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Abstract

In this paper we investigate Lipschitz regularity of minimizers for classes of functionals including ones of the type EG(u,Ω) =∫
Ω [G(|∇u|) + f2χ{u>0} + f1χ{u�0}]dx. We prove that there exists a universal “tolerance” (depending only on the degenerate

ellipticity and other intrinsic parameters) for the density of the negative phase along the free boundary under which uniform
Lipschitz regularity holds. We also prove density estimates from below for the negative phase on points inside the contact set
between the negative and positive free boundaries in the case where Lipschitz regularity fails to be the optimal one.
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1. Introduction

In this paper we investigate the Lipschitz regularity for minimizers of functionals of the type

EG(u,Ω) =
∫
Ω

[
G
(|∇u|)+ λ(f1, f2)(u)

]
dx (1.1)

where

λ(f1, f2)(u)(x) := f2(x) · χ{u>0} + f1(x) · χ{u<0} + min
(
f1(x), f2(x)

) · χ{u=0}, 0 � f1, f2 � μ.
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At least formally, the Euler–Lagrange equations for such minimizers are two phase Free Boundary Problems
(FBPs) of the type⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lgu := div

(
g(|∇u|)
|∇u| · ∇u

)
= 0 in {u �= 0},

H
(∣∣∇u+∣∣)− H

(∣∣∇u−∣∣)= f2(x) − f1(x) on F(u)± := (
∂{u > 0} ∪ ∂{u < 0})∩ Ω,

g(t) = G′(t), H(t) = g(t)t − G(t).

(1.2)

Here, we assume the natural conditions introduced by G.M. Lieberman (see [13]) in the study of the regularity
theory of the degenerate/singular elliptic equations of the type Lgu = B(x,u,∇u). The precise conditions are

G′(t) = g(t), where g ∈ C0([0,+∞)
)∩ C1((0,+∞)

); (P)

and for 0 < δ � g0 fixed constants,

0 < δ � Qg(t) := tg′(t)
g(t)

� g0, ∀t > 0. (C1)

As pointed out in [15], Lieberman’s condition says that Lgu = 0 is equivalent to a uniformly elliptic equation (in
non-divergence form) with (positive) ellipticity constants depending just on δ, g0 in the sets where ∇u �= 0 (Re-
mark 7.1, [15]). They do not imply any kind of homogeneity whatsoever for the function G and they even allow
different behaviors for g when |∇u| is near zero or infinity. This fact alone makes the study of FBPs like (1.2) more
involved as shown in the excellent paper of S. Martinez and N. Wolanski [15]. In this paper, we regard δ, g0 as the
(degenerate) ellipticity constants for the functionals EG.

Examples of functions satisfying (P) and (C1) are g(t) = tp with δ = g0 = p, g(t) = atp + btq with a, b,p, q > 0
with δ = min{p,q} and g0 = max{p,q} and g(t) = tp log(at + b) with p,a, b > 0 where in this case δ = p and
g0 = p + 1. Many other examples are discussed in Section 7.

FBPs like (1.2) appear in many applications, in particular, in the study of the flow of two liquids in models of
jets and cavities. Lipschitz regularity for minimizers of EG has been obtained in several circumstances. The general
two phase case for G(t) = t2 was proven by H.W. Alt, L.A. Caffarelli and A. Friedman in the seminal papers [2,5].
They also extended the one phase case to quasilinear equations where g(t) ∼ t in [3]. Recently, S. Martinez and
N. Wolanski studied the general one phase case in the Orlicz spaces setting under (P) and (C1) conditions [15]. These
results extended the p-Laplace case for one phase (G(t) = tp) considered by D. Danielli and A. Petrosyan in the nice
paper [10].

The situation for the two phase case is much more delicate and less understood in the general setting. The only
result essentially known is the one due to H.W. Alt, L.A. Caffarelli and A. Friedman in [5] in the standard case
G(t) = t2. The proof relies in a fundamental way on the so-called Alt–Caffarelli–Friedman monotonicity formula.
To the best of our knowledge, Lipschitz regularity remains wide-open in two phase scenarios involving more general
functionals, except in those cases where a variant of the ACF monotonicity formula exists (see [7], for instance). There
is also an interesting result of A. Karakhanyan in [11], for the p-Laplace case, where he showed the existence of a
universal constant C > 0 depending on p,n and L∞ norm of u such that if the Lebesgue density of the negative phase
along the free boundary is at most C then minimizers are (locally) Lipschitz continuous.

In this paper, our goal is to extend the result of A. Karakhanyan to the context of Orlicz spaces and to present new
density estimates for the negative phase at contact free boundary points even in the case where Lipschitz regularity
fails to be the optimal one.

We would like to obtain universal estimates for two phase minimizers for (the largest possible class of) functionals
that share the same ellipticity, instead of focusing on any particular one. In order to do that we introduce the class,

G(δ, g0) := {
G : [0,∞) → [0,∞); G is N -function satisfying (P) and (C1)

}
.

We show that the graph of one phase minimizers of the functionals EG with G ∈ G(δ, g0) hits the free boundary
with slope comparable to negative powers of G(1). More precisely, if G(1) is small enough, we have for universal
constants C1,C2 > 0

C1 ·
(

1
) 1

1+g0 � |∇u|� C2 ·
(

1
) 1

1+δ

along F(u) := ∂{u > 0} ∩ Ω. (1.3)

G(1) G(1)
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This shows that Lipschitz regularity can only hold for non-degenerate subclasses of G(δ, g0), i.e., subsets where G(1)

is bounded from below away from zero, say G(1) � ε0 > 0. In this case, ε0 is regarded as the non-degeneracy constant.
Since a tool like the ACF monotonicity formula is missing in our context, it seems hard to capture any quantitative

information to control the gradient of the minimizers close enough to the free boundary. This way, we are led to
consider compactness arguments. At this point, unlike the previous cases, the situation is more involved and we have
to study compactness in the class of degenerate/singular elliptic operators Lg represented here by the classes G(δ, g0).
We also observe that conditions (P) and (C1) are too weak to provide compactness (as shown in Example 7.1). The
main reason for this failure is the absence of a uniform modulus of continuity for the quotient Qg within G(δ, g0).

The following Morrey type control

t+κ∫
t

∣∣Q′
g(s)

∣∣ds � C0

tβ
· κβ ∀t, κ > 0, (1.4)

supplies what is needed for this compactness to hold in the non-degenerate classes with respect to the C
2,γ

loc (0,∞),
γ < β and C1

loc[0,∞) topologies. We believe that this compactness result may be of independent interest.
Our main result follows then by a combination of compactness, invariance of the non-degenerate classes and the

Morrey control above by nonlinear normalizing scalings, Martinez–Wolanski stability estimate (Theorem 2.3 in [15])
and C1,α regularity theory for degenerate/singular elliptic equations.

We can roughly summarize the results in the paper as follows. Theorem 2.1 provides a pointwise Lipschitz estimate
for any minimizer of any functional EG with G ∈ G(δ, g0) satisfying G(1) � ε0 and (1.4) at any free boundary
point provided the density of the negative phase at that point is smaller than some (small) universal constant C =
C(n, δ, g0, ε0,μ,β) > 0. As a consequence of that, if the density stays below this constant in a whole free boundary
neighborhood of such a point, the estimate propagates around and a local and uniform Lipschitz estimate is obtained.
This is the content of Corollary 2.1. It essentially says that there exists a (small) universal “tolerance” for the size of
the negative phase under which the uniform Lipschitz regularity still holds.

Since optimal Lipschitz regularity remains unsettled, we look at the region where it may fail. In the gener-
ality treated here, there is no ordering on the phase functions (like f2 � f1). Thus, unlike the case studied by
Alt–Caffarelli–Friedman in [5], the negative free boundary may, in principle, separate from the positive one, i.e.,
∂{u < 0} \ ∂{u > 0} ∩ Ω �= ∅.

By using a delicate scaling of Theorem 2.1 (Proposition 8.1 and Remark 9.1), we show that the region where
Lipschitz regularity fails is contained in the contact set between the positive and negative free boundaries. Furthermore,
at any such point of that region, the negative phase has a universal (upper) density estimate from below. In particular,
if Lipschitz regularity fails at a point, then this point belongs to the contact set ∂{u < 0} ∩ ∂{u > 0} and there the
negative phase is cusp free. This is proven in Proposition 2.1.

These results complement the ones in [5], where density estimates for the nonnegative phase were proven in the
presence of Lipschitz regularity and non-degeneracy properties, absent here. They also corroborate with the idea that
free boundaries of minimizers for the cavity flow type functionals are somewhat nicer than the free boundaries of the
solutions to the obstacle problem, once cusps cannot develop.

Our approach in this paper differs substantially from the one adopted in [11]. There, minimizers are subsolutions
and Cacciopoli/energy estimates yield a p-energy control. Here, due to the fact that G may behave differently at zero
and infinity, Cacciopoli/energy estimates render no control whatsoever on the G-energy. Moreover, under no ordering
assumptions on the phase functions f1 and f2, minimizers may not be neither subsolutions nor supersolutions.

Our paper is organized as follows: In Section 2, we present our results. In Section 3, we quote some background
results in the theory of degenerate/singular elliptic equations studied by G.M. Lieberman, S. Martinez and N. Wolan-
ski. In Section 4, we study existence and boundedness for global minimizers. Section 5 is devoted to the uniform
Cα estimates for the class of all minimizers of non-degenerate functionals. In Section 6, we motivate the necessity
of non-degenerate classes by discussing (1.3) and we also prove the compactness and scaling invariance results. Sec-
tion 7 is devoted to the presentation of several examples of N -functions in the non-degenerate classes of Gβ(δ, g0)

and G2(δ, g0) showing they are indeed quite large. Here, we also discuss the lack of the compactness in G(δ, g0) (see
Example 7.1). Section 8 is destined to the proof of Theorem 2.1 and its scaled version Proposition 8.1. In Section 9,
we provide the proof of Corollary 2.1 which is the local Lipschitz regularity under small density assumption. Finally,
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in Section 10, we discuss the touching between positive and negative free boundaries and the density estimates for the
negative phase at the contact set. There is also an appendix with a short proof of a Morrey’s type result in the Orlicz
space setting (Lemma 3.1) in Appendix A.

2. Presentation of our results

We begin this section by recalling the definition of N -function. This is a function of the type

G(t) =
t∫

0

g(s) ds,

where g : [0,∞) → R is a positive nondecreasing function satisfying the following properties:

a) g(0) = 0 and limt→∞ g(t) = ∞;
b) g is right continuous, that is, if t � 0 then lims→t+ g(s) = g(t).

Definition 2.1. Let 0 < β � 1. We say that an N -function G belongs to the Gβ(δ, g0) if

(i) G ∈ G(δ, g0) with G′ = g ∈ W
2,1
loc ((0,+∞)) and

(ii) for any t > 0 and κ > 0 the following control holds

t+κ∫
t

∣∣Q′
g(s)

∣∣ds � C0

tβ
· κβ, (MC-β)

where Qg(s) := sg′(s)
g(s)

and here C0 is some positive constant depending on δ, g0, and β .

We say that G ∈ G2(δ, g0) if (i) is satisfied and (ii) is replaced by

0 � t2|g′′(t)|
g(t)

� C(δ, g0), for a.e. t > 0. (C2)

This way, for every β ∈ (0,1] it follows that G2(δ, g0) ⊂ Gβ(δ, g0) ⊂ G(δ, g0) as shown in Section 7.

Definition 2.2 (Non-degenerate subclasses). For ε0 > 0 we define

G(δ, g0, ε0) = {
G ∈ G(δ, g0): G(1) � ε0

}
,

Gβ(δ, g0, ε0) = {
G ∈ Gβ(δ, g0): G(1) � ε0

}
,

G2(δ, g0, ε0) = {
G ∈ G2(δ, g0): G(1) � ε0

}
.

With this notation, we can now define the main classes of minimizers for which our results hold.

Definition 2.3. We say a function u belongs to S(Ω, δ, g0, ε0,μ) if u is a minimizer of a functional of the type

EG(u,Ω) =
∫
Ω

[
G
(|∇u|)+ λ(f1, f2)(u)

]
dx (2.5)

where

λ(f1, f2)(u)(x) := f2(x) · χ{u>0} + f1(x) · χ{u<0} + min
(
f1(x), f2(x)

) · χ{u=0} (2.6)

and

G ∈ G(δ, g0, ε0), 0 � f1, f2 � μ. (2.7)
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If condition (2.7) is replaced by

G ∈ Gβ(δ, g0, ε0), 0 � f1, f2 � μ, (2.8)

we then say u ∈ Sβ(Ω, δ, g0, ε0,μ). Now,

S(Ω, δ, g0, ε0,μ,M) :=
{
u ∈ S(Ω, δ, g0, ε0,μ): sup

Ω

|u| � M
}
,

Sβ(Ω, δ, g0, ε0,μ,M) :=
{
u ∈ Sβ(Ω, δ, g0, ε0,μ): sup

Ω

|u| � M
}
,

S(Ω, δ, g0, ε0,μ)+, Sβ(Ω, δ, g0, ε0,μ)+, S(Ω, δ, g0, ε0,μ,M)+ and Sβ(Ω, δ, g0, ε0,μ,M)+

indicate nonnegative functions in Ω in the respective classes. Additionally, we denote

F+(u) := ∂{u > 0} ∩ Ω, F−(u) := ∂{u < 0} ∩ Ω, F±(u) := F+(u) ∪ F−(u)

and for x0 ∈ Ω

Sβ(Ω, δ, g0, ε0,μ,M)(x0) := {
u ∈ Sβ(Ω, δ, g0, ε0,μ,M): x0 ∈ F±(u)

}
, (2.9)

and for the one phase case

S(Ω, δ, g0, ε0,μ,M)+(x0) := {
u ∈ S(Ω, δ, g0, ε0,μ,M)+: x0 ∈ F+(u)

}
. (2.10)

For future reference we define the “degenerate” class S∗(Ω, δ, g0,μ,M)+ to be

S∗(Ω, δ, g0,μ,M)+ =
⋃
ε0>0

S(Ω, δ, g0, ε0,μ,M)+.

For simplicity of notation, we also use

Sβ
r (δ, g0, ε0,μ,M)(x0) := Sβ

(
Br(x0), δ, g0, ε0,μ,M

)
(x0),

S+
r (δ, g0, ε0,μ,M)(x0) := S

(
Br(x0), δ, g0, ε0,μ,M

)+
(x0).

Consider further Θ−
u the density function of the negativity set along the free boundaries for u, that is:

Θ−
u (x0, r) = |{u < 0} ∩ Br(x0)|

|Br(x0)| with x0 ∈ F±(u).

In this paper, n will always denote the dimension. The main results of this paper are the following

Theorem 2.1. There exists a (small) universal constant C = C(n, δ, g0, ε0,μ,β) > 0 such that the estimate∣∣u(x)
∣∣� 2 · max{M,1}

C
· |x − x0|, ∀x ∈ B1(x0), (2.11)

holds for any u ∈ S
β

1 (δ, g0, ε0,μ,M)(x0) provided Θ−
u (x0, r) � C for all 0 < r < 1.

Corollary 2.1. Let u ∈ S
β

1 (δ, g0, ε0,μ,M)(0) and assume that

Θ−
u (z, r) � C ∀z ∈ F±(u) ∩ B3/4 and for all 0 < r < 1/4.

Here C > 0 is the constant given by the theorem above. Then u is Lipschitz continuous in B1/2 and

[u]C0,1(B1/2)
� C0 · max{M,1}

C
,

for a universal constant C0 = C0(n, δ, g0) > 0.
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In the sequel, we use the following notation:

[u]C0,1(Bρ(x))(x) = sup
y∈Bρ(x),y �=x

|u(y) − u(x)|
|y − x| , [u]C0,1(Bρ(x)) = sup

z,w∈Bρ(x),z �=w

|u(z) − u(w)|
|z − w| .

Proposition 2.1. Let u ∈ S
β

1 (δ, g0, ε0,μ,M) and consider the sets

Sp := {
x ∈ B1/2: [u]C0,1(Br (x))(x) = ∞ for all 0 < r < 1/2

}
,

Sl := {
x ∈ B1/2: [u]C0,1(Br (x)) = ∞ for all 0 < r < 1/2

}
.

Then, Sp ⊂ Sl ⊂ F+(u) ∩ F−(u) and

lim sup
F±(u)×(0,1)�(x,r)→(x0,0)

Θ−
u (x, r) � D for every x0 ∈ Sl ,

lim sup
r→0

Θ−
u (x0, r) �D for every x0 ∈ Sp,

where D = D(n, δ, g0, β) > 0 is a universal constant.

For one phase minimizers, there is actually a better result, in the sense that Lipschitz regularity holds for the class
S1(δ, g0, ε0,μ,M)+(0) with no further assumptions. This is essentially the result of S. Martinez and N. Wolanski,
Theorem 4.2 in [15] rewritten in terms of the class S+

1 (δ, g0, ε0,μ,M)(x0) introduced here. We present the result
below.

The proof depends essentially on the fact that uniform Cα estimate holds for non-degenerate classes S(Ω, δ, g0, ε0,

μ,M) (Theorem 5.1) and on a modification of the proof of Lemma 4.3 in [15] to put it in the context of classes. The
details are left to the reader.

Theorem 2.2 (One phase case). There exists a universal constant C = C(n, δ, g0, ε0,μ) such that

u ∈ S1(δ, g0, ε0,μ)+(0) ⇒ ‖u‖C0,1(B1/6)
� C.

3. Background results on Orlicz spaces and degenerate/singular elliptic equations

In this section, we present some background results that will be used throughout the paper. They are drawn from
the theory of Orlicz–Sobolev spaces and the regularity theory of degenerate/singular elliptic equations of the type
Lgu = 0. The proofs can be found in the papers [13] and [15] as indicated below. More details on the theory of
Orlicz spaces can be found in [1]. We systematically use definitions, results and basic properties of the functions G

as developed in Section 2 of [15]. Throughout this paper Ω ⊂ Rn always denotes a bounded domain with Lipschitz
boundary.

We start off by observing that the conditions (P) and (C1) imply the following properties:

(g-1) min{sδ, sg0}g(t)� g(st) � max{sδ, sg0}g(t), ∀s, t > 0;
(g-2) tg(t)

1+g0
� G(t) � tg(t), ∀t � 0;

(G-1) G is convex and C2;
(G-2) 1

1+g0
min{s1+δ, s1+g0}G(t) � G(st)� (1 + g0)max{s1+δ, s1+g0}G(t), ∀s, t > 0;

(G-3) G(a + b) � 2g0(1 + g0)(G(a) + G(b)), ∀a, b > 0.

The following result is the version of Morrey’s lemma in the Orlicz–Sobolev setting. Part of the proof appears more
or less in a paper of G.M. Lieberman [13] inside the proof of Theorem 1.7. We need a sharper version of it, where
the relationship between the Hölder semi-norm [u]α,Ω and the number G(1) is precisely computed. This way, we
present the proof in Appendix A. This estimate will be an important point for our compactness argument in Sections 6
and 8.
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Lemma 3.1 (Morrey’s type theorem). Let u ∈ W
1,1
loc (Ω) ∩ L1(Ω), G ∈ G(δ, g0) and 0 < α < 1. Suppose Ω ′ � Ω such

that

−
∫

Br(x0)

G
(|∇u|)dx � Lrα−1 for every x0 ∈ Ω ′ with 0 < r � R0 � dist

(
Ω ′, ∂Ω

)
.

Then, there exist C1 = C1(α,n, g0) > 0 and C2 = C2(α,n, g0,R0) > 0 such that∣∣u(x) − u(y)
∣∣� (

C1 · max

{
L

G(1)
,1

})
· |x − y|α, for x, y ∈ Ω ′ with |x − y| � R0

2
,

‖u‖L∞(Ω ′) � C2
(
L + ‖u‖L1(Ω)

)
,

[u]α,Ω ′ � max

(
C1 · max

{
L

G(1)
,1

}
,

2α+1 · ‖u‖L∞(Ω ′)
Rα

0

)
. (3.12)

Proof. See Appendix A. �
Definition 3.1. We say that a function v ∈ W 1,G(Ω) is a weak solution to the equation Lgv = 0 in Ω if for all
ξ ∈ C∞

0 (Ω) we have∫
Ω

g
(|∇v|) ∇v

|∇v| · ∇ξ dx = 0.

The theorem stated below compiles some results on the regularity theory of (weak) solutions to degenerate/singular
elliptic equations. These results were proven by G.M. Lieberman, S. Martinez and N. Wolanski in [13] and [15]
respectively (see, for instance Theorem 1.7 and Lemma 5.1 in [13] and Lemma 2.7 in [15]). We present a slightly
sharper version for our purposes (see Remarks 3.1 and 3.2).

Theorem 3.1. Let G ∈ G(δ, g0) and v be a weak solution to Lgv = 0 in Ω , where G is a primitive of g. Then v

is C1,α(Ω) for some positive constant α(n,g0, δ) < 1. Moreover, for any Ω ′ � Ω , there exists a constant C0 > 0,
depending possibly on n, δ, g0,dist(Ω ′, ∂Ω) and supΩ ′ |v| > 0 such that

‖v‖C1,α(Ω ′) � C0. (3.13)

Also, there exists a constant C1 = C1(n, δ, g0) > 0 such that for all Br ⊂ Ω ,

sup
Br/2

|∇v| � C1

r
sup
Br

|v|. (3.14)

Further, for every β ∈ (0, n), there exists C2 = C2(n,β, δ, g0, supBr
|v|) > 0 such that∫

Br/2

G
(|∇v|)dx � C2r

β. (3.15)

Remark 3.1. Despite the fact that Theorem 1.7 in [13] states that the constant C0 above depends on g(1), we observe
that for homogeneous equations this dependence can be dropped. In fact, suppose G ∈ G(δ, g0) and Lgu = 0 in Ω .
Then, for any α > 0 if we set Gα(t) := αG(t) ∈ G(δ, g0) then it follows that Lgαu = 0 in Ω . In particular, taking
α0 = g(1)−1 > 0, we have gα0(1) = 1 and thus, Theorem 1.7 in [13] actually shows that there is no dependence
on g(1).

Remark 3.2. If C2 is the constant in the estimate (3.15) of the previous theorem we have actually

C2

(
n,β, δ, g0, sup |v|

)
= C2(n,β, δ, g0) · sup |v|.
Br Br
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Indeed, first we observe that if v solves Lgv = 0 in Br , then by setting w(x) := αv(βx) for α,β > 0, we have Lgw = 0
in Br/β where g(t) = g( t

α·β ). This way, let us set w(x) := v(x)/S where S := ‖v‖L∞(Br ) > 0. w solves Lgw = 0 in

Br with g(t) = g(S · t) and ‖w‖L∞(Br ) = 1. In this case, it is easy to see that G(t) = G(S·t)
S

. This way

rβ · C2(n,β, δ, g0) �
∫

Br/2

G
(|∇w|)dx = 1

S
·
∫

Br/2

G
(|∇v|)dx.

4. Existence theory and L∞ estimates for global minimizers of EG

In this section we establish existence and boundedness of global minimizers for the functionals EG. As in the
one phase case, the existence theory follows the standard procedure but the peculiar properties of the Orlicz spaces
settings, like those in Section 2, come into play. Here, we just point out the main differences from the one phase case
in [15].

Definition 4.1. We say u ∈ W 1,G(Ω) is a minimizer of EG over Kϕ if

EG(u,Ω) = min
v∈Kϕ

EG(v,Ω),

where ϕ ∈ W 1,1(Ω) ∩ L∞(Ω) with
∫
Ω

G(|∇ϕ|) dx < ∞ and

Kϕ =
{
v ∈ L1(Ω):

∫
Ω

G
(|∇v|)dx < ∞, v = ϕ on ∂Ω

}
.

We will also refer to minimizers over Kϕ as global minimizers.

Proposition 4.1 (Existence). Let G ∈ G(δ, g0) and suppose that EG(ϕ,Ω) < ∞. Then, the optimization problem

min
v∈Kϕ

EG(v,Ω)

has at least one minimizer over Kϕ .

Proof. Let {uj } be a minimizing sequence for EG in Kϕ . Proceeding as in Theorem 3.1 in [15], we see that {uj } is
bounded in W 1,G(Ω) and by reflexivity we may assume

uj ⇀ u weakly in W 1,G(Ω).

From this we conclude that u = ϕ on ∂Ω . Since W 1,G(Ω) ↪→ L1+δ(Ω) compactly, once more we can assume
uj (x) → u(x) for a.e. x ∈ Ω . We see that,

λ(f1, f2)(uj )(x) → λ(f1, f2)(u)(x) for a.e. x ∈ {u > 0} ∪ {u < 0}. (4.16)

In the case u(x) = 0, we note that

λ(f1, f2)(u)(x) � lim inf
j→∞ λ(f1, f2)(uj )(x). (4.17)

By Fatou’s lemma together with (4.16) and by (4.17) we have∫
Ω

λ(f1, f2)(u) dx � lim inf
j→∞

∫
Ω

λ(f1, f2)(uj ) dx.

By convexity of G and duality in Orlicz spaces as in Theorem 3.1 in [15] we have∫
G
(|∇u|)dx � lim inf

j→∞

∫
G
(|∇uj |

)
dx.
Ω Ω
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This leads us to conclude that u ∈ Kϕ and

EG(u,Ω) � inf
v∈Kϕ

EG(v,Ω),

proving that u is a minimum of (2.5). �
Definition 4.2. u ∈ W

1,G
loc (Ω) is said to be a minimizer of the functional EG(·,Ω) if for any ψ ∈ W

1,G
c (Ω), we have

EG(u,Ω) �EG(u + ψ,Ω).

It follows that u is a minimizer for EG(·,Ω) if and only if ∀D �Ω with Lipschitz boundary

EG(u,D) = min
v∈Ku

EG(v,D),

Ku = {
v ∈ W 1,G(D): v = u on ∂D

}
.

It is easy to check that global minimizers are also minimizers.

Remark 4.1 (Equivalence of functionals). Let us consider two functionals defined as follows:

I 1
G(v) :=

∫
Ω

[
G
(|∇v|)+ λ1(f1, f2)(v)

]
dx and I 2

G(v) :=
∫
Ω

[
G
(|∇v|)+ λ2(f1, f2)(v)

]
dx,

where

λ1(f1, f2)(v) = (f1 − f2)χ{v<0} − (f1 − f2)
−χ{v=0} and

λ2(f1, f2)(v) = (f2 − f1)χ{v>0} − (f2 − f1)
−χ{v=0}.

We observe that,

EG(v) − I 1
G(v) =

∫
Ω

f2(x) dx and EG(v) − I 2
G(v) =

∫
Ω

f1(x) dx.

From this, we conclude that u is a minimizer of EG if and only if it is also a minimizer of the functionals I 1
G

and I 2
G. This information will allow us to interchange the functionals conveniently in order to simplify the proofs.

Proposition 4.2. Let G ∈ G(δ, g0) and u be a minimizer of EG over Kϕ . Then, u ∈ L∞(Ω) and we have the following
estimate

inf
Ω

ϕ � u(x) � sup
Ω

ϕ a.e. x ∈ Ω.

Furthermore, if u is a minimizer of EG then

Lgu = 0 in Ω \ {u = 0}.

Proof. We start off by observing that we can assume without loss of generality that infΩ ϕ < 0 � supΩ ϕ. Otherwise
u � 0 a.e. in Ω and the estimate follows from Lemma 3.2 in [15], since the problem is then reduced to the one phase
case. To prove the lower bound, we use uε(x) = u(x) + ε(u − m)− with 0 < ε < 1 and m = infΩ ϕ < 0. By the
minimality of u with respect to I 2

G, we arrive to∫
Ω−

m

[
G
(|∇u|)+ λ2(f1, f2)(u)

]
dx �

∫
Ω−

m

[
(1 + g0)(1 − ε)1+δG

(|∇u|)+ λ2(f1, f2)(uε)
]
dx,

where Ω−
m := {u < m}. Once u < 0 and uε < 0 both in Ω−

m , we have
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∫
Ω−

m

G
(|∇u|)dx � (1 + g0)(1 − ε)1+δ

∫
Ω−

m

G
(|∇u|)dx

which yields for ε close enough to 1 that
∫
Ω

G(|∇(u − m)−|) dx � 0, and this implies u � m a.e. in Ω . The upper
bound is proven similarly by considering I 1

G instead. As it is proven in the next section, u is actually Cα
loc(Ω) and

thus the set Ω \ {u = 0} is open. So, let η ∈ C∞
0 (Ω \ {u = 0}) and suppose that K = suppη. Set m0 = infK |u| and

M0 = maxK |η|. For 0 < |ε| < m0/M0, we see that

{u > 0} ∩ K = {u + εη > 0} ∩ K and {u < 0} ∩ K = {u + εη < 0} ∩ K.

Thus,

EG(u + εη) =
∫
Ω

[
G
(∣∣∇(u + εη)

∣∣)+ λ(f1, f2)(u)
]
dx.

Hence,

0 = lim
ε→0

1

2ε

(
EG(u + εη) − EG(u)

)=
∫

Ω\{u=0}
g
(|∇u|) ∇u

|∇u| · ∇η dx. �

Remark 4.2. If the phase functions are ordered, i.e., say f2 � f1 in Ω , then minimizers are globally subsolutions,
i.e., Lgu � 0 in Ω for the corresponding g. This is proven in Remark 10.1. Similarly, f2 � f1 implies that Lgu � 0
in Ω .

5. The uniform local Hölder regularity for minimizers in S(Ω,δ,g0, ε0,μ,M)

In this section, we prove the uniform (local) Hölder regularity for minimizers in S(Ω, δ, g0, ε0,μ,M). Our proof
follows closely the proof in Theorem 4.1 in [15]. As mentioned by the authors there, this is one of the main proofs in
their paper. It is delicate and long. Here, we show it for the two phase case setting and put it in the context of uniform
regularity within the class S(Ω, δ, g0, ε0,μ,M). The non-degeneracy condition (limitation from below on G(1)) is
crucial for the uniform Hölder estimate.

The key estimates developed in what follows play an important role in the proof of our main result Theorem 2.1 in
Section 8. This way, we present essentially the major steps and the key estimates of the proof.

Theorem 5.1. Let u ∈ S(Ω, δ, g0, ε0,μ,M) and α ∈ (0,1). Then u is uniformly in Cα
loc(Ω). More precisely, for any

Ω ′ � Ω there exists a universal constant C = C(δ, g0, n,α,M,μ) such that

[u]C0,α(Ω ′) � C := max

(
C1 · max

{
C

ε0
,1

}
,

2α+1 · M
min{( 1

2 )1+1/ε,dist(Ω ′, ∂Ω)}α
)

,

where

ε := 1

2
(1 − α)/(n + α − 1),

and C1 = C1(δ, g0, n). In fact, C = C(n, δ, g0, ε0,μ,M,α,dist(Ω ′, ∂Ω)) > 0.

Proof. By definition, there exists a functional of the type

EG(u,Ω) =
∫
Ω

[
G
(|∇u|)+ λ(f1, f2)(u)

]
dx

such that u is a minimizer of EG, supΩ |u| � M and 0 � f1, f2 � μ. By Lemma 3.1, it is enough to show that for any
0 < α < 1 and Ω ′ � Ω , there exists 0 < ρ0 � dist(Ω ′, ∂Ω) such that
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∫
Bρ(y)

G
(|∇u|)dx � Cρn+α−1 for every y ∈ Ω ′, and for all 0 < ρ � ρ0 � dist

(
Ω ′, ∂Ω

)
.

So, let α ∈ (0,1) be fixed and Ω ′ � Ω with y ∈ Ω ′. Consider r > 0 such that Br(y) ⊂ Ω . To simplify the notation,
assume y = 0. Let w be the solution to the Dirichlet problem

Lgw = 0 in Br and w − u ∈ W
1,G
0 (Br).

From Theorem 2.3 of [15] we have∫
Br

[
G
(|∇u|)− G

(|∇w|)]dx � C(g0, δ)

(∫
A2

G
(|∇u − ∇w|)dx +

∫
A1

F
(|∇u|)|∇u − ∇w|2 dx

)
, (5.18)

where

A1 = {
x ∈ Br : |∇u − ∇w|� 2|∇u|}, A2 = {

x ∈ Br : |∇u − ∇w| > 2|∇u|}
and F(t) = g(t)/t . On the other hand, it follows by the minimality of u that∫

Br

[
G
(|∇u|)− G

(|∇w|)]dx �
∫
Br

[
λ(f1, f2)(w) − λ(f1, f2)(u)

]
dx � C(n)μrn. (5.19)

A combination of (5.18) and (5.19) reveals that∫
A2

G
(|∇u − ∇w|)dx � C(n,g0, δ)μrn (5.20)

and ∫
A1

F
(|∇u|)|∇u − ∇w|2 dx � C(n,g0, δ)μrn. (5.21)

Let ε > 0 and suppose that rε � 1/2. Since G(t)
t

is increasing, (g-2) and (5.21) yields∫
A1∩B

r1+ε

G
(|∇u − ∇w|)dx � C(g0)

(∫
A1

G(|∇u|)
|∇u|2 |∇u − ∇w|2 dx

)1/2

·
( ∫

B
r1+ε

G
(|∇u|)dx

)1/2

� Cμ1/2rn/2
( ∫

B
r1+ε

G
(|∇u|)dx

)1/2

, (5.22)

where C = C(n, δ, g0). Combining now (5.20) and (5.22) we arrive again for C = C(n, δ, g0) > 0 at∫
B

r1+ε

G
(|∇u − ∇w|)dx =

∫
A1∩B

r1+ε

G
(|∇u − ∇w|)dx +

∫
A2∩B

r1+ε

G
(|∇u − ∇w|)dx

� Cμ1/2
[
μ1/2rn + rn/2

( ∫
B

r1+ε

G
(|∇u|)dx

)1/2]
. (5.23)

Note that by the maximum principle (Lemma 2.8 of [15]), we have

‖w‖L∞(Br )
= ‖u‖L∞(Br )

�M. (5.24)

Thus for r � 1, it follows by property (3.15), Remark 3.2 and (G-3) that for any β ∈ (0, n)∫
B 1+ε

G
(|∇u|)dx � C

{
(1 + μ)rβ + (1 + μ)

1
2 rβ/2

( ∫
B 1+ε

G
(|∇u|)dx

)1/2}
, (5.25)
r r
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where C = C(δ,g0, n,β,M). Hence as in (4.9) in [15], as long as rε � 1/2, we obtain∫
B

r1+ε

G
(|∇u|)dx �

[
(C + 1)1/2 + C1/2]2

C(1 + μ)rβ. (5.26)

Since 0 < α < 1 set β := (1 + ε)(n − (1 − α)) and ρ0 := min{( 1
2 )1+1/ε,dist(Ω ′, ∂Ω)}. Now, we choose ε so that

0 < ε < (1 −α)/(n+α − 1). This way, 0 < β < n. Thus, for 0 < ρ < ρ0 with r = ρ1/(1+ε) we have that rε � 1/2 and
therefore (5.26) translates to∫

Bρ

G
(|∇u|)dx �

[
(C + 1)1/2 + C1/2]2

C(1 + μ)ρn+α−1 = Cρn+α−1,

where C = C(δ, g0, n,α,M,μ). Now by estimate (3.12) in Morrey’s type lemma, we have for

ε := 1

2
(1 − α)/(n + α − 1) that

[u]α,Ω ′ � max

(
C1 · max

{
C

ε0
,1

}
,

2α+1 · M
min{( 1

2 )1+1/ε,dist(Ω ′, ∂Ω)}α
)

. �
6. Non-degenerate classes: free boundary hitting angle, compactness and scaling

In this section we motivate the definition of the non-degenerate classes presented in the introduction. We proceed by
a heuristic argument in the general (Orlicz) setting and show that once full regularity of the free boundary is available
(i.e., when classical solutions to FBPs exist) we can make the argument rigorous.

We start off with a heuristic motivation that shows that as far as Lipschitz regularity is concerned, we need in fact
to concentrate on some special subsets of G(δ, g0). So, suppose we have a (classical) solution of the following one
phase free boundary problem (FBP)⎧⎨⎩

Lgu = 0 in {u > 0},
H
(|∇u|)= λ > 0 on F(u) := ∂{u > 0} ∩ B1,

u � 0 in B1

(6.27)

where

H(t) = g(t)t − G(t) for t � 0.

The gradient of the solution along the free boundary is controlled above and below by negative powers of G(1),
provided G(1) is small enough. More precisely, there exist positive constants C1 = C1(λ, g0) and C2 = C2(λ, δ, g0)

such that

C1 ·
(

1

G(1)

) 1
1+g0 � |∇u|� C2 ·

(
1

G(1)

) 1
1+δ

along F(u) (6.28)

provided G(1) < min{λ(1 + g0)
−1,1} and the solution u and its free boundary F(u) are smooth enough.

Indeed, suppose x0 ∈ F(u) and let β = |∇u(x0)| > 0 (by Hopf’s lemma). Then,

β = λ + G(β)

g(β)
� λ

g(β)
� λ

g(1) · max{βδ,βg0} �
λ

1 + g0
· 1

G(1)
· 1

max{βδ,βg0} .

Now since G(1) < λ(1 + g0)
−1 then

β �
(

λ

1 + g0

) 1
1+g0 ·

(
1

G(1)

) 1
1+g0

.

To prove the other inequality, we observe that H ′(t) = g′(t) · t � δg(t) for t > 0 by (C1). This way, from the continuity
of g we have H(t)� δG(t) for t � 0. This implies
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λ = H(β) � δ · G(β) � δ · G(1)

1 + g0
· min

{
β1+δ, β1+g0

}
.

So, since G(1) < 1 then

β � max

{(
(1 + g0) · λ

δ

) 1
1+g0

,

(
(1 + g0) · λ

δ

) 1
1+δ

}
·
(

1

G(1)

) 1
1+δ

.

This shows heuristically the desired inequality. We observe that the first inequality in (6.28) strongly suggests that
solutions to FBPs like (6.27) cannot have a uniform (local) Lipschitz estimate with respect to the class G(δ, g0), since
once G(1) is allowed to go to zero within the class then |∇u| blows up along F+(u).

Hence, since FBPs like (6.27) are at least heuristically (see [15]) the “Euler–Lagrange equations” of minimizers of
the functionals of the type

EG(u,B1) =
∫
B1

[
G
(|∇u|)+ λ · χ{u>0}

]
dx,

we should not expect the same (local) uniform Lipschitz control with respect to G(δ, g0) for such minimizers, unless
some control is imposed on G(1) within the class considered. We can actually make this heuristic discussion rigorous,
if the full regularity of the free boundary is available. This is done in the next example.

Example 6.1. Let us consider the functionals

Ej(u,B1) =
∫
B1

[
Gj

(|∇u|)+ χ{u>0}
]
dx,

where Gj(t) = α2
j · t2 and αj > 0. In this case, δ = g0 = μ = 1. So, clearly Gj ∈ G(1,1) and Gj(1) = α2

j . We observe
that,

Ej(u) = α2
j · Fj (u) := α2

j

{∫
B1

[
|∇u|2 + 1

α2
j

χ{u>0}
]

dx

}
.

This way, u is a minimizer of Ej if and only if it is a minimizer of Fj . Let uj be a minimizer for Ej such that
0 � ϕ � M . This function can be easily constructed by considering the minimization process with some prescribed
boundary data 0 � ϕ � M as done in Section 3, for instance. This way

uj ∈ S∗(B1,1,1,1,M)+(0) for all j � 1.

Since uj also minimizes Fj , it follows by the results of H.W. Alt, L.A. Caffarelli, D. Jerison and C. Kenig in [2]
and [8] that in dimension n = 2 or n = 3 the free boundary is an analytic hypersurface everywhere and by elliptic
regularity theory, uj is a classical solution of the following FBP⎧⎪⎪⎨⎪⎪⎩

�u = 0 in {u > 0},
|∇u| = 1

αj

on F(u) := ∂{u > 0} ∩ B1,

u � 0.

So, if the uniform (local) Lipschitz estimate with respect to S∗(B1,1,1,1,M)+(0) holds then we have

1√
Gj(1)

= 1

αj

= ∣∣∇uj (0)
∣∣� [uj ]C0,1(B1/8)

< ∞.

This implies that Gj(1) has to be uniformly bounded away from zero.
This example shows that for the uniform Lipschitz estimate to hold, we must restrict ourselves to deal with some

non-degenerate subsets of G(δ, g0), namely, subsets of G(δ, g0) where G(1) is bounded away from zero, i.e., the
non-degenerate classes presented in the introduction.
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6.1. Compactness of non-degenerate subclasses

We observe that there may be sequences in G(δ, g0) and Gβ(δ, g0) that converge uniformly to zero in compact
subsets of [0,+∞). In non-degenerate classes this phenomenon does not happen. The next theorem establishes the
compactness of non-degenerate subclasses Gβ(δ, g0) in the appropriate topologies.

Theorem 6.1 (Compactness in Gβ(δ, g0, ε0)). Let 0 < β � 1 and τ,L > 0. Define

Fτ (ε0,L) := {
G ∈ Gβ(δ, g0, ε0): G(τ) � L

}
.

If {Gj } ⊂ Fτ (ε0,L) then there exist a subsequence still denoted by {Gj } and G ∈ G(δ, g0) ∩ C2,β(0,∞) such that
Gj converge to G in C2,γ topology on compact subsets of (0,+∞) for every γ ∈ (0, β) and in the C1 topology on
compact subsets of [0,+∞).

Proof. Let {Gj }j�1 be a sequence in Fτ (ε0,L). Since each Gj is increasing we can assume that 0 < τ � 1. By (G-2),

Gj(1) � (1 + g0)Lτ−(1+g0) =: L0. Hence, the non-degeneracy condition G(1) � ε0 implies

ε0

(g0 + 1)
min

{
t1+δ, t1+g0

}
� Gj(t) � L0(g0 + 1)max

{
t1+δ, t1+g0

} ∀t � 0 (6.29)

and by (g-1), (g-2) and (C1)

ε0 min
{
tδ, tg0

}
� gj (t)� (1 + g0)L0 max

{
tδ, tg0

} ∀t � 0, (6.30)

0 < g′
j (t)� g0(1 + g0)

2L0 max
{
tδ−1, tg0−1} ∀t > 0. (6.31)

Once G satisfies (MC-β), we observe that g′ is locally β-Hölder continuous function. Indeed, we claim that for any
fixed closed interval K � (0,+∞) there exists a constant C1 depending only on δ, g0, β, τ,L and K such that[

g′
j

]
C0,β (K)

� C1(δ, g0, β, τ,L,K).

Indeed, let Qj(t) = tg′
j (t)

gj (t)
. Then since gj > 0 in K by (6.30), Qj ∈ W 1,1(K) and

∀t, t + κ ∈ IK =
[

1

2
inf
K

t, sup
K

t + 1

2
inf
K

t

]
⇒

t+κ∫
t

∣∣Q′
j (s)

∣∣ds � C0(δ, g0, β)

tβ
· κβ � C0(δ, g0, β)

( 1
2 infK t)

β
· κβ.

Then, Morrey’s lemma (see Theorem 1.1 in [14]) provides

[Qj ]C0,β (K) �
C̃0(δ, g0, β)

( 1
2 infK t)

β
. (6.32)

Hence, since
gj (t)

t
is Lipschitz continuous in K (once it has bounded derivative there) we conclude that g′

j (t) =
Qj (t)·gj (t)

t
is β-Hölder continuous in K and (6.30), (6.31) and (6.32) imply[

g′
j

]
C0,β (K)

= [Qj · gj/t]C0,β (K)

�
(
diam(K)

)1−β‖Qj‖L∞(K)
· [gj/t]C0,1(K) + ‖gj/t‖

L∞(K)
· [Qj ]C0,β (K)

� L0 ·
(

C(δ,g0, β,K) + C̃(δ, g0, β,K)

( 1
2 infK t)

β

)
� C1(δ, g0, β,L, τ,K).

Thus, all the above estimates imply that for any closed interval K � (0,∞) we have

‖Gj‖C2,β (K)
� C2, C2 = C2(δ, g0, β,L, τ,K). (6.33)

Therefore, there exist a subsequence still denoted by {Gj } and a function G ∈ C2,β((0,+∞)) such that
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Gj → G in C
2,γ

loc (0,∞) for every γ ∈ (0, β) where G satisfies (C1).

Let us set g := G′ in (0,∞). To finish the proof, we have to extend G to become C1[0,∞) and show that Gj → G in
C1

loc[0,∞). This way, G will belong to G(δ, g0). We do it in the natural way, i.e., G(0) = 0 and G(t) = G(t) if t > 0.
We observe that G ∈ C0[0,∞) since (6.29) implies for 0 < t < 1,

Gj(t) � L0(1 + g0) · t1+δ.

Passing to the limit, we have G(t) � L0(1+g0) · t1+δ for 0 < t < 1 which yields limt→0+ G(t) = 0. Arguing similarly
with the estimates

0 � lim
t→0+

G(t)

t
� L0(1 + g0) lim

t→0+ tδ = 0,

0 < t < 1 ⇒ gj (t) � (1 + g0)L0t
δ,

we see that G ∈ C1[0,∞) and Gj → G in C1
loc[0,∞). This, finishes the proof. �

6.2. Scaling

We close this section with some observations about scaling. Many estimates for minimizers of functionals of the
type EG involve universal constants, i.e., constants depending on the ellipticity constants δ, g0. The constants in these
estimate sometimes also depend on G(1).

This way, it is very important that our minimizers admit rescaling that normalize the values G(1). This fact is what
allows us to run a compactness argument using the theorem above to perform a blow-up analysis in the next section.
For s > 0 we define the following normalizing rescalings

Gs(t) := G(st)

sG′(s)
and G∗

s (t) := G(st). (6.34)

Below we record important facts about these scalings in a proposition.

Proposition 6.1 (Scaling properties).

G ∈ G(δ, g0) ⇒ Gs ∈ G
(
δ, g0, (1 + g0)

−1) and Gs(1) � 1, (S-1)

G ∈ Gβ(δ, g0) ⇒ Gs ∈ Gβ

(
δ, g0, (1 + g0)

−1) and Gs(1) � 1, (S-2)

G ∈ G(δ, g0, ε0), s � 1 ⇒ G∗
s ∈ G(δ, g0, ε0), (S-3)

G ∈ Gβ(δ, g0, ε0), s � 1 ⇒ G∗
s ∈ G(δ, g0, ε0). (S-4)

Proof. Let G ∈ G(δ, g0). We observe that the rescaling in (6.34) preserves regularity. Let us define

Q(t) = tg′(t)
g(t)

, g = G′, Qs(t) = tg′
s(t)

gs(t)
, gs = G′

s and Q∗
s (t) = t ġ∗

s (t)

g∗
s (t)

, g∗
s = Ġ∗

s .

(S-1) and (S-3) follow from the fact that G is increasing, (g-2) and

Qs(t) = Q∗
s (t) = Q(st) ∀t � 0,

G∗
s (1) = G(s) � G(1) � ε0.

To prove (S-2) and (S-4), we set Hs(t) := Qs(t) = Q∗
s (t) for G ∈ Gβ(δ, g0) and then

τ+κ∫
τ

∣∣H ′
s(t)

∣∣dt = s

τ+κ∫
τ

∣∣Q′(st)
∣∣dt =

sτ+sκ∫
sτ

∣∣Q′(ζ )
∣∣dζ � C0

τβ
· κβ.

This finishes the proof. �
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7. Examples of N -functions in the non-degenerate classes of G(δ,g0)

In this section, we present examples of N -functions in the non-degenerate classes G2(δ, g0) and Gβ(δ, g0). More-
over, we show that if the control constant C(δ, g0) is chosen appropriately, the class G2 stays invariant under a variety
of elementary operations such as (positive) linear combinations, products, composition and C2-gluings. This shows
that the degenerate classes are quite large indeed.

Let us observe that condition (C1) studied by G.M. Lieberman in the theory of degenerate/singular equations in [13]
is not enough to assure compactness in the class G(δ, g0).

Example 7.1 (Lack of compactness in G(δ, g0)). For each 0 < ε < 1 we consider the functions defined by

Gε(t) =

⎧⎪⎨⎪⎩
1
2 t2 if 0 � t � 1,

1
6ε

t3 + 1
2 (1 − 1

ε
)t2 + 1

2ε
t − 1

6ε
if 1 � t � 1 + ε,

t2 − (1 + 1
2ε)t + 1

2 + 1
2ε + 1

6ε2 if 1 + ε � t.

It is easy to see that Gε is an N -function in C2([0,∞)). Furthermore, Gε ∈ G(1,2,1/2) for all 0 < ε < 1. We can
also verify Gε → G0 uniformly in the compact sets of [0,+∞) as ε → 0 where

G0(t) =
{

1
2 t2 if 0 � t � 1,

t2 − t + 1
2 for t � 1.

Also, G0 ∈ C1,1([0,∞)) \ C2[0,∞) and hence G0 /∈ G(δ, g0) for whatever 0 < δ � g0.

We observe also that G2(δ, g0) � Gβ(δ, g0) for every β ∈ (0,1). Indeed, let G ∈ G2(δ, g0) with g = G′.
This way,

∣∣Q′(t)
∣∣� g′(t)

g(t)
+ t |g′′(t)|

g(t)
+ t

(
g′(t)
g(t)

)2

� 1

t

(
g0 + C(δ, g0) + g2

0

)
� C̃(δ, g0)

t
.

Hence, for any t, κ > 0 we have

t+κ∫
t

∣∣Q′(s)
∣∣ds � C̃(δ, g0)

t+κ∫
t

sβ−1

sβ
ds � C̃(δ, g0)

β · tβ · [(t + κ)β − tβ
]
� C̃(δ, g0, β)

tβ
· κβ.

The fact that the inclusion is strict is shown in the next example.

Example 7.2. Let β ∈ (0,1] be fixed and define G(β) : [0,∞) → [0,∞) by

G(β)(t) =
{− t4

24 + t3

6 , 0 � t � 1,

1
(β+1)(β+2)

(t − 1)β+2 + 1
4 t2 − 1

6 t + 1
24 , t � 1.

Simple but long computations show that G(β) ∈ Gβ(1,9/2,1/8) and for any interval K such that 1 ∈ K � (0,+∞)

we have [G′′
(β)]γ,K = ∞ for every β < γ � 1. In particular, it follows from the proof of Theorem 6.1 (actually

estimate (6.33)) that G(β) /∈ Gγ (δ, g0) for any β < γ � 1.

We now focus on the classes G2(δ, g0). In (C2), we take the control constant to be given by C(δ, g0) = g0(g0 − 1)

with g0(g0 − 1)� 1/4. This is not restrictive. We observe actually that this particular choice makes the class invariant
under many simple operations (pointed out below) and it is indeed quite natural if we want to include examples such
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as G(t) = tp or else G(t) = tp + tq . Furthermore, since g0(g0 − 1) → ∞ as g0 → ∞, we can eventually enlarge g0
to contemplate many concrete situations.

In what follows, we mention some concrete examples that belong to G2(δ, g0).
The first example is g(t) = tp with for δ = p and g0 = max{p, (

√
2 + 1)/2}. Also, g(t) = atp + btq with a, b > 0

and δ = min{p,q} and g0 = max{p,q, (
√

2 + 1)/2}. Two examples involving the logarithm function are: g(t) =
talogc(bt + d), for a, b > 0, c, d > 1, with δ = a and g0 = max{a + r,7/4 + r}, where r = max{1, (lnd)−1} and
g(t) = ta/logc(bt + d), for b > 0; c, d > 1 and a > (lnd)−1 with constants δ = a − (lnd)−1 and g0 = max{a + 2,

P ((lnd)−1)}, where here P is the quadratic polynomial given by P(t) = 3t2 + 2t + 1.
Functions g ∈ C1(0,+∞) of the form: g(t) = c1t

a1 for 0 � t � t0 and g(t) = c2t
a2 + d with t � t0. For

a1, a2, c1, c2 > 0, with constants δ = min{a1, a2} and g0 = max{a1, a2,2}.
Similarly, for any positive constants t0, ai , cj , i = 1,2,3 and j = 1,2, there exist single constants c > 0 and d �= 0

such that the C1-function given by

g(t) = cta1, for 0 � t � t0 and g(t) = c1t
a2 + c2t

a3 + d, for t � t0,

satisfies (C2) for δ = mini∈{1,2,3}{ai} and g0 = maxi∈{2,3}{a1, ai + (1 + √
2)/2} · r , with r = 1 − d/g(t0) if d < 0 and

δ = min{(1 − d
g(t0)

)mini∈{2,3}{ai}, a1} and g0 = maxi∈{1,2,3}{ai, (
√

2 + 1)/2}, if d > 0.

Another example that satisfies (C2) is given by g ∈ C1([0,+∞)) such that

g(t) = c1t
a1 + c2t

a2, for 0 � t � t0 and g(t) = c3t
a3 + d for t � t0,

for δ = mini∈{1,2,3}{ai} and g0 = max{a1, a2,2a3, (1 + √
3)/2} if d < 0 and δ = {a1, a2, (1 − d/g(t0))a3} and g0 =

maxi∈{1,2,3}{ai, (
√

2 − 1)/2} if d > 0. Here ai, ci, t0 are positive constants.
As mentioned previously, we have the following invariance under elementary operations.
Finite linear combinations with positive coefficients: Let G1, . . . ,Gm are N -functions such that Gj ∈ G2(δj , g0,j )

and let gj = G′
j , 1 � j � m, then for λj > 0 define g = ∑m

j=1 λjgj . We have G(t) = ∫ t

0 g(s) ds ∈ G2(δ, g0) for
δ = min{δj } and g0 =∑

g0,j ;
Product of functions: Let Gi = ∫ t

0 gi(s) ds for i = 1,2 where Gj ∈ G2(δj , g0,j ), j = 1,2, then G =∫ t

0 g1(s)g2(s) ds ∈ G2(δ, g0) with δ = δ1 + δ2 and g0 = g0,1 + g0,2;
Composition of functions: If Gj = g′

j , j = 1,2, with Gj ∈ G2(δj , g0,j ), then G(t) = ∫ t

0 g(s) ds, where g(t) =
g1(g2(t)), belongs to G2(δ, g0) with δ = δ1 · δ2 and g0 = g0,1 · g0,2; and

Finite C2 gluing of N -functions: Let G1, . . . ,Gm be functions such that Gj ∈ G2(δj , g0,j ), with G′
j = gj and

suppose that there exist 0 < t1 < t2 < · · · < tm−1 < ∞ such that:

Gj(tj ) = Gj+1(tj ), gj (tj ) = gj+1(tj ) and g′
j (tj ) = g′

j+1(tj ).

Then G(t) = ∫ t

0 g(s) ds ∈ G2(δ, g0) where

g(t) = gi(t), ti−1 � t � ti and g(t) = gm(t), tm−1 � t,

where i = 0,1, . . . ,m − 1, t0 = 0, δ = min{δj } and g0 = max{g0,j }.
Finally, we observe that for d1, d2, d3 � ε0, p � 3/2 and q � 4 it follows that{

d1t
α, d2t

β ln(t + e),
d3t

γ

ln(t + e)

}
α,β,γ∈[p,q]

⊂ G1(p − 1, q + 2, ε0).

8. Proof of the main result – Theorem 2.1

This section is devoted to the proof of our main result, Theorem 2.1. In order to proceed, we present a lemma that
provides an estimate putting in perspective the Hölder and Lipschitz continuity character of functions. It will be used
in the sequel.

Lemma 8.1 (Hölder/Lipschitz continuity character). Let w : (0,1] →R be a nonnegative and nondecreasing function
such that w(1) � L for some L > 0. Suppose 0 < τ < 1 and 0 < α � 1 are such that
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w
(
τ k+1)� max

0�m�k

{
L · τα(k+1), τα(m+1) · w(

τ k−m
)}

for every k � 0. (8.35)

Then,

w(r) � τ−αLrα for 0 < r � 1.

In particular, if u is a bounded function in B1 such that supB1
|u| � L and

sup
B

τk+1

|u| � max
0�m�k

{
L · τα(k+1), τα(m+1) · sup

B
τk−m

|u|
}

for every k � 0, (8.36)

we have the following estimate,∣∣u(x)
∣∣� τ−αL|x|α for every x ∈ B1.

Proof. Indeed, we claim that w(τk) � ταkL for every k � 0. We proceed by induction on k. The claim is true for
k = 0 by assumption. Let us assume that it is also true for all k � k0 ∈ N\{0}. This way, by the hypothesis of induction,
for any m ∈N with 0 � m� k0

w
(
τ k0−m

)
τα(m+1) � τα(k0−m)Lτα(m+1) = Lτα(k0+1).

This estimate and (8.35) implies

w
(
τ k0+1)� max

0�m�k0

{
L · τα(k0+1), τα(m+1) · w(

τ k0−m
)}

� Lτα(k0+1).

This proves the claim. If 0 < r � 1, we can find k0 ∈ N such that τ k0+1 � r < τk0 and thus by the claim and the
monotonicity of w we conclude that

w(r) � w
(
τ k0

)
� ταk0L = τα(k0+1)L

τα
� τ−αLrα.

The second part follows just by observing that w(r) = supBr
|u| satisfies the assumptions of the first part of the

lemma. �
Remark 8.1. The condition w(1) � L or supB1

u � L cannot be dropped in the previous lemma. Indeed, consider
the function u(x) = μτL|x|α in B1 where μτα+1 > 1, so that supB1

u > L. Observe that (8.36) is satisfied. Indeed,
supB

τk+1
u = μLτα(k+1)+1 and once μτα+1 > 1 we obtain that

max
0�m�k

{
L · τα(k+1), τα(m+1) · sup

B
τk−m

|u|
}

= max
{
L
(
τ k+1)α,μτα(k+1)+1L

}= μτα(k+1)+1L.

However, |u(x)| � τ−αL|x|α does not hold for any x ∈ B1 \ {0}.

We now have all the ingredients to prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality we can assume that x0 = 0. In fact, suppose that the theo-
rem is true for minimizers in S

β

1 (δ, g0, ε0,μ,M)(0) and let u ∈ S
β

1 (δ, g0, ε0,μ,M)(x0). Then u(x) = u(x + x0) ∈
S

β

1 (δ, g0, ε0,μ,M)(0). Applying the theorem to u and getting back to u we obtain∣∣u(x)
∣∣� 2 · max{M,1}

C
· |x − x0|, ∀x ∈ B1(x0). (8.37)

We divide the proof into two cases:

Case 1. u ∈ S
β
(δ, g0, ε0,μ,1)(0).
1
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Since 0 < C < 1 (in fact it is a small constant), Lemma 8.1 applied with L = 1/C, τ = 1/2 and α = 1 shows that
in order to prove (8.37) for this case, it is enough to show that there exists a universal constant C > 0 such that for any
u ∈ S

β

1 (δ, g0, ε0,μ,1)(0) satisfying Θ−
u (0, r) � C for all 0 < r < 1 we have

sup
B2−(k+1)

∣∣u(x)
∣∣� max

0�m�k

{
1

C · 2k+1
,
S(k − m)

2m+1

}
, ∀k � 0 (8.38)

where S(j) := supB2−j
|u|. So, let us suppose by contradiction, that (8.38) does not hold. Then, for each j ∈ N, j � 2,

we can find integers kj � 0 and functions uj ∈ S
β

1 (δ, g0, ε0,μ,1)(0) such that

sup
B1

|uj |� 1

Θ−
uj

(
0,2−kj

)
� 1

j
→ 0 as j → ∞ (8.39)

but

sup
B

2
−(kj +1)

∣∣uj (x)
∣∣> max

0�m�kj

{
j

2kj +1
,
Sj (kj − m)

2m+1

}
(8.40)

where

Sj (kj − m) = sup
B

2
−(kj −m)

|uj |, 0 � m � kj .

Moreover, (8.40) implies that kj � log2 j − 1 → ∞. Now we consider the following family of auxiliary functions

vj (x) := uj (2−kj x)

Sj (kj + 1)
, x ∈ B

2kj . (8.41)

Since density is scaling invariant, (8.39) implies that

|{vj < 0} ∩ B1|
|B1| � 1

j
. (8.42)

For each uj there exist Gj ∈ Gβ(δ, g0, ε0) and 0 � f1,j , f2,j � μ in B1 such that uj is a minimizer of

EGj
(uj ) =

∫
B1

[
Gj

(|∇w|)+ λ(f1,j , f2,j )(uj )
]
dx.

On the other hand, by Remark 4.1, uj minimizes EGj
if only if uj minimizes the functional

I 2
Gj

(uj ) :=
∫
B1

[
Gj

(|∇uj |
)+ fj (uj )

]
dx,

where fj (uj ) := λ2(f1,j , f2,j )(uj ). Setting gj = G′
j we can consider the following family of normalized rescalings

Gj(t) := Gσj
(t) = Gj(σj t)

σjgj (σj )
, where σj := 2kj · Sj (kj + 1). (8.43)

Proposition 6.1 implies

Gj ∈ Gβ

(
δ, g0, (1 + g0)

−1) and Gj(1) � 1, (8.44)

and again by (8.40),

σj �
j

2
→ +∞ as j → ∞. (8.45)

Let us define now for each j the functional
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Fj (w) :=
∫

B
2
kj

[
Gj

(|∇w|)+ f j (w)
]
dx,

where f j (w)(x) = λ2(f 1,j , f 2,j )(w)(x) and for i = 1,2,

f i,j (x) = fi,j (2−kj x)

σjgj (σj )
.

We claim that vj is a minimizer for Fj . Indeed, for any ψ ∈ W
1,Gj
c (B

2kj ) we have

ψ̂(x) := Sj (kj + 1) · ψ̂(
2kj x

) ∈ W
1,Gj
c (B1).

Hence,

Fj (vj + ψ,B2kj ) = 2kj n

σjg(σj )
I 2
Gj

(uj + ψ̂,B1) �
2kj n

σjg(σj )
I 2
Gj

(uj ,B1) =Fj (vj ,B2kj ).

Once more by (8.40), (8.45), the non-degeneracy condition Gj(1) � ε0 and (G-2) imply

‖vj‖L∞(B8)
� Sj (kj − 3)

Sj (kj + 1)
� 16 (8.46)

and ∥∥f j (w)
∥∥

L∞(B8)
� 1 + g0

ε0
· 21+δ · μ

j1+δ
→ 0 as j → ∞, (8.47)

for any function w : B2kj →R.

This information together with (8.44) imply that for j large enough vj ∈ S(B8, δ, g0, (1 + g0)
−1,1,16).

This way, the uniform Hölder estimate – Theorem 5.1 with α = 1/2 – implies that

‖vj‖C1/2(B4)
� 16 + C(n, δ, g0).

So, we conclude that there exists a v∞ ∈ C1/2(B4) such that

vj → v∞ uniformly in B4. (8.48)

Let us consider now {wj }j�1 a sequence of solutions in W 1,Gj (B4) to the following sequence of Dirichlet problems

Ljwj = 0 in B4 and wj = vj on ∂B4,

where the operators Lj are given by

Ljw := div

(
gj

(|∇w|) ∇w

|∇w|
)

, gj = G
′
j .

Now, we use a slightly modified version of the stability estimates ((5.23), (5.25), (5.26)) developed in the proof of
Theorem 5.1. A careful inspection of these estimates reveals that all of them work with Br1+ε replaced by Br and μ

replaced by ‖f j (w)‖
L∞(B8)

. Also, (5.25) and (5.26) hold with β replaced by n for r � 1.
This way, combining these estimates together for r = 4, we find by (8.47) that∫

B4

Gj

(|∇vj − ∇wj |
)
dx � C(n, δ, g0).

(‖f j (vj )‖L∞(B8)

)1/2 � C(n, δ, g0, ε0,μ) · j−1/2. (8.49)

Furthermore, for all j , (G-2) and (8.44) yield

1

(g0 + 1)2
min

{
t1+δ, t1+g0

}
� Gj(t) � (g0 + 1)max

{
t1+δ, t1+g0

} ∀t � 0. (8.50)

Hence, by setting
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B−
4 := B4 ∩ {|∇vj − ∇wj | < 1

}
and B+

4 := B4 ∩ {|∇vj − ∇wj |� 1
}
,

by (8.49) and (8.50) we arrive at

C

j1/2
� (1 + g0)

−2
( ∫

B−
4

|∇vj − ∇wj |g0+1 dx +
∫

B+
4

|∇vj − ∇wj |δ+1 dx

)
,

and by Hölder’s inequality∫
B−

4

|∇vj − ∇wj |1+δ dx � |B4|
g0−δ

1+g0

( ∫
B−

4

|∇vj − ∇wj |1+g0 dx

)(1+δ)/(1+g0)

.

Thus,

C

j1/2
� (1 + g0)

−2
[
|B4|

δ−g0
1+δ

( ∫
B−

4

|∇vj − ∇wj |δ+1 dx

)c

+
∫

B+
4

|∇vj − ∇wj |δ+1 dx

]
,

where c = (1 + g0)/(1 + δ)� 1. Hence, for C̃ = C̃(n, δ, g0, ε0)

C̃

j1/2c
�
∫
B4

|∇vj − ∇wj |1+δ dx.

Now, it follows by Poincaré’s inequality that

hj := vj − wj → 0 strongly in W
1,δ+1
0 (B4). (8.51)

By the maximum principle and (8.46)

‖wj‖L∞(B4)
= ‖vj‖L∞(B4)

� 16.

Theorem 3.1 guarantees that there exists C = C(n, δ, g0) > 0 such that ‖wj‖C1,α(B2)
� C. Therefore, we can find

w∞ ∈ C1,α/2(B2) such that up to a subsequence

wj → w∞ uniformly in B2,

∇wj → ∇w∞ uniformly in B2.

We conclude this way that v∞ = w∞ in B2 by (8.51). Now, because of (8.44), we can use our compactness result –
Theorem 6.1 – to conclude that there exists a G∞ ∈ G(δ, g0) ∩ C2,β(0,∞) such that, again up to a subsequence,

Gj → G∞ and Gj
′ → G′∞ uniformly in compact subsets of [0,∞),

and

Gj
′′ → G′′∞ uniformly in compact subsets of (0,∞).

We now claim that v∞ is a (global) minimizer of I (v,B1) := ∫
B1

G∞(|∇v|) dx, i.e.,

I (v∞) � I (v∞ + ϕ), ∀ϕ ∈ C∞
0 (B1).

In fact, since vj is a minimizer of Fj , for any given ϕ ∈ C∞
0 (B1) we have that∫

B1

[
Gj

(|∇vj |
)+ f j (vj )

]
dx �

∫
B1

[
Gj

(∣∣∇(vj + ϕ)
∣∣)+ f j (vj + ϕ)

]
dx. (8.52)

Since ∇wj is uniformly bounded in B1 by the C1,α estimate, it follows from the uniform convergence that∫ ∣∣Gj

(|∇wj |
)− G∞

(|∇v∞|)∣∣dx → 0. (8.53)
B1
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Since

Gj

(|∇vj |
)
� 2g0(1 + g0)

[
Gj

(∣∣∇(vj − wj)
∣∣)+ Gj

(|∇wj |
)]

,

we conclude from (8.49) and (8.53) and Theorem 4.9 in [6] that there exists h ∈ L1(B1) such that

Gj

(|∇vj |
)
� h a.e. in B1.

Once ∇vj → ∇v∞ a.e. in B1, Lebesgue’s dominated convergence theorem implies∫
B1

Gj

(|∇vj |
)
dx →

∫
B1

G∞
(|∇v∞|)dx.

Passing to a subsequence, we find∣∣Gj

(∣∣∇(vj + ϕ)(x)
∣∣)∣∣� hϕ(x) for a.e. x ∈ B1,

for

hϕ := C(g0)
[
h +

(∣∣∣1 + sup
B1

|∇ϕ|
∣∣∣)1+g0

]
∈ L1(B1).

Again by the dominated convergence theorem∫
B1

Gj

(∣∣∇(vj + ϕ)
∣∣)dx →

∫
B1

G∞
(∣∣∇(v∞ + ϕ)

∣∣)dx. (8.54)

In addition, by (8.47) we find∫
B1

f j (vj ) dx → 0 and
∫
B1

f j (vj + ϕ)dx → 0.

Hence passing to the limit in (8.52), we see as claimed that ∀ϕ ∈ C∞
0 (B1)∫

B1

G∞
(|∇v∞|)dx �

∫
B1

G∞
(∣∣∇(v∞ + ϕ)

∣∣)dx.

This implies that for g∞ := G′∞, v∞ is a weak solution to

L∞v∞ := div

(
g∞

(|∇v∞|) ∇v∞
|∇v∞|

)
= 0 in B1,

with

G∞ ∈ G(δ, g0)

and

v∞(0) = 0 and 0 � v∞ � 2 and sup
B1/2

v∞ = 1,

where the second fact in the last line follows by the density decay estimate (8.42) and

sup
B1

|vj | =
supB1

|uj (2−kj x)|
Sj (kj + 1)

= Sj (kj )

Sj (kj + 1)
< 2,

and the last fact

sup
B

v∞ = lim
j

sup
B

|vj | = lim
j

Sj (kj + 1)

Sj (kj + 1)
= 1.
1/2 1/2
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Therefore, by Harnack’s inequality (Corollary 1.4 of [13]) we have for C0 = C0(δ, g0, n) > 0

1 = sup
B1/2

v∞ � C0 · v∞(0) = 0,

which is a contradiction. This way (8.38) holds and thus so does (8.37).

Case 2. u ∈ S
β

1 (δ, g0, ε0,μ,M)(0) for M > 1.

As before, u is a minimizer of a functional EG of the type

EG(u,B1) =
∫
B1

[
G
(|∇u|)+ λ(f1, f2)(u)

]
dx

with G ∈ Gβ(δ, g0, ε0),μ� 0 and supB1
|u| � M . Now, it is easy to see that if we define v := u/M , then supB1

|v| � 1
and v is a minimizer of EG∗

M
(w) = ∫

B1
[G∗

M(|∇w|) + λ(f1, f2)(w)]dx. Since G∗
M ∈ G(δ, g0, ε0) by Proposition 6.1,

v ∈ S
β

1 (δ, g0, ε0,μ,1)(0). Applying Case 1 to v, we are done. �
Now, we present a scaled version of Theorem 2.1 in the proposition below. In particular, we precisely show the

dependence between the Lipschitz constant of minimizers and the scale where the density starts to become small
enough. This proposition will be used to prove Lipschitz regularity and also density estimates from below of the
negative phase in the contact points under the appropriate conditions in the next section.

Proposition 8.1. There exist a (small) universal constant D = D(n, δ, g0, β) > 0 such that the following estimate∣∣u(x)
∣∣� 2 · max{M,1}

D · ρ · |x − x0|, ∀x ∈ Bρ(x0) (8.55)

holds for any u ∈ S
β
ρ (δ, g0, ε0,μ,M)(x0) with ρ � ρ0 provided Θ−

u (x0, r) � D for all 0 < r � ρ, where ρ0 =
ρ0(δ, g0, ε0,μ) � 1 is also a universal constant.

Proof. We can assume without loss of generality that x0 = 0. Since u ∈ S
β
ρ (δ, g0, ε0,μ,M)(0) there exists

G ∈ Gβ(δ, g0, ε0), 0 � f1, f2 � μ,

such that u is a minimizer of EG(u) = ∫
Bρ

[G(|∇u|)+λ(f1, f2)(u)]dx where λ(f1, f2)(u) is given by (2.6). Now we
define the rescaled function v(x) := u(ρx) for x ∈ B1 and claim that

v ∈ S
β

1

(
δ, g0, (1 + g0)

−1,1,M
)
(0) for ρ � ρ0 := min

{
1,

(
ε0

(1 + g0)μ

)(1+δ)−1}
.

In order to show this, it is enough to show that for any ball Br(y0) ⊂ B1(0) and w ∈ W 1,G(Br(y0)) with w = v on
∂Br(y0) we have

J (v) � J (w), (8.56)

where

J
(
η,Br(y0)

) :=
∫

Br(y0)

[
Gρ−1

(|∇η|)+ λ(f̃1, f̃2)(η)(x)

ρ−1g(ρ−1)

]
dx, g = G′,

f̃i(x) = fi(ρx), for x ∈ B1 and i = 1,2.

It is easy to check that

λ(f̃1, f̃2)(η)(x) = λ(f1, f2)(η)(ρx), where η(x) := η
(
ρ−1x

)
, x ∈ B1.

This way, if we define w(x) = w(ρ−1x) then w ∈ W 1,G(Bρr(ρy0)) with w = u on ∂Bρr(ρy0). Hence,
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J
(
v,Br(y0)

)= ρ

g(ρ−1)

∫
Br (y0)

[
G
(
ρ−1

∣∣∇v(x)
∣∣)+ λ(f̃1, f̃2)(v)(x)

]
dx

= ρ

g(ρ−1)

∫
Br (y0)

[
G
(∣∣∇u(ρx)

∣∣)+ λ(f1, f2)(u)(ρx)
]
dx

= 1

ρn−1g(ρ−1)

∫
Bρr (ρy0)

[
G
(∣∣∇u(y)

∣∣)+ λ(f1, f2)(u)(y)
]
dy

= 1

ρn−1g(ρ−1)
EG

(
u,Bρr(ρy0)

)
� 1

ρn−1g(ρ−1)
EG

(
w,Bρr(ρy0)

)
= J

(
w,Br(y0)

)
.

Observe also that by Proposition 6.1, Gρ−1 ∈ Gβ(δ, g0, (1 + g0)
−1).

Furthermore, (g-2) and (G-2) imply for ρ � ρ0 that

ρ−1g
(
ρ−1)� G(ρ) � G(1)

1 + g0
min

{
ρ−(1+δ), ρ−(1+g0)

}
� ε0

1 + g0
ρ−(1+δ) � μ,

and thus

sup
x∈B1

{ |f1(ρx)|
ρ−1g(ρ−1)

,
|f2(ρx)|

ρ−1g(ρ−1)

}
� μ

ρ−1g(ρ−1)
� 1.

This way, since ‖v‖L∞(B1) � M and 0 ∈ F±(v), the claim is proven. Now, applying Theorem 2.1 to v we obtain∣∣v(x)
∣∣� 2 max{M,1}

C
· |x| ∀x ∈ B1(0),

provided Θ−
v (x0, r) � D for all 0 < r < 1, where D = D(n, δ, g0, (1+g0)

−1,1, β) > 0 is a (small) universal constant.
Translating this back in terms of u we finish the proof. �
9. Proof of Corollary 2.1 – Lipschitz regularity under the small density

In this section, we provide the proof of Corollary 2.1.

Proof. Suppose 0 ∈ F+(u). Consider x0 ∈ B1/2(0). We can assume that u(x0) > 0 since the case u(x0) < 0 can be
treated analogously. Define d(x0) := dist(x0, ∂{u > 0}) and let z0 ∈ ∂{u > 0} such that d(x0) = |x0 −z0|. If |x0 −z0| �
1/4, then by local gradient estimate, (3.14),∣∣∇u(x0)

∣∣� sup
B1/8(x0)

∣∣∇u(x)
∣∣� 4C1M � 4C1M

C
� 4C1

C
max{M,1},

since 0 < C < 1. If |x0 − z0| < 1/4 we have |z0| < 3/4. Also u ∈ Sβ

1/4(δ, g0, ε0,μ,M)(z0) and Θ−
u (z0, r) � C for

0 � r � 1/4. Thus, by Theorem 2.1, for some universal C > 0,

u(x0) �
2 · max{M,1}

C
d(x0).

Once u is a positive solution to Lg(u) = 0 in Bd(x0)(x0) for some g = G′ with G ∈ Gβ(δ, g0, ε0), Harnack’s inequality
in [13] implies

u� 2c · max{M,1}
C

d(x0) in Bd(x0)/2(x0), (9.57)

where c := c(n, δ, g0). Again by (3.14) and (9.57), for r = d(x0)/4, we have
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∣∣∇u(x0)
∣∣� sup

Br/2(x0)

|∇u| � C1

r
sup

Br (x0)

u� 8c · C1 · max{M,1}
C

.

The case where 0 ∈ F−(u) is again treated similarly. �
Combining the last proof and Proposition 8.1, we obtain the following scaled result.

Remark 9.1 (Scaled version of Corollary 2.1). Let D and ρ0 as in Proposition 8.1.
Let u ∈ S

β
ρ (δ, g0, ε0,μ,M)(x0) with ρ � ρ0 and assume that

Θ−
u (z, r) � D ∀z ∈ F±(u) ∩ B3ρ/4(x0) and for all 0 < r < ρ/4.

Then,

[u]C0,1(Bρ/2(x0))
� C0 · max{M,1}

D · ρ for C0 = C0(n, δ, g0) > 0.

Remark 9.2 (Minimizers with sign). Let D and ρ0 as in Proposition 8.1. We observe that

u ∈ Sβ
ρ (δ, g0, ε0,μ,M)(x0) ⇒ −u ∈ Sβ

ρ (δ, g0, ε0,μ,M)(x0). (9.58)

Also, if u ∈ S
β
ρ (δ, g0, ε0,μ,M)(x0) with ρ � ρ0 and u� 0 or u � 0 in Bρ(x0), then

[u]C0,1(Bρ/2(x0))
� C0 · max{M,1}

D · ρ for C0 = C0(n, δ, g0) > 0.

Indeed, by (9.58), we can assume u � 0. Observe that Θ−
u (x, r) = 0 < D for all x ∈ B3ρ/4(x0) and 0 < r < ρ/4. The

result follows by Remark 9.1. In fact, one can prove Lipschitz regularity for a larger class of minimizers if there is a
sign. The estimate can in fact be proven for u ∈ S1(δ, g0, ε0,μ)(0) once u� 0 or u� 0 by using Theorem 2.2.

10. Regularity and touching behavior of the free boundaries F+(u) and F−(u)

In the classical paper of Alt, Caffarelli and Friedman [5], they study minimizers of functionals of the type

J (u,B1) =
∫
B1

{|∇u|2 + λ2 · χ{u>0} + λ1 · χ{u<0} + min(λ1, λ2) · χ{u=0}
}
dx,

where Λ = λ1 − λ2 �= 0, λ1, λ2 � 0. For definiteness, they assume that Λ < 0 since the other case can be treated
similarly. These conditions imply that minimizers are globally subharmonic functions (Theorem 2.3 in [5]) and this
fact together with the maximum principle restrict the way the free boundaries F+(u), F−(u) may touch. Essentially
F−(u) cannot separate from F+(u). More precisely, as pointed out in the beginning of Section 6 in [5], the set
F−(u) \F+(u) is empty. In the general case treated here, if the phase functions are ordered, i.e., say f2 � f1 in B1(0)

the same phenomenon happens. This is the content of the remark below.

Remark 10.1. Let u is a minimizer of EG in B1 with f2 � f1 and G ∈ G(δ, g0). Then,

Lg(u) � 0 in B1 and F−(u) \ F+(u) = ∅.

Proof. Indeed, given any 0 � η ∈ C∞
0 (Ω) and ε > 0, it follows by minimality that

I 1
G(u) � I 1

G(u − εη),

for Λ0(x) = f1(x) − f2(x) � 0. Hence,∫ (
G
(∣∣∇(u − εη)

∣∣)− G
(|∇u|))dx �

∫
Λ0(x)(χ{u�0} − χ{u−εη�0}) dx � 0,
B1 B1
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since {u� 0} ⊂ {u − εη � 0}. Thus, by setting the functional I (v) = ∫
B1

G(|∇v|) dx, we conclude that

0 � lim
ε→0+

1

ε

(
I (u − εη) − I (u)

)= d

dε
I (u − εη)

∣∣∣∣
ε=0

= −
∫
Ω

g
(|∇u|) ∇u

|∇u| · ∇η dx. (10.59)

This proves that u is an Lg subsolution. Now, suppose x0 ∈ F−(u) \ F+(u). There exists ε > 0 such that Bε(x0) ∩
F+(u) = ∅. We observe that Lg(u) = 0 in {u < 0} ∩ Bε(x0) and u � 0 in Bε(x0). This way, by Lemma 8.1 in [15]
we conclude that Lg(u) � 0 in Bε(x0) and thus Lg(u) = 0 in Bε(x0). Now, the Harnack inequality implies that for a
universal constant Cε > 0 depending on ε we have

sup
Bε/2(x0)

(−u) � C · inf
Bε/2(x0)

(−u) � −Cε · u(x0) = 0.

This implies that u ≡ 0 in Bε(x0) and so, x0 /∈ F−(u) a contradiction. Thus, F−(u) \ F+(u) = ∅. �
Still in the context of Alt, Caffarelli and Friedman paper [5], by combining the (crucial) Lipschitz regularity with

the non-degeneracy property (also Λ < 0), they are able to prove that the nonnegative phase has positive density from
below along the free boundary F+(u), i.e., there exists a constant c ∈ (0,1) such that

|Br ∩ {u� 0}|
|Br | � c,

for any ball Br ⊂ B1 with center on the free boundary F+(u) (see Theorem 7.1 in [5]).
In the case discussed here the situation is more general. In particular, as pointed out before, there is no ordering

on the phase functions f2 and f1 in the functionals (2.5). So, in principle, minimizers are neither subsolutions nor
supersolutions. Thus, in our conditions, the free boundaries F+(u) and F−(u) may separate, i.e., F−(u)\F+(u) �= ∅.
A similar situation occurs even in the standard case involving the Laplace operator in an inhomogeneous setting as it
appears in flame propagation problems with forcing terms in [12].

It becomes an interesting question to understand the touching of the free boundaries and possibly some geometric
information at the touching points. To the best of our knowledge, there are few concrete examples in the literature
addressing these geometric issues for minimizers and almost all of them concern the one phase scenario. In that
respect, we recently learned about the interesting paper [4] by M. Allen and H.C. Lara where they investigate the
touching of the free boundaries (also in the two phase case) in cone vertices in a very much related variational problem
on the 2 dimensional sphere.

As a consequence of Theorem 2.1, we can show that if Lipschitz regularity fails to be the optimal regularity for
a minimizer u ∈ S

β

1 (δ, g0, ε0,μ,M) say in a point, then this point must not only be a contact point between the
free boundaries F+(u) and F−(u) but also the negative phase must have a universal (upper) density from below at
that point. In particular, at that contact point the negative phase {u < 0} is cusp free. We also show that if u is not
locally Lipschitz around x0, then x0 is also a contact point between the free boundaries and the negative phase is
“asymptotically cusp free” there, in the sense that there is a sequence of points along F±(u) converging to x0 and
scales going to zero, along which the density function Θ−

u is universally bounded from below.

Proof of Proposition 2.1. Clearly, Sp ⊂ Sl since [u]C0,1(Br (x0))
(x0) � [u]C0,1(Br (x0))

. Now let x0 ∈ Sl . We can find
two sequences {xn}n�1, {yn}n�1 ⊂ B1/2(x0) such that:

xn → x0, yn → x0 as n → ∞ and ρn := |u(xn) − u(yn)|
|xn − yn| > n.

Since B1 = {u > 0} ∪ {u < 0} ∪ {u = 0}◦ ∪ F±(u), we see that x0 /∈ {u > 0} ∪ {u < 0} ∪ {u = 0}◦. This follows from
interior Lipschitz estimates. Indeed, in that case there would exist ε > 0 such that Bε(x0) ⊂ {u > 0} or Bε(x0) ⊂
{u < 0} or else Bε(x0) ⊂ {u = 0}. The latter case is impossible since it would imply 0 = ρn > n for n sufficiently
large. In any of the first two cases, since Lg(u) = 0 in Bε(x0) by Proposition 4.2, the gradient estimate in Theorem 3.1
would imply that for a universal constant C1 > 0 and n large enough,

n <
|u(xn) − u(yn)|

|xn − yn| � sup
B (x )

|∇u| � C1

ε
sup

B (x )

|v| = C1 · M
ε

< ∞,

ε/2 0 ε 0
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which is a contradiction. This way, x0 ∈ F±(u) ∩ B1/2. Let us suppose that x0 ∈ F−(u) \ F+(u). In this case, x0 /∈
F+(u) ∩ B1/2 which is a compact set, and thus, there exists 0 < ε < ρ0 such that Bε(x0) ∩ F+(u) ∩ B1/2 = ∅. Since

u� 0 in Bε(x0) and u ∈ S
β
ε (δ, g0, ε0,μ,M)(x0), Remark 9.2 gives for n large enough,

n <
|u(xn) − u(x0)|

|xn − x0| � [u]C0,1(Bε/2(x0))
� C0 · max{M,1}

D · ε < ∞,

which is a contradiction. The case where x0 ∈ F+(u) \ F−(u) is treated similarly. Thus, we conclude that x0 ∈
F+(u) ∩ F−(u). In the case where x0 ∈ Sl then for any ρ � ρ0 there exist xρ ∈ B 3ρ

4
(x0) ∩ F±(u) and 0 < rρ < ρ/4

such that Θ−
u (xρ, rρ) > D since otherwise Remark 9.1 implies that

[u]C0,1(Bρ/2(x0))
� C0 · max{M,1}

D · ρ ,

and thus would imply x0 /∈ Sl . Now if x0 ∈ Sp , we also see that for any 0 < ρ � ρ0 there exists 0 < rρ � ρ such that
Θ−

u (x0, rρ) > D since otherwise Proposition 8.1 would imply that

[u]C0,1(Bρ(x0))
(x0) �

2 · max{M,1}
D · ρ < ∞,

and thus, x0 /∈ Sp . This finishes the proof. �
Remark 10.2. In general, it is not an easy task to prove that some specific function although a (viscosity) solution
to some FBP is not a minimizer. There are few examples in the literature the authors are aware of. One of the first
important examples was obtained by H.W. Alt and L.A. Caffarelli in Section 2.7 of [2] where some one phase cone
type solution to an FBP is shown not to be a minimizer in dimension 3. Many years later, L.A. Caffarelli, D. Jerison
and C. Kenig proved that the same solution is not a minimizer up to dimension 6 (Proposition in [8]). After that,
D. de Silva and D. Jerison proved a result in [9] showing that this cone type solution is actually a minimizer in
dimension 7, providing the first example of a singular free boundary for minimizers in analogy with the Simons
cone for the theory of minimal surfaces. All of these developments take place for the case where G(t) = t2. Our
result (Proposition 2.1), may be of some use in ruling out (viscosity) solutions of FBPs of the type (1.2) from being
minimizers of EG functionals in the case where (pointwise) Lipschitz regularity fails and cusps in the negative phase
develop in the contact points F+(u) ∩ F−(u).
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Appendix A

In this appendix, we provide short proof for Lemma 3.1.

Proof of Lemma 3.1. By Poincaré’s inequality, there exists a dimensional constant that we can suppose C � 1 such
that

r−1 −
∫

Br(x0)

∣∣u(x) − (u)x0,r

∣∣dx � C · −
∫

Br (x0)

∣∣∇u(x)
∣∣dx for x0 ∈ Ω ′, r � R0, (A.60)

where (u)x0,r = −
∫

Br (x0)
u(x) dx. Clearly, we can assume R0 � 1. Let us define for 0 < r � R0 the function

ρ(r) = r−1 −
∫ ∣∣u(x) − (u)x0,r

∣∣dx.
Br(x0)
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Since G is increasing, convex and it satisfies (G-2), (A.60) implies

G
(
ρ(r)

)
� (1 + g0) · C1+g0 · −

∫
Br (x0)

G
(∣∣∇u(x)

∣∣)dx � (1 + g0) · C1+g0 · L · rα−1.

On one hand, if ρ(r) � 1 we have

G
(
ρ(r)

)
� G(1) · min

{
ρ(r)1+δ, ρ(r)1+g0

}
�G(1) · ρ(r).

So, combining these inequalities, we obtain

ρ(r) � (1 + g0) · C1+g0 · L
G(1)

· rα−1

which lead us to

−
∫

Br(x0)

∣∣u(x) − (u)x0,r

∣∣dx � C̃(g0)

G(1)
· L · rα for 0 < r � R0. (A.61)

Now, in the case ρ(r) � 1 since 0 < α � 1 we have

−
∫

Br(x0)

∣∣u(x) − (u)x0,r

∣∣dx � r � rα for 0 < r � R0. (A.62)

This way, combining (A.61) and (A.62) we have

−
∫

Br(x0)

∣∣u(x) − (u)x0,r

∣∣dx � max

{
C̃(g0)

G(1)
· L,1

}
· rα for x0 ∈ Ω ′ with 0 < r � R0.

The estimates now follow from the Campanato theorem as in Theorem 1.1 in [14]. �
References

[1] R. Adams, J. Fournier, Sobolev Spaces, 2nd edition, Academic Press, 2003.
[2] H.W. Alt, L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981) 105–144.
[3] H.W. Alt, L.A. Caffarelli, A. Friedman, A free boundary problem for quasi-linear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)

11 (1) (1984) 1–44.
[4] M. Allen, H.C. Lara, Free boundary on a cone, preprint, arXiv:1301.6047 [math.AP].
[5] H.W. Alt, L.A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984)

431–461.
[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1st edition, Universitext, Springer, 2010.
[7] L.A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X,

Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 15 (4) (1989) 583–602.
[8] L.A. Caffarelli, D. Jerison, C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions, in:

Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, in: Contemp. Math., vol. 350, Amer. Math. Soc., Providence,
RI, 2004, pp. 83–97.

[9] D. De Silva, D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math. 635 (2009) 1–21.
[10] D. Danielli, A. Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential

Equations 23 (1) (2005) 97–124.
[11] A. Kharakhanyan, On the Lipschitz regularity of solutions of a minimum problem with free boundary, Interfaces Free Bound. 10 (2008)

79–86.
[12] C. Lederman, N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl. (9) 86 (6) (2006)

552–589.
[13] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial

Differential Equations 16 (2–3) (1991) 311–361.
[14] Q. Han, F. Lin, Elliptic Partial Differential Equations, second edition, Courant Lect. Notes Math., vol. 1, Courant Institute of Mathematical

Sciences/AMS, New York/Providence, RI, 2011.
[15] S. Martinez, N. Wolanski, A minimum problem with free boundary in Orlicz spaces, Adv. Math. 218 (6) (2008) 1914–1971.

http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4146s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4143s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib414332s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib414332s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib414Cs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib414346s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib414346s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4272s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4333s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4333s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib434A4Bs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib434A4Bs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib434A4Bs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib446544s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4450s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4450s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4Bs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4Bs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4C57s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4C57s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4C31s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4C31s1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib484Cs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib484Cs1
http://refhub.elsevier.com/S0294-1449(13)00089-9/bib4D57s1

	Uniform Lipschitz regularity for classes of minimizers in two phase free boundary problems in Orlicz spaces with small density on the negative phase
	1 Introduction
	2 Presentation of our results
	3 Background results on Orlicz spaces and degenerate/singular elliptic equations
	4 Existence theory and L∞ estimates for global minimizers of EG
	5 The uniform local Hölder regularity for minimizers in S(Ω, δ, g0, ε0, μ, M)
	6 Non-degenerate classes: free boundary hitting angle, compactness and scaling
	6.1 Compactness of non-degenerate subclasses
	6.2 Scaling

	7 Examples of N-functions in the non-degenerate classes of G(δ, g0)
	8 Proof of the main result - Theorem 2.1
	9 Proof of Corollary 2.1 - Lipschitz regularity under the small density
	10 Regularity and touching behavior of the free boundaries F+(u) and F-(u)
	Acknowledgements
	References


