)D
N1−2,1− 1

2 ,λ0
(t) + 1

η
EN1−2(t)EN0,0−1,λ0(t), (4.51)

for η > 0. Again from the Cauchy–Schwarz inequality with η > 0,

J (2)

N1−2,1− 1
2 ,λ0

(t) �
∑

|α|=N1−2

(
η
∥∥〈ξ〉 γ+2

2 ∂αf
∥∥2 + 1

η

∥∥∂αE
∥∥2

)
. (4.52)

Then, by plugging (4.51) and (4.52) into the second equation of (4.49), taking the sum of the resultant inequality
multiplied by a proper small constant κ3 > 0 and another inequality (4.50), and using smallness of δ > 0 and η > 0,
one has

d

dt

{
EN1−1(t) + κ3EN1−2,1− 1

2 ,λ0
(t)

} + κ
{
DN1−1(t) + κ3DN1−2,1− 1

2 ,λ0
(t)

}
� δ

(1 + t)1+ϑ
DN1−1,1,λ0(t) + EN1−1(t)EN0,0−1,λ0(t). (4.53)

Further from multiplying it by (1 + t)
1
2 +ε with ε > 0 fixed small enough and taking the time integration, it follows

(1 + t)
1
2 +ε

{
EN1−1(t) + E

N1−2,1− 1
2 ,λ0

(t)
} +

t∫
0

(1 + s)
1
2 +ε

{
DN1−1(s) +D

N1−2,1− 1
2 ,λ0

(s)
}
ds

� Y 2
0 +

t∫
0

δ(1 + s)−
1
2 −ϑ+εDN1−1,1,λ0(s) ds +

t∫
0

(1 + s)
1
2 +εEN1−1(s)EN0,0−1,λ0(s) ds

+
t∫
(1 + s)−

1
2 +ε

{
EN1−1(s) + E

N1−2,1− 1
2 ,λ0

(s)
}
ds. (4.54)
0
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Here, since ε > 0 is small enough, the second term on the right is bounded by Y 2
0 + X2(t) directly by (4.48), the third

term on the right is bounded by

δ2 sup
0�s�t

{
(1 + s)

1
2 +εEN1−1(s)

}
,

due to the fact that

sup
0�s�t

{
(1 + s)

3
2 EN0,0−1,λ0(s)

}
� X(t)� δ2,

and the fourth term on the right is bounded by Y 2
0 + X2(t) by noticing

EN1−1(t) + E
N1−2,1− 1

2 ,λ0
(t) �DN1(t) +DN1−1,1,λ0(t) + ∥∥(a, b, c,B)

∥∥2
,

and further using (4.48) as well as Lemma 4.6. Hence, we arrive from (4.54) at

sup
0�s�t

{
(1 + s)

1
2 +ε

[
EN1−1(s) + E

N1−2,1− 1
2 ,λ0

(s)
]}

+
t∫

0

(1 + s)
1
2 +ε

{
DN1−1(s) +D

N1−2,1− 1
2 ,λ0

(s)
}
ds � Y 2

0 + X2(t). (4.55)

In a similar way to obtain (4.53), starting with the Lyapunov inequalities⎧⎪⎪⎨⎪⎪⎩
d

dt
EN1−2(t) + κDN1−2(t) � I(1)

N1−2(t),

d

dt
EN1−3,1−1,λ0(t) + κDN1−3,1−1,λ0(t) � I(2)

N1−3,1−1,λ0
(t) +J (2)

N1−3,1−1,λ0
(t),

one can prove

d

dt

{
EN1−2(t) + κ4EN1−3,1−1,λ0(t)

} + κ
{
DN1−2(t) + κ4DN1−2,1−1,λ0(t)

}
� δ

(1 + t)1+ϑ
D

N1−2,1− 1
2 ,λ0

(t) + EN1−2(t)EN0,0−1,λ0(t),

for a properly chosen constant κ4 > 0. Further multiplying it by (1 + t)
3
2 +ε and taking the time integration gives

(1 + t)
3
2 +ε

{
EN1−2(t) + EN1−3,1−1,λ0(t)

} +
t∫

0

(1 + s)
3
2 +ε

{
DN1−2(s) +DN1−3,1−1,λ0(s)

}
ds

� Y 2
0 +

t∫
0

δ(1 + s)
1
2 +ε−ϑD

N1−2,1− 1
2 ,λ0

(s) ds +
t∫

0

(1 + s)
3
2 +εEN1−2(s)EN0,0−1,λ0(s) ds

+
t∫

0

(1 + s)
1
2 +ε

{
EN1−2(s) + EN1−3,1−1,λ0(s)

}
ds. (4.56)

Here, notice again that ε > 0 is a fixed constant small enough. Then, the second term on the right is bounded by
Y 2

0 + X2(t) by (4.55), the third term on the right is bounded by X2(t) due to

sup
0�s�t

{
(1 + s)

3
2
[
EN1−2(s) + EN0,0−1,λ0(s)

]}
� X(t),

and as before, the fourth term on the right is bounded by

C(1 + t)ε
[
Y 2

0 + X2(t)
]
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by noticing

EN1−2(t) + EN1−3,1−1,λ0(t)�DN1−1(t) +D
N1−2,1− 1

2 ,λ0
(t) + ∥∥(a, b, c,B)

∥∥2
,

and further using (4.55) as well as Lemma 4.6. Therefore, the desired inequality (4.47) follows by putting these
estimates into (4.56). This then completes the proof of Lemma 4.9. �
4.9. Global existence

We are now in a position to complete

Proof of Theorem 1.1. Recall X(t)-norm. First of all, as far as the local existence of solutions is concerned, it can
follow by using the techniques developed in [12] (see also [28]) in terms of X(t)-norm but without time weights,
and its detailed proof is omitted for brevity. We here remark that the local existence of weak solutions was firstly
investigated in [29] and the detailed proof in the relativistic case can be found in [23]. In order to obtain the a priori
estimates on solutions, from Lemma 4.4, Lemma 4.6, Lemma 4.7, Lemma 4.8 and Lemma 4.9, it follows that

X(t) � Y 2
0 + X2(t),

for all t � 0. Since Y0 is sufficiently small, (1.10) holds true. The global existence thus follows. Theorem 1.1 is
proved. �
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