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Abstract

Motivated by models of fracture mechanics, this paper is devoted to the analysis of a unilateral gradient flow of the Ambrosio–
Tortorelli functional, where unilaterality comes from an irreversibility constraint on the fracture density. Solutions of such evolution
are constructed by means of an implicit Euler scheme. An asymptotic analysis in the Mumford–Shah regime is then carried out.
It shows the convergence towards a generalized heat equation outside a time increasing crack set. In the spirit of gradient flows
in metric spaces, a notion of curve of maximal unilateral slope is also investigated, and analogies with the unilateral slope of the
Mumford–Shah functional are also discussed.
© 2013
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1. Introduction

Many free discontinuity problems are variational in nature and involve two unknowns, a function u and a discon-
tinuity set Γ across which u may jump. The most famous example is certainly the minimization of the MUMFORD–
SHAH (MS) functional introduced in [37] to approach image segmentation. It is defined by

1

2

∫
Ω\Γ

|∇u|2 dx + H N−1(Γ ) + β

2

∫
Ω

(u − g)2 dx,

where Ω ⊂ R
N is a bounded Lipschitz open set, H N−1 is the (N − 1)-dimensional Hausdorff measure, β > 0 is a

fidelity (constant) factor, and g ∈ L∞(Ω) stands for the grey level of the original image. In the resulting minimization
process, we end up with a segmented image u : Ω \ Γ → R and a set of contours Γ ⊂ Ω . To efficiently tackle this
problem, a weak formulation in the space of Special functions of Bounded Variation has been suggested and solved
in [22], where the set Γ is replaced by the jump set Ju of u. The new energy is defined for u ∈ SBV 2(Ω) by
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1

2

∫
Ω

|∇u|2 dx + H N−1(Ju) + β

2

∫
Ω

(u − g)2 dx, (1.1)

where ∇u is now intended to be the measure theoretic gradient of u.
A related model based on Mumford–Shah type functionals has been introduced by FRANCFORT & MARIGO in [27]

(see also [9]) to describe quasi-static crack propagation inside elastic bodies. It is a variational model relying on three
fundamental principles: (i) the fractured body must stay in elastic equilibrium at each time (quasi-static hypothesis);
(ii) the crack can only grow (irreversibility constraint); (iii) an energy balance holds. In the anti-plane setting, the
equilibrium and irreversibility principles lead us to look for constrained critical points (or local minimizers) at each
time of the Mumford–Shah functional, where u stands now for the scalar displacement while Γ is the crack. Unfortu-
nately, there is no canonical notion of local minimality since the family of all admissible cracks is not endowed with a
natural topology. Seeking local minimizers of such energies has consequently become a great challenge, and a lot of
works in that direction have considered global minimizers instead, see [18,15,25]. In the discrete setting, one looks at
each time step for a pair (ui,Γi) minimizing

(u,Γ ) �→ E∗(u,Γ ) := 1

2

∫
Ω\Γ

|∇u|2 dx + H N−1(Γ ),

among all cracks Γ ⊃ Γi−1 and all displacements u : Ω \ Γ → R satisfying an updated boundary condition, where
Γi−1 is the crack found at the previous time step. A first attempt to local minimization has been carried out in [19]
where a variant of this model is considered. At each time step the L2(Ω)-distance to the previous displacement is
penalized. More precisely, denoting by ui−1 the displacement at the previous time step, one looks for minimizers of

(u,Γ ) �→ E∗(u,Γ ) + λ‖u − ui−1‖2
L2(Ω)

, (1.2)

on the same class of competitors than before, where λ > 0 is a fixed parameter. We emphasize that this formulation
only involves some kind of local minimality with respect to the displacement. A notion of stability which implies
another local minimality criterion has been introduced in [33]. It focuses on what the author calls “accessibility
between two states”. In the case of global minimization, when passing from one discrete time to the next, all states are
accessible. From the point of view of [19], a state u is accessible from ui−1 if and only if there is a certain gradient
flow beginning at ui−1 which approaches u in the long-time limit. The main idea in [33] is that a state u is accessible
from ui−1 if and only if both states can be connected through a continuous path for which the total energy is never
increased more than a fixed amount.

While static free discontinuity problems start to be well understood, many questions remain open concerning their
evolutionary version. Apart from the quasi-static case, the closest evolution problem to statics consists in finding a
steepest gradient descent of the energy, and thus in solving a gradient flow type equation. A major difficulty in this
setting is to define a suitable notion of gradient since the functional is neither regular nor convex, and standard theories
such as maximal monotone operators [12] do not apply. However, using a time discretization, an implicit Euler scheme
can always be defined. Letting the time step tend to zero, the possible limits of such a discrete scheme are referred to
as DE GIORGI’s minimizing movements (see [1,21]), and can be considered as solutions of the generalized gradient
flow of the underlying functional. In the Mumford–Shah setting, this approach reduces to the minimization of the
energy (1.2) exactly as in [19] with λ replaced by (2δ)−1, δ > 0 being the time step. The minimizing movements
of the Mumford–Shah functional have been first considered in [2], and further developed in [13]. Motivated by the
crack growth model as in [19], the authors apply the iterative scheme with respect to the variable u while minimizing
the energy with respect to Γ under the constraint of irreversibility. Showing compactness of the resulting discrete
evolution as δ → 0, they obtain existence of “unilateral” minimizing movements of the Mumford–Shah energy (we
add here the adjective unilateral to underline the irreversibility constraint on the evolution). In any space dimension,
the limiting displacement u(t) satisfies some kind of heat equation (in the weak sense), and an energy inequality with
respect to the initial time holds. Assuming that admissible cracks are compact and connected, they improve the result
in two dimensions showing that u(t) solves a true heat equation in a fractured space–time domain, and that the energy
inequality holds between arbitrary times.

The Mumford–Shah functional enjoys good variational approximation properties by means of regular energies.
Constructing L2(Ω)-gradient flows for these regularized energies and taking the limit in the approximation parameter
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could be another way to derive a generalized gradient flow for MS. It was actually the path followed in [31] where a
gradient flow equation for the one-dimensional Mumford–Shah functional is obtained as a limit of ordinary differential
equations derived from a non-local approximation of MS. Many other approximations are available, and the most
famous one is certainly the AMBROSIO–TORTORELLI functional defined for (u,ρ) ∈ [H 1(Ω)]2 by

ATε(u,ρ) := 1

2

∫
Ω

(
ηε + ρ2)|∇u|2 dx + 1

2

∫
Ω

(
ε|∇ρ|2 + 1

ε
(1 − ρ)2

)
dx.

The idea is to replace the discontinuity set Γ by a (diffuse) phase field variable, denoted by ρ : Ω → [0,1], which
is “smooth” and essentially 0 in a ε-neighborhood of Γ . Such energies are of great importance for numerical sim-
ulations in imaging or brittle fracture, see [8,9]. From the mechanical point of view, it is interpreted as a non-local
damage approximation of fracture models, where ρ represents a damage density. The approximation result of [5,6]
(see also [29]) states that ATεΓ -converges as ε → 0 to MS (in the form (1.1)) with respect to a suitable topology. For
the static problem, it implies the convergence of ATε-minimizers towards MS-minimizers by standard results from
Γ -convergence theory. However, the convergence of general critical points is a priori not guaranteed. Positive results
in this direction have been obtained in [26,35] for the one-dimensional case. The Ambrosio–Tortorelli approximation
of quasi-static crack evolution is considered in [30], where the irreversibility constraint translates into the decrease of
the phase field t �→ ρ(t). The main result of [30] concerns the convergence of this regularized model towards the orig-
inal one in [25]. Motivated by the formulation of a model of fracture dynamics, a hyperbolic evolution related to the
Ambrosio–Tortorelli functional is also studied in [34], but the asymptotic behavior of solutions as ε → 0 is left open.
A first step in that direction is made in [16] where the analysis of a wave equation on a domain with growing cracks
is performed. Concerning parabolic type evolutions, a standard gradient flow of the Ambrosio–Tortorelli functional is
numerically investigated in [28] for image segmentation and inpainting purposes.

The object of the present article is to study a unilateral gradient flow for the Ambrosio–Tortorelli functional taking
into account the irreversibility constraint on the phase field variable. The idea is to construct minimizing movements
starting from a discrete Euler scheme which is precisely an Ambrosio–Tortorelli regularization of the one studied in
[2,13]. As in [30], the irreversibility of the process has to be encoded into the decrease of the phase field variable, and
leads at each time step to a constrained minimization problem. More precisely, given an initial data (u0, ρ0), one may
recursively define pairs (ui, ρi) by minimizing at each time ti ∼ iδ,

(u,ρ) �→ ATε(u,ρ) + 1

2δ
‖u − ui−1‖2

L2(Ω)
, (1.3)

among all u and ρ � ρi−1, where (ui−1, ρi−1) is a pair found at the previous time step. The objective is then to pass
to the limit as the time step δ tends to 0. A main difficulty is to deal with the asymptotics of the obstacle problems
in the ρ variable. It is known that such problems are not stable with respect to weak H 1(Ω)-convergence, and that
“strange terms” of capacitary type may appear [14,17]. However, having uniform convergence of obstacles would
be enough to rule out this situation. For that reason, instead of ATε , we consider a modified Ambrosio–Tortorelli
functional with p-growth in ∇ρ with p > N . By the Sobolev Imbedding Theorem, with such a functional in hand,
uniform convergence on the ρ variable is now ensured. We define for every (u,ρ) ∈ H 1(Ω) × W 1,p(Ω),

Eε(u,ρ) := 1

2

∫
Ω

(
ηε + ρ2)|∇u|2 dx +

∫
Ω

(
εp−1

p
|∇ρ|p + α

p′ε
|1 − ρ|p

)
dx, p > N,

where α > 0 is a suitable normalizing factor defined in (2.2). Note that an immediate adaptation of [29] shows that Eε

is still an approximation of MS in the sense of Γ -convergence.
Considering the incremental scheme (1.3) with Eε instead of ATε , we prove that the discrete evolutions converge as

δ → 0 to continuous evolutions t �→ (uε(t), ρε(t)) that we call unilateral minimizing movements (see Definition 3.3).
The first main result of the paper (Theorem 4.1) gathers properties of unilateral minimizing movements. The limiting
differential equation satisfied by uε is⎧⎨⎩ ∂tuε − div

((
ηε + ρ2

ε

)∇uε

)= 0 in Ω × (0,+∞),

∂uε = 0 on ∂Ω × (0,+∞),
(1.4)
∂ν
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while the irreversibility and minimality conditions for ρε are{
t �→ ρε(t) is non-increasing,

Eε

(
uε(t), ρε(t)

)
� Eε

(
uε(t), ρ

)
for every t � 0 and ρ ∈ W 1,p(Ω) such that ρ � ρε(t) in Ω.

(1.5)

The system (1.4)–(1.5) is by construction supplemented with the initial condition(
uε(0), ρε(0)

)= (u0, ρ0) in Ω.

In addition, we prove that the bulk and diffuse surface energies, defined by

t �→ 1

2

∫
Ω

(
ηε + ρ2

ε (t)
)∣∣∇uε(t)

∣∣2 dx

and

t �→
∫
Ω

(
εp−1

p

∣∣∇ρε(t)
∣∣p + α

p′ε
∣∣1 − ρε(t)

∣∣p)dx

are respectively non-increasing and non-decreasing, a fact which is meaningful from the mechanical point of view.
Moreover, the total energy is non-increasing, and it satisfies the following Lyapunov inequality: for a.e. s ∈ [0,+∞)

and every t � s,

Eε

(
uε(t), ρε(t)

)+ t∫
s

∥∥∂tuε(r)
∥∥2

L2(Ω)
dr � Eε

(
uε(s), ρε(s)

)
. (1.6)

Note that the above inequality is reminiscent of gradient flow type equations, and that it usually reduces to equality
whenever the flow is regular enough. In any case, an energy equality would be equivalent to the absolute continuity in
time of the total energy (see Proposition 6.3). The reverse inequality might be obtained through an abstract infinite-
dimensional chain-rule formula in the spirit of [38]. In our case, if we formally differentiate in time the total energy,
we obtain

d

dt
Eε

(
uε(t), ρε(t)

)= 〈∂uEε

(
uε(t), ρε(t)

)
, ∂tuε(t)

〉+ 〈∂ρEε

(
uε(t), ρε(t)

)
, ∂tρε(t)

〉
. (1.7)

From (1.5) we could expect that〈
∂ρEε

(
uε(t), ρε(t)

)
, ∂tρε(t)

〉= 0, (1.8)

which would lead, together with (1.4), to the energy equality. Now observe that (1.8) is precisely the regularized
version of Griffith’s criterion stating that a crack evolves if and only if the release of bulk energy is compensated by
the increase of surface energy (see e.g. [9, Section 2.1]). Unfortunately, such a chain-rule is not available since we
do not have enough control on the time regularity of ρε . In the quasi-static case, one observes discontinuous time
evolutions for the surface energy. Since the evolution law for ρε is quite similar to the quasi-static case (see [30]), we
also expect here time discontinuities for the diffuse surface energy. Adding a parabolic regularization in ρ, i.e., a term
of the form

1

δp−1
‖ρ − ρi−1‖p

W 1,p(Ω)

in (1.3), is a way to improve the time regularity of ρε , and to get an energy equality. Unfortunately, it also breaks the
monotonicity of the surface energy, an undesirable fact in the modelling of the irreversibility. Moreover, this energy
monotonicity is an essential ingredient in the analysis when ε → 0.

As just mentioned, the natural continuation (and motivation) to the qualitative analysis of Ambrosio–Tortorelli
minimizing movements is to understand the limiting behavior as ε → 0, and to compare the result with [2,13]. We
stress that the general theory on Γ -convergence of gradient flows as presented in [39,40] does not apply here since it
requires a well defined gradient structure for the Γ -limit. A specific analysis thus seems to be necessary. In doing so,
our second main result (Theorem 5.1) states that (uε, ρε) tends to (u,1) for some mapping t �→ u(t) taking values in
SBV 2(Ω), and solving in the weak sense the equation
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{
∂tu − div(∇u) = 0 in Ω × (0,+∞),

∇u · ν = 0 on ∂Ω × (0,+∞),

u(0) = u0.

(1.9)

In addition, using the monotonicity of the diffuse surface energy, we are able to pass to the limit in (1.5). It yields the
existence of a non-decreasing family of rectifiable subsets {Γ (t)}t�0 of Ω such that Ju(t) ⊂ Γ (t) for every t � 0, and
for which the following energy inequality holds at any time:

E∗
(
u(t),Γ (t)

)+ t∫
0

∥∥∂tu(s)
∥∥2

L2(Ω)
ds � 1

2

∫
Ω

|∇u0|2 dx.

Comparing our result with [13], we find that u solves the same generalized heat equation with an improvement in the
energy inequality where an increasing family of cracks appears. The optimality of this inequality and the convergence
of energies remain open problems. Note that the (pointwise in time) convergence of the bulk energy usually follows
by taking the solution as test function in the equation. In our case it asks the question whether SBV 2(Ω) functions
whose jump set is contained in Γ (t) can be used in the variational formulation of (1.9), see [16] and Subsection 4.4.
It would yield a weak form of the relation(

u+(t) − u−(t)
)∂u(t)

∂ν
= 0 on Γ (t),

where u±(t) denote the one-sided traces of u(t) on Γ (t). This is indeed the missing equation to complement (1.9),
and it is intimately related to the finiteness of the unilateral slope of the Mumford–Shah functional (evaluated at
(u(t),Γ (t))) defined in [20].

As already discussed, the nonlinear and nonconvex structure of MS prevents us to define a classical notion for its
gradient flow. A possible approach, actually related to minimizing movements, is to make use of the general theory of
gradient flows in metric spaces introduced in [23]. Here the notion of gradient is replaced by the concept of slope, and
the standard gradient flow equation is recast in terms of curves of maximal slope (see [4] for a detailed description of
this subject). This idea was the starting point of [20], where the unilateral slope of MS defined by

|∂E∗|(u,Γ ) := lim sup
v→u in L2(Ω)

(E∗(u,Γ ) − E∗(v,Γ ∪ Jv))
+

‖v − u‖L2(Ω)

,

is investigated. By analogy we introduce the unilateral slope of the Ambrosio–Tortorelli functional

|∂Eε|(u,ρ) := lim sup
v→u in L2(Ω)

sup
ρ̂�ρ

(Eε(u,ρ) − Eε(v, ρ̂))+

‖v − u‖L2(Ω)

.

Then, curves of maximal unilateral slope are essentially defined as curves for which inequality (1.6) holds and the
L2-norm of the velocity coincides with the unilateral slope of the functional (see Definition 6.2). In other words, these
generalized evolutions are L2(Ω)-steepest descents of Eε with respect to u in the direction of non-increasing ρ’s.
In our third and last main result (Theorem 6.7), we establish that any unilateral minimizing movement is a curve of
maximal unilateral slope. As a matter of fact, any curve satisfying (1.4)–(1.5)–(1.6) has maximal unilateral slope. If
one drops the energy inequality (1.6), system (1.4)–(1.5) admits infinitely many solutions which are not in general
curves of maximal unilateral slope. The question whether or not curves of maximal unilateral slope are solutions
of (1.4)–(1.5), is actually connected with the validity of the generalized chain-rule formula (1.7). Finally, we obtain
some estimates in the spirit of [20] for the limit as ε → 0 of |∂Eε| along minimizing movements. However, a complete
asymptotic analysis of |∂Eε| remains an open problem.

To conclude this introduction, let us briefly discuss some numerical aspects of our analysis. First, a practical
drawback of the implicit Euler scheme defined in (1.3) (with Eε instead of ATε) is that the pair (ui, ρi) obtained at
each time step might not be unique since Eε is not strictly convex (although it is separately strictly convex). This lack
of uniqueness may generate some troubles from the point of view of numerical approximations. For that reason, it
is of interest to consider an alternate scheme as follows: given the initial data (u0, ρ0), one recursively defines pairs
(ui, ρi) at each time ti by
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⎧⎨⎩ui := argmin

{
Eε(u,ρi−1) + 1

2δ
‖u − ui−1‖2

L2(Ω)
: u ∈ H 1(Ω)

}
,

ρi := argmin
{
Eε(ui, ρ): ρ ∈ W 1,p(Ω), ρ � ρi−1 in Ω

}
.

It turns out that this alternate minimization scheme is precisely the algorithm used in numerical experiments for
quasi-static evolution in brittle fracture (see [8,9]). As the time step δ tends to zero, this scheme gives rise to the same
time continuous model (i.e., limiting evolutions satisfy (1.4)–(1.5)–(1.6), see [7]). Another difficulty for numerics is
to deal with the asymptotics when both ε and δ tend to zero. Using the arguments developed in this paper together
with [13] and [30], one should be able to prove a simultaneous convergence result similar to Theorem 5.1, and that
the limits commute.

The paper is organized as follows. In Section 2, we provide the functional setting of the problem, and define in
details the Ambrosio–Tortorelli and Mumford–Shah functionals. In Section 3, we introduce the implicit Euler scheme
generating unilateral minimizing movements. In Section 4, we establish an existence result for unilateral minimizing
movements through a compactness result of discrete evolutions when the time step tends to zero. Then we study some
qualitative properties where we establish the heat type equation, the unilateral minimality of the phase field, and the
energy inequality. Section 5 is devoted to the asymptotic analysis as ε → 0. Finally, Section 6 is concerned with curves
of maximal unilateral slope for the Ambrosio–Tortorelli functional.

2. Preliminaries

Notations. For an open set U ⊂ R
N , we denote by M (U ;Rm) the space of all finite R

m-valued Radon measures
on U , i.e., the topological dual of the space C0(U ;Rm) of all Rm-valued continuous functions vanishing on ∂U .
For m = 1 we simply write M (U). The Lebesgue measure in R

N is denoted by L N , while H N−1 stands for
the (N − 1)-dimensional Hausdorff measure. If B1 is the open unit ball in R

N , we write ωN := L N(B1). We use
the notations ⊂̃ and =̃ for inclusions or equalities between sets up to H N−1-negligible sets. For two real numbers a

and b, we denote by a ∧b and a ∨b the minimum and maximum value between a and b, respectively, and a+ := a ∨0.

Absolutely continuous functions. Throughout the paper, we consider the integration theory for Banach space valued
functions in the sense of Bochner. All standard definitions and results we shall use can be found in [12, Appendix] (see
also [24]). We just recall here some basic facts. If X denotes a Banach space, we say that a mapping u : [0,+∞) → X

is absolutely continuous, and we write u ∈ AC([0,+∞);X), if there exists m ∈ L1(0,+∞) such that

∥∥u(s) − u(t)
∥∥

X
�

t∫
s

m(r) dr for every t � s � 0. (2.1)

If the space X turns out to be reflexive, then any map u ∈ AC([0,+∞);X) is (strongly) differentiable almost every-
where. More precisely, for a.e. t ∈ (0,+∞), there exists u′(t) ∈ X such that

u(t) − u(s)

t − s
→ u′(t) strongly in X as s → t.

Moreover u′ ∈ L1(0,+∞;X), u′ coincides with distributional derivative of u, and the Fundamental Theorem of
Calculus holds, i.e.,

u(t) − u(s) =
t∫

s

u′(r) dr for every t � s � 0.

If further the function m in (2.1) belongs to L2(0,+∞), then we write u ∈ AC2([0,+∞);X), and in that case we
have u′ ∈ L2(0,+∞;X).

Special functions of bounded variation. For an open set U ⊂ R
N , we denote by BV (U) the space of functions of

bounded variation, i.e., the space of all functions u ∈ L1(U) whose distributional gradient Du belongs to M (U ;RN).
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We shall also consider the subspace SBV (U) of special functions of bounded variation made of functions u ∈ BV (U)

whose derivative Du can be decomposed as

Du = ∇uL N + (u+ − u−)νu H N−1 Ju.

In the previous expression, ∇u is the Radon–Nikodým derivative of Du with respect to L N , and it is called approxi-
mate gradient of u. The Borel set Ju is the (approximate) jump set of u. It is a countably H N−1-rectifiable subset of
U oriented by the (normal) direction of jump νu : Ju → S

N−1, and u± are the one-sided approximate limits of u on Ju

according to νu, see [3]. We say that a measurable set E has finite perimeter in U if χE ∈ BV (U), and we denote by
∂∗E its reduced boundary. We also denote by GSBV (U) the space of all measurable functions u : U → R such that
(−M ∨ u) ∧ M ∈ SBV (U) for all M > 0. Again, we refer to [3] for an exhaustive treatment on the subject. Finally
we define the spaces

SBV 2(U) := {u ∈ SBV (U) ∩ L2(U): ∇u ∈ L2(U ;RN
)

and H N−1(Ju) < ∞},
and

GSBV 2(U) := {u ∈ GSBV (U) ∩ L2(U): ∇u ∈ L2(U ;RN
)

and H N−1(Ju) < ∞}.
Note that, according to the chain-rule formula for real valued BV -functions, we have the inclusion SBV 2(U) ∩
L∞(U) ⊂ GSBV 2(U) (see e.g. [3, Theorem 3.99]).

The following proposition will be very useful to derive a lower estimate for the Ambrosio–Tortorelli functional. It
is a direct consequence of the proof of [10, Theorem 10.6] (see [11, Theorem 16] for the original proof).

Proposition 2.1. Let Ω ⊂ R
N be a bounded open set, let {un}n∈N ⊂ H 1(Ω) ∩ L∞(Ω) be such that

supn∈N ‖un‖L∞(Ω) < ∞, and let {En}n∈N be a sequence of subsets of Ω of finite perimeter in Ω such that
supn∈N H N−1(∂∗En ∩ Ω) < ∞. Assume that un → u strongly in L2(Ω), and that L N(En) → 0. Setting
ũn := (1 − χEn)un ∈ SBV 2(Ω) ∩ L∞(Ω), and assuming in addition that supn∈N ‖∇ũn‖L2(Ω;RN) < ∞, then
u ∈ SBV 2(Ω) ∩ L∞(Ω) and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ũn → u strongly in L2(Ω),

ũn ⇀ u weakly* in L∞(Ω),

∇ũn ⇀ ∇u weakly in L2(Ω;RN
)
,

2H N−1(Ju) � lim inf
n→∞ H N−1(∂∗En ∩ Ω

)
.

The Ambrosio–Tortorelli & Mumford–Shah functionals. Throughout the paper, we assume that Ω is a bounded
open subset of RN with at least Lipschitz boundary. We consider p > N , β > 0, and g ∈ L∞(Ω) given. For ε > 0 and
ηε ∈ (0,1), we define the Ambrosio–Tortorelli functional Eε : L2(Ω) × Lp(Ω) → [0,+∞] by

Eε(u,ρ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2

∫
Ω

(
ηε + ρ2)|∇u|2 dx +

∫
Ω

(
εp−1

p
|∇ρ|p + α

p′ε
|1 − ρ|p

)
dx + β

2

∫
Ω

(u − g)2 dx

if (u,ρ) ∈ H 1(Ω) × W 1,p(Ω),

+∞ otherwise,

where p′ := p/(p − 1) and α is the normalizing factor given by

α :=
(

p

2

)p′

. (2.2)

The Mumford–Shah functional E : L2(Ω) → [0,+∞] is in turn defined by

E(u) :=

⎧⎪⎨⎪⎩
1

2

∫
Ω

|∇u|2 dx + H N−1(Ju) + β

2

∫
Ω

(u − g)2 dx if u ∈ GSBV 2(Ω),
(2.3)
+∞ otherwise.
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It is well known by now that the Ambrosio–Tortorelli functional approximates as ε → 0 the Mumford–Shah functional
in the sense of Γ -convergence, as stated in the following result, see [5,29]. Let us mention that Theorem 2.2 is not
precisely a direct consequence of [5,29]. In [5], the case p = 2 is addressed, while [29] deals with energies having the
same p-growth in ∇u and ∇ρ (recall that p > N � 2). However, a careful inspection of the proof of [29, Theorem
3.1] shows that the Γ -convergence result still holds for Eε .

Theorem 2.2. Assume that ηε = o(ε). Then Eε Γ -converges as ε → 0 (with respect to the strong L2(Ω) ×
Lp(Ω)-topology) to the functional E0 defined by

E0(u,ρ) :=
{
E(u) if u ∈ GSBV 2(Ω) and ρ = 1 in Ω,

+∞ otherwise.

3. Unilateral minimizing movements

3.1. The discrete evolution scheme

Throughout the paper, we shall say that a sequence of time steps δ := {δi}i∈N∗ is a partition of [0,+∞) if

δi > 0, sup
i�1

δi < +∞, and
∑
i�1

δi = +∞.

To a partition δ we associate the sequence of discrete times {t i}i∈N given by t0 := 0, t i :=∑i
j=1 δj for i � 1, and we

define the time step length by

|δ| := sup
i�1

δi .

To an initial datum u0 ∈ H 1(Ω)∩L∞(Ω), we shall always associate (for simplicity) the initial state ρε
0 determined

by

ρε
0 := argmin

ρ∈W 1,p(Ω)

Eε(u0, ρ). (3.1)

It is standard to check that the above minimization problem has a unique solution (by coercivity and strict convexity
of the functional Eε(u0, ·)), and it follows by minimality that 0 � ρε

0 � 1. Given a partition δ of [0,+∞), we now
introduce the discrete evolution Euler scheme starting from (u0, ρ

ε
0).

Global minimization. Set (u0, ρ0) := (u0, ρ
ε
0), and select recursively for all integer i � 1,

(
ui, ρi
) ∈ argmin

{
Eε(u,ρ) + 1

2δi

∥∥u − ui−1
∥∥2

L2(Ω)
: (u,ρ) ∈ H 1(Ω) × W 1,p(Ω), ρ � ρi−1 in Ω

}
. (3.2)

The well-posedness of this scheme requires some care. Since the sublevel sets of Eε are clearly relatively compact
for the sequential weak H 1(Ω) × W 1,p(Ω)-topology, one may apply the Direct Method of Calculus of Variations
to solve (3.2). We only need to show that the constraint in (3.2) is closed, and that Eε is lower semicontinuous with
respect to weak convergence.

Lemma 3.1. Let {(un,ρn)}n∈N ⊂ H 1(Ω) × W 1,p(Ω) be such that (un,ρn) ⇀ (u,ρ) weakly in H 1(Ω) × W 1,p(Ω).
Then,

Eε(u,ρ) � lim inf
n→∞ Eε(un,ρn). (3.3)

Moreover, if for each n ∈ N, ρn � ρ̄ in Ω for some ρ̄ ∈ W 1,p(Ω), then ρ � ρ̄ in Ω . Finally, assuming that
Eε(un,ρn) → Eε(u,ρ) as n → ∞, then (un,ρn) → (u,ρ) strongly in H 1(Ω) × W 1,p(Ω).
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Proof. Step 1. The sequence {(un,ρn)} being weakly convergent, it is bounded in H 1(Ω) × W 1,p(Ω). Therefore
ρn → ρ in C 0(Ω) by the Sobolev Imbedding Theorem. Hence ρ � ρ̄ in Ω whenever ρn � ρ̄ in Ω for every n ∈ N.
Then ρn∇un ⇀ ρ∇u weakly in L2(Ω), and consequently,∫

Ω

(
ηε + ρ2)|∇u|2 dx � lim inf

n→∞

∫
Ω

(
ηε + ρ2

n

)|∇un|2 dx.

Since all other terms in Eε are clearly lower semicontinuous with respect to the weak convergence in H 1(Ω) ×
W 1,p(Ω), we have proved (3.3).

Step 2. Let us now assume that Eε(un,ρn) → Eε(u,ρ). We first claim that∫
Ω

(
ηε + ρ2)|∇u|2 dx = lim

n→∞

∫
Ω

(
ηε + ρ2

n

)|∇un|2 dx. (3.4)

Indeed, assume by contradiction that for a subsequence {nj } we have∫
Ω

(
ηε + ρ2)|∇u|2 dx < lim inf

j→∞

∫
Ω

(
ηε + ρ2

nj

)|∇unj
|2 dx.

Using the fact that un → u strongly in L2(Ω), we deduce from Step 1 that

lim
j→∞Eε(unj

, ρnj
)

� lim inf
j→∞

1

2

∫
Ω

(
ηε + ρ2

nj

)|∇unj
|2 dx + lim inf

j→∞

∫
Ω

(
εp−1

p
|∇ρnj

|p + α

p′ε
|1 − ρnj

|p
)

dx + β

2

∫
Ω

(u − g)2 dx

> Eε(u,ρ),

which is impossible. Therefore (3.4) holds. Then, combining the convergence of Eε(un,ρn) with (3.4), we deduce that
‖ρn‖W 1,p(Ω) → ‖ρ‖W 1,p(Ω), whence the strong W 1,p(Ω)-convergence of ρn.

It now remains to show that un → u strongly in H 1(Ω). Using the uniform convergence of ρn established in Step 1,
we first estimate∫

Ω

∣∣ρ2 − ρ2
n

∣∣|∇un|2 dx �
(

sup
k∈N

‖∇uk‖L2(Ω;RN)

)∥∥ρ2 − ρ2
n

∥∥
L∞(Ω)

−→
n→∞ 0.

Then we infer from (3.4) that∫
Ω

(
ηε + ρ2)|∇un|2 dx =

∫
Ω

(
ηε + ρ2

n

)|∇un|2 dx +
∫
Ω

(
ρ2 − ρ2

n

)|∇un|2 dx −→
n→∞

∫
Ω

(
ηε + ρ2)|∇u|2 dx.

Consequently ‖un‖H 1(Ω) → ‖u‖H 1(Ω), whence the strong H 1(Ω)-convergence of un. �
We state below a maximum principle on the iterates {(ui, ρi)}i∈N which easily follows from minimality and stan-

dard truncation arguments.

Lemma 3.2. For every i ∈N,∥∥ui
∥∥

L∞(Ω)
� max

{‖u0‖L∞(Ω), ‖g‖L∞(Ω)

}
and 0 � ρi+1 � ρi � 1 in Ω. (3.5)

3.2. Generalized unilateral minimizing movements

To a partition δ of [0,+∞) and a sequence of iterates {(ui, ρi)}i∈N given by (3.2), we associate a discrete trajec-
tory (uδ, ρδ) : [0,+∞) → H 1(Ω) × W 1,p(Ω) defined as the left-continuous piecewise constant interpolation of the
(ui, ρi)’s below. More precisely, we set
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uδ(0) = u0, ρδ(0) = ρε
0,

and for t > 0,{
uδ(t) := ui,

ρδ(t) := ρi
if t ∈ (t i−1, t i

]
. (3.6)

By analogy with the standard notion of minimizing movements, we now introduce the following definition.

Definition 3.3 (Unilateral Minimizing Movements). Let u0 ∈ H 1(Ω)∩L∞(Ω). We say that a pair (u,ρ) : [0,+∞) →
L2(Ω) × Lp(Ω) is a (generalized) unilateral minimizing movement for Eε starting from (u0, ρ

ε
0) if there exist a

sequence {δk}k∈N of partitions of [0,+∞) satisfying |δk| → 0, and associated discrete trajectories {(uδk
, ρδk

)}k∈N
such that(

uδk
(t), ρδk

(t)
) −→

k→∞
(
u(t), ρ(t)

)
strongly in L2(Ω) × Lp(Ω) for every t � 0.

We denote by GUMM(u0, ρ
ε
0) the collection of all (generalized) unilateral minimizing movements for Eε starting

from (u0, ρ
ε
0).

Remark 3.4. At this stage we do not claim that the collection GUMM(u0, ρ
ε
0) is not empty. This will be proved in

the next section through a compactness result on discrete trajectories (see Lemmas 4.3 & 4.5, and Corollary 4.7).

4. Existence of generalized unilateral minimizing movements

The object of this section is to provide an accurate information on the evolution laws of generalized unilateral min-
imizing movements. To avoid some technicalities in the analysis, we shall restrict ourselves to generalized unilateral
minimizing movements arising from a sequence of discrete trajectories whose time partitions {δk}k∈N satisfy

sup
k∈N

(
sup
i�1

δi+1
k

δi
k

)
< ∞. (4.1)

This condition is not essential and can be removed (the alternative argument, based on De Giorgi interpolations, can
be found in the preliminary version of this paper [7]).

The main result of this section can be summarized in the following theorem.

Theorem 4.1. Let Ω ⊂ R
N be a bounded open set with C 1,1-boundary. For an initial data u0 ∈ H 1(Ω) ∩ L∞(Ω)

and ρε
0 given by (3.1), let (uε, ρε) ∈ GUMM(u0, ρ

ε
0) be a strong L2(Ω) × Lp(Ω)-limit of some discrete trajectories

{(uk, ρk)}k∈N obtained from a sequence of partitions {δk}k∈N of [0,+∞) satisfying |δk| → 0 and (4.1). Then, the
following properties hold:

uε ∈ AC2([0,+∞);L2(Ω)
)∩ L∞(0,+∞;H 1(Ω)

)∩ L2
loc

(
0,+∞;H 2(Ω)

)
,

ρε ∈ L∞(0,+∞;W 1,p(Ω)
)
, 0 � ρε(t)� ρε(s) � 1 for every t � s � 0,

and ⎧⎪⎪⎨⎪⎪⎩
u′

ε = div
((

ηε + ρ2
ε

)∇uε

)− β(uε − g) in L2(0,+∞;L2(Ω)
)
,

∂uε

∂ν
= 0 in L2(0,+∞;H 1/2(∂Ω)

)
,

uε(0) = u0,

(4.2)

with {
Eε

(
uε(t), ρε(t)

)
� Eε

(
uε(t), ρ

)
for every t � 0 and ρ ∈ W 1,p(Ω) such that ρ � ρε(t) in Ω,

ρε(0) = ρε
0 .

(4.3)

Moreover, t �→ Eε(uε(t), ρε(t)) has finite pointwise variation in [0,+∞), and there exists an (at most) countable set
Nε ⊂ (0,+∞) such that
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(i) (uε, ρε) : [0,+∞) \Nε → H 1(Ω) × W 1,p(Ω) is strongly continuous;
(ii) for every s ∈ [0,+∞) \Nε , and every t � s,

Eε

(
uε(t), ρε(t)

)+ t∫
s

∥∥u′
ε(r)
∥∥2

L2(Ω)
dr � Eε

(
uε(s), ρε(s)

)
. (4.4)

The entire section is devoted to the proof of this result, and we now describe the main steps. We first obtain suitable
compactness results on discrete trajectories which prove in particular that the collection GUMM(u0, ρ

ε
0) is not empty

(Corollary 4.7). Then we consider an arbitrary element (uε, ρε) in GUMM(u0, ρ
ε
0) arising from discrete trajectories

{(uk, ρk)}k∈N and partitions {δk}k∈N satisfying (4.1) and the established compactness properties. Defining the (diffuse)
surface energy at a time t � 0 by

Sε(t) :=
∫
Ω

(
εp−1

p

∣∣∇ρε(t)
∣∣p + α

p′ε
(
1 − ρε(t)

)p)
dx, (4.5)

and the bulk energy

Bε(t) := 1

2

∫
Ω

(
ηε + ρ2

ε (t)
)∣∣∇uε(t)

∣∣2 dx + β

2

∫
Ω

(
uε(t) − g

)2
dx, (4.6)

we prove a preliminary minimality property of the phase field variable ρε leading to the increase of the surface
energy Sε . In turn, it implies the strong W 1,p(Ω)-continuity of t �→ ρε(t) outside a countable set. Then we establish
the inhomogeneous heat equation satisfied by uε . Exploiting a semi-group property for this equation, we show the
decrease of the bulk energy Bε and, as a byproduct, the strong H 1(Ω)-continuity of t �→ uε(t) outside a countable
set. At this stage, we are able to derive the pointwise in time strong convergence in H 1(Ω)×W 1,p(Ω) of the sequence
{(uk, ρk)}k∈N away from a countable set. The announced minimality property of ρε as well as the Lyapunov inequality
on the total energy are mainly consequences of these strong convergences.

4.1. Compactness of discrete trajectories

We fix an arbitrary u0 ∈ H 1(Ω) ∩ L∞(Ω), and we consider the function ρε
0 determined by (3.1). Let {δk}k∈N be

an arbitrary sequence of partitions of [0,+∞) satisfying |δk| → 0. We write

δk =: {δi
k

}
i∈N∗ , t0

k := 0, and t ik :=
i∑

j=1

δ
j
k for i � 1.

For each k ∈ N we consider a discrete trajectory (uk, ρk) ≡ (uδk
, ρδk

) : [0,+∞) → H 1(Ω) × W 1,p(Ω) associated
to δk which is obtained from (3.6). We next define for every k ∈ N a further left-continuous piecewise constant
interpolation ρ−

k : [0,+∞) → W 1,p(Ω) of the iterates {ρi
k}i∈N setting ρ−

k (0) = ρε
0 , and for t > 0,

ρ−
k (t) := ρi−1

k if t ∈ (t i−1
k , t ik

]
. (4.7)

We also consider the piecewise affine interpolation vk : [0,+∞) → H 1(Ω) of the ui
k’s defined for each k ∈N by

vk(t) := ui−1
k + t − t i−1

k

δi
k

(
ui

k − ui−1
k

)
if t ∈ [t i−1

k , t ik
]
. (4.8)

We first state a priori estimates based on a (non-optimal) discrete energy inequality. It is obtained by taking the
solution at time t i−1

k as competitor in the minimization problem at time t ik . An optimal energy inequality will be
proved later on (see Proposition 4.18). The higher order estimate on the sequence {uk} is obtained by means of an
elliptic regularity result postponed to Appendix A (see Lemma A.1).
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Lemma 4.2. There exists a constant Cε > 0 (independent of k) such that

sup
t�0

∥∥∇uk(t)
∥∥

L2(Ω)
+ sup

t�0

∥∥∇ρk(t)
∥∥

Lp(Ω)
+

+∞∫
0

∥∥v′
k(t)
∥∥2

L2(Ω)
dt � Cε. (4.9)

Moreover, uk(t) ∈ H 2(Ω) and ∂uk(t)
∂ν

= 0 in H 1/2(∂Ω) for every t > 0, and for each T > 0,

T∫
0

∥∥uk(t)
∥∥2

H 2(Ω)
dt � Cε,T (4.10)

for a constant Cε,T > 0 (independent of k).

Proof. Taking (ui−1
k , ρi−1

k ) as a competitor in the minimization problem (3.2) yields

Eε

(
ui

k, ρ
i
k

)+ 1

2δi
k

∥∥ui
k − ui−1

k

∥∥2
L2(Ω)

� Eε

(
ui−1

k , ρi−1
k

)
.

Summing up for i = 1 to j leads to

Eε

(
u

j
k, ρ

j
k

)+ j∑
i=1

1

2δi
k

∥∥ui
k − ui−1

k

∥∥2
L2(Ω)

� Eε

(
u0, ρ

ε
0

)
,

or still, for every t � 0,

Eε

(
uk(t), ρk(t)

)+ 1

2

t∫
0

∥∥v′
k(s)
∥∥2

L2(Ω)
ds � Eε

(
u0, ρ

ε
0

)
. (4.11)

The first upper bound (4.9) now follows from the expression of the energy Eε .
To show estimate (4.10), let t > 0 be such that t ∈ (t i−1

k , t ik) for some integer i � 1. By minimality uk(t) solves{
−div
((

ηε + ρ2
k (t)
)∇uk(t)

)= −v′
k(t) − β

(
uk(t) − g

)
in H−1(Ω),(

ηε + ρ2
k (t)
)∇uk(t) · ν = 0 in H−1/2(∂Ω).

(4.12)

From Lemma A.1 we deduce that uk(t) ∈ H 2(Ω) and ∂uk(t)
∂ν

= 0 in H 1/2(∂Ω) with the estimate∥∥uk(t)
∥∥

H 2(Ω)
� Cε

(
1 + ∥∥∇ρk(t)

∥∥
Lp(Ω;RN)

)γ (∥∥v′
k(t)
∥∥

L2(Ω)
+ β
∥∥uk(t) − g

∥∥
L2(Ω)

+ ∥∥uk(t)
∥∥

H 1(Ω)

)
.

In view of (4.9) and Lemma 3.2, we infer that (4.10) holds. �
We are now in position to establish a compactness result for the sequences {uk}k∈N and {ρk}k∈N. We start with

{ρk}k∈N and {ρ−
k }k∈N.

Lemma 4.3. There exist a subsequence kn → ∞ and a strongly measurable map ρε : [0,+∞) → W 1,p(Ω) such
that ρkn(t) ⇀ ρε(t) weakly in W 1,p(Ω) for every t � 0. In addition, ρε ∈ L∞(0,+∞;W 1,p(Ω)), ρε(0) = ρε

0 , and
0 � ρε(t) � ρε(s) � 1 in Ω for every t � s � 0.

Proof. By Lemma 3.2, ρk : [0,+∞) → L1(Ω) is monotone non-increasing, and 0 � ρk(t) � 1 in Ω for every t � 0.
By a generalized version of Helly’s selection principle (see [36, Theorem 3.2]), we deduce that there exists a subse-
quence kn → ∞ and a map ρε : [0,+∞) → L1(Ω) such that ρkn(t) ⇀ ρε(t) weakly in L1(Ω) for every t � 0. On
the other hand, since

Eε

(
u0, ρ

ε
0

)
� Eε(u0,1) � ‖∇u0‖2

L2(Ω;RN)
+ β

2
‖u0 − g‖2

L2(Ω)
,

we derive from Lemma 4.2 that
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sup
t�0

∥∥ρk(t)
∥∥

W 1,p(Ω)
� Cε,

for some constant Cε > 0 independent of k. Therefore, ρkn(t) ⇀ ρε(t) weakly in W 1,p(Ω), and ρkn(t) → ρε(t) in
C 0(Ω) for every t � 0 by the Sobolev Imbedding Theorem. In particular ρε(t) ∈ W 1,p(Ω) for every t � 0, and by
lower semicontinuity,

sup
t�0

∥∥ρε(t)
∥∥

W 1,p(Ω)
� Cε.

Moreover, since 0 � ρk(t) � ρk(s) � 1 in Ω whenever s � t , we deduce from the uniform convergence that 0 �
ρε(t) � ρε(s) � 1 in Ω for every t � s � 0.

Since ρε : [0,+∞) → W 1,p(Ω) is a pointwise weak limit of a sequence of measurable (locally) simple functions,
we deduce that ρε : [0,+∞) → W 1,p(Ω) is weakly measurable, hence strongly measurable thanks to the separability
of W 1,p(Ω) and Pettis Theorem. �

Through the same argument we obtain the convergence of the sequence {ρ−
k }k∈N (defined in (4.7)).

Lemma 4.4. Let {kn}n∈N be the subsequence given by Lemma 4.3. There exist a further subsequence (not relabeled)
and a strongly measurable map ρ−

ε : [0,+∞) → W 1,p(Ω) such that ρ−
kn

(t) ⇀ ρ−
ε (t) weakly in W 1,p(Ω) for every

t � 0. In addition, ρ−
ε ∈ L∞(0,+∞;W 1,p(Ω)), ρ−

ε (0) = ρε
0 , and 0 � ρε(t) � ρ−

ε (t) � ρ−
ε (s) � 1 in Ω for every

t � s � 0.

We continue with the compactness of the sequences {uk}k∈N and {vk}k∈N (defined by (4.8)).

Lemma 4.5. Let {kn}n∈N be the subsequence given by Lemma 4.4. There exist a further subsequence (not relabeled)
and a strongly measurable map uε : [0,+∞) → H 1(Ω) such that ukn(t) ⇀ uε(t) and vkn(t) ⇀ uε(t) weakly in
H 1(Ω) for every t � 0. In addition,

(i) uε(0) = u0;
(ii) ‖uε(t)‖L∞(Ω) � max{‖u0‖L∞(Ω),‖g‖L∞(Ω)} for every t � 0;

(iii) uε ∈ L∞(0,+∞;H 1(Ω)) ∩ L2
loc([0,+∞);H 2(Ω));

(iv) ∂uε

∂ν
= 0 in L2(0,+∞;H 1/2(∂Ω));

(v) uε ∈ AC2([0,+∞);L2(Ω)) and

+∞∫
0

∥∥u′
ε(t)
∥∥2

L2(Ω)
dt � ‖∇u0‖2

L2(Ω;RN)
+ β

2
‖u0 − g‖2

L2(Ω)
;

(vi) v′
kn

⇀ u′
ε weakly in L2(0,+∞;L2(Ω)).

Proof. We start by establishing the compactness of the sequence {vk}. First Lemma 3.2 yields for every t � 0,∥∥vkn(t)
∥∥

L∞(Ω)
�
∥∥ukn(t)

∥∥
L∞(Ω)

� max
{‖u0‖L∞(Ω),‖g‖L∞(Ω)

}
. (4.13)

Then, combining the bounds in (4.9) together with (4.8), we infer that

sup
t�0

∥∥∇vkn(t)
∥∥

L2(Ω;RN)
� sup

t�0

∥∥∇ukn(t)
∥∥

L2(Ω;RN)
� Cε, (4.14)

for some constant Cε > 0 independent of kn. Consequently, for every T > 0 the set
⋃

n vkn([0, T ]) is relatively
compact in L2(Ω). On the other hand, (4.9) yields

+∞∫ ∥∥v′
kn

(r)
∥∥2

L2(Ω)
dr � Eε

(
u0, ρ

ε
0

)
� Eε(u0,1) � ‖∇u0‖2

L2(Ω;RN)
+ β

2
‖u0 − g‖2

L2(Ω)
. (4.15)
0
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Since for any t � s � 0 we have

∥∥vkn(t) − vkn(s)
∥∥

L2(Ω)
�

t∫
s

∥∥v′
kn

(r)
∥∥

L2(Ω)
dr, (4.16)

we deduce from (4.15) and Cauchy–Schwarz inequality that

∥∥vkn(t) − vkn(s)
∥∥2

L2(Ω)
� (t − s)

t∫
s

∥∥v′
kn

(r)
∥∥2

L2(Ω)
dr � (t − s)

(
‖∇u0‖2

L2(Ω;RN)
+ β

2
‖u0 − g‖2

L2(Ω)

)
. (4.17)

By the Arzela–Ascoli Theorem we can find a subsequence of {kn} (not relabeled) such that

vkn → uε in C 0([0, T ];L2(Ω)
)

for every T > 0, (4.18)

for some uε ∈ C 0,1/2([0,+∞);L2(Ω)). In particular, vkn(t) → uε(t) strongly in L2(Ω) for every t � 0, which yields
(i) since vkn(0) = u0.

On the other hand, in view of estimates (4.13) and (4.14), we obtain (ii) and the fact that vkn(t) ⇀ uε(t) weakly in
H 1(Ω) for every t � 0. By lower semicontinuity we also deduce from (4.14) that

sup
t�0

∥∥uε(t)
∥∥

H 1(Ω)
� Cε. (4.19)

We next show the compactness of the sequence {ukn}. Let us now consider an arbitrary t > 0. For each n ∈ N there
is a unique i ∈N such that t ∈ (t i−1

kn
, t ikn

]. We then have ukn(t) = ukn(t
i
kn

) = vkn(t
i
kn

). Consequently, by (4.17),∥∥ukn(t) − uε(t)
∥∥

L2(Ω)
= ∥∥vkn

(
t ikn

)− uε(t)
∥∥

L2(Ω)

�
∥∥vkn

(
t ikn

)− vkn(t)
∥∥

L2(Ω)
+ ∥∥vkn(t) − uε(t)

∥∥
L2(Ω)

� C
√|δkn | +

∥∥vkn(t) − uε(t)
∥∥

L2(Ω)
−→
n→∞ 0. (4.20)

Hence ukn(t) → uε(t) strongly in L2(Ω) for every t � 0, and in view of (4.14) we infer that ukn(t) ⇀ uε(t) weakly in
H 1(Ω) for every t � 0. The mappings t �→ ukn(t) being (locally) simple and measurable, we conclude as in the proof
of Lemma 4.3 that uε : [0,+∞) → H 1(Ω) is strongly measurable. Moreover uε ∈ L∞(0,+∞;H 1(Ω)) by (4.19). In
view of (4.10), ukn ⇀ uε weakly in L2

loc(0,+∞;H 2(Ω)) which shows that uε ∈ L2
loc(0,+∞;H 2(Ω)). Item (iii) is

thus proved.
We next show that the Neumann boundary condition ∂uε

∂ν
= 0 in L2(0,+∞;H 1/2(∂Ω)) holds. To this purpose,

let us fix T > 0 and select an arbitrary test function ϕ ∈ L2(0, T ;H 1(Ω)). By Lemma 4.2 we have ∂uk(t)
∂ν

= 0 in
H 1/2(∂Ω) for every t > 0, and consequently

T∫
0

∫
Ω

(−�uε)ϕ dx dt = lim
n→∞

T∫
0

∫
Ω

(−�ukn)ϕ dx dt = lim
n→∞

T∫
0

∫
Ω

∇ukn · ∇ϕ dx dt =
T∫

0

∫
Ω

∇uε · ∇ϕ dx dt.

From the arbitrariness of ϕ and T , we conclude that ∂uε

∂ν
= 0 in L2(0, T ;H 1/2(∂Ω)) for every T > 0 which completes

the proof of item (iv).
We next show the absolute continuity in time of uε . We note that (4.15) tells us that the functions Akn : t ∈

(0,+∞) �→ ‖v′
kn

(t)‖L2(Ω) are bounded in L2(0,+∞). Hence we can find a further subsequence (not relabeled) such

that Akn ⇀ A weakly in L2(0,+∞), for a nonnegative function A ∈ L2(0,+∞) satisfying

+∞∫
A2(t) dt � ‖∇u0‖2

L2(Ω;RN)
+ β

2
‖u0 − g‖2

L2(Ω)
.

0
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Letting n → ∞ in (4.16), we conclude that for every t � s � 0,

∥∥uε(t) − uε(s)
∥∥

L2(Ω)
�

t∫
s

A(r) dr,

which shows that uε ∈ AC2([0,+∞);L2(Ω)), whence (v).
Now, since {v′

kn
} is bounded in L2(0,+∞;L2(Ω)), up to a subsequence, {v′

kn
} converges weakly in L2(0,+∞;

L2(Ω)) to some element in L2(0,+∞;L2(Ω)) which has to agree with u′
ε by (4.18). This implies that (vi) holds. �

Remark 4.6. As a consequence of (iii) and (v) in the previous lemma, uε : [0,+∞) → H 1(Ω) is weakly continuous.

As an immediate consequence of Lemmas 4.3 & 4.5, we obtain that unilateral minimizing movements starting
from (u0, ρ

ε
0) do exist.

Corollary 4.7. The collection GUMM(u0, ρ
ε
0) is not empty.

4.2. Time continuity for the phase field variable and the surface energy

For the rest of this section, we consider an arbitrary element (uε, ρε) ∈ GUMM(u0, ρ
ε
0) and discrete trajectories

{(uk, ρk)}k∈N associated to partitions {δk}k∈N satisfying (4.1). Without loss of generality, we also assume that all the
results of the previous subsection do hold.

We first establish several properties of the phase field ρε , starting from a (weak) minimality principle with respect
to the diffuse surface energy.

Proposition 4.8. For every t � 0,∫
Ω

(
εp−1

p

∣∣∇ρε(t)
∣∣p + α

p′ε
(
1 − ρε(t)

)p)
dx �
∫
Ω

(
εp−1

p
|∇ρ|p + α

p′ε
(1 − ρ)p

)
dx

for all ρ ∈ W 1,p(Ω) such that ρ � ρε(t) in Ω . In particular, the surface energy Sε defined in (4.5) is non-decreasing
on [0,+∞), and thus continuous outside an (at most) countable set Sε ⊂ [0,+∞).

Proof. Fix t > 0 and let i ∈ N be such that t ∈ (t i−1
k , t ik]. Consider a function ρ ∈ W 1,p(Ω) such that ρ � ρε(t) in Ω ,

and define ρ̂k := ρ ∧ ρk(t). Then ρ̂k ∈ W 1,p(Ω) and ρ̂k � ρk(t) � ρi−1
k . By the minimality properties of the pair

(uk(t), ρk(t)),

Eε

(
uk(t), ρk(t)

)
� Eε

(
uk(t), ρ̂k

)
,

and since ρ̂k � ρk(t),∫
Ω

(
εp−1

p

∣∣∇ρk(t)
∣∣p + α

p′ε
(
1 − ρk(t)

)p)
dx �
∫
Ω

(
εp−1

p
|∇ρ̂k|p + α

p′ε
(1 − ρ̂k)

p

)
dx. (4.21)

Let us now define the measurable sets Ak := {ρ � ρk(t)}. By definition of ρ̂k , we have∫
Ω

|∇ρ̂k|p dx =
∫
Ak

|∇ρ|p dx +
∫

Ω\Ak

∣∣∇ρk(t)
∣∣p dx,

and thanks to (4.21), we infer that

εp−1

p

∫ ∣∣∇ρk(t)
∣∣p dx + α

p′ε

∫ (
1 − ρk(t)

)p
dx � εp−1

p

∫
|∇ρ|p dx + α

p′ε

∫
(1 − ρ̂k)

p dx. (4.22)
Ak Ω Ak Ω
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Since ρk(t) → ρε(t) strongly in Lp(Ω) and ρ � ρε(t) in Ω , we deduce that L N(Ω \ Ak) → 0. As a consequence,∫
Ak

|∇ρ|p dx →
∫
Ω

|∇ρ|p dx,

and χAk
∇ρk(t) ⇀ ∇ρε(t) weakly in Lp(Ω;RN) which in turn leads to

lim inf
k→∞

∫
Ak

∣∣∇ρk(t)
∣∣p dx �

∫
Ω

∣∣∇ρε(t)
∣∣p dx.

Passing to the limit in (4.22) as k → ∞ yields∫
Ω

(
εp−1

p

∣∣∇ρε(t)
∣∣p + α

p′ε
(
1 − ρε(t)

)p)
dx �
∫
Ω

(
εp−1

p
|∇ρ|p + α

p′ε
(1 − ρ)p

)
dx.

In particular, taking ρ = ρε(s) with s � t leads to the announced monotonicity of the function Sε . �
At this stage we do not have any a priori time-regularity for t �→ ρε(t) except that it is non-increasing, and thus

it has finite pointwise variation (with values in L1(Ω)). In the following result we show that this mapping is actually
strongly continuous in W 1,p(Ω) outside a countable subset of (0,+∞) containing the discontinuity points of the
surface energy Sε .

Lemma 4.9. There exists an (at most) countable set Rε ⊂ (0,+∞) containing Sε such that the mapping t �→ ρε(t) is
strongly continuous in W 1,p(Ω) on [0,+∞) \Rε . In particular, ρε is strongly continuous at time t = 0.

Proof. Let Rε be the union of the set Sε given by Proposition 4.8 and the set of all discontinuity points of

t �→
∫
Ω

ρε(t) dx. (4.23)

Note that Rε is at most countable by the decreasing property of the latter function. Let t ∈ [0,+∞) \ Rε , we claim
that ρε is strongly continuous in W 1,p(Ω) at t . Consider a sequence tn → t and extract a subsequence {tnj

} ⊂ {tn}
such that ρε(tnj

) ⇀ ρ� weakly in W 1,p(Ω) for some ρ� ∈ W 1,p(Ω). Upon extracting a further subsequence, we may
assume without loss of generality that tnj

> t for each j ∈ N (the other case tnj
< t can be treated in a similar way).

Then ρε(tnj
) � ρε(t) in Ω , and passing to the limit yields ρ� � ρε(t) in Ω . On the other hand, by our choice of t as a

continuity point of the mapping (4.23), we have∫
Ω

ρε(t) dx = lim
j→∞

∫
Ω

ρε(tnj
) dx =

∫
Ω

ρ� dx,

and thus ρ� = ρε(t). As a consequence, the limit is independent of the choice of the subsequence, and the full sequence
{ρε(tn)} weakly converges to ρε(t) in W 1,p(Ω). Finally, using the fact that t is a continuity point of Sε , we get
that Sε(tn) → Sε(t), and thus ‖ρε(tn)‖W 1,p(Ω) → ‖ρε(t)‖W 1,p(Ω). We then deduce that ρε(tn) → ρε(t) strongly in
W 1,p(Ω).

It now remains to show that ρε is continuous at t = 0. Let tn ↓ 0 be an arbitrary sequence. By Remark 4.6 we
have uε(tn) ⇀ u0 weakly in H 1(Ω). By Lemma 4.3, ρε ∈ L∞(0,+∞;W 1,p(Ω)), and we can extract a (not rela-
beled) subsequence such that ρε(tn) ⇀ ρ∗ weakly in W 1,p(Ω) for some ρ∗ ∈ W 1,p(Ω). According to the energy
inequality (4.11) proved in Lemma 4.2, we have Eε(uk(tn), ρk(tn)) � Eε(u0, ρ

ε
0) for all n ∈ N and all k ∈ N. Now

we apply Lemma 3.1 to pass to the limit first as k → ∞ and then as n → ∞, which yields Eε(u0, ρ∗) � Eε(u0, ρ
ε
0).

From the minimality property (3.1) satisfied by ρε
0 , we deduce that Eε(u0, ρ∗) = Eε(u0, ρ

ε
0). By uniqueness of the

solution of the minimization problem (3.1), we have ρ∗ = ρε
0 . Moreover, we infer from the discussion above that

limn Eε(uε(tn), ρε(tn)) = Eε(u0, ρ
ε
0), which implies that ρε(tn) → ρε

0 strongly in W 1,p(Ω) by Lemma 3.1. This con-
vergence holds for the full sequence {tn} by uniqueness of the limit. �
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Thanks to the just established continuity of t �→ ρε(t), we deduce that ρ−
ε and ρε actually coincide almost every-

where in time whenever (4.1) holds.

Corollary 4.10. There exists an L 1-negligible set Mε ⊂ [0,+∞) such that ρ−
ε (t) = ρε(t) for every t ∈

[0,+∞) \ Mε .

Proof. Let us consider the function �k : [0,+∞) → [0,+∞) defined by

�k(t) :=
⎧⎨⎩0 if t ∈ [0, t1

k ],
t i−1
k + δi

k

δi+1
k

(t − t ik) if t ∈ (t ik, t
i+1
k ] with i � 1.

(4.24)

Notice that

sup
t�0

∣∣�k(t) − t
∣∣� 3|δk| −→

k→∞ 0.

Setting

ρk
ε (t) := ρε

(
�k(t)
)
,

we infer from Lemma 4.9 that ρk
ε (t) → ρε(t) strongly in L1(Ω) for every t ∈ [0,+∞) \ Rε . Since 0 � ρε � 1, by

dominated convergence we have ρk
ε → ρε strongly in L1(0, T ;L1(Ω)) for every T > 0. Similarly, by (3.5) we have

that ρk → ρε and ρ−
k → ρ−

ε strongly in L1(0, T ;L1(Ω)) for every T > 0. Given T > 0 arbitrary, we estimate∥∥ρ−
ε − ρε

∥∥
L1(0,T ;L1(Ω))

�
∥∥ρ−

ε − ρ−
k

∥∥
L1(0,T ;L1(Ω))

+ ∥∥ρ−
k − ρk

ε

∥∥
L1(0,T ;L1(Ω))

+ ∥∥ρk
ε − ρε

∥∥
L1(0,T ;L1(Ω))

−→
k→∞ 0.

Indeed, observing that ρ−
k (t) = ρk(�k(t)) and �k(t)� t , we deduce from (4.1) that

T∫
0

∥∥ρ−
k (t) − ρk

ε (t)
∥∥

L1(Ω)
dt =

T∫
δ1
k

∥∥ρk

(
�k(t)
)− ρε

(
�k(t)
)∥∥

L1(Ω)
dt

�
(

sup
i�1

δi+1
k

δi
k

) T∫
0

∥∥ρk(t) − ρε(t)
∥∥

L1(Ω)
dt −→

k→∞ 0.

Hence ‖ρ−
ε − ρε‖L1(0,T ;L1(Ω)) = 0 for every T > 0, whence ρ−

ε (t) = ρε(t) for all t ∈ [0,+∞) \ Mε for some
L 1-negligible set Mε ⊂ [0,+∞). �
4.3. Time continuity for uε and the bulk energy

We start proving that uε solves the inhomogeneous heat equation.

Proposition 4.11. The function uε ∈ AC2([0,+∞);L2(Ω)) solves⎧⎪⎪⎨⎪⎪⎩
u′

ε = div
((

ηε + ρ2
ε

)∇uε

)− β(uε − g) in L2(0,+∞;L2(Ω)
)
,

∂uε

∂ν
= 0 in L2(0,+∞;H 1/2(∂Ω)

)
,

uε(0) = u0.

(4.25)

Proof. In view of (4.12), uk satisfies

T∫ ∫ (
v′
kϕ + (ηε + ρ2

k

)∇uk · ∇ϕ + β(uk − g)ϕ
)
dx dt = 0
0 Ω
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for every ϕ ∈ L2(0, T ;H 1(Ω)) and T > 0. Using the convergences established in Lemmas 4.3 and 4.5, we can pass
to the limit k → ∞ in the previous formula to derive

T∫
0

∫
Ω

(
u′

εϕ + (ηε + ρ2
ε

)∇uε · ∇ϕ + β(uε − g)ϕ
)
dx dt = 0.

The proof of (4.25) is now an immediate consequence of the previous variational formulation together with
Lemma 4.5, items (i) and (iv). �

We are now in position to prove the decrease of the bulk energy Bε .

Proposition 4.12. Let t0 > 0 and set ρ
t0
ε (t) := ρε(t + t0). For any w0 ∈ H 1(Ω)∩L∞(Ω) there exists a unique solution

wε ∈ AC2([0,+∞);L2(Ω)) ∩ L∞(0,+∞;H 1(Ω)) of⎧⎪⎨⎪⎩
w′

ε = div
((

ηε + (ρt0
ε

)2)∇wε

)− β(wε − g) in L2
loc

([0,+∞);H−1(Ω)
)
,(

ηε + (ρt0
ε

)2)∇wε · ν = 0 in L2
loc

([0,+∞);H−1/2(∂Ω)
)
,

wε(0) = w0,

(4.26)

and wε satisfies the following energy inequality for every t � 0,

1

2

∫
Ω

(
ηε + (ρt0

ε (t)
)2)∣∣∇wε(t)

∣∣2 dx + β

2

∫
Ω

(
wε(t) − g

)2
dx

� 1

2

∫
Ω

(
ηε + ρ2

ε (t0)
)|∇w0|2 dx + β

2

∫
Ω

(w0 − g)2 dx. (4.27)

In particular, for any t0 > 0 the function uε( · + t0) is the unique solution of (4.26) with initial datum w0 := uε(t0).
As a consequence, the bulk energy Bε defined in (4.6) is non-increasing on [0,+∞), and thus continuous outside an
(at most) countable subset Bε of [0,+∞).

Proof. Step 1. Uniqueness. Let wε,1 and wε,2 be two solutions of (4.26), and set zε := wε,1 − wε,2. Then zε(0) = 0.
The variational formulation of (4.26) implies that for any T > 0 and any test function φ ∈ L2(0, T ;H 1(Ω)),

T∫
0

∫
Ω

(
z′
εφ + (ηε + (ρt0

ε

)2)∇zε · ∇φ + βzεφ
)
dx dt = 0.

Choosing φ(t) := zε(t)χ[0,T ](t) as test function above yields

T∫
0

∫
Ω

z′
εzε dx dt � 0 for every T > 0.

On the other hand, since zε ∈ AC2([0,+∞);L2(Ω)), we have ‖zε(·)‖2
L2(Ω)

∈ AC([0,+∞)) and

d

dt

∥∥zε(t)
∥∥2

L2(Ω)
= 2
∫
Ω

z′
ε(t)zε(t) dx for a.e. t ∈ (0,+∞).

Therefore,

0 �
T∫

0

∫
Ω

z′
εzε dx dt = 1

2

∥∥zε(T )
∥∥2

L2(Ω)
for every T > 0,

which shows that zε ≡ 0, i.e., wε,1 = wε,2.
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Step 2. Existence. For what concerns existence, we reproduce a minimizing movement scheme as before. More pre-
cisely, given a sequence τk ↓ 0, we set τ i

k := iτk for i ∈ N. Taking w0
k := w0, we define recursively for all integer

i � 1, wi
k ∈ H 1(Ω) as the unique solution of the minimization problem

min
v∈H 1(Ω)

{
1

2

∫
Ω

(
ηε + (ρt0

ε

(
t i−1
k

))2)|∇v|2 dx + β

2

∫
Ω

(v − g)2 dx + 1

2τk

∫
Ω

(
v − wi−1

k

)2
dx

}
.

Using the minimality of wi
k at each step and the fact that 0 � ρ

t0
ε (τ i

k) � ρ
t0
ε (τ i−1

k ), we obtain that for every integer
i � 1,

1

2

∫
Ω

(
ηε + (ρt0

ε

(
τ i−1
k

))2)∣∣∇wi
k

∣∣2 dx + β

2

∫
Ω

(
wi

k − g
)2

dx +
i∑

j=1

1

2τk

∫
Ω

(
w

j
k − w

j−1
k

)2
dx

� 1

2

∫
Ω

(
ηε + ρ2

ε (t0)
)|∇w0|2 dx + β

2

∫
Ω

(w0 − g)2 dx. (4.28)

Let us now define the following piecewise constant and piecewise affine interpolations. Set wk(0) = ŵk(0) = w0, and
for t ∈ (τ i−1

k , τ i
k],⎧⎪⎨⎪⎩

wk(t) := wi
k,

�
t0
k (t) := ρt0

ε

(
τ i−1
k

)
,

ŵk(t) := wi−1
k + τ−1

k

(
t − τ i−1

k

)(
wi

k − wi−1
k

)
.

By Lemma 4.9, we have �
t0
k (t) → ρ

t0
ε (t) strongly in W 1,p(Ω) for all t ∈ [0,+∞) \ (−t0 +Rε). Arguing exactly as in

the proof of Lemma 4.5 we prove that (for a suitable subsequence) wk(t) ⇀ wε(t) weakly in H 1(Ω) for every t � 0
and ŵ′

k ⇀ w′
ε weakly in L2(0,+∞;L2(Ω)), for some wε ∈ AC2([0,+∞);L2(Ω)) ∩ L∞(0,+∞;H 1(Ω). Then we

can reproduce with minor modifications the proof of Proposition 4.11 to show that wε is a solution of (4.26).
Since 0 � ρ

t0
ε (t) � �

t0
k (t) and wk(t) → wε(t) strongly in L2(Ω) for every t � 0, we infer from (4.28) that for every

t � 0,

1

2

∫
Ω

(
ηε + ρ2

ε (t0)
)|∇w0|2 dx + β

2

∫
Ω

(w0 − g)2 dx

� lim inf
k→∞

(
1

2

∫
Ω

(
ηε + (ρt0

k (t)
)2)∣∣∇wk(t)

∣∣2 dx + β

2

∫
Ω

(
wk(t) − g

)2
dx

)

� 1

2

∫
Ω

(
ηε + (ρt0

ε (t)
)2)∣∣∇wε(t)

∣∣2 dx + β

2

∫
Ω

(
wε(t) − g

)2
dx,

and (4.27) is proved. �
Remark 4.13. We notice that the proof of Lemma 4.9 together with Remark 4.6 show that the function Bε is actually
continuous at time t = 0, i.e., 0 /∈ Bε .

As a consequence of Lemma 4.9 and Proposition 4.12, we obtain the strong continuity in H 1(Ω) of the mapping
t �→ uε(t) outside a countable subset of (0,+∞) containing the discontinuity points of Sε and Bε .

Corollary 4.14. The mapping uε : [0,+∞) → H 1(Ω) is strongly continuous on [0,+∞) \ (Rε ∪Bε).

Proof. Let us consider t0 ∈ [0,+∞) \ (Rε ∪ Bε) and {tn} ⊂ [0,+∞) an arbitrary sequence such that tn → t0. Since
t0 /∈ Rε ∪ Bε we have Bε(tn) → Bε(t0) and ρε(tn) → ρε(t0) strongly in W 1,p(Ω). Therefore Eε(uε(tn), ρε(tn)) →
Eε(uε(t0), ρε(t0)). On the other hand uε(tn) ⇀ uε(t0) weakly in H 1(Ω) by Remark 4.6, and the conclusion follows
from Lemma 3.1. �



798 J.-F. Babadjian, V. Millot / Ann. I. H. Poincaré – AN 31 (2014) 779–822
4.4. Strong convergences and limiting minimality

Thanks to the equation solved by uε , we are now able to improve the weak H 1(Ω)-convergence of the sequence
{uk(t)}k∈N into a strong convergence. We start proving that the bulk energy converges in time averages.

Lemma 4.15. For every t > s � 0,

lim
k→∞

t∫
s

∫
Ω

(
ηε + ρ2

k (r)
)∣∣∇uk(r)

∣∣2 dx dr =
t∫

s

∫
Ω

(
ηε + ρ2

ε (r)
)∣∣∇uε(r)

∣∣2 dx dr. (4.29)

Proof. Taking uk(r) as test function in the variational formulation of (4.12) and integrating in time between s and t

leads to
t∫

s

∫
Ω

(
ηε + ρ2

k (r)
)∣∣∇uk(r)

∣∣2 dx dr = −
t∫

s

∫
Ω

v′
k(r)uk(r) dx dr − β

t∫
s

∫
Ω

(
uk(r) − g

)
uk(r) dx dr.

From Lemma 4.5 we have uk → uε strongly in L2
loc([0,+∞);L2(Ω)) and v′

k ⇀ u′
ε weakly in L2(0,+∞;L2(Ω)).

Therefore,

lim
k→∞

t∫
s

∫
Ω

(
ηε + ρ2

k (r)
)∣∣∇uk(r)

∣∣2 dx dt = −
t∫

s

∫
Ω

u′
ε(r)uε(r) dx dr − β

t∫
s

∫
Ω

(
uε(r) − g

)
uε(r) dx dr.

On the other hand, according to Eq. (4.25) solved by uε , we have

−
t∫

s

∫
Ω

u′
ε(r)uε(r) dx dr − β

t∫
s

∫
Ω

(
uε(r) − g

)
uε(r) dx dr =

t∫
s

∫
Ω

(
ηε + ρ2

ε (r)
)∣∣∇uε(r)

∣∣2 dx dr,

which leads to (4.29). �
Starting from Lemma 4.15, we now localize in time the convergence of the sequence {∇uk}k∈N by showing that

∇uk(t) → ∇uε(t) strongly in L2(Ω) at every continuity times t of the bulk energy Bε . The proof is inspired from
[13, Lemma 5].

Lemma 4.16. For every t ∈ [0,+∞) \Bε , uk(t) → uε(t) strongly in H 1(Ω).

Proof. Let t0 ∈ [0,+∞) \ Bε . Since Bε is continuous at t0, for every α > 0 there exists δα > 0 such that Bε(t) �
Bε(t0) + α for all t ∈ [t0 − δα, t0].

Let us fix α > 0 arbitrary. Since Eε(u
i
k, ρ

i
k) � Eε(u

i−1
k , ρi

k) and ρi
k � ρi−1

k in Ω for each integers k and i � 1, we
infer that the function

t �→ 1

2

∫
Ω

(
ηε + ρ2

k (t)
)∣∣∇uk(t)

∣∣2 dx + β

2

∫
Ω

(
uk(t) − g

)2
dx

is non-increasing on [0,+∞), and thus

δα

(
1

2

∫
Ω

(
ηε + ρ2

k (t0)
)∣∣∇uk(t0)

∣∣2 dx + β

2

∫
Ω

(
uk(t0) − g

)2
dx

)

�
t0∫

t0−δα

(
1

2

∫
Ω

(
ηε + ρ2

k (t)
)∣∣∇uk(t)

∣∣2 dx + β

2

∫
Ω

(
uk(t) − g

)2
dx

)
dt.

By Lemma 4.15 and the strong convergence of uk to uε in L2 ([0,+∞);L2(Ω)), we infer that
loc
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δα lim sup
k→∞

(
1

2

∫
Ω

(
ηε + ρ2

k (t0)
)∣∣∇uk(t0)

∣∣2 dx + β

2

∫
Ω

(
uk(t0) − g

)2
dx

)

� lim
k→∞

t0∫
t0−δα

(
1

2

∫
Ω

(
ηε + ρ2

k (t)
)∣∣∇uk(t)

∣∣2 dx + β

2

∫
Ω

(
uk(t) − g

)2
dx

)
dt

=
t0∫

t0−δα

Bε(t) dt �
(
Bε(t0) + α

)
δα.

Dividing the previous inequality by δα and using the strong convergence of uk(t0) in L2(Ω), we derive in view of the
arbitrariness of α that

lim sup
k→∞

∫
Ω

(
ηε + ρ2

k (t0)
)∣∣∇uk(t0)

∣∣2 dx �
∫
Ω

(
ηε + ρ2

ε (t0)
)∣∣∇uε(t0)

∣∣2 dx.

As in the proof of Lemma 3.1 we obtain∫
Ω

(
ηε + ρ2

ε (t0)
)∣∣∇uε(t0)

∣∣2 dx � lim inf
k→∞

∫
Ω

(
ηε + ρ2

k (t0)
)∣∣∇uk(t0)

∣∣2 dx.

Combining the last two inequalities we conclude

lim
k→∞

∫
Ω

(
ηε + ρ2

k (t0)
)∣∣∇uk(t0)

∣∣2 dx =
∫
Ω

(
ηε + ρ2

ε (t0)
)∣∣∇uε(t0)

∣∣2 dx. (4.30)

Finally, using (4.30), the weak convergence of ρk(t0) to ρε(t0) in W 1,p(Ω), and the weak convergence of uk(t0) to
uε(t0) in H 1(Ω), we can argue as in the proof of Lemma 3.1 to show that uk(t0) → uε(t0) strongly in H 1(Ω). �

We now derive the (strong) minimality property for ρε(t) at all times, and as a byproduct, the W 1,p(Ω)-convergence
of {ρk(t)}k∈N at all continuity points of the bulk energy. We would like to stress that the proof of the minimality prop-
erty of ρε strongly relies on the fact that the surface energy in the Ambrosio–Tortorelli functional has p-growth with
p > N (which ensures the convergence of the underlying obstacle problems).

Proposition 4.17. For every t � 0 the function ρε(t) satisfies

Eε

(
uε(t), ρε(t)

)
� Eε

(
uε(t), ρ

)
for all ρ ∈ W 1,p(Ω) such that ρ � ρε(t) in Ω. (4.31)

In addition, if t ∈ [0,+∞) \Bε then

ρε(t) = argmin
{
Eε

(
uε(t), ρ

)
: ρ ∈ W 1,p(Ω) such that ρ � ρ−

ε (t) in Ω
}
, (4.32)

and ρk(t) → ρε(t) strongly in W 1,p(Ω).

Proof. Let us fix an arbitrary t � 0. Since uk(t) ⇀ uε(t) weakly in H 1(Ω), we can find a (not relabeled) subsequence
and a nonnegative Radon measure μ ∈ M (RN) supported in Ω such that∣∣∇uk(t)

∣∣2L N Ω ⇀
∣∣∇uε(t)

∣∣2L N Ω + μ

weakly* in M (RN). Then we consider the functionals Fk and F defined on W 1,p(Ω) by

Fk(ρ) :=
{
Eε

(
uk(t), ρ

)
if ρ � ρ−

k (t),

+∞ otherwise,
and F(ρ) :=

⎧⎪⎨⎪⎩
Eε

(
uε(t), ρ

)+ 1

2

∫
Ω

(
ηε + ρ2)dμ if ρ � ρ−

ε (t),

+∞ otherwise.

Note that by the Sobolev Imbedding W 1,p(Ω) ↪→ C 0(Ω), the functional F is well defined on the space W 1,p(Ω).
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Step 1. We claim that FkΓ -converges to F for the sequential weak W 1,p(Ω)-topology. For what concerns the
lower bound, if {ρ̂k} ⊂ W 1,p(Ω) is such that lim infk Fk(ρ̂k) < ∞ and ρ̂k ⇀ ρ̂ weakly in W 1,p(Ω), then for a
subsequence {kj } we have limj Fkj

(ρ̂kj
) = lim infk Fk(ρ̂k), and ρ̂kj

→ ρ̂ in C 0(Ω) by the compact imbedding
W 1,p(Ω) ↪→ C 0(Ω). Consequently ρ̂ � ρ−

ε (t) in Ω , and∫
Ω

ρ̂2
kj

∣∣∇ukj
(t)
∣∣2 dx →

∫
Ω

ρ̂2
∣∣∇uε(t)

∣∣2 dx +
∫
Ω

ρ̂2 dμ.

Since the remaining terms in the energy Fk are independent of k and lower semicontinuous for the weak
W 1,p(Ω)-convergence, we deduce that

F(ρ̂) � lim inf
k→∞ Fk(ρ̂k).

To show the upper bound, it is enough to consider ρ̂ ∈ W 1,p(Ω) satisfying ρ̂ � ρ−
ε (t) in Ω . Let us set ρ̂δ := ρ̂ − δ

where δ > 0 is small. Since ρ−
k (t) → ρ−

ε (t) uniformly in Ω , we have ρ̂δ � ρ−
k (t) in Ω whenever k large enough

(depending only on δ). Hence,

lim
δ↓0

lim sup
k→∞

Fk(ρ̂δ) �F(ρ̂),

and we obtain from {ρ̂δ}δ>0 a suitable recovery sequence for ρ̂ through a diagonalization argument, which completes
the proof of the Γ -convergence.

Step 2. Since

ρk(t) = argmin
ρ∈W 1,p(Ω)

Fk(ρ),

and ρk(t) ⇀ ρε(t) weakly in W 1,p(Ω), we infer from Step 1 that

ρε(t) = argmin
ρ∈W 1,p(Ω)

F(ρ). (4.33)

Let us now fix an arbitrary ρ ∈ W 1,p(Ω) such that ρ � ρε(t) in Ω , and set ρ+ := ρ ∧ 0. Then ρ+ ∈ W 1,p(Ω),
0 � ρ+ � ρε(t) in Ω , and Eε(uε(t), ρ

+) � Eε(uε(t), ρ). Since ρ+ � ρε(t) � ρ−
ε (t) in Ω , we have F(ρε(t)) �F(ρ+)

which leads to

Eε

(
uε(t), ρε(t)

)
� Eε

(
uε(t), ρε(t)

)+ 1

2

∫
Ω

(
ρ2

ε (t) − (ρ+)2)dμ� Eε

(
uε(t), ρ

+)� Eε

(
uε(t), ρ

)
,

and (4.31) is proved.
Next we observe that if t ∈ [0,+∞) \ Bε , then μ = 0 by Lemma 4.16. Hence F(ρ) = Eε(uε(t), ρ) for every

ρ ∈ W 1,p(Ω) such that ρ � ρ−
ε (t) in Ω , and (4.32) is a consequence of (4.33). From the Γ -convergence of Fk to F

we also have minFk → minF , and thus

Eε

(
uk(t), ρk(t)

) −→
k→∞Eε

(
uε(t), ρε(t)

)
,

and the strong convergence in W 1,p(Ω) of ρk(t) follows from Lemma 3.1. �
4.5. Energy inequality

We are now in position to establish the Lyapunov type inequality between almost every two arbitrary times. The
argument below is inspired from [13, Proposition 3]. It formally consists in taking u′

ε as test function in the variational
formulation of (4.25). Since we do not have enough time regularity, we will make this argument rigorous by working
at the time-discrete level and approximating u′

ε by a sequence of smooth functions.
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Proposition 4.18. For every s ∈ [0,+∞) \Bε and every t � s,

Eε

(
uε(t), ρε(t)

)+ t∫
s

∥∥u′
ε(r)
∥∥2

L2(Ω)
dr � Eε

(
uε(s), ρε(s)

)
.

Proof. Let us fix φ ∈ C ∞
c (Ω × (0, T )) arbitrary. We define for each integers k � 0 and i � 0,

φi
k(x) := 1

δi+1
k

ti+1
k∫

t ik

φ(x, r) dr.

At a step i + 1, we can test the minimality of the pair (ui+1
k , ρi+1

k ) against the competitor (ui
k + δi+1

k φi
k, ρ

i
k). It yields

Eε

(
ui+1

k , ρi+1
k

)+ 1

2δi+1
k

∥∥ui+1
k − ui

k

∥∥2
L2(Ω)

� Eε

(
ui

k, ρ
i
k

)+ δi+1
k

∫
Ω

[(
ηε + (ρi

k

)2)∇ui
k · ∇φi

k + β
(
ui

k − g
)
φi

k + (φi
k)

2

2

]
dx

+ (δi+1
k

)2 ∫
Ω

(∣∣∇φi
k

∣∣2 + β
(
φi

k

)2)
dx.

According to Jensen’s inequality, we get that

Eε

(
ui+1

k , ρi+1
k

)+ 1

2δi+1
k

∥∥ui+1
k − ui

k

∥∥2
L2(Ω)

� Eε

(
ui

k, ρ
i
k

)+ t i+1
k∫

t ik

∫
Ω

[(
ηε + (ρi

k

)2)∇ui
k · ∇φ + β

(
ui

k − g
)
φ + φ2

2

]
dx dr

+ |δk|
t i+1
k∫

t ik

∫
Ω

(|∇φ|2 + βφ2)dx dr.

Let us consider the time-shift function �k : [0,+∞) → [0,+∞) defined in (4.24). Setting u−
k (t) := uk(�k(t)) we

rewrite the previous inequality as

Eε

(
ui+1

k , ρi+1
k

)+ 1

2

t i+1
k∫

t ik

∥∥v′
k(r)
∥∥2

L2(Ω)
dr

� Eε

(
ui

k, ρ
i
k

)+ t i+1
k∫

t ik

∫
Ω

[(
ηε + (ρ−

k

)2)∇u−
k · ∇φ + β

(
u−

k − g
)
φ + φ2

2

]
dx dr

+ |δk|
t i+1
k∫

t ik

∫
Ω

(|∇φ|2 + βφ2)dx dr. (4.34)

Let us now fix s ∈ (0,+∞) \ Bε and t � s. Given k, we consider the two integers j � i � 1 such that s ∈ (t i−1
k , t ik]

and t ∈ (t
j−1

, t
j ]. Iterating estimate (4.34), we are led to
k k
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Eε

(
uk(t), ρk(t)

)+ 1

2

t
j
k∫

t ik

∥∥v′
k(r)
∥∥2

L2(Ω)
dr

� Eε

(
uk(s), ρk(s)

)+ t
j
k∫

t ik

∫
Ω

[(
ηε + (ρ−

k

)2)∇u−
k · ∇φ + β

(
u−

k − g
)
φ + φ2

2

]
dx dr

+ |δk|
T∫

0

∫
Ω

(|∇φ|2 + βφ2)dx dr. (4.35)

As in estimate (4.20), we have∥∥u−
k (r) − uε(r)

∥∥
L2(Ω)

� C
√|δk| +

∥∥vk(r) − uε(r)
∥∥

L2(Ω)
−→
k→∞ 0

for every r � 0. On the other hand, supr�0 ‖u−
k (r)‖H 1(Ω) < ∞ by Lemma 4.2. Therefore u−

k (r) ⇀ uε(r) weakly in
H 1(Ω) for every r � 0. Since ρ−

ε (r) = ρε(r) for a.e. r � 0 by Corollary 4.10, we infer that ρ−
k (r) ⇀ ρε(r) weakly

in W 1,p(Ω) for a.e. r � 0. In particular, ρ−
k (r) → ρε(r) uniformly in Ω for a.e. r � 0. Using those convergences,

the uniform bound 0 � ρ−
k � 1, Lemma 3.1, Lemma 4.16, and Proposition 4.17, we can pass to the limit in k in

inequality (4.35) (invoking Lebesgue’s dominated convergence theorem) to get

Eε

(
uε(t), ρε(t)

)+ 1

2

t∫
s

∥∥u′
ε(r)
∥∥2

L2(Ω)
dr

� Eε

(
uε(s), ρε(s)

)+ t∫
s

∫
Ω

[(
ηε + ρ2

ε

)∇uε · ∇φ + β(uε − g)φ + φ2

2

]
dx dr.

Using Eq. (4.25), we now infer that

Eε

(
uε(t), ρε(t)

)+ 1

2

t∫
s

∥∥u′
ε(r)
∥∥2

L2(Ω)
dr � Eε

(
uε(s), ρε(s)

)+ t∫
s

∫
Ω

[
−u′

εφ + φ2

2

]
dx dr.

By density, the previous inequality actually holds for any φ ∈ L2(0, T ;L2(Ω)). Choosing φ = u′
ε yields the an-

nounced energy inequality. �
5. Asymptotics for unilateral minimizing movements in the Mumford–Shah limit

The main goal of this section is to analyse the behavior of a unilateral minimizing movement as ε tends to zero. We
prove that in the limit ε → 0, we recover a parabolic type evolution for the Mumford–Shah functional under the irre-
versible growth constraint on the crack set similar to [13]. The result rests on the approximation of the Mumford–Shah
functional by the Ambrosio–Tortorelli functional by means of Γ -convergence proved in [5,6,29]. The main result of
this section is the following theorem.

Theorem 5.1. Let εn ↓ 0 be an arbitrary sequence, u0 ∈ H 1(Ω) ∩ L∞(Ω), and ρ
εn

0 determined by (3.1). Let
{(uεn, ρεn)}n∈N be a sequence in GUMM(u0, ρ

εn

0 ). Then there exist a (not relabeled) subsequence and u ∈
AC2([0,+∞);L2(Ω)) such that⎧⎪⎨⎪⎩

ρεn(t) → 1 strongly in Lp(Ω) for every t � 0,

uεn(t) → u(t) strongly in L2(Ω) for every t � 0,

u′ ⇀ u′ weakly in L2(0,+∞;L2(Ω)
)
.

(5.1)
εn
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For every t � 0 the function u(t) belongs to SBV 2(Ω) ∩ L∞(Ω) with∥∥u(t)
∥∥

L∞(Ω)
� max

{‖u0‖L∞(Ω),‖g‖L∞(Ω)

}
, (5.2)

and ∇u ∈ L∞(0,+∞;L2(Ω;RN)). Moreover u solves⎧⎪⎨⎪⎩
u′ = div(∇u) − β(u − g) in L2(0,+∞;L2(Ω)

)
,

∇u · ν = 0 in L2(0,+∞;H−1/2(∂Ω)
)
,

u(0) = u0,

and there exists a family of countably H N−1-rectifiable subsets {Γ (t)}t�0 of Ω such that

(i) Γ (s) ⊂ Γ (t) for every 0 � s � t ;
(ii) Ju(t) ⊂̃Γ (t) for every t � 0;

(iii) for every t � 0,

1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Γ (t)

)+ β

2

∫
Ω

(
u(t) − g

)2
dx +

t∫
0

∥∥u′(s)
∥∥2

L2(Ω)
ds

� 1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx.

This section is thus essentially devoted to the proof of this theorem. To this purpose, we consider for the rest of the
section a sequence εn ↓ 0, and an arbitrary sequence {(uεn, ρεn)}n∈N in GUMM(u0, ρ

ε
0).

5.1. Compactness and the limiting heat equation

We start by proving compactness properties for the sequence {(uεn, ρεn)}n∈N.

Proposition 5.2. There exist a (not relabeled) subsequence {uεn}n∈N and a function u ∈ AC2([0,+∞);L2(Ω)) such
that (5.1) holds. In addition, u(t) ∈ SBV 2(Ω) ∩ L∞(Ω) with (5.2) for every t � 0, and the mapping t �→ ∇u(t) ∈
L2(Ω;RN) is strongly measurable with ∇u ∈ L∞(0,+∞;L2(Ω;RN)). Moreover, for every t � 0 and any 0 <

δ1 < δ2 < 1, there exists sn = sn(t, δ1, δ2) ∈ (δ1, δ2) such that the set En := {ρεn(t) < sn} has finite perimeter in Ω ,
ũεn(t) := (1 − χEn)uεn(t) ∈ SBV 2(Ω) ∩ L∞(Ω), and⎧⎪⎨⎪⎩

ũεn(t) → u(t) strongly in L2(Ω),

ũεn(t) ⇀ u(t) weakly* in L∞(Ω),

∇ũεn(t) ⇀ ∇u(t) weakly L2
(
Ω;RN

)
.

Finally, for any open subset A ⊂ Ω ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H N−1(Ju(t) ∩ A) � lim inf

n→∞
p

2

∫
A

(
1 − ρεn(t)

)p−1∣∣∇ρεn(t)
∣∣dx,

∫
A

∣∣∇u(t)
∣∣2 dx � lim inf

n→∞

∫
A

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx.

(5.3)

Proof. Step 1. We first derive a priori estimates from the energy inequality obtained in Proposition 4.18. Indeed
according to that result together with the minimality property (3.1) of ρ

εn

0 , we infer that for every t � 0,

1

2

∫ (
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx + ε
p−1
n

p

∫ ∣∣∇ρεn(t)
∣∣p dx + α

p′εn

∫ (
1 − ρεn(t)

)p
dx
Ω Ω Ω
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+
t∫

0

∥∥u′
εn

(s)
∥∥2

L2(Ω)
ds � Eεn

(
u0, ρ

εn

0

)
� Eεn(u0,1) �

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx. (5.4)

Then, applying Young’s inequality and using (2.2), we obtain

ε
p−1
n

p

∫
Ω

∣∣∇ρεn(t)
∣∣p dx + α

p′εn

∫
Ω

(
1 − ρεn(t)

)p
dx � p

2

∫
Ω

(
1 − ρεn(t)

)p−1∣∣∇ρεn(t)
∣∣dx, (5.5)

from which we deduce the following uniform bound∥∥u′
εn

∥∥2
L2(0,+∞;L2(Ω))

+
∫
Ω

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx +
∫
Ω

(
1 − ρεn(t)

)p−1∣∣∇ρεn(t)
∣∣dx � C0, (5.6)

for some constant C0 > 0 independent of εn and t .

Step 2. We now establish the weak convergence of {uεn} and the bound (5.2). Recalling that 0 � ρεn � 1, the fact that

ρε(t) → 1 strongly in Lp(Ω) for every t � 0,

is a direct consequence of (5.4). According to items (v) and (ii) in Lemma 4.5, the sequence {uεn} in uniformly
equi-continuous in L2(Ω), and for each t ∈ [0,+∞), the sequence {uεn(t)} is sequentially weakly relatively com-
pact in L2(Ω). Therefore, according to Ascoli–Arzela Theorem, we can find a (not relabeled) subsequence and
u ∈ AC2([0,+∞);L2(Ω)) such that uεn(t) ⇀ u(t) weakly in L2(Ω) (and also weakly* in L∞(Ω)) for every t � 0,
and u′

εn
⇀ u′ weakly in L2(0,+∞;L2(Ω)). In particular, (5.2) follows from item (ii) in Lemma 4.5.

Step 3. We now examine more accurately the asymptotic behavior of the sequence {uεn} as in [5,6,29], and prove (5.3).
Let us fix t � 0, 0 < δ1 < δ2 < 1 and an arbitrary open subset A of Ω . According to the BV -coarea formula (see [3,
Theorem 3.40]),

∫
A

(
1 − ρεn(t)

)p−1∣∣∇ρεn(t)
∣∣dx =

1∫
0

(1 − s)p−1H N−1(∂∗{ρεn(t) < s
}∩ A
)
ds

�
δ2∫

δ1

(1 − s)p−1H N−1(∂∗{ρεn(t) < s
}∩ A
)
ds. (5.7)

Consequently, by the mean value theorem there exists some sn = sn(t, δ1, δ2,A) ∈ (δ1, δ2) such that∫
A

(
1 − ρεn(t)

)p−1∣∣∇ρεn(t)
∣∣dx �

δ
p

2 − δ
p

1

p
H N−1(∂∗En ∩ A

)
, (5.8)

where En := {ρεn(t) < sn} ∩ A. Note that from (5.4) we have

L N(En) �
1

(1 − sn)p

∫
Ω

(
1 − ρεn(t)

)p
dx � Cεn

(1 − δ2)p
→ 0 as n → ∞, (5.9)

for some constant C > 0 independent of n.
Let us define the new sequence

ũεn(t) := (1 − χEn)uεn(t). (5.10)

By (5.9) we have∥∥uεn(t) − ũεn(t)
∥∥

2 �
∥∥uεn(t)

∥∥ ∞
√

L N(En) → 0 (5.11)

L (A) L (Ω)
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as n → ∞, from which we deduce that ũεn(t) ⇀ u(t) weakly in L2(A). On the other hand, according to [3, Theo-
rem 3.84] we have ũεn(t) ∈ SBV 2(A) ∩ L∞(A) with⎧⎪⎨⎪⎩

Jũεn (t) ⊂̃ ∂∗En,

∇ũεn(t) = (1 − χEn)∇uεn(t),∥∥ũεn(t)
∥∥

L∞(A)
� max

{‖u0‖L∞(Ω),‖g‖L∞(Ω)

}
.

By the energy estimate (5.6) together with (5.7) and (5.8),∥∥∇ũεn(t)
∥∥2

L2(A;RN)
� 1

s2
n

∫
Ω

ρ2
εn

(t)
∣∣∇uεn(t)

∣∣2 dx � C0

δ2
1

,

and

H N−1(Jũεn (t) ∩ A) � H N−1(∂∗En ∩ A
)
� C0p

δ
p

2 − δ
p

1

.

We are now in position to apply Ambrosio’s compactness Theorem in SBV (see Theorems 4.7 and 4.8 in [3]) to
deduce that u(t) ∈ SBV 2(Ω) (by arbitrariness of A), and that⎧⎪⎨⎪⎩

ũεn(t) → u(t) strongly in L2(A),

ũεn(t) ⇀ u(t) weakly* in L∞(A),

∇ũεn(t) ⇀ ∇u(t) weakly L2(A;RN
)
.

In view of (5.11) we deduce that uεn(t) → u(t) strongly in L2(Ω) for each t � 0 (again by arbitrariness of A). Next
Proposition 2.1 yields

2H N−1(Ju(t) ∩ A)� lim inf
n→∞ H N−1(∂∗En ∩ A

)
.

Combining this inequality with (5.8) we get that(
δ
p

2 − δ
p

1

)
H N−1(Ju(t) ∩ A) � lim inf

n→∞
p

2

∫
A

(
1 − ρεn(t)

)p−1∣∣∇ρεn(t)
∣∣dx,

and the first inequality of (5.3) follows by letting δ1 → 0 and δ2 → 1.
For what concerns the bulk energy, we have∫

A

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx � s2
n

∫
A\En

∣∣∇uεn(t)
∣∣2 dx � δ2

1

∫
A\En

∣∣∇uεn(t)
∣∣2 dx.

Since ũεn(t) = (1 − χEn)uεn(t), we have ∇ũεn(t) = (1 − χEn)∇uεn(t) ⇀ ∇u(t) weakly in L2(A;RN), and thus

lim inf
n→∞

∫
A

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx � δ2
1 lim inf

n→∞

∫
A

∣∣∇ũεn(t)
∣∣2 dx � δ2

1

∫
A

∣∣∇u(t)
∣∣2 dx,

and the second inequality of (5.3) follows by letting δ1 → 1.

Step 4. It now remains to prove the strong measurability in L2(Ω;RN) of t �→ ∇u(t), and that ∇u ∈ L∞(0,+∞;
L2(Ω;RN)). Given t � 0 and 0 < δ1 < δ2 < 1 arbitrary, let us consider as in Step 3 the set En and the function
ũεn(t) ∈ SBV 2(Ω) given by (5.10) with A = Ω . Then,(

ηεn + ρ2
εn

(t)
)
(1 − χEn)∇uεn(t) = (ηεn + ρ2

εn
(t)
)∇ũεn(t).

Note that this last sequence is bounded in L2(Ω;RN). Since ρεn(t) → 1 strongly in Lp(Ω) with 0 � ρεn � 1, and
∇ũεn(t) ⇀ ∇u(t) weakly in L2(Ω;RN), we deduce that(

ηεn + ρ2
ε (t)
)
(1 − χEn)∇uεn(t) ⇀ ∇u(t) weakly in L2(Ω;RN

)
. (5.12)
n
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On the other hand, from the a priori estimate (5.6), the Cauchy–Schwarz inequality, and (5.9), we infer that for every
Φ ∈ C ∞

c (Ω;RN),∫
En

(
ηεn + ρ2

εn
(t)
)∇uεn(t) · Φ dx

� ‖Φ‖L∞(Ω;RN)

(∫
Ω

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx

)1/2(∫
En

(
ηεn + ρ2

εn
(t)
)
dx

)1/2

� ‖Φ‖L∞(Ω;RN)

√
C0(1 + ηεn)L

N(En) → 0. (5.13)

By (5.6) and the boundedness of ρεn , the sequence {(ηεn + ρεn(t)
2)∇uεn(t)} is thus bounded in L2(Ω;RN), so that

(5.12) and (5.13) yield(
ηεn + ρ2

εn
(t)
)∇uεn(t) ⇀ ∇u(t) weakly in L2(Ω;RN

)
. (5.14)

Finally, Lemmas 4.3 and 4.5 ensure that, for each n ∈ N, the mappings t �→ (ηεn + ρεn(t)
2)∇uεn(t) are strongly

measurable in L2(Ω;RN). Hence t �→ ∇u(t) is weakly measurable in L2(Ω;RN), and thus strongly measurable
owing to Pettis Theorem. The fact that ∇u ∈ L∞(0,+∞;L2(Ω;RN)) is a consequence of the second relation in
(5.3) together with the uniform bound (5.6). �

Our next goal is to pass to the limit as εn → 0 in the inhomogeneous heat equation solved by uεn .

Proposition 5.3. The function u solves the generalized heat equation⎧⎪⎨⎪⎩
u′ = div(∇u) − β(u − g) in L2(0,+∞;L2(Ω)

)
,

∇u · ν = 0 in L2(0,+∞;H−1/2(∂Ω)
)
,

u(0) = u0.

Proof. By Proposition 4.11, uεn is the solution of the following variational formulation: for every T > 0

T∫
0

∫
Ω

(
u′

εn
φ + (ηεn + ρ2

εn

)∇uεn · ∇φ + β(uεn − g)φ
)
dx dt = 0 for all φ ∈ L2(0, T ;H 1(Ω)

)
.

According to Proposition 5.2, u′
εn

+ β(uεn − g) ⇀ u′ + β(u − g) weakly in L2(0, T ;L2(Ω)), so that it remains to
pass to the limit in the divergence term. Thanks to (5.14), for a.e. t � 0 we have∫

Ω

(
ηεn + ρ2

εn
(t)
)∇uεn(t) · ∇φ(t) dx −→

n→∞

∫
Ω

∇u(t) · ∇φ(t) dx,

and by the dominated convergence theorem, we deduce that

T∫
0

∫
Ω

(
ηεn + ρ2

εn

)∇uεn · ∇φ dx dt −→
n→∞

T∫
0

∫
Ω

∇u · ∇φ dx dt.

Hence, passing to the limit as εn → 0 in the variational formulation yields

T∫
0

∫
Ω

(
u′φ + ∇u · ∇φ + β(u − g)φ

)
dx dt = 0 for all φ ∈ L2(0, T ;H 1(Ω)

)
.

Finally, the initial condition u(0) = u0 is a consequence of the fact that uεn(0) = u0 together with the strong conver-
gence in L2(Ω) of uεn(0) to u(0). �
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5.2. Limiting crack set and the energy inequality

Our main goal is now to pass to the limit as εn → 0 in the energy inequality established in Proposition 4.18. We
first notice that Theorem 2.2 and Proposition 5.2 (with A = Ω) immediately imply that for every t � 0,

E
(
u(t)
)= 1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Ju(t)) + β

2

∫
Ω

(
u(t) − g

)2
dx � lim inf

n→∞ Eεn

(
uεn(t), ρεn(t)

)
.

We emphasize that this lower bound only involves the measure of the jump set of u(t). It will be later improved
in Proposition 5.7 by replacing Ju(t) by a countably H N−1-rectifiable set Γ (t) containing Ju(t) and increasing with
respect to t . This monotonicity property of the crack acts as a memory of the irreversibility of the process characterized
by the non-increasing property of t �→ ρεn(t) together with the non-decreasing property of the diffuse surface energy
Sεn established in Proposition 4.8.

To prove the assertion above, we fix an arbitrary countable dense subset D of [0,+∞), and we consider for each
t ∈ D and n ∈N the bounded Radon measure

μn(t) :=
(

εn
p−1

p

∣∣∇ρεn(t)
∣∣p + α

p′εn

(
1 − ρεn(t)

)p)
L N Ω.

By the energy inequality (5.4), we infer that the sequences {μn(t)}n∈N are uniformly bounded with respect to t ∈ D.
Then, a standard diagonalization procedure together with the metrizability of bounded subsets of M (RN) yields the
existence of a subsequence (not relabeled) and a family of bounded nonnegative Radon measures {μ(t)}t∈D (supported
in Ω) such that

μn(t) ⇀ μ(t) weakly* in M
(
R

N
)

for every t ∈ D.

We first claim that the mapping t ∈ D �→ μ(t) inherits the increase of the diffuse surface energy.

Lemma 5.4. For every s and t ∈ D with 0 � s � t we have

μ(s) � μ(t).

Proof. Let us fix s and t ∈ D with 0 � s � t . Let B ⊂R
N be an arbitrary Borel set, and K ⊂ B ⊂ A where A is open

and K is compact. Let us consider a cut-off function ζ ∈ C ∞
c (RN ; [0,1]) such that ζ = 1 on K and ζ = 0 on R

N \ A,
and let us define

ρ̂n := ζρεn(t) + (1 − ζ )ρεn(s).

Note that ρ̂n ∈ W 1,p(Ω), and since t � s, we have ρ̂n � ρεn(s) in Ω . As a consequence of the minimality property
established in Proposition 4.8, we have∫

Ω

(
ε
p−1
n

p

∣∣∇ρεn(s)
∣∣p + α

p′εn

(
1 − ρεn(s)

)p)
dx �
∫
Ω

(
ε
p−1
n

p
|∇ρ̂n|p + α

p′εn

(1 − ρ̂n)
p

)
dx.

Since ∇ρ̂n = ζ∇ρεn(t) + (1 − ζ )∇ρεn(s) + (ρεn(t) − ρεn(s))∇ζ , there exists a constant C > 0 (independent of n)
such that∫

Ω

|∇ρ̂n|p dx

�
∫
Ω

∣∣ζ∇ρεn(t) + (1 − ζ )∇ρεn(s)
∣∣p

+ C

∫
Ω

|∇ζ |(ρεn(s) − ρεn(t)
)(

1 + ∣∣∇ρεn(t)
∣∣p−1 + ∣∣∇ρεn(s)

∣∣p−1 + |∇ζ |p−1
∣∣ρεn(t) − ρεn(s)

∣∣p−1)
dx

�
∫ (

ζ
∣∣∇ρεn(t)

∣∣p + (1 − ζ )
∣∣∇ρεn(s)

∣∣p)dx + C
(
1 + ∥∥∇ρεn(t)

∥∥p−1
Lp(Ω;RN)

+ ∥∥∇ρεn(s)
∥∥p−1

Lp(Ω;RN)

)
,

Ω
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where we used Hölder’s inequality and the fact that 0 � ρεn � 1. Hence,

μn(s)
(
R

N
)
�
∫
RN

ζ dμn(t) +
∫
RN

(1 − ζ ) dμn(s) + Cε
p−1
n

+ Cε
(p−1)/p
n

(∥∥ε(p−1)/p
n ∇ρεn(t)

∥∥p−1
Lp(Ω;RN)

+ ∥∥ε(p−1)/p
n ∇ρεn(s)

∥∥p−1
Lp(Ω;RN)

)
, (5.15)

and passing to the limit as n → ∞ yields

μ(s)
(
R

N
)
�
∫
RN

ζ dμ(t) −
∫
RN

ζ dμ(s) + μ(s)
(
R

N
)
.

From this inequality we deduce that

μ(s)(K) �
∫
RN

ζ dμ(s) �
∫
RN

ζ dμ(t)� μ(t)(A).

Taking the supremum among all compact sets K ⊂ B , the infimum among all open sets A ⊃ B , and using the outer-
inner regularity of the measures μ(s) and μ(t) leads to μ(s)(B) � μ(t)(B). �

We can now define a family of increasing cracks for times in the countable dense set D.

Lemma 5.5. There exists a family of countably H N−1-rectifiable subsets {Γ̂ (t)}t∈D of Ω such that

• Γ̂ (s) ⊂̃ Γ̂ (t) for every s � t with s, t ∈ D;
• Ju(s) ⊂̃ Γ̂ (t) for every t ∈ D and 0 � s � t ;
• μ(t)� H N−1 Γ̂ (t) for every t ∈ D.

Proof. For t ∈ D, let us define the upper density of μ(t) at x by

Θ∗(t, x) := lim sup
r→0

μ(t)(Br(x))

ωN−1rN−1
= lim sup

r→0

μ(t)(Br(x))

ωN−1rN−1

for all x ∈R
N , and the Borel set

K(t) := {x ∈ R
N : Θ∗(t, x) � 1

}⊂ Ω.

Note that the monotonicity property established in Lemma 5.4 ensures that D � t �→ Θ∗(t, x) is non-decreasing for
every x ∈ Ω . Consequently,

K(s) ⊂ K(t) for every 0 � s � t with s, t ∈ D.

Moreover, from standard properties of densities (see [3, Theorem 2.56]) we infer that for every t ∈ D,

H N−1 K(t) � μ(t). (5.16)

Let us now fix t ∈ D and s ∈ [0, t] (not necessarily in D), and let A and A′ ⊂ R
N be open sets such that A ⊂ A′.

We consider a cut-off function ζ ∈ C ∞
c (RN ; [0,1]) such that ζ = 1 on A ∩ Ω and ζ = 0 on R

N \ A′. Arguing exactly
as in the proof of Lemma 5.4, we obtain inequality (5.15) from which we deduce that

μn(s)(A) �
∫
RN

ζ dμn(s) �
∫
RN

ζ dμn(t) + Cε
(p−1)/p
n , (5.17)

for some constant C > 0 independent of n. By (5.5) and (5.3), we infer that

lim infμn(s)(A) � H N−1(Ju(s) ∩ A).

n→∞
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Passing to the limit in (5.17) then leads to

H N−1(Ju(s) ∩ A) �
∫
RN

ζ dμ(t)� μ(t)
(
A′).

Taking the infimum with respect to all open sets A′ containing A yields

μ(t)(A)� H N−1(Ju(s) ∩ A) for every open set A.

In particular, since Ju(s) is countably H N−1-rectifiable, we infer from the Besicovitch–Mastrand–Mattila Theorem
(see [3, Theorem 2.63]) that Θ∗(t, x) � 1 for H N−1 a.e. x ∈ Ju(s), and hence

Ju(s) ⊂̃K(t) for every s ∈ [0, t]. (5.18)

The Borel sets {K(t)}t∈D have all the required properties, except that they might not be countably H N−1-recti-
fiable. However, since H N−1(K(t)) < +∞ by (5.16), it is possible to decompose each K(t) into the union of a
countably H N−1-rectifiable set Γ̂ (t), and a purely H N−1-unrectifiable set K(t) \ Γ̂ (t) (see e.g. [3, page 83]). This
decomposition being unique up to H N−1-negligible sets, and Ju(s) being countably H N−1-rectifiable, we deduce
from (5.18) that

Ju(s) ⊂̃ Γ̂ (t) for every t ∈ D and s ∈ [0, t].
Moreover, for s, t ∈ D with s � t we have Γ̂ (s) ⊂ K(s) ⊂ K(t), and since Γ̂ (s) is countably H N−1-rectifiable we
finally conclude that Γ̂ (s) ⊂̃ Γ̂ (t). �

We now extend our definition of crack set for arbitrary times. We set for each t � 0,

Γ (t) :=
⋂

τ>t, τ∈D

Γ̂ (τ ) ∩ Ω.

Lemma 5.6. For every t � 0, the set Γ (t) is countably H N−1-rectifiable, and it satisfies

• Γ (s) ⊂ Γ (t) for every 0 � s � t ;
• Ju(t) ⊂̃Γ (t) for every t � 0.

Proof. Clearly {Γ (t)}t�0 is a family of countably H N−1-rectifiable sets satisfying Γ (s) ⊂ Γ (t) for every 0 � s � t .
Moreover, for t � 0 we have

H N−1(Ju(t) \ Γ (t)
)= H N−1

(
Ju(t) \

⋂
τ>t, τ∈D

Γ̂ (τ )

)

= H N−1
( ⋃

τ>t, τ∈D

(
Ju(t) \ Γ̂ (τ )

))
�
∑

τ>t, τ∈D

H N−1(Ju(t) \ Γ̂ (τ )
)= 0,

since Ju(t) ⊂̃ Γ̂ (τ ) for all τ ∈ D such that τ > t by Lemma 5.5. Consequently, Ju(t) ⊂̃Γ (t). �
We are now in position to improve the energy inequality by replacing the jump set of u(t) by the increasing family

of cracks Γ (t) constructed before.
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Proposition 5.7. For every t � 0,

1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Γ (t)

)+ β

2

∫
Ω

(
u(t) − g

)2
dx +

t∫
0

∥∥u′(s)
∥∥2

L2(Ω)
ds

� 1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx.

Proof. Step 1. We first consider the case t ∈ D. According to the energy inequality in Proposition 4.18, we have

1

2

∫
Ω

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2 dx + μn(t)
(
R

N
)+ β

2

∫
Ω

(
uεn(t) − g

)2
dx +

t∫
0

∥∥u′
εn

(s)
∥∥2

L2(Ω)
ds

� Eεn

(
u0, ρ

εn

0

)
.

Since μn(t) ⇀ μ(t) weakly* in M (RN) and μ(t) �H N−1 Γ̂ (t) by Lemma 5.5, we have

lim inf
n→∞ μn(t)

(
R

N
)
� μ(t)

(
R

N
)
�H N−1(Γ̂ (t)

)
.

On the other hand the second inequality in (5.3) with A = Ω yields

lim inf
n→∞

∫
Ω

(
ηεn + ρεn(t)

2)∣∣∇uεn(t)
∣∣2 dx �

∫
Ω

∣∣∇u(t)
∣∣2 dx.

Therefore,

1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Γ̂ (t)

)+ β

2

∫
Ω

(
u(t) − g

)2
dx +

t∫
0

∥∥u′(s)
∥∥2

L2(Ω)
ds

� lim inf
n→∞

{
1

2

∫
Ω

(
ηεn + ρεn(t)

2)∣∣∇uεn(t)
∣∣2 dx + μn(t)

(
R

N
)+ β

2

∫
Ω

(
uεn(t) − g

)2
dx +

t∫
0

∥∥u′
εn

(s)
∥∥2

L2(Ω)
ds

}
.

Then, by the minimality property (3.1) of ρ
εn

0 , we have

Eεn

(
u0, ρ

εn

0

)
� Eεn(u0,1)

= 1 + ηεn

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx → 1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx,

which leads to

1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Γ̂ (t)

)+ β

2

∫
Ω

(
u(t) − g

)2
dx +

t∫
0

∥∥u′(s)
∥∥2

L2(Ω)
ds

� 1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx. (5.19)

Step 2. We now extend the inequality above to the case where t � 0 is arbitrary. In that case, there exists a sequence
{tj } ⊂ D such that tj → t with tj > t . By (5.19) we have

sup
{∥∥u(tj )

∥∥
L∞(Ω)

+ ∥∥∇u(tj )
∥∥

L2(Ω;RN)
+ H N−1(Ju(tj ))

}
< ∞,
j∈N
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since Ju(tj ) ⊂̃ Γ̂ (tj ) by Lemma 5.5. On the other hand, u ∈ AC2(0,+∞;L2(Ω)) by Proposition 5.2, and thus u(tj ) →
u(t) strongly in L2(Ω). Applying Ambrosio’s compactness Theorem (Theorems 4.7 and 4.8 in [3]), we deduce that
∇u(tj ) ⇀ ∇u(t) weakly in L2(Ω;RN). Since Γ (t) ⊂ Γ̂ (tj ) for all j ∈N, we finally conclude that

1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Γ (t)

)+ β

2

∫
Ω

(
u(t) − g

)2
dx +

t∫
0

∥∥u′(s)
∥∥2

L2(Ω)
ds

� lim inf
j→∞

{
1

2

∫
Ω

∣∣∇u(tj )
∣∣2 dx + H N−1(Γ̂ (tj )

)+ β

2

∫
Ω

(
u(tj ) − g

)2
dx +

tj∫
0

∥∥u′(s)
∥∥2

L2(Ω)
ds

}
,

which, in view of (5.19), completes the proof of the energy inequality. �
Remark 5.8. Note that the limiting bulk and surface energies are continuous at time t = 0, i.e.,

lim
t↓0

1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + β

2

∫
Ω

(
u(t) − g

)2
dx = 1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx,

and

lim
t↓0

H N−1(Γ (t)
)= 0.

Indeed, arguing as in the previous proof (Step 2), we obtain that ∇u(t) ⇀ ∇u0 weakly in L2(Ω;RN) as t → 0. Since
u ∈ AC2(0,+∞;L2(Ω)), we then infer from the energy inequality that

1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx � lim sup
t→0

{
1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + H N−1(Γ (t)

)+ β

2

∫
Ω

(
u(t) − g

)2
dx

}

� lim sup
t→0

{
1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + β

2

∫
Ω

(
u(t) − g

)2
dx

}

� lim inf
t→0

{
1

2

∫
Ω

∣∣∇u(t)
∣∣2 dx + β

2

∫
Ω

(
u(t) − g

)2
dx

}

� 1

2

∫
Ω

|∇u0|2 dx + β

2

∫
Ω

(u0 − g)2 dx,

and the conclusion follows.

6. Curves of maximal unilateral slope for the Ambrosio–Tortorelli functional

In the spirit of [4], we introduce in this section the notion of L2(Ω)-unilateral gradient flow for the Ambrosio–
Tortorelli functional in terms of curves of maximal unilateral slope, accounting for the quasi-stationarity and the
decrease constraint on the phase field variable ρ. To this aim, we first define the unilateral slope of Eε by analogy
with the unilateral slope of the Mumford–Shah functional, see [20]. Then we prove that (generalized) unilateral min-
imizing movements provide specific examples of curves of maximal unilateral slope. We conclude this section with
a preliminary step toward the asymptotic behavior of the unilateral slope as ε → 0, and a discussion on the related
results of [20].

6.1. The maximal unilateral slope

Definition 6.1. The unilateral slope of Eε at (u,ρ) ∈ H 1(Ω) × W 1,p(Ω) is defined by

|∂Eε|(u,ρ) := lim sup
2

sup
ρ̂

{
(Eε(u,ρ) − Eε(v, ρ̂))+

‖v − u‖L2(Ω)

: ρ̂ ∈ W 1,p(Ω), ρ̂ � ρ in Ω

}
.

v→u in L (Ω)
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The functional |∂Eε| is then extended to L2(Ω) × Lp(Ω) by setting |∂Eε|(u,ρ) := +∞ for (u,ρ) /∈ H 1(Ω) ×
W 1,p(Ω).

The unilateral slope being defined, we can now define curves of maximal unilateral slope for the Ambrosio–
Tortorelli functional.

Definition 6.2. We say that a pair (u,ρ) : (a, b) → L2(Ω) × Lp(Ω) is a curve of maximal unilateral slope for Eε if
u ∈ AC2(a, b;L2(Ω)), ρ is non-increasing, and if there exists a non-increasing function λ : (a, b) → [0,+∞) such
that for a.e. t ∈ (a, b), Eε(u(t), ρ(t)) = λ(t), and

λ′(t) � −1

2

∥∥u′(t)
∥∥2

L2(Ω)
− 1

2
|∂Eε|2

(
u(t), ρ(t)

)
. (6.1)

This definition is motivated by the following proposition which parallels [4, Theorem 1.2.5].

Proposition 6.3. If (u,ρ) : (a, b) → L2(Ω) × Lp(Ω) is a curve of maximal unilateral slope for Eε , then∥∥u′(t)
∥∥

L2(Ω)
= |∂Eε|

(
u(t), ρ(t)

)
for a.e. t ∈ (a, b). (6.2)

Moreover, if t �→ Eε(u(t), ρ(t)) is absolutely continuous on (a, b), then

Eε

(
u(t), ρ(t)

)+ t∫
s

∥∥u′(r)
∥∥2

L2(Ω)
dr = Eε

(
u(s), ρ(s)

)
for every s and t ∈ (a, b) with s � t.

Proof. Let λ be as in Definition 6.2. Since λ is non-increasing, λ has finite pointwise variation in (a, b). Let us
consider the set

A := {t ∈ (a, b): Eε

(
u(t), ρ(t)

)= λ(t), λ and u are derivable at t
}
,

and observe that L 1((a, b) \ A) = 0.
Let t ∈ A. Since λ is non-increasing, we have λ′(t) � 0, and thus∣∣λ′(t)

∣∣= −λ′(t) = lim
s↓t, s∈A

λ(t) − λ(s)

s − t
= lim

s↓t, s∈A

Eε(u(t), ρ(t)) − Eε(u(s), ρ(s))

s − t
.

Using the fact that ρ(s) � ρ(t) when s > t (by the non-increasing property of t �→ ρ(t)) and the strong
L2(Ω)-continuity of u, we infer that

∣∣λ′(t)
∣∣� lim sup

s↓t s∈A

sup
ρ̂�ρ(t)

(Eε(u(t), ρ(t)) − Eε(u(s), ρ̂))+

‖u(s) − u(t)‖L2(Ω)

‖u(s) − u(t)‖L2(Ω)

s − t
� |∂Eε|

(
u(t), ρ(t)

)∥∥u′(t)
∥∥

L2(Ω)
.

On the other hand, |λ′(t)| � 1
2‖u′(t)‖2

L2(Ω)
+ 1

2 |∂Eε|2(u(t), ρ(t)) by (6.1), and (6.2) follows as well as the fact that

λ′(t) = −‖u′(t)‖2
L2(Ω)

. Finally, if t �→ Eε(u(t), ρ(t)) is absolutely continuous on (a, b), then for every s, t ∈ (a, b)

with s � t ,

Eε

(
u(t), ρ(t)

)− Eε

(
u(s), ρ(s)

)= t∫
s

λ′(r) dr = −
t∫

s

∥∥u′(r)
∥∥2

L2(Ω)
dr,

which completes the proof of the proposition. �
We state below necessary and sufficient conditions for the finiteness of the slope, as well as an explicit formula to

represent it.



J.-F. Babadjian, V. Millot / Ann. I. H. Poincaré – AN 31 (2014) 779–822 813
Proposition 6.4. Assume that Ω has a C 1,1-boundary, and let D(|∂Eε|) be the proper domain of |∂Eε|. Then,

D
(|∂Eε|

)= {(u,ρ) ∈ H 2(Ω) × W 1,p(Ω):
∂u

∂ν
= 0 in H 1/2(∂Ω), and

Eε(u,ρ) � Eε(u, ρ̂) for all ρ̂ ∈ W 1,p(Ω) such that ρ̂ � ρ in Ω

}
. (6.3)

In addition, for (u,ρ) ∈ D(|∂Eε|),
|∂Eε|(u,ρ) = ∥∥div

((
ηε + ρ2)∇u

)− β(u − g)
∥∥

L2(Ω)
,

and

‖u‖H 2(Ω) � Cε

(
1 + ‖∇ρ‖Lp(Ω;RN)

)γ (|∂Eε|(u,ρ) + β‖u − g‖L2(Ω) + ‖u‖H 1(Ω)

)
,

where γ ∈N is the smallest integer larger than or equal to p/(p − N), and Cε only depends on ηε , p, N , and Ω .

Proof. Step 1. Let us consider a pair (u,ρ) such that |∂Eε|(u,ρ) < ∞. For ϕ ∈ H 1(Ω) with ϕ �= 0, we estimate

|∂Eε|(u,ρ) � lim sup
δ↓0

Eε(u,ρ) − Eε(u − δϕ,ρ)

δ‖ϕ‖L2(Ω)

� 1

‖ϕ‖L2(Ω)

(∫
Ω

(
ηε + ρ2)∇u · ∇ϕ dx + β

∫
Ω

(u − g)ϕ dx

)
. (6.4)

By density of H 1(Ω) in L2(Ω) and the Riesz representation theorem in L2(Ω), we deduce that there exists f̃ ∈
L2(Ω) such that∫

Ω

(
ηε + ρ2)∇u · ∇ϕ dx + β

∫
Ω

(u − g)ϕ dx =
∫
Ω

f̃ ϕ dx

for all ϕ ∈ H 1(Ω). Hence u solves (A.1) with f = f̃ − β(u − g). We then infer from Lemma A.1 that u ∈ H 2(Ω),
and that ∂u

∂ν
= 0 in H 1/2(∂Ω). Next, taking ϕ ∈ H 1(Ω) such that ‖ϕ‖L2(Ω) = 1, integrating by parts in (6.4), and

passing to the supremum over all such ϕ’s yields the lower bound

|∂Eε|(u,ρ) �
∥∥div
((

ηε + ρ2)∇u
)− β(u − g)

∥∥
L2(Ω)

.

We now claim that the following minimality property for ρ holds:

Eε(u,ρ) � Eε(u, ρ̂) for all ρ̂ ∈ W 1,p(Ω) such that ρ̂ � ρ in Ω. (6.5)

Since |∂Eε|(u,ρ) < +∞ we can find sequences {vn} ⊂ H 1(Ω) and {ρn} ⊂ W 1,p(Ω) such that vn → u strongly in
L2(Ω),

ρn = argmin
{
Eε(vn, ρ̂): ρ̂ ∈ W 1,p(Ω), ρ̂ � ρ in Ω

}
for each n ∈N,

Eε(vn, ρn) � Eε(u,ρ), (6.6)

and

lim sup
n→∞

Eε(u,ρ) − Eε(vn, ρn)

‖vn − u‖L2(Ω)

� |∂Eε|(u,ρ). (6.7)

By (6.6) the sequence {∇vn} is uniformly bounded in L2(Ω;RN). Hence, for a suitable subsequence (not relabeled),

|∇vn|2L N Ω ⇀ |∇u|2L N Ω + μ

weakly* in M (RN) for some nonnegative Radon measure μ ∈ M (RN) supported in Ω . Let us now consider the
following functionals on W 1,p(Ω) defined by
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Fn(ρ̂) :=
{
Eε(vn, ρ̂) if ρ̂ � ρ,

+∞ otherwise,
and F(ρ̂) :=

⎧⎪⎨⎪⎩
Eε(u, ρ̂) + 1

2

∫
Ω

(
ηε + ρ̂2)dμ if ρ̂ � ρ,

+∞ otherwise.

A similar argument to the one used in the proof of Proposition 4.17 (Step 1) ensures that Fn Γ -converges to F for
the sequential weak W 1,p(Ω)-topology. Since the sublevel sets of Fn are relatively compact for the sequential weak
W 1,p(Ω)-topology (uniformly in n), we infer from the Γ -convergence of Fn towards F that

Eε(vn, ρn) = min
W 1,p(Ω)

Fn → min
W 1,p(Ω)

F .

On the other hand, by (6.6) and (6.7) we have Eε(vn, ρn) → Eε(u,ρ) from which we deduce that

Eε(u,ρ) = min
W 1,p(Ω)

F = min
{
F(ρ̂): ρ̂ ∈ W 1,p(Ω), ρ̂ � ρ in Ω

}
.

We conclude from this last relation that μ = 0 and that (6.5) holds.

Step 2. Conversely, we show that if a pair (u,ρ) belongs to the set in the right hand side of (6.3), then |∂Eε|(u,ρ) < ∞
and |∂Eε|(u,ρ) � ‖div((ηε + ρ2)∇u) − β(u − g)‖L2(Ω).

Consider a pair (u,ρ) ∈ H 2(Ω) × W 1,p(Ω) satisfying ∂u
∂ν

= 0 in H 1/2(∂Ω) and

Eε(u,ρ) � Eε(u, ρ̂)

for all ρ̂ ∈ W 1,p(Ω) such that ρ̂ � ρ in Ω . Note that u ∈ W 1,r (Ω) for every r � 2∗ by the Sobolev Imbedding, and
since p > N , the product ∇u · ∇ρ belongs to L2(Ω) and ρ ∈ L∞(Ω). Hence,

div
((

ηε + ρ2)∇u
)= (ηε + ρ2)�u + 2ρ∇ρ · ∇u ∈ L2(Ω),

and consequently, it is enough to check that

|∂Eε|(u,ρ) �
∥∥div
((

ηε + ρ2)∇u
)− β(u − g)

∥∥
L2(Ω)

.

Consider a sequence {vn} ⊂ H 1(Ω) converging strongly to u in L2(Ω) such that

|∂Eε|(u,ρ) = lim
n→∞ sup

{
(Eε(u,ρ) − Eε(vn, ρ̂))+

‖vn − u‖L2(Ω)

: ρ̂ ∈ W 1,p(Ω), ρ̂ � ρ in Ω

}
,

and let

ρn = argmin
{
Eε(vn, ρ̂): ρ̂ ∈ W 1,p(Ω) such that ρ̂ � ρ in Ω

}
.

Then

sup
ρ̂�ρ

(
Eε(u,ρ) − Eε(vn, ρ̂)

)+ �
(
Eε(u,ρ) − Eε(vn, ρn)

)+
,

so that

|∂Eε|(u,ρ) = lim
n→∞

(Eε(u,ρ) − Eε(vn, ρn))
+

‖vn − u‖L2(Ω)

. (6.8)

If for infinitely many n’s we have Eε(vn, ρn) > Eε(u,ρ), then |∂Eε|(u,ρ) = 0 and there is nothing to prove. Hence
we can assume without loss of generality that Eε(vn, ρn) � Eε(u,ρ). In particular, {ρn} is uniformly bounded in
W 1,p(Ω), and {vn} is uniformly bounded in H 1(Ω). As a consequence, for a subsequence vn ⇀ u weakly in H 1(Ω)

and ρn ⇀ ρ∗ weakly in W 1,p(Ω). From Lemma 3.1 we infer that ρ∗ � ρ in Ω , and

Eε(u,ρ∗)� lim inf
n→∞ Eε(vn, ρn) � lim sup

n→∞
Eε(vn, ρn)� Eε(u,ρ). (6.9)

By the minimality property of ρ, we have that Eε(u,ρ) � Eε(u,ρ∗) which leads to Eε(u,ρ) = Eε(u,ρ∗). By unique-
ness of the minimizer (due to the strict convexity of Eε(u, ·)), we deduce that ρ∗ = ρ. Then Lemma 3.1 and (6.9) with
ρ∗ = ρ shows that ρn → ρ strongly in W 1,p(Ω).
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We now estimate

Eε(u,ρ) − Eε(vn, ρn) � Eε(u,ρn) − Eε(vn, ρn)

�
∫
Ω

(
ηε + ρ2

n

)∇u · (∇u − ∇vn) dx + β

∫
Ω

(u − g)(u − vn) dx

= −
∫
Ω

(u − vn)
(
div
((

ηε + ρ2
n

)∇u
)− β(u − g)

)
dx.

Note that in the last equality, there is no boundary term since ∂u
∂ν

= 0 in H 1/2(∂Ω). Moreover, since u ∈ H 2(Ω) and
ρn ∈ W 1,p(Ω), we have div((ηε + ρ2

n)∇u) ∈ L2(Ω). Applying Cauchy–Schwarz inequality we obtain

Eε(u,ρ) − Eε(vn, ρn)

‖vn − u‖L2(Ω)

�
∥∥div
((

ηε + ρ2
n

)∇u
)− β(u − g)

∥∥
L2(Ω)

.

Since H 2(Ω) ↪→ W 1,r (Ω) for every r � 2∗ and ρn → ρ strongly in W 1,p(Ω), we get that

div
((

ηε + ρ2
n

)∇u
)= (ηε + ρ2

n

)
�u + 2ρn∇ρn · ∇u −→

n→∞
(
ηε + ρ2)�u + 2ρ∇ρ · ∇u = div

((
ηε + ρ2)∇u

)
strongly in L2(Ω). Hence

lim
n→∞

Eε(u,ρ) − Eε(vn, ρn)

‖vn − u‖L2(Ω)

�
∥∥div
((

ηε + ρ2)∇u
)− β(u − g)

∥∥
L2(Ω)

.

Together with (6.8), this last estimate gives the desired upper bound for the slope |∂Eε|(u,ρ).

Step 3. Let (u,ρ) ∈ D(|∂Eε|). By the previous steps, f̃ := −div((ηε + ρ2)∇u) + β(u − g) ∈ L2(Ω) and u solves
(A.1) with f = f̃ − β(u − g). Applying Lemma A.1 we find that

‖u‖H 2(Ω) � Cε(1 + ‖∇ρ‖Lp(Ω;RN))
γ
(‖f ‖L2(Ω) + ‖u‖H 1(Ω)

)
� Cε(1 + ‖∇ρ‖Lp(Ω;RN))

γ
(|∂Eε|(u,ρ) + β‖u − g‖L2(Ω) + ‖u‖H 1(Ω)

)
,

and the proof is complete. �
The expression of the slope and the characterization of its domain provided by Proposition 6.4 enables one to show

the lower semicontinuity of |∂Eε| along sequences with uniformly bounded energy.

Proposition 6.5. Assume that Ω has a C 1,1-boundary. Let {(un,ρn)}n∈N ⊂ L2(Ω) × Lp(Ω) be such that
supn∈N Eε(un,ρn) < ∞ and (un,ρn) → (u,ρ) strongly in L2(Ω) × Lp(Ω). Then,

|∂Eε|(u,ρ) � lim inf
n→∞ |∂Eε|(un,ρn).

Proof. Let us assume without loss of generality that lim infn |∂Eε|(un,ρn) < ∞, and extract a subsequence {nk} such
that

lim inf
n→∞ |∂Eε|(un,ρn) = lim

k→∞|∂Eε|(unk
, ρnk

).

Since Eε(unk
, ρnk

) is uniformly bounded with respect to k, we deduce that the sequence {(unk
, ρnk

)} is uniformly
bounded in H 1(Ω)×W 1,p(Ω). Moreover (unk

, ρnk
) ∈ D(|∂Eε|), and as a consequence of Proposition 6.4, we deduce

that {unk
} is uniformly bounded in H 2(Ω), and that

∂unk

∂ν
= 0 in H 1/2(∂Ω). Whence ρnk

⇀ ρ weakly in W 1,p(Ω),
unk

⇀ u weakly in H 2(Ω) for a (not relabeled) subsequence, and ∂u
∂ν

= 0 in H 1/2(∂Ω). By the Sobolev Imbedding
we get that ρnk

→ ρ in C 0(Ω), while unk
→ u strongly in H 1(Ω). Thanks to the uniform convergence of ρnk

to ρ,
we may argue as in the proof of Proposition 4.17 (Step 1) to show that the sequence of functionals Fk : W 1,p(Ω) →
[0,+∞] defined by
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Fk(ρ̂) :=
{
Eε(unk

, ρ̂) if ρ̂ � ρnk
,

+∞ otherwise,
(6.10)

Γ -converges (with respect to the sequential weak W 1,p(Ω)-topology) to the functional F : W 1,p(Ω) → [0,+∞]
given by

F(ρ̂) :=
{
Eε(u, ρ̂) if ρ̂ � ρ,

+∞ otherwise.
(6.11)

Since

ρnk
= argmin

ρ̂∈W 1,p(Ω)

Fk(ρ̂),

and ρnk
⇀ ρ weakly in W 1,p(Ω), we infer from the Γ -convergence of Fk toward F that

ρ = argmin
ρ̂∈W 1,p(Ω)

F(ρ̂).

By the expression of the domain of the slope provided by Proposition 6.4, we infer that (u,ρ) ∈ D(|∂Eε|). From the
established convergences of (unk

, ρnk
) we deduce that

div
((

ηε + ρ2
nk

)∇unk

)= (ηε + ρ2
nk

)
�unk

+ 2ρnk
∇ρnk

· ∇unk

⇀
(
ηε + ρ2)�u + 2ρ∇ρ · ∇u = div

((
ηε + ρ2)∇u

)
weakly in L2(Ω). Using now the expression of the slope given by Proposition 6.4, we conclude

lim inf
n→∞ |∂Eε|(un,ρn) = lim

k→∞|∂Eε|(unk
, ρnk

)

= lim
k→∞
∥∥div
((

ηε + ρ2
nk

)∇unk

)− β(unk
− g)
∥∥

L2(Ω)

�
∥∥div
((

ηε + ρ2)∇u
)− β(u − g)

∥∥
L2(Ω)

= |∂Eε|(u,ρ),

which ends the proof. �
For completeness (and possible future investigations), we finally prove that the energy is continuous along conver-

gent sequences with uniformly bounded slope.

Proposition 6.6. Assume that Ω has a C 1,1-boundary. Let {(un,ρn)}n∈N ⊂ L2(Ω) × Lp(Ω) be such that

sup
n∈N
{
Eε(un,ρn) + |∂Eε|(un,ρn)

}
< ∞,

and (un,ρn) → (u,ρ) strongly in L2(Ω) × Lp(Ω). Then Eε(un,ρn) → Eε(u,ρ) as n → ∞.

Proof. Arguing as in the proof of Proposition 6.5, we have un ⇀ u weakly in H 2(Ω) and ρn ⇀ ρ weakly in W 1,p(Ω)

with (u,ρ) ∈ D(|∂Eε|). By the Sobolev Imbedding, ρn → ρ in C 0(Ω) and un → u strongly in H 1(Ω). Hence the
functional Fn : W 1,p(Ω) → [0,+∞] defined by (6.10) (with n in place of nk) Γ -converges (with respect to the
sequential weak W 1,p(Ω)-topology) to the functional F : W 1,p(Ω) → [0,+∞] given by (6.11). By the convergence
of the minimum values, we infer that

Eε(un,ρn) = min
W 1,p(Ω)

Fn −→
n→∞ min

W 1,p(Ω)
F = Eε(u,ρ),

and the proposition is proved. �
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6.2. Existence of curve of unilateral maximal slope

The main result of this section asserts that (under a mild assumption on ∂Ω) any unilateral minimizing movement
is actually a curve of maximal unilateral slope for the Ambrosio–Tortorelli functional. For simplicity, we shall use
again assumption (4.1) on discrete trajectories. We refer to [7] for the general case.

Theorem 6.7. Assume that Ω has a C 1,1-boundary, and let (uε, ρε) ∈ GUMM(u0, ρ
ε
0). If (uε, ρε) is a strong

L2(Ω) × Lp(Ω)-limit of some discrete trajectories {(uk, ρk)}k∈N obtained from a sequence of partitions {δk}k∈N
of [0,+∞) satisfying |δk| → 0 and (4.1), then the mapping (uε, ρε) : [0,+∞) → L2(Ω) × Lp(Ω) is a curve of
maximal unilateral slope for Eε .

Proof. Let us define for each k ∈N and t � 0, λk(t) := Eε(uk(t), ρk(t)). By Lemma 4.2 the function λk : [0,+∞) →
[0,+∞) is non-increasing and bounded uniformly with respect to k. By Helly’s Theorem for monotone functions we
can find a (not relabeled) subsequence of {kn} such that

λkn(t) −→
n→∞λ(t) for every t � 0,

for some non-increasing function λ : [0,+∞) → [0,+∞). Then we infer from Lemma 4.16 and Proposition 4.17 that

λ(t) = Eε

(
uε(t), ρε(t)

)
for every t ∈ [0,+∞) \Bε.

Repeating the proof of Proposition 4.18 yields for any 0 � s � t ,

λ(t) +
t∫

s

∥∥u′
ε(r)
∥∥2

L2(Ω)
dr � λ(s).

According to Propositions 4.11, 4.17 and 6.4, we have |∂Eε|(uε(r), ρε(r)) = ‖u′
ε(r)‖L2(Ω) for a.e. r � 0. Conse-

quently, if t is a point of derivability of λ,

λ(t) − λ(s) � −1

2

t∫
s

∥∥u′
ε(r)
∥∥2

L2(Ω)
dr − 1

2

t∫
s

|∂Eε|2
(
uε(r), ρε(r)

)
dr,

and the conclusion follows by dividing the previous inequality by t − s > 0 and sending s → t . �
Remark 6.8. It turns out that any curve (uε, ρε) : [0,+∞) → L2(Ω)×Lp(Ω) such that uε ∈ L∞(0,+∞;H 1(Ω))∩
AC2(0,+∞;L2(Ω)), ρε ∈ L∞(0,+∞;W 1,p(Ω)), t �→ ρε(t) non-increasing, and satisfying (4.2)–(4.3)–(4.4) is a
curve of unilateral maximal slope.

Remark 6.9 (Non-uniqueness for the system of PDE’s). Let us consider a given curve of unilateral maximal slope
(uε, ρε). We are going to construct a different solution (ũε, ρ̃ε) from (uε, ρε) of system (4.2)–(4.3). To this aim, let
us assume without loss of generality that t = 1 is a point of continuity of t �→ Eε(uε(t), ρε(t)), and that ρε(1) �≡ 0.
Choose ρ̂ε

1 ∈ W 1,p(Ω) such that 0 � ρ̂ε
1 � ρε(1) and different from ρε(1). Denote by ρε

1 the unique solution of

min
{
Eε

(
uε(1), ρ

)
: ρ ∈ W 1,p(Ω), ρ � ρ̂ε

1 in Ω
}
,

and let (vε, σε) ∈ GUMM(uε(1), ρε
1). Considering the new curve (ũε, ρ̃ε) defined by(

ũε(t), ρ̃ε(t)
)= { (uε(t), ρε(t)) if 0 � t < 1,

(vε(t − 1), σε(t − 1)) if t � 1,

we have

ũε ∈ AC2([0,+∞);L2(Ω)) ∩ L∞(0,+∞;H 1(Ω)
)
,

ρ̃ε ∈ L∞(0,+∞;W 1,p(Ω)
)
, 0 � ρ̃ε(t) � ρ̃ε(s) � 1 for every t � s � 0,

and (ũε, ρ̃ε) solves the system (4.2)–(4.3). However, one can check that energy inequality (4.4) fails. In particular it
is not a curve of maximal unilateral slope.
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6.3. Relation with the unilateral slope of the Mumford–Shah functional

In [20], a notion of unilateral slope of the Mumford–Shah functional has been introduced. In that paper, the
Mumford–Shah energy is slightly different from the one we consider here (see (2.3)). It is rather given on pairs
(u,K) by

E∗(u,K) := 1

2

∫
Ω

|∇u|2 dx + H N−1(K) + β

2

∫
Ω

(u − g)2 dx,

where u ∈ SBV 2(Ω) and K is a subset of Ω satisfying H N−1(K) < ∞ and Ju ⊂̃K . The related unilateral slope of
E∗ is then given by

|∂E∗|(u,K) := lim sup
v→u in L2(Ω)

(E∗(u,K) − E∗(v,K ∪ Jv))
+

‖v − u‖L2(Ω)

.

In [20], the authors proved that if |∂E∗|(u,K) < ∞, then div(∇u) ∈ L2(Ω), and that a weak form of

∂u

∂ν
= 0 on K

holds, where ν denotes a unit normal vector field on K . They also obtained the inequality |∂E∗|(u,K) � ‖div(∇u) −
β(u − g)‖L2(Ω), and that equality holds if u and K are smooth enough. By means of an explicit counterexample,
they have shown that |∂E∗| is not lower semicontinuous for any reasonable notion of convergence. In view of this
result, they have introduced a notion of relaxed slope corresponding to a lower semicontinuous envelope of |∂E∗| with
respect to a suitable sequential topology. More precisely, the relaxed slope |∂E∗| is defined for a pair (u,K) in the
domain of E∗ by

|∂E∗|(u,K) := inf
{

lim inf
n→∞ |∂E∗|(un,Kn)

}
,

where the infimum is taken over all sequences {(un,Kn)}n∈N such that un → u strongly in L2(Ω), ∇un ⇀ ∇u weakly
in L2(Ω;RN), and Knσ

2-converges to K (see [15, Definition 4.1] for a precise definition). They established that if
|∂E∗|(u,K) < ∞, then there exists f ∈ L2(Ω) such that⎧⎨⎩

−div(∇u) = f in L2(Ω),

|∇u|2 − div(u∇u) � f u in D ′(Ω),

∇u · ν = 0 in H−1/2(∂Ω).

(6.12)

Again, there is an inequality |∂E∗|(u,K) � ‖div(∇u) − β(u − g)‖L2(Ω), and equality holds in some particular cases.

Note that, in the case where u and K are smooth enough, the first line in (6.12) implies the continuity of ∂u
∂ν

across K ,
and the second one is then a weak reformulation of(

u+ − u−)∂u

∂ν
� 0 on K,

where u± are the one-sided traces of u on K according to the orientation ν.
In our context, the analogy between the definitions of the unilateral slopes |∂Eε| and |∂E∗| is quite clear, and it was

actually one of the motivations to introduce |∂Eε|. In view of the relation between the Ambrosio–Tortorelli functional
and the Mumford–Shah functional in terms of Γ -convergence, a very interesting issue would be to find a precise
relation between |∂E∗| and the asymptotic behavior as ε ↓ 0 of |∂Eε|. Even if we do not pursue this issue here, we
prove for completeness that a conclusion similar to [20, Proposition 1.3] holds for |∂Eε|. For simplicity we only state
the result in terms of the asymptotic limit obtained in Theorem 5.1.

Proposition 6.10. Assume that Ω has a C 1,1-boundary. Let u ∈ AC2([0,+∞);L2(Ω)) be the limiting curve obtained
in Theorem 5.1. Then, for a.e. t � 0, we have∥∥div

(∇u(t)
)− β
(
u(t) − g

)∥∥
L2(Ω)

� lim inf |∂Eεn |
(
uεn(t), ρεn(t)

)
< ∞, (6.13)
n→∞
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and ∣∣∇u(t)
∣∣2 − div

(
u(t)∇u(t)

)
� −u(t)div

(∇u(t)
)

in D ′(Ω).

Proof. From Proposition 6.4 and (4.25) together with (5.4) and Fatou’s lemma, we first deduce that

+∞∫
0

lim inf
n→∞ |∂Eεn |2

(
uεn(t), ρεn(t)

)
dt � lim inf

n→∞

+∞∫
0

|∂Eεn |2
(
uεn(t), ρεn(t)

)
dt � C,

for a constant C > 0 independent of n. Hence there exists an L 1-negligible set L ⊂ (0,+∞) such that

lim inf
n→∞ |∂Eεn |

(
uεn(t), ρεn(t)

)
< ∞ for t ∈ (0,+∞) \L.

Let us now fix t ∈ (0,+∞) \L and extract a subsequence (depending on t ) such that

lim
j→∞|∂Eεnj

|(uεnj
(t), ρεnj

(t)
)= lim inf

n→∞ |∂Eεn |
(
uεn(t), ρεn(t)

)
.

By Proposition 6.4, the sequence {div((ηεnj
+ ρ2

εnj
(t))∇uεnj

(t))} is thus bounded in L2(Ω), and in view of (5.14) we

deduce that

div
((

ηεnj
+ ρ2

εnj
(t)
)∇uεnj

(t)
)
⇀ div

(∇u(t)
)

weakly in L2(Ω). (6.14)

Then (6.13) follows from the convergences in (5.1), and the lower semicontinuity of the L2(Ω)-norm.
Using again Proposition 6.4, we next notice that∫

Ω

(
ηεn + ρ2

εn
(t)
)∣∣∇uεn(t)

∣∣2ϕ dx +
∫
Ω

uεn(t)
(
ηεn + ρ2

εn
(t)
)∇uεn(t) · ∇ϕ dx

= −
∫
Ω

uεn(t) div
((

ηεn + ρ2
εn

(t)
)∇uεn(t)

)
ϕ dx

for any nonnegative function ϕ ∈ D(Ω), and the conclusion follows from (5.14) and (6.14). �
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Appendix A

The goal of this appendix is to prove the auxiliary elliptic regularity result used in the proof of Lemma 4.2 and
Proposition 6.4. We would like to stress that the following result strongly relies on the fact that the dissipation energy
has p-growth with p > N .

Lemma A.1. Assume that Ω has a C 1,1-boundary. For f ∈ L2(Ω) and ρ ∈ W 1,p(Ω), let u ∈ H 1(Ω) be a solution
of {

−div
((

ηε + ρ2)∇u
)= f in H−1(Ω),(

ηε + ρ2)∇u · ν = 0 in H−1/2(∂Ω).
(A.1)

Then u ∈ H 2(Ω),
∂u = 0 in H 1/2(∂Ω), and

∂ν
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‖u‖H 2(Ω) � Cε

(
1 + ‖∇ρ‖Lp(Ω;RN)

)γ (‖f ‖L2(Ω) + ‖u‖H 1(Ω)

)
,

where γ is the smallest integer larger than or equal to p/(p − N), and Cε only depends on ηε , p, N , and Ω .

Proof. Step 1. We claim that

∂u

∂ν
= 0 in H−1/2(∂Ω). (A.2)

To prove this claim, we first rewrite the equation as

−�u = 2ρ

ηε + ρ2
∇ρ · ∇u + f

ηε + ρ2
in D ′(Ω). (A.3)

Hence �u ∈ Lq(Ω) with q := 2p/(p + 2) by Hölder’s inequality. Then we observe that q ′ := q/(q − 1) < 2∗ since
p > N , so that H 1(Ω) ↪→ Lq ′

(Ω) by the Sobolev Imbedding. Hence the linear mapping

ϕ ∈ H 1(Ω) �→
∫
Ω

(∇u · ∇ϕ + (�u)ϕ
)
dx

is well defined and continuous. Consequently, u admits a (weak) normal derivative ∂u
∂ν

on ∂Ω which belongs to the
dual space H−1/2(∂Ω), and for any ϕ ∈ H 1(Ω),〈

∂u

∂ν
,ϕ|∂Ω

〉
(H−1/2(∂Ω),H 1/2(∂Ω))

=
∫
Ω

(∇u · ∇ϕ + (�u)ϕ
)
dx

=
∫
Ω

(
ηε + ρ2)∇u · ∇

(
ϕ

ηε + ρ2

)
dx +
∫
Ω

(
�u + 2ρ

ηε + ρ2
∇ρ · ∇u

)
ϕ dx.

We observe that in the second equality above, we have used the fact that ϕ

ηε+ρ2 ∈ H 1(Ω) whenever ϕ ∈ H 1(Ω).
Indeed,

∇
(

ϕ

ηε + ρ2

)
= ∇ϕ

ηε + ρ2
− 2ρϕ∇ρ

(ηε + ρ2)2
∈ L2(Ω),

since ϕ ∈ L2∗
(Ω), ρ ∈ L∞(Ω), and ∇ρ ∈ Lp(Ω) with p > N . In view of (A.1) we have∫

Ω

(
ηε + ρ2)∇u · ∇

(
ϕ

ηε + ρ2

)
dx =
∫
Ω

f ϕ

ηε + ρ2
dx,

and by (A.3),∫
Ω

(
�u + 2ρ

ηε + ρ2
∇ρ · ∇u

)
ϕ dx = −

∫
Ω

f ϕ

ηε + ρ2
dx,

from which (A.2) follows.

Step 2. We now prove that u ∈ H 2(Ω). By the previous step, u ∈ H 1(Ω) satisfies{
�u ∈ Lq(Ω),

∂u

∂ν
= 0 in H−1/2(∂Ω).

By elliptic regularity (see e.g. [32, Proposition 2.5.2.3 & Theorem 2.3.3.6]), we deduce that u ∈ W 2,q0(Ω) with
q0 := q = 2p

p+2 , and

‖u‖W 2,q0 (Ω) � C
(‖�u‖Lq0 (Ω) + ‖u‖Lq0 (Ω)

)
,
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for some constant C > 0 only depending on N , p, and Ω . Observing that the function t �→ t/(ηε + t2) is bounded,
we derive from (A.3) and Hölder’s inequality that

‖u‖W 2,q0 (Ω) � Cε

(‖f ‖L2(Ω) + ‖∇ρ‖Lp(Ω;RN)‖∇u‖L2(Ω;RN) + ‖u‖L2(Ω)

)
� Cε

(
1 + ‖∇ρ‖Lp(Ω;RN)

)(‖f ‖L2(Ω) + ‖u‖H 1(Ω)

)
,

where we used the fact that q0 < 2. By the Sobolev Imbedding, we have u ∈ W 1,q∗
0 (Ω), and thus ∇u · ∇ρ ∈ Lq1(Ω)

with

1

q1
= 1

p
+ 1

q∗
0
, i.e., q1 := 2Np

(N − 2)p + 4N
.

Note that q1 � 2 if and only if p � 2N , so we have to distinguish the case p � 2N from the case p < 2N .

Case 1). Let us first assume that p � 2N . Then ∇u · ∇ρ ∈ L2(Ω) with

‖∇u · ∇ρ‖L2(Ω) � C‖∇u · ∇ρ‖Lq1 (Ω) � C‖∇ρ‖Lp(Ω;RN)‖∇u‖
L

q∗
0 (Ω;RN)

� C‖∇ρ‖Lp(Ω;RN)‖u‖W 2,q0 (Ω).

Using again (A.2)–(A.3) and the elliptic regularity, we infer that u ∈ H 2(Ω) with the estimate

‖u‖H 2(Ω) � C
(‖�u‖L2(Ω) + ‖u‖L2(Ω)

)
� Cε

(‖f ‖L2(Ω) + ‖∇ρ‖Lp(Ω;RN)‖u‖W 2,q0 (Ω) + ‖u‖L2(Ω)

)
� Cε

(
1 + ‖∇ρ‖Lp(Ω;RN)

)2(‖f ‖L2(Ω) + ‖u‖H 1(Ω)

)
.

Case 2). If p < 2N then q1 < 2, and we have u ∈ W 2,q1(Ω) by (A.2)–(A.3) and elliptic regularity, with the estimate

‖u‖W 2,q1 (Ω) � Cε

(‖f ‖L2(Ω) + ‖∇ρ‖Lp(Ω)‖u‖W 2,q0 (Ω) + ‖u‖L2(Ω)

)
� Cε

(
1 + ‖∇ρ‖Lp(Ω)

)2(‖f ‖L2(Ω) + ‖u‖H 1(Ω)

)
. (A.4)

In particular, ∇u ∈ Lq∗
1 (Ω) by the Sobolev Imbedding since q1 < 2 � N . We then continue the process by setting

1

qi

:= 1

p
+ 1

q∗
i−1

, i.e., qi := 2Np

(N − 2i)p + 2(i + 1)N

as long as qi−1 < 2, that is i < γ . Since qγ−1 � 2, iterating estimates of the form (A.4) we obtain

‖u‖H 2(Ω) � Cε

(‖f ‖L2(Ω) + ‖∇ρ‖Lp(Ω;RN)‖u‖
W

2,qγ−2 (Ω)
+ ‖u‖L2(Ω)

)
� Cε

(
1 + ‖∇ρ‖Lp(Ω;RN)

)γ (‖f ‖L2(Ω) + ‖u‖H 1(Ω)

)
,

and the proof is complete. �
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